TPTP Problem File: SWW269+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SWW269+1 : TPTP v9.0.0. Released v5.2.0.
% Domain   : Software Verification
% Problem  : Fundamental Theorem of Algebra 438694, 1000 axioms selected
% Version  : Especial.
% English  :

% Refs     : [BN10]  Boehme & Nipkow (2010), Sledgehammer: Judgement Day
%          : [Bla11] Blanchette (2011), Email to Geoff Sutcliffe
% Source   : [Bla11]
% Names    : fta_438694.1000.p [Bla11]

% Status   : Theorem
% Rating   : 0.76 v9.0.0, 0.75 v8.2.0, 0.81 v8.1.0, 0.83 v7.5.0, 0.81 v7.4.0, 0.83 v7.1.0, 0.78 v7.0.0, 0.87 v6.4.0, 0.85 v6.3.0, 0.83 v6.2.0, 0.92 v6.1.0, 0.93 v6.0.0, 1.00 v5.2.0
% Syntax   : Number of formulae    : 1159 ( 183 unt;   0 def)
%            Number of atoms       : 3100 ( 896 equ)
%            Maximal formula atoms :   13 (   2 avg)
%            Number of connectives : 2158 ( 217   ~;  59   |; 125   &)
%                                         ( 246 <=>;1511  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   5 avg)
%            Maximal term depth    :    9 (   1 avg)
%            Number of predicates  :   83 (  82 usr;   0 prp; 1-5 aty)
%            Number of functors    :   46 (  46 usr;  11 con; 0-5 aty)
%            Number of variables   : 3034 (3020   !;  14   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2011-03-01 12:04:08
%------------------------------------------------------------------------------
%----Relevant facts (995)
fof(fact_ext,axiom,
    ! [V_g_2,V_f_2] :
      ( ! [B_x] : hAPP(V_f_2,B_x) = hAPP(V_g_2,B_x)
     => V_f_2 = V_g_2 ) ).

fof(fact__096d_A_061_A0_096,axiom,
    v_d____ = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) ).

fof(fact_pCons_Oprems,axiom,
    ! [B_w] :
      ( B_w != c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex)
     => hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,c_Polynomial_OpCons(tc_Complex_Ocomplex,v_d____,v_ds____)),B_w) = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) ) ).

fof(fact_pCons__0__0,axiom,
    ! [T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_OpCons(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_pCons__eq__0__iff,axiom,
    ! [V_pa_2,V_a_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Polynomial_OpCons(T_a,V_a_2,V_pa_2) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
      <=> ( V_a_2 = c_Groups_Ozero__class_Ozero(T_a)
          & V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ) ).

fof(fact_offset__poly__single,axiom,
    ! [V_h,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,c_Polynomial_OpCons(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),V_h) = c_Polynomial_OpCons(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) ) ).

fof(fact_pCons_Ohyps,axiom,
    ( ! [B_w] :
        ( B_w != c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex)
       => hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,v_ds____),B_w) = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) )
   => v_ds____ = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(tc_Complex_Ocomplex)) ) ).

fof(fact_assms,axiom,
    ~ ? [B_a] :
        ( B_a != c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex)
        & v_p = c_Polynomial_OpCons(tc_Complex_Ocomplex,B_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(tc_Complex_Ocomplex))) ) ).

fof(fact_pCons__eq__iff,axiom,
    ! [V_q_2,V_b_2,V_pa_2,V_a_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Polynomial_OpCons(T_a,V_a_2,V_pa_2) = c_Polynomial_OpCons(T_a,V_b_2,V_q_2)
      <=> ( V_a_2 = V_b_2
          & V_pa_2 = V_q_2 ) ) ) ).

fof(fact_poly__rec__pCons,axiom,
    ! [V_pa_2,V_a_2,T_a,V_z_2,V_f_2,T_b] :
      ( class_Groups_Ozero(T_b)
     => ( hAPP(hAPP(hAPP(V_f_2,c_Groups_Ozero__class_Ozero(T_b)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_b))),V_z_2) = V_z_2
       => c_Polynomial_Opoly__rec(T_a,T_b,V_z_2,V_f_2,c_Polynomial_OpCons(T_b,V_a_2,V_pa_2)) = hAPP(hAPP(hAPP(V_f_2,V_a_2),V_pa_2),c_Polynomial_Opoly__rec(T_a,T_b,V_z_2,V_f_2,V_pa_2)) ) ) ).

fof(fact_zero__reorient,axiom,
    ! [V_x_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Groups_Ozero__class_Ozero(T_a) = V_x_2
      <=> V_x_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_poly__rec_Osimps,axiom,
    ! [V_pa_2,V_a_2,V_f_2,V_z_2,T_a,T_b] :
      ( class_Groups_Ozero(T_b)
     => c_Polynomial_Opoly__rec(T_a,T_b,V_z_2,V_f_2,c_Polynomial_OpCons(T_b,V_a_2,V_pa_2)) = hAPP(hAPP(hAPP(V_f_2,V_a_2),V_pa_2),c_If(T_a,hAPP(hAPP(c_fequal,V_pa_2),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_b))),V_z_2,c_Polynomial_Opoly__rec(T_a,T_b,V_z_2,V_f_2,V_pa_2))) ) ).

fof(fact_offset__poly__0,axiom,
    ! [V_h,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_h) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_c0,axiom,
    v_c____ != c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) ).

fof(fact_poly__eq__iff,axiom,
    ! [V_q_2,V_pa_2,T_a] :
      ( ( class_Int_Oring__char__0(T_a)
        & class_Rings_Oidom(T_a) )
     => ( c_Polynomial_Opoly(T_a,V_pa_2) = c_Polynomial_Opoly(T_a,V_q_2)
      <=> V_pa_2 = V_q_2 ) ) ).

fof(fact_poly__zero,axiom,
    ! [V_pa_2,T_a] :
      ( ( class_Int_Oring__char__0(T_a)
        & class_Rings_Oidom(T_a) )
     => ( c_Polynomial_Opoly(T_a,V_pa_2) = c_Polynomial_Opoly(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))
      <=> V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ).

fof(fact_poly__0,axiom,
    ! [V_x,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),V_x) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_poly__rec__0,axiom,
    ! [T_a,V_z_2,V_f_2,T_b] :
      ( class_Groups_Ozero(T_b)
     => ( hAPP(hAPP(hAPP(V_f_2,c_Groups_Ozero__class_Ozero(T_b)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_b))),V_z_2) = V_z_2
       => c_Polynomial_Opoly__rec(T_a,T_b,V_z_2,V_f_2,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_b))) = V_z_2 ) ) ).

fof(fact_offset__poly__eq__0__iff,axiom,
    ! [V_h_2,V_pa_2,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => ( c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,V_pa_2,V_h_2) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
      <=> V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ).

fof(fact__096ALL_Aw_O_Aw_A_126_061_A0_A_N_N_062_Apoly_Acs_Aw_A_061_A0_096,axiom,
    ! [B_w] :
      ( B_w != c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex)
     => hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,v_cs____),B_w) = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) ) ).

fof(fact_order__root,axiom,
    ! [V_a_2,V_pa_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( hAPP(c_Polynomial_Opoly(T_a,V_pa_2),V_a_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> ( V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
          | c_Polynomial_Oorder(T_a,V_a_2,V_pa_2) != c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ) ).

fof(fact__096_B_By_O_Apoly_A_IpCons_Ac_Acs_J_A0_A_061_Apoly_A_IpCons_Ac_Acs_J_Ay_096,axiom,
    ! [V_y] : hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,c_Polynomial_OpCons(tc_Complex_Ocomplex,v_c____,v_cs____)),c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex)) = hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,c_Polynomial_OpCons(tc_Complex_Ocomplex,v_c____,v_cs____)),V_y) ).

fof(fact_nc,axiom,
    c_Fundamental__Theorem__Algebra__Mirabelle_Oconstant(tc_Complex_Ocomplex,tc_Complex_Ocomplex,c_Polynomial_Opoly(tc_Complex_Ocomplex,c_Polynomial_OpCons(tc_Complex_Ocomplex,v_c____,v_cs____))) ).

fof(fact_synthetic__div__pCons,axiom,
    ! [V_c,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osynthetic__div(T_a,c_Polynomial_OpCons(T_a,V_a,V_p),V_c) = c_Polynomial_OpCons(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_c),c_Polynomial_Osynthetic__div(T_a,V_p,V_c)) ) ).

fof(fact_poly__pcompose,axiom,
    ! [V_x,V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Polynomial_Opcompose(T_a,V_p,V_q)),V_x) = hAPP(c_Polynomial_Opoly(T_a,V_p),hAPP(c_Polynomial_Opoly(T_a,V_q),V_x)) ) ).

fof(fact_monom__0,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_Omonom(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = c_Polynomial_OpCons(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) ) ).

fof(fact_pcompose__0,axiom,
    ! [V_q,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Opcompose(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_q) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_pCons__induct,axiom,
    ! [V_pa_2,V_P_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( hBOOL(hAPP(V_P_2,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))))
       => ( ! [B_a,B_p] :
              ( hBOOL(hAPP(V_P_2,B_p))
             => hBOOL(hAPP(V_P_2,c_Polynomial_OpCons(T_a,B_a,B_p))) )
         => hBOOL(hAPP(V_P_2,V_pa_2)) ) ) ) ).

fof(fact_monom__eq__0__iff,axiom,
    ! [V_n_2,V_a_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Polynomial_Omonom(T_a,V_a_2,V_n_2) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_monom__eq__0,axiom,
    ! [V_n,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_Omonom(T_a,c_Groups_Ozero__class_Ozero(T_a),V_n) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_psize__eq__0__iff,axiom,
    ! [V_pa_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Fundamental__Theorem__Algebra__Mirabelle_Opsize(T_a,V_pa_2) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
      <=> V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ).

fof(fact_monom__eq__iff,axiom,
    ! [V_b_2,V_n_2,V_a_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Polynomial_Omonom(T_a,V_a_2,V_n_2) = c_Polynomial_Omonom(T_a,V_b_2,V_n_2)
      <=> V_a_2 = V_b_2 ) ) ).

fof(fact_constant__def,axiom,
    ! [V_f_2,T_b,T_a] :
      ( c_Fundamental__Theorem__Algebra__Mirabelle_Oconstant(T_a,T_b,V_f_2)
    <=> ! [B_x,B_y] : hAPP(V_f_2,B_x) = hAPP(V_f_2,B_y) ) ).

fof(fact_synthetic__div__0,axiom,
    ! [V_c,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osynthetic__div(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_c) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_calculation,axiom,
    ( v_c____ = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex)
   => ? [B_z] : hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,c_Polynomial_OpCons(tc_Complex_Ocomplex,v_c____,v_cs____)),B_z) = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) ) ).

fof(fact_fundamental__theorem__of__algebra,axiom,
    ! [V_pa_2] :
      ( ~ c_Fundamental__Theorem__Algebra__Mirabelle_Oconstant(tc_Complex_Ocomplex,tc_Complex_Ocomplex,c_Polynomial_Opoly(tc_Complex_Ocomplex,V_pa_2))
     => ? [B_z] : hAPP(c_Polynomial_Opoly(tc_Complex_Ocomplex,V_pa_2),B_z) = c_Groups_Ozero__class_Ozero(tc_Complex_Ocomplex) ) ).

fof(fact_monom__Suc,axiom,
    ! [V_n,V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_Omonom(T_a,V_a,c_Nat_OSuc(V_n)) = c_Polynomial_OpCons(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Polynomial_Omonom(T_a,V_a,V_n)) ) ).

fof(fact_synthetic__div__eq__0__iff,axiom,
    ! [V_ca_2,V_pa_2,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => ( c_Polynomial_Osynthetic__div(T_a,V_pa_2,V_ca_2) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
      <=> c_Polynomial_Odegree(T_a,V_pa_2) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ).

fof(fact_degree__pCons__0,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_Odegree(T_a,c_Polynomial_OpCons(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_eq__poly__code_I2_J,axiom,
    ! [V_q_2,V_b_2,T_a] :
      ( ( class_Groups_Ozero(T_a)
        & class_HOL_Oequal(T_a) )
     => ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),c_Polynomial_OpCons(T_a,V_b_2,V_q_2)))
      <=> ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(T_a),c_Groups_Ozero__class_Ozero(T_a)),V_b_2))
          & hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),V_q_2)) ) ) ) ).

fof(fact_eq__poly__code_I3_J,axiom,
    ! [V_pa_2,V_a_2,T_a] :
      ( ( class_Groups_Ozero(T_a)
        & class_HOL_Oequal(T_a) )
     => ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),c_Polynomial_OpCons(T_a,V_a_2,V_pa_2)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))))
      <=> ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(T_a),V_a_2),c_Groups_Ozero__class_Ozero(T_a)))
          & hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),V_pa_2),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))) ) ) ) ).

fof(fact_poly__offset__poly,axiom,
    ! [V_x,V_h,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,V_p,V_h)),V_x) = hAPP(c_Polynomial_Opoly(T_a,V_p),c_Groups_Oplus__class_Oplus(T_a,V_h,V_x)) ) ).

fof(fact_coeff__monom,axiom,
    ! [V_a,V_n,V_m,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( ( V_m = V_n
         => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_Omonom(T_a,V_a,V_m)),V_n) = V_a )
        & ( V_m != V_n
         => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_Omonom(T_a,V_a,V_m)),V_n) = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_synthetic__div__unique__lemma,axiom,
    ! [V_a,V_p,V_c,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => ( c_Polynomial_Osmult(T_a,V_c,V_p) = c_Polynomial_OpCons(T_a,V_a,V_p)
       => V_p = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ).

fof(fact_coeff__pCons__0,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)),c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = V_a ) ).

fof(fact_add__right__imp__eq,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Groups_Ocancel__semigroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_b,V_a) = c_Groups_Oplus__class_Oplus(T_a,V_c,V_a)
       => V_b = V_c ) ) ).

fof(fact_add__imp__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Ocancel__ab__semigroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_a,V_b) = c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)
       => V_b = V_c ) ) ).

fof(fact_add__left__imp__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Ocancel__semigroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_a,V_b) = c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)
       => V_b = V_c ) ) ).

fof(fact_add__right__cancel,axiom,
    ! [V_ca_2,V_a_2,V_b_2,T_a] :
      ( class_Groups_Ocancel__semigroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_b_2,V_a_2) = c_Groups_Oplus__class_Oplus(T_a,V_ca_2,V_a_2)
      <=> V_b_2 = V_ca_2 ) ) ).

fof(fact_add__left__cancel,axiom,
    ! [V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Groups_Ocancel__semigroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_b_2) = c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_ca_2)
      <=> V_b_2 = V_ca_2 ) ) ).

fof(fact_smult__add__left,axiom,
    ! [V_p,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_p) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),c_Polynomial_Osmult(T_a,V_b,V_p)) ) ).

fof(fact_coeff__add,axiom,
    ! [V_n,V_q,V_p,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_n) = c_Groups_Oplus__class_Oplus(T_a,hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n),hAPP(c_Polynomial_Ocoeff(T_a,V_q),V_n)) ) ).

fof(fact_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oab__semigroup__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_b,V_c)) ) ).

fof(fact_coeff__inject,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Polynomial_Ocoeff(T_a,V_x_2) = c_Polynomial_Ocoeff(T_a,V_y_2)
      <=> V_x_2 = V_y_2 ) ) ).

fof(fact_smult__add__right,axiom,
    ! [V_q,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),c_Polynomial_Osmult(T_a,V_a,V_q)) ) ).

fof(fact_equal__poly__def,axiom,
    ! [V_q_2,V_pa_2,T_a] :
      ( ( class_Groups_Ozero(T_a)
        & class_HOL_Oequal(T_a) )
     => ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),V_pa_2),V_q_2))
      <=> V_pa_2 = V_q_2 ) ) ).

fof(fact_expand__poly__eq,axiom,
    ! [V_q_2,V_pa_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( V_pa_2 = V_q_2
      <=> ! [B_n] : hAPP(c_Polynomial_Ocoeff(T_a,V_pa_2),B_n) = hAPP(c_Polynomial_Ocoeff(T_a,V_q_2),B_n) ) ) ).

fof(fact_add__pCons,axiom,
    ! [V_q,V_b,V_p,V_a,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,V_p),c_Polynomial_OpCons(T_a,V_b,V_q)) = c_Polynomial_OpCons(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)) ) ).

fof(fact_coeff__pCons__Suc,axiom,
    ! [V_n,V_p,V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)),c_Nat_OSuc(V_n)) = hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n) ) ).

fof(fact_poly__add,axiom,
    ! [V_x,V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_x) = c_Groups_Oplus__class_Oplus(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_x),hAPP(c_Polynomial_Opoly(T_a,V_q),V_x)) ) ).

fof(fact_add__monom,axiom,
    ! [V_b,V_n,V_a,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Omonom(T_a,V_a,V_n),c_Polynomial_Omonom(T_a,V_b,V_n)) = c_Polynomial_Omonom(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_n) ) ).

fof(fact_degree__smult__eq,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( ( V_a = c_Groups_Ozero__class_Ozero(T_a)
         => c_Polynomial_Odegree(T_a,c_Polynomial_Osmult(T_a,V_a,V_p)) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
        & ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => c_Polynomial_Odegree(T_a,c_Polynomial_Osmult(T_a,V_a,V_p)) = c_Polynomial_Odegree(T_a,V_p) ) ) ) ).

fof(fact_leading__coeff__neq__0,axiom,
    ! [V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => hAPP(c_Polynomial_Ocoeff(T_a,V_p),c_Polynomial_Odegree(T_a,V_p)) != c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_leading__coeff__0__iff,axiom,
    ! [V_pa_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( hAPP(c_Polynomial_Ocoeff(T_a,V_pa_2),c_Polynomial_Odegree(T_a,V_pa_2)) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ).

fof(fact_degree__pCons__eq,axiom,
    ! [V_a,V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => c_Polynomial_Odegree(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)) = c_Nat_OSuc(c_Polynomial_Odegree(T_a,V_p)) ) ) ).

fof(fact_eq__poly__code_I4_J,axiom,
    ! [V_q_2,V_b_2,V_pa_2,V_a_2,T_a] :
      ( ( class_Groups_Ozero(T_a)
        & class_HOL_Oequal(T_a) )
     => ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),c_Polynomial_OpCons(T_a,V_a_2,V_pa_2)),c_Polynomial_OpCons(T_a,V_b_2,V_q_2)))
      <=> ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(T_a),V_a_2),V_b_2))
          & hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),V_pa_2),V_q_2)) ) ) ) ).

fof(fact_offset__poly__eq__0__lemma,axiom,
    ! [V_a,V_p,V_c,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => ( c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_c,V_p),c_Polynomial_OpCons(T_a,V_a,V_p)) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => V_p = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ).

fof(fact_add_Ocomm__neutral,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = V_a ) ).

fof(fact_add__0__right,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Omonoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = V_a ) ).

fof(fact_double__zero__sym,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Groups_Ozero__class_Ozero(T_a) = c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_add__0,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = V_a ) ).

fof(fact_add__0__left,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Omonoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = V_a ) ).

fof(fact_offset__poly__pCons,axiom,
    ! [V_h,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,c_Polynomial_OpCons(T_a,V_a,V_p),V_h) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_h,c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,V_p,V_h)),c_Polynomial_OpCons(T_a,V_a,c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,V_p,V_h))) ) ).

fof(fact_add__poly__code_I2_J,axiom,
    ! [V_p,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = V_p ) ).

fof(fact_add__poly__code_I1_J,axiom,
    ! [V_q,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_q) = V_q ) ).

fof(fact_smult__0__right,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_degree__offset__poly,axiom,
    ! [V_h,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Odegree(T_a,c_Fundamental__Theorem__Algebra__Mirabelle_Ooffset__poly(T_a,V_p,V_h)) = c_Polynomial_Odegree(T_a,V_p) ) ).

fof(fact_degree__pCons__eq__if,axiom,
    ! [V_a,V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( ( V_p = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Polynomial_Odegree(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
        & ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Polynomial_Odegree(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)) = c_Nat_OSuc(c_Polynomial_Odegree(T_a,V_p)) ) ) ) ).

fof(fact_psize__def,axiom,
    ! [V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( ( V_p = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Fundamental__Theorem__Algebra__Mirabelle_Opsize(T_a,V_p) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
        & ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Fundamental__Theorem__Algebra__Mirabelle_Opsize(T_a,V_p) = c_Nat_OSuc(c_Polynomial_Odegree(T_a,V_p)) ) ) ) ).

fof(fact_synthetic__div__correct,axiom,
    ! [V_c,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,c_Polynomial_Osmult(T_a,V_c,c_Polynomial_Osynthetic__div(T_a,V_p,V_c))) = c_Polynomial_OpCons(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_c),c_Polynomial_Osynthetic__div(T_a,V_p,V_c)) ) ).

fof(fact_synthetic__div__unique,axiom,
    ! [V_r,V_q,V_c,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => ( c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,c_Polynomial_Osmult(T_a,V_c,V_q)) = c_Polynomial_OpCons(T_a,V_r,V_q)
       => ( V_r = hAPP(c_Polynomial_Opoly(T_a,V_p),V_c)
          & V_q = c_Polynomial_Osynthetic__div(T_a,V_p,V_c) ) ) ) ).

fof(fact_eq__poly__code_I1_J,axiom,
    ! [T_a] :
      ( ( class_Groups_Ozero(T_a)
        & class_HOL_Oequal(T_a) )
     => hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(tc_Polynomial_Opoly(T_a)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))) ) ).

fof(fact_degree__0,axiom,
    ! [T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_Odegree(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_degree__monom__eq,axiom,
    ! [V_n,V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Polynomial_Odegree(T_a,c_Polynomial_Omonom(T_a,V_a,V_n)) = V_n ) ) ).

fof(fact_smult__eq__0__iff,axiom,
    ! [V_pa_2,V_a_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( c_Polynomial_Osmult(T_a,V_a_2,V_pa_2) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
      <=> ( V_a_2 = c_Groups_Ozero__class_Ozero(T_a)
          | V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ) ).

fof(fact_smult__0__left,axiom,
    ! [V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,c_Groups_Ozero__class_Ozero(T_a),V_p) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_coeff__0,axiom,
    ! [V_n,T_a] :
      ( class_Groups_Ozero(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),V_n) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_one__is__add,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,V_n_2)
    <=> ( ( V_m_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))
          & V_n_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
        | ( V_m_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
          & V_n_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ) ) ) ).

fof(fact_add__is__1,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,V_n_2) = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))
    <=> ( ( V_m_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))
          & V_n_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
        | ( V_m_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
          & V_n_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ) ) ) ).

fof(fact_Suc__neq__Zero,axiom,
    ! [V_m] : c_Nat_OSuc(V_m) != c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_Zero__neq__Suc,axiom,
    ! [V_m] : c_Groups_Ozero__class_Ozero(tc_Nat_Onat) != c_Nat_OSuc(V_m) ).

fof(fact_nat_Osimps_I3_J,axiom,
    ! [V_nat_H_1] : c_Nat_OSuc(V_nat_H_1) != c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_Suc__not__Zero,axiom,
    ! [V_m] : c_Nat_OSuc(V_m) != c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_nat_Osimps_I2_J,axiom,
    ! [V_nat_H] : c_Groups_Ozero__class_Ozero(tc_Nat_Onat) != c_Nat_OSuc(V_nat_H) ).

fof(fact_Zero__not__Suc,axiom,
    ! [V_m] : c_Groups_Ozero__class_Ozero(tc_Nat_Onat) != c_Nat_OSuc(V_m) ).

fof(fact_double__eq__0__iff,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_add__0__iff,axiom,
    ! [V_a_2,V_b_2,T_a] :
      ( class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(T_a)
     => ( V_b_2 = c_Groups_Oplus__class_Oplus(T_a,V_b_2,V_a_2)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_nat__add__commute,axiom,
    ! [V_n,V_m] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_m) ).

fof(fact_nat__add__left__commute,axiom,
    ! [V_z,V_y,V_x] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_x,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_y,V_z)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_y,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_x,V_z)) ).

fof(fact_nat__add__assoc,axiom,
    ! [V_k,V_n,V_m] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n),V_k) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_k)) ).

