TPTP Problem File: SLH0981^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Frequency_Moments/0085_Frequency_Moment_0/prob_00828_036105__19928940_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1220 ( 560 unt; 116 typ; 0 def)
% Number of atoms : 3040 (1016 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 8136 ( 320 ~; 103 |; 96 &;6412 @)
% ( 0 <=>;1205 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Number of types : 16 ( 15 usr)
% Number of type conns : 306 ( 306 >; 0 *; 0 +; 0 <<)
% Number of symbols : 104 ( 101 usr; 24 con; 0-4 aty)
% Number of variables : 2710 ( 214 ^;2475 !; 21 ?;2710 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 12:16:30.365
%------------------------------------------------------------------------------
% Could-be-implicit typings (15)
thf(ty_n_t__Multiset__Omultiset_It__List__Olist_It__Nat__Onat_J_J,type,
multiset_list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
set_list_nat: $tType ).
thf(ty_n_t__Multiset__Omultiset_It__Real__Oreal_J,type,
multiset_real: $tType ).
thf(ty_n_t__Multiset__Omultiset_It__Rat__Orat_J,type,
multiset_rat: $tType ).
thf(ty_n_t__Multiset__Omultiset_It__Nat__Onat_J,type,
multiset_nat: $tType ).
thf(ty_n_t__Multiset__Omultiset_It__Int__Oint_J,type,
multiset_int: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
set_rat: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Rat__Orat,type,
rat: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (101)
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
finite_card_nat: set_nat > nat ).
thf(sy_c_Frequency__Moment__0_OQ,type,
frequency_Moment_Q: nat > list_nat > int > list_nat > nat ).
thf(sy_c_Frequency__Moment__0_Ohash,type,
freque1172397775421732366t_hash: nat > nat > list_nat > nat ).
thf(sy_c_Frequency__Moment__0_Om,type,
frequency_Moment_m: list_nat > nat ).
thf(sy_c_Frequency__Moment__0_Op,type,
frequency_Moment_p: nat > nat ).
thf(sy_c_Frequency__Moment__0_Os,type,
frequency_Moment_s: rat > nat ).
thf(sy_c_Frequency__Moment__0_Ot,type,
frequency_Moment_t: rat > nat ).
thf(sy_c_Frequency__Moment__0_Otr__hash,type,
freque8618693816294223308r_hash: rat > nat > nat > list_nat > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Multiset__Omultiset_It__Real__Oreal_J,type,
minus_3865385036109388885t_real: multiset_real > multiset_real > multiset_real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
minus_minus_rat: rat > rat > rat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
one_one_rat: rat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
times_times_rat: rat > rat > rat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_It__Int__Oint_J,type,
zero_z3170743180189231877et_int: multiset_int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
zero_z7348594199698428585et_nat: multiset_nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_It__Real__Oreal_J,type,
zero_z8811559133707751557t_real: multiset_real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
zero_zero_rat: rat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_K__Smallest_Onth__mset_001t__Int__Oint,type,
k_nth_mset_int: nat > multiset_int > int ).
thf(sy_c_K__Smallest_Onth__mset_001t__Real__Oreal,type,
k_nth_mset_real: nat > multiset_real > real ).
thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
set_nat2: list_nat > set_nat ).
thf(sy_c_Multiset_Oimage__mset_001t__Nat__Onat_001t__Int__Oint,type,
image_mset_nat_int: ( nat > int ) > multiset_nat > multiset_int ).
thf(sy_c_Multiset_Oimage__mset_001t__Nat__Onat_001t__Real__Oreal,type,
image_mset_nat_real: ( nat > real ) > multiset_nat > multiset_real ).
thf(sy_c_Multiset_Omset__set_001t__List__Olist_It__Nat__Onat_J,type,
mset_set_list_nat: set_list_nat > multiset_list_nat ).
thf(sy_c_Multiset_Omset__set_001t__Nat__Onat,type,
mset_set_nat: set_nat > multiset_nat ).
