TPTP Problem File: SWC377+1.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : SWC377+1 : TPTP v9.0.0. Released v2.4.0.
% Domain   : Software Creation
% Problem  : cond_set_eq_x_rot_r_total2
% Version  : [Wei00] axioms.
% English  : Find components in a software library that match a given target
%            specification given in first-order logic. The components are
%            specified in first-order logic as well. The problem represents
%            a test of one library module specification against a target
%            specification.

% Refs     : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
%          : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source   : [Wei00]
% Names    : cond_set_eq_x_rot_r_total2 [Wei00]

% Status   : Theorem
% Rating   : 0.55 v9.0.0, 0.58 v8.2.0, 0.64 v8.1.0, 0.61 v7.5.0, 0.62 v7.4.0, 0.47 v7.3.0, 0.55 v7.2.0, 0.52 v7.1.0, 0.57 v7.0.0, 0.63 v6.4.0, 0.62 v6.3.0, 0.67 v6.2.0, 0.76 v6.1.0, 0.83 v5.5.0, 0.85 v5.4.0, 0.86 v5.3.0, 0.89 v5.2.0, 0.85 v5.1.0, 0.81 v5.0.0, 0.83 v4.0.1, 0.91 v4.0.0, 0.92 v3.7.0, 0.95 v3.3.0, 1.00 v2.6.0, 0.83 v2.5.0, 1.00 v2.4.0
% Syntax   : Number of formulae    :   96 (   9 unt;   0 def)
%            Number of atoms       :  412 (  77 equ)
%            Maximal formula atoms :   18 (   4 avg)
%            Number of connectives :  347 (  31   ~;  14   |;  42   &)
%                                         (  26 <=>; 234  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   20 (   7 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   20 (  19 usr;   0 prp; 1-2 aty)
%            Number of functors    :    5 (   5 usr;   1 con; 0-2 aty)
%            Number of variables   :  210 ( 197   !;  13   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
    ! [U] :
      ( ssList(U)
     => ! [V] :
          ( ssList(V)
         => ! [W] :
              ( ssList(W)
             => ! [X] :
                  ( ssList(X)
                 => ( V != X
                    | U != W
                    | ! [Y] :
                        ( ssItem(Y)
                       => ( ( ~ memberP(V,Y)
                            & ~ memberP(U,Y) )
                          | ( memberP(V,Y)
                            & memberP(U,Y) ) ) )
                    | ( nil != W
                      & nil = X )
                    | ( ! [Z] :
                          ( ssItem(Z)
                         => ! [X1] :
                              ( ssList(X1)
                             => ( app(cons(Z,nil),X1) != W
                                | app(X1,cons(Z,nil)) != X ) ) )
                      & neq(X,nil) ) ) ) ) ) ) ).

%--------------------------------------------------------------------------