TPTP Problem File: SYN000+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN000+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : Basic TPTP FOF syntax
% Version : Biased.
% English : Basic TPTP FOF syntax that you can't survive without parsing.
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.19 v7.4.0, 0.17 v7.0.0, 0.20 v6.4.0, 0.19 v6.3.0, 0.25 v6.2.0, 0.28 v6.1.0, 0.33 v6.0.0, 0.43 v5.5.0, 0.48 v5.4.0, 0.46 v5.3.0, 0.52 v5.2.0, 0.40 v5.1.0, 0.43 v5.0.0, 0.54 v4.1.0, 0.57 v4.0.1, 0.78 v4.0.0
% Syntax : Number of formulae : 12 ( 5 unt; 0 def)
% Number of atoms : 31 ( 3 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 28 ( 9 ~; 10 |; 3 &)
% ( 1 <=>; 3 =>; 1 <=; 1 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 16 ( 13 usr; 10 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-3 aty)
% Number of variables : 13 ( 5 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Propositional
fof(propositional,axiom,
( ( p0
& ~ q0 )
=> ( r0
| ~ s0 ) ) ).
%----First-order
fof(first_order,axiom,
! [X] :
( ( p(X)
| ~ q(X,a) )
=> ? [Y,Z] :
( r(X,f(Y),g(X,f(Y),Z))
& ~ s(f(f(f(b)))) ) ) ).
%----Equality
fof(equality,axiom,
? [Y] :
! [X,Z] :
( f(Y) = g(X,f(Y),Z)
| f(f(f(b))) != a
| X = f(Y) ) ).
%----True and false
fof(true_false,axiom,
( $true
| $false ) ).
%----Quoted symbols
fof(single_quoted,axiom,
( 'A proposition'
| 'A predicate'(a)
| p('A constant')
| p('A function'(a))
| p('A \'quoted \\ escape\'') ) ).
%----Connectives - seen |, &, =>, ~ already
fof(useful_connectives,axiom,
! [X] :
( ( p(X)
<= ~ q(X,a) )
<=> ? [Y,Z] :
( r(X,f(Y),g(X,f(Y),Z))
<~> ~ s(f(f(f(b)))) ) ) ).
%----Annotated formula names
fof(123,axiom,
! [X] :
( ( p(X)
| ~ q(X,a) )
=> ? [Y,Z] :
( r(X,f(Y),g(X,f(Y),Z))
& ~ s(f(f(f(b)))) ) ) ).
%----Roles
fof(role_hypothesis,hypothesis,
p(h) ).
fof(role_conjecture,conjecture,
? [X] : p(X) ).
%----Include directive
include('Axioms/SYN000+0.ax').
%----Comments
/* This
is a block
comment.
*/
%------------------------------------------------------------------------------