fof(fact_nat__add__left__cancel,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_m_2) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_n_2)
    <=> V_m_2 = V_n_2 ) ).

fof(fact_nat__add__right__cancel,axiom,
    ! [V_n_2,V_k_2,V_m_2] :
      ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,V_k_2) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n_2,V_k_2)
    <=> V_m_2 = V_n_2 ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I20_J,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Oplus__class_Oplus(T_a,V_c,V_d)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_d)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I23_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),V_b) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I21_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_b,V_c)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I25_J,axiom,
    ! [V_d,V_c,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_c,V_d)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),V_d) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I22_J,axiom,
    ! [V_d,V_c,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_c,V_d)) = c_Groups_Oplus__class_Oplus(T_a,V_c,c_Groups_Oplus__class_Oplus(T_a,V_a,V_d)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I24_J,axiom,
    ! [V_c,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,V_c) = c_Groups_Oplus__class_Oplus(T_a,V_c,V_a) ) ).

fof(fact_plus__nat_Oadd__0,axiom,
    ! [V_n] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n) = V_n ).

fof(fact_Nat_Oadd__0__right,axiom,
    ! [V_m] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = V_m ).

fof(fact_add__is__0,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,V_n_2) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
    <=> ( V_m_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
        & V_n_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ).

fof(fact_add__eq__self__zero,axiom,
    ! [V_n,V_m] :
      ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n) = V_m
     => V_n = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_Suc__inject,axiom,
    ! [V_y,V_x] :
      ( c_Nat_OSuc(V_x) = c_Nat_OSuc(V_y)
     => V_x = V_y ) ).

fof(fact_nat_Oinject,axiom,
    ! [V_nat_H_2,V_nat_2] :
      ( c_Nat_OSuc(V_nat_2) = c_Nat_OSuc(V_nat_H_2)
    <=> V_nat_2 = V_nat_H_2 ) ).

fof(fact_add__Suc__shift,axiom,
    ! [V_n,V_m] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) ).

fof(fact_add__Suc,axiom,
    ! [V_n,V_m] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n)) ).

fof(fact_add__Suc__right,axiom,
    ! [V_n,V_m] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) = c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n)) ).

fof(fact_Suc__n__not__n,axiom,
    ! [V_n] : c_Nat_OSuc(V_n) != V_n ).

fof(fact_n__not__Suc__n,axiom,
    ! [V_n] : V_n != c_Nat_OSuc(V_n) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I5_J,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = V_a ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I6_J,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = V_a ) ).

fof(fact_pcompose__pCons,axiom,
    ! [V_q,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Opcompose(T_a,c_Polynomial_OpCons(T_a,V_a,V_p),V_q) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_q,c_Polynomial_Opcompose(T_a,V_p,V_q))) ) ).

fof(fact_nat_Osize_I2_J,axiom,
    ! [V_nat] : c_Nat_Onat_Onat__size(c_Nat_OSuc(V_nat)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Nat_Onat_Onat__size(V_nat),c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))) ).

fof(fact_mult__pCons__right,axiom,
    ! [V_q,V_a,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,c_Polynomial_OpCons(T_a,V_a,V_q)) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),c_Polynomial_OpCons(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q))) ) ).

fof(fact_mult__pCons__left,axiom,
    ! [V_q,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,V_p),V_q) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_q),c_Polynomial_OpCons(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q))) ) ).

fof(fact_coeff__pCons,axiom,
    ! [V_pa_2,V_a_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_Ocoeff(T_a,c_Polynomial_OpCons(T_a,V_a_2,V_pa_2)) = c_Nat_Onat_Onat__case(T_a,V_a_2,c_Polynomial_Ocoeff(T_a,V_pa_2)) ) ).

fof(fact_nat_Osize_I4_J,axiom,
    ! [V_nat] : c_Nat_Osize__class_Osize(tc_Nat_Onat,c_Nat_OSuc(V_nat)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Nat_Osize__class_Osize(tc_Nat_Onat,V_nat),c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))) ).

fof(fact_order__degree,axiom,
    ! [V_a,V_p,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Oorder(T_a,V_a,V_p),c_Polynomial_Odegree(T_a,V_p)) ) ) ).

fof(fact_eq__equal,axiom,
    ! [T_a] :
      ( class_HOL_Oequal(T_a)
     => c_fequal = c_HOL_Oequal__class_Oequal(T_a) ) ).

fof(fact_equal__eq,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_HOL_Oequal(T_a)
     => ( hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(T_a),V_x_2),V_y_2))
      <=> V_x_2 = V_y_2 ) ) ).

fof(fact_equal__refl,axiom,
    ! [V_x,T_a] :
      ( class_HOL_Oequal(T_a)
     => hBOOL(hAPP(hAPP(c_HOL_Oequal__class_Oequal(T_a),V_x),V_x)) ) ).

fof(fact_le0,axiom,
    ! [V_n] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n) ).

fof(fact_le__antisym,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
       => V_m = V_n ) ) ).

fof(fact_le__trans,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_j,V_k)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_k) ) ) ).

fof(fact_eq__imp__le,axiom,
    ! [V_n,V_m] :
      ( V_m = V_n
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I13_J,axiom,
    ! [V_ry,V_rx,V_ly,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ly),c_Groups_Otimes__class_Otimes(T_a,V_rx,V_ry)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_rx),c_Groups_Otimes__class_Otimes(T_a,V_ly,V_ry)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I15_J,axiom,
    ! [V_ry,V_rx,V_ly,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ly),c_Groups_Otimes__class_Otimes(T_a,V_rx,V_ry)) = c_Groups_Otimes__class_Otimes(T_a,V_rx,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ly),V_ry)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I14_J,axiom,
    ! [V_ry,V_rx,V_ly,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ly),c_Groups_Otimes__class_Otimes(T_a,V_rx,V_ry)) = c_Groups_Otimes__class_Otimes(T_a,V_lx,c_Groups_Otimes__class_Otimes(T_a,V_ly,c_Groups_Otimes__class_Otimes(T_a,V_rx,V_ry))) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I16_J,axiom,
    ! [V_rx,V_ly,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ly),V_rx) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_rx),V_ly) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I17_J,axiom,
    ! [V_rx,V_ly,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ly),V_rx) = c_Groups_Otimes__class_Otimes(T_a,V_lx,c_Groups_Otimes__class_Otimes(T_a,V_ly,V_rx)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I18_J,axiom,
    ! [V_ry,V_rx,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_lx,c_Groups_Otimes__class_Otimes(T_a,V_rx,V_ry)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_rx),V_ry) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I19_J,axiom,
    ! [V_ry,V_rx,V_lx,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_lx,c_Groups_Otimes__class_Otimes(T_a,V_rx,V_ry)) = c_Groups_Otimes__class_Otimes(T_a,V_rx,c_Groups_Otimes__class_Otimes(T_a,V_lx,V_ry)) ) ).

fof(fact_nat__le__linear,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
      | c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I7_J,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,V_b) = c_Groups_Otimes__class_Otimes(T_a,V_b,V_a) ) ).

fof(fact_le__refl,axiom,
    ! [V_n] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_n) ).

fof(fact_nat__size,axiom,
    ! [V_n] : c_Nat_Osize__class_Osize(tc_Nat_Onat,V_n) = V_n ).

fof(fact_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oab__semigroup__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) = c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ).

fof(fact_poly__mult,axiom,
    ! [V_x,V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_x) = c_Groups_Otimes__class_Otimes(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_x),hAPP(c_Polynomial_Opoly(T_a,V_q),V_x)) ) ).

fof(fact_sum__squares__ge__zero,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Rings_Olinordered__ring(T_a)
     => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_x),c_Groups_Otimes__class_Otimes(T_a,V_y,V_y))) ) ).

fof(fact_sum__squares__le__zero__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_x_2),c_Groups_Otimes__class_Otimes(T_a,V_y_2,V_y_2)),c_Groups_Ozero__class_Ozero(T_a))
      <=> ( V_x_2 = c_Groups_Ozero__class_Ozero(T_a)
          & V_y_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_degree__mult__le,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Polynomial_Odegree(T_a,V_q))) ) ).

fof(fact_mult__monom,axiom,
    ! [V_n,V_b,V_m,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),c_Polynomial_Omonom(T_a,V_a,V_m),c_Polynomial_Omonom(T_a,V_b,V_n)) = c_Polynomial_Omonom(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I10_J,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I9_J,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I34_J,axiom,
    ! [V_z,V_y,V_x,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_x,c_Groups_Oplus__class_Oplus(T_a,V_y,V_z)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_y),c_Groups_Otimes__class_Otimes(T_a,V_x,V_z)) ) ).

fof(fact_crossproduct__noteq,axiom,
    ! [V_da_2,V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(T_a)
     => ( ( V_a_2 != V_b_2
          & V_ca_2 != V_da_2 )
      <=> c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_da_2)) != c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_da_2),c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_ca_2)) ) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I8_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I1_J,axiom,
    ! [V_b,V_m,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_m),c_Groups_Otimes__class_Otimes(T_a,V_b,V_m)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_m) ) ).

fof(fact_crossproduct__eq,axiom,
    ! [V_z_2,V_x_2,V_y_2,V_w_2,T_a] :
      ( class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_w_2,V_y_2),c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_z_2)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_w_2,V_z_2),c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_y_2))
      <=> ( V_w_2 = V_x_2
          | V_y_2 = V_z_2 ) ) ) ).

fof(fact_add__le__imp__le__left,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_c,V_a),c_Groups_Oplus__class_Oplus(T_a,V_c,V_b))
       => c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b) ) ) ).

fof(fact_add__le__imp__le__right,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_c))
       => c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b) ) ) ).

fof(fact_add__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_d)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_d)) ) ) ) ).

fof(fact_add__left__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_c,V_a),c_Groups_Oplus__class_Oplus(T_a,V_c,V_b)) ) ) ).

fof(fact_add__right__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_c)) ) ) ).

fof(fact_add__le__cancel__left,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_ca_2,V_a_2),c_Groups_Oplus__class_Oplus(T_a,V_ca_2,V_b_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,V_b_2) ) ) ).

fof(fact_add__le__cancel__right,axiom,
    ! [V_b_2,V_ca_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_ca_2),c_Groups_Oplus__class_Oplus(T_a,V_b_2,V_ca_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,V_b_2) ) ) ).

fof(fact_le__0__eq,axiom,
    ! [V_n_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n_2,c_Groups_Ozero__class_Ozero(tc_Nat_Onat))
    <=> V_n_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_less__eq__nat_Osimps_I1_J,axiom,
    ! [V_n] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n) ).

fof(fact_nat_Osize_I3_J,axiom,
    c_Nat_Osize__class_Osize(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_Suc__n__not__le__n,axiom,
    ! [V_n] : ~ c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_n),V_n) ).

fof(fact_not__less__eq__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( ~ c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2)
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_n_2),V_m_2) ) ).

fof(fact_le__Suc__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,c_Nat_OSuc(V_n_2))
    <=> ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2)
        | V_m_2 = c_Nat_OSuc(V_n_2) ) ) ).

fof(fact_Suc__le__mono,axiom,
    ! [V_m_2,V_n_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_n_2),c_Nat_OSuc(V_m_2))
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n_2,V_m_2) ) ).

fof(fact_le__SucI,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) ) ).

fof(fact_le__SucE,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n))
     => ( ~ c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
       => V_m = c_Nat_OSuc(V_n) ) ) ).

fof(fact_Suc__leD,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_add__leE,axiom,
    ! [V_n,V_k,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_k),V_n)
     => ~ ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
         => ~ c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_n) ) ) ).

fof(fact_add__leD1,axiom,
    ! [V_n,V_k,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_k),V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_add__leD2,axiom,
    ! [V_n,V_k,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_k),V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_n) ) ).

fof(fact_add__le__mono,axiom,
    ! [V_l,V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_l)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_k),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_l)) ) ) ).

fof(fact_add__le__mono1,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_k),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_k)) ) ).

fof(fact_trans__le__add2,axiom,
    ! [V_m,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_j)) ) ).

fof(fact_trans__le__add1,axiom,
    ! [V_m,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_m)) ) ).

fof(fact_nat__add__left__cancel__le,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_n_2))
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_le__iff__add,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2)
    <=> ? [B_k] : V_n_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,B_k) ) ).

fof(fact_le__add1,axiom,
    ! [V_m,V_n] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_m)) ).

fof(fact_le__add2,axiom,
    ! [V_m,V_n] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n)) ).

fof(fact_mult__poly__0__right,axiom,
    ! [V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_mult__poly__0__left,axiom,
    ! [V_q,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_q) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_smult__smult,axiom,
    ! [V_p,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Polynomial_Osmult(T_a,V_b,V_p)) = c_Polynomial_Osmult(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_p) ) ).

fof(fact_mult__smult__left,axiom,
    ! [V_q,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),V_q) = c_Polynomial_Osmult(T_a,V_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)) ) ).

fof(fact_mult__smult__right,axiom,
    ! [V_q,V_a,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,c_Polynomial_Osmult(T_a,V_a,V_q)) = c_Polynomial_Osmult(T_a,V_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)) ) ).

fof(fact_mult__poly__add__left,axiom,
    ! [V_r,V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q),V_r) = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_r),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_q,V_r)) ) ).

fof(fact_nat_Osize_I1_J,axiom,
    c_Nat_Onat_Onat__size(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_coeff__mult__degree__sum,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Polynomial_Odegree(T_a,V_q))) = c_Groups_Otimes__class_Otimes(T_a,hAPP(c_Polynomial_Ocoeff(T_a,V_p),c_Polynomial_Odegree(T_a,V_p)),hAPP(c_Polynomial_Ocoeff(T_a,V_q),c_Polynomial_Odegree(T_a,V_q))) ) ).

fof(fact_sum__squares__eq__zero__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_x_2),c_Groups_Otimes__class_Otimes(T_a,V_y_2,V_y_2)) = c_Groups_Ozero__class_Ozero(T_a)
      <=> ( V_x_2 = c_Groups_Ozero__class_Ozero(T_a)
          & V_y_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_add__scale__eq__noteq,axiom,
    ! [V_d,V_c,V_b,V_a,V_r,T_a] :
      ( class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(T_a)
     => ( V_r != c_Groups_Ozero__class_Ozero(T_a)
       => ( ( V_a = V_b
            & V_c != V_d )
         => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_r,V_c)) != c_Groups_Oplus__class_Oplus(T_a,V_b,c_Groups_Otimes__class_Otimes(T_a,V_r,V_d)) ) ) ) ).

fof(fact_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_add__nonneg__nonneg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) ) ) ) ).

fof(fact_add__nonneg__eq__0__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y_2)
         => ( c_Groups_Oplus__class_Oplus(T_a,V_x_2,V_y_2) = c_Groups_Ozero__class_Ozero(T_a)
          <=> ( V_x_2 = c_Groups_Ozero__class_Ozero(T_a)
              & V_y_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ) ) ).

fof(fact_add__increasing,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)) ) ) ) ).

fof(fact_add__increasing2,axiom,
    ! [V_a,V_b,V_c,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)) ) ) ) ).

fof(fact_add__nonpos__nonpos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_nat__case__0,axiom,
    ! [V_f2_2,V_f1_2,T_a] : hAPP(c_Nat_Onat_Onat__case(T_a,V_f1_2,V_f2_2),c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = V_f1_2 ).

fof(fact_nat__case__Suc,axiom,
    ! [V_nat_2,V_f2_2,V_f1_2,T_a] : hAPP(c_Nat_Onat_Onat__case(T_a,V_f1_2,V_f2_2),c_Nat_OSuc(V_nat_2)) = hAPP(V_f2_2,V_nat_2) ).

fof(fact_smult__pCons,axiom,
    ! [V_p,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Polynomial_OpCons(T_a,V_b,V_p)) = c_Polynomial_OpCons(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Polynomial_Osmult(T_a,V_a,V_p)) ) ).

fof(fact_poly__smult,axiom,
    ! [V_x,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Polynomial_Osmult(T_a,V_a,V_p)),V_x) = c_Groups_Otimes__class_Otimes(T_a,V_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_x)) ) ).

fof(fact_coeff__smult,axiom,
    ! [V_n,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_Osmult(T_a,V_a,V_p)),V_n) = c_Groups_Otimes__class_Otimes(T_a,V_a,hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n)) ) ).

fof(fact_degree__smult__le,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Polynomial_Osmult(T_a,V_a,V_p)),c_Polynomial_Odegree(T_a,V_p)) ) ).

fof(fact_degree__add__le,axiom,
    ! [V_q,V_n,V_p,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n)
       => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_q),V_n)
         => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_n) ) ) ) ).

fof(fact_smult__monom,axiom,
    ! [V_n,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Polynomial_Omonom(T_a,V_b,V_n)) = c_Polynomial_Omonom(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_n) ) ).

fof(fact_degree__monom__le,axiom,
    ! [V_n,V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Polynomial_Omonom(T_a,V_a,V_n)),V_n) ) ).

fof(fact_degree__mult__eq,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => ( V_q != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Polynomial_Odegree(T_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Polynomial_Odegree(T_a,V_q)) ) ) ) ).

fof(fact_poly__pCons,axiom,
    ! [V_x,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)),V_x) = c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_x,hAPP(c_Polynomial_Opoly(T_a,V_p),V_x))) ) ).

fof(fact_le__degree,axiom,
    ! [V_n,V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n) != c_Groups_Ozero__class_Ozero(T_a)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,c_Polynomial_Odegree(T_a,V_p)) ) ) ).

fof(fact_degree__pCons__le,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Polynomial_OpCons(T_a,V_a,V_p)),c_Nat_OSuc(c_Polynomial_Odegree(T_a,V_p))) ) ).

fof(fact_equal,axiom,
    ! [T_a] :
      ( class_HOL_Oequal(T_a)
     => c_HOL_Oequal__class_Oequal(T_a) = c_fequal ) ).

fof(fact_zero__le__square,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Olinordered__ring(T_a)
     => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_a)) ) ).

fof(fact_zero__le__mult__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_b_2))
      <=> ( ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2)
            & c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b_2) )
          | ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ) ).

fof(fact_mult__le__0__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_b_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> ( ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2)
            & c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Ozero__class_Ozero(T_a)) )
          | ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b_2) ) ) ) ) ).

fof(fact_mult__nonneg__nonneg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__cancel__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ) ) ).

fof(fact_mult__nonneg__nonpos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__cancel__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_mult__nonneg__nonpos2,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__cancel__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_a),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_mult__nonpos__nonneg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__cancel__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_mult__nonpos__nonpos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ) ) ).

fof(fact_mult__right__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Oordered__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ) ) ).

fof(fact_mult__0,axiom,
    ! [V_n] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_mult__0__right,axiom,
    ! [V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_mult__is__0,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
    <=> ( V_m_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
        | V_n_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ).

fof(fact_mult__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2)
    <=> ( V_m_2 = V_n_2
        | V_k_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ).

fof(fact_mult__cancel2,axiom,
    ! [V_n_2,V_k_2,V_m_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_k_2) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n_2,V_k_2)
    <=> ( V_m_2 = V_n_2
        | V_k_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ).

fof(fact_Suc__mult__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_k_2),V_m_2) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_k_2),V_n_2)
    <=> V_m_2 = V_n_2 ) ).

fof(fact_add__mult__distrib2,axiom,
    ! [V_n,V_m,V_k] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_m),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_n)) ).

fof(fact_add__mult__distrib,axiom,
    ! [V_k,V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n),V_k) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_k),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,V_k)) ).

fof(fact_le__square,axiom,
    ! [V_m] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_m)) ).

fof(fact_le__cube,axiom,
    ! [V_m] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_m))) ).

fof(fact_mult__le__mono1,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i,V_k),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j,V_k)) ) ).

fof(fact_mult__le__mono2,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_i),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_j)) ) ).

fof(fact_mult__le__mono,axiom,
    ! [V_l,V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_l)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i,V_k),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j,V_l)) ) ) ).

fof(fact_mult__eq__1__iff,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2) = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))
    <=> ( V_m_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))
        & V_n_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ) ) ).

fof(fact_mult__Suc,axiom,
    ! [V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n)) ).

fof(fact_mult__Suc__right,axiom,
    ! [V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n)) ).

fof(fact_Suc__mult__le__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_k_2),V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_k_2),V_n_2))
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_one__le__mult__iff,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2))
    <=> ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_m_2)
        & c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_n_2) ) ) ).

fof(fact_degree__pcompose__le,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Polynomial_Opcompose(T_a,V_p,V_q)),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Polynomial_Odegree(T_a,V_q))) ) ).

fof(fact_mult__zero__left,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Omult__zero(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mult__zero__right,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Omult__zero(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mult__eq__0__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Rings_Oring__no__zero__divisors(T_a)
     => ( c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_b_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> ( V_a_2 = c_Groups_Ozero__class_Ozero(T_a)
          | V_b_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_no__zero__divisors,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Ono__zero__divisors(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Otimes__class_Otimes(T_a,V_a,V_b) != c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_divisors__zero,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Ono__zero__divisors(T_a)
     => ( c_Groups_Otimes__class_Otimes(T_a,V_a,V_b) = c_Groups_Ozero__class_Ozero(T_a)
       => ( V_a = c_Groups_Ozero__class_Ozero(T_a)
          | V_b = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_combine__common__factor,axiom,
    ! [V_c,V_b,V_e,V_a,T_a] :
      ( class_Rings_Osemiring(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_e),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_e),V_c)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_e),V_c) ) ).

fof(fact_comm__semiring__class_Odistrib,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ).

fof(fact_split__mult__neg__le,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__cancel__semiring(T_a)
     => ( ( ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
            & c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a)) )
          | ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b) ) )
       => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_split__mult__pos__le,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( ( ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
            & c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b) )
          | ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a)) ) )
       => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ) ).

fof(fact_mult__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Oordered__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_d)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
             => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ) ) ).

fof(fact_mult__mono_H,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Oordered__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_d)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
             => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ) ) ).

fof(fact_mult__left__mono__neg,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) ) ) ) ).

fof(fact_mult__right__mono__neg,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ) ) ).

fof(fact_comm__mult__left__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Oordered__comm__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) ) ) ) ).

fof(fact_mult__left__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Oordered__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) ) ) ) ).

fof(fact_order__refl,axiom,
    ! [V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_x) ) ).

fof(fact_le__Suc__ex__iff,axiom,
    ! [V_l_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_l_2)
    <=> ? [B_n] : V_l_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,B_n) ) ).

fof(fact_termination__basic__simps_I3_J,axiom,
    ! [V_z,V_y,V_x] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_x,V_y)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_x,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_y,V_z)) ) ).

fof(fact_termination__basic__simps_I4_J,axiom,
    ! [V_y,V_z,V_x] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_x,V_z)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_x,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_y,V_z)) ) ).

fof(fact_mult__left_Oadd,axiom,
    ! [V_ya,V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_x,V_y),V_ya) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_ya),c_Groups_Otimes__class_Otimes(T_a,V_y,V_ya)) ) ).

fof(fact_mult_Oadd__left,axiom,
    ! [V_b,V_a_H,V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_a_H),V_b) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Otimes__class_Otimes(T_a,V_a_H,V_b)) ) ).

fof(fact_mult__right_Oadd,axiom,
    ! [V_y,V_x,V_xa,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_xa,c_Groups_Oplus__class_Oplus(T_a,V_x,V_y)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_xa,V_x),c_Groups_Otimes__class_Otimes(T_a,V_xa,V_y)) ) ).

fof(fact_nat__mult__assoc,axiom,
    ! [V_k,V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n),V_k) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,V_k)) ).

fof(fact_nat__mult__commute,axiom,
    ! [V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,V_m) ).

fof(fact_le__fun__def,axiom,
    ! [V_g_2,V_f_2,T_a,T_b] :
      ( class_Orderings_Oord(T_b)
     => ( c_Orderings_Oord__class_Oless__eq(tc_fun(T_a,T_b),V_f_2,V_g_2)
      <=> ! [B_x] : c_Orderings_Oord__class_Oless__eq(T_b,hAPP(V_f_2,B_x),hAPP(V_g_2,B_x)) ) ) ).