thf(sy_c_Multiset_Omset__set_001t__Rat__Orat,type,
mset_set_rat: set_rat > multiset_rat ).
thf(sy_c_Multiset_Omset__set_001t__Real__Oreal,type,
mset_set_real: set_real > multiset_real ).
thf(sy_c_Multiset_Omultiset_Ocount_001t__List__Olist_It__Nat__Onat_J,type,
count_list_nat: multiset_list_nat > list_nat > nat ).
thf(sy_c_Multiset_Omultiset_Ocount_001t__Nat__Onat,type,
count_nat: multiset_nat > nat > nat ).
thf(sy_c_Multiset_Omultiset_Ocount_001t__Rat__Orat,type,
count_rat: multiset_rat > rat > nat ).
thf(sy_c_Multiset_Omultiset_Ocount_001t__Real__Oreal,type,
count_real: multiset_real > real > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
semiri681578069525770553at_rat: nat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Nat__Onat_J,type,
ord_less_list_nat: list_nat > list_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
ord_less_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
ord_less_eq_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_eq_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Set_OCollect_001t__Int__Oint,type,
collect_int: ( int > $o ) > set_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
collect_list_nat: ( list_nat > $o ) > set_list_nat ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
collect_rat: ( rat > $o ) > set_rat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
set_or5832277885323065728an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__List__Olist_It__Nat__Onat_J,type,
set_or8018300007763170356st_nat: list_nat > list_nat > set_list_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
set_or5834768355832116004an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Rat__Orat,type,
set_or5199638295745620268an_rat: rat > rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
set_or1633881224788618240n_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
set_ord_lessThan_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__List__Olist_It__Nat__Onat_J,type,
set_or3033090826390029821st_nat: list_nat > set_list_nat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
set_ord_lessThan_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
set_ord_lessThan_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
set_or5984915006950818249n_real: real > set_real ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
member_list_nat: list_nat > set_list_nat > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Rat__Orat,type,
member_rat: rat > set_rat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v__092_060delta_062,type,
delta: rat ).
thf(sy_v__092_060delta_062_H____,type,
delta2: real ).
thf(sy_v__092_060epsilon_062,type,
epsilon: rat ).
thf(sy_v__092_060omega_062____,type,
omega: list_nat ).
thf(sy_v_as,type,
as: list_nat ).
thf(sy_v_has__no__collision____,type,
has_no_collision: list_nat > $o ).
thf(sy_v_n,type,
n: nat ).
thf(sy_v_u____,type,
u: int ).
thf(sy_v_v____,type,
v: int ).
thf(sy_v_x,type,
x: real ).
thf(sy_v_y_H____,type,
y: real ).
thf(sy_v_y____,type,
y2: int ).
% Relevant facts (1099)
thf(fact_0_no__col,axiom,
has_no_collision @ omega ).
% no_col
thf(fact_1_y_H__def,axiom,
( y
= ( k_nth_mset_real @ ( minus_minus_nat @ ( frequency_Moment_t @ delta ) @ one_one_nat )
@ ( image_mset_nat_real
@ ^ [X: nat] : ( freque8618693816294223308r_hash @ delta @ n @ X @ omega )
@ ( mset_set_nat @ ( set_nat2 @ as ) ) ) ) ) ).
% y'_def
thf(fact_2_n__le__p,axiom,
ord_less_eq_nat @ n @ ( frequency_Moment_p @ n ) ).
% n_le_p
thf(fact_3_order_Orefl,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% order.refl
thf(fact_4_order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% order.refl
thf(fact_5_order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% order.refl
thf(fact_6_order_Orefl,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).
% order.refl
thf(fact_7_order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% order.refl
thf(fact_8_order__refl,axiom,
! [X2: rat] : ( ord_less_eq_rat @ X2 @ X2 ) ).
% order_refl
thf(fact_9_order__refl,axiom,
! [X2: real] : ( ord_less_eq_real @ X2 @ X2 ) ).
% order_refl
thf(fact_10_order__refl,axiom,
! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).
