TPTP Problem File: SWW662_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW662_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Verifythis PrefixSumRec-T-is power of 2 1
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : verifythis_PrefixSumRec-T-is_power_of_2_1 [Fil14]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.38 v8.2.0, 0.50 v7.4.0, 0.25 v7.3.0, 0.33 v7.0.0, 0.43 v6.4.0, 0.00 v6.3.0, 0.57 v6.2.0, 0.62 v6.1.0
% Syntax : Number of formulae : 108 ( 32 unt; 41 typ; 0 def)
% Number of atoms : 130 ( 53 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 71 ( 8 ~; 1 |; 19 &)
% ( 2 <=>; 41 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Maximal term depth : 6 ( 1 avg)
% Number arithmetic : 227 ( 55 atm; 32 fun; 61 num; 79 var)
% Number of types : 8 ( 6 usr; 1 ari)
% Number of type conns : 59 ( 27 >; 32 *; 0 +; 0 <<)
% Number of predicates : 5 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 40 ( 33 usr; 11 con; 0-5 aty)
% Number of variables : 158 ( 157 !; 1 ?; 158 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort1,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(abs,type,
abs1: $int > $int ).
tff(abs_def,axiom,
! [X: $int] :
( ( $lesseq(0,X)
=> ( abs1(X) = X ) )
& ( ~ $lesseq(0,X)
=> ( abs1(X) = $uminus(X) ) ) ) ).
tff(abs_le,axiom,
! [X: $int,Y: $int] :
( $lesseq(abs1(X),Y)
<=> ( $lesseq($uminus(Y),X)
& $lesseq(X,Y) ) ) ).
tff(abs_pos,axiom,
! [X: $int] : $lesseq(0,abs1(X)) ).
tff(div,type,
div1: ( $int * $int ) > $int ).
tff(mod,type,
mod1: ( $int * $int ) > $int ).
tff(div_mod,axiom,
! [X: $int,Y: $int] :
( ( Y != 0 )
=> ( X = $sum($product(Y,div1(X,Y)),mod1(X,Y)) ) ) ).
tff(div_bound,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(0,Y) )
=> ( $lesseq(0,div1(X,Y))
& $lesseq(div1(X,Y),X) ) ) ).
tff(mod_bound,axiom,
! [X: $int,Y: $int] :
( ( Y != 0 )
=> ( $less($uminus(abs1(Y)),mod1(X,Y))
& $less(mod1(X,Y),abs1(Y)) ) ) ).
tff(div_sign_pos,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(0,Y) )
=> $lesseq(0,div1(X,Y)) ) ).
tff(div_sign_neg,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
& $less(0,Y) )
=> $lesseq(div1(X,Y),0) ) ).
tff(mod_sign_pos,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& ( Y != 0 ) )
=> $lesseq(0,mod1(X,Y)) ) ).
tff(mod_sign_neg,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
& ( Y != 0 ) )
=> $lesseq(mod1(X,Y),0) ) ).
tff(rounds_toward_zero,axiom,
! [X: $int,Y: $int] :
( ( Y != 0 )
=> $lesseq(abs1($product(div1(X,Y),Y)),abs1(X)) ) ).
tff(div_1,axiom,
! [X: $int] : ( div1(X,1) = X ) ).
tff(mod_1,axiom,
! [X: $int] : ( mod1(X,1) = 0 ) ).
tff(div_inf,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(X,Y) )
=> ( div1(X,Y) = 0 ) ) ).
tff(mod_inf,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(X,Y) )
=> ( mod1(X,Y) = X ) ) ).
tff(div_mult,axiom,
! [X: $int,Y: $int,Z: $int] :
( ( $less(0,X)
& $lesseq(0,Y)
& $lesseq(0,Z) )
=> ( div1($sum($product(X,Y),Z),X) = $sum(Y,div1(Z,X)) ) ) ).
tff(mod_mult,axiom,
! [X: $int,Y: $int,Z: $int] :
( ( $less(0,X)
& $lesseq(0,Y)
& $lesseq(0,Z) )
=> ( mod1($sum($product(X,Y),Z),X) = mod1(Z,X) ) ) ).
tff(power,type,
power1: ( $int * $int ) > $int ).
tff(power_0,axiom,
! [X: $int] : ( power1(X,0) = 1 ) ).
tff(power_s,axiom,
! [X: $int,N: $int] :
( $lesseq(0,N)
=> ( power1(X,$sum(N,1)) = $product(X,power1(X,N)) ) ) ).