fof(fact_linorder__linear,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
        | c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x) ) ) ).

fof(fact_order__eq__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( V_x_2 = V_y_2
      <=> ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
          & c_Orderings_Oord__class_Oless__eq(T_a,V_y_2,V_x_2) ) ) ) ).

fof(fact_order__eq__refl,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( V_x = V_y
       => c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y) ) ) ).

fof(fact_le__funD,axiom,
    ! [V_x_2,V_g_2,V_f_2,T_a,T_b] :
      ( class_Orderings_Oord(T_b)
     => ( c_Orderings_Oord__class_Oless__eq(tc_fun(T_a,T_b),V_f_2,V_g_2)
       => c_Orderings_Oord__class_Oless__eq(T_b,hAPP(V_f_2,V_x_2),hAPP(V_g_2,V_x_2)) ) ) ).

fof(fact_order__antisym__conv,axiom,
    ! [V_x_2,V_y_2,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y_2,V_x_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
        <=> V_x_2 = V_y_2 ) ) ) ).

fof(fact_ord__eq__le__trans,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Orderings_Oord(T_a)
     => ( V_a = V_b
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_c) ) ) ) ).

fof(fact_xt1_I3_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( V_a = V_b
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_b)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_a) ) ) ) ).

fof(fact_ord__le__eq__trans,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Orderings_Oord(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( V_b = V_c
         => c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_c) ) ) ) ).

fof(fact_xt1_I4_J,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
       => ( V_b = V_c
         => c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_a) ) ) ) ).

fof(fact_order__antisym,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x)
         => V_x = V_y ) ) ) ).

fof(fact_order__trans,axiom,
    ! [V_z,V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_z)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_z) ) ) ) ).

fof(fact_xt1_I5_J,axiom,
    ! [V_x,V_y,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
         => V_x = V_y ) ) ) ).

fof(fact_xt1_I6_J,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_z,V_y)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_z,V_x) ) ) ) ).

fof(fact_le__funE,axiom,
    ! [V_x_2,V_g_2,V_f_2,T_a,T_b] :
      ( class_Orderings_Oord(T_b)
     => ( c_Orderings_Oord__class_Oless__eq(tc_fun(T_a,T_b),V_f_2,V_g_2)
       => c_Orderings_Oord__class_Oless__eq(T_b,hAPP(V_f_2,V_x_2),hAPP(V_g_2,V_x_2)) ) ) ).

fof(fact_linorder__le__cases,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
       => c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x) ) ) ).

fof(fact_mult__right_Ozero,axiom,
    ! [V_x,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_x,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mult_Ozero__right,axiom,
    ! [V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mult__left_Ozero,axiom,
    ! [V_y,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mult_Ozero__left,axiom,
    ! [V_b,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mult_Oadd__right,axiom,
    ! [V_b_H,V_b,V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_b,V_b_H)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b_H)) ) ).

fof(fact_left__add__mult__distrib,axiom,
    ! [V_k,V_j,V_u,V_i] : c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i,V_u),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j,V_u),V_k)) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_j),V_u),V_k) ).

fof(fact_nat__mult__eq__cancel__disj,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2)
    <=> ( V_k_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
        | V_m_2 = V_n_2 ) ) ).

fof(fact_eq__zero__or__degree__less,axiom,
    ! [V_n,V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n)
       => ( hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n) = c_Groups_Ozero__class_Ozero(T_a)
         => ( V_p = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
            | c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n) ) ) ) ) ).

fof(fact_pCons__def,axiom,
    ! [V_pa_2,V_a_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_OpCons(T_a,V_a_2,V_pa_2) = c_Polynomial_OAbs__poly(T_a,c_Nat_Onat_Onat__case(T_a,V_a_2,c_Polynomial_Ocoeff(T_a,V_pa_2))) ) ).

fof(fact_bool_Osize_I2_J,axiom,
    c_HOL_Obool_Obool__size(c_fFalse) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_bool_Osize_I1_J,axiom,
    c_HOL_Obool_Obool__size(c_fTrue) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_less__zeroE,axiom,
    ! [V_n] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ).

fof(fact_Suc__mono,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(V_m),c_Nat_OSuc(V_n)) ) ).

fof(fact_lessI,axiom,
    ! [V_n] : c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Nat_OSuc(V_n)) ).

fof(fact_zero__less__Suc,axiom,
    ! [V_n] : c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),c_Nat_OSuc(V_n)) ).

fof(fact_order__less__irrefl,axiom,
    ! [V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ~ c_Orderings_Oord__class_Oless(T_a,V_x,V_x) ) ).

fof(fact_linorder__neq__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( V_x_2 != V_y_2
      <=> ( c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
          | c_Orderings_Oord__class_Oless(T_a,V_y_2,V_x_2) ) ) ) ).

fof(fact_not__less__iff__gr__or__eq,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
      <=> ( c_Orderings_Oord__class_Oless(T_a,V_y_2,V_x_2)
          | V_x_2 = V_y_2 ) ) ) ).

fof(fact_linorder__less__linear,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
        | V_x = V_y
        | c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ).

fof(fact_linorder__antisym__conv3,axiom,
    ! [V_x_2,V_y_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless(T_a,V_y_2,V_x_2)
       => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
        <=> V_x_2 = V_y_2 ) ) ) ).

fof(fact_linorder__neqE,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( V_x != V_y
       => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
         => c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ) ).

fof(fact_less__imp__neq,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => V_x != V_y ) ) ).

fof(fact_order__less__not__sym,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => ~ c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ).

fof(fact_order__less__imp__not__less,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => ~ c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ).

fof(fact_order__less__imp__not__eq,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => V_x != V_y ) ) ).

fof(fact_order__less__imp__not__eq2,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => V_y != V_x ) ) ).

fof(fact_order__less__asym_H,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ~ c_Orderings_Oord__class_Oless(T_a,V_b,V_a) ) ) ).

fof(fact_xt1_I9_J,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_a)
       => ~ c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ).

fof(fact_ord__eq__less__trans,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Orderings_Oord(T_a)
     => ( V_a = V_b
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_c) ) ) ) ).

fof(fact_xt1_I1_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( V_a = V_b
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,V_b)
         => c_Orderings_Oord__class_Oless(T_a,V_c,V_a) ) ) ) ).

fof(fact_ord__less__eq__trans,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Orderings_Oord(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( V_b = V_c
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_c) ) ) ) ).

fof(fact_xt1_I2_J,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_a)
       => ( V_b = V_c
         => c_Orderings_Oord__class_Oless(T_a,V_c,V_a) ) ) ) ).

fof(fact_order__less__trans,axiom,
    ! [V_z,V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,V_z)
         => c_Orderings_Oord__class_Oless(T_a,V_x,V_z) ) ) ) ).

fof(fact_xt1_I10_J,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_y,V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,V_z,V_y)
         => c_Orderings_Oord__class_Oless(T_a,V_z,V_x) ) ) ) ).

fof(fact_order__less__asym,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => ~ c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ).

fof(fact_linorder__cases,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => ( V_x != V_y
         => c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ) ).

fof(fact_less__not__refl,axiom,
    ! [V_n] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,V_n) ).

fof(fact_nat__neq__iff,axiom,
    ! [V_n_2,V_m_2] :
      ( V_m_2 != V_n_2
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
        | c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,V_m_2) ) ) ).

fof(fact_linorder__neqE__nat,axiom,
    ! [V_y,V_x] :
      ( V_x != V_y
     => ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,V_y)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_y,V_x) ) ) ).

fof(fact_less__irrefl__nat,axiom,
    ! [V_n] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,V_n) ).

fof(fact_less__not__refl2,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,V_m)
     => V_m != V_n ) ).

fof(fact_less__not__refl3,axiom,
    ! [V_t,V_s] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_s,V_t)
     => V_s != V_t ) ).

fof(fact_nat__less__cases,axiom,
    ! [V_P_2,V_n_2,V_m_2] :
      ( ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
       => hBOOL(hAPP(hAPP(V_P_2,V_n_2),V_m_2)) )
     => ( ( V_m_2 = V_n_2
         => hBOOL(hAPP(hAPP(V_P_2,V_n_2),V_m_2)) )
       => ( ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,V_m_2)
           => hBOOL(hAPP(hAPP(V_P_2,V_n_2),V_m_2)) )
         => hBOOL(hAPP(hAPP(V_P_2,V_n_2),V_m_2)) ) ) ) ).

fof(fact_linorder__neqE__linordered__idom,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( V_x != V_y
       => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
         => c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ) ).

fof(fact_xt1_I8_J,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,V_z,V_y)
         => c_Orderings_Oord__class_Oless(T_a,V_z,V_x) ) ) ) ).

fof(fact_order__le__less__trans,axiom,
    ! [V_z,V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,V_z)
         => c_Orderings_Oord__class_Oless(T_a,V_x,V_z) ) ) ) ).

fof(fact_xt1_I7_J,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_y,V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_z,V_y)
         => c_Orderings_Oord__class_Oless(T_a,V_z,V_x) ) ) ) ).

fof(fact_order__less__le__trans,axiom,
    ! [V_z,V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_z)
         => c_Orderings_Oord__class_Oless(T_a,V_x,V_z) ) ) ) ).

fof(fact_xt1_I11_J,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
       => ( V_a != V_b
         => c_Orderings_Oord__class_Oless(T_a,V_b,V_a) ) ) ) ).

fof(fact_order__le__neq__trans,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( V_a != V_b
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ) ).

fof(fact_order__le__imp__less__or__eq,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
       => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
          | V_x = V_y ) ) ) ).

fof(fact_linorder__antisym__conv2,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
       => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
        <=> V_x_2 = V_y_2 ) ) ) ).

fof(fact_order__less__imp__le,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y) ) ) ).

fof(fact_leD,axiom,
    ! [V_x,V_y,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x)
       => ~ c_Orderings_Oord__class_Oless(T_a,V_x,V_y) ) ) ).

fof(fact_xt1_I12_J,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( V_a != V_b
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
         => c_Orderings_Oord__class_Oless(T_a,V_b,V_a) ) ) ) ).

fof(fact_order__neq__le__trans,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( V_a != V_b
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ) ).

fof(fact_linorder__antisym__conv1,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
        <=> V_x_2 = V_y_2 ) ) ) ).

fof(fact_not__leE,axiom,
    ! [V_x,V_y,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x)
       => c_Orderings_Oord__class_Oless(T_a,V_x,V_y) ) ) ).

fof(fact_leI,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
       => c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_x) ) ) ).

fof(fact_order__le__less,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
      <=> ( c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
          | V_x_2 = V_y_2 ) ) ) ).

fof(fact_less__le__not__le,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Opreorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
      <=> ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
          & ~ c_Orderings_Oord__class_Oless__eq(T_a,V_y_2,V_x_2) ) ) ) ).

fof(fact_order__less__le,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Oorder(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
      <=> ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
          & V_x_2 != V_y_2 ) ) ) ).

fof(fact_linorder__le__less__linear,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
        | c_Orderings_Oord__class_Oless(T_a,V_y,V_x) ) ) ).

fof(fact_linorder__not__le,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,V_y_2)
      <=> c_Orderings_Oord__class_Oless(T_a,V_y_2,V_x_2) ) ) ).

fof(fact_linorder__not__less,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Orderings_Olinorder(T_a)
     => ( ~ c_Orderings_Oord__class_Oless(T_a,V_x_2,V_y_2)
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_y_2,V_x_2) ) ) ).

fof(fact_add__less__cancel__right,axiom,
    ! [V_b_2,V_ca_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_ca_2),c_Groups_Oplus__class_Oplus(T_a,V_b_2,V_ca_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2) ) ) ).

fof(fact_add__less__cancel__left,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_ca_2,V_a_2),c_Groups_Oplus__class_Oplus(T_a,V_ca_2,V_b_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2) ) ) ).

fof(fact_add__strict__right__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__cancel__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_c)) ) ) ).

fof(fact_add__strict__left__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__cancel__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_c,V_a),c_Groups_Oplus__class_Oplus(T_a,V_c,V_b)) ) ) ).

fof(fact_add__strict__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__cancel__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,V_d)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_d)) ) ) ) ).

fof(fact_add__less__imp__less__right,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_c))
       => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ).

fof(fact_add__less__imp__less__left,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Groups_Oordered__ab__semigroup__add__imp__le(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_c,V_a),c_Groups_Oplus__class_Oplus(T_a,V_c,V_b))
       => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ).

fof(fact_not__less0,axiom,
    ! [V_n] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ).

fof(fact_neq0__conv,axiom,
    ! [V_n_2] :
      ( V_n_2 != c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n_2) ) ).

fof(fact_less__nat__zero__code,axiom,
    ! [V_n] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ).

fof(fact_gr__implies__not0,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => V_n != c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_gr0I,axiom,
    ! [V_n] :
      ( V_n != c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n) ) ).

fof(fact_Suc__less__SucD,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(V_m),c_Nat_OSuc(V_n))
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_Suc__lessD,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_less__SucE,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n))
     => ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
       => V_m = V_n ) ) ).

fof(fact_less__trans__Suc,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_j,V_k)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(V_i),V_k) ) ) ).

fof(fact_Suc__lessI,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => ( c_Nat_OSuc(V_m) != V_n
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) ) ) ).

fof(fact_less__SucI,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) ) ).

fof(fact_less__antisym,axiom,
    ! [V_m,V_n] :
      ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,V_m)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Nat_OSuc(V_m))
       => V_m = V_n ) ) ).

fof(fact_not__less__less__Suc__eq,axiom,
    ! [V_m_2,V_n_2] :
      ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,V_m_2)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,c_Nat_OSuc(V_m_2))
      <=> V_n_2 = V_m_2 ) ) ).

fof(fact_Suc__less__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(V_m_2),c_Nat_OSuc(V_n_2))
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_less__Suc__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,c_Nat_OSuc(V_n_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
        | V_m_2 = V_n_2 ) ) ).

fof(fact_not__less__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,c_Nat_OSuc(V_m_2)) ) ).

fof(fact_not__add__less1,axiom,
    ! [V_j,V_i] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_j),V_i) ).

fof(fact_not__add__less2,axiom,
    ! [V_i,V_j] : ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_i),V_i) ).

fof(fact_nat__add__left__cancel__less,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_n_2))
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_trans__less__add1,axiom,
    ! [V_m,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_m)) ) ).

fof(fact_trans__less__add2,axiom,
    ! [V_m,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_j)) ) ).

fof(fact_add__less__mono1,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_k),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_k)) ) ).

fof(fact_add__less__mono,axiom,
    ! [V_l,V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_k,V_l)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_k),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_l)) ) ) ).

fof(fact_less__add__eq__less,axiom,
    ! [V_n,V_m,V_l,V_k] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_k,V_l)
     => ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_l) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k,V_n)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n) ) ) ).

fof(fact_add__lessD1,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_j),V_k)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_k) ) ).

fof(fact_termination__basic__simps_I2_J,axiom,
    ! [V_y,V_z,V_x] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,V_z)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_y,V_z)) ) ).

fof(fact_termination__basic__simps_I1_J,axiom,
    ! [V_z,V_y,V_x] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,V_y)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_y,V_z)) ) ).

fof(fact_nat__less__le,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
    <=> ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2)
        & V_m_2 != V_n_2 ) ) ).

fof(fact_le__eq__less__or__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2)
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
        | V_m_2 = V_n_2 ) ) ).

fof(fact_less__imp__le__nat,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_le__neq__implies__less,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => ( V_m != V_n
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n) ) ) ).

fof(fact_less__or__eq__imp__le,axiom,
    ! [V_n,V_m] :
      ( ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
        | V_m = V_n )
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_termination__basic__simps_I5_J,axiom,
    ! [V_y,V_x] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,V_y)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_x,V_y) ) ).

fof(fact_nat__mult__less__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2))
      <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_nat__mult__eq__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
     => ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2)
      <=> V_m_2 = V_n_2 ) ) ).

fof(fact_coeff__inverse,axiom,
    ! [V_x_2,T_a] :
      ( class_Groups_Ozero(T_a)
     => c_Polynomial_OAbs__poly(T_a,c_Polynomial_Ocoeff(T_a,V_x_2)) = V_x_2 ) ).

fof(fact_mult__strict__left__mono__neg,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) ) ) ) ).

fof(fact_mult__strict__right__mono__neg,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ) ) ).

fof(fact_comm__mult__strict__left__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__comm__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) ) ) ) ).

fof(fact_mult__strict__left__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) ) ) ) ).

fof(fact_mult__strict__right__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ) ) ).

fof(fact_mult__neg__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ) ) ).

fof(fact_mult__neg__pos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_mult__less__cancel__left__neg,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_a_2),c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_b_2))
        <=> c_Orderings_Oord__class_Oless(T_a,V_b_2,V_a_2) ) ) ) ).

fof(fact_zero__less__mult__pos2,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_b,V_a))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b) ) ) ) ).

fof(fact_zero__less__mult__pos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b) ) ) ) ).

fof(fact_mult__pos__neg2,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_a),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_mult__pos__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_mult__pos__pos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ) ) ).

fof(fact_mult__less__cancel__left__pos,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_a_2),c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_b_2))
        <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2) ) ) ) ).

fof(fact_mult__less__cancel__left__disj,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_a_2),c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_b_2))
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
            & c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2) )
          | ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless(T_a,V_b_2,V_a_2) ) ) ) ) ).

fof(fact_mult__less__cancel__right__disj,axiom,
    ! [V_b_2,V_ca_2,V_a_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_ca_2))
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
            & c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2) )
          | ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless(T_a,V_b_2,V_a_2) ) ) ) ) ).

fof(fact_not__square__less__zero,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Olinordered__ring(T_a)
     => ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_a),c_Groups_Ozero__class_Ozero(T_a)) ) ).

fof(fact_pos__add__strict,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)) ) ) ) ).

fof(fact_even__less__0__iff,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_add__neg__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_add__pos__pos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) ) ) ) ).

fof(fact_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_a_2))
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_add__le__less__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__cancel__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,V_d)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_d)) ) ) ) ).

fof(fact_add__less__le__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__cancel__ab__semigroup__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_d)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_d)) ) ) ) ).

fof(fact_less__Suc__eq__0__disj,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,c_Nat_OSuc(V_n_2))
    <=> ( V_m_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
        | ? [B_j] :
            ( V_m_2 = c_Nat_OSuc(B_j)
            & c_Orderings_Oord__class_Oless(tc_Nat_Onat,B_j,V_n_2) ) ) ) ).

fof(fact_less__Suc0,axiom,
    ! [V_n_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)))
    <=> V_n_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_gr0__conv__Suc,axiom,
    ! [V_n_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n_2)
    <=> ? [B_m] : V_n_2 = c_Nat_OSuc(B_m) ) ).

fof(fact_nat__mult__le__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2))
      <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_add__gr__0,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,V_n_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_m_2)
        | c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n_2) ) ) ).

fof(fact_less__iff__Suc__add,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2)
    <=> ? [B_k] : V_n_2 = c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m_2,B_k)) ) ).

fof(fact_less__add__Suc2,axiom,
    ! [V_m,V_i] : c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_i))) ).

fof(fact_less__add__Suc1,axiom,
    ! [V_m,V_i] : c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_m))) ).

fof(fact_Suc__le__lessD,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n) ) ).

fof(fact_le__less__Suc__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,c_Nat_OSuc(V_m_2))
      <=> V_n_2 = V_m_2 ) ) ).

fof(fact_Suc__leI,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) ) ).

fof(fact_le__imp__less__Suc,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) ) ).

fof(fact_Suc__le__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_m_2),V_n_2)
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_less__Suc__eq__le,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,c_Nat_OSuc(V_n_2))
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_less__eq__Suc__le,axiom,
    ! [V_m_2,V_n_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n_2,V_m_2)
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Nat_OSuc(V_n_2),V_m_2) ) ).

fof(fact_mult__less__mono2,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_i),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_j)) ) ) ).

fof(fact_mult__less__mono1,axiom,
    ! [V_k,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i,V_j)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i,V_k),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j,V_k)) ) ) ).

fof(fact_mult__less__cancel2,axiom,
    ! [V_n_2,V_k_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_k_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n_2,V_k_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
        & c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_mult__less__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
        & c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_nat__0__less__mult__iff,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_m_2)
        & c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n_2) ) ) ).

fof(fact_Suc__mult__less__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_k_2),V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Nat_OSuc(V_k_2),V_n_2))
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_degree__add__less,axiom,
    ! [V_q,V_n,V_p,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n)
       => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_q),V_n)
         => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_n) ) ) ) ).

fof(fact_degree__add__eq__right,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Polynomial_Odegree(T_a,V_q))
       => c_Polynomial_Odegree(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)) = c_Polynomial_Odegree(T_a,V_q) ) ) ).

fof(fact_degree__add__eq__left,axiom,
    ! [V_p,V_q,T_a] :
      ( class_Groups_Ocomm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_q),c_Polynomial_Odegree(T_a,V_p))
       => c_Polynomial_Odegree(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)) = c_Polynomial_Odegree(T_a,V_p) ) ) ).

fof(fact_mult__left__le__imp__le,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b) ) ) ) ).

fof(fact_mult__right__le__imp__le,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b) ) ) ) ).

fof(fact_mult__less__imp__less__left,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ) ).

fof(fact_mult__left__less__imp__less,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Rings_Olinordered__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ) ).

fof(fact_mult__less__imp__less__right,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ) ).

fof(fact_mult__right__less__imp__less,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Rings_Olinordered__semiring(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_a,V_b) ) ) ) ).

fof(fact_mult__le__less__imp__less,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,V_d)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
             => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ) ) ).

fof(fact_mult__less__le__imp__less,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,V_d)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
           => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
             => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ) ) ).

fof(fact_mult__strict__mono_H,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,V_d)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
             => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ) ) ).

fof(fact_mult__strict__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Olinordered__semiring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,V_d)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
             => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ) ) ).

fof(fact_mult__le__cancel__left__neg,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_a_2),c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_b_2))
        <=> c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,V_a_2) ) ) ) ).

fof(fact_mult__le__cancel__left__pos,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_a_2),c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_b_2))
        <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,V_b_2) ) ) ) ).

fof(fact_add__nonpos__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_add__neg__nonpos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_add__strict__increasing2,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)) ) ) ) ).

fof(fact_add__strict__increasing,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_c)
         => c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c)) ) ) ) ).

fof(fact_add__nonneg__pos,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) ) ) ) ).

fof(fact_add__pos__nonneg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__comm__monoid__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) ) ) ) ).

fof(fact_sum__squares__gt__zero__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Olinordered__ring__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_x_2),c_Groups_Otimes__class_Otimes(T_a,V_y_2,V_y_2)))
      <=> ( V_x_2 != c_Groups_Ozero__class_Ozero(T_a)
          | V_y_2 != c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_not__sum__squares__lt__zero,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Rings_Olinordered__ring(T_a)
     => ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_x),c_Groups_Otimes__class_Otimes(T_a,V_y,V_y)),c_Groups_Ozero__class_Ozero(T_a)) ) ).

fof(fact_one__less__mult,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_n)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_m)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n)) ) ) ).

fof(fact_n__less__n__mult__m,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_n)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_m)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,V_m)) ) ) ).

fof(fact_n__less__m__mult__n,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_n)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_m)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n)) ) ) ).

fof(fact_mult__le__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_mult__le__cancel2,axiom,
    ! [V_n_2,V_k_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_k_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n_2,V_k_2))
    <=> ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_coeff__eq__0,axiom,
    ! [V_n,V_p,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n)
       => hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n) = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_nat__lt__two__imp__zero__or__one,axiom,
    ! [V_x] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_x,c_Nat_OSuc(c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))))
     => ( V_x = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
        | V_x = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ) ) ).

fof(fact_pdivmod__rel__def,axiom,
    ! [V_r_2,V_q_2,V_y_2,V_x_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x_2,V_y_2,V_q_2,V_r_2)
      <=> ( V_x_2 = c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_q_2,V_y_2),V_r_2)
          & ( V_y_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
           => V_q_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
          & ( V_y_2 != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
           => ( V_r_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
              | c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_r_2),c_Polynomial_Odegree(T_a,V_y_2)) ) ) ) ) ) ).

