TPTP Problem File: SWW609_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW609_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Isqrt-T-WP parameter sqrt
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : isqrt-T-WP_parameter_sqrt [Fil14]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.62 v8.2.0, 0.75 v8.1.0, 0.88 v7.5.0, 0.80 v7.4.0, 0.62 v7.3.0, 0.83 v7.1.0, 0.67 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.86 v6.2.0, 0.75 v6.1.0
% Syntax : Number of formulae : 51 ( 9 unt; 21 typ; 0 def)
% Number of atoms : 77 ( 24 equ)
% Maximal formula atoms : 11 ( 1 avg)
% Number of connectives : 57 ( 10 ~; 1 |; 20 &)
% ( 1 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 153 ( 45 atm; 24 fun; 46 num; 38 var)
% Number of types : 6 ( 4 usr; 1 ari)
% Number of type conns : 17 ( 9 >; 8 *; 0 +; 0 <<)
% Number of predicates : 4 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 23 ( 16 usr; 12 con; 0-4 aty)
% Number of variables : 59 ( 59 !; 0 ?; 59 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort1,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(abs,type,
abs1: $int > $int ).
tff(abs_def,axiom,
! [X: $int] :
( ( $lesseq(0,X)
=> ( abs1(X) = X ) )
& ( ~ $lesseq(0,X)
=> ( abs1(X) = $uminus(X) ) ) ) ).
tff(abs_le,axiom,
! [X: $int,Y: $int] :
( $lesseq(abs1(X),Y)
<=> ( $lesseq($uminus(Y),X)
& $lesseq(X,Y) ) ) ).
tff(abs_pos,axiom,
! [X: $int] : $lesseq(0,abs1(X)) ).
tff(div,type,
div1: ( $int * $int ) > $int ).
tff(mod,type,
mod1: ( $int * $int ) > $int ).
tff(div_mod,axiom,
! [X: $int,Y: $int] :
( ( Y != 0 )
=> ( X = $sum($product(Y,div1(X,Y)),mod1(X,Y)) ) ) ).
tff(div_bound,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(0,Y) )
=> ( $lesseq(0,div1(X,Y))
& $lesseq(div1(X,Y),X) ) ) ).
tff(mod_bound,axiom,
! [X: $int,Y: $int] :
( ( Y != 0 )
=> ( $less($uminus(abs1(Y)),mod1(X,Y))
& $less(mod1(X,Y),abs1(Y)) ) ) ).
tff(div_sign_pos,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(0,Y) )
=> $lesseq(0,div1(X,Y)) ) ).
tff(div_sign_neg,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
& $less(0,Y) )
=> $lesseq(div1(X,Y),0) ) ).
tff(mod_sign_pos,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& ( Y != 0 ) )
=> $lesseq(0,mod1(X,Y)) ) ).
tff(mod_sign_neg,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
& ( Y != 0 ) )
=> $lesseq(mod1(X,Y),0) ) ).
tff(rounds_toward_zero,axiom,
! [X: $int,Y: $int] :
( ( Y != 0 )
=> $lesseq(abs1($product(div1(X,Y),Y)),abs1(X)) ) ).
tff(div_1,axiom,
! [X: $int] : ( div1(X,1) = X ) ).
tff(mod_1,axiom,
! [X: $int] : ( mod1(X,1) = 0 ) ).
tff(div_inf,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(X,Y) )
=> ( div1(X,Y) = 0 ) ) ).
tff(mod_inf,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(0,X)
& $less(X,Y) )
=> ( mod1(X,Y) = X ) ) ).
tff(div_mult,axiom,
! [X: $int,Y: $int,Z: $int] :
( ( $less(0,X)
& $lesseq(0,Y)
& $lesseq(0,Z) )
=> ( div1($sum($product(X,Y),Z),X) = $sum(Y,div1(Z,X)) ) ) ).
tff(mod_mult,axiom,
! [X: $int,Y: $int,Z: $int] :
( ( $less(0,X)
& $lesseq(0,Y)
& $lesseq(0,Z) )
=> ( mod1($sum($product(X,Y),Z),X) = mod1(Z,X) ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort1,axiom,
! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort1,axiom,
! [A: ty,X: uni] : sort1(A,contents(A,X)) ).
tff(contents_def1,axiom,
! [A: ty,U: uni] :
( sort1(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion1,axiom,
! [A: ty,U: uni] :
( sort1(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(wP_parameter_sqrt,conjecture,
! [X: $int] :
( $lesseq(0,X)
=> ( ( X != 0 )
=> ( ~ $lesseq(X,3)
=> ! [Z: $int,Y: $int] :
( ( $less(0,Z)
& $less(0,Y)
& ( Z = div1($sum(div1(X,Y),Y),2) )
& $less(X,$product($sum(Y,1),$sum(Y,1)))
& $less(X,$product($sum(Z,1),$sum(Z,1))) )
=> ( ~ $less(Z,Y)
=> ( $lesseq($product(Y,Y),X)
& $less(X,$product($sum(Y,1),$sum(Y,1))) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------