% order_refl
thf(fact_11_order__refl,axiom,
! [X2: set_nat] : ( ord_less_eq_set_nat @ X2 @ X2 ) ).
% order_refl
thf(fact_12_order__refl,axiom,
! [X2: int] : ( ord_less_eq_int @ X2 @ X2 ) ).
% order_refl
thf(fact_13_True,axiom,
ord_less_eq_nat @ ( frequency_Moment_t @ delta ) @ ( finite_card_nat @ ( set_nat2 @ as ) ) ).
% True
thf(fact_14_rel__simps_I47_J,axiom,
ord_less_eq_rat @ one_one_rat @ one_one_rat ).
% rel_simps(47)
thf(fact_15_rel__simps_I47_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% rel_simps(47)
thf(fact_16_rel__simps_I47_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% rel_simps(47)
thf(fact_17_rel__simps_I47_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% rel_simps(47)
thf(fact_18_as__range,axiom,
ord_less_eq_set_nat @ ( set_nat2 @ as ) @ ( set_ord_lessThan_nat @ n ) ).
% as_range
thf(fact_19_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_20_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_21_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_22_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_23_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_24_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_25_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_26_diff__eq__diff__less__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_eq_rat @ A @ B )
= ( ord_less_eq_rat @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_27_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_28_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_29_diff__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_30_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_31_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_32_diff__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_33_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_34_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_35_diff__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ D @ C )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_36_order__antisym__conv,axiom,
! [Y: real,X2: real] :
( ( ord_less_eq_real @ Y @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_37_order__antisym__conv,axiom,
! [Y: nat,X2: nat] :
( ( ord_less_eq_nat @ Y @ X2 )
=> ( ( ord_less_eq_nat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_38_order__antisym__conv,axiom,
! [Y: set_nat,X2: set_nat] :
( ( ord_less_eq_set_nat @ Y @ X2 )
=> ( ( ord_less_eq_set_nat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_39_order__antisym__conv,axiom,
! [Y: int,X2: int] :
( ( ord_less_eq_int @ Y @ X2 )
=> ( ( ord_less_eq_int @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_40_order__antisym__conv,axiom,
! [Y: rat,X2: rat] :
( ( ord_less_eq_rat @ Y @ X2 )
=> ( ( ord_less_eq_rat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_41_linorder__le__cases,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_42_linorder__le__cases,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_43_linorder__le__cases,axiom,
! [X2: int,Y: int] :
( ~ ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_int @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_44_linorder__le__cases,axiom,
! [X2: rat,Y: rat] :
( ~ ( ord_less_eq_rat @ X2 @ Y )
=> ( ord_less_eq_rat @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_45_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_46_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_47_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_48_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_49_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_50_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_51_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_52_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_53_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_54_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_55_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_56_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_57_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_58_ord__eq__le__subst,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_59_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_60_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_61_ord__eq__le__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_62_ord__eq__le__subst,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_63_ord__eq__le__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_64_ord__eq__le__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_65_linorder__linear,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
| ( ord_less_eq_real @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_66_linorder__linear,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
| ( ord_less_eq_nat @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_67_linorder__linear,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
| ( ord_less_eq_int @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_68_linorder__linear,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
| ( ord_less_eq_rat @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_69_order__eq__refl,axiom,
! [X2: real,Y: real] :
( ( X2 = Y )
=> ( ord_less_eq_real @ X2 @ Y ) ) ).
% order_eq_refl
thf(fact_70_order__eq__refl,axiom,
! [X2: nat,Y: nat] :
( ( X2 = Y )
=> ( ord_less_eq_nat @ X2 @ Y ) ) ).
% order_eq_refl
thf(fact_71_order__eq__refl,axiom,
! [X2: set_nat,Y: set_nat] :
( ( X2 = Y )
=> ( ord_less_eq_set_nat @ X2 @ Y ) ) ).
% order_eq_refl
thf(fact_72_order__eq__refl,axiom,
! [X2: int,Y: int] :
( ( X2 = Y )
=> ( ord_less_eq_int @ X2 @ Y ) ) ).
