TPTP Problem File: SWV454+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV454+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Software Verification
% Problem : Establishing that there cannot be two leaders, part i26_p250
% Version : [Sve07] axioms : Especial.
% English :
% Refs : [Sto97] Stoller (1997), Leader Election in Distributed Systems
% : [Sve07] Svensson (2007), Email to Koen Claessen
% : [Sve08] Svensson (2008), A Semi-Automatic Correctness Proof Pr
% Source : [Sve07]
% Names : stoller_i26_p250 [Sve07]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.33 v8.2.0, 0.31 v7.4.0, 0.20 v7.3.0, 0.31 v7.1.0, 0.26 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.29 v6.2.0, 0.44 v6.1.0, 0.47 v6.0.0, 0.39 v5.5.0, 0.48 v5.4.0, 0.54 v5.3.0, 0.56 v5.2.0, 0.45 v5.1.0, 0.57 v5.0.0, 0.62 v4.1.0, 0.65 v4.0.0
% Syntax : Number of formulae : 67 ( 40 unt; 0 def)
% Number of atoms : 160 ( 83 equ)
% Maximal formula atoms : 49 ( 2 avg)
% Number of connectives : 158 ( 65 ~; 10 |; 39 &)
% ( 13 <=>; 31 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 32 ( 32 usr; 15 con; 0-2 aty)
% Number of variables : 147 ( 146 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for verification of Stoller's leader election algorithm
include('Axioms/SWV011+0.ax').
%------------------------------------------------------------------------------
fof(conj,conjecture,
! [V,W,X,Y] :
( ( ! [Z,Pid0] :
( setIn(Pid0,alive)
=> ~ elem(m_Down(Pid0),queue(host(Z))) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> ~ setIn(Pid0,alive) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> host(Pid0) != host(Z) )
& ! [Z,Pid0] :
( elem(m_Halt(Pid0),queue(host(Z)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid20,Pid0] :
( elem(m_Ack(Pid0,Z),queue(host(Pid20)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid0] :
( ( ~ setIn(Z,alive)
& leq(Pid0,Z)
& host(Pid0) = host(Z) )
=> ~ setIn(Pid0,alive) )
& ! [Z,Pid0] :
( ( Pid0 != Z
& host(Pid0) = host(Z) )
=> ( ~ setIn(Z,alive)
| ~ setIn(Pid0,alive) ) )
& ! [Z,Pid30,Pid20,Pid0] :
( ( host(Pid20) != host(Z)
& setIn(Z,alive)
& setIn(Pid20,alive)
& host(Pid30) = host(Z)
& host(Pid0) = host(Pid20) )
=> ~ ( elem(m_Down(Pid0),queue(host(Z)))
& elem(m_Down(Pid30),queue(host(Pid20))) ) )
& queue(host(X)) = cons(m_Down(Y),V) )
=> ( setIn(X,alive)
=> ( ~ leq(host(X),host(Y))
=> ( ~ ( ( index(ldr,host(X)) = host(Y)
& index(status,host(X)) = norm )
| ( index(status,host(X)) = wait
& host(Y) = host(index(elid,host(X))) ) )
=> ( ( ! [Z] :
( ( ~ leq(host(X),Z)
& leq(s(zero),Z) )
=> ( setIn(Z,index(down,host(X)))
| Z = host(Y) ) )
& index(status,host(X)) = elec_1 )
=> ( ~ leq(nbr_proc,host(X))
=> ! [Z] :
( s(host(X)) != host(Z)
=> ( host(X) = host(Z)
=> ! [W0,X0] :
( s(host(X)) != host(X0)
=> ( host(X) != host(X0)
=> ! [Y0] :
( ( host(X0) != host(Z)
& setIn(Z,alive)
& setIn(X0,alive)
& host(W0) = host(Z)
& host(Y0) = host(X0) )
=> ~ ( elem(m_Down(Y0),V)
& elem(m_Down(W0),queue(host(X0))) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------