TPTP Problem File: SWW580_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW580_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Bresenham-T-WP parameter bresenham
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : bresenham-T-WP_parameter_bresenham [Fil14]
% Status : Theorem
% Rating : 0.75 v8.2.0, 0.88 v7.5.0, 0.90 v7.4.0, 0.88 v7.3.0, 0.83 v7.0.0, 0.86 v6.4.0, 1.00 v6.3.0, 0.86 v6.2.0, 0.75 v6.1.0
% Syntax : Number of formulae : 41 ( 7 unt; 22 typ; 0 def)
% Number of atoms : 40 ( 11 equ)
% Maximal formula atoms : 7 ( 0 avg)
% Number of connectives : 23 ( 2 ~; 1 |; 6 &)
% ( 2 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 5 ( 1 avg)
% Number arithmetic : 79 ( 19 atm; 28 fun; 15 num; 17 var)
% Number of types : 6 ( 4 usr; 1 ari)
% Number of type conns : 15 ( 8 >; 7 *; 0 +; 0 <<)
% Number of predicates : 4 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 23 ( 16 usr; 13 con; 0-4 aty)
% Number of variables : 38 ( 38 !; 0 ?; 38 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort: ( ty * uni ) > $o ).
tff(witness,type,
witness: ty > uni ).
tff(witness_sort,axiom,
! [A: ty] : sort(A,witness(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool: $tType ).
tff(bool1,type,
bool1: ty ).
tff(true,type,
true: bool ).
tff(false,type,
false: bool ).
tff(match_bool,type,
match_bool: ( ty * bool * uni * uni ) > uni ).
tff(match_bool_sort,axiom,
! [A: ty,X: bool,X1: uni,X2: uni] : sort(A,match_bool(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort(A,Z)
=> ( match_bool(A,true,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort(A,Z1)
=> ( match_bool(A,false,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true != false ).
tff(bool_inversion,axiom,
! [U: bool] :
( ( U = true )
| ( U = false ) ) ).
tff(tuple0,type,
tuple0: $tType ).
tff(tuple01,type,
tuple01: ty ).
tff(tuple02,type,
tuple02: tuple0 ).
tff(tuple0_inversion,axiom,
! [U: tuple0] : ( U = tuple02 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort,axiom,
! [A: ty,X: uni] : sort(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort,axiom,
! [A: ty,X: uni] : sort(A,contents(A,X)) ).
tff(contents_def,axiom,
! [A: ty,U: uni] :
( sort(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion,axiom,
! [A: ty,U: uni] :
( sort(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(x2,type,
x2: $int ).
tff(y2,type,
y2: $int ).
tff(first_octant,axiom,
( $lesseq(0,y2)
& $lesseq(y2,x2) ) ).
tff(abs,type,
abs: $int > $int ).
tff(abs_def,axiom,
! [X: $int] :
( ( $lesseq(0,X)
=> ( abs(X) = X ) )
& ( ~ $lesseq(0,X)
=> ( abs(X) = $uminus(X) ) ) ) ).
tff(abs_le,axiom,
! [X: $int,Y: $int] :
( $lesseq(abs(X),Y)
<=> ( $lesseq($uminus(Y),X)
& $lesseq(X,Y) ) ) ).
tff(abs_pos,axiom,
! [X: $int] : $lesseq(0,abs(X)) ).
tff(best,type,
best: ( $int * $int ) > $o ).
tff(best_def,axiom,
! [X: $int,Y: $int] :
( best(X,Y)
<=> ! [Yqt: $int] : $lesseq(abs($difference($product(x2,Y),$product(X,y2))),abs($difference($product(x2,Yqt),$product(X,y2)))) ) ).
tff(closest,axiom,
! [A: $int,B: $int,C: $int] :
( $lesseq(abs($difference($product($product(2,A),B),$product(2,C))),A)
=> ! [Bqt: $int] : $lesseq(abs($difference($product(A,B),C)),abs($difference($product(A,Bqt),C))) ) ).
tff(wP_parameter_bresenham,conjecture,
( $lesseq(0,x2)
=> ! [E: $int,Y: $int,X: $int] :
( ( $lesseq(0,X)
& $lesseq(X,x2) )
=> ( ( ( E = $difference($product($product(2,$sum(X,1)),y2),$product($sum($product(2,Y),1),x2)) )
& $lesseq($product(2,$difference(y2,x2)),E)
& $lesseq(E,$product(2,y2)) )
=> best(X,Y) ) ) ) ).
%------------------------------------------------------------------------------