TPTP Problem File: SWW099+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWW099+1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Software Verification
% Problem : If one is Boolean then exists1(P) = exists2(P).
% Version : [deN09] axioms.
% English :
% Refs : [deN09] de Nivelle (2009), Email to Geoff Sutcliffe
% : [deN10] de Nivelle (2010), Classical Logic with Partial Functi
% Source : [deN09]
% Names :
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.86 v8.2.0, 0.89 v8.1.0, 0.83 v7.5.0, 0.91 v7.4.0, 0.87 v7.3.0, 0.86 v7.1.0, 0.91 v7.0.0, 0.87 v6.4.0, 0.85 v6.3.0, 0.92 v6.2.0, 1.00 v5.2.0
% Syntax : Number of formulae : 45 ( 14 unt; 0 def)
% Number of atoms : 99 ( 50 equ)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 79 ( 25 ~; 7 |; 26 &)
% ( 5 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 27 ( 27 usr; 5 con; 0-3 aty)
% Number of variables : 76 ( 62 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : We cannot prove forall P, exists1(P) = exists2(P), because the
% definition of exist and forall are non-deterministic in the case
% of error values.
%------------------------------------------------------------------------------
%----Include axioms for Syntactic definitions of the logical operators
include('Axioms/SWV012+0.ax').
%------------------------------------------------------------------------------
fof(exists1_exists2,conjecture,
! [P] :
( ( bool(exists1(P))
| bool(exists2(P)) )
=> exists1(P) = exists2(P) ) ).
%------------------------------------------------------------------------------