TPTP Problem File: SYN357^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN357^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Syntactic
% Problem : Peter Andrews Problem X2108
% Version : [Ben12] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [And86] Andrews (1986), An Introduction to Mathematical Logic
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GSY357+1 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0
% Syntax : Number of formulae : 74 ( 33 unt; 37 typ; 32 def)
% Number of atoms : 116 ( 36 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 157 ( 5 ~; 5 |; 9 &; 128 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 182 ( 182 >; 0 *; 0 +; 0 <<)
% Number of symbols : 43 ( 41 usr; 6 con; 0-3 aty)
% Number of variables : 92 ( 51 ^; 34 !; 7 ?; 92 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of SYN357+1
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(big_p_type,type,
big_p: mu > $i > $o ).
thf(x2108,conjecture,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] :
( mexists_ind
@ ^ [Y: mu] : ( mbox_s4 @ ( mimplies @ ( mbox_s4 @ ( big_p @ X ) ) @ ( mbox_s4 @ ( big_p @ Y ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------