TPTP Problem File: SWB021+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWB021+2 : TPTP v9.0.0. Released v5.2.0.
% Domain : Semantic Web
% Problem : Composite Enumerations
% Version : [Sch11] axioms : Reduced > Incomplete.
% English :
% Refs : [Sch11] Schneider, M. (2011), Email to G. Sutcliffe
% Source : [Sch11]
% Names : 021_Composite_Enumerations [Sch11]
% Status : Theorem
% Rating : 0.42 v9.0.0, 0.44 v8.2.0, 0.42 v8.1.0, 0.39 v7.5.0, 0.38 v7.4.0, 0.37 v7.3.0, 0.38 v7.1.0, 0.26 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.38 v6.2.0, 0.52 v6.1.0, 0.57 v6.0.0, 0.61 v5.5.0, 0.56 v5.4.0, 0.61 v5.3.0, 0.67 v5.2.0
% Syntax : Number of formulae : 8 ( 1 unt; 0 def)
% Number of atoms : 66 ( 5 equ)
% Maximal formula atoms : 22 ( 8 avg)
% Number of connectives : 58 ( 0 ~; 4 |; 41 &)
% ( 8 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 31 ( 11 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 14 ( 14 usr; 14 con; 0-0 aty)
% Number of variables : 36 ( 27 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(owl_prop_oneof_ext,axiom,
! [X,Y] :
( iext(uri_owl_oneOf,X,Y)
=> ( ic(X)
& icext(uri_rdf_List,Y) ) ) ).
fof(owl_prop_unionof_ext,axiom,
! [X,Y] :
( iext(uri_owl_unionOf,X,Y)
=> ( ic(X)
& icext(uri_rdf_List,Y) ) ) ).
fof(owl_bool_unionof_class_002,axiom,
! [Z,S1,C1,S2,C2] :
( ( iext(uri_rdf_first,S1,C1)
& iext(uri_rdf_rest,S1,S2)
& iext(uri_rdf_first,S2,C2)
& iext(uri_rdf_rest,S2,uri_rdf_nil) )
=> ( iext(uri_owl_unionOf,Z,S1)
<=> ( ic(Z)
& ic(C1)
& ic(C2)
& ! [X] :
( icext(Z,X)
<=> ( icext(C1,X)
| icext(C2,X) ) ) ) ) ) ).
fof(owl_enum_class_002,axiom,
! [Z,S1,A1,S2,A2] :
( ( iext(uri_rdf_first,S1,A1)
& iext(uri_rdf_rest,S1,S2)
& iext(uri_rdf_first,S2,A2)
& iext(uri_rdf_rest,S2,uri_rdf_nil) )
=> ( iext(uri_owl_oneOf,Z,S1)
<=> ( ic(Z)
& ! [X] :
( icext(Z,X)
<=> ( X = A1
| X = A2 ) ) ) ) ) ).
fof(owl_enum_class_003,axiom,
! [Z,S1,A1,S2,A2,S3,A3] :
( ( iext(uri_rdf_first,S1,A1)
& iext(uri_rdf_rest,S1,S2)
& iext(uri_rdf_first,S2,A2)
& iext(uri_rdf_rest,S2,S3)
& iext(uri_rdf_first,S3,A3)
& iext(uri_rdf_rest,S3,uri_rdf_nil) )
=> ( iext(uri_owl_oneOf,Z,S1)
<=> ( ic(Z)
& ! [X] :
( icext(Z,X)
<=> ( X = A1
| X = A2
| X = A3 ) ) ) ) ) ).
fof(owl_eqdis_equivalentclass,axiom,
! [C1,C2] :
( iext(uri_owl_equivalentClass,C1,C2)
<=> ( ic(C1)
& ic(C2)
& ! [X] :
( icext(C1,X)
<=> icext(C2,X) ) ) ) ).
fof(testcase_conclusion_fullish_021_Composite_Enumerations,conjecture,
iext(uri_owl_equivalentClass,uri_ex_c3,uri_ex_c4) ).
fof(testcase_premise_fullish_021_Composite_Enumerations,axiom,
? [BNODE_l11,BNODE_l12,BNODE_l21,BNODE_l22,BNODE_l31,BNODE_l32,BNODE_l33,BNODE_l41,BNODE_l42] :
( iext(uri_owl_oneOf,uri_ex_c1,BNODE_l11)
& iext(uri_rdf_first,BNODE_l11,uri_ex_w1)
& iext(uri_rdf_rest,BNODE_l11,BNODE_l12)
& iext(uri_rdf_first,BNODE_l12,uri_ex_w2)
& iext(uri_rdf_rest,BNODE_l12,uri_rdf_nil)
& iext(uri_owl_oneOf,uri_ex_c2,BNODE_l21)
& iext(uri_rdf_first,BNODE_l21,uri_ex_w2)
& iext(uri_rdf_rest,BNODE_l21,BNODE_l22)
& iext(uri_rdf_first,BNODE_l22,uri_ex_w3)
& iext(uri_rdf_rest,BNODE_l22,uri_rdf_nil)
& iext(uri_owl_oneOf,uri_ex_c3,BNODE_l31)
& iext(uri_rdf_first,BNODE_l31,uri_ex_w1)
& iext(uri_rdf_rest,BNODE_l31,BNODE_l32)
& iext(uri_rdf_first,BNODE_l32,uri_ex_w2)
& iext(uri_rdf_rest,BNODE_l32,BNODE_l33)
& iext(uri_rdf_first,BNODE_l33,uri_ex_w3)
& iext(uri_rdf_rest,BNODE_l33,uri_rdf_nil)
& iext(uri_owl_unionOf,uri_ex_c4,BNODE_l41)
& iext(uri_rdf_first,BNODE_l41,uri_ex_c1)
& iext(uri_rdf_rest,BNODE_l41,BNODE_l42)
& iext(uri_rdf_first,BNODE_l42,uri_ex_c2)
& iext(uri_rdf_rest,BNODE_l42,uri_rdf_nil) ) ).
%------------------------------------------------------------------------------