TPTP Problem File: SWW648_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW648_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : There and back again-T-WP parameter convolution rec
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : there_and_back_again-T-WP_parameter_convolution_rec [Fil14]
% Status : Theorem
% Rating : 0.62 v8.2.0, 0.88 v7.5.0, 0.90 v7.4.0, 0.88 v7.3.0, 0.83 v7.1.0, 0.67 v7.0.0, 0.57 v6.4.0, 1.00 v6.3.0, 0.71 v6.2.0, 0.88 v6.1.0
% Syntax : Number of formulae : 101 ( 35 unt; 43 typ; 0 def)
% Number of atoms : 98 ( 52 equ)
% Maximal formula atoms : 10 ( 0 avg)
% Number of connectives : 43 ( 3 ~; 4 |; 12 &)
% ( 4 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 4 avg)
% Maximal term depth : 5 ( 1 avg)
% Number arithmetic : 18 ( 6 atm; 4 fun; 5 num; 3 var)
% Number of types : 10 ( 8 usr; 1 ari)
% Number of type conns : 55 ( 26 >; 29 *; 0 +; 0 <<)
% Number of predicates : 4 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 37 ( 33 usr; 11 con; 0-5 aty)
% Number of variables : 159 ( 155 !; 4 ?; 159 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort: ( ty * uni ) > $o ).
tff(witness,type,
witness: ty > uni ).
tff(witness_sort,axiom,
! [A: ty] : sort(A,witness(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool: $tType ).
tff(bool1,type,
bool1: ty ).
tff(true,type,
true: bool ).
tff(false,type,
false: bool ).
tff(match_bool,type,
match_bool: ( ty * bool * uni * uni ) > uni ).
tff(match_bool_sort,axiom,
! [A: ty,X: bool,X1: uni,X2: uni] : sort(A,match_bool(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort(A,Z)
=> ( match_bool(A,true,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort(A,Z1)
=> ( match_bool(A,false,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true != false ).
tff(bool_inversion,axiom,
! [U: bool] :
( ( U = true )
| ( U = false ) ) ).
tff(tuple0,type,
tuple0: $tType ).
tff(tuple01,type,
tuple01: ty ).
tff(tuple02,type,
tuple02: tuple0 ).
tff(tuple0_inversion,axiom,
! [U: tuple0] : ( U = tuple02 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(list,type,
list: ty > ty ).
tff(nil,type,
nil: ty > uni ).
tff(nil_sort,axiom,
! [A: ty] : sort(list(A),nil(A)) ).
tff(cons,type,
cons: ( ty * uni * uni ) > uni ).
tff(cons_sort,axiom,
! [A: ty,X: uni,X1: uni] : sort(list(A),cons(A,X,X1)) ).
tff(match_list,type,
match_list: ( ty * ty * uni * uni * uni ) > uni ).
tff(match_list_sort,axiom,
! [A: ty,A1: ty,X: uni,X1: uni,X2: uni] : sort(A1,match_list(A1,A,X,X1,X2)) ).
tff(match_list_Nil,axiom,
! [A: ty,A1: ty,Z: uni,Z1: uni] :
( sort(A1,Z)
=> ( match_list(A1,A,nil(A),Z,Z1) = Z ) ) ).
tff(match_list_Cons,axiom,
! [A: ty,A1: ty,Z: uni,Z1: uni,U: uni,U1: uni] :
( sort(A1,Z1)
=> ( match_list(A1,A,cons(A,U,U1),Z,Z1) = Z1 ) ) ).
tff(nil_Cons,axiom,
! [A: ty,V: uni,V1: uni] : ( nil(A) != cons(A,V,V1) ) ).
tff(cons_proj_1,type,
cons_proj_1: ( ty * uni ) > uni ).
tff(cons_proj_1_sort,axiom,
! [A: ty,X: uni] : sort(A,cons_proj_1(A,X)) ).
