TPTP Problem File: SWV483+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV483+2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Software Verification (Security)
% Problem : PKCS11 for 3 handles and 3 keys
% Version : Especial.
% : Theorem formulation flattened to obviously EPR.
% English : Attempts to prove that the intruder can learn the cleartext value
% of a sensitive key in a paricular configuration of PKCS11.
% Refs : [DKS08] Delaune et al. (2008), Formal Analysis of PKCS#11
% : [Ste09] Steel (2009), Email to Geoff Sutcliffe
% Source : [TPTP]
% Names :
% Status : CounterSatisfiable
% Rating : 0.33 v7.4.0, 0.00 v7.1.0, 0.33 v6.4.0, 0.00 v6.3.0, 0.50 v6.2.0, 0.43 v6.1.0, 0.50 v5.5.0, 0.40 v5.4.0, 0.60 v5.3.0, 0.50 v5.0.0, 0.67 v4.1.0, 0.80 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 75 ( 2 unt; 0 def)
% Number of atoms : 213 ( 66 equ)
% Maximal formula atoms : 67 ( 2 avg)
% Number of connectives : 138 ( 0 ~; 0 |; 32 &)
% ( 0 <=>; 73 =>; 0 <=; 33 <~>)
% Maximal formula depth : 68 ( 32 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-33 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 2195 (2163 !; 32 ?)
% SPC : FOF_CSA_EPR_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(initial_state,axiom,
p(n1,n0,n0,n0,n0,n0,n1,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0) ).
fof(wrap_hn1k1_hn1k1_command,axiom,
! [X17,X16,X15,X14,X13,X12,X11,X10,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,X4,X3,X2,X1] :
( p(n1,n1,X1,X2,X3,X4,n1,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n0,X10,X11,X12,X13,X14,X15,X16,X17)
=> p(n1,n1,X1,X2,X3,X4,n1,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X10,X11,X12,X13,X14,X15,X16,X17) ) ).
fof(wrap_hn1k1_hn1k2_command,axiom,
! [X22,X21,X20,X19,X18,X16,X15,X14,A,B,C,D,E,F,G,H,I,J,X10,X9,X8,X7,X6,X5,X4,X3,X2,X1] :
( p(n1,n1,X1,X2,X3,X4,X5,n1,X6,X7,X8,X9,X10,n1,J,I,H,G,F,E,D,C,B,A,X14,X15,X16,n0,X18,X19,X20,X21,X22)
=> p(n1,n1,X1,X2,X3,X4,X5,n1,X6,X7,X8,X9,X10,n1,J,I,H,G,F,E,D,C,B,A,X14,X15,X16,n1,X18,X19,X20,X21,X22) ) ).
fof(wrap_hn1k1_hn1k3_command,axiom,
! [X22,X21,X19,X18,X17,X16,X15,X14,A,B,C,X11,X10,X9,X8,X7,D,E,F,G,H,I,J,X5,X4,X3,X2,X1] :
( p(n1,n1,X1,X2,X3,X4,X5,J,I,H,G,F,E,D,n1,X7,X8,X9,X10,X11,n1,C,B,A,X14,X15,X16,X17,X18,X19,n0,X21,X22)
=> p(n1,n1,X1,X2,X3,X4,X5,J,I,H,G,F,E,D,n1,X7,X8,X9,X10,X11,n1,C,B,A,X14,X15,X16,X17,X18,X19,n1,X21,X22) ) ).
fof(wrap_hn1k2_hn1k1_command,axiom,
! [X22,X21,X20,X19,X18,X17,X16,X14,A,B,C,D,E,F,G,H,I,J,X11,X10,X9,X8,X7,X4,X3,X2,X1,X0] :
( p(n1,X0,X1,X2,X3,X4,n1,n1,n1,X7,X8,X9,X10,X11,J,I,H,G,F,E,D,C,B,A,X14,n0,X16,X17,X18,X19,X20,X21,X22)
=> p(n1,X0,X1,X2,X3,X4,n1,n1,n1,X7,X8,X9,X10,X11,J,I,H,G,F,E,D,C,B,A,X14,n1,X16,X17,X18,X19,X20,X21,X22) ) ).