fof(fact_pos__poly__def,axiom,
    ! [V_pa_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Polynomial_Opos__poly(T_a,V_pa_2)
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),hAPP(c_Polynomial_Ocoeff(T_a,V_pa_2),c_Polynomial_Odegree(T_a,V_pa_2))) ) ) ).

fof(fact_pos__poly__pCons,axiom,
    ! [V_pa_2,V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Polynomial_Opos__poly(T_a,c_Polynomial_OpCons(T_a,V_a_2,V_pa_2))
      <=> ( c_Polynomial_Opos__poly(T_a,V_pa_2)
          | ( V_pa_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
            & c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ) ) ).

fof(fact_degree__le,axiom,
    ! [V_p,V_n,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( ! [B_i] :
            ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,B_i)
           => hAPP(c_Polynomial_Ocoeff(T_a,V_p),B_i) = c_Groups_Ozero__class_Ozero(T_a) )
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n) ) ) ).

fof(fact_less__degree__imp,axiom,
    ! [V_p,V_n,T_a] :
      ( class_Groups_Ozero(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,c_Polynomial_Odegree(T_a,V_p))
       => ? [B_i] :
            ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_n,B_i)
            & hAPP(c_Polynomial_Ocoeff(T_a,V_p),B_i) != c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_pdivmod__rel__unique,axiom,
    ! [V_r2,V_q2,V_r1,V_q1,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q1,V_r1)
       => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q2,V_r2)
         => ( V_q1 = V_q2
            & V_r1 = V_r2 ) ) ) ) ).

fof(fact_pdivmod__rel__unique__mod,axiom,
    ! [V_r2,V_q2,V_r1,V_q1,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q1,V_r1)
       => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q2,V_r2)
         => V_r1 = V_r2 ) ) ) ).

fof(fact_pdivmod__rel__unique__div,axiom,
    ! [V_r2,V_q2,V_r1,V_q1,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q1,V_r1)
       => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q2,V_r2)
         => V_q1 = V_q2 ) ) ) ).

fof(fact_less__fun__def,axiom,
    ! [V_g_2,V_f_2,T_a,T_b] :
      ( class_Orderings_Oord(T_b)
     => ( c_Orderings_Oord__class_Oless(tc_fun(T_a,T_b),V_f_2,V_g_2)
      <=> ( c_Orderings_Oord__class_Oless__eq(tc_fun(T_a,T_b),V_f_2,V_g_2)
          & ~ c_Orderings_Oord__class_Oless__eq(tc_fun(T_a,T_b),V_g_2,V_f_2) ) ) ) ).

fof(fact_pdivmod__rel__by__0,axiom,
    ! [V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opdivmod__rel(T_a,V_x,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_x) ) ).

fof(fact_pdivmod__rel__0,axiom,
    ! [V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opdivmod__rel(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_y,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) ) ).

fof(fact_pdivmod__rel__by__0__iff,axiom,
    ! [V_r_2,V_q_2,V_x_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x_2,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_q_2,V_r_2)
      <=> ( V_q_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
          & V_r_2 = V_x_2 ) ) ) ).

fof(fact_pdivmod__rel__0__iff,axiom,
    ! [V_r_2,V_q_2,V_y_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_y_2,V_q_2,V_r_2)
      <=> ( V_q_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
          & V_r_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ) ).

fof(fact_pdivmod__rel__smult__left,axiom,
    ! [V_a,V_r,V_q,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q,V_r)
       => c_Polynomial_Opdivmod__rel(T_a,c_Polynomial_Osmult(T_a,V_a,V_x),V_y,c_Polynomial_Osmult(T_a,V_a,V_q),c_Polynomial_Osmult(T_a,V_a,V_r)) ) ) ).

fof(fact_not__pos__poly__0,axiom,
    ! [T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ~ c_Polynomial_Opos__poly(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) ) ).

fof(fact_pos__poly__add,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Polynomial_Opos__poly(T_a,V_p)
       => ( c_Polynomial_Opos__poly(T_a,V_q)
         => c_Polynomial_Opos__poly(T_a,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),V_p,V_q)) ) ) ) ).

fof(fact_pos__poly__mult,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Polynomial_Opos__poly(T_a,V_p)
       => ( c_Polynomial_Opos__poly(T_a,V_q)
         => c_Polynomial_Opos__poly(T_a,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_p,V_q)) ) ) ) ).

fof(fact_pdivmod__rel__mult,axiom,
    ! [V_r_H,V_q_H,V_z,V_r,V_q,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q,V_r)
       => ( c_Polynomial_Opdivmod__rel(T_a,V_q,V_z,V_q_H,V_r_H)
         => c_Polynomial_Opdivmod__rel(T_a,V_x,c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_y,V_z),V_q_H,c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),V_y,V_r_H),V_r)) ) ) ) ).

fof(fact_convex__bound__lt,axiom,
    ! [V_v,V_u,V_y,V_a,V_x,T_a] :
      ( class_Rings_Olinordered__semiring__1__strict(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,V_a)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_u)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_v)
             => ( c_Groups_Oplus__class_Oplus(T_a,V_u,V_v) = c_Groups_Oone__class_Oone(T_a)
               => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_u,V_x),c_Groups_Otimes__class_Otimes(T_a,V_v,V_y)),V_a) ) ) ) ) ) ) ).

fof(fact_nat__less__add__iff2,axiom,
    ! [V_n_2,V_m_2,V_u_2,V_j_2,V_i_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i_2,V_j_2)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i_2,V_u_2),V_m_2),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j_2,V_u_2),V_n_2))
      <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_i_2),V_u_2),V_n_2)) ) ) ).

fof(fact_nat__less__add__iff1,axiom,
    ! [V_n_2,V_m_2,V_u_2,V_i_2,V_j_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_j_2,V_i_2)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i_2,V_u_2),V_m_2),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j_2,V_u_2),V_n_2))
      <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i_2,V_j_2),V_u_2),V_m_2),V_n_2) ) ) ).

fof(fact_convex__bound__le,axiom,
    ! [V_v,V_u,V_y,V_a,V_x,T_a] :
      ( class_Rings_Olinordered__semiring__1(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,V_a)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_u)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_v)
             => ( c_Groups_Oplus__class_Oplus(T_a,V_u,V_v) = c_Groups_Oone__class_Oone(T_a)
               => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_u,V_x),c_Groups_Otimes__class_Otimes(T_a,V_v,V_y)),V_a) ) ) ) ) ) ) ).

fof(fact_right__minus__eq,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_a_2 = V_b_2 ) ) ).

fof(fact_eq__iff__diff__eq__0,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => ( V_a_2 = V_b_2
      <=> c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2) = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_diff__self,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,V_a,V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_diff__0__right,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = V_a ) ).

fof(fact_diff__eq__diff__less__eq,axiom,
    ! [V_da_2,V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2) = c_Groups_Ominus__class_Ominus(T_a,V_ca_2,V_da_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,V_b_2)
        <=> c_Orderings_Oord__class_Oless__eq(T_a,V_ca_2,V_da_2) ) ) ) ).

fof(fact_one__poly__def,axiom,
    ! [T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a)) = c_Polynomial_OpCons(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) ) ).

fof(fact_diff__eq__diff__less,axiom,
    ! [V_da_2,V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2) = c_Groups_Ominus__class_Ominus(T_a,V_ca_2,V_da_2)
       => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2)
        <=> c_Orderings_Oord__class_Oless(T_a,V_ca_2,V_da_2) ) ) ) ).

fof(fact_mult_Odiff__right,axiom,
    ! [V_b_H,V_b,V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ominus__class_Ominus(T_a,V_b,V_b_H)) = c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b_H)) ) ).

fof(fact_mult__right_Odiff,axiom,
    ! [V_y,V_x,V_xa,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_xa,c_Groups_Ominus__class_Ominus(T_a,V_x,V_y)) = c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_xa,V_x),c_Groups_Otimes__class_Otimes(T_a,V_xa,V_y)) ) ).

fof(fact_mult_Odiff__left,axiom,
    ! [V_b,V_a_H,V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_a_H),V_b) = c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Otimes__class_Otimes(T_a,V_a_H,V_b)) ) ).

fof(fact_mult__left_Odiff,axiom,
    ! [V_ya,V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_x,V_y),V_ya) = c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_ya),c_Groups_Otimes__class_Otimes(T_a,V_y,V_ya)) ) ).

fof(fact_add__diff__cancel,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_b) = V_a ) ).

fof(fact_diff__add__cancel,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_b) = V_a ) ).

fof(fact_one__neq__zero,axiom,
    ! [T_a] :
      ( class_Rings_Ozero__neq__one(T_a)
     => c_Groups_Oone__class_Oone(T_a) != c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_zero__neq__one,axiom,
    ! [T_a] :
      ( class_Rings_Ozero__neq__one(T_a)
     => c_Groups_Ozero__class_Ozero(T_a) != c_Groups_Oone__class_Oone(T_a) ) ).

fof(fact_diffs0__imp__equal,axiom,
    ! [V_n,V_m] :
      ( c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
     => ( c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,V_m) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
       => V_m = V_n ) ) ).

fof(fact_diff__self__eq__0,axiom,
    ! [V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_m) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_minus__nat_Odiff__0,axiom,
    ! [V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) = V_m ).

fof(fact_diff__0__eq__0,axiom,
    ! [V_n] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I12_J,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Oone__class_Oone(T_a)) = V_a ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I11_J,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oone__class_Oone(T_a),V_a) = V_a ) ).

fof(fact_mult_Ocomm__neutral,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ocomm__monoid__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Oone__class_Oone(T_a)) = V_a ) ).

fof(fact_mult__1__right,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Omonoid__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Oone__class_Oone(T_a)) = V_a ) ).

fof(fact_mult__1,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ocomm__monoid__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oone__class_Oone(T_a),V_a) = V_a ) ).

fof(fact_mult__1__left,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Omonoid__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oone__class_Oone(T_a),V_a) = V_a ) ).

fof(fact_diff__Suc__Suc,axiom,
    ! [V_n,V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Nat_OSuc(V_m),c_Nat_OSuc(V_n)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n) ).

fof(fact_Suc__diff__diff,axiom,
    ! [V_k,V_n,V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n),c_Nat_OSuc(V_k)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_k) ).

fof(fact_diff__less__mono2,axiom,
    ! [V_l,V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_l)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_l,V_n),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_l,V_m)) ) ) ).

fof(fact_less__imp__diff__less,axiom,
    ! [V_n,V_k,V_j] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_j,V_k)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_n),V_k) ) ).

fof(fact_diff__cancel2,axiom,
    ! [V_n,V_k,V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_k),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_k)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n) ).

fof(fact_diff__cancel,axiom,
    ! [V_n,V_m,V_k] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k,V_m),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k,V_n)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n) ).

fof(fact_diff__diff__left,axiom,
    ! [V_k,V_j,V_i] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i,V_j),V_k) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_k)) ).

fof(fact_diff__add__inverse,axiom,
    ! [V_m,V_n] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_m),V_n) = V_m ).

fof(fact_diff__add__inverse2,axiom,
    ! [V_n,V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n),V_n) = V_m ).

fof(fact_le__diff__iff,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_m_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_n_2)
       => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m_2,V_k_2),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n_2,V_k_2))
        <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ) ) ).

fof(fact_Nat_Odiff__diff__eq,axiom,
    ! [V_n,V_m,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_m)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_n)
       => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_k),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,V_k)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n) ) ) ).

fof(fact_eq__diff__iff,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_m_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_n_2)
       => ( c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m_2,V_k_2) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n_2,V_k_2)
        <=> V_m_2 = V_n_2 ) ) ) ).

fof(fact_diff__diff__cancel,axiom,
    ! [V_n,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_n)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,V_i)) = V_i ) ).

fof(fact_diff__le__mono,axiom,
    ! [V_l,V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_l),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,V_l)) ) ).

fof(fact_diff__le__mono2,axiom,
    ! [V_l,V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_l,V_n),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_l,V_m)) ) ).

fof(fact_diff__le__self,axiom,
    ! [V_n,V_m] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_m) ).

fof(fact_diff__mult__distrib,axiom,
    ! [V_k,V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_k) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_k),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,V_k)) ).

fof(fact_diff__mult__distrib2,axiom,
    ! [V_n,V_m,V_k] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_m),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_n)) ).

fof(fact_degree__synthetic__div,axiom,
    ! [V_c,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__0(T_a)
     => c_Polynomial_Odegree(T_a,c_Polynomial_Osynthetic__div(T_a,V_p,V_c)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Groups_Oone__class_Oone(tc_Nat_Onat)) ) ).

fof(fact_nat__mult__eq__1__iff,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2) = c_Groups_Oone__class_Oone(tc_Nat_Onat)
    <=> ( V_m_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat)
        & V_n_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat) ) ) ).

fof(fact_nat__mult__1__right,axiom,
    ! [V_n] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,c_Groups_Oone__class_Oone(tc_Nat_Onat)) = V_n ).

fof(fact_nat__1__eq__mult__iff,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Oone__class_Oone(tc_Nat_Onat) = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2)
    <=> ( V_m_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat)
        & V_n_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat) ) ) ).

fof(fact_nat__mult__1,axiom,
    ! [V_n] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Oone__class_Oone(tc_Nat_Onat),V_n) = V_n ).

fof(fact_smult__1__left,axiom,
    ! [V_p,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Polynomial_Osmult(T_a,c_Groups_Oone__class_Oone(T_a),V_p) = V_p ) ).

fof(fact_poly__1,axiom,
    ! [V_x,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a))),V_x) = c_Groups_Oone__class_Oone(T_a) ) ).

fof(fact_diff__monom,axiom,
    ! [V_b,V_n,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Polynomial_Omonom(T_a,V_a,V_n),c_Polynomial_Omonom(T_a,V_b,V_n)) = c_Polynomial_Omonom(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_n) ) ).

fof(fact_one__reorient,axiom,
    ! [V_x_2,T_a] :
      ( class_Groups_Oone(T_a)
     => ( c_Groups_Oone__class_Oone(T_a) = V_x_2
      <=> V_x_2 = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_diff__eq__diff__eq,axiom,
    ! [V_da_2,V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => ( c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2) = c_Groups_Ominus__class_Ominus(T_a,V_ca_2,V_da_2)
       => ( V_a_2 = V_b_2
        <=> V_ca_2 = V_da_2 ) ) ) ).

fof(fact_smult__diff__left,axiom,
    ! [V_p,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__ring(T_a)
     => c_Polynomial_Osmult(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_p) = c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),c_Polynomial_Osmult(T_a,V_b,V_p)) ) ).

fof(fact_coeff__diff,axiom,
    ! [V_n,V_q,V_p,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_n) = c_Groups_Ominus__class_Ominus(T_a,hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n),hAPP(c_Polynomial_Ocoeff(T_a,V_q),V_n)) ) ).

fof(fact_poly__diff,axiom,
    ! [V_x,V_q,V_p,T_a] :
      ( class_Rings_Ocomm__ring(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_x) = c_Groups_Ominus__class_Ominus(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_x),hAPP(c_Polynomial_Opoly(T_a,V_q),V_x)) ) ).

fof(fact_diff__pCons,axiom,
    ! [V_q,V_b,V_p,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,V_p),c_Polynomial_OpCons(T_a,V_b,V_q)) = c_Polynomial_OpCons(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,V_q)) ) ).

fof(fact_diff__commute,axiom,
    ! [V_k,V_j,V_i] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i,V_j),V_k) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i,V_k),V_j) ).

fof(fact_diff__Suc__1,axiom,
    ! [V_n] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Nat_OSuc(V_n),c_Groups_Oone__class_Oone(tc_Nat_Onat)) = V_n ).

fof(fact_diff__Suc__eq__diff__pred,axiom,
    ! [V_n,V_m] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Nat_OSuc(V_n)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Groups_Oone__class_Oone(tc_Nat_Onat)),V_n) ).

fof(fact_Suc__diff__1,axiom,
    ! [V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => c_Nat_OSuc(c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,c_Groups_Oone__class_Oone(tc_Nat_Onat))) = V_n ) ).

fof(fact_Suc__pred_H,axiom,
    ! [V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => V_n = c_Nat_OSuc(c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,c_Groups_Oone__class_Oone(tc_Nat_Onat))) ) ).

fof(fact_add__eq__if,axiom,
    ! [V_n,V_m] :
      ( ( V_m = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
       => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n) = V_n )
      & ( V_m != c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
       => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_n) = c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Groups_Oone__class_Oone(tc_Nat_Onat)),V_n)) ) ) ).

fof(fact_mult__eq__if,axiom,
    ! [V_n,V_m] :
      ( ( V_m = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
       => c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
      & ( V_m != c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
       => c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Groups_Oone__class_Oone(tc_Nat_Onat)),V_n)) ) ) ).

fof(fact_coeff__1,axiom,
    ! [V_n,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( ( V_n = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
         => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a))),V_n) = c_Groups_Oone__class_Oone(T_a) )
        & ( V_n != c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
         => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a))),V_n) = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ).

fof(fact_le__iff__diff__le__0,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,V_b_2)
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2),c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_less__iff__diff__less__0,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2)
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2),c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_eq__add__iff1,axiom,
    ! [V_da_2,V_b_2,V_ca_2,V_e_2,V_a_2,T_a] :
      ( class_Rings_Oring(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_e_2),V_ca_2) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_e_2),V_da_2)
      <=> c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2),V_e_2),V_ca_2) = V_da_2 ) ) ).

fof(fact_eq__add__iff2,axiom,
    ! [V_da_2,V_b_2,V_ca_2,V_e_2,V_a_2,T_a] :
      ( class_Rings_Oring(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_e_2),V_ca_2) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_e_2),V_da_2)
      <=> V_ca_2 = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_b_2,V_a_2),V_e_2),V_da_2) ) ) ).

fof(fact_mult_Oprod__diff__prod,axiom,
    ! [V_b,V_a,V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_y),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_x,V_a),c_Groups_Ominus__class_Ominus(T_a,V_y,V_b)),c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_x,V_a),V_b)),c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ominus__class_Ominus(T_a,V_y,V_b))) ) ).

fof(fact_zero__le__one,axiom,
    ! [T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oone__class_Oone(T_a)) ) ).

fof(fact_not__one__le__zero,axiom,
    ! [T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => ~ c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(T_a)) ) ).

fof(fact_not__one__less__zero,axiom,
    ! [T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(T_a)) ) ).

fof(fact_zero__less__one,axiom,
    ! [T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oone__class_Oone(T_a)) ) ).

fof(fact_less__1__mult,axiom,
    ! [V_n,V_m,T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),V_m)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),V_n)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Otimes__class_Otimes(T_a,V_m,V_n)) ) ) ) ).

fof(fact_less__add__one,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oone__class_Oone(T_a))) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I2_J,axiom,
    ! [V_m,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_m),V_m) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oone__class_Oone(T_a)),V_m) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I3_J,axiom,
    ! [V_a,V_m,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_m,c_Groups_Otimes__class_Otimes(T_a,V_a,V_m)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oone__class_Oone(T_a)),V_m) ) ).

fof(fact_comm__semiring__1__class_Onormalizing__semiring__rules_I4_J,axiom,
    ! [V_m,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_m,V_m) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Oone__class_Oone(T_a)),V_m) ) ).

fof(fact_zero__less__diff,axiom,
    ! [V_m_2,V_n_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n_2,V_m_2))
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_diff__less,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_m)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_m) ) ) ).

fof(fact_diff__less__Suc,axiom,
    ! [V_n,V_m] : c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),c_Nat_OSuc(V_m)) ).

fof(fact_diff__add__0,axiom,
    ! [V_m,V_n] : c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_m)) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_diff__is__0__eq,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m_2,V_n_2) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,V_n_2) ) ).

fof(fact_diff__is__0__eq_H,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,V_n)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_Suc__diff__le,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Nat_OSuc(c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n)) ) ).

fof(fact_add__diff__inverse,axiom,
    ! [V_n,V_m] :
      ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n)) = V_m ) ).

fof(fact_less__diff__conv,axiom,
    ! [V_k_2,V_j_2,V_i_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_i_2,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_k_2))
    <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i_2,V_k_2),V_j_2) ) ).

fof(fact_diff__less__mono,axiom,
    ! [V_c,V_b,V_a] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_a,V_b)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_c,V_a)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_a,V_c),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_b,V_c)) ) ) ).

fof(fact_less__diff__iff,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_m_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_n_2)
       => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m_2,V_k_2),c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n_2,V_k_2))
        <=> c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m_2,V_n_2) ) ) ) ).

fof(fact_diff__add__assoc2,axiom,
    ! [V_i,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_i),V_k) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k),V_i) ) ).

fof(fact_add__diff__assoc2,axiom,
    ! [V_i,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k),V_i) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_j,V_i),V_k) ) ).

fof(fact_diff__add__assoc,axiom,
    ! [V_i,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_j),V_k) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k)) ) ).

fof(fact_le__imp__diff__is__add,axiom,
    ! [V_k_2,V_j_2,V_i_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i_2,V_j_2)
     => ( c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_i_2) = V_k_2
      <=> V_j_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k_2,V_i_2) ) ) ).

fof(fact_le__add__diff__inverse2,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
     => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_n) = V_m ) ).

fof(fact_le__diff__conv2,axiom,
    ! [V_i_2,V_j_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k_2,V_j_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i_2,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_k_2))
      <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i_2,V_k_2),V_j_2) ) ) ).

fof(fact_add__diff__assoc,axiom,
    ! [V_i,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_j),V_k) ) ).

fof(fact_le__add__diff__inverse,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
     => c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n)) = V_m ) ).

fof(fact_le__add__diff,axiom,
    ! [V_m,V_n,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,V_m),V_k)) ) ).

fof(fact_le__diff__conv,axiom,
    ! [V_i_2,V_k_2,V_j_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_k_2),V_i_2)
    <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_j_2,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i_2,V_k_2)) ) ).

fof(fact_diff__diff__right,axiom,
    ! [V_i,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_i,V_k),V_j) ) ).

fof(fact_One__nat__def,axiom,
    c_Groups_Oone__class_Oone(tc_Nat_Onat) = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ).

fof(fact_Suc__eq__plus1,axiom,
    ! [V_n] : c_Nat_OSuc(V_n) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n,c_Groups_Oone__class_Oone(tc_Nat_Onat)) ).

fof(fact_Suc__eq__plus1__left,axiom,
    ! [V_n] : c_Nat_OSuc(V_n) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Oone__class_Oone(tc_Nat_Onat),V_n) ).

fof(fact_mult__eq__self__implies__10,axiom,
    ! [V_n,V_m] :
      ( V_m = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_n)
     => ( V_n = c_Groups_Oone__class_Oone(tc_Nat_Onat)
        | V_m = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ) ).

fof(fact_degree__1,axiom,
    ! [T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Polynomial_Odegree(T_a,c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ) ).

fof(fact_le__add__iff1,axiom,
    ! [V_da_2,V_b_2,V_ca_2,V_e_2,V_a_2,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_e_2),V_ca_2),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_e_2),V_da_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2),V_e_2),V_ca_2),V_da_2) ) ) ).

fof(fact_le__add__iff2,axiom,
    ! [V_da_2,V_b_2,V_ca_2,V_e_2,V_a_2,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_e_2),V_ca_2),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_e_2),V_da_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_ca_2,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_b_2,V_a_2),V_e_2),V_da_2)) ) ) ).

fof(fact_less__add__iff1,axiom,
    ! [V_da_2,V_b_2,V_ca_2,V_e_2,V_a_2,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_e_2),V_ca_2),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_e_2),V_da_2))
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a_2,V_b_2),V_e_2),V_ca_2),V_da_2) ) ) ).

fof(fact_less__add__iff2,axiom,
    ! [V_da_2,V_b_2,V_ca_2,V_e_2,V_a_2,T_a] :
      ( class_Rings_Oordered__ring(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_e_2),V_ca_2),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_e_2),V_da_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_b_2,V_a_2),V_e_2),V_da_2)) ) ) ).

fof(fact_mult__left__le__one__le,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,c_Groups_Oone__class_Oone(T_a))
           => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_y,V_x),V_x) ) ) ) ) ).