tff(cons_proj_1_def,axiom,
! [A: ty,U: uni,U1: uni] :
( sort(A,U)
=> ( cons_proj_1(A,cons(A,U,U1)) = U ) ) ).
tff(cons_proj_2,type,
cons_proj_2: ( ty * uni ) > uni ).
tff(cons_proj_2_sort,axiom,
! [A: ty,X: uni] : sort(list(A),cons_proj_2(A,X)) ).
tff(cons_proj_2_def,axiom,
! [A: ty,U: uni,U1: uni] : ( cons_proj_2(A,cons(A,U,U1)) = U1 ) ).
tff(list_inversion,axiom,
! [A: ty,U: uni] :
( ( U = nil(A) )
| ( U = cons(A,cons_proj_1(A,U),cons_proj_2(A,U)) ) ) ).
tff(length,type,
length: ( ty * uni ) > $int ).
tff(length_def,axiom,
! [A: ty] :
( ( length(A,nil(A)) = 0 )
& ! [X: uni,X1: uni] : ( length(A,cons(A,X,X1)) = $sum(1,length(A,X1)) ) ) ).
tff(length_nonnegative,axiom,
! [A: ty,L: uni] : $lesseq(0,length(A,L)) ).
tff(length_nil,axiom,
! [A: ty,L: uni] :
( ( length(A,L) = 0 )
<=> ( L = nil(A) ) ) ).
tff(infix_plpl,type,
infix_plpl: ( ty * uni * uni ) > uni ).
tff(infix_plpl_sort,axiom,
! [A: ty,X: uni,X1: uni] : sort(list(A),infix_plpl(A,X,X1)) ).
tff(infix_plpl_def,axiom,
! [A: ty,L2: uni] :
( ( infix_plpl(A,nil(A),L2) = L2 )
& ! [X: uni,X1: uni] : ( infix_plpl(A,cons(A,X,X1),L2) = cons(A,X,infix_plpl(A,X1,L2)) ) ) ).
tff(append_assoc,axiom,
! [A: ty,L1: uni,L2: uni,L3: uni] : ( infix_plpl(A,L1,infix_plpl(A,L2,L3)) = infix_plpl(A,infix_plpl(A,L1,L2),L3) ) ).
tff(append_l_nil,axiom,
! [A: ty,L: uni] : ( infix_plpl(A,L,nil(A)) = L ) ).
tff(append_length,axiom,
! [A: ty,L1: uni,L2: uni] : ( length(A,infix_plpl(A,L1,L2)) = $sum(length(A,L1),length(A,L2)) ) ).
tff(mem,type,
mem: ( ty * uni * uni ) > $o ).
tff(mem_def,axiom,
! [A: ty,X: uni] :
( sort(A,X)
=> ( ~ mem(A,X,nil(A))
& ! [X1: uni,X2: uni] :
( sort(A,X1)
=> ( mem(A,X,cons(A,X1,X2))
<=> ( ( X = X1 )
| mem(A,X,X2) ) ) ) ) ) ).
tff(mem_append,axiom,
! [A: ty,X: uni,L1: uni,L2: uni] :
( mem(A,X,infix_plpl(A,L1,L2))
<=> ( mem(A,X,L1)
| mem(A,X,L2) ) ) ).
tff(mem_decomp,axiom,
! [A: ty,X: uni,L: uni] :
( mem(A,X,L)
=> ? [L1: uni,L2: uni] :
( sort(list(A),L1)
& sort(list(A),L2)
& ( L = infix_plpl(A,L1,cons(A,X,L2)) ) ) ) ).
tff(reverse,type,
reverse: ( ty * uni ) > uni ).
tff(reverse_sort,axiom,
! [A: ty,X: uni] : sort(list(A),reverse(A,X)) ).