fof(wrap_hn1k2_hn1k2_command,axiom,
! [X17,X16,X15,X14,X12,X11,X10,X9,A,B,C,D,E,F,G,H,I,J,X5,X4,X3,X2,K,L,M,N,O,P,Q] :
( p(Q,P,O,N,M,L,K,n1,n1,X2,X3,X4,X5,n1,J,I,H,G,F,E,D,C,B,A,X9,X10,X11,X12,n0,X14,X15,X16,X17)
=> p(Q,P,O,N,M,L,K,n1,n1,X2,X3,X4,X5,n1,J,I,H,G,F,E,D,C,B,A,X9,X10,X11,X12,n1,X14,X15,X16,X17) ) ).
fof(wrap_hn1k2_hn1k3_command,axiom,
! [X22,X20,X19,X18,X17,X16,X15,X14,A,B,C,X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,D,E,F,G,H,I,J] :
( p(J,I,H,G,F,E,D,n1,n1,X2,X3,X4,X5,X6,n1,X7,X8,X9,X10,X11,n1,C,B,A,X14,X15,X16,X17,X18,X19,X20,n0,X22)
=> p(J,I,H,G,F,E,D,n1,n1,X2,X3,X4,X5,X6,n1,X7,X8,X9,X10,X11,n1,C,B,A,X14,X15,X16,X17,X18,X19,X20,n1,X22) ) ).
fof(wrap_hn1k3_hn1k1_command,axiom,
! [X22,X21,X20,X19,X18,X17,X15,X14,A,B,C,X12,X11,X10,X9,X8,D,E,F,G,H,I,J,X4,X3,X2,X1,X0] :
( p(n1,X0,X1,X2,X3,X4,n1,J,I,H,G,F,E,D,n1,n1,X8,X9,X10,X11,X12,C,B,A,X14,X15,n0,X17,X18,X19,X20,X21,X22)
=> p(n1,X0,X1,X2,X3,X4,n1,J,I,H,G,F,E,D,n1,n1,X8,X9,X10,X11,X12,C,B,A,X14,X15,n1,X17,X18,X19,X20,X21,X22) ) ).
fof(wrap_hn1k3_hn1k2_command,axiom,
! [X22,X21,X20,X18,X17,X16,X15,X14,A,B,C,X12,X11,X10,X9,X8,X5,X4,X3,X2,X1,D,E,F,G,H,I,J] :
( p(J,I,H,G,F,E,D,n1,X1,X2,X3,X4,X5,n1,n1,n1,X8,X9,X10,X11,X12,C,B,A,X14,X15,X16,X17,X18,n0,X20,X21,X22)
=> p(J,I,H,G,F,E,D,n1,X1,X2,X3,X4,X5,n1,n1,n1,X8,X9,X10,X11,X12,C,B,A,X14,X15,X16,X17,X18,n1,X20,X21,X22) ) ).
fof(wrap_hn1k3_hn1k3_command,axiom,
! [X16,X15,X14,X13,X12,X11,X10,X9,A,B,C,X6,X5,X4,X3,D,E,F,G,H,I,J,K,L,M,N,O,P,Q] :
( p(Q,P,O,N,M,L,K,J,I,H,G,F,E,D,n1,n1,X3,X4,X5,X6,n1,C,B,A,X9,X10,X11,X12,X13,X14,X15,X16,n0)
=> p(Q,P,O,N,M,L,K,J,I,H,G,F,E,D,n1,n1,X3,X4,X5,X6,n1,C,B,A,X9,X10,X11,X12,X13,X14,X15,X16,n1) ) ).
fof(unwrap_hn1k1_hn1k1_command,axiom,
! [X17,X16,X15,X14,X13,X12,X11,X10,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,X5,X4,X3,X2,X0] :
( p(n1,X0,n1,X2,X3,X4,X5,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X10,X11,X12,X13,X14,X15,X16,X17)
=> p(n1,X0,n1,X2,X3,X4,n1,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X10,X11,X12,X13,X14,X15,X16,X17) ) ).
fof(unwrap_hn1k1_hn1k2_command,axiom,
! [X22,X21,X20,X19,X18,X16,X15,X14,A,B,C,D,E,F,G,H,I,J,X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,X0] :
( p(n1,X0,n1,X2,X3,X4,X5,n0,X6,X7,X8,X9,X10,X11,J,I,H,G,F,E,D,C,B,A,X14,X15,X16,n1,X18,X19,X20,X21,X22)
=> p(n1,X0,n1,X2,X3,X4,X5,n1,X6,X7,X8,X9,X10,n1,J,I,H,G,F,E,D,C,B,A,X14,X15,X16,n1,X18,X19,X20,X21,X22) ) ).
