TPTP Problem File: SWW576_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW576_2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Software Verification
% Problem : Arm-T-WP parameter path init l2
% Version : Especial : Let and conditional terms encoded away.
% English :
% Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe
% : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert
% Source : [Fil14]
% Names : arm-T-WP_parameter_path_init_l2 [Fil14]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.25 v8.2.0, 0.50 v7.5.0, 0.60 v7.4.0, 0.38 v7.3.0, 0.17 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.86 v6.2.0, 0.75 v6.1.0
% Syntax : Number of formulae : 62 ( 15 unt; 32 typ; 0 def)
% Number of atoms : 60 ( 27 equ)
% Maximal formula atoms : 7 ( 0 avg)
% Number of connectives : 33 ( 3 ~; 1 |; 6 &)
% ( 3 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 6 ( 1 avg)
% Number arithmetic : 55 ( 9 atm; 10 fun; 17 num; 19 var)
% Number of types : 7 ( 5 usr; 1 ari)
% Number of type conns : 38 ( 18 >; 20 *; 0 +; 0 <<)
% Number of predicates : 7 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 33 ( 23 usr; 16 con; 0-5 aty)
% Number of variables : 78 ( 78 !; 0 ?; 78 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(uni,type,
uni: $tType ).
tff(ty,type,
ty: $tType ).
tff(sort,type,
sort1: ( ty * uni ) > $o ).
tff(witness,type,
witness1: ty > uni ).
tff(witness_sort1,axiom,
! [A: ty] : sort1(A,witness1(A)) ).
tff(int,type,
int: ty ).
tff(real,type,
real: ty ).
tff(bool,type,
bool1: $tType ).
tff(bool1,type,
bool: ty ).
tff(true,type,
true1: bool1 ).
tff(false,type,
false1: bool1 ).
tff(match_bool,type,
match_bool1: ( ty * bool1 * uni * uni ) > uni ).
tff(match_bool_sort1,axiom,
! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) ).
tff(match_bool_True,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z)
=> ( match_bool1(A,true1,Z,Z1) = Z ) ) ).
tff(match_bool_False,axiom,
! [A: ty,Z: uni,Z1: uni] :
( sort1(A,Z1)
=> ( match_bool1(A,false1,Z,Z1) = Z1 ) ) ).
tff(true_False,axiom,
true1 != false1 ).
tff(bool_inversion,axiom,
! [U: bool1] :
( ( U = true1 )
| ( U = false1 ) ) ).
tff(tuple0,type,
tuple02: $tType ).
tff(tuple01,type,
tuple0: ty ).
tff(tuple02,type,
tuple03: tuple02 ).
tff(tuple0_inversion,axiom,
! [U: tuple02] : ( U = tuple03 ) ).
tff(qtmark,type,
qtmark: ty ).
tff(compatOrderMult,axiom,
! [X: $int,Y: $int,Z: $int] :
( $lesseq(X,Y)
=> ( $lesseq(0,Z)
=> $lesseq($product(X,Z),$product(Y,Z)) ) ) ).
tff(map,type,
map: ( ty * ty ) > ty ).
tff(get,type,
get: ( ty * ty * uni * uni ) > uni ).
tff(get_sort2,axiom,
! [A: ty,B: ty,X: uni,X1: uni] : sort1(B,get(B,A,X,X1)) ).
tff(set,type,
set: ( ty * ty * uni * uni * uni ) > uni ).
tff(set_sort2,axiom,
! [A: ty,B: ty,X: uni,X1: uni,X2: uni] : sort1(map(A,B),set(B,A,X,X1,X2)) ).
tff(map_int_int,type,
map_int_int: $tType ).
tff(set1,type,
set2: ( map_int_int * $int * $int ) > map_int_int ).
tff(t2tb,type,
t2tb: map_int_int > uni ).
tff(t2tb_sort,axiom,
! [X: map_int_int] : sort1(map(int,int),t2tb(X)) ).
tff(tb2t,type,
tb2t: uni > map_int_int ).
tff(bridgeL,axiom,
! [I: map_int_int] : ( tb2t(t2tb(I)) = I ) ).
tff(bridgeR,axiom,
! [J: uni] : ( t2tb(tb2t(J)) = J ) ).
tff(t2tb1,type,
t2tb1: $int > uni ).
tff(t2tb_sort1,axiom,
! [X: $int] : sort1(int,t2tb1(X)) ).
tff(tb2t1,type,
tb2t1: uni > $int ).
tff(bridgeL1,axiom,
! [I: $int] : ( tb2t1(t2tb1(I)) = I ) ).
