TPTP Problem File: SWV161+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV161+1 : TPTP v9.0.0. Bugfixed v3.3.0.
% Domain : Software Verification
% Problem : Simplified proof obligation cl5_nebula_norm_0011
% Version : [DFS04] axioms : Especial.
% English : Proof obligation emerging from the norm-safety verification for
% the cl5_nebula program. norm-safety ensures that the contents of
% certain one-dimensional arrays add up to one.
% Refs : [Fis04] Fischer (2004), Email to G. Sutcliffe
% : [DFS04] Denney et al. (2004), Using Automated Theorem Provers
% Source : [Fis04]
% Names : cl5_nebula_norm_0011 [Fis04]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.36 v8.2.0, 0.33 v8.1.0, 0.28 v7.5.0, 0.31 v7.4.0, 0.23 v7.3.0, 0.38 v7.2.0, 0.34 v7.1.0, 0.35 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.38 v6.2.0, 0.44 v6.1.0, 0.43 v6.0.0, 0.39 v5.5.0, 0.52 v5.4.0, 0.57 v5.3.0, 0.59 v5.2.0, 0.55 v5.1.0, 0.52 v5.0.0, 0.50 v4.1.0, 0.57 v4.0.0, 0.58 v3.7.0, 0.60 v3.5.0, 0.58 v3.4.0, 0.63 v3.3.0
% Syntax : Number of formulae : 92 ( 56 unt; 0 def)
% Number of atoms : 265 ( 83 equ)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 178 ( 5 ~; 17 |; 97 &)
% ( 5 <=>; 54 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 4 avg)
% Maximal term depth : 9 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 1 prp; 0-2 aty)
% Number of functors : 32 ( 32 usr; 14 con; 0-4 aty)
% Number of variables : 170 ( 170 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v3.3.0 - Bugfix in SWV003+0
%------------------------------------------------------------------------------
%----Include NASA software certification axioms
include('Axioms/SWV003+0.ax').
%------------------------------------------------------------------------------
%----Proof obligation generated by the AutoBayes/AutoFilter system
fof(cl5_nebula_norm_0011,conjecture,
( ( sum(n0,n4,a_select3(q,pv10,tptp_sum_index)) = n1
& leq(n0,pv10)
& leq(pv10,n135299)
& ! [A] :
( ( leq(n0,A)
& leq(A,pred(pv10)) )
=> sum(n0,n4,a_select3(q,A,tptp_sum_index)) = n1 ) )
=> ! [B] :
( ( leq(n0,B)
& leq(B,pv10) )
=> sum(n0,n4,a_select3(q,B,tptp_sum_index)) = n1 ) ) ).
%----Automatically generated axioms
fof(gt_5_4,axiom,
gt(n5,n4) ).
fof(gt_135299_4,axiom,
gt(n135299,n4) ).
fof(gt_135299_5,axiom,
gt(n135299,n5) ).
fof(gt_4_tptp_minus_1,axiom,
gt(n4,tptp_minus_1) ).
fof(gt_5_tptp_minus_1,axiom,
gt(n5,tptp_minus_1) ).
fof(gt_135299_tptp_minus_1,axiom,
gt(n135299,tptp_minus_1) ).
fof(gt_0_tptp_minus_1,axiom,
gt(n0,tptp_minus_1) ).
fof(gt_1_tptp_minus_1,axiom,
gt(n1,tptp_minus_1) ).
fof(gt_2_tptp_minus_1,axiom,
gt(n2,tptp_minus_1) ).
fof(gt_3_tptp_minus_1,axiom,
gt(n3,tptp_minus_1) ).
fof(gt_4_0,axiom,
gt(n4,n0) ).
fof(gt_5_0,axiom,
gt(n5,n0) ).
fof(gt_135299_0,axiom,
gt(n135299,n0) ).
fof(gt_1_0,axiom,
gt(n1,n0) ).
fof(gt_2_0,axiom,
gt(n2,n0) ).
fof(gt_3_0,axiom,
gt(n3,n0) ).
fof(gt_4_1,axiom,
gt(n4,n1) ).
fof(gt_5_1,axiom,
gt(n5,n1) ).
fof(gt_135299_1,axiom,
gt(n135299,n1) ).
fof(gt_2_1,axiom,
gt(n2,n1) ).
fof(gt_3_1,axiom,
gt(n3,n1) ).
fof(gt_4_2,axiom,
gt(n4,n2) ).
fof(gt_5_2,axiom,
gt(n5,n2) ).
fof(gt_135299_2,axiom,
gt(n135299,n2) ).
fof(gt_3_2,axiom,
gt(n3,n2) ).
fof(gt_4_3,axiom,
gt(n4,n3) ).
fof(gt_5_3,axiom,
gt(n5,n3) ).
fof(gt_135299_3,axiom,
gt(n135299,n3) ).
fof(finite_domain_4,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n4) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4 ) ) ).
fof(finite_domain_5,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n5) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4
| X = n5 ) ) ).
fof(finite_domain_0,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n0) )
=> X = n0 ) ).
fof(finite_domain_1,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n1) )
=> ( X = n0
| X = n1 ) ) ).
fof(finite_domain_2,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n2) )
=> ( X = n0
| X = n1
| X = n2 ) ) ).
fof(finite_domain_3,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n3) )
=> ( X = n0
| X = n1
| X = n2
| X = n3 ) ) ).
fof(successor_4,axiom,
succ(succ(succ(succ(n0)))) = n4 ).
fof(successor_5,axiom,
succ(succ(succ(succ(succ(n0))))) = n5 ).
fof(successor_1,axiom,
succ(n0) = n1 ).
fof(successor_2,axiom,
succ(succ(n0)) = n2 ).
fof(successor_3,axiom,
succ(succ(succ(n0))) = n3 ).
%------------------------------------------------------------------------------