TPTP Problem File: SWV449+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV449+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Software Verification
% Problem : Establishing that there cannot be two leaders, part i26_p30
% Version : [Sve07] axioms : Especial.
% English :
% Refs : [Sto97] Stoller (1997), Leader Election in Distributed Systems
% : [Sve07] Svensson (2007), Email to Koen Claessen
% : [Sve08] Svensson (2008), A Semi-Automatic Correctness Proof Pr
% Source : [Sve07]
% Names : stoller_i26_p30 [Sve07]
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.44 v8.1.0, 0.42 v7.5.0, 0.44 v7.4.0, 0.30 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.35 v7.0.0, 0.33 v6.4.0, 0.35 v6.3.0, 0.42 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.52 v5.5.0, 0.59 v5.4.0, 0.64 v5.3.0, 0.63 v5.2.0, 0.50 v5.1.0, 0.62 v5.0.0, 0.75 v4.1.0, 0.78 v4.0.0
% Syntax : Number of formulae : 67 ( 40 unt; 0 def)
% Number of atoms : 155 ( 81 equ)
% Maximal formula atoms : 44 ( 2 avg)
% Number of connectives : 148 ( 60 ~; 9 |; 37 &)
% ( 13 <=>; 29 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 32 ( 32 usr; 15 con; 0-2 aty)
% Number of variables : 147 ( 146 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for verification of Stoller's leader election algorithm
include('Axioms/SWV011+0.ax').
%------------------------------------------------------------------------------
fof(conj,conjecture,
! [V,W,X,Y] :
( ( ! [Z,Pid0] :
( setIn(Pid0,alive)
=> ~ elem(m_Down(Pid0),queue(host(Z))) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> ~ setIn(Pid0,alive) )
& ! [Z,Pid0] :
( elem(m_Down(Pid0),queue(host(Z)))
=> host(Pid0) != host(Z) )
& ! [Z,Pid0] :
( elem(m_Halt(Pid0),queue(host(Z)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid20,Pid0] :
( elem(m_Ack(Pid0,Z),queue(host(Pid20)))
=> ~ leq(host(Z),host(Pid0)) )
& ! [Z,Pid0] :
( ( ~ setIn(Z,alive)
& leq(Pid0,Z)
& host(Pid0) = host(Z) )
=> ~ setIn(Pid0,alive) )
& ! [Z,Pid0] :
( ( Pid0 != Z
& host(Pid0) = host(Z) )
=> ( ~ setIn(Z,alive)
| ~ setIn(Pid0,alive) ) )
& ! [Z,Pid30,Pid20,Pid0] :
( ( host(Pid20) != host(Z)
& setIn(Z,alive)
& setIn(Pid20,alive)
& host(Pid30) = host(Z)
& host(Pid0) = host(Pid20) )
=> ~ ( elem(m_Down(Pid0),queue(host(Z)))
& elem(m_Down(Pid30),queue(host(Pid20))) ) )
& queue(host(X)) = cons(m_Ack(W,Y),V) )
=> ( setIn(X,alive)
=> ( ( index(elid,host(X)) = W
& index(status,host(X)) = elec_2
& host(Y) = index(pendack,host(X)) )
=> ( leq(nbr_proc,index(pendack,host(X)))
=> ! [Z] :
( ( setIn(host(Z),index(acks,host(X)))
| host(Z) = host(Y) )
=> ! [V0] :
( host(Z) = host(V0)
=> ( host(X) = host(V0)
=> ! [W0,X0] :
( host(Z) != host(X0)
=> ( host(X) != host(X0)
=> ! [Y0] :
( ( host(X0) != host(V0)
& setIn(V0,alive)
& setIn(X0,alive)
& host(W0) = host(V0)
& host(Y0) = host(X0) )
=> ~ ( elem(m_Down(W0),queue(host(X0)))
& elem(m_Down(Y0),snoc(V,m_Ldr(X))) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------