fof(fact_mult__right__le__one__le,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
         => ( c_Orderings_Oord__class_Oless__eq(T_a,V_y,c_Groups_Oone__class_Oone(T_a))
           => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_y),V_x) ) ) ) ) ).

fof(fact_zero__less__two,axiom,
    ! [T_a] :
      ( class_Rings_Olinordered__semidom(T_a)
     => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Oone__class_Oone(T_a))) ) ).

fof(fact_diff__Suc__less,axiom,
    ! [V_i,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,c_Nat_OSuc(V_i)),V_n) ) ).

fof(fact_Suc__pred,axiom,
    ! [V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => c_Nat_OSuc(c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_n,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)))) = V_n ) ).

fof(fact_nat__diff__split__asm,axiom,
    ! [V_b_2,V_a_2,V_P_2] :
      ( hBOOL(hAPP(V_P_2,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_a_2,V_b_2)))
    <=> ~ ( ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_a_2,V_b_2)
            & ~ hBOOL(hAPP(V_P_2,c_Groups_Ozero__class_Ozero(tc_Nat_Onat))) )
          | ? [B_d] :
              ( V_a_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_b_2,B_d)
              & ~ hBOOL(hAPP(V_P_2,B_d)) ) ) ) ).

fof(fact_nat__diff__split,axiom,
    ! [V_b_2,V_a_2,V_P_2] :
      ( hBOOL(hAPP(V_P_2,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_a_2,V_b_2)))
    <=> ( ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_a_2,V_b_2)
         => hBOOL(hAPP(V_P_2,c_Groups_Ozero__class_Ozero(tc_Nat_Onat))) )
        & ! [B_d] :
            ( V_a_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_b_2,B_d)
           => hBOOL(hAPP(V_P_2,B_d)) ) ) ) ).

fof(fact_diff__Suc__diff__eq1,axiom,
    ! [V_m,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Nat_OSuc(c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k))) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_m,V_k),c_Nat_OSuc(V_j)) ) ).

fof(fact_diff__Suc__diff__eq2,axiom,
    ! [V_m,V_j,V_k] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_j)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_k)),V_m) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Nat_OSuc(V_j),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_k,V_m)) ) ).

fof(fact_nat__le__add__iff1,axiom,
    ! [V_n_2,V_m_2,V_u_2,V_i_2,V_j_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_j_2,V_i_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i_2,V_u_2),V_m_2),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j_2,V_u_2),V_n_2))
      <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i_2,V_j_2),V_u_2),V_m_2),V_n_2) ) ) ).

fof(fact_nat__diff__add__eq1,axiom,
    ! [V_n,V_m,V_u,V_i,V_j] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_j,V_i)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i,V_u),V_m),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j,V_u),V_n)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i,V_j),V_u),V_m),V_n) ) ).

fof(fact_nat__eq__add__iff1,axiom,
    ! [V_n_2,V_m_2,V_u_2,V_i_2,V_j_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_j_2,V_i_2)
     => ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i_2,V_u_2),V_m_2) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j_2,V_u_2),V_n_2)
      <=> c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_i_2,V_j_2),V_u_2),V_m_2) = V_n_2 ) ) ).

fof(fact_nat__le__add__iff2,axiom,
    ! [V_n_2,V_m_2,V_u_2,V_j_2,V_i_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i_2,V_j_2)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i_2,V_u_2),V_m_2),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j_2,V_u_2),V_n_2))
      <=> c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_m_2,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_i_2),V_u_2),V_n_2)) ) ) ).

fof(fact_nat__diff__add__eq2,axiom,
    ! [V_n,V_m,V_u,V_j,V_i] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i,V_j)
     => c_Groups_Ominus__class_Ominus(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i,V_u),V_m),c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j,V_u),V_n)) = c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j,V_i),V_u),V_n)) ) ).

fof(fact_nat__eq__add__iff2,axiom,
    ! [V_n_2,V_m_2,V_u_2,V_j_2,V_i_2] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_i_2,V_j_2)
     => ( c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_i_2,V_u_2),V_m_2) = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_j_2,V_u_2),V_n_2)
      <=> V_m_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_j_2,V_i_2),V_u_2),V_n_2) ) ) ).

fof(fact_real__squared__diff__one__factored,axiom,
    ! [V_x,T_a] :
      ( class_Rings_Oring__1(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_x),c_Groups_Oone__class_Oone(T_a)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_x,c_Groups_Oone__class_Oone(T_a)),c_Groups_Ominus__class_Ominus(T_a,V_x,c_Groups_Oone__class_Oone(T_a))) ) ).

fof(fact_mult__diff__mult,axiom,
    ! [V_b,V_a,V_y,V_x,T_a] :
      ( class_Rings_Oring(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_y),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,c_Groups_Ominus__class_Ominus(T_a,V_y,V_b)),c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ominus__class_Ominus(T_a,V_x,V_a),V_b)) ) ).

fof(fact_synthetic__div__correct_H,axiom,
    ! [V_p,V_c,T_a] :
      ( class_Rings_Ocomm__ring__1(T_a)
     => c_Groups_Oplus__class_Oplus(tc_Polynomial_Opoly(T_a),c_Groups_Otimes__class_Otimes(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_c),c_Polynomial_OpCons(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))),c_Polynomial_Osynthetic__div(T_a,V_p,V_c)),c_Polynomial_OpCons(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_c),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))) = V_p ) ).

fof(fact_Deriv_Oadd__diff__add,axiom,
    ! [V_d,V_b,V_c,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_c),c_Groups_Oplus__class_Oplus(T_a,V_b,V_d)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),c_Groups_Ominus__class_Ominus(T_a,V_c,V_d)) ) ).

fof(fact_neg__less__iff__less,axiom,
    ! [V_a_2,V_b_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b_2),c_Groups_Ouminus__class_Ouminus(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,V_b_2) ) ) ).

fof(fact_minus__less__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2),V_b_2)
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b_2),V_a_2) ) ) ).

fof(fact_less__minus__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ouminus__class_Ouminus(T_a,V_b_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2)) ) ) ).

fof(fact_diff__poly__code_I2_J,axiom,
    ! [V_p,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = V_p ) ).

fof(fact_smult__diff__right,axiom,
    ! [V_q,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__ring(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,V_q)) = c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),c_Polynomial_Osmult(T_a,V_a,V_q)) ) ).

fof(fact_minus__diff__eq,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b)) = c_Groups_Ominus__class_Ominus(T_a,V_b,V_a) ) ).

fof(fact_diff__poly__code_I1_J,axiom,
    ! [V_q,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_q) = c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_q) ) ).

fof(fact_less__eq__poly__def,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Polynomial_Opoly(T_a),V_x_2,V_y_2)
      <=> ( V_x_2 = V_y_2
          | c_Polynomial_Opos__poly(T_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_y_2,V_x_2)) ) ) ) ).

fof(fact_less__poly__def,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Polynomial_Opoly(T_a),V_x_2,V_y_2)
      <=> c_Polynomial_Opos__poly(T_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_y_2,V_x_2)) ) ) ).

fof(fact_minus__poly__code_I2_J,axiom,
    ! [V_p,V_a,T_b] :
      ( class_Groups_Oab__group__add(T_b)
     => c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_b),c_Polynomial_OpCons(T_b,V_a,V_p)) = c_Polynomial_OpCons(T_b,c_Groups_Ouminus__class_Ouminus(T_b,V_a),c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_b),V_p)) ) ).

fof(fact_minus__pCons,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,V_p)) = c_Polynomial_OpCons(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_p)) ) ).

fof(fact_poly__minus,axiom,
    ! [V_x,V_p,T_a] :
      ( class_Rings_Ocomm__ring(T_a)
     => hAPP(c_Polynomial_Opoly(T_a,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_p)),V_x) = c_Groups_Ouminus__class_Ouminus(T_a,hAPP(c_Polynomial_Opoly(T_a,V_p),V_x)) ) ).

fof(fact_coeff__minus,axiom,
    ! [V_n,V_p,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => hAPP(c_Polynomial_Ocoeff(T_a,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_p)),V_n) = c_Groups_Ouminus__class_Ouminus(T_a,hAPP(c_Polynomial_Ocoeff(T_a,V_p),V_n)) ) ).

fof(fact_smult__minus__left,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Rings_Ocomm__ring(T_a)
     => c_Polynomial_Osmult(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_p) = c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p)) ) ).

fof(fact_neg__equal__iff__equal,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Ouminus__class_Ouminus(T_a,V_a_2) = c_Groups_Ouminus__class_Ouminus(T_a,V_b_2)
      <=> V_a_2 = V_b_2 ) ) ).

fof(fact_minus__equation__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Ouminus__class_Ouminus(T_a,V_a_2) = V_b_2
      <=> c_Groups_Ouminus__class_Ouminus(T_a,V_b_2) = V_a_2 ) ) ).

fof(fact_equation__minus__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( V_a_2 = c_Groups_Ouminus__class_Ouminus(T_a,V_b_2)
      <=> V_b_2 = c_Groups_Ouminus__class_Ouminus(T_a,V_a_2) ) ) ).

fof(fact_minus__minus,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a)) = V_a ) ).

fof(fact_minus__monom,axiom,
    ! [V_n,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Polynomial_Omonom(T_a,V_a,V_n)) = c_Polynomial_Omonom(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_n) ) ).

fof(fact_add__eq__0__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_x_2,V_y_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_y_2 = c_Groups_Ouminus__class_Ouminus(T_a,V_x_2) ) ) ).

fof(fact_smult__minus__right,axiom,
    ! [V_p,V_a,T_a] :
      ( class_Rings_Ocomm__ring(T_a)
     => c_Polynomial_Osmult(T_a,V_a,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_p)) = c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p)) ) ).

fof(fact_degree__minus,axiom,
    ! [V_p,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Polynomial_Odegree(T_a,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_p)) = c_Polynomial_Odegree(T_a,V_p) ) ).

fof(fact_minus__poly__code_I1_J,axiom,
    ! [T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_minus__add__distrib,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ).

fof(fact_minus__add,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b),c_Groups_Ouminus__class_Ouminus(T_a,V_a)) ) ).

fof(fact_add__minus__cancel,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b)) = V_b ) ).

fof(fact_minus__add__cancel,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)) = V_b ) ).

fof(fact_minus__mult__right,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oring(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ).

fof(fact_minus__mult__left,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oring(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b) ) ).

fof(fact_minus__mult__commute,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oring(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b) = c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ).

fof(fact_minus__mult__minus,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Oring(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Ouminus__class_Ouminus(T_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,V_a,V_b) ) ).

fof(fact_square__eq__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_a_2) = c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_b_2)
      <=> ( V_a_2 = V_b_2
          | V_a_2 = c_Groups_Ouminus__class_Ouminus(T_a,V_b_2) ) ) ) ).

fof(fact_mult__left_Ominus,axiom,
    ! [V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_x),V_y) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_y)) ) ).

fof(fact_mult_Ominus__left,axiom,
    ! [V_b,V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ).

fof(fact_mult__right_Ominus,axiom,
    ! [V_x,V_xa,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_xa,c_Groups_Ouminus__class_Ouminus(T_a,V_x)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_xa,V_x)) ) ).

fof(fact_mult_Ominus__right,axiom,
    ! [V_b,V_a,T_a] :
      ( class_RealVector_Oreal__normed__algebra(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ).

fof(fact_le__minus__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ouminus__class_Ouminus(T_a,V_b_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2)) ) ) ).

fof(fact_minus__le__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2),V_b_2)
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b_2),V_a_2) ) ) ).

fof(fact_neg__le__iff__le,axiom,
    ! [V_a_2,V_b_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b_2),c_Groups_Ouminus__class_Ouminus(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,V_b_2) ) ) ).

fof(fact_le__imp__neg__le,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b),c_Groups_Ouminus__class_Ouminus(T_a,V_a)) ) ) ).

fof(fact_minus__zero,axiom,
    ! [T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_neg__0__equal__iff__equal,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Ozero__class_Ozero(T_a) = c_Groups_Ouminus__class_Ouminus(T_a,V_a_2)
      <=> c_Groups_Ozero__class_Ozero(T_a) = V_a_2 ) ) ).

fof(fact_equal__neg__zero,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( V_a_2 = c_Groups_Ouminus__class_Ouminus(T_a,V_a_2)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_neg__equal__0__iff__equal,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Ouminus__class_Ouminus(T_a,V_a_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_neg__equal__zero,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Groups_Ouminus__class_Ouminus(T_a,V_a_2) = V_a_2
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_minus__le__self__iff,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2),V_a_2)
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_neg__le__0__iff__le,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_le__minus__self__iff,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_neg__0__le__iff__le,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Ouminus__class_Ouminus(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_less__minus__self__iff,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_neg__less__nonneg,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Olinordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2),V_a_2)
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_neg__less__0__iff__less,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_neg__0__less__iff__less,axiom,
    ! [V_a_2,T_a] :
      ( class_Groups_Oordered__ab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Ouminus__class_Ouminus(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_right__minus,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_eq__neg__iff__add__eq__0,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( V_a_2 = c_Groups_Ouminus__class_Ouminus(T_a,V_b_2)
      <=> c_Groups_Oplus__class_Oplus(T_a,V_a_2,V_b_2) = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_left__minus,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_ab__left__minus,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_minus__unique,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => ( c_Groups_Oplus__class_Oplus(T_a,V_a,V_b) = c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Ouminus__class_Ouminus(T_a,V_a) = V_b ) ) ).

fof(fact_diff__0,axiom,
    ! [V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = c_Groups_Ouminus__class_Ouminus(T_a,V_a) ) ).

fof(fact_square__eq__1__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_Rings_Oring__1__no__zero__divisors(T_a)
     => ( c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_x_2) = c_Groups_Oone__class_Oone(T_a)
      <=> ( V_x_2 = c_Groups_Oone__class_Oone(T_a)
          | V_x_2 = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oone__class_Oone(T_a)) ) ) ) ).

fof(fact_comm__ring__1__class_Onormalizing__ring__rules_I1_J,axiom,
    ! [V_x,T_a] :
      ( class_Rings_Ocomm__ring__1(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,V_x) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oone__class_Oone(T_a)),V_x) ) ).

fof(fact_comm__ring__1__class_Onormalizing__ring__rules_I2_J,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Rings_Ocomm__ring__1(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,V_x,V_y) = c_Groups_Oplus__class_Oplus(T_a,V_x,c_Groups_Ouminus__class_Ouminus(T_a,V_y)) ) ).

fof(fact_diff__def,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,V_a,V_b) = c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ).

fof(fact_ab__diff__minus,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,V_a,V_b) = c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ).

fof(fact_diff__minus__eq__add,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Ogroup__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) = c_Groups_Oplus__class_Oplus(T_a,V_a,V_b) ) ).

fof(fact_degree__diff__less,axiom,
    ! [V_q,V_n,V_p,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n)
       => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_q),V_n)
         => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_n) ) ) ) ).

fof(fact_degree__diff__le,axiom,
    ! [V_q,V_n,V_p,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),V_n)
       => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_q),V_n)
         => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),V_p,V_q)),V_n) ) ) ) ).

fof(fact_pos__poly__total,axiom,
    ! [V_p,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( V_p = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
        | c_Polynomial_Opos__poly(T_a,V_p)
        | c_Polynomial_Opos__poly(T_a,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_p)) ) ) ).

fof(fact_pdivmod__rel__pCons,axiom,
    ! [V_a,V_b,V_r,V_q,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q,V_r)
       => ( V_y != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => ( V_b = c_Rings_Oinverse__class_Odivide(T_a,hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_OpCons(T_a,V_a,V_r)),c_Polynomial_Odegree(T_a,V_y)),hAPP(c_Polynomial_Ocoeff(T_a,V_y),c_Polynomial_Odegree(T_a,V_y)))
           => c_Polynomial_Opdivmod__rel(T_a,c_Polynomial_OpCons(T_a,V_a,V_x),V_y,c_Polynomial_OpCons(T_a,V_b,V_q),c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,V_r),c_Polynomial_Osmult(T_a,V_b,V_y))) ) ) ) ) ).

fof(fact_Limits_Ominus__diff__minus,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Groups_Oab__group__add(T_a)
     => c_Groups_Ominus__class_Ominus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Ouminus__class_Ouminus(T_a,V_b)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b)) ) ).

fof(fact_compl__mono,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Lattices_Oboolean__algebra(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
       => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_y),c_Groups_Ouminus__class_Ouminus(T_a,V_x)) ) ) ).

fof(fact_divide_Odiff,axiom,
    ! [V_ya,V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__field(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,V_x,V_y),V_ya) = c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_ya),c_Rings_Oinverse__class_Odivide(T_a,V_y,V_ya)) ) ).

fof(fact_divide__1,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,V_a,c_Groups_Oone__class_Oone(T_a)) = V_a ) ).

fof(fact_diff__divide__distrib,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_c) = c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_c),c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c)) ) ).

fof(fact_minus__divide__left,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b) ) ).

fof(fact_divide_Ominus,axiom,
    ! [V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__field(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_x),V_y) = c_Groups_Ouminus__class_Ouminus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ).

fof(fact_divide_Ozero,axiom,
    ! [V_y,T_a] :
      ( class_RealVector_Oreal__normed__field(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_divide__zero__left,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_divide__zero,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_times__divide__eq__right,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) ) ).

fof(fact_divide_Oadd,axiom,
    ! [V_ya,V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__field(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_x,V_y),V_ya) = c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_ya),c_Rings_Oinverse__class_Odivide(T_a,V_y,V_ya)) ) ).

fof(fact_add__divide__distrib,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_c),c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c)) ) ).

fof(fact_eq__divide__imp,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_c != c_Groups_Ozero__class_Ozero(T_a)
       => ( c_Groups_Otimes__class_Otimes(T_a,V_a,V_c) = V_b
         => V_a = c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c) ) ) ) ).

fof(fact_divide__eq__imp,axiom,
    ! [V_a,V_b,V_c,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_c != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b = c_Groups_Otimes__class_Otimes(T_a,V_a,V_c)
         => c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c) = V_a ) ) ) ).

fof(fact_nonzero__divide__eq__eq,axiom,
    ! [V_a_2,V_b_2,V_ca_2,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_ca_2 != c_Groups_Ozero__class_Ozero(T_a)
       => ( c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2) = V_a_2
        <=> V_b_2 = c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2) ) ) ) ).

fof(fact_nonzero__eq__divide__eq,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_ca_2 != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_a_2 = c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2)
        <=> c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2) = V_b_2 ) ) ) ).

fof(fact_divide__self__if,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => ( ( V_a = c_Groups_Ozero__class_Ozero(T_a)
         => c_Rings_Oinverse__class_Odivide(T_a,V_a,V_a) = c_Groups_Ozero__class_Ozero(T_a) )
        & ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => c_Rings_Oinverse__class_Odivide(T_a,V_a,V_a) = c_Groups_Oone__class_Oone(T_a) ) ) ) ).

fof(fact_divide__self,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Odivide(T_a,V_a,V_a) = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_right__inverse__eq,axiom,
    ! [V_a_2,V_b_2,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_b_2 != c_Groups_Ozero__class_Ozero(T_a)
       => ( c_Rings_Oinverse__class_Odivide(T_a,V_a_2,V_b_2) = c_Groups_Oone__class_Oone(T_a)
        <=> V_a_2 = V_b_2 ) ) ) ).

fof(fact_nonzero__minus__divide__right,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Ouminus__class_Ouminus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ) ).

fof(fact_nonzero__minus__divide__divide,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Ouminus__class_Ouminus(T_a,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b) ) ) ).

fof(fact_DERIV__mult__lemma,axiom,
    ! [V_h,V_d,V_c,V_b,V_a,T_a] :
      ( class_RealVector_Oreal__field(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),c_Groups_Otimes__class_Otimes(T_a,V_c,V_d)),V_h) = c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,V_b,V_d),V_h)),c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_c),V_h),V_d)) ) ).

fof(fact_mult__left__idem,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Lattices_Oab__semigroup__idem__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,V_a,V_b) ) ).

fof(fact_mult__idem,axiom,
    ! [V_x,T_a] :
      ( class_Lattices_Oab__semigroup__idem__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_x,V_x) = V_x ) ).

fof(fact_times_Oidem,axiom,
    ! [V_a,T_a] :
      ( class_Lattices_Oab__semigroup__idem__mult(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,V_a,V_a) = V_a ) ).

fof(fact_minus__apply,axiom,
    ! [V_x_2,V_B_2,V_A_2,T_b,T_a] :
      ( class_Groups_Ominus(T_a)
     => hAPP(c_Groups_Ominus__class_Ominus(tc_fun(T_b,T_a),V_A_2,V_B_2),V_x_2) = c_Groups_Ominus__class_Ominus(T_a,hAPP(V_A_2,V_x_2),hAPP(V_B_2,V_x_2)) ) ).

fof(fact_compl__eq__compl__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Lattices_Oboolean__algebra(T_a)
     => ( c_Groups_Ouminus__class_Ouminus(T_a,V_x_2) = c_Groups_Ouminus__class_Ouminus(T_a,V_y_2)
      <=> V_x_2 = V_y_2 ) ) ).

fof(fact_uminus__apply,axiom,
    ! [V_x_2,V_A_2,T_b,T_a] :
      ( class_Groups_Ouminus(T_a)
     => hAPP(c_Groups_Ouminus__class_Ouminus(tc_fun(T_b,T_a),V_A_2),V_x_2) = c_Groups_Ouminus__class_Ouminus(T_a,hAPP(V_A_2,V_x_2)) ) ).

fof(fact_double__compl,axiom,
    ! [V_x,T_a] :
      ( class_Lattices_Oboolean__algebra(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_x)) = V_x ) ).

fof(fact_compl__le__compl__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Lattices_Oboolean__algebra(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_x_2),c_Groups_Ouminus__class_Ouminus(T_a,V_y_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_y_2,V_x_2) ) ) ).

fof(fact_divide__left__mono__neg,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b))
           => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_c,V_a),c_Rings_Oinverse__class_Odivide(T_a,V_c,V_b)) ) ) ) ) ).

fof(fact_divide__left__mono,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b))
           => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_c,V_a),c_Rings_Oinverse__class_Odivide(T_a,V_c,V_b)) ) ) ) ) ).

fof(fact_neg__divide__le__eq,axiom,
    ! [V_a_2,V_b_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2),V_a_2)
        <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) ) ) ) ).

fof(fact_times__divide__times__eq,axiom,
    ! [V_w,V_z,V_y,V_x,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Rings_Oinverse__class_Odivide(T_a,V_z,V_w)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_z),c_Groups_Otimes__class_Otimes(T_a,V_y,V_w)) ) ).

fof(fact_minus__divide__divide,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Groups_Ouminus__class_Ouminus(T_a,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b) ) ).

fof(fact_minus__divide__right,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => c_Groups_Ouminus__class_Ouminus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,V_a,c_Groups_Ouminus__class_Ouminus(T_a,V_b)) ) ).

fof(fact_divide__right__mono__neg,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c),c_Rings_Oinverse__class_Odivide(T_a,V_a,V_c)) ) ) ) ).

fof(fact_divide__right__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_c),c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c)) ) ) ) ).

fof(fact_divide__le__0__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a_2,V_b_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> ( ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2)
            & c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Ozero__class_Ozero(T_a)) )
          | ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b_2) ) ) ) ) ).

fof(fact_zero__le__divide__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Odivide(T_a,V_a_2,V_b_2))
      <=> ( ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2)
            & c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b_2) )
          | ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ) ).

fof(fact_zero__less__divide__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Odivide(T_a,V_a_2,V_b_2))
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2)
            & c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b_2) )
          | ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ) ).

fof(fact_divide__less__0__iff,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a_2,V_b_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2)
            & c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Ozero__class_Ozero(T_a)) )
          | ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a))
            & c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_b_2) ) ) ) ) ).

fof(fact_divide__pos__pos,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ) ) ).

fof(fact_divide__pos__neg,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_divide__neg__pos,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_divide__neg__neg,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_x,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ) ) ).

fof(fact_divide__strict__right__mono,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_c),c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c)) ) ) ) ).

fof(fact_divide__strict__right__mono__neg,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_c),c_Rings_Oinverse__class_Odivide(T_a,V_b,V_c)) ) ) ) ).