% order_eq_refl
thf(fact_73_order__eq__refl,axiom,
! [X2: rat,Y: rat] :
( ( X2 = Y )
=> ( ord_less_eq_rat @ X2 @ Y ) ) ).
% order_eq_refl
thf(fact_74_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_75_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_76_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_77_order__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_78_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_79_order__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_80_order__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_81_order__subst2,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_82_order__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_83_order__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_84_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_85_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_86_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_87_order__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X3: rat,Y2: rat] :
( ( ord_less_eq_rat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_88_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_89_order__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_90_order__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_91_order__subst1,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X3: rat,Y2: rat] :
( ( ord_less_eq_rat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_92_order__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_93_order__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_94_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_95_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_96_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: set_nat,Z: set_nat] : ( Y3 = Z ) )
= ( ^ [A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
& ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_97_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_98_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: rat,Z: rat] : ( Y3 = Z ) )
= ( ^ [A2: rat,B2: rat] :
( ( ord_less_eq_rat @ A2 @ B2 )
& ( ord_less_eq_rat @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_99_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_100_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_101_antisym,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_eq_set_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_102_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_103_antisym,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_104_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_105_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_106_dual__order_Otrans,axiom,
! [B: set_nat,A: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ B @ A )
=> ( ( ord_less_eq_set_nat @ C @ B )
=> ( ord_less_eq_set_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_107_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_108_dual__order_Otrans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_109_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_110_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_111_dual__order_Oantisym,axiom,
! [B: set_nat,A: set_nat] :
( ( ord_less_eq_set_nat @ B @ A )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_112_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_113_dual__order_Oantisym,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_114_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_115_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_116_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: set_nat,Z: set_nat] : ( Y3 = Z ) )
= ( ^ [A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
& ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_117_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_118_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: rat,Z: rat] : ( Y3 = Z ) )
= ( ^ [A2: rat,B2: rat] :
( ( ord_less_eq_rat @ B2 @ A2 )
& ( ord_less_eq_rat @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_119_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: real,B3: real] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_120_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: nat,B3: nat] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_121_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: int,B3: int] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_122_linorder__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A3: rat,B3: rat] :
( ( ord_less_eq_rat @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: rat,B3: rat] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_123_order__trans,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_eq_real @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_124_order__trans,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_eq_nat @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_125_order__trans,axiom,
! [X2: set_nat,Y: set_nat,Z2: set_nat] :
( ( ord_less_eq_set_nat @ X2 @ Y )
=> ( ( ord_less_eq_set_nat @ Y @ Z2 )
=> ( ord_less_eq_set_nat @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_126_order__trans,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_eq_int @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_127_order__trans,axiom,
! [X2: rat,Y: rat,Z2: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
=> ( ( ord_less_eq_rat @ Y @ Z2 )
=> ( ord_less_eq_rat @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_128_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_129_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_130_order_Otrans,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ord_less_eq_set_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_131_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_132_order_Otrans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% order.trans
thf(fact_133_order__antisym,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_134_order__antisym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_135_order__antisym,axiom,
! [X2: set_nat,Y: set_nat] :
( ( ord_less_eq_set_nat @ X2 @ Y )
=> ( ( ord_less_eq_set_nat @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_136_order__antisym,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ord_less_eq_int @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_137_order__antisym,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