tff(reverse_def,axiom,
! [A: ty] :
( ( reverse(A,nil(A)) = nil(A) )
& ! [X: uni,X1: uni] : ( reverse(A,cons(A,X,X1)) = infix_plpl(A,reverse(A,X1),cons(A,X,nil(A))) ) ) ).
tff(reverse_append,axiom,
! [A: ty,L1: uni,L2: uni,X: uni] : ( infix_plpl(A,reverse(A,cons(A,X,L1)),L2) = infix_plpl(A,reverse(A,L1),cons(A,X,L2)) ) ).
tff(reverse_cons,axiom,
! [A: ty,L: uni,X: uni] : ( reverse(A,cons(A,X,L)) = infix_plpl(A,reverse(A,L),cons(A,X,nil(A))) ) ).
tff(reverse_reverse,axiom,
! [A: ty,L: uni] : ( reverse(A,reverse(A,L)) = L ) ).
tff(reverse_mem,axiom,
! [A: ty,L: uni,X: uni] :
( mem(A,X,L)
<=> mem(A,X,reverse(A,L)) ) ).
tff(reverse_length,axiom,
! [A: ty,L: uni] : ( length(A,reverse(A,L)) = length(A,L) ) ).
tff(tuple2,type,
tuple2: ( ty * ty ) > ty ).
tff(tuple21,type,
tuple21: ( ty * ty * uni * uni ) > uni ).
tff(tuple2_sort,axiom,
! [A: ty,A1: ty,X: uni,X1: uni] : sort(tuple2(A1,A),tuple21(A1,A,X,X1)) ).
tff(tuple2_proj_1,type,
tuple2_proj_1: ( ty * ty * uni ) > uni ).
tff(tuple2_proj_1_sort,axiom,
! [A: ty,A1: ty,X: uni] : sort(A1,tuple2_proj_1(A1,A,X)) ).
tff(tuple2_proj_1_def,axiom,
! [A: ty,A1: ty,U: uni,U1: uni] :
( sort(A1,U)
=> ( tuple2_proj_1(A1,A,tuple21(A1,A,U,U1)) = U ) ) ).
tff(tuple2_proj_2,type,
tuple2_proj_2: ( ty * ty * uni ) > uni ).
tff(tuple2_proj_2_sort,axiom,
! [A: ty,A1: ty,X: uni] : sort(A,tuple2_proj_2(A1,A,X)) ).
tff(tuple2_proj_2_def,axiom,
! [A: ty,A1: ty,U: uni,U1: uni] :
( sort(A,U1)
=> ( tuple2_proj_2(A1,A,tuple21(A1,A,U,U1)) = U1 ) ) ).
tff(tuple2_inversion,axiom,
! [A: ty,A1: ty,U: uni] :
( sort(tuple2(A1,A),U)
=> ( U = tuple21(A1,A,tuple2_proj_1(A1,A,U),tuple2_proj_2(A1,A,U)) ) ) ).
tff(combine,type,
combine: ( ty * ty * uni * uni ) > uni ).
tff(combine_sort,axiom,
! [A: ty,B: ty,X: uni,X1: uni] : sort(list(tuple2(A,B)),combine(B,A,X,X1)) ).
tff(combine_def,axiom,
! [A: ty,B: ty,X: uni] :
( ( combine(B,A,X,nil(B)) = nil(tuple2(A,B)) )
& ! [X1: uni,X2: uni] :
( ( combine(B,A,nil(A),cons(B,X1,X2)) = nil(tuple2(A,B)) )
& ! [X3: uni,X4: uni] : ( combine(B,A,cons(A,X3,X4),cons(B,X1,X2)) = cons(tuple2(A,B),tuple21(A,B,X3,X1),combine(B,A,X4,X2)) ) ) ) ).
tff(a,type,
a: $tType ).
tff(a1,type,
a1: ty ).
tff(t2tb,type,
t2tb: a > uni ).
tff(t2tb_sort,axiom,
! [X: a] : sort(a1,t2tb(X)) ).
