TPTP Problem File: SWC448_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC448_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A67749
% Version : Especial.
% English : Terms: 87 187 287 387 487 587 687 787 887 987 1087 1187 1287 1387
% 1487 1587 1687 1787 1887 1987
% Small: loop(2*((2*(2+(x+x)))+x),2,x)-1
% Fast : 2+((1+(2+2))*(1+(2*(2*((2*(2+(x+x)))+x)))))
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A67749 [Git23]
% Status : Theorem
% Rating : 0.50 v9.0.0
% Syntax : Number of formulae : 15 ( 6 unt; 7 typ; 0 def)
% Number of atoms : 12 ( 9 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 7 ( 3 ~; 0 |; 2 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 10 ( 2 avg)
% Number arithmetic : 47 ( 3 atm; 18 fun; 18 num; 8 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 7 ( 6 >; 1 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 8 (; 7 !; 1 ?; 8 :)
% SPC : TF0_THM_EQU_ARI
% Comments : Not in an "aind_*" subset, i.e., unlikely to require induction.
%------------------------------------------------------------------------------
tff(v0,type,
v0: $int > $int ).
tff(u0,type,
u0: ( $int * $int ) > $int ).
tff(fast,type,
fast: $int > $int ).
tff(g0,type,
g0: $int ).
tff(h0,type,
h0: $int > $int ).
tff(small,type,
small: $int > $int ).
tff(f0,type,
f0: $int > $int ).
%----∀ x:Int (f0(x) = (2 * ((2 * (2 + (x + x))) + x)))
tff(formula_1,axiom,
! [X: $int] : ( f0(X) = $product(2,$sum($product(2,$sum(2,$sum(X,X))),X)) ) ).
%----(g0 = 2)
tff(formula_2,axiom,
g0 = 2 ).
%----∀ x:Int (h0(x) = x)
tff(formula_3,axiom,
! [X: $int] : ( h0(X) = X ) ).
%----∀ x:Int y:Int (u0(x, y) = (if (x ≤ 0) y else f0(u0((x - 1), y))))
tff(formula_4,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u0(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u0(X,Y) = f0(u0($difference(X,1),Y)) ) ) ) ).
%----∀ x:Int (v0(x) = u0(g0, h0(x)))
tff(formula_5,axiom,
! [X: $int] : ( v0(X) = u0(g0,h0(X)) ) ).
%----∀ x:Int (small(x) = (v0(x) - 1))
tff(formula_6,axiom,
! [X: $int] : ( small(X) = $difference(v0(X),1) ) ).
%----∀ x:Int (fast(x) = (2 + ((1 + (2 + 2)) * (1 + (2 * (2 * ((2 * (2 + (x +
%----x))) + x)))))))
tff(formula_7,axiom,
! [X: $int] : ( fast(X) = $sum(2,$product($sum(1,$sum(2,2)),$sum(1,$product(2,$product(2,$sum($product(2,$sum(2,$sum(X,X))),X)))))) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------