fof(unwrap_hn1k1_hn1k3_command,axiom,
! [X22,X21,X19,X18,X17,X16,X15,X14,A,B,C,X12,X11,X10,X9,X8,X7,D,E,F,G,H,I,J,X5,X4,X3,X2,X0] :
( p(n1,X0,n1,X2,X3,X4,X5,J,I,H,G,F,E,D,n0,X7,X8,X9,X10,X11,X12,C,B,A,X14,X15,X16,X17,X18,X19,n1,X21,X22)
=> p(n1,X0,n1,X2,X3,X4,X5,J,I,H,G,F,E,D,n1,X7,X8,X9,X10,X11,n1,C,B,A,X14,X15,X16,X17,X18,X19,n1,X21,X22) ) ).
fof(unwrap_hn1k2_hn1k1_command,axiom,
! [X22,X21,X20,X19,X18,X17,X16,X14,A,B,C,D,E,F,G,H,I,J,X11,X10,X9,X8,X6,X5,X4,X3,X2,X1,X0] :
( p(n0,X0,X1,X2,X3,X4,X5,n1,X6,n1,X8,X9,X10,X11,J,I,H,G,F,E,D,C,B,A,X14,n1,X16,X17,X18,X19,X20,X21,X22)
=> p(n1,X0,X1,X2,X3,X4,n1,n1,X6,n1,X8,X9,X10,X11,J,I,H,G,F,E,D,C,B,A,X14,n1,X16,X17,X18,X19,X20,X21,X22) ) ).
fof(unwrap_hn1k2_hn1k2_command,axiom,
! [X17,X16,X15,X14,X12,X11,X10,X9,A,B,C,D,E,F,G,H,I,J,X6,X5,X4,X3,X1,K,L,M,N,O,P,Q] :
( p(Q,P,O,N,M,L,K,n1,X1,n1,X3,X4,X5,X6,J,I,H,G,F,E,D,C,B,A,X9,X10,X11,X12,n1,X14,X15,X16,X17)
=> p(Q,P,O,N,M,L,K,n1,X1,n1,X3,X4,X5,n1,J,I,H,G,F,E,D,C,B,A,X9,X10,X11,X12,n1,X14,X15,X16,X17) ) ).
fof(unwrap_hn1k2_hn1k3_command,axiom,
! [X22,X20,X19,X18,X17,X16,X15,X14,A,B,C,X12,X11,X10,X9,X8,X7,X6,X5,X4,X3,X1,D,E,F,G,H,I,J] :
( p(J,I,H,G,F,E,D,n1,X1,n1,X3,X4,X5,X6,n0,X7,X8,X9,X10,X11,X12,C,B,A,X14,X15,X16,X17,X18,X19,X20,n1,X22)
=> p(J,I,H,G,F,E,D,n1,X1,n1,X3,X4,X5,X6,n1,X7,X8,X9,X10,X11,n1,C,B,A,X14,X15,X16,X17,X18,X19,X20,n1,X22) ) ).
fof(unwrap_hn1k3_hn1k1_command,axiom,
! [X22,X21,X20,X19,X18,X17,X15,X14,A,B,C,X12,X11,X10,X9,X7,D,E,F,G,H,I,J,X5,X4,X3,X2,X1,X0] :
( p(n0,X0,X1,X2,X3,X4,X5,J,I,H,G,F,E,D,n1,X7,n1,X9,X10,X11,X12,C,B,A,X14,X15,n1,X17,X18,X19,X20,X21,X22)
=> p(n1,X0,X1,X2,X3,X4,n1,J,I,H,G,F,E,D,n1,X7,n1,X9,X10,X11,X12,C,B,A,X14,X15,n1,X17,X18,X19,X20,X21,X22) ) ).
