TPTP Problem File: SWV489+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV489+3 : TPTP v9.0.0. Released v4.0.0.
% Domain : Software Verification
% Problem : Matrix is diagonal
% Version : Especial.
% English :
% Refs : [KV09] Kovacs (2009), Email to Geoff Sutcliffe
% Source : [KV09]
% Names : Id5 [KV09]
% Status : Theorem
% Rating : 0.67 v9.0.0, 0.61 v8.1.0, 0.64 v7.5.0, 0.69 v7.4.0, 0.60 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.57 v7.0.0, 0.67 v6.4.0, 0.65 v6.3.0, 0.58 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.74 v5.5.0, 0.81 v5.4.0, 0.86 v5.3.0, 0.89 v5.2.0, 0.80 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.83 v4.0.1, 0.91 v4.0.0
% Syntax : Number of formulae : 13 ( 4 unt; 0 def)
% Number of atoms : 45 ( 13 equ)
% Maximal formula atoms : 17 ( 3 avg)
% Number of connectives : 35 ( 3 ~; 2 |; 17 &)
% ( 3 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 29 ( 28 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(int_leq,axiom,
! [I,J] :
( int_leq(I,J)
<=> ( int_less(I,J)
| I = J ) ) ).
fof(int_less_transitive,axiom,
! [I,J,K] :
( ( int_less(I,J)
& int_less(J,K) )
=> int_less(I,K) ) ).
fof(int_less_irreflexive,axiom,
! [I,J] :
( int_less(I,J)
=> I != J ) ).
fof(int_less_total,axiom,
! [I,J] :
( int_less(I,J)
| int_leq(J,I) ) ).
fof(int_zero_one,axiom,
int_less(int_zero,int_one) ).
fof(plus_commutative,axiom,
! [I,J] : plus(I,J) = plus(J,I) ).
fof(plus_zero,axiom,
! [I] : plus(I,int_zero) = I ).
fof(plus_and_order1,axiom,
! [I1,J1,I2,J2] :
( ( int_less(I1,J1)
& int_leq(I2,J2) )
=> int_leq(plus(I1,I2),plus(J1,J2)) ) ).
fof(plus_and_inverse,axiom,
! [I,J] :
( int_less(I,J)
<=> ? [K] :
( plus(I,K) = J
& int_less(int_zero,K) ) ) ).
fof(one_successor_of_zero,axiom,
! [I] :
( int_less(int_zero,I)
<=> int_leq(int_one,I) ) ).
fof(real_constants,axiom,
real_zero != real_one ).
fof(qii,hypothesis,
! [I,J] :
( ( int_leq(int_one,I)
& int_leq(I,n)
& int_leq(int_one,J)
& int_leq(J,n) )
=> ( ! [C] :
( ( int_less(int_zero,C)
& I = plus(J,C) )
=> ! [K] :
( ( int_leq(int_one,K)
& int_leq(K,J) )
=> a(plus(K,C),K) = real_zero ) )
& ! [K] :
( ( int_leq(int_one,K)
& int_leq(K,J) )
=> a(K,K) = real_one )
& ! [C] :
( ( int_less(int_zero,C)
& J = plus(I,C) )
=> ! [K] :
( ( int_leq(int_one,K)
& int_leq(K,I) )
=> a(K,plus(K,C)) = real_zero ) ) ) ) ).
fof(d,conjecture,
! [I,J] :
( ( int_leq(int_one,I)
& int_leq(I,n)
& int_leq(int_one,J)
& int_leq(J,n)
& I != J )
=> a(I,J) = real_zero ) ).
%------------------------------------------------------------------------------