fof(fact_frac__eq__eq,axiom,
    ! [V_w_2,V_x_2,V_z_2,V_y_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_y_2 != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_z_2 != c_Groups_Ozero__class_Ozero(T_a)
         => ( c_Rings_Oinverse__class_Odivide(T_a,V_x_2,V_y_2) = c_Rings_Oinverse__class_Odivide(T_a,V_w_2,V_z_2)
          <=> c_Groups_Otimes__class_Otimes(T_a,V_x_2,V_z_2) = c_Groups_Otimes__class_Otimes(T_a,V_w_2,V_y_2) ) ) ) ) ).

fof(fact_mult__divide__mult__cancel__left,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( V_c != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b) ) ) ).

fof(fact_mult__divide__mult__cancel__right,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( V_c != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) = c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b) ) ) ).

fof(fact_divide__eq__eq,axiom,
    ! [V_a_2,V_ca_2,V_b_2,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2) = V_a_2
      <=> ( ( V_ca_2 != c_Groups_Ozero__class_Ozero(T_a)
           => V_b_2 = c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2) )
          & ( V_ca_2 = c_Groups_Ozero__class_Ozero(T_a)
           => V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ) ).

fof(fact_eq__divide__eq,axiom,
    ! [V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( V_a_2 = c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2)
      <=> ( ( V_ca_2 != c_Groups_Ozero__class_Ozero(T_a)
           => c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2) = V_b_2 )
          & ( V_ca_2 = c_Groups_Ozero__class_Ozero(T_a)
           => V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ) ) ).

fof(fact_divide__nonpos__neg,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ) ) ).

fof(fact_divide__nonpos__pos,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_frac__le,axiom,
    ! [V_z,V_w,V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_w)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,V_w,V_z)
             => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_z),c_Rings_Oinverse__class_Odivide(T_a,V_y,V_w)) ) ) ) ) ) ).

fof(fact_frac__less,axiom,
    ! [V_z,V_w,V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,V_x,V_y)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_w)
           => ( c_Orderings_Oord__class_Oless__eq(T_a,V_w,V_z)
             => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_z),c_Rings_Oinverse__class_Odivide(T_a,V_y,V_w)) ) ) ) ) ) ).

fof(fact_frac__less2,axiom,
    ! [V_z,V_w,V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_w)
           => ( c_Orderings_Oord__class_Oless(T_a,V_w,V_z)
             => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_z),c_Rings_Oinverse__class_Odivide(T_a,V_y,V_w)) ) ) ) ) ) ).

fof(fact_divide__nonneg__neg,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,V_y,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_divide__nonneg__pos,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ) ) ).

fof(fact_less__divide__eq,axiom,
    ! [V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2))
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) )
          & ( ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => ( ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) )
              & ( ~ c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ) ) ) ).

fof(fact_divide__less__eq,axiom,
    ! [V_a_2,V_ca_2,V_b_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2),V_a_2)
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) )
          & ( ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => ( ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) )
              & ( ~ c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ) ) ) ) ).

fof(fact_pos__less__divide__eq,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
       => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2))
        <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) ) ) ) ).

fof(fact_pos__divide__less__eq,axiom,
    ! [V_a_2,V_b_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2),V_a_2)
        <=> c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) ) ) ) ).

fof(fact_mult__imp__div__pos__less,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
       => ( c_Orderings_Oord__class_Oless(T_a,V_x,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y))
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),V_z) ) ) ) ).

fof(fact_mult__imp__less__div__pos,axiom,
    ! [V_x,V_z,V_y,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y),V_x)
         => c_Orderings_Oord__class_Oless(T_a,V_z,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ) ) ).

fof(fact_neg__less__divide__eq,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2))
        <=> c_Orderings_Oord__class_Oless(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) ) ) ) ).

fof(fact_neg__divide__less__eq,axiom,
    ! [V_a_2,V_b_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2),V_a_2)
        <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) ) ) ) ).

fof(fact_divide__strict__left__mono,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_b,V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_c)
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b))
           => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_c,V_a),c_Rings_Oinverse__class_Odivide(T_a,V_c,V_b)) ) ) ) ) ).

fof(fact_divide__strict__left__mono__neg,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_c,c_Groups_Ozero__class_Ozero(T_a))
         => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Otimes__class_Otimes(T_a,V_a,V_b))
           => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_c,V_a),c_Rings_Oinverse__class_Odivide(T_a,V_c,V_b)) ) ) ) ) ).

fof(fact_add__num__frac,axiom,
    ! [V_x,V_z,V_y,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Oplus__class_Oplus(T_a,V_z,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_x,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y)),V_y) ) ) ).

fof(fact_add__divide__eq__iff,axiom,
    ! [V_y,V_x,V_z,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_z != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Oplus__class_Oplus(T_a,V_x,c_Rings_Oinverse__class_Odivide(T_a,V_y,V_z)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_z,V_x),V_y),V_z) ) ) ).

fof(fact_add__frac__num,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),V_z) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_x,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y)),V_y) ) ) ).

fof(fact_divide__add__eq__iff,axiom,
    ! [V_y,V_x,V_z,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_z != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_z),V_y) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_x,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y)),V_z) ) ) ).

fof(fact_add__frac__eq,axiom,
    ! [V_w,V_x,V_z,V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_z != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Rings_Oinverse__class_Odivide(T_a,V_w,V_z)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_z),c_Groups_Otimes__class_Otimes(T_a,V_w,V_y)),c_Groups_Otimes__class_Otimes(T_a,V_y,V_z)) ) ) ) ).

fof(fact_diff__divide__eq__iff,axiom,
    ! [V_y,V_x,V_z,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_z != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Ominus__class_Ominus(T_a,V_x,c_Rings_Oinverse__class_Odivide(T_a,V_y,V_z)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_z,V_x),V_y),V_z) ) ) ).

fof(fact_divide__diff__eq__iff,axiom,
    ! [V_y,V_x,V_z,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_z != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_z),V_y) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,V_x,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y)),V_z) ) ) ).

fof(fact_diff__frac__eq,axiom,
    ! [V_w,V_x,V_z,V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_z != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),c_Rings_Oinverse__class_Odivide(T_a,V_w,V_z)) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_z),c_Groups_Otimes__class_Otimes(T_a,V_w,V_y)),c_Groups_Otimes__class_Otimes(T_a,V_y,V_z)) ) ) ) ).

fof(fact_less__half__sum,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless(T_a,V_a,c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Oone__class_Oone(T_a)))) ) ) ).

fof(fact_gt__half__sum,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Groups_Oplus__class_Oplus(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Oone__class_Oone(T_a))),V_b) ) ) ).

fof(fact_le__divide__eq,axiom,
    ! [V_ca_2,V_b_2,V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2))
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) )
          & ( ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => ( ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) )
              & ( ~ c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ) ) ) ).

fof(fact_divide__le__eq,axiom,
    ! [V_a_2,V_ca_2,V_b_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2),V_a_2)
      <=> ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) )
          & ( ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
           => ( ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) )
              & ( ~ c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
               => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ) ) ) ) ).

fof(fact_pos__le__divide__eq,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2))
        <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),V_b_2) ) ) ) ).

fof(fact_pos__divide__le__eq,axiom,
    ! [V_a_2,V_b_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_ca_2)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2),V_a_2)
        <=> c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) ) ) ) ).

fof(fact_mult__imp__div__pos__le,axiom,
    ! [V_z,V_x,V_y,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_x,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y),V_z) ) ) ) ).

fof(fact_mult__imp__le__div__pos,axiom,
    ! [V_x,V_z,V_y,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_y)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,V_z,V_y),V_x)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_z,c_Rings_Oinverse__class_Odivide(T_a,V_x,V_y)) ) ) ) ).

fof(fact_neg__le__divide__eq,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_ca_2,c_Groups_Ozero__class_Ozero(T_a))
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Rings_Oinverse__class_Odivide(T_a,V_b_2,V_ca_2))
        <=> c_Orderings_Oord__class_Oless__eq(T_a,V_b_2,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2)) ) ) ) ).

fof(fact_mod__pCons,axiom,
    ! [V_x,V_a,V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,V_x),V_y) = c_Groups_Ominus__class_Ominus(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_a,c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y)),c_Polynomial_Osmult(T_a,c_Rings_Oinverse__class_Odivide(T_a,hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_OpCons(T_a,V_a,c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y))),c_Polynomial_Odegree(T_a,V_y)),hAPP(c_Polynomial_Ocoeff(T_a,V_y),c_Polynomial_Odegree(T_a,V_y))),V_y)) ) ) ).

fof(fact_sgn__poly__def,axiom,
    ! [V_x,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( ( V_x = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Groups_Osgn__class_Osgn(tc_Polynomial_Opoly(T_a),V_x) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
        & ( V_x != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => ( ( c_Orderings_Oord__class_Oless(tc_Polynomial_Opoly(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_x)
             => c_Groups_Osgn__class_Osgn(tc_Polynomial_Opoly(T_a),V_x) = c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a)) )
            & ( ~ c_Orderings_Oord__class_Oless(tc_Polynomial_Opoly(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),V_x)
             => c_Groups_Osgn__class_Osgn(tc_Polynomial_Opoly(T_a),V_x) = c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a))) ) ) ) ) ) ).

fof(fact_poly__mod__minus__left,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_x),V_y) = c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y)) ) ).

fof(fact_poly__mod__minus__right,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_y)) = c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y) ) ).

fof(fact_sgn__minus,axiom,
    ! [V_x,T_a] :
      ( class_RealVector_Oreal__normed__vector(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_x)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Osgn__class_Osgn(T_a,V_x)) ) ).

fof(fact_sgn__one,axiom,
    ! [T_a] :
      ( class_RealVector_Oreal__normed__algebra__1(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Oone__class_Oone(T_a)) = c_Groups_Oone__class_Oone(T_a) ) ).

fof(fact_mod__poly__eq,axiom,
    ! [V_r,V_q,V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q,V_r)
       => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y) = V_r ) ) ).

fof(fact_mod__smult__left,axiom,
    ! [V_y,V_x,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_x),V_y) = c_Polynomial_Osmult(T_a,V_a,c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y)) ) ).

fof(fact_sgn__zero,axiom,
    ! [T_a] :
      ( class_RealVector_Oreal__normed__vector(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_sgn__zero__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_RealVector_Oreal__normed__vector(T_a)
     => ( c_Groups_Osgn__class_Osgn(T_a,V_x_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_x_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_sgn0,axiom,
    ! [T_a] :
      ( class_Groups_Osgn__if(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_sgn__0__0,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Groups_Osgn__class_Osgn(T_a,V_a_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_sgn__mult,axiom,
    ! [V_y,V_x,T_a] :
      ( class_RealVector_Oreal__normed__div__algebra(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Otimes__class_Otimes(T_a,V_x,V_y)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Osgn__class_Osgn(T_a,V_x),c_Groups_Osgn__class_Osgn(T_a,V_y)) ) ).

fof(fact_sgn__times,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Osgn__class_Osgn(T_a,V_a),c_Groups_Osgn__class_Osgn(T_a,V_b)) ) ).

fof(fact_sgn__sgn,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => c_Groups_Osgn__class_Osgn(T_a,c_Groups_Osgn__class_Osgn(T_a,V_a)) = c_Groups_Osgn__class_Osgn(T_a,V_a) ) ).

fof(fact_mod__poly__less,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_x),c_Polynomial_Odegree(T_a,V_y))
       => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y) = V_x ) ) ).

fof(fact_mod__smult__right,axiom,
    ! [V_y,V_x,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,c_Polynomial_Osmult(T_a,V_a,V_y)) = c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y) ) ) ).

fof(fact_sgn__greater,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Groups_Osgn__class_Osgn(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_sgn__less,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Osgn__class_Osgn(T_a,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_degree__mod__less,axiom,
    ! [V_x,V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => ( c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
          | c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Polynomial_Odegree(T_a,c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y)),c_Polynomial_Odegree(T_a,V_y)) ) ) ) ).

fof(fact_sgn__pos,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => c_Groups_Osgn__class_Osgn(T_a,V_a) = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_sgn__1__pos,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Groups_Osgn__class_Osgn(T_a,V_a_2) = c_Groups_Oone__class_Oone(T_a)
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_sgn__if,axiom,
    ! [V_x,T_a] :
      ( class_Groups_Osgn__if(T_a)
     => ( ( V_x = c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Osgn__class_Osgn(T_a,V_x) = c_Groups_Ozero__class_Ozero(T_a) )
        & ( V_x != c_Groups_Ozero__class_Ozero(T_a)
         => ( ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
             => c_Groups_Osgn__class_Osgn(T_a,V_x) = c_Groups_Oone__class_Oone(T_a) )
            & ( ~ c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x)
             => c_Groups_Osgn__class_Osgn(T_a,V_x) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oone__class_Oone(T_a)) ) ) ) ) ) ).

fof(fact_sgn__1__neg,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Groups_Osgn__class_Osgn(T_a,V_a_2) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oone__class_Oone(T_a))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_sgn__neg,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Olinordered__idom(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => c_Groups_Osgn__class_Osgn(T_a,V_a) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Oone__class_Oone(T_a)) ) ) ).

fof(fact_mod__mult__self2,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)),V_b) = c_Divides_Odiv__class_Omod(T_a,V_a,V_b) ) ).

fof(fact_mod__mult__self1,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)),V_b) = c_Divides_Odiv__class_Omod(T_a,V_a,V_b) ) ).

fof(fact_mod__geq,axiom,
    ! [V_n,V_m] :
      ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_n) ) ).

fof(fact_mod__if,axiom,
    ! [V_n,V_m] :
      ( ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
       => c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n) = V_m )
      & ( ~ c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
       => c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_n) ) ) ).

fof(fact_le__mod__geq,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
     => c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n),V_n) ) ).

fof(fact_mod__1,axiom,
    ! [V_m] : c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat))) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) ).

fof(fact_mod__Suc,axiom,
    ! [V_n,V_m] :
      ( ( c_Nat_OSuc(c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n)) = V_n
       => c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat) )
      & ( c_Nat_OSuc(c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n)) != V_n
       => c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Nat_OSuc(c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n)) ) ) ).

fof(fact_mod__eq__0__iff,axiom,
    ! [V_da_2,V_m_2] :
      ( c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m_2,V_da_2) = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
    <=> ? [B_q] : V_m_2 = c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_da_2,B_q) ) ).

fof(fact_mod__mult__self3,axiom,
    ! [V_m,V_n,V_k] : c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_n),V_m),V_n) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n) ).

fof(fact_mod__mult__distrib2,axiom,
    ! [V_n,V_m,V_k] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n)) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_m),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_n)) ).

fof(fact_mod__mult__distrib,axiom,
    ! [V_k,V_n,V_m] : c_Groups_Otimes__class_Otimes(tc_Nat_Onat,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n),V_k) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m,V_k),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n,V_k)) ).

fof(fact_mod__Suc__eq__Suc__mod,axiom,
    ! [V_n,V_m] : c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n)),V_n) ).

fof(fact_mod__mult__self4,axiom,
    ! [V_m,V_n,V_k] : c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_n),V_m)),V_n) = c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(V_m),V_n) ).

fof(fact_mod__le__divisor,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n),V_n) ) ).

fof(fact_mod__less,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
     => c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n) = V_m ) ).

fof(fact_mod__less__divisor,axiom,
    ! [V_m,V_n] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
     => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n),V_n) ) ).

fof(fact_mod__less__eq__dividend,axiom,
    ! [V_n,V_m] : c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_m,V_n),V_m) ).

fof(fact_split__mod,axiom,
    ! [V_k_2,V_n_2,V_P_2] :
      ( hBOOL(hAPP(V_P_2,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_n_2,V_k_2)))
    <=> ( ( V_k_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
         => hBOOL(hAPP(V_P_2,V_n_2)) )
        & ( V_k_2 != c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
         => ! [B_i,B_j] :
              ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,B_j,V_k_2)
             => ( V_n_2 = c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,B_i),B_j)
               => hBOOL(hAPP(V_P_2,B_j)) ) ) ) ) ) ).

fof(fact_mod__lemma,axiom,
    ! [V_q,V_b,V_r,V_c] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_c)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_r,V_b)
       => c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_b,c_Divides_Odiv__class_Omod(tc_Nat_Onat,V_q,V_c)),V_r),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_b,V_c)) ) ) ).

fof(fact_Suc__times__mod__eq,axiom,
    ! [V_m,V_k] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Oone__class_Oone(tc_Nat_Onat),V_k)
     => c_Divides_Odiv__class_Omod(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_m)),V_k) = c_Groups_Oone__class_Oone(tc_Nat_Onat) ) ).

fof(fact_mod__mod__trivial,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_b),V_b) = c_Divides_Odiv__class_Omod(T_a,V_a,V_b) ) ).

fof(fact_mod__0,axiom,
    ! [V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mod__by__0,axiom,
    ! [V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) = V_a ) ).

fof(fact_mod__self,axiom,
    ! [V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,V_a,V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mod__mult__cong,axiom,
    ! [V_b_H,V_b,V_a_H,V_c,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Divides_Odiv__class_Omod(T_a,V_a,V_c) = c_Divides_Odiv__class_Omod(T_a,V_a_H,V_c)
       => ( c_Divides_Odiv__class_Omod(T_a,V_b,V_c) = c_Divides_Odiv__class_Omod(T_a,V_b_H,V_c)
         => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_H,V_b_H),V_c) ) ) ) ).

fof(fact_zmod__simps_I4_J,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) ) ).

fof(fact_mod__mult__mult2,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) = c_Groups_Otimes__class_Otimes(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_b),V_c) ) ).

fof(fact_mod__mult__mult1,axiom,
    ! [V_b,V_a,V_c,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_c,V_a),c_Groups_Otimes__class_Otimes(T_a,V_c,V_b)) = c_Groups_Otimes__class_Otimes(T_a,V_c,c_Divides_Odiv__class_Omod(T_a,V_a,V_b)) ) ).

fof(fact_mod__mult__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) ) ).

fof(fact_mod__mult__left__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),V_b),V_c) ) ).

fof(fact_mod__mult__right__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) ) ).

fof(fact_mod__add__cong,axiom,
    ! [V_b_H,V_b,V_a_H,V_c,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Divides_Odiv__class_Omod(T_a,V_a,V_c) = c_Divides_Odiv__class_Omod(T_a,V_a_H,V_c)
       => ( c_Divides_Odiv__class_Omod(T_a,V_b,V_c) = c_Divides_Odiv__class_Omod(T_a,V_b_H,V_c)
         => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a_H,V_b_H),V_c) ) ) ) ).

fof(fact_zmod__simps_I1_J,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) ) ).

fof(fact_zmod__simps_I2_J,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) ) ).

fof(fact_mod__add__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) ) ).

fof(fact_mod__add__left__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),V_b),V_c) ) ).

fof(fact_mod__add__right__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) ) ).

fof(fact_mod__add__self1,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_b,V_a),V_b) = c_Divides_Odiv__class_Omod(T_a,V_a,V_b) ) ).

fof(fact_mod__add__self2,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),V_b) = c_Divides_Odiv__class_Omod(T_a,V_a,V_b) ) ).

fof(fact_mod__diff__cong,axiom,
    ! [V_b_H,V_b,V_a_H,V_c,V_a,T_a] :
      ( class_Divides_Oring__div(T_a)
     => ( c_Divides_Odiv__class_Omod(T_a,V_a,V_c) = c_Divides_Odiv__class_Omod(T_a,V_a_H,V_c)
       => ( c_Divides_Odiv__class_Omod(T_a,V_b,V_c) = c_Divides_Odiv__class_Omod(T_a,V_b_H,V_c)
         => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a_H,V_b_H),V_c) ) ) ) ).

fof(fact_mod__diff__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Oring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) ) ).

fof(fact_mod__diff__left__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Oring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_c),V_b),V_c) ) ).

fof(fact_mod__diff__right__eq,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Divides_Oring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,c_Divides_Odiv__class_Omod(T_a,V_b,V_c)),V_c) ) ).

fof(fact_mod__minus__cong,axiom,
    ! [V_a_H,V_b,V_a,T_a] :
      ( class_Divides_Oring__div(T_a)
     => ( c_Divides_Odiv__class_Omod(T_a,V_a,V_b) = c_Divides_Odiv__class_Omod(T_a,V_a_H,V_b)
       => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a_H),V_b) ) ) ).

fof(fact_mod__minus__eq,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Divides_Oring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),V_b) = c_Divides_Odiv__class_Omod(T_a,c_Groups_Ouminus__class_Ouminus(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_b)),V_b) ) ).

fof(fact_mod__mult__self1__is__0,axiom,
    ! [V_a,V_b,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_a),V_b) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mod__mult__self2__is__0,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_b) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_mod__by__1,axiom,
    ! [V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => c_Divides_Odiv__class_Omod(T_a,V_a,c_Groups_Oone__class_Oone(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_poly__gcd__monic,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( ( ( V_x = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
            & V_y = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
         => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_Opoly__gcd(T_a,V_x,V_y)),c_Polynomial_Odegree(T_a,c_Polynomial_Opoly__gcd(T_a,V_x,V_y))) = c_Groups_Ozero__class_Ozero(T_a) )
        & ( ~ ( V_x = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
              & V_y = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
         => hAPP(c_Polynomial_Ocoeff(T_a,c_Polynomial_Opoly__gcd(T_a,V_x,V_y)),c_Polynomial_Odegree(T_a,c_Polynomial_Opoly__gcd(T_a,V_x,V_y))) = c_Groups_Oone__class_Oone(T_a) ) ) ) ).

fof(fact_ex__least__nat__less,axiom,
    ! [V_n_2,V_P_2] :
      ( ~ hBOOL(hAPP(V_P_2,c_Groups_Ozero__class_Ozero(tc_Nat_Onat)))
     => ( hBOOL(hAPP(V_P_2,V_n_2))
       => ? [B_k] :
            ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,B_k,V_n_2)
            & ! [B_i] :
                ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,B_i,B_k)
               => ~ hBOOL(hAPP(V_P_2,B_i)) )
            & hBOOL(hAPP(V_P_2,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,B_k,c_Groups_Oone__class_Oone(tc_Nat_Onat)))) ) ) ) ).

fof(fact_poly__gcd__minus__left,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_x),V_y) = c_Polynomial_Opoly__gcd(T_a,V_x,V_y) ) ).

fof(fact_poly__gcd__minus__right,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,V_x,c_Groups_Ouminus__class_Ouminus(tc_Polynomial_Opoly(T_a),V_y)) = c_Polynomial_Opoly__gcd(T_a,V_x,V_y) ) ).

fof(fact_poly__gcd__1__left,axiom,
    ! [V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a)),V_y) = c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_poly__gcd__1__right,axiom,
    ! [V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,V_x,c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a))) = c_Groups_Oone__class_Oone(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_poly__gcd__zero__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Polynomial_Opoly__gcd(T_a,V_x_2,V_y_2) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
      <=> ( V_x_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
          & V_y_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ) ) ).

fof(fact_poly__gcd__0__0,axiom,
    ! [T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) ) ).

fof(fact_poly__gcd_Ocommute,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,V_a,V_b) = c_Polynomial_Opoly__gcd(T_a,V_b,V_a) ) ).

fof(fact_poly__gcd_Oleft__commute,axiom,
    ! [V_c,V_a,V_b,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,V_b,c_Polynomial_Opoly__gcd(T_a,V_a,V_c)) = c_Polynomial_Opoly__gcd(T_a,V_a,c_Polynomial_Opoly__gcd(T_a,V_b,V_c)) ) ).

fof(fact_poly__gcd_Oassoc,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,c_Polynomial_Opoly__gcd(T_a,V_a,V_b),V_c) = c_Polynomial_Opoly__gcd(T_a,V_a,c_Polynomial_Opoly__gcd(T_a,V_b,V_c)) ) ).

fof(fact_poly__gcd_Osimps_I2_J,axiom,
    ! [V_x,V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_y != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => c_Polynomial_Opoly__gcd(T_a,V_x,V_y) = c_Polynomial_Opoly__gcd(T_a,V_y,c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y)) ) ) ).