fof(unwrap_hn1k3_hn1k2_command,axiom,
! [X22,X21,X20,X18,X17,X16,X15,X14,A,B,C,X12,X11,X10,X9,X7,X6,X5,X4,X3,X2,X1,D,E,F,G,H,I,J] :
( p(J,I,H,G,F,E,D,n0,X1,X2,X3,X4,X5,X6,n1,X7,n1,X9,X10,X11,X12,C,B,A,X14,X15,X16,X17,X18,n1,X20,X21,X22)
=> p(J,I,H,G,F,E,D,n1,X1,X2,X3,X4,X5,n1,n1,X7,n1,X9,X10,X11,X12,C,B,A,X14,X15,X16,X17,X18,n1,X20,X21,X22) ) ).
fof(unwrap_hn1k3_hn1k3_command,axiom,
! [X16,X15,X14,X13,X12,X11,X10,X9,A,B,C,X7,X6,X5,X4,X2,D,E,F,G,H,I,J,K,L,M,N,O,P,Q] :
( p(Q,P,O,N,M,L,K,J,I,H,G,F,E,D,n1,X2,n1,X4,X5,X6,X7,C,B,A,X9,X10,X11,X12,X13,X14,X15,X16,n1)
=> p(Q,P,O,N,M,L,K,J,I,H,G,F,E,D,n1,X2,n1,X4,X5,X6,n1,C,B,A,X9,X10,X11,X12,X13,X14,X15,X16,n1) ) ).
fof(set_attr_hn1k1_wrap_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,X5,X4,X2] :
( p(n1,n0,n0,X2,n0,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(n1,n1,n0,X2,n0,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k1_unwrap_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,X5,X4,X3] :
( p(n1,n0,n0,n0,X3,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(n1,n0,n1,n0,X3,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k1_encrypt_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,X5,X4,X3] :
( p(n1,n0,n0,n0,X3,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(n1,n0,n0,n1,X3,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k1_decrypt_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,X5,X4,X2,X1] :
( p(n1,n0,X1,X2,n0,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(n1,n0,X1,X2,n1,X4,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k1_sensitive_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,X5,X3,X2,X1,X0] :
( p(n1,X0,X1,X2,X3,n0,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(n1,X0,X1,X2,X3,n1,X5,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k2_wrap_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,X6,X5,X3,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,n1,n0,n0,X3,n0,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,n1,n1,n0,X3,n0,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k2_unwrap_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,X6,X5,X4,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,n1,n0,n0,n0,X4,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,n1,n0,n1,n0,X4,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k2_encrypt_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,X6,X5,X4,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,n1,n0,n0,n0,X4,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,n1,n0,n0,n1,X4,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k2_decrypt_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,X6,X5,X3,X2,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,n1,n0,X2,X3,n0,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,n1,n0,X2,X3,n1,X5,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k2_sensitive_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,X6,X4,X3,X2,X1,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,n1,X1,X2,X3,X4,n0,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,n1,X1,X2,X3,X4,n1,X6,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k3_wrap_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,X7,X6,X4,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,n0,X4,n0,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n1,n0,X4,n0,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k3_unwrap_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,X7,X6,X5,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,n0,n0,X5,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,n1,n0,X5,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k3_encrypt_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,X7,X6,X5,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,n0,n0,X5,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,n0,n1,X5,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k3_decrypt_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,X7,X6,X4,X3,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,X3,X4,n0,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,n0,X3,X4,n1,X6,X7,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k3_sensitive_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,X7,X5,X4,X3,X2,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,X2,X3,X4,X5,n0,X7,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,X2,X3,X4,X5,n1,X7,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k1_extractable_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,X4,X3,X2,X1,X0] :
( p(n1,X0,X1,X2,X3,X4,n1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(n1,X0,X1,X2,X3,X4,n0,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k2_extractable_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,X5,X4,X3,X2,X1,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,n1,X1,X2,X3,X4,X5,n1,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,n1,X1,X2,X3,X4,X5,n0,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(set_attr_hn1k3_extractable_command,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,X6,X5,X4,X3,X2,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,X2,X3,X4,X5,X6,n1,L,K,J,I,H,G,F,E,D,C,B,A)
=> p(Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,n1,X2,X3,X4,X5,X6,n0,L,K,J,I,H,G,F,E,D,C,B,A) ) ).
fof(decrypt_hn1k1_k1Enck1_command,axiom,
! [X19,X18,X17,X16,X15,X14,X13,X12,X10,X9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,X5,X4,X2,X1,X0] :
( p(n1,X0,X1,X2,n1,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n0,X9,X10,n1,X12,X13,X14,X15,X16,X17,X18,X19)
=> p(n1,X0,X1,X2,n1,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X9,X10,n1,X12,X13,X14,X15,X16,X17,X18,X19) ) ).
