TPTP Problem File: SWV122+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV122+1 : TPTP v9.0.0. Bugfixed v3.3.0.
% Domain : Software Verification
% Problem : Unsimplified proof obligation quaternion_ds1_symm_0015
% Version : [DFS04] axioms : Especial.
% English : Proof obligation emerging from the symm-safety verification for
% the quaternion_ds1 program. symmetry-safety ensures that certain
% two-dimensional arrays remain symmetric.
% Refs : [Fis04] Fischer (2004), Email to G. Sutcliffe
% : [DFS04] Denney et al. (2004), Using Automated Theorem Provers
% Source : [Fis04]
% Names : quaternion_ds1_symm_0015 [Fis04]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.28 v8.2.0, 0.25 v8.1.0, 0.31 v7.5.0, 0.34 v7.4.0, 0.23 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.35 v7.0.0, 0.33 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.47 v6.0.0, 0.43 v5.5.0, 0.44 v5.4.0, 0.50 v5.3.0, 0.56 v5.2.0, 0.50 v5.1.0, 0.52 v5.0.0, 0.62 v4.1.0, 0.61 v4.0.0, 0.58 v3.7.0, 0.50 v3.5.0, 0.58 v3.4.0, 0.74 v3.3.0
% Syntax : Number of formulae : 94 ( 57 unt; 0 def)
% Number of atoms : 296 ( 94 equ)
% Maximal formula atoms : 30 ( 3 avg)
% Number of connectives : 207 ( 5 ~; 23 |; 115 &)
% ( 5 <=>; 59 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 4 avg)
% Maximal term depth : 9 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 1 prp; 0-2 aty)
% Number of functors : 32 ( 32 usr; 14 con; 0-4 aty)
% Number of variables : 181 ( 181 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v3.3.0 - Bugfix in SWV003+0
%------------------------------------------------------------------------------
%----Include NASA software certification axioms
include('Axioms/SWV003+0.ax').
%------------------------------------------------------------------------------
%----Proof obligation generated by the AutoBayes/AutoFilter system
fof(quaternion_ds1_symm_0015,conjecture,
( ( ! [A,B] :
( ( leq(n0,A)
& leq(n0,B)
& leq(A,minus(n6,n1))
& leq(B,minus(n6,n1)) )
=> a_select3(q_ds1_filter,A,B) = a_select3(q_ds1_filter,B,A) )
& ! [C,D] :
( ( leq(n0,C)
& leq(n0,D)
& leq(C,minus(n3,n1))
& leq(D,minus(n3,n1)) )
=> a_select3(r_ds1_filter,C,D) = a_select3(r_ds1_filter,D,C) )
& ! [E,F] :
( ( leq(n0,E)
& leq(n0,F)
& leq(E,minus(n6,n1))
& leq(F,minus(n6,n1)) )
=> a_select3(pminus_ds1_filter,E,F) = a_select3(pminus_ds1_filter,F,E) ) )
=> ( ! [G,H] :
( ( leq(n0,G)
& leq(n0,H)
& leq(G,minus(n6,n1))
& leq(H,minus(n6,n1)) )
=> a_select3(q_ds1_filter,G,H) = a_select3(q_ds1_filter,H,G) )
& ! [I,J] :
( ( leq(n0,I)
& leq(n0,J)
& leq(I,minus(n3,n1))
& leq(J,minus(n3,n1)) )
=> a_select3(r_ds1_filter,I,J) = a_select3(r_ds1_filter,J,I) )
& ! [K,L] :
( ( leq(n0,K)
& leq(n0,L)
& leq(K,minus(n6,n1))
& leq(L,minus(n6,n1)) )
=> a_select3(pminus_ds1_filter,K,L) = a_select3(pminus_ds1_filter,L,K) ) ) ) ).
%----Automatically generated axioms
fof(gt_5_4,axiom,
gt(n5,n4) ).
fof(gt_6_4,axiom,
gt(n6,n4) ).
fof(gt_6_5,axiom,
gt(n6,n5) ).
fof(gt_4_tptp_minus_1,axiom,
gt(n4,tptp_minus_1) ).
fof(gt_5_tptp_minus_1,axiom,
gt(n5,tptp_minus_1) ).
fof(gt_6_tptp_minus_1,axiom,
gt(n6,tptp_minus_1) ).
fof(gt_0_tptp_minus_1,axiom,
gt(n0,tptp_minus_1) ).
fof(gt_1_tptp_minus_1,axiom,
gt(n1,tptp_minus_1) ).
fof(gt_2_tptp_minus_1,axiom,
gt(n2,tptp_minus_1) ).
fof(gt_3_tptp_minus_1,axiom,
gt(n3,tptp_minus_1) ).
fof(gt_4_0,axiom,
gt(n4,n0) ).
fof(gt_5_0,axiom,
gt(n5,n0) ).
fof(gt_6_0,axiom,
gt(n6,n0) ).
fof(gt_1_0,axiom,
gt(n1,n0) ).
fof(gt_2_0,axiom,
gt(n2,n0) ).
fof(gt_3_0,axiom,
gt(n3,n0) ).
fof(gt_4_1,axiom,
gt(n4,n1) ).
fof(gt_5_1,axiom,
gt(n5,n1) ).
fof(gt_6_1,axiom,
gt(n6,n1) ).
fof(gt_2_1,axiom,
gt(n2,n1) ).
fof(gt_3_1,axiom,
gt(n3,n1) ).
fof(gt_4_2,axiom,
gt(n4,n2) ).
fof(gt_5_2,axiom,
gt(n5,n2) ).
fof(gt_6_2,axiom,
gt(n6,n2) ).
fof(gt_3_2,axiom,
gt(n3,n2) ).
fof(gt_4_3,axiom,
gt(n4,n3) ).
fof(gt_5_3,axiom,
gt(n5,n3) ).
fof(gt_6_3,axiom,
gt(n6,n3) ).
fof(finite_domain_4,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n4) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4 ) ) ).
fof(finite_domain_5,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n5) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4
| X = n5 ) ) ).
fof(finite_domain_6,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n6) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4
| X = n5
| X = n6 ) ) ).
fof(finite_domain_0,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n0) )
=> X = n0 ) ).
fof(finite_domain_1,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n1) )
=> ( X = n0
| X = n1 ) ) ).
fof(finite_domain_2,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n2) )
=> ( X = n0
| X = n1
| X = n2 ) ) ).
fof(finite_domain_3,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n3) )
=> ( X = n0
| X = n1
| X = n2
| X = n3 ) ) ).
fof(successor_4,axiom,
succ(succ(succ(succ(n0)))) = n4 ).
fof(successor_5,axiom,
succ(succ(succ(succ(succ(n0))))) = n5 ).
fof(successor_6,axiom,
succ(succ(succ(succ(succ(succ(n0)))))) = n6 ).
fof(successor_1,axiom,
succ(n0) = n1 ).
fof(successor_2,axiom,
succ(succ(n0)) = n2 ).
fof(successor_3,axiom,
succ(succ(succ(n0))) = n3 ).
%------------------------------------------------------------------------------