TPTP Problem File: SWV456+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SWV456+1 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Software Verification
% Problem  : Establishing that there cannot be two leaders, part i27_p134
% Version  : [Sve07] axioms : Especial.
% English  :

% Refs     : [Sto97] Stoller (1997), Leader Election in Distributed Systems
%          : [Sve07] Svensson (2007), Email to Koen Claessen
%          : [Sve08] Svensson (2008), A Semi-Automatic Correctness Proof Pr
% Source   : [Sve07]
% Names    : stoller_i27_p134 [Sve07]

% Status   : Theorem
% Rating   : 0.39 v9.0.0, 0.44 v8.2.0, 0.42 v8.1.0, 0.33 v7.5.0, 0.38 v7.4.0, 0.30 v7.3.0, 0.41 v7.2.0, 0.38 v7.1.0, 0.39 v7.0.0, 0.33 v6.4.0, 0.42 v6.3.0, 0.46 v6.2.0, 0.56 v6.1.0, 0.63 v6.0.0, 0.52 v5.5.0, 0.63 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.65 v5.1.0, 0.67 v5.0.0, 0.71 v4.1.0, 0.74 v4.0.1, 0.78 v4.0.0
% Syntax   : Number of formulae    :   67 (  40 unt;   0 def)
%            Number of atoms       :  167 (  90 equ)
%            Maximal formula atoms :   56 (   2 avg)
%            Number of connectives :  166 (  66   ~;  11   |;  46   &)
%                                         (  13 <=>;  30  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   24 (   4 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    6 (   5 usr;   0 prp; 1-2 aty)
%            Number of functors    :   32 (  32 usr;  15 con; 0-2 aty)
%            Number of variables   :  149 ( 148   !;   1   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments :
%------------------------------------------------------------------------------
%----Include axioms for verification of Stoller's leader election algorithm
include('Axioms/SWV011+0.ax').
%------------------------------------------------------------------------------
fof(conj,conjecture,
    ! [V,W,X,Y] :
      ( ( ! [Z,Pid0] :
            ( elem(m_Down(Pid0),queue(host(Z)))
           => ~ setIn(Pid0,alive) )
        & ! [Z,Pid0] :
            ( elem(m_Down(Pid0),queue(host(Z)))
           => host(Pid0) != host(Z) )
        & ! [Z,Pid0] :
            ( elem(m_Halt(Pid0),queue(host(Z)))
           => ~ leq(host(Z),host(Pid0)) )
        & ! [Z,Pid20,Pid0] :
            ( elem(m_Ack(Pid0,Z),queue(host(Pid20)))
           => ~ leq(host(Z),host(Pid0)) )
        & ! [Z,Pid0] :
            ( ( ~ setIn(Z,alive)
              & leq(Pid0,Z)
              & host(Pid0) = host(Z) )
           => ~ setIn(Pid0,alive) )
        & ! [Z,Pid0] :
            ( ( Pid0 != Z
              & host(Pid0) = host(Z) )
           => ( ~ setIn(Z,alive)
              | ~ setIn(Pid0,alive) ) )
        & ! [Z,Pid30,Pid20,Pid0] :
            ( ( host(Pid20) != host(Z)
              & setIn(Z,alive)
              & setIn(Pid20,alive)
              & host(Pid30) = host(Z)
              & host(Pid0) = host(Pid20) )
           => ~ ( elem(m_Down(Pid0),queue(host(Z)))
                & elem(m_Down(Pid30),queue(host(Pid20))) ) )
        & ! [Z,Pid30,Pid20,Pid0] :
            ( ( host(Pid20) != host(Z)
              & setIn(Z,alive)
              & setIn(Pid20,alive)
              & host(Pid30) = host(Z)
              & host(Pid0) = host(Pid20) )
           => ~ ( elem(m_Down(Pid0),queue(host(Z)))
                & setIn(host(Pid30),index(down,host(Pid20))) ) )
        & queue(host(X)) = cons(m_Down(Y),V) )
     => ( setIn(X,alive)
       => ( ~ leq(host(X),host(Y))
         => ( ( ( index(ldr,host(X)) = host(Y)
                & index(status,host(X)) = norm )
              | ( index(status,host(X)) = wait
                & host(Y) = host(index(elid,host(X))) ) )
           => ( ( ! [Z] :
                    ( host(X) = host(Z)
                   => leq(Z,W) )
                & ~ setIn(W,pids)
                & host(X) = host(W) )
             => ( host(W) != s(zero)
               => ! [Z] :
                    ( host(X) = host(Z)
                   => ! [X0,Y0] :
                        ( host(W) != host(Y0)
                       => ( host(X) != host(Y0)
                         => ! [Z0] :
                              ( ( ( ( Z != X
                                    & setIn(Z,alive) )
                                  | Z = W )
                                & ( ( Y0 != X
                                    & setIn(Y0,alive) )
                                  | Y0 = W )
                                & host(Y0) != host(Z)
                                & host(X0) = host(Z)
                                & host(Z0) = host(Y0) )
                             => ~ ( elem(m_Down(Z0),V)
                                  & setIn(host(X0),index(down,host(Y0))) ) ) ) ) ) ) ) ) ) ) ) ).

%------------------------------------------------------------------------------