fof(decrypt_hn1k1_k2Enck1_command,axiom,
! [X19,X18,X17,X16,X15,X13,X12,X11,X10,X8,A,B,C,D,E,F,G,H,I,J,K,L,M,N,X5,X4,X2,X1,X0] :
( p(n1,X0,X1,X2,n1,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,n0,X10,X11,X12,X13,n1,X15,X16,X17,X18,X19)
=> p(n1,X0,X1,X2,n1,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,n1,X10,X11,X12,X13,n1,X15,X16,X17,X18,X19) ) ).
fof(decrypt_hn1k1_k3Enck1_command,axiom,
! [X19,X18,X16,X15,X14,X13,X12,X11,X9,X8,A,B,C,D,E,F,G,H,I,J,K,L,M,N,X5,X4,X2,X1,X0] :
( p(n1,X0,X1,X2,n1,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,X9,n0,X11,X12,X13,X14,X15,X16,n1,X18,X19)
=> p(n1,X0,X1,X2,n1,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,X9,n1,X11,X12,X13,X14,X15,X16,n1,X18,X19) ) ).
fof(decrypt_hn1k2_k1Enck2_command,axiom,
! [X19,X18,X17,X16,X15,X14,X13,X11,X10,X9,A,B,C,D,E,F,G,X6,X5,X3,X2,X1,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,n1,X1,X2,X3,n1,X5,X6,G,F,E,D,C,B,A,n0,X9,X10,X11,n1,X13,X14,X15,X16,X17,X18,X19)
=> p(N,M,L,K,J,I,H,n1,X1,X2,X3,n1,X5,X6,G,F,E,D,C,B,A,n1,X9,X10,X11,n1,X13,X14,X15,X16,X17,X18,X19) ) ).
fof(decrypt_hn1k2_k2Enck2_command,axiom,
! [X19,X18,X17,X16,X14,X13,X12,X11,X10,X8,A,B,C,D,E,F,G,X6,X5,X3,X2,X1,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,n1,X1,X2,X3,n1,X5,X6,G,F,E,D,C,B,A,X8,n0,X10,X11,X12,X13,X14,n1,X16,X17,X18,X19)
=> p(N,M,L,K,J,I,H,n1,X1,X2,X3,n1,X5,X6,G,F,E,D,C,B,A,X8,n1,X10,X11,X12,X13,X14,n1,X16,X17,X18,X19) ) ).
fof(decrypt_hn1k2_k3Enck2_command,axiom,
! [X19,X17,X16,X15,X14,X13,X12,X11,X9,X8,A,B,C,D,E,F,G,X6,X5,X3,X2,X1,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,n1,X1,X2,X3,n1,X5,X6,G,F,E,D,C,B,A,X8,X9,n0,X11,X12,X13,X14,X15,X16,X17,n1,X19)
=> p(N,M,L,K,J,I,H,n1,X1,X2,X3,n1,X5,X6,G,F,E,D,C,B,A,X8,X9,n1,X11,X12,X13,X14,X15,X16,X17,n1,X19) ) ).
fof(decrypt_hn1k3_k1Enck3_command,axiom,
! [X19,X18,X17,X16,X15,X14,X12,X11,X10,X9,X7,X6,X4,X3,X2,A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,X4,n1,X6,X7,n0,X9,X10,X11,X12,n1,X14,X15,X16,X17,X18,X19)
=> p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,X4,n1,X6,X7,n1,X9,X10,X11,X12,n1,X14,X15,X16,X17,X18,X19) ) ).
fof(decrypt_hn1k3_k2Enck3_command,axiom,
! [X19,X18,X17,X15,X14,X13,X12,X11,X10,X8,X7,X6,X4,X3,X2,A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,X4,n1,X6,X7,X8,n0,X10,X11,X12,X13,X14,X15,n1,X17,X18,X19)
=> p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,X4,n1,X6,X7,X8,n1,X10,X11,X12,X13,X14,X15,n1,X17,X18,X19) ) ).
