TPTP Problem File: SWV372+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV372+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Software Verification
% Problem : Priority queue checker: lemma_contains_cpq_min_elem
% Version : [dNP05] axioms.
% English :
% Refs : [Pis06] Piskac (2006), Email to Geoff Sutcliffe
% : [dNP05] de Nivelle & Piskac (2005), Verification of an Off-Lin
% Source : [Pis06]
% Names : cpq_l008 [Pis06]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.1.0, 0.42 v7.5.0, 0.41 v7.4.0, 0.30 v7.3.0, 0.38 v7.1.0, 0.35 v7.0.0, 0.40 v6.4.0, 0.46 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.48 v5.5.0, 0.63 v5.4.0, 0.64 v5.3.0, 0.67 v5.2.0, 0.65 v5.1.0, 0.62 v5.0.0, 0.58 v4.1.0, 0.57 v4.0.1, 0.61 v4.0.0, 0.62 v3.7.0, 0.55 v3.5.0, 0.58 v3.3.0
% Syntax : Number of formulae : 66 ( 23 unt; 0 def)
% Number of atoms : 136 ( 40 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 90 ( 20 ~; 4 |; 21 &)
% ( 17 <=>; 28 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 21 ( 19 usr; 1 prp; 0-3 aty)
% Number of functors : 26 ( 26 usr; 4 con; 0-3 aty)
% Number of variables : 176 ( 173 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include the axioms about priority queues and checked priority queues
include('Axioms/SWV007+0.ax').
include('Axioms/SWV007+1.ax').
include('Axioms/SWV007+2.ax').
include('Axioms/SWV007+3.ax').
include('Axioms/SWV007+4.ax').
%------------------------------------------------------------------------------
%----lemma_contains_s_I (cpq_l005.p, cpq_l006.p)
fof(l8_li56,lemma,
! [U,V,W,X] :
( contains_cpq(triple(U,V,W),X)
<=> contains_pq(i(triple(U,V,W)),X) ) ).
%----lemma_not_contains_min_not_ok (cpq_l009.p)
fof(l8_l9,lemma,
! [U,V,W] :
( ~ contains_cpq(triple(U,V,W),findmin_cpq_res(triple(U,V,W)))
=> ~ ok(findmin_cpq_eff(triple(U,V,W))) ) ).
%----lemma_not_ok_not_phi (cpq_l011.p)
fof(l8_lX,lemma,
! [U,V,W] :
( ~ ok(triple(U,V,W))
=> ~ phi(triple(U,V,W)) ) ).
%----lemma_contains_cpq_min_elem (conjecture)
fof(l8_co,conjecture,
! [U,V,W] :
( phi(findmin_cpq_eff(triple(U,V,W)))
=> contains_pq(i(triple(U,V,W)),findmin_cpq_res(triple(U,V,W))) ) ).
%------------------------------------------------------------------------------