fof(fact_poly__gcd__code,axiom,
    ! [V_x,V_y,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( ( V_y = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Polynomial_Opoly__gcd(T_a,V_x,V_y) = c_Polynomial_Osmult(T_a,c_Rings_Oinverse__class_Oinverse(T_a,hAPP(c_Polynomial_Ocoeff(T_a,V_x),c_Polynomial_Odegree(T_a,V_x))),V_x) )
        & ( V_y != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Polynomial_Opoly__gcd(T_a,V_x,V_y) = c_Polynomial_Opoly__gcd(T_a,V_y,c_Divides_Odiv__class_Omod(tc_Polynomial_Opoly(T_a),V_x,V_y)) ) ) ) ).

fof(fact_field__le__mult__one__interval,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( ! [B_z] :
            ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),B_z)
           => ( c_Orderings_Oord__class_Oless(T_a,B_z,c_Groups_Oone__class_Oone(T_a))
             => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Otimes__class_Otimes(T_a,B_z,V_x),V_y) ) )
       => c_Orderings_Oord__class_Oless__eq(T_a,V_x,V_y) ) ) ).

fof(fact_le__imp__inverse__le,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_le__imp__inverse__le__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_inverse__le__imp__le,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
         => c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a) ) ) ) ).

fof(fact_inverse__le__imp__le__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b))
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,V_b,V_a) ) ) ) ).

fof(fact_inverse__le__1__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_x_2),c_Groups_Oone__class_Oone(T_a))
      <=> ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,c_Groups_Ozero__class_Ozero(T_a))
          | c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oone__class_Oone(T_a),V_x_2) ) ) ) ).

fof(fact_division__ring__inverse__add,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Groups_Oplus__class_Oplus(T_a,V_a,V_b)),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) ) ) ) ).

fof(fact_inverse__add,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Oplus__class_Oplus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Oplus__class_Oplus(T_a,V_a,V_b),c_Rings_Oinverse__class_Oinverse(T_a,V_a)),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) ) ) ) ).

fof(fact_one__less__inverse__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_x_2))
      <=> ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x_2)
          & c_Orderings_Oord__class_Oless(T_a,V_x_2,c_Groups_Oone__class_Oone(T_a)) ) ) ) ).

fof(fact_one__less__inverse,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Oone__class_Oone(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_division__ring__inverse__diff,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Groups_Ominus__class_Ominus(T_a,V_b,V_a)),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) ) ) ) ).

fof(fact_right__inverse,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Otimes__class_Otimes(T_a,V_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a)) = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_left__inverse,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),V_a) = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_field__inverse,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),V_a) = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_nonzero__inverse__eq__divide,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Oinverse(T_a,V_a) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oone__class_Oone(T_a),V_a) ) ) ).

fof(fact_field__class_Onormalizing__field__rules_I2_J,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,V_a) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oone__class_Oone(T_a),V_a) ) ).

fof(fact_inverse__eq__divide,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,V_a) = c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Oone__class_Oone(T_a),V_a) ) ).

fof(fact_divide__inverse,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b) = c_Groups_Otimes__class_Otimes(T_a,V_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b)) ) ).

fof(fact_inverse__unique,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( c_Groups_Otimes__class_Otimes(T_a,V_a,V_b) = c_Groups_Oone__class_Oone(T_a)
       => c_Rings_Oinverse__class_Oinverse(T_a,V_a) = V_b ) ) ).

fof(fact_inverse__eq__imp__eq,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => ( c_Rings_Oinverse__class_Oinverse(T_a,V_a) = c_Rings_Oinverse__class_Oinverse(T_a,V_b)
       => V_a = V_b ) ) ).

fof(fact_inverse__eq__iff__eq,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => ( c_Rings_Oinverse__class_Oinverse(T_a,V_a_2) = c_Rings_Oinverse__class_Oinverse(T_a,V_b_2)
      <=> V_a_2 = V_b_2 ) ) ).

fof(fact_inverse__inverse__eq,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a)) = V_a ) ).

fof(fact_nonzero__inverse__eq__imp__eq,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( c_Rings_Oinverse__class_Oinverse(T_a,V_a) = c_Rings_Oinverse__class_Oinverse(T_a,V_b)
       => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
           => V_a = V_b ) ) ) ) ).

fof(fact_inverse__zero__imp__zero,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( c_Rings_Oinverse__class_Oinverse(T_a,V_a) = c_Groups_Ozero__class_Ozero(T_a)
       => V_a = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_nonzero__inverse__inverse__eq,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Oinverse(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a)) = V_a ) ) ).

fof(fact_nonzero__imp__inverse__nonzero,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Oinverse(T_a,V_a) != c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_inverse__nonzero__iff__nonzero,axiom,
    ! [V_a_2,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => ( c_Rings_Oinverse__class_Oinverse(T_a,V_a_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> V_a_2 = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_inverse__zero,axiom,
    ! [T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_nonzero__inverse__mult__distrib,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_inverse__1,axiom,
    ! [T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Oone__class_Oone(T_a)) = c_Groups_Oone__class_Oone(T_a) ) ).

fof(fact_inverse__eq__1__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => ( c_Rings_Oinverse__class_Oinverse(T_a,V_x_2) = c_Groups_Oone__class_Oone(T_a)
      <=> V_x_2 = c_Groups_Oone__class_Oone(T_a) ) ) ).

fof(fact_inverse__mult__distrib,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) = c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) ) ).

fof(fact_field__inverse__zero,axiom,
    ! [T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Ozero__class_Ozero(T_a)) = c_Groups_Ozero__class_Ozero(T_a) ) ).

fof(fact_nonzero__inverse__minus__eq,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ).

fof(fact_inverse__positive__iff__positive,axiom,
    ! [V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_inverse__negative__iff__negative,axiom,
    ! [V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_positive__imp__inverse__positive,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ).

fof(fact_inverse__positive__imp__positive,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_a))
       => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a) ) ) ) ).

fof(fact_negative__imp__inverse__negative,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a))
       => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_less__imp__inverse__less,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_less__imp__inverse__less__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,V_a,V_b)
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_inverse__negative__imp__negative,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Groups_Ozero__class_Ozero(T_a))
       => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => c_Orderings_Oord__class_Oless(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) ) ) ) ).

fof(fact_inverse__less__imp__less,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b))
       => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
         => c_Orderings_Oord__class_Oless(T_a,V_b,V_a) ) ) ) ).

fof(fact_inverse__less__imp__less__neg,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b))
       => ( c_Orderings_Oord__class_Oless(T_a,V_b,c_Groups_Ozero__class_Ozero(T_a))
         => c_Orderings_Oord__class_Oless(T_a,V_b,V_a) ) ) ) ).

fof(fact_inverse__divide,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b)) = c_Rings_Oinverse__class_Odivide(T_a,V_b,V_a) ) ).

fof(fact_field__divide__inverse,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Rings_Oinverse__class_Odivide(T_a,V_a,V_b) = c_Groups_Otimes__class_Otimes(T_a,V_a,c_Rings_Oinverse__class_Oinverse(T_a,V_b)) ) ).

fof(fact_inverse__nonpositive__iff__nonpositive,axiom,
    ! [V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a_2),c_Groups_Ozero__class_Ozero(T_a))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,V_a_2,c_Groups_Ozero__class_Ozero(T_a)) ) ) ).

fof(fact_inverse__nonnegative__iff__nonnegative,axiom,
    ! [V_a_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_a_2))
      <=> c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a_2) ) ) ).

fof(fact_inverse__minus__eq,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Odivision__ring__inverse__zero(T_a)
     => c_Rings_Oinverse__class_Oinverse(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ).

fof(fact_pdivmod__rel__smult__right,axiom,
    ! [V_r,V_q,V_y,V_x,V_a,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( c_Polynomial_Opdivmod__rel(T_a,V_x,V_y,V_q,V_r)
         => c_Polynomial_Opdivmod__rel(T_a,V_x,c_Polynomial_Osmult(T_a,V_a,V_y),c_Polynomial_Osmult(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),V_q),V_r) ) ) ) ).

fof(fact_one__le__inverse,axiom,
    ! [V_a,T_a] :
      ( class_Fields_Olinordered__field(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => ( c_Orderings_Oord__class_Oless__eq(T_a,V_a,c_Groups_Oone__class_Oone(T_a))
         => c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oone__class_Oone(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_a)) ) ) ) ).

fof(fact_inverse__less__1__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_x_2),c_Groups_Oone__class_Oone(T_a))
      <=> ( c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,c_Groups_Ozero__class_Ozero(T_a))
          | c_Orderings_Oord__class_Oless(T_a,c_Groups_Oone__class_Oone(T_a),V_x_2) ) ) ) ).

fof(fact_one__le__inverse__iff,axiom,
    ! [V_x_2,T_a] :
      ( class_Fields_Olinordered__field__inverse__zero(T_a)
     => ( c_Orderings_Oord__class_Oless__eq(T_a,c_Groups_Oone__class_Oone(T_a),c_Rings_Oinverse__class_Oinverse(T_a,V_x_2))
      <=> ( c_Orderings_Oord__class_Oless(T_a,c_Groups_Ozero__class_Ozero(T_a),V_x_2)
          & c_Orderings_Oord__class_Oless__eq(T_a,V_x_2,c_Groups_Oone__class_Oone(T_a)) ) ) ) ).

fof(fact_Deriv_Oinverse__diff__inverse,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Odivision__ring(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b)) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Groups_Ominus__class_Ominus(T_a,V_a,V_b)),c_Rings_Oinverse__class_Oinverse(T_a,V_b))) ) ) ) ).

fof(fact_DERIV__inverse__lemma,axiom,
    ! [V_h,V_b,V_a,T_a] :
      ( class_RealVector_Oreal__normed__field(T_a)
     => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
       => ( V_b != c_Groups_Ozero__class_Ozero(T_a)
         => c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Oinverse(T_a,V_b)),V_h) = c_Groups_Ouminus__class_Ouminus(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Groups_Otimes__class_Otimes(T_a,c_Rings_Oinverse__class_Oinverse(T_a,V_a),c_Rings_Oinverse__class_Odivide(T_a,c_Groups_Ominus__class_Ominus(T_a,V_a,V_b),V_h)),c_Rings_Oinverse__class_Oinverse(T_a,V_b))) ) ) ) ).

fof(fact_poly__gcd_Osimps_I1_J,axiom,
    ! [V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Polynomial_Opoly__gcd(T_a,V_x,c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))) = c_Polynomial_Osmult(T_a,c_Rings_Oinverse__class_Oinverse(T_a,hAPP(c_Polynomial_Ocoeff(T_a,V_x),c_Polynomial_Odegree(T_a,V_x))),V_x) ) ).

fof(fact_poly__eq__0__iff__dvd,axiom,
    ! [V_ca_2,V_pa_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( hAPP(c_Polynomial_Opoly(T_a,V_pa_2),V_ca_2) = c_Groups_Ozero__class_Ozero(T_a)
      <=> c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_ca_2),c_Polynomial_OpCons(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))),V_pa_2) ) ) ).

fof(fact_dvd__iff__poly__eq__0,axiom,
    ! [V_pa_2,V_ca_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,V_ca_2,c_Polynomial_OpCons(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))),V_pa_2)
      <=> hAPP(c_Polynomial_Opoly(T_a,V_pa_2),c_Groups_Ouminus__class_Ouminus(T_a,V_ca_2)) = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_dvd__0__right,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Rings_Odvd__class_Odvd(T_a,V_a,c_Groups_Ozero__class_Ozero(T_a)) ) ).

fof(fact_poly__gcd__dvd2,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_Opoly__gcd(T_a,V_x,V_y),V_y) ) ).

fof(fact_poly__gcd__dvd1,axiom,
    ! [V_y,V_x,T_a] :
      ( class_Fields_Ofield(T_a)
     => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_Opoly__gcd(T_a,V_x,V_y),V_x) ) ).

fof(fact_minus__dvd__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Ocomm__ring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_x_2),V_y_2)
      <=> c_Rings_Odvd__class_Odvd(T_a,V_x_2,V_y_2) ) ) ).

fof(fact_dvd__minus__iff,axiom,
    ! [V_y_2,V_x_2,T_a] :
      ( class_Rings_Ocomm__ring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_x_2,c_Groups_Ouminus__class_Ouminus(T_a,V_y_2))
      <=> c_Rings_Odvd__class_Odvd(T_a,V_x_2,V_y_2) ) ) ).

fof(fact_dvd__diff,axiom,
    ! [V_z,V_y,V_x,T_a] :
      ( class_Rings_Ocomm__ring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_x,V_y)
       => ( c_Rings_Odvd__class_Odvd(T_a,V_x,V_z)
         => c_Rings_Odvd__class_Odvd(T_a,V_x,c_Groups_Ominus__class_Ominus(T_a,V_y,V_z)) ) ) ) ).

fof(fact_one__dvd,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Rings_Odvd__class_Odvd(T_a,c_Groups_Oone__class_Oone(T_a),V_a) ) ).

fof(fact_dvd__mult__cancel__right,axiom,
    ! [V_b_2,V_ca_2,V_a_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a_2,V_ca_2),c_Groups_Otimes__class_Otimes(T_a,V_b_2,V_ca_2))
      <=> ( V_ca_2 = c_Groups_Ozero__class_Ozero(T_a)
          | c_Rings_Odvd__class_Odvd(T_a,V_a_2,V_b_2) ) ) ) ).

fof(fact_dvd__mult__cancel__left,axiom,
    ! [V_b_2,V_a_2,V_ca_2,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_a_2),c_Groups_Otimes__class_Otimes(T_a,V_ca_2,V_b_2))
      <=> ( V_ca_2 = c_Groups_Ozero__class_Ozero(T_a)
          | c_Rings_Odvd__class_Odvd(T_a,V_a_2,V_b_2) ) ) ) ).

fof(fact_dvd__0__left,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,c_Groups_Ozero__class_Ozero(T_a),V_a)
       => V_a = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_dvd__mult__right,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c)
       => c_Rings_Odvd__class_Odvd(T_a,V_b,V_c) ) ) ).

fof(fact_dvd__mult__left,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b),V_c)
       => c_Rings_Odvd__class_Odvd(T_a,V_a,V_c) ) ) ).

fof(fact_dvdI,axiom,
    ! [V_k,V_b,V_a,T_a] :
      ( class_Rings_Odvd(T_a)
     => ( V_a = c_Groups_Otimes__class_Otimes(T_a,V_b,V_k)
       => c_Rings_Odvd__class_Odvd(T_a,V_b,V_a) ) ) ).

fof(fact_mult__dvd__mono,axiom,
    ! [V_d,V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_b)
       => ( c_Rings_Odvd__class_Odvd(T_a,V_c,V_d)
         => c_Rings_Odvd__class_Odvd(T_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_c),c_Groups_Otimes__class_Otimes(T_a,V_b,V_d)) ) ) ) ).

fof(fact_dvd__mult,axiom,
    ! [V_b,V_c,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_c)
       => c_Rings_Odvd__class_Odvd(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ) ).

fof(fact_dvd__mult2,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_b)
       => c_Rings_Odvd__class_Odvd(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_c)) ) ) ).

fof(fact_dvd__triv__right,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Rings_Odvd__class_Odvd(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_b,V_a)) ) ).

fof(fact_dvd__triv__left,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Rings_Odvd__class_Odvd(T_a,V_a,c_Groups_Otimes__class_Otimes(T_a,V_a,V_b)) ) ).

fof(fact_dvd__add,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_b)
       => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_c)
         => c_Rings_Odvd__class_Odvd(T_a,V_a,c_Groups_Oplus__class_Oplus(T_a,V_b,V_c)) ) ) ) ).

fof(fact_smult__dvd__cancel,axiom,
    ! [V_q,V_p,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),V_q)
       => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,V_q) ) ) ).

fof(fact_dvd__smult,axiom,
    ! [V_a,V_q,V_p,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,V_q)
       => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,c_Polynomial_Osmult(T_a,V_a,V_q)) ) ) ).

fof(fact_dvd__refl,axiom,
    ! [V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => c_Rings_Odvd__class_Odvd(T_a,V_a,V_a) ) ).

fof(fact_dvd__trans,axiom,
    ! [V_c,V_b,V_a,T_a] :
      ( class_Rings_Ocomm__semiring__1(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_b)
       => ( c_Rings_Odvd__class_Odvd(T_a,V_b,V_c)
         => c_Rings_Odvd__class_Odvd(T_a,V_a,V_c) ) ) ) ).

fof(fact_poly__dvd__antisym,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( hAPP(c_Polynomial_Ocoeff(T_a,V_p),c_Polynomial_Odegree(T_a,V_p)) = hAPP(c_Polynomial_Ocoeff(T_a,V_q),c_Polynomial_Odegree(T_a,V_q))
       => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,V_q)
         => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_q,V_p)
           => V_p = V_q ) ) ) ) ).

fof(fact_dvd__smult__iff,axiom,
    ! [V_q_2,V_pa_2,V_a_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( V_a_2 != c_Groups_Ozero__class_Ozero(T_a)
       => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_pa_2,c_Polynomial_Osmult(T_a,V_a_2,V_q_2))
        <=> c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_pa_2,V_q_2) ) ) ) ).

fof(fact_smult__dvd,axiom,
    ! [V_a,V_q,V_p,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,V_q)
       => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a,V_p),V_q) ) ) ) ).

fof(fact_dvd__smult__cancel,axiom,
    ! [V_q,V_a,V_p,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,c_Polynomial_Osmult(T_a,V_a,V_q))
       => ( V_a != c_Groups_Ozero__class_Ozero(T_a)
         => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,V_q) ) ) ) ).

fof(fact_poly__gcd__greatest,axiom,
    ! [V_y,V_x,V_k,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_k,V_x)
       => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_k,V_y)
         => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_k,c_Polynomial_Opoly__gcd(T_a,V_x,V_y)) ) ) ) ).

fof(fact_dvd__poly__gcd__iff,axiom,
    ! [V_y_2,V_x_2,V_k_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_k_2,c_Polynomial_Opoly__gcd(T_a,V_x_2,V_y_2))
      <=> ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_k_2,V_x_2)
          & c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_k_2,V_y_2) ) ) ) ).

fof(fact_dvd__eq__mod__eq__0,axiom,
    ! [V_b_2,V_a_2,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a_2,V_b_2)
      <=> c_Divides_Odiv__class_Omod(T_a,V_b_2,V_a_2) = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_dvd__imp__mod__0,axiom,
    ! [V_b,V_a,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_a,V_b)
       => c_Divides_Odiv__class_Omod(T_a,V_b,V_a) = c_Groups_Ozero__class_Ozero(T_a) ) ) ).

fof(fact_dvd__mod__iff,axiom,
    ! [V_m_2,V_n_2,V_k_2,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_k_2,V_n_2)
       => ( c_Rings_Odvd__class_Odvd(T_a,V_k_2,c_Divides_Odiv__class_Omod(T_a,V_m_2,V_n_2))
        <=> c_Rings_Odvd__class_Odvd(T_a,V_k_2,V_m_2) ) ) ) ).

fof(fact_mod__mod__cancel,axiom,
    ! [V_a,V_b,V_c,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_c,V_b)
       => c_Divides_Odiv__class_Omod(T_a,c_Divides_Odiv__class_Omod(T_a,V_a,V_b),V_c) = c_Divides_Odiv__class_Omod(T_a,V_a,V_c) ) ) ).

fof(fact_dvd__mod,axiom,
    ! [V_n,V_m,V_k,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_k,V_m)
       => ( c_Rings_Odvd__class_Odvd(T_a,V_k,V_n)
         => c_Rings_Odvd__class_Odvd(T_a,V_k,c_Divides_Odiv__class_Omod(T_a,V_m,V_n)) ) ) ) ).

fof(fact_dvd__mod__imp__dvd,axiom,
    ! [V_n,V_m,V_k,T_a] :
      ( class_Divides_Osemiring__div(T_a)
     => ( c_Rings_Odvd__class_Odvd(T_a,V_k,c_Divides_Odiv__class_Omod(T_a,V_m,V_n))
       => ( c_Rings_Odvd__class_Odvd(T_a,V_k,V_n)
         => c_Rings_Odvd__class_Odvd(T_a,V_k,V_m) ) ) ) ).

fof(fact_smult__dvd__iff,axiom,
    ! [V_q_2,V_pa_2,V_a_2,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Polynomial_Osmult(T_a,V_a_2,V_pa_2),V_q_2)
      <=> ( ( V_a_2 = c_Groups_Ozero__class_Ozero(T_a)
           => V_q_2 = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
          & ( V_a_2 != c_Groups_Ozero__class_Ozero(T_a)
           => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_pa_2,V_q_2) ) ) ) ) ).

fof(fact_dvd__imp__degree__le,axiom,
    ! [V_q,V_p,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_p,V_q)
       => ( V_q != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
         => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,c_Polynomial_Odegree(T_a,V_p),c_Polynomial_Odegree(T_a,V_q)) ) ) ) ).

fof(fact_inf__period_I4_J,axiom,
    ! [V_t_2,V_D_2,V_da_2,T_a] :
      ( ( class_Rings_Ocomm__ring(T_a)
        & class_Rings_Odvd(T_a) )
     => ( c_Rings_Odvd__class_Odvd(T_a,V_da_2,V_D_2)
       => ! [B_x,B_k] :
            ( c_Rings_Odvd__class_Odvd(T_a,V_da_2,c_Groups_Oplus__class_Oplus(T_a,B_x,V_t_2))
          <=> c_Rings_Odvd__class_Odvd(T_a,V_da_2,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ominus__class_Ominus(T_a,B_x,c_Groups_Otimes__class_Otimes(T_a,B_k,V_D_2)),V_t_2)) ) ) ) ).

fof(fact_inf__period_I3_J,axiom,
    ! [V_t_2,V_D_2,V_da_2,T_a] :
      ( ( class_Rings_Ocomm__ring(T_a)
        & class_Rings_Odvd(T_a) )
     => ( c_Rings_Odvd__class_Odvd(T_a,V_da_2,V_D_2)
       => ! [B_x,B_k] :
            ( c_Rings_Odvd__class_Odvd(T_a,V_da_2,c_Groups_Oplus__class_Oplus(T_a,B_x,V_t_2))
          <=> c_Rings_Odvd__class_Odvd(T_a,V_da_2,c_Groups_Oplus__class_Oplus(T_a,c_Groups_Ominus__class_Ominus(T_a,B_x,c_Groups_Otimes__class_Otimes(T_a,B_k,V_D_2)),V_t_2)) ) ) ) ).

fof(fact_dvd__1__left,axiom,
    ! [V_k] : c_Rings_Odvd__class_Odvd(tc_Nat_Onat,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)),V_k) ).

fof(fact_dvd__diffD,axiom,
    ! [V_n,V_m,V_k] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n))
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_n)
       => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
         => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_m) ) ) ) ).

fof(fact_dvd__diffD1,axiom,
    ! [V_n,V_m,V_k] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n))
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_m)
       => ( c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_n,V_m)
         => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_n) ) ) ) ).

fof(fact_dvd__diff__nat,axiom,
    ! [V_n,V_m,V_k] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_m)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_n)
       => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,c_Groups_Ominus__class_Ominus(tc_Nat_Onat,V_m,V_n)) ) ) ).

fof(fact_nat__dvd__1__iff__1,axiom,
    ! [V_m_2] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_m_2,c_Groups_Oone__class_Oone(tc_Nat_Onat))
    <=> V_m_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat) ) ).

fof(fact_dvd__reduce,axiom,
    ! [V_n_2,V_k_2] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k_2,c_Groups_Oplus__class_Oplus(tc_Nat_Onat,V_n_2,V_k_2))
    <=> c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k_2,V_n_2) ) ).

fof(fact_nat__mult__dvd__cancel__disj,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2))
    <=> ( V_k_2 = c_Groups_Ozero__class_Ozero(tc_Nat_Onat)
        | c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_nat__dvd__not__less,axiom,
    ! [V_n,V_m] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_m)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,V_m,V_n)
       => ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_n,V_m) ) ) ).