fof(decrypt_hn1k3_k3Enck3_command,axiom,
! [X18,X17,X16,X15,X14,X13,X12,X11,X9,X8,X7,X6,X4,X3,X2,A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,X4,n1,X6,X7,X8,X9,n0,X11,X12,X13,X14,X15,X16,X17,X18,n1)
=> p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,X4,n1,X6,X7,X8,X9,n1,X11,X12,X13,X14,X15,X16,X17,X18,n1) ) ).
fof(encrypt_hn1k1_k1Enck1_command,axiom,
! [X19,X18,X17,X16,X15,X14,X13,X12,X10,X9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,X5,X4,X3,X1,X0] :
( p(n1,X0,X1,n1,X3,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X9,X10,n0,X12,X13,X14,X15,X16,X17,X18,X19)
=> p(n1,X0,X1,n1,X3,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X9,X10,n1,X12,X13,X14,X15,X16,X17,X18,X19) ) ).
fof(encrypt_hn1k1_k2Enck1_command,axiom,
! [X19,X18,X17,X16,X15,X13,X12,X11,X10,X8,A,B,C,D,E,F,G,H,I,J,K,L,M,N,X5,X4,X3,X1,X0] :
( p(n1,X0,X1,n1,X3,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,n1,X10,X11,X12,X13,n0,X15,X16,X17,X18,X19)
=> p(n1,X0,X1,n1,X3,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,n1,X10,X11,X12,X13,n1,X15,X16,X17,X18,X19) ) ).
fof(encrypt_hn1k1_k3Enck1_command,axiom,
! [X19,X18,X16,X15,X14,X13,X12,X11,X9,X8,A,B,C,D,E,F,G,H,I,J,K,L,M,N,X5,X4,X3,X1,X0] :
( p(n1,X0,X1,n1,X3,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,X9,n1,X11,X12,X13,X14,X15,X16,n0,X18,X19)
=> p(n1,X0,X1,n1,X3,X4,X5,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X8,X9,n1,X11,X12,X13,X14,X15,X16,n1,X18,X19) ) ).
fof(encrypt_hn1k2_k1Enck2_command,axiom,
! [X19,X18,X17,X16,X15,X14,X13,X11,X10,X9,A,B,C,D,E,F,G,X6,X5,X4,X2,X1,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,n1,X1,X2,n1,X4,X5,X6,G,F,E,D,C,B,A,n1,X9,X10,X11,n0,X13,X14,X15,X16,X17,X18,X19)
=> p(N,M,L,K,J,I,H,n1,X1,X2,n1,X4,X5,X6,G,F,E,D,C,B,A,n1,X9,X10,X11,n1,X13,X14,X15,X16,X17,X18,X19) ) ).
fof(encrypt_hn1k2_k2Enck2_command,axiom,
! [X19,X18,X17,X16,X14,X13,X12,X11,X10,X8,A,B,C,D,E,F,G,X6,X5,X4,X2,X1,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,n1,X1,X2,n1,X4,X5,X6,G,F,E,D,C,B,A,X8,n1,X10,X11,X12,X13,X14,n0,X16,X17,X18,X19)
=> p(N,M,L,K,J,I,H,n1,X1,X2,n1,X4,X5,X6,G,F,E,D,C,B,A,X8,n1,X10,X11,X12,X13,X14,n1,X16,X17,X18,X19) ) ).
fof(encrypt_hn1k2_k3Enck2_command,axiom,
! [X19,X17,X16,X15,X14,X13,X12,X11,X9,X8,A,B,C,D,E,F,G,X6,X5,X4,X2,X1,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,n1,X1,X2,n1,X4,X5,X6,G,F,E,D,C,B,A,X8,X9,n1,X11,X12,X13,X14,X15,X16,X17,n0,X19)
=> p(N,M,L,K,J,I,H,n1,X1,X2,n1,X4,X5,X6,G,F,E,D,C,B,A,X8,X9,n1,X11,X12,X13,X14,X15,X16,X17,n1,X19) ) ).
fof(encrypt_hn1k3_k1Enck3_command,axiom,
! [X19,X18,X17,X16,X15,X14,X12,X11,X10,X9,X7,X6,X5,X3,X2,A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,n1,X5,X6,X7,n1,X9,X10,X11,X12,n0,X14,X15,X16,X17,X18,X19)
=> p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,n1,X5,X6,X7,n1,X9,X10,X11,X12,n1,X14,X15,X16,X17,X18,X19) ) ).
