TPTP Problem File: SWV426^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV426^4 : TPTP v9.0.0. Released v3.6.0.
% Domain : Software Verification (Security)
% Problem : ICL^B logic mapping to modal logic implies 'cuc'
% Version : [Ben08] axioms : Augmented.
% English :
% Refs : [GA08] Garg & Abadi (2008), A Modal Deconstruction of Access
% : [Ben08] Benzmueller (2008), Automating Access Control Logics i
% : [BP09] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 60 ( 24 unt; 33 typ; 24 def)
% Number of atoms : 101 ( 24 equ; 0 cnn)
% Maximal formula atoms : 21 ( 3 avg)
% Number of connectives : 84 ( 3 ~; 1 |; 2 &; 77 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 127 ( 127 >; 0 *; 0 +; 0 <<)
% Number of symbols : 40 ( 37 usr; 8 con; 0-3 aty)
% Number of variables : 49 ( 39 ^; 6 !; 4 ?; 49 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of multi modal logic
include('Axioms/LCL008^0.ax').
%----Include axioms of ICL logic
include('Axioms/SWV008^0.ax').
%----Include axioms for ICL notions of validity wrt S4
include('Axioms/SWV008^1.ax').
%------------------------------------------------------------------------------
%----We introduce an arbitrary atom s
thf(s,type,
s: $i > $o ).
%----We introduce the arbitrary principals a and b
thf(a,type,
a: $i > $o ).
thf(b,type,
b: $i > $o ).
%----Can we prove 'cuc''?
thf(cuc,conjecture,
iclval @ ( icl_impl @ ( icl_says @ ( icl_impl @ ( icl_princ @ a ) @ ( icl_princ @ b ) ) @ ( icl_atom @ s ) ) @ ( icl_impl @ ( icl_says @ ( icl_princ @ a ) @ ( icl_atom @ s ) ) @ ( icl_says @ ( icl_princ @ b ) @ ( icl_atom @ s ) ) ) ) ).
%------------------------------------------------------------------------------