fof(fact_dvd__1__iff__1,axiom,
    ! [V_m_2] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_m_2,c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)))
    <=> V_m_2 = c_Nat_OSuc(c_Groups_Ozero__class_Ozero(tc_Nat_Onat)) ) ).

fof(fact_dvd__imp__le,axiom,
    ! [V_n,V_k] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_k,V_n)
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_n)
       => c_Orderings_Oord__class_Oless__eq(tc_Nat_Onat,V_k,V_n) ) ) ).

fof(fact_nat__mult__dvd__cancel1,axiom,
    ! [V_n_2,V_m_2,V_k_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k_2)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_m_2),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k_2,V_n_2))
      <=> c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_m_2,V_n_2) ) ) ).

fof(fact_dvd__mult__cancel,axiom,
    ! [V_n,V_m,V_k] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_m),c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_k,V_n))
     => ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_k)
       => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_m,V_n) ) ) ).

fof(fact_dvd__mult__cancel1,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_m_2)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_m_2,V_n_2),V_m_2)
      <=> V_n_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat) ) ) ).

fof(fact_dvd__mult__cancel2,axiom,
    ! [V_n_2,V_m_2] :
      ( c_Orderings_Oord__class_Oless(tc_Nat_Onat,c_Groups_Ozero__class_Ozero(tc_Nat_Onat),V_m_2)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,c_Groups_Otimes__class_Otimes(tc_Nat_Onat,V_n_2,V_m_2),V_m_2)
      <=> V_n_2 = c_Groups_Oone__class_Oone(tc_Nat_Onat) ) ) ).

fof(fact_unity__coeff__ex,axiom,
    ! [V_l_2,V_P_2,T_a] :
      ( ( class_Rings_Odvd(T_a)
        & class_Rings_Osemiring__0(T_a) )
     => ( ? [B_x] : hBOOL(hAPP(V_P_2,c_Groups_Otimes__class_Otimes(T_a,V_l_2,B_x)))
      <=> ? [B_x] :
            ( c_Rings_Odvd__class_Odvd(T_a,V_l_2,c_Groups_Oplus__class_Oplus(T_a,B_x,c_Groups_Ozero__class_Ozero(T_a)))
            & hBOOL(hAPP(V_P_2,B_x)) ) ) ) ).

fof(fact_poly__gcd__unique,axiom,
    ! [V_y,V_x,V_d,T_a] :
      ( class_Fields_Ofield(T_a)
     => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_d,V_x)
       => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),V_d,V_y)
         => ( ! [B_k] :
                ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),B_k,V_x)
               => ( c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),B_k,V_y)
                 => c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),B_k,V_d) ) )
           => ( ( ( ( V_x = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
                    & V_y = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
                 => hAPP(c_Polynomial_Ocoeff(T_a,V_d),c_Polynomial_Odegree(T_a,V_d)) = c_Groups_Ozero__class_Ozero(T_a) )
                & ( ~ ( V_x = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
                      & V_y = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)) )
                 => hAPP(c_Polynomial_Ocoeff(T_a,V_d),c_Polynomial_Odegree(T_a,V_d)) = c_Groups_Oone__class_Oone(T_a) ) )
             => c_Polynomial_Opoly__gcd(T_a,V_x,V_y) = V_d ) ) ) ) ) ).

fof(fact_order__2,axiom,
    ! [V_a,V_p,T_a] :
      ( class_Rings_Oidom(T_a)
     => ( V_p != c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a))
       => ~ c_Rings_Odvd__class_Odvd(tc_Polynomial_Opoly(T_a),c_Power_Opower__class_Opower(tc_Polynomial_Opoly(T_a),c_Polynomial_OpCons(T_a,c_Groups_Ouminus__class_Ouminus(T_a,V_a),c_Polynomial_OpCons(T_a,c_Groups_Oone__class_Oone(T_a),c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(T_a)))),c_Nat_OSuc(c_Polynomial_Oorder(T_a,V_a,V_p))),V_p) ) ) ).

fof(fact_dvd_Oorder__refl,axiom,
    ! [V_x] : c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_x) ).

fof(fact_dvd_Oeq__iff,axiom,
    ! [V_y_2,V_x_2] :
      ( V_x_2 = V_y_2
    <=> ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x_2,V_y_2)
        & c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y_2,V_x_2) ) ) ).

fof(fact_dvd_Ole__less,axiom,
    ! [V_y_2,V_x_2] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x_2,V_y_2)
    <=> ( ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x_2,V_y_2)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y_2,V_x_2) )
        | V_x_2 = V_y_2 ) ) ).

fof(fact_dvd_Oless__le,axiom,
    ! [V_y_2,V_x_2] :
      ( ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x_2,V_y_2)
        & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y_2,V_x_2) )
    <=> ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x_2,V_y_2)
        & V_x_2 != V_y_2 ) ) ).

fof(fact_dvd_Oneq__le__trans,axiom,
    ! [V_b,V_a] :
      ( V_a != V_b
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_b)
       => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_b)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_b,V_a) ) ) ) ).

fof(fact_dvd_Oeq__refl,axiom,
    ! [V_y,V_x] :
      ( V_x = V_y
     => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y) ) ).

fof(fact_dvd_Oantisym__conv,axiom,
    ! [V_x_2,V_y_2] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y_2,V_x_2)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x_2,V_y_2)
      <=> V_x_2 = V_y_2 ) ) ).

fof(fact_dvd_Ole__imp__less__or__eq,axiom,
    ! [V_y,V_x] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y)
     => ( ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y,V_x) )
        | V_x = V_y ) ) ).

fof(fact_dvd_Ole__neq__trans,axiom,
    ! [V_b,V_a] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_b)
     => ( V_a != V_b
       => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_b)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_b,V_a) ) ) ) ).

fof(fact_dvd_Oord__eq__le__trans,axiom,
    ! [V_c,V_b,V_a] :
      ( V_a = V_b
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_b,V_c)
       => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_c) ) ) ).

fof(fact_dvd_Oord__le__eq__trans,axiom,
    ! [V_c,V_b,V_a] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_b)
     => ( V_b = V_c
       => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_c) ) ) ).

fof(fact_dvd__antisym,axiom,
    ! [V_n,V_m] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_m,V_n)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_n,V_m)
       => V_m = V_n ) ) ).

fof(fact_dvd_Oantisym,axiom,
    ! [V_y,V_x] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y,V_x)
       => V_x = V_y ) ) ).

fof(fact_dvd_Oorder__trans,axiom,
    ! [V_z,V_y,V_x] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y)
     => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y,V_z)
       => c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_z) ) ) ).

fof(fact_dvd_Oord__eq__less__trans,axiom,
    ! [V_c,V_b,V_a] :
      ( V_a = V_b
     => ( ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_b,V_c)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_c,V_b) )
       => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_a,V_c)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_c,V_a) ) ) ) ).

fof(fact_dvd_Ole__less__trans,axiom,
    ! [V_z,V_y,V_x] :
      ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y)
     => ( ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y,V_z)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_z,V_y) )
       => ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_z)
          & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_z,V_x) ) ) ) ).

fof(fact_dvd_Oless__imp__neq,axiom,
    ! [V_y,V_x] :
      ( ( c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_x,V_y)
        & ~ c_Rings_Odvd__class_Odvd(tc_Nat_Onat,V_y,V_x) )
     => V_x != V_y ) ).

%----Arity declarations (159)
fof(arity_Polynomial__Opoly__Groups_Ocancel__comm__monoid__add,axiom,
    ! [T_1] :
      ( class_Groups_Ocancel__comm__monoid__add(T_1)
     => class_Groups_Ocancel__comm__monoid__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Complex__Ocomplex__Groups_Ocancel__comm__monoid__add,axiom,
    class_Groups_Ocancel__comm__monoid__add(tc_Complex_Ocomplex) ).

fof(arity_HOL__Obool__Enum_Oenum,axiom,
    class_Enum_Oenum(tc_HOL_Obool) ).

fof(arity_Nat__Onat__Groups_Ocancel__comm__monoid__add,axiom,
    class_Groups_Ocancel__comm__monoid__add(tc_Nat_Onat) ).

fof(arity_fun__Enum_Oenum,axiom,
    ! [T_1,T_2] :
      ( ( class_Enum_Oenum(T_2)
        & class_Enum_Oenum(T_1) )
     => class_Enum_Oenum(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__Lattices_Oboolean__algebra,axiom,
    ! [T_2,T_1] :
      ( class_Lattices_Oboolean__algebra(T_1)
     => class_Lattices_Oboolean__algebra(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__Orderings_Opreorder,axiom,
    ! [T_2,T_1] :
      ( class_Orderings_Opreorder(T_1)
     => class_Orderings_Opreorder(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__Orderings_Oorder,axiom,
    ! [T_2,T_1] :
      ( class_Orderings_Oorder(T_1)
     => class_Orderings_Oorder(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__Orderings_Oord,axiom,
    ! [T_2,T_1] :
      ( class_Orderings_Oord(T_1)
     => class_Orderings_Oord(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__Groups_Ouminus,axiom,
    ! [T_2,T_1] :
      ( class_Groups_Ouminus(T_1)
     => class_Groups_Ouminus(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__Groups_Ominus,axiom,
    ! [T_2,T_1] :
      ( class_Groups_Ominus(T_1)
     => class_Groups_Ominus(tc_fun(T_2,T_1)) ) ).

fof(arity_fun__HOL_Oequal,axiom,
    ! [T_1,T_2] :
      ( ( class_Enum_Oenum(T_2)
        & class_HOL_Oequal(T_1) )
     => class_HOL_Oequal(tc_fun(T_2,T_1)) ) ).

fof(arity_Nat__Onat__Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
    class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oordered__cancel__ab__semigroup__add,axiom,
    class_Groups_Oordered__cancel__ab__semigroup__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oordered__ab__semigroup__add__imp__le,axiom,
    class_Groups_Oordered__ab__semigroup__add__imp__le(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Olinordered__comm__semiring__strict,axiom,
    class_Rings_Olinordered__comm__semiring__strict(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Olinordered__semiring__strict,axiom,
    class_Rings_Olinordered__semiring__strict(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oordered__ab__semigroup__add,axiom,
    class_Groups_Oordered__ab__semigroup__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oordered__comm__monoid__add,axiom,
    class_Groups_Oordered__comm__monoid__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Ocancel__ab__semigroup__add,axiom,
    class_Groups_Ocancel__ab__semigroup__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Oordered__cancel__semiring,axiom,
    class_Rings_Oordered__cancel__semiring(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Oordered__comm__semiring,axiom,
    class_Rings_Oordered__comm__semiring(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Ocancel__semigroup__add,axiom,
    class_Groups_Ocancel__semigroup__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Olinordered__semiring,axiom,
    class_Rings_Olinordered__semiring(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Olinordered__semidom,axiom,
    class_Rings_Olinordered__semidom(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oab__semigroup__mult,axiom,
    class_Groups_Oab__semigroup__mult(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Ocomm__monoid__mult,axiom,
    class_Groups_Ocomm__monoid__mult(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oab__semigroup__add,axiom,
    class_Groups_Oab__semigroup__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Oordered__semiring,axiom,
    class_Rings_Oordered__semiring(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Ono__zero__divisors,axiom,
    class_Rings_Ono__zero__divisors(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Ocomm__monoid__add,axiom,
    class_Groups_Ocomm__monoid__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Ocomm__semiring__1,axiom,
    class_Rings_Ocomm__semiring__1(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Ocomm__semiring__0,axiom,
    class_Rings_Ocomm__semiring__0(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Divides_Osemiring__div,axiom,
    class_Divides_Osemiring__div(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Ocomm__semiring,axiom,
    class_Rings_Ocomm__semiring(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Ozero__neq__one,axiom,
    class_Rings_Ozero__neq__one(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Orderings_Opreorder,axiom,
    class_Orderings_Opreorder(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Orderings_Olinorder,axiom,
    class_Orderings_Olinorder(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Omonoid__mult,axiom,
    class_Groups_Omonoid__mult(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Omonoid__add,axiom,
    class_Groups_Omonoid__add(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Osemiring__0,axiom,
    class_Rings_Osemiring__0(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Omult__zero,axiom,
    class_Rings_Omult__zero(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Orderings_Oorder,axiom,
    class_Orderings_Oorder(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Osemiring,axiom,
    class_Rings_Osemiring(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Orderings_Oord,axiom,
    class_Orderings_Oord(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Ominus,axiom,
    class_Groups_Ominus(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Ozero,axiom,
    class_Groups_Ozero(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Groups_Oone,axiom,
    class_Groups_Oone(tc_Nat_Onat) ).

fof(arity_Nat__Onat__Rings_Odvd,axiom,
    class_Rings_Odvd(tc_Nat_Onat) ).

fof(arity_Nat__Onat__HOL_Oequal,axiom,
    class_HOL_Oequal(tc_Nat_Onat) ).

fof(arity_HOL__Obool__Lattices_Oboolean__algebra,axiom,
    class_Lattices_Oboolean__algebra(tc_HOL_Obool) ).

fof(arity_HOL__Obool__Orderings_Opreorder,axiom,
    class_Orderings_Opreorder(tc_HOL_Obool) ).

fof(arity_HOL__Obool__Orderings_Oorder,axiom,
    class_Orderings_Oorder(tc_HOL_Obool) ).

fof(arity_HOL__Obool__Orderings_Oord,axiom,
    class_Orderings_Oord(tc_HOL_Obool) ).

fof(arity_HOL__Obool__Groups_Ouminus,axiom,
    class_Groups_Ouminus(tc_HOL_Obool) ).

fof(arity_HOL__Obool__Groups_Ominus,axiom,
    class_Groups_Ominus(tc_HOL_Obool) ).

fof(arity_HOL__Obool__HOL_Oequal,axiom,
    class_HOL_Oequal(tc_HOL_Obool) ).

fof(arity_Complex__Ocomplex__Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
    class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__RealVector_Oreal__normed__div__algebra,axiom,
    class_RealVector_Oreal__normed__div__algebra(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Odivision__ring__inverse__zero,axiom,
    class_Rings_Odivision__ring__inverse__zero(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__RealVector_Oreal__normed__algebra__1,axiom,
    class_RealVector_Oreal__normed__algebra__1(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__RealVector_Oreal__normed__algebra,axiom,
    class_RealVector_Oreal__normed__algebra(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ocancel__ab__semigroup__add,axiom,
    class_Groups_Ocancel__ab__semigroup__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Oring__1__no__zero__divisors,axiom,
    class_Rings_Oring__1__no__zero__divisors(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__RealVector_Oreal__normed__vector,axiom,
    class_RealVector_Oreal__normed__vector(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__RealVector_Oreal__normed__field,axiom,
    class_RealVector_Oreal__normed__field(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Oring__no__zero__divisors,axiom,
    class_Rings_Oring__no__zero__divisors(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ocancel__semigroup__add,axiom,
    class_Groups_Ocancel__semigroup__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Fields_Ofield__inverse__zero,axiom,
    class_Fields_Ofield__inverse__zero(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Oab__semigroup__mult,axiom,
    class_Groups_Oab__semigroup__mult(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ocomm__monoid__mult,axiom,
    class_Groups_Ocomm__monoid__mult(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Oab__semigroup__add,axiom,
    class_Groups_Oab__semigroup__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ono__zero__divisors,axiom,
    class_Rings_Ono__zero__divisors(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ocomm__monoid__add,axiom,
    class_Groups_Ocomm__monoid__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ocomm__semiring__1,axiom,
    class_Rings_Ocomm__semiring__1(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ocomm__semiring__0,axiom,
    class_Rings_Ocomm__semiring__0(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__RealVector_Oreal__field,axiom,
    class_RealVector_Oreal__field(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Odivision__ring,axiom,
    class_Rings_Odivision__ring(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ocomm__semiring,axiom,
    class_Rings_Ocomm__semiring(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Oab__group__add,axiom,
    class_Groups_Oab__group__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ozero__neq__one,axiom,
    class_Rings_Ozero__neq__one(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Omonoid__mult,axiom,
    class_Groups_Omonoid__mult(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ocomm__ring__1,axiom,
    class_Rings_Ocomm__ring__1(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Omonoid__add,axiom,
    class_Groups_Omonoid__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Osemiring__0,axiom,
    class_Rings_Osemiring__0(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ogroup__add,axiom,
    class_Groups_Ogroup__add(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Omult__zero,axiom,
    class_Rings_Omult__zero(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Ocomm__ring,axiom,
    class_Rings_Ocomm__ring(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Int_Oring__char__0,axiom,
    class_Int_Oring__char__0(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Osemiring,axiom,
    class_Rings_Osemiring(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ouminus,axiom,
    class_Groups_Ouminus(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Oring__1,axiom,
    class_Rings_Oring__1(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ominus,axiom,
    class_Groups_Ominus(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Fields_Ofield,axiom,
    class_Fields_Ofield(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Ozero,axiom,
    class_Groups_Ozero(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Oring,axiom,
    class_Rings_Oring(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Oidom,axiom,
    class_Rings_Oidom(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Groups_Oone,axiom,
    class_Groups_Oone(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__Rings_Odvd,axiom,
    class_Rings_Odvd(tc_Complex_Ocomplex) ).

fof(arity_Complex__Ocomplex__HOL_Oequal,axiom,
    class_HOL_Oequal(tc_Complex_Ocomplex) ).

fof(arity_Polynomial__Opoly__Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
    ! [T_1] :
      ( class_Rings_Oidom(T_1)
     => class_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oordered__cancel__ab__semigroup__add,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Oordered__cancel__ab__semigroup__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oordered__ab__semigroup__add__imp__le,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Oordered__ab__semigroup__add__imp__le(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__comm__semiring__strict,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__comm__semiring__strict(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__semiring__1__strict,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__semiring__1__strict(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__semiring__strict,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__semiring__strict(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oordered__ab__semigroup__add,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Oordered__ab__semigroup__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oordered__comm__monoid__add,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Oordered__comm__monoid__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Olinordered__ab__group__add,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Olinordered__ab__group__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ocancel__ab__semigroup__add,axiom,
    ! [T_1] :
      ( class_Groups_Ocancel__comm__monoid__add(T_1)
     => class_Groups_Ocancel__ab__semigroup__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oring__1__no__zero__divisors,axiom,
    ! [T_1] :
      ( class_Rings_Oidom(T_1)
     => class_Rings_Oring__1__no__zero__divisors(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oordered__cancel__semiring,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Oordered__cancel__semiring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__ring__strict,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__ring__strict(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oring__no__zero__divisors,axiom,
    ! [T_1] :
      ( class_Rings_Oidom(T_1)
     => class_Rings_Oring__no__zero__divisors(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oordered__comm__semiring,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Oordered__comm__semiring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__semiring__1,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__semiring__1(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oordered__ab__group__add,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Oordered__ab__group__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ocancel__semigroup__add,axiom,
    ! [T_1] :
      ( class_Groups_Ocancel__comm__monoid__add(T_1)
     => class_Groups_Ocancel__semigroup__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__semiring,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__semiring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__semidom,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__semidom(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oab__semigroup__mult,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__0(T_1)
     => class_Groups_Oab__semigroup__mult(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ocomm__monoid__mult,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__1(T_1)
     => class_Groups_Ocomm__monoid__mult(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oab__semigroup__add,axiom,
    ! [T_1] :
      ( class_Groups_Ocomm__monoid__add(T_1)
     => class_Groups_Oab__semigroup__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oordered__semiring,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Oordered__semiring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ono__zero__divisors,axiom,
    ! [T_1] :
      ( class_Rings_Oidom(T_1)
     => class_Rings_Ono__zero__divisors(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ocomm__monoid__add,axiom,
    ! [T_1] :
      ( class_Groups_Ocomm__monoid__add(T_1)
     => class_Groups_Ocomm__monoid__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__ring,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__ring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Olinordered__idom,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Olinordered__idom(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ocomm__semiring__1,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__1(T_1)
     => class_Rings_Ocomm__semiring__1(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ocomm__semiring__0,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__0(T_1)
     => class_Rings_Ocomm__semiring__0(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Divides_Osemiring__div,axiom,
    ! [T_1] :
      ( class_Fields_Ofield(T_1)
     => class_Divides_Osemiring__div(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ocomm__semiring,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__0(T_1)
     => class_Rings_Ocomm__semiring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oab__group__add,axiom,
    ! [T_1] :
      ( class_Groups_Oab__group__add(T_1)
     => class_Groups_Oab__group__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ozero__neq__one,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__1(T_1)
     => class_Rings_Ozero__neq__one(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oordered__ring,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Rings_Oordered__ring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Orderings_Opreorder,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Orderings_Opreorder(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Orderings_Olinorder,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Orderings_Olinorder(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Omonoid__mult,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__1(T_1)
     => class_Groups_Omonoid__mult(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ocomm__ring__1,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__ring__1(T_1)
     => class_Rings_Ocomm__ring__1(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Omonoid__add,axiom,
    ! [T_1] :
      ( class_Groups_Ocomm__monoid__add(T_1)
     => class_Groups_Omonoid__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Osemiring__0,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__0(T_1)
     => class_Rings_Osemiring__0(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ogroup__add,axiom,
    ! [T_1] :
      ( class_Groups_Oab__group__add(T_1)
     => class_Groups_Ogroup__add(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Divides_Oring__div,axiom,
    ! [T_1] :
      ( class_Fields_Ofield(T_1)
     => class_Divides_Oring__div(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Omult__zero,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__0(T_1)
     => class_Rings_Omult__zero(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Ocomm__ring,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__ring(T_1)
     => class_Rings_Ocomm__ring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Orderings_Oorder,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Orderings_Oorder(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Int_Oring__char__0,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Int_Oring__char__0(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Osemiring,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__0(T_1)
     => class_Rings_Osemiring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Orderings_Oord,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Orderings_Oord(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ouminus,axiom,
    ! [T_1] :
      ( class_Groups_Oab__group__add(T_1)
     => class_Groups_Ouminus(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Osgn__if,axiom,
    ! [T_1] :
      ( class_Rings_Olinordered__idom(T_1)
     => class_Groups_Osgn__if(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oring__1,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__ring__1(T_1)
     => class_Rings_Oring__1(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ominus,axiom,
    ! [T_1] :
      ( class_Groups_Oab__group__add(T_1)
     => class_Groups_Ominus(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Ozero,axiom,
    ! [T_1] :
      ( class_Groups_Ozero(T_1)
     => class_Groups_Ozero(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oring,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__ring(T_1)
     => class_Rings_Oring(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Oidom,axiom,
    ! [T_1] :
      ( class_Rings_Oidom(T_1)
     => class_Rings_Oidom(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Groups_Oone,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__1(T_1)
     => class_Groups_Oone(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__Rings_Odvd,axiom,
    ! [T_1] :
      ( class_Rings_Ocomm__semiring__1(T_1)
     => class_Rings_Odvd(tc_Polynomial_Opoly(T_1)) ) ).

fof(arity_Polynomial__Opoly__HOL_Oequal,axiom,
    ! [T_1] :
      ( ( class_Groups_Ozero(T_1)
        & class_HOL_Oequal(T_1) )
     => class_HOL_Oequal(tc_Polynomial_Opoly(T_1)) ) ).

%----Helper facts (4)
fof(help_c__fequal__1,axiom,
    ! [V_y_2,V_x_2] :
      ( ~ hBOOL(hAPP(hAPP(c_fequal,V_x_2),V_y_2))
      | V_x_2 = V_y_2 ) ).

fof(help_c__fequal__2,axiom,
    ! [V_y_2,V_x_2] :
      ( V_x_2 != V_y_2
      | hBOOL(hAPP(hAPP(c_fequal,V_x_2),V_y_2)) ) ).

fof(help_c__fFalse__1,axiom,
    ~ hBOOL(c_fFalse) ).

fof(help_c__fTrue__1,axiom,
    hBOOL(c_fTrue) ).

%----Conjectures (1)
fof(conj_0,conjecture,
    c_Polynomial_OpCons(tc_Complex_Ocomplex,v_d____,v_ds____) = c_Groups_Ozero__class_Ozero(tc_Polynomial_Opoly(tc_Complex_Ocomplex)) ).

%------------------------------------------------------------------------------