=> ( ( ord_less_eq_rat @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_138_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_139_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_140_ord__le__eq__trans,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_set_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_141_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_142_ord__le__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_143_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_144_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_145_ord__eq__le__trans,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( A = B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ord_less_eq_set_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_146_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_147_ord__eq__le__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_148_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
= ( ^ [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
& ( ord_less_eq_real @ Y4 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_149_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
= ( ^ [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
& ( ord_less_eq_nat @ Y4 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_150_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: set_nat,Z: set_nat] : ( Y3 = Z ) )
= ( ^ [X: set_nat,Y4: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y4 )
& ( ord_less_eq_set_nat @ Y4 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_151_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
= ( ^ [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
& ( ord_less_eq_int @ Y4 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_152_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: rat,Z: rat] : ( Y3 = Z ) )
= ( ^ [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
& ( ord_less_eq_rat @ Y4 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_153_mem__Collect__eq,axiom,
! [A: rat,P: rat > $o] :
( ( member_rat @ A @ ( collect_rat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_154_mem__Collect__eq,axiom,
! [A: list_nat,P: list_nat > $o] :
( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_155_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_156_Collect__mem__eq,axiom,
! [A4: set_rat] :
( ( collect_rat
@ ^ [X: rat] : ( member_rat @ X @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_157_Collect__mem__eq,axiom,
! [A4: set_list_nat] :
( ( collect_list_nat
@ ^ [X: list_nat] : ( member_list_nat @ X @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_158_Collect__mem__eq,axiom,
! [A4: set_nat] :
( ( collect_nat
@ ^ [X: nat] : ( member_nat @ X @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_159_Collect__cong,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ! [X3: list_nat] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_list_nat @ P )
= ( collect_list_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_160_Collect__cong,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X3: nat] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_nat @ P )
= ( collect_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_161_le__cases3,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ( ord_less_eq_real @ X2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_real @ Y @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_real @ X2 @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_real @ Z2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ X2 ) )
=> ( ( ( ord_less_eq_real @ Y @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_real @ Z2 @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_162_le__cases3,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ( ord_less_eq_nat @ X2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ X2 @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_nat @ Z2 @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_163_le__cases3,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ( ord_less_eq_int @ X2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_int @ Y @ X2 )
=> ~ ( ord_less_eq_int @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_int @ X2 @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_int @ Z2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ X2 ) )
=> ( ( ( ord_less_eq_int @ Y @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_int @ Z2 @ X2 )
=> ~ ( ord_less_eq_int @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_164_le__cases3,axiom,
! [X2: rat,Y: rat,Z2: rat] :
( ( ( ord_less_eq_rat @ X2 @ Y )
=> ~ ( ord_less_eq_rat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_rat @ Y @ X2 )
=> ~ ( ord_less_eq_rat @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_rat @ X2 @ Z2 )
=> ~ ( ord_less_eq_rat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_rat @ Z2 @ Y )
=> ~ ( ord_less_eq_rat @ Y @ X2 ) )
=> ( ( ( ord_less_eq_rat @ Y @ Z2 )
=> ~ ( ord_less_eq_rat @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_rat @ Z2 @ X2 )
=> ~ ( ord_less_eq_rat @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_165_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_166_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_167_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_168_nle__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_eq_rat @ A @ B ) )
= ( ( ord_less_eq_rat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_169_one__reorient,axiom,
! [X2: nat] :
( ( one_one_nat = X2 )
= ( X2 = one_one_nat ) ) ).
% one_reorient
thf(fact_170_one__reorient,axiom,
! [X2: int] :
( ( one_one_int = X2 )
= ( X2 = one_one_int ) ) ).
% one_reorient
thf(fact_171_one__reorient,axiom,
! [X2: real] :
( ( one_one_real = X2 )
= ( X2 = one_one_real ) ) ).
% one_reorient
thf(fact_172_one__reorient,axiom,
! [X2: rat] :
( ( one_one_rat = X2 )
= ( X2 = one_one_rat ) ) ).
% one_reorient
thf(fact_173_m__le__p,axiom,
ord_less_eq_nat @ ( frequency_Moment_m @ as ) @ ( frequency_Moment_p @ n ) ).
% m_le_p
thf(fact_174_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_175_m__def,axiom,
( ( frequency_Moment_m @ as )
= ( finite_card_nat @ ( set_nat2 @ as ) ) ) ).
% m_def
thf(fact_176_as__lt__p,axiom,
! [X2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ as ) )
=> ( ord_less_nat @ X2 @ ( frequency_Moment_p @ n ) ) ) ).
% as_lt_p
thf(fact_177_as__subset__p,axiom,
ord_less_eq_set_nat @ ( set_nat2 @ as ) @ ( set_ord_lessThan_nat @ ( frequency_Moment_p @ n ) ) ).
