TPTP Problem File: SWV433^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV433^2 : TPTP v9.0.0. Released v3.6.0.
% Domain : Software Verification (Security)
% Problem : ICL^=> logic mapping to modal logic implies that Example 2 holds
% Version : [Ben08] axioms : Augmented.
% English :
% Refs : [GA08] Garg & Abadi (2008), A Modal Deconstruction of Access
% : [Ben08] Benzmueller (2008), Automating Access Control Logics i
% : [BP09] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0, 0.73 v7.5.0, 0.57 v7.4.0, 0.67 v7.2.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.86 v6.1.0, 0.71 v5.5.0, 1.00 v5.4.0, 0.60 v5.3.0, 0.80 v5.1.0, 1.00 v5.0.0, 0.80 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 67 ( 25 unt; 35 typ; 25 def)
% Number of atoms : 124 ( 25 equ; 0 cnn)
% Maximal formula atoms : 12 ( 3 avg)
% Number of connectives : 102 ( 3 ~; 1 |; 2 &; 95 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 135 ( 135 >; 0 *; 0 +; 0 <<)
% Number of symbols : 43 ( 40 usr; 9 con; 0-3 aty)
% Number of variables : 51 ( 41 ^; 6 !; 4 ?; 51 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of multi modal logic
include('Axioms/LCL008^0.ax').
%----Include axioms of ICL logic
include('Axioms/SWV008^0.ax').
%----Include axioms for ICL notions of validity wrt S4
include('Axioms/SWV008^1.ax').
%----Include axioms of ICL^=> logic
include('Axioms/SWV008^2.ax').
%------------------------------------------------------------------------------
%----The prinicpals
thf(admin,type,
admin: $i > $o ).
thf(bob,type,
bob: $i > $o ).
thf(alice,type,
alice: $i > $o ).
%----The atoms
thf(deletfile1,type,
deletefile1: $i > $o ).
%----The axioms of the example problem
%----(admin says deletefile1) => deletfile1
thf(ax1,axiom,
iclval @ ( icl_impl @ ( icl_says @ ( icl_princ @ admin ) @ ( icl_atom @ deletefile1 ) ) @ ( icl_atom @ deletefile1 ) ) ).
%----(admin says ((bob says deletefile1) => deletfile1))
thf(ax2,axiom,
iclval @ ( icl_says @ ( icl_princ @ admin ) @ ( icl_impl @ ( icl_says @ ( icl_princ @ bob ) @ ( icl_atom @ deletefile1 ) ) @ ( icl_atom @ deletefile1 ) ) ) ).
%----(bob says (alice ==> bob))
thf(ax3,axiom,
iclval @ ( icl_says @ ( icl_princ @ bob ) @ ( icl_impl_princ @ ( icl_princ @ alice ) @ ( icl_princ @ bob ) ) ) ).
%----(alice says deletefile1)
thf(ax4,axiom,
iclval @ ( icl_says @ ( icl_princ @ alice ) @ ( icl_atom @ deletefile1 ) ) ).
%----We prove deletefile1
thf(conj,conjecture,
iclval @ ( icl_atom @ deletefile1 ) ).
%------------------------------------------------------------------------------