TPTP Problem File: SWV464+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV464+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Software Verification
% Problem : Establishing that there cannot be two leaders, part i52_p46
% Version : [Sve07] axioms : Especial.
% English :
% Refs : [Sto97] Stoller (1997), Leader Election in Distributed Systems
% : [Sve07] Svensson (2007), Email to Koen Claessen
% : [Sve08] Svensson (2008), A Semi-Automatic Correctness Proof Pr
% Source : [Sve07]
% Names : stoller_i52_p46 [Sve07]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.31 v8.2.0, 0.33 v7.5.0, 0.31 v7.4.0, 0.27 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.44 v6.1.0, 0.47 v6.0.0, 0.43 v5.5.0, 0.56 v5.4.0, 0.57 v5.3.0, 0.63 v5.2.0, 0.45 v5.1.0, 0.52 v5.0.0, 0.58 v4.1.0, 0.57 v4.0.0
% Syntax : Number of formulae : 67 ( 40 unt; 0 def)
% Number of atoms : 202 ( 102 equ)
% Maximal formula atoms : 91 ( 3 avg)
% Number of connectives : 200 ( 65 ~; 10 |; 78 &)
% ( 13 <=>; 34 =>; 0 <=; 0 <~>)
% Maximal formula depth : 32 ( 4 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 33 ( 33 usr; 16 con; 0-2 aty)
% Number of variables : 165 ( 164 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for verification of Stoller's leader election algorithm
include('Axioms/SWV011+0.ax').
%------------------------------------------------------------------------------
fof(conj,conjecture,
! [V,W,X,Y] :
( ( ! [Z,Pid0] :
( elem(m_Ldr(Pid0),queue(host(Z)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> host(Pid0) != host(Z) )
& ! [Z,Pid0] :
( elem(m_Halt(Pid0),queue(host(Z)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid20,Pid0] :
( elem(m_Ack(Pid0,Z),queue(host(Pid20)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid0] :
( ( Pid0 != Z
& host(Pid0) = host(Z) )
=> ( ~ setIn(Z,alive)
| ~ setIn(Pid0,alive) ) )
& ! [Z,Pid0] :
( ( setIn(Pid0,alive)
& elem(m_Ack(Pid0,Z),queue(host(Pid0))) )
=> leq(host(Z),index(pendack,host(Pid0))) )
& ! [Z,Pid0] :
( ( setIn(Pid0,alive)
& index(status,host(Pid0)) = elec_1 )
=> ~ elem(m_Ack(Pid0,Z),queue(host(Pid0))) )
& ! [Z] :
( ( ( index(status,host(Z)) = elec_1
| index(status,host(Z)) = elec_2 )
& setIn(Z,alive) )
=> index(elid,host(Z)) = Z )
& ! [Z,Pid20,Pid0] :
( ( setIn(Pid0,alive)
& elem(m_Down(Pid20),queue(host(Pid0)))
& host(Pid20) = host(Z) )
=> ~ ( setIn(Z,alive)
& index(ldr,host(Z)) = host(Z)
& index(status,host(Z)) = norm ) )
& ! [Z,Pid0] :
( ( ~ leq(host(Z),host(Pid0))
& setIn(Z,alive)
& setIn(Pid0,alive)
& index(status,host(Z)) = elec_2
& index(status,host(Pid0)) = elec_2 )
=> leq(index(pendack,host(Pid0)),host(Z)) )
& ! [Z,Pid20,Pid0] :
( ( setIn(Z,alive)
& setIn(Pid0,alive)
& host(Pid0) = host(Pid20)
& index(status,host(Z)) = elec_2
& index(status,host(Pid0)) = elec_2 )
=> ~ elem(m_Ack(Z,Pid20),queue(host(Z))) )
& ! [Z,Pid0] :
( ( ~ leq(host(Z),host(Pid0))
& setIn(Z,alive)
& setIn(Pid0,alive)
& index(status,host(Z)) = elec_2
& index(status,host(Pid0)) = elec_2 )
=> ~ leq(index(pendack,host(Z)),index(pendack,host(Pid0))) )
& ! [Z,Pid20,Pid0] :
( ( ~ leq(index(pendack,host(Pid0)),host(Z))
& setIn(Pid0,alive)
& elem(m_Halt(Pid0),queue(host(Pid20)))
& index(status,host(Pid0)) = elec_2 )
=> ~ ( setIn(Z,alive)
& index(ldr,host(Z)) = host(Z)
& index(status,host(Z)) = norm ) )
& ! [Z,Pid30,Pid20,Pid0] :
( ( ! [V0] :
( ( ~ leq(host(Pid0),V0)
& leq(s(zero),V0) )
=> ( setIn(V0,index(down,host(Pid0)))
| V0 = host(Pid20) ) )
& elem(m_Down(Pid20),queue(host(Pid0)))
& host(Pid0) = nbr_proc
& host(Pid0) = host(Pid30)
& index(status,host(Pid0)) = elec_1 )
=> ~ ( setIn(Z,alive)
& elem(m_Down(Pid30),queue(host(Z))) ) )
& ! [Z,Pid30,Pid20,Pid0] :
( ( setIn(Pid0,alive)
& elem(m_Down(Pid20),queue(host(Pid0)))
& elem(m_Ack(Pid0,Pid30),queue(host(Pid0)))
& leq(nbr_proc,s(index(pendack,host(Pid0))))
& index(status,host(Pid0)) = elec_2
& host(Pid30) = index(pendack,host(Pid0))
& host(Pid20) = s(index(pendack,host(Pid0))) )
=> ~ ( setIn(Z,alive)
& index(ldr,host(Z)) = host(Z)
& index(status,host(Z)) = norm ) )
& queue(host(X)) = cons(m_Ack(W,Y),V) )
=> ( setIn(X,alive)
=> ( ( index(elid,host(X)) = W
& index(status,host(X)) = elec_2
& host(Y) = index(pendack,host(X)) )
=> ( ~ leq(nbr_proc,index(pendack,host(X)))
=> ! [Z,W0,X0,Y0] :
( s(index(pendack,host(X))) = host(Y0)
=> ( host(X) != host(Y0)
=> ( ( setIn(Y0,alive)
& leq(nbr_proc,s(index(pendack,host(Y0))))
& elem(m_Down(X0),snoc(queue(host(Y0)),m_Halt(X)))
& elem(m_Ack(Y0,W0),snoc(queue(host(Y0)),m_Halt(X)))
& index(status,host(Y0)) = elec_2
& host(W0) = index(pendack,host(Y0))
& host(X0) = s(index(pendack,host(Y0))) )
=> ~ ( setIn(Z,alive)
& index(ldr,host(Z)) = host(Z)
& index(status,host(Z)) = norm ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------