tff(tb2t,type,
tb2t: uni > a ).
tff(bridgeL,axiom,
! [I: a] : ( tb2t(t2tb(I)) = I ) ).
tff(bridgeR,axiom,
! [J: uni] :
( sort(a1,J)
=> ( t2tb(tb2t(J)) = J ) ) ).
tff(list_lpa1cm_a1rp,type,
list_lpa1cm_a1rp: $tType ).
tff(t2tb1,type,
t2tb1: list_lpa1cm_a1rp > uni ).
tff(t2tb_sort1,axiom,
! [X: list_lpa1cm_a1rp] : sort(list(tuple2(a1,a1)),t2tb1(X)) ).
tff(tb2t1,type,
tb2t1: uni > list_lpa1cm_a1rp ).
tff(bridgeL1,axiom,
! [I: list_lpa1cm_a1rp] : ( tb2t1(t2tb1(I)) = I ) ).
tff(bridgeR1,axiom,
! [J: uni] : ( t2tb1(tb2t1(J)) = J ) ).
tff(lpa1cm_a1rp,type,
lpa1cm_a1rp: $tType ).
tff(t2tb2,type,
t2tb2: lpa1cm_a1rp > uni ).
tff(t2tb_sort2,axiom,
! [X: lpa1cm_a1rp] : sort(tuple2(a1,a1),t2tb2(X)) ).
tff(tb2t2,type,
tb2t2: uni > lpa1cm_a1rp ).
tff(bridgeL2,axiom,
! [I: lpa1cm_a1rp] : ( tb2t2(t2tb2(I)) = I ) ).
tff(bridgeR2,axiom,
! [J: uni] :
( sort(tuple2(a1,a1),J)
=> ( t2tb2(tb2t2(J)) = J ) ) ).
tff(list_a1,type,
list_a1: $tType ).
tff(t2tb3,type,
t2tb3: list_a1 > uni ).
tff(t2tb_sort3,axiom,
! [X: list_a1] : sort(list(a1),t2tb3(X)) ).
tff(tb2t3,type,
tb2t3: uni > list_a1 ).
tff(bridgeL3,axiom,
! [I: list_a1] : ( tb2t3(t2tb3(I)) = I ) ).
tff(bridgeR3,axiom,
! [J: uni] : ( t2tb3(tb2t3(J)) = J ) ).
tff(wP_parameter_convolution_rec,conjecture,
! [X: list_a1,Y: list_a1] :
( $lesseq(length(a1,t2tb3(X)),length(a1,t2tb3(Y)))
=> ! [X1: a,X2: list_a1] :
( ( X = tb2t3(cons(a1,t2tb(X1),t2tb3(X2))) )
=> ( $lesseq(length(a1,t2tb3(X2)),length(a1,t2tb3(Y)))
=> ! [Result: list_lpa1cm_a1rp,Result1: list_a1] :
( ? [Y0: list_a1] :
( ( Y = tb2t3(infix_plpl(a1,t2tb3(Y0),t2tb3(Result1))) )
& ( length(a1,t2tb3(Y0)) = length(a1,t2tb3(X2)) )
& ( Result = tb2t1(combine(a1,a1,t2tb3(X2),reverse(a1,t2tb3(Y0)))) ) )
=> ! [X3: a,X4: list_a1] :
( ( Result1 = tb2t3(cons(a1,t2tb(X3),t2tb3(X4))) )
=> ? [Y0: list_a1] :
( ( Y = tb2t3(infix_plpl(a1,t2tb3(Y0),t2tb3(X4))) )
& ( length(a1,t2tb3(Y0)) = length(a1,t2tb3(X)) )
& ( tb2t1(cons(tuple2(a1,a1),tuple21(a1,a1,t2tb(X1),t2tb(X3)),t2tb1(Result))) = tb2t1(combine(a1,a1,t2tb3(X),reverse(a1,t2tb3(Y0)))) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------