TPTP Problem File: SWW610_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW610_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Kmp-T-matches right weakening
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : kmp-T-matches_right_weakening [Fil14]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.25 v7.5.0, 0.30 v7.4.0, 0.38 v7.3.0, 0.17 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.71 v6.2.0, 0.62 v6.1.0
% Syntax : Number of formulae : 83 ( 27 unt; 39 typ; 0 def)
% Number of atoms : 82 ( 29 equ)
% Maximal formula atoms : 8 ( 0 avg)
% Number of connectives : 44 ( 6 ~; 1 |; 8 &)
% ( 1 <=>; 28 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Maximal term depth : 5 ( 1 avg)
% Number arithmetic : 82 ( 20 atm; 15 fun; 13 num; 34 var)
% Number of types : 8 ( 6 usr; 1 ari)
% Number of type conns : 55 ( 24 >; 31 *; 0 +; 0 <<)
% Number of predicates : 5 ( 2 usr; 0 prp; 2-5 aty)
% Number of functors : 36 ( 31 usr; 11 con; 0-5 aty)
% Number of variables : 126 ( 126 !; 0 ?; 126 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort1,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort1,axiom,
! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort1,axiom,
! [A: ty,X: uni] : sort1(A,contents(A,X)) ).
tff(contents_def1,axiom,
! [A: ty,U: uni] :
( sort1(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion1,axiom,
! [A: ty,U: uni] :
( sort1(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(map,type,
map: ( ty * ty ) > ty ).
tff(get,type,
get: ( ty * ty * uni * uni ) > uni ).
tff(get_sort4,axiom,
! [A: ty,B: ty,X: uni,X1: uni] : sort1(B,get(B,A,X,X1)) ).
tff(set,type,
set: ( ty * ty * uni * uni * uni ) > uni ).
tff(set_sort3,axiom,
! [A: ty,B: ty,X: uni,X1: uni,X2: uni] : sort1(map(A,B),set(B,A,X,X1,X2)) ).
tff(select_eq,axiom,
! [A: ty,B: ty,M: uni,A1: uni,A2: uni,B1: uni] :
( sort1(B,B1)
=> ( ( A1 = A2 )
=> ( get(B,A,set(B,A,M,A1,B1),A2) = B1 ) ) ) ).
tff(select_neq,axiom,
! [A: ty,B: ty,M: uni,A1: uni,A2: uni] :
( sort1(A,A1)
=> ( sort1(A,A2)
=> ! [B1: uni] :
( ( A1 != A2 )
=> ( get(B,A,set(B,A,M,A1,B1),A2) = get(B,A,M,A2) ) ) ) ) ).
tff(const1,type,
const: ( ty * ty * uni ) > uni ).
tff(const_sort2,axiom,
! [A: ty,B: ty,X: uni] : sort1(map(A,B),const(B,A,X)) ).
tff(const,axiom,
! [A: ty,B: ty,B1: uni,A1: uni] :
( sort1(B,B1)
=> ( get(B,A,const(B,A,B1),A1) = B1 ) ) ).
tff(array,type,
array: ty > ty ).
tff(mk_array,type,
mk_array1: ( ty * $int * uni ) > uni ).
tff(mk_array_sort2,axiom,
! [A: ty,X: $int,X1: uni] : sort1(array(A),mk_array1(A,X,X1)) ).
tff(length,type,
length1: ( ty * uni ) > $int ).
tff(length_def2,axiom,
! [A: ty,U: $int,U1: uni] : ( length1(A,mk_array1(A,U,U1)) = U ) ).
tff(elts,type,
elts: ( ty * uni ) > uni ).
tff(elts_sort2,axiom,
! [A: ty,X: uni] : sort1(map(int,A),elts(A,X)) ).
tff(elts_def2,axiom,
! [A: ty,U: $int,U1: uni] :
( sort1(map(int,A),U1)
=> ( elts(A,mk_array1(A,U,U1)) = U1 ) ) ).
tff(array_inversion2,axiom,
! [A: ty,U: uni] : ( U = mk_array1(A,length1(A,U),elts(A,U)) ) ).
tff(get1,type,
get2: ( ty * uni * $int ) > uni ).
tff(get_sort5,axiom,
! [A: ty,X: uni,X1: $int] : sort1(A,get2(A,X,X1)) ).
tff(t2tb,type,
t2tb: $int > uni ).
tff(t2tb_sort,axiom,
! [X: $int] : sort1(int,t2tb(X)) ).
tff(tb2t,type,
tb2t: uni > $int ).
tff(bridgeL,axiom,
! [I: $int] : ( tb2t(t2tb(I)) = I ) ).
tff(bridgeR,axiom,
! [J: uni] : ( t2tb(tb2t(J)) = J ) ).
tff(get_def,axiom,
! [A: ty,A1: uni,I: $int] : ( get2(A,A1,I) = get(A,int,elts(A,A1),t2tb(I)) ) ).
tff(set1,type,
set2: ( ty * uni * $int * uni ) > uni ).