tff(power_s_alt,axiom,
! [X: $int,N: $int] :
( $less(0,N)
=> ( power1(X,N) = $product(X,power1(X,$difference(N,1))) ) ) ).
tff(power_1,axiom,
! [X: $int] : ( power1(X,1) = X ) ).
tff(power_sum,axiom,
! [X: $int,N: $int,M: $int] :
( $lesseq(0,N)
=> ( $lesseq(0,M)
=> ( power1(X,$sum(N,M)) = $product(power1(X,N),power1(X,M)) ) ) ) ).
tff(power_mult,axiom,
! [X: $int,N: $int,M: $int] :
( $lesseq(0,N)
=> ( $lesseq(0,M)
=> ( power1(X,$product(N,M)) = power1(power1(X,N),M) ) ) ) ).
tff(power_mult2,axiom,
! [X: $int,Y: $int,N: $int] :
( $lesseq(0,N)
=> ( power1($product(X,Y),N) = $product(power1(X,N),power1(Y,N)) ) ) ).
tff(map,type,
map: ( ty * ty ) > ty ).
tff(get,type,
get: ( ty * ty * uni * uni ) > uni ).
tff(get_sort2,axiom,
! [A: ty,B: ty,X: uni,X1: uni] : sort1(B,get(B,A,X,X1)) ).
tff(set,type,
set: ( ty * ty * uni * uni * uni ) > uni ).
tff(set_sort2,axiom,
! [A: ty,B: ty,X: uni,X1: uni,X2: uni] : sort1(map(A,B),set(B,A,X,X1,X2)) ).
tff(select_eq,axiom,
! [A: ty,B: ty,M: uni,A1: uni,A2: uni,B1: uni] :
( sort1(B,B1)
=> ( ( A1 = A2 )
=> ( get(B,A,set(B,A,M,A1,B1),A2) = B1 ) ) ) ).
tff(select_neq,axiom,
! [A: ty,B: ty,M: uni,A1: uni,A2: uni] :
( sort1(A,A1)
=> ( sort1(A,A2)
=> ! [B1: uni] :
( ( A1 != A2 )
=> ( get(B,A,set(B,A,M,A1,B1),A2) = get(B,A,M,A2) ) ) ) ) ).
tff(const1,type,
const: ( ty * ty * uni ) > uni ).
tff(const_sort1,axiom,
! [A: ty,B: ty,X: uni] : sort1(map(A,B),const(B,A,X)) ).
tff(const,axiom,
! [A: ty,B: ty,B1: uni,A1: uni] :
( sort1(B,B1)
=> ( get(B,A,const(B,A,B1),A1) = B1 ) ) ).
tff(array,type,
array: ty > ty ).
tff(mk_array,type,
mk_array1: ( ty * $int * uni ) > uni ).
tff(mk_array_sort1,axiom,
! [A: ty,X: $int,X1: uni] : sort1(array(A),mk_array1(A,X,X1)) ).
tff(length,type,
length1: ( ty * uni ) > $int ).
tff(length_def1,axiom,
! [A: ty,U: $int,U1: uni] : ( length1(A,mk_array1(A,U,U1)) = U ) ).
tff(elts,type,
elts: ( ty * uni ) > uni ).
tff(elts_sort1,axiom,
! [A: ty,X: uni] : sort1(map(int,A),elts(A,X)) ).
tff(elts_def1,axiom,
! [A: ty,U: $int,U1: uni] :
( sort1(map(int,A),U1)
=> ( elts(A,mk_array1(A,U,U1)) = U1 ) ) ).
tff(array_inversion1,axiom,
! [A: ty,U: uni] : ( U = mk_array1(A,length1(A,U),elts(A,U)) ) ).
tff(get1,type,
get2: ( ty * uni * $int ) > uni ).
tff(get_sort3,axiom,
! [A: ty,X: uni,X1: $int] : sort1(A,get2(A,X,X1)) ).
tff(t2tb,type,
t2tb: $int > uni ).
tff(t2tb_sort,axiom,
! [X: $int] : sort1(int,t2tb(X)) ).
tff(tb2t,type,
tb2t: uni > $int ).
tff(bridgeL,axiom,
! [I: $int] : ( tb2t(t2tb(I)) = I ) ).
tff(bridgeR,axiom,
! [J: uni] : ( t2tb(tb2t(J)) = J ) ).
tff(get_def,axiom,
! [A: ty,A1: uni,I: $int] : ( get2(A,A1,I) = get(A,int,elts(A,A1),t2tb(I)) ) ).
tff(set1,type,
set2: ( ty * uni * $int * uni ) > uni ).