% as_subset_p
thf(fact_178__092_060open_062card_A_123_O_O_060n_125_A_092_060le_062_Ap_092_060close_062,axiom,
ord_less_eq_nat @ ( finite_card_nat @ ( set_ord_lessThan_nat @ n ) ) @ ( frequency_Moment_p @ n ) ).
% \<open>card {..<n} \<le> p\<close>
thf(fact_179_p__gt__1,axiom,
ord_less_nat @ one_one_nat @ ( frequency_Moment_p @ n ) ).
% p_gt_1
thf(fact_180_ub,axiom,
ord_less_eq_nat @ ( frequency_Moment_t @ delta ) @ ( frequency_Moment_Q @ n @ as @ v @ omega ) ).
% ub
thf(fact_181_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_182_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_183_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_184__092_060open_062m_A_092_060le_062_Acard_A_123_O_O_060n_125_092_060close_062,axiom,
ord_less_eq_nat @ ( frequency_Moment_m @ as ) @ ( finite_card_nat @ ( set_ord_lessThan_nat @ n ) ) ).
% \<open>m \<le> card {..<n}\<close>
thf(fact_185_order__trans__rules_I28_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order_trans_rules(28)
thf(fact_186_order__trans__rules_I28_J,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order_trans_rules(28)
thf(fact_187_order__trans__rules_I28_J,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order_trans_rules(28)
thf(fact_188_order__trans__rules_I27_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order_trans_rules(27)
thf(fact_189_order__trans__rules_I27_J,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order_trans_rules(27)
thf(fact_190_order__trans__rules_I27_J,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order_trans_rules(27)
thf(fact_191_order__trans__rules_I20_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_trans_rules(20)
thf(fact_192_order__trans__rules_I20_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_trans_rules(20)
thf(fact_193_order__trans__rules_I20_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_trans_rules(20)
thf(fact_194_order__trans__rules_I19_J,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(19)
thf(fact_195_order__trans__rules_I19_J,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X2 @ Z2 ) ) ) ).
% order_trans_rules(19)
thf(fact_196_order__trans__rules_I19_J,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X2 @ Z2 ) ) ) ).
% order_trans_rules(19)
thf(fact_197_order__trans__rules_I12_J,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_198_order__trans__rules_I12_J,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_199_order__trans__rules_I12_J,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_200_order__trans__rules_I12_J,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_201_order__trans__rules_I12_J,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_202_order__trans__rules_I12_J,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_203_order__trans__rules_I12_J,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_204_order__trans__rules_I12_J,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_205_order__trans__rules_I12_J,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(12)
thf(fact_206_order__trans__rules_I11_J,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_207_order__trans__rules_I11_J,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_208_order__trans__rules_I11_J,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_209_order__trans__rules_I11_J,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_210_order__trans__rules_I11_J,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_211_order__trans__rules_I11_J,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_212_order__trans__rules_I11_J,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_213_order__trans__rules_I11_J,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_214_order__trans__rules_I11_J,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(11)
thf(fact_215_order__trans__rules_I2_J,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_216_order__trans__rules_I2_J,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_217_order__trans__rules_I2_J,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_218_order__trans__rules_I2_J,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_219_order__trans__rules_I2_J,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_220_order__trans__rules_I2_J,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_221_order__trans__rules_I2_J,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_222_order__trans__rules_I2_J,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_223_order__trans__rules_I2_J,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(2)
thf(fact_224_order__trans__rules_I1_J,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_225_order__trans__rules_I1_J,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_226_order__trans__rules_I1_J,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_227_order__trans__rules_I1_J,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_228_order__trans__rules_I1_J,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_229_order__trans__rules_I1_J,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_230_order__trans__rules_I1_J,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_231_order__trans__rules_I1_J,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_232_order__trans__rules_I1_J,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(1)
thf(fact_233_lt__ex,axiom,
! [X2: int] :
? [Y2: int] : ( ord_less_int @ Y2 @ X2 ) ).