tff(bridgeR1,axiom,
! [J: uni] : ( t2tb1(tb2t1(J)) = J ) ).
tff(select_eq,axiom,
! [M: map_int_int,A1: $int,A2: $int,B: $int] :
( ( A1 = A2 )
=> ( tb2t1(get(int,int,t2tb(set2(M,A1,B)),t2tb1(A2))) = B ) ) ).
tff(select_eq1,axiom,
! [A: ty,B: ty,M: uni,A1: uni,A2: uni,B1: uni] :
( sort1(B,B1)
=> ( ( A1 = A2 )
=> ( get(B,A,set(B,A,M,A1,B1),A2) = B1 ) ) ) ).
tff(select_neq,axiom,
! [M: map_int_int,A1: $int,A2: $int,B: $int] :
( ( A1 != A2 )
=> ( tb2t1(get(int,int,t2tb(set2(M,A1,B)),t2tb1(A2))) = tb2t1(get(int,int,t2tb(M),t2tb1(A2))) ) ) ).
tff(select_neq1,axiom,
! [A: ty,B: ty,M: uni,A1: uni,A2: uni] :
( sort1(A,A1)
=> ( sort1(A,A2)
=> ! [B1: uni] :
( ( A1 != A2 )
=> ( get(B,A,set(B,A,M,A1,B1),A2) = get(B,A,M,A2) ) ) ) ) ).
tff(const3,type,
const: ( ty * ty * uni ) > uni ).
tff(const_sort1,axiom,
! [A: ty,B: ty,X: uni] : sort1(map(A,B),const(B,A,X)) ).
tff(const,axiom,
! [A: ty,B: ty,B1: uni,A1: uni] :
( sort1(B,B1)
=> ( get(B,A,const(B,A,B1),A1) = B1 ) ) ).
tff(ref,type,
ref: ty > ty ).
tff(mk_ref,type,
mk_ref: ( ty * uni ) > uni ).
tff(mk_ref_sort1,axiom,
! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) ).
tff(contents,type,
contents: ( ty * uni ) > uni ).
tff(contents_sort1,axiom,
! [A: ty,X: uni] : sort1(A,contents(A,X)) ).
tff(contents_def1,axiom,
! [A: ty,U: uni] :
( sort1(A,U)
=> ( contents(A,mk_ref(A,U)) = U ) ) ).
tff(ref_inversion1,axiom,
! [A: ty,U: uni] :
( sort1(ref(A),U)
=> ( U = mk_ref(A,contents(A,U)) ) ) ).
tff(a,type,
a1: $int ).
tff(separation,type,
separation1: $int > $o ).
tff(separation_def,axiom,
! [Fp: $int] :
( separation1(Fp)
<=> $less($sum(a1,10),$difference(Fp,24)) ) ).
tff(inv,type,
inv1: map_int_int > $o ).
tff(inv_def,axiom,
! [Mem: map_int_int] :
( inv1(Mem)
<=> ( ( tb2t1(get(int,int,t2tb(Mem),t2tb1(a1))) = 0 )
& ! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,10) )
=> $less(0,tb2t1(get(int,int,t2tb(Mem),t2tb1($sum(a1,K))))) ) ) ) ).
tff(inv_l2,type,
inv_l21: ( map_int_int * $int * $int ) > $o ).
tff(inv_l2_def,axiom,
! [Mem: map_int_int,Fp: $int,L4: $int] :
( inv_l21(Mem,Fp,L4)
<=> ( $lesseq(2,tb2t1(get(int,int,t2tb(Mem),t2tb1($difference(Fp,16)))))
& $lesseq(tb2t1(get(int,int,t2tb(Mem),t2tb1($difference(Fp,16)))),11)
& ( L4 = $difference(tb2t1(get(int,int,t2tb(Mem),t2tb1($difference(Fp,16)))),2) )
& inv1(Mem) ) ) ).
tff(wP_parameter_path_init_l2,conjecture,
! [Fp: $int,Mem: map_int_int] :
( ( separation1(Fp)
& inv1(Mem) )
=> ! [L4: $int] :
( ( L4 = 0 )
=> ! [L7: $int] :
( ( L7 = 0 )
=> ! [R3: $int] :
( ( R3 = 2 )
=> ! [Mem1: map_int_int] :
( ( Mem1 = set2(Mem,$difference(Fp,16),R3) )
=> inv_l21(Mem1,Fp,L4) ) ) ) ) ) ).
%------------------------------------------------------------------------------