fof(encrypt_hn1k3_k2Enck3_command,axiom,
! [X19,X18,X17,X15,X14,X13,X12,X11,X10,X8,X7,X6,X5,X3,X2,A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,n1,X5,X6,X7,X8,n1,X10,X11,X12,X13,X14,X15,n0,X17,X18,X19)
=> p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,n1,X5,X6,X7,X8,n1,X10,X11,X12,X13,X14,X15,n1,X17,X18,X19) ) ).
fof(encrypt_hn1k3_k3Enck3_command,axiom,
! [X18,X17,X16,X15,X14,X13,X12,X11,X9,X8,X7,X6,X5,X3,X2,A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,n1,X5,X6,X7,X8,X9,n1,X11,X12,X13,X14,X15,X16,X17,X18,n0)
=> p(N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X2,X3,n1,X5,X6,X7,X8,X9,n1,X11,X12,X13,X14,X15,X16,X17,X18,n1) ) ).
fof(encrypt_k1Enck1_command,axiom,
! [X14,X13,X12,X11,X10,X9,X8,X7,X5,X4,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,X5,n0,X7,X8,X9,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,X5,n1,X7,X8,X9,X10,X11,X12,X13,X14) ) ).
fof(encrypt_k2Enck1_command,axiom,
! [X14,X13,X12,X11,X10,X8,X7,X6,X5,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,n1,X5,X6,X7,X8,n0,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,n1,X5,X6,X7,X8,n1,X10,X11,X12,X13,X14) ) ).
fof(encrypt_k3Enck1_command,axiom,
! [X14,X13,X11,X10,X9,X8,X7,X6,X4,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,n1,X6,X7,X8,X9,X10,X11,n0,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,n1,X6,X7,X8,X9,X10,X11,n1,X13,X14) ) ).
fof(encrypt_k1Enck2_command,axiom,
! [X14,X13,X12,X11,X10,X9,X8,X6,X5,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,n1,X5,X6,n0,X8,X9,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,n1,X5,X6,n1,X8,X9,X10,X11,X12,X13,X14) ) ).
fof(encrypt_k2Enck2_command,axiom,
! [X14,X13,X12,X11,X9,X8,X7,X6,X5,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,X5,X6,X7,X8,X9,n0,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,X5,X6,X7,X8,X9,n1,X11,X12,X13,X14) ) ).
fof(encrypt_k3Enck2_command,axiom,
! [X14,X12,X11,X10,X9,X8,X7,X6,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,n1,X6,X7,X8,X9,X10,X11,X12,n0,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,n1,X6,X7,X8,X9,X10,X11,X12,n1,X14) ) ).
fof(encrypt_k1Enck3_command,axiom,
! [X14,X13,X12,X11,X10,X9,X7,X6,X4,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,n1,X6,X7,n0,X9,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,n1,X6,X7,n1,X9,X10,X11,X12,X13,X14) ) ).
fof(encrypt_k2Enck3_command,axiom,
! [X14,X13,X12,X10,X9,X8,X7,X6,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,n1,X6,X7,X8,X9,X10,n0,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,n1,X6,X7,X8,X9,X10,n1,X12,X13,X14) ) ).
fof(encrypt_k3Enck3_command,axiom,
! [X13,X12,X11,X10,X9,X8,X7,X6,X4,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,X4,n1,X6,X7,X8,X9,X10,X11,X12,X13,n0)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,X4,n1,X6,X7,X8,X9,X10,X11,X12,X13,n1) ) ).
fof(intruder_decrypt_k1Enck1_command,axiom,
! [X14,X13,X12,X11,X10,X9,X8,X7,X5,X4,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,X5,n1,X7,X8,X9,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,X5,n1,X7,X8,X9,X10,X11,X12,X13,X14) ) ).
fof(intruder_decrypt_k2Enck1_command,axiom,
! [X3,X14,X13,X12,X11,X10,X8,X7,X6,X5,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,n0,X5,X6,X7,X8,n1,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,X5,X6,X7,X8,n1,X10,X11,X12,X13,X14) ) ).
fof(intruder_decrypt_k3Enck1_command,axiom,
! [X3,X14,X13,X11,X10,X9,X8,X7,X6,X4,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,n0,X6,X7,X8,X9,X10,X11,n1,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,X4,n1,X6,X7,X8,X9,X10,X11,n1,X13,X14) ) ).
