TPTP Problem File: SWC002+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC002+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_del_max_x_del_max
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_del_max_x_del_max [Wei00]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.44 v8.2.0, 0.56 v8.1.0, 0.50 v7.5.0, 0.53 v7.4.0, 0.47 v7.3.0, 0.52 v7.2.0, 0.55 v7.1.0, 0.57 v6.4.0, 0.65 v6.3.0, 0.62 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.83 v5.5.0, 0.89 v5.3.0, 0.85 v5.2.0, 0.90 v5.0.0, 0.92 v4.1.0, 0.83 v4.0.1, 0.78 v4.0.0, 0.71 v3.7.0, 0.65 v3.5.0, 0.68 v3.3.0, 0.64 v3.1.0, 0.78 v2.7.0, 0.67 v2.6.0, 0.83 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 421 ( 79 equ)
% Maximal formula atoms : 27 ( 4 avg)
% Number of connectives : 358 ( 33 ~; 17 |; 47 &)
% ( 26 <=>; 235 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 215 ( 198 !; 17 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssList(Z)
& ? [X1] :
( ssList(X1)
& app(app(Z,cons(Y,nil)),X1) = V
& app(Z,X1) = U
& ! [X2] :
( ssItem(X2)
=> ( ~ memberP(V,X2)
| ~ geq(X2,Y)
| Y = X2 ) ) ) ) )
| ! [X3] :
( ssItem(X3)
=> ! [X4] :
( ssList(X4)
=> ! [X5] :
( ssList(X5)
=> ( app(app(X4,cons(X3,nil)),X5) != X
| app(X4,X5) != W
| ? [X6] :
( ssItem(X6)
& X3 != X6
& memberP(X,X6)
& geq(X6,X3) ) ) ) ) ) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------