TPTP Problem File: SWW642_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW642_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Sf-T-WP parameter factorial
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : sf-T-WP_parameter_factorial [Fil14]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.38 v8.2.0, 0.50 v7.5.0, 0.70 v7.4.0, 0.75 v7.3.0, 0.50 v7.1.0, 0.67 v7.0.0, 0.57 v6.4.0, 1.00 v6.3.0, 0.71 v6.2.0, 0.88 v6.1.0
% Syntax : Number of formulae : 39 ( 8 unt; 20 typ; 0 def)
% Number of atoms : 48 ( 22 equ)
% Maximal formula atoms : 16 ( 1 avg)
% Number of connectives : 33 ( 4 ~; 2 |; 8 &)
% ( 0 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 56 ( 10 atm; 12 fun; 19 num; 15 var)
% Number of types : 6 ( 4 usr; 1 ari)
% Number of type conns : 14 ( 8 >; 6 *; 0 +; 0 <<)
% Number of predicates : 6 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 20 ( 14 usr; 11 con; 0-4 aty)
% Number of variables : 36 ( 35 !; 1 ?; 36 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort1,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort1,axiom,
! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort1,axiom,
! [A: ty,X: uni] : sort1(A,contents(A,X)) ).
tff(contents_def1,axiom,
! [A: ty,U: uni] :
( sort1(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion1,axiom,
! [A: ty,U: uni] :
( sort1(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(even,type,
even1: $int > $o ).
tff(even_0,axiom,
even1(0) ).
tff(even_odd,axiom,
! [X: $int] :
( even1(X)
=> even1($sum(X,2)) ) ).
tff(even_inversion,axiom,
! [Z: $int] :
( even1(Z)
=> ( ( Z = 0 )
| ? [X: $int] :
( even1(X)
& ( Z = $sum(X,2) ) ) ) ) ).
tff(even_not_odd,axiom,
! [X: $int] :
( even1(X)
=> ( even1($sum(X,1))
=> $false ) ) ).
tff(fact,type,
fact1: $int > $int ).
tff(fact_0,axiom,
fact1(0) = 1 ).
tff(fact_n,axiom,
! [N: $int] :
( $less(0,N)
=> ( fact1(N) = $product(N,fact1($difference(N,1))) ) ) ).
tff(wP_parameter_factorial,conjecture,
! [X: $int] :
( $lesseq(0,X)
=> ! [Y: $int] :
( ( Y = 1 )
=> ! [Z: $int] :
( ( Z = X )
=> ( $lesseq(0,Z)
& ( $product(Y,fact1(Z)) = fact1(X) )
& ! [Z1: $int,Y1: $int] :
( ( $lesseq(0,Z1)
& ( $product(Y1,fact1(Z1)) = fact1(X) ) )
=> ( ( ( Z1 != 0 )
=> ! [Y2: $int] :
( ( Y2 = $product(Y1,Z1) )
=> ! [Z2: $int] :
( ( Z2 = $difference(Z1,1) )
=> ( $lesseq(0,Z2)
& ( $product(Y2,fact1(Z2)) = fact1(X) )
& $lesseq(0,Z1)
& $less(Z2,Z1) ) ) ) )
& ( ~ ( ( Z1 != 0 ) )
=> ( Y1 = fact1(X) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------