% lt_ex
thf(fact_234_lt__ex,axiom,
! [X2: real] :
? [Y2: real] : ( ord_less_real @ Y2 @ X2 ) ).
% lt_ex
thf(fact_235_gt__ex,axiom,
! [X2: nat] :
? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).
% gt_ex
thf(fact_236_gt__ex,axiom,
! [X2: int] :
? [X_1: int] : ( ord_less_int @ X2 @ X_1 ) ).
% gt_ex
thf(fact_237_gt__ex,axiom,
! [X2: real] :
? [X_1: real] : ( ord_less_real @ X2 @ X_1 ) ).
% gt_ex
thf(fact_238_neqE,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% neqE
thf(fact_239_neqE,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
=> ( ~ ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% neqE
thf(fact_240_neqE,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
=> ( ~ ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% neqE
thf(fact_241_neq__iff,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
= ( ( ord_less_nat @ X2 @ Y )
| ( ord_less_nat @ Y @ X2 ) ) ) ).
% neq_iff
thf(fact_242_neq__iff,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
= ( ( ord_less_int @ X2 @ Y )
| ( ord_less_int @ Y @ X2 ) ) ) ).
% neq_iff
thf(fact_243_neq__iff,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
= ( ( ord_less_real @ X2 @ Y )
| ( ord_less_real @ Y @ X2 ) ) ) ).
% neq_iff
thf(fact_244_dense,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ? [Z3: real] :
( ( ord_less_real @ X2 @ Z3 )
& ( ord_less_real @ Z3 @ Y ) ) ) ).
% dense
thf(fact_245_less__imp__neq,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_neq
thf(fact_246_less__imp__neq,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_neq
thf(fact_247_less__imp__neq,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_neq
thf(fact_248_less__asym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ~ ( ord_less_nat @ Y @ X2 ) ) ).
% less_asym
thf(fact_249_less__asym,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ~ ( ord_less_int @ Y @ X2 ) ) ).
% less_asym
thf(fact_250_less__asym,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ~ ( ord_less_real @ Y @ X2 ) ) ).
% less_asym
thf(fact_251_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_252_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_253_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_254_less__linear,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
| ( X2 = Y )
| ( ord_less_nat @ Y @ X2 ) ) ).
% less_linear
thf(fact_255_less__linear,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
| ( X2 = Y )
| ( ord_less_int @ Y @ X2 ) ) ).
% less_linear
thf(fact_256_less__linear,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
| ( X2 = Y )
| ( ord_less_real @ Y @ X2 ) ) ).
% less_linear
thf(fact_257_less__irrefl,axiom,
! [X2: nat] :
~ ( ord_less_nat @ X2 @ X2 ) ).
% less_irrefl
thf(fact_258_less__irrefl,axiom,
! [X2: int] :
~ ( ord_less_int @ X2 @ X2 ) ).
% less_irrefl
thf(fact_259_less__irrefl,axiom,
! [X2: real] :
~ ( ord_less_real @ X2 @ X2 ) ).
% less_irrefl
thf(fact_260_less__imp__not__eq,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_not_eq
thf(fact_261_less__imp__not__eq,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_not_eq
thf(fact_262_less__imp__not__eq,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_not_eq
thf(fact_263_less__not__sym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ~ ( ord_less_nat @ Y @ X2 ) ) ).
% less_not_sym
thf(fact_264_less__not__sym,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ~ ( ord_less_int @ Y @ X2 ) ) ).
% less_not_sym
thf(fact_265_less__not__sym,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ~ ( ord_less_real @ Y @ X2 ) ) ).