tff(set_sort3,axiom,
! [A: ty,X: uni,X1: $int,X2: uni] : sort1(array(A),set2(A,X,X1,X2)) ).
tff(set_def,axiom,
! [A: ty,A1: uni,I: $int,V: uni] : ( set2(A,A1,I,V) = mk_array1(A,length1(A,A1),set(A,int,elts(A,A1),t2tb(I),V)) ) ).
tff(make,type,
make1: ( ty * $int * uni ) > uni ).
tff(make_sort1,axiom,
! [A: ty,X: $int,X1: uni] : sort1(array(A),make1(A,X,X1)) ).
tff(make_def,axiom,
! [A: ty,N: $int,V: uni] : ( make1(A,N,V) = mk_array1(A,N,const(A,int,V)) ) ).
tff(map_int_int,type,
map_int_int: $tType ).
tff(sum,type,
sum2: ( map_int_int * $int * $int ) > $int ).
tff(sum_def_empty,axiom,
! [C: map_int_int,I: $int,J: $int] :
( $lesseq(J,I)
=> ( sum2(C,I,J) = 0 ) ) ).
tff(t2tb1,type,
t2tb1: map_int_int > uni ).
tff(t2tb_sort1,axiom,
! [X: map_int_int] : sort1(map(int,int),t2tb1(X)) ).
tff(tb2t1,type,
tb2t1: uni > map_int_int ).
tff(bridgeL1,axiom,
! [I: map_int_int] : ( tb2t1(t2tb1(I)) = I ) ).
tff(bridgeR1,axiom,
! [J: uni] : ( t2tb1(tb2t1(J)) = J ) ).
tff(sum_def_non_empty,axiom,
! [C: map_int_int,I: $int,J: $int] :
( $less(I,J)
=> ( sum2(C,I,J) = $sum(tb2t(get(int,int,t2tb1(C),t2tb(I))),sum2(C,$sum(I,1),J)) ) ) ).
tff(sum_right_extension,axiom,
! [C: map_int_int,I: $int,J: $int] :
( $less(I,J)
=> ( sum2(C,I,J) = $sum(sum2(C,I,$difference(J,1)),tb2t(get(int,int,t2tb1(C),t2tb($difference(J,1))))) ) ) ).
tff(sum_transitivity,axiom,
! [C: map_int_int,I: $int,K: $int,J: $int] :
( ( $lesseq(I,K)
& $lesseq(K,J) )
=> ( sum2(C,I,J) = $sum(sum2(C,I,K),sum2(C,K,J)) ) ) ).
tff(sum_eq,axiom,
! [C1: map_int_int,C2: map_int_int,I: $int,J: $int] :
( ! [K: $int] :
( ( $lesseq(I,K)
& $less(K,J) )
=> ( tb2t(get(int,int,t2tb1(C1),t2tb(K))) = tb2t(get(int,int,t2tb1(C2),t2tb(K))) ) )
=> ( sum2(C1,I,J) = sum2(C2,I,J) ) ) ).
tff(array_int,type,
array_int: $tType ).
tff(sum1,type,
sum3: ( array_int * $int * $int ) > $int ).
tff(t2tb2,type,
t2tb2: array_int > uni ).
tff(t2tb_sort2,axiom,
! [X: array_int] : sort1(array(int),t2tb2(X)) ).
tff(tb2t2,type,
tb2t2: uni > array_int ).
tff(bridgeL2,axiom,
! [I: array_int] : ( tb2t2(t2tb2(I)) = I ) ).
tff(bridgeR2,axiom,
! [J: uni] : ( t2tb2(tb2t2(J)) = J ) ).
tff(sum_def,axiom,
! [A: array_int,L: $int,H: $int] : ( sum3(A,L,H) = sum2(tb2t1(elts(int,t2tb2(A))),L,H) ) ).
tff(div_mod_2,axiom,
! [X: $int] :
( $lesseq(0,X)
=> ( $lesseq($product(2,div1(X,2)),X)
& $lesseq($difference(X,1),$product(2,div1(X,2))) ) ) ).
tff(is_power_of_2,type,
is_power_of_21: $int > $o ).
tff(is_power_of_2_def,axiom,
! [X: $int] :
( is_power_of_21(X)
<=> ? [K: $int] :
( $lesseq(0,K)
& ( X = power1(2,K) ) ) ) ).
tff(is_power_of_2_1,conjecture,
! [X: $int] :
( is_power_of_21(X)
=> ( $less(1,X)
=> ( $product(2,div1(X,2)) = X ) ) ) ).
%------------------------------------------------------------------------------