tff(set_sort4,axiom,
! [A: ty,X: uni,X1: $int,X2: uni] : sort1(array(A),set2(A,X,X1,X2)) ).
tff(set_def,axiom,
! [A: ty,A1: uni,I: $int,V: uni] : ( set2(A,A1,I,V) = mk_array1(A,length1(A,A1),set(A,int,elts(A,A1),t2tb(I),V)) ) ).
tff(make,type,
make1: ( ty * $int * uni ) > uni ).
tff(make_sort1,axiom,
! [A: ty,X: $int,X1: uni] : sort1(array(A),make1(A,X,X1)) ).
tff(make_def,axiom,
! [A: ty,N: $int,V: uni] : ( make1(A,N,V) = mk_array1(A,N,const(A,int,V)) ) ).
tff(char,type,
char1: $tType ).
tff(char1,type,
char: ty ).
tff(array_char,type,
array_char: $tType ).
tff(matches,type,
matches1: ( array_char * $int * array_char * $int * $int ) > $o ).
tff(t2tb1,type,
t2tb1: array_char > uni ).
tff(t2tb_sort1,axiom,
! [X: array_char] : sort1(array(char),t2tb1(X)) ).
tff(tb2t1,type,
tb2t1: uni > array_char ).
tff(bridgeL1,axiom,
! [I: array_char] : ( tb2t1(t2tb1(I)) = I ) ).
tff(bridgeR1,axiom,
! [J: uni] : ( t2tb1(tb2t1(J)) = J ) ).
tff(t2tb2,type,
t2tb2: char1 > uni ).
tff(t2tb_sort2,axiom,
! [X: char1] : sort1(char,t2tb2(X)) ).
tff(tb2t2,type,
tb2t2: uni > char1 ).
tff(bridgeL2,axiom,
! [I: char1] : ( tb2t2(t2tb2(I)) = I ) ).
tff(bridgeR2,axiom,
! [J: uni] :
( sort1(char,J)
=> ( t2tb2(tb2t2(J)) = J ) ) ).
tff(matches_def,axiom,
! [A1: array_char,I1: $int,A2: array_char,I2: $int,N: $int] :
( matches1(A1,I1,A2,I2,N)
<=> ( $lesseq(0,I1)
& $lesseq(I1,$difference(length1(char,t2tb1(A1)),N))
& $lesseq(0,I2)
& $lesseq(I2,$difference(length1(char,t2tb1(A2)),N))
& ! [I: $int] :
( ( $lesseq(0,I)
& $less(I,N) )
=> ( tb2t2(get2(char,t2tb1(A1),$sum(I1,I))) = tb2t2(get2(char,t2tb1(A2),$sum(I2,I))) ) ) ) ) ).
tff(matches_empty,axiom,
! [A1: array_char,A2: array_char,I1: $int,I2: $int] :
( ( $lesseq(0,I1)
& $lesseq(I1,length1(char,t2tb1(A1))) )
=> ( ( $lesseq(0,I2)
& $lesseq(I2,length1(char,t2tb1(A2))) )
=> matches1(A1,I1,A2,I2,0) ) ) ).
tff(matches_right_extension,axiom,
! [A1: array_char,A2: array_char,I1: $int,I2: $int,N: $int] :
( matches1(A1,I1,A2,I2,N)
=> ( $lesseq(I1,$difference($difference(length1(char,t2tb1(A1)),N),1))
=> ( $lesseq(I2,$difference($difference(length1(char,t2tb1(A2)),N),1))
=> ( ( tb2t2(get2(char,t2tb1(A1),$sum(I1,N))) = tb2t2(get2(char,t2tb1(A2),$sum(I2,N))) )
=> matches1(A1,I1,A2,I2,$sum(N,1)) ) ) ) ) ).
tff(matches_contradiction_at_first,axiom,
! [A1: array_char,A2: array_char,I1: $int,I2: $int,N: $int] :
( $less(0,N)
=> ( ( tb2t2(get2(char,t2tb1(A1),I1)) != tb2t2(get2(char,t2tb1(A2),I2)) )
=> ~ matches1(A1,I1,A2,I2,N) ) ) ).
tff(matches_contradiction_at_i,axiom,
! [A1: array_char,A2: array_char,I1: $int,I2: $int,I: $int,N: $int] :
( $less(0,N)
=> ( ( $lesseq(0,I)
& $less(I,N) )
=> ( ( tb2t2(get2(char,t2tb1(A1),$sum(I1,I))) != tb2t2(get2(char,t2tb1(A2),$sum(I2,I))) )
=> ~ matches1(A1,I1,A2,I2,N) ) ) ) ).
tff(matches_right_weakening,conjecture,
! [A1: array_char,A2: array_char,I1: $int,I2: $int,N: $int,Nqt: $int] :
( matches1(A1,I1,A2,I2,N)
=> ( $less(Nqt,N)
=> matches1(A1,I1,A2,I2,Nqt) ) ) ).
%------------------------------------------------------------------------------