fof(intruder_decrypt_k1Enck2_command,axiom,
! [X4,X14,X13,X12,X11,X10,X9,X8,X6,X5,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n0,n1,X5,X6,n1,X8,X9,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,X5,X6,n1,X8,X9,X10,X11,X12,X13,X14) ) ).
fof(intruder_decrypt_k2Enck2_command,axiom,
! [X14,X13,X12,X11,X9,X8,X7,X6,X5,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,X5,X6,X7,X8,X9,n1,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,X5,X6,X7,X8,X9,n1,X11,X12,X13,X14) ) ).
fof(intruder_decrypt_k3Enck2_command,axiom,
! [X4,X14,X12,X11,X10,X9,X8,X7,X6,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,n0,X6,X7,X8,X9,X10,X11,X12,n1,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,X4,n1,X6,X7,X8,X9,X10,X11,X12,n1,X14) ) ).
fof(intruder_decrypt_k1Enck3_command,axiom,
! [X5,X14,X13,X12,X11,X10,X9,X7,X6,X4,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n0,X4,n1,X6,X7,n1,X9,X10,X11,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,n1,X4,X5,X6,X7,n1,X9,X10,X11,X12,X13,X14) ) ).
fof(intruder_decrypt_k2Enck3_command,axiom,
! [X5,X14,X13,X12,X10,X9,X8,X7,X6,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n0,n1,X6,X7,X8,X9,X10,n1,X12,X13,X14)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,n1,X5,X6,X7,X8,X9,X10,n1,X12,X13,X14) ) ).
fof(intruder_decrypt_k3Enck3_command,axiom,
! [X13,X12,X11,X10,X9,X8,X7,X6,X4,X3,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,X4,n1,X6,X7,X8,X9,X10,X11,X12,X13,n1)
=> p(U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,X3,X4,n1,X6,X7,X8,X9,X10,X11,X12,X13,n1) ) ).
fof(domain_constraints,axiom,
! [X32,X31,X30,X29,X28,X27,X26,X25,X24,X23,X22,X21,X20,X19,X18,X17,X16,X15,X14,X13,X12,X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,X1,X0] :
( p(X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22,X23,X24,X25,X26,X27,X28,X29,X30,X31,X32)
=> ( ( X0 = n1
<~> X0 = n0 )
& ( X1 = n1
<~> X1 = n0 )
& ( X2 = n1
<~> X2 = n0 )
& ( X3 = n1
<~> X3 = n0 )
& ( X4 = n1
<~> X4 = n0 )
& ( X5 = n1
<~> X5 = n0 )
& ( X6 = n1
<~> X6 = n0 )
& ( X7 = n1
<~> X7 = n0 )
& ( X8 = n1
<~> X8 = n0 )
& ( X9 = n1
<~> X9 = n0 )
& ( X10 = n1
<~> X10 = n0 )
& ( X11 = n1
<~> X11 = n0 )
& ( X12 = n1
<~> X12 = n0 )
& ( X13 = n1
<~> X13 = n0 )
& ( X14 = n1
<~> X14 = n0 )
& ( X15 = n1
<~> X15 = n0 )
& ( X16 = n1
<~> X16 = n0 )
& ( X17 = n1
<~> X17 = n0 )
& ( X18 = n1
<~> X18 = n0 )
& ( X19 = n1
<~> X19 = n0 )
& ( X20 = n1
<~> X20 = n0 )
& ( X21 = n1
<~> X21 = n0 )
& ( X22 = n1
<~> X22 = n0 )
& ( X23 = n1
<~> X23 = n0 )
& ( X24 = n1
<~> X24 = n0 )
& ( X25 = n1
<~> X25 = n0 )
& ( X26 = n1
<~> X26 = n0 )
& ( X27 = n1
<~> X27 = n0 )
& ( X28 = n1
<~> X28 = n0 )
& ( X29 = n1
<~> X29 = n0 )
& ( X30 = n1
<~> X30 = n0 )
& ( X31 = n1
<~> X31 = n0 )
& ( X32 = n1
<~> X32 = n0 ) ) ) ).
fof(co1,conjecture,
? [A,B,C,D,E,F,G,H,I,X2,X1,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1] : p(D1,C1,B1,A1,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,n1,X1,X2,I,H,G,F,E,D,C,B,A) ).
%------------------------------------------------------------------------------