TPTP Problem File: SWC478_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC478_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A228889
% Version : Especial.
% English : Terms: 60 336 990 2184 4080 6840 10626 15600 21924 29760 39270
% 50616 63960 79464 97290 117600 140556 166320 195054 226920
% Small: loop2((2+x)*((x+y)*x),1,2,1,x)
% Fast : loop(((x*x)*x)-x,1,(2*(2+x))+x)
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A228889 [Git23]
% Status : Theorem
% Rating : 0.62 v9.0.0
% Syntax : Number of formulae : 31 ( 12 unt; 15 typ; 0 def)
% Number of atoms : 26 ( 19 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 15 ( 5 ~; 0 |; 4 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 55 ( 7 atm; 13 fun; 17 num; 18 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 17 ( 11 >; 6 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 21 ( 15 usr; 7 con; 0-3 aty)
% Number of variables : 18 (; 17 !; 1 ?; 18 :)
% SPC : TF0_THM_EQU_ARI
% Comments : Not in an "aind_*" subset, i.e., unlikely to require induction.
%------------------------------------------------------------------------------
tff(v0,type,
v0: ( $int * $int * $int ) > $int ).
tff(u1,type,
u1: ( $int * $int ) > $int ).
tff(j0,type,
j0: $int > $int ).
tff(w0,type,
w0: $int > $int ).
tff(v1,type,
v1: $int > $int ).
tff(i0,type,
i0: $int ).
tff(h1,type,
h1: $int > $int ).
tff(u0,type,
u0: ( $int * $int * $int ) > $int ).
tff(f0,type,
f0: ( $int * $int ) > $int ).
tff(h0,type,
h0: $int ).
tff(g1,type,
g1: $int ).
tff(fast,type,
fast: $int > $int ).
tff(g0,type,
g0: $int ).
tff(small,type,
small: $int > $int ).
tff(f1,type,
f1: $int > $int ).
%----∀ x:Int y:Int (f0(x, y) = ((2 + x) * ((x + y) * x)))
tff(formula_1,axiom,
! [X: $int,Y: $int] : ( f0(X,Y) = $product($sum(2,X),$product($sum(X,Y),X)) ) ).
%----(g0 = 1)
tff(formula_2,axiom,
g0 = 1 ).
%----(h0 = 2)
tff(formula_3,axiom,
h0 = 2 ).
%----(i0 = 1)
tff(formula_4,axiom,
i0 = 1 ).
%----∀ x:Int (j0(x) = x)
tff(formula_5,axiom,
! [X: $int] : ( j0(X) = X ) ).
%----∀ x:Int y:Int z:Int (u0(x, y, z) = (if (x ≤ 0) y else f0(u0((x - 1), y,
%----z), v0((x - 1), y, z))))
tff(formula_6,axiom,
! [X: $int,Y: $int,Z: $int] :
( ( $lesseq(X,0)
=> ( u0(X,Y,Z) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u0(X,Y,Z) = f0(u0($difference(X,1),Y,Z),v0($difference(X,1),Y,Z)) ) ) ) ).
%----∀ x:Int y:Int z:Int (v0(x, y, z) = (if (x ≤ 0) z else g0))
tff(formula_7,axiom,
! [X: $int,Y: $int,Z: $int] :
( ( $lesseq(X,0)
=> ( v0(X,Y,Z) = Z ) )
& ( ~ $lesseq(X,0)
=> ( v0(X,Y,Z) = g0 ) ) ) ).
%----∀ x:Int (w0(x) = u0(h0, i0, j0(x)))
tff(formula_8,axiom,
! [X: $int] : ( w0(X) = u0(h0,i0,j0(X)) ) ).
%----∀ x:Int (small(x) = w0(x))
tff(formula_9,axiom,
! [X: $int] : ( small(X) = w0(X) ) ).
%----∀ x:Int (f1(x) = (((x * x) * x) - x))
tff(formula_10,axiom,
! [X: $int] : ( f1(X) = $difference($product($product(X,X),X),X) ) ).
%----(g1 = 1)
tff(formula_11,axiom,
g1 = 1 ).
%----∀ x:Int (h1(x) = ((2 * (2 + x)) + x))
tff(formula_12,axiom,
! [X: $int] : ( h1(X) = $sum($product(2,$sum(2,X)),X) ) ).
%----∀ x:Int y:Int (u1(x, y) = (if (x ≤ 0) y else f1(u1((x - 1), y))))
tff(formula_13,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u1(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u1(X,Y) = f1(u1($difference(X,1),Y)) ) ) ) ).
%----∀ x:Int (v1(x) = u1(g1, h1(x)))
tff(formula_14,axiom,
! [X: $int] : ( v1(X) = u1(g1,h1(X)) ) ).
%----∀ x:Int (fast(x) = v1(x))
tff(formula_15,axiom,
! [X: $int] : ( fast(X) = v1(X) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------