% less_not_sym
thf(fact_266_order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% order.irrefl
thf(fact_267_order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% order.irrefl
thf(fact_268_order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% order.irrefl
thf(fact_269_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X3: nat] :
( ! [Y5: nat] :
( ( ord_less_nat @ Y5 @ X3 )
=> ( P @ Y5 ) )
=> ( P @ X3 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_270_antisym__conv3,axiom,
! [Y: nat,X2: nat] :
( ~ ( ord_less_nat @ Y @ X2 )
=> ( ( ~ ( ord_less_nat @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv3
thf(fact_271_antisym__conv3,axiom,
! [Y: int,X2: int] :
( ~ ( ord_less_int @ Y @ X2 )
=> ( ( ~ ( ord_less_int @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv3
thf(fact_272_antisym__conv3,axiom,
! [Y: real,X2: real] :
( ~ ( ord_less_real @ Y @ X2 )
=> ( ( ~ ( ord_less_real @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv3
thf(fact_273_less__imp__not__eq2,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( Y != X2 ) ) ).
% less_imp_not_eq2
thf(fact_274_less__imp__not__eq2,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( Y != X2 ) ) ).
% less_imp_not_eq2
thf(fact_275_less__imp__not__eq2,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( Y != X2 ) ) ).
% less_imp_not_eq2
thf(fact_276_less__imp__triv,axiom,
! [X2: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X2 @ Y )
=> ( ( ord_less_nat @ Y @ X2 )
=> P ) ) ).
% less_imp_triv
thf(fact_277_less__imp__triv,axiom,
! [X2: int,Y: int,P: $o] :
( ( ord_less_int @ X2 @ Y )
=> ( ( ord_less_int @ Y @ X2 )
=> P ) ) ).
% less_imp_triv
thf(fact_278_less__imp__triv,axiom,
! [X2: real,Y: real,P: $o] :
( ( ord_less_real @ X2 @ Y )
=> ( ( ord_less_real @ Y @ X2 )
=> P ) ) ).
% less_imp_triv
thf(fact_279_linorder__cases,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_nat @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_cases
thf(fact_280_linorder__cases,axiom,
! [X2: int,Y: int] :
( ~ ( ord_less_int @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_cases
thf(fact_281_linorder__cases,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_real @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_cases
thf(fact_282_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_283_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_284_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_285_less__imp__not__less,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ~ ( ord_less_nat @ Y @ X2 ) ) ).
% less_imp_not_less
thf(fact_286_less__imp__not__less,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ~ ( ord_less_int @ Y @ X2 ) ) ).
% less_imp_not_less
thf(fact_287_less__imp__not__less,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ~ ( ord_less_real @ Y @ X2 ) ) ).
% less_imp_not_less
thf(fact_288_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X4: nat] : ( P2 @ X4 ) )
= ( ^ [P3: nat > $o] :
? [N2: nat] :
( ( P3 @ N2 )
& ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ~ ( P3 @ M2 ) ) ) ) ) ).
% exists_least_iff
thf(fact_289_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A3: nat,B3: nat] :
( ( ord_less_nat @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: nat] : ( P @ A3 @ A3 )
=> ( ! [A3: nat,B3: nat] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_290_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A3: int,B3: int] :
( ( ord_less_int @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: int] : ( P @ A3 @ A3 )
=> ( ! [A3: int,B3: int] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_291_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A3: real,B3: real] :
( ( ord_less_real @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: real] : ( P @ A3 @ A3 )
=> ( ! [A3: real,B3: real] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_292_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_293_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_294_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_295_not__less__iff__gr__or__eq,axiom,
! [X2: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X2 @ Y ) )
= ( ( ord_less_nat @ Y @ X2 )
| ( X2 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_296_not__less__iff__gr__or__eq,axiom,
! [X2: int,Y: int] :
( ( ~ ( ord_less_int @ X2 @ Y ) )
= ( ( ord_less_int @ Y @ X2 )
| ( X2 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_297_not__less__iff__gr__or__eq,axiom,
! [X2: real,Y: real] :
( ( ~ ( ord_less_real @ X2 @ Y ) )
= ( ( ord_less_real @ Y @ X2 )
| ( X2 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_298_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_299_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_300_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_301_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_302_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_303_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_304_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_305_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_306_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_307_linorder__neqE__nat,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_neqE_nat
thf(fact_308_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
& ~ ( P @ M3 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_309_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ( P