TPTP Problem File: SWV453+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV453+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Software Verification
% Problem : Establishing that there cannot be two leaders, part i26_p217
% Version : [Sve07] axioms : Especial.
% English :
% Refs : [Sto97] Stoller (1997), Leader Election in Distributed Systems
% : [Sve07] Svensson (2007), Email to Koen Claessen
% : [Sve08] Svensson (2008), A Semi-Automatic Correctness Proof Pr
% Source : [Sve07]
% Names : stoller_i26_p217 [Sve07]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.42 v8.2.0, 0.39 v8.1.0, 0.36 v7.5.0, 0.44 v7.4.0, 0.33 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.39 v7.0.0, 0.33 v6.4.0, 0.42 v6.3.0, 0.46 v6.2.0, 0.56 v6.1.0, 0.63 v6.0.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.71 v5.3.0, 0.74 v5.2.0, 0.70 v5.1.0, 0.67 v4.1.0, 0.70 v4.0.1, 0.74 v4.0.0
% Syntax : Number of formulae : 67 ( 40 unt; 0 def)
% Number of atoms : 161 ( 86 equ)
% Maximal formula atoms : 50 ( 2 avg)
% Number of connectives : 158 ( 64 ~; 11 |; 41 &)
% ( 13 <=>; 29 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 31 ( 31 usr; 14 con; 0-2 aty)
% Number of variables : 147 ( 146 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for verification of Stoller's leader election algorithm
include('Axioms/SWV011+0.ax').
%------------------------------------------------------------------------------
fof(conj,conjecture,
! [V,W,X,Y] :
( ( ! [Z,Pid0] :
( setIn(Pid0,alive)
=> ~ elem(m_Down(Pid0),queue(host(Z))) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> ~ setIn(Pid0,alive) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> host(Pid0) != host(Z) )
& ! [Z,Pid0] :
( elem(m_Halt(Pid0),queue(host(Z)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid20,Pid0] :
( elem(m_Ack(Pid0,Z),queue(host(Pid20)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid0] :
( ( ~ setIn(Z,alive)
& leq(Pid0,Z)
& host(Pid0) = host(Z) )
=> ~ setIn(Pid0,alive) )
& ! [Z,Pid0] :
( ( Pid0 != Z
& host(Pid0) = host(Z) )
=> ( ~ setIn(Z,alive)
| ~ setIn(Pid0,alive) ) )
& ! [Z,Pid30,Pid20,Pid0] :
( ( host(Pid20) != host(Z)
& setIn(Z,alive)
& setIn(Pid20,alive)
& host(Pid30) = host(Z)
& host(Pid0) = host(Pid20) )
=> ~ ( elem(m_Down(Pid0),queue(host(Z)))
& elem(m_Down(Pid30),queue(host(Pid20))) ) )
& queue(host(X)) = cons(m_Down(Y),V) )
=> ( setIn(X,alive)
=> ( ~ leq(host(X),host(Y))
=> ( ( ( index(ldr,host(X)) = host(Y)
& index(status,host(X)) = norm )
| ( index(status,host(X)) = wait
& host(Y) = host(index(elid,host(X))) ) )
=> ( ( ! [Z] :
( host(X) = host(Z)
=> leq(Z,W) )
& ~ setIn(W,pids)
& host(X) = host(W) )
=> ( host(W) != s(zero)
=> ! [Z] :
( host(X) != host(Z)
=> ! [X0,Y0] :
( host(X) = host(Y0)
=> ! [Z0] :
( ( ( ( Z != X
& setIn(Z,alive) )
| Z = W )
& ( ( Y0 != X
& setIn(Y0,alive) )
| Y0 = W )
& host(Y0) != host(Z)
& host(X0) = host(Z)
& host(Z0) = host(Y0) )
=> ~ ( elem(m_Down(X0),V)
& elem(m_Down(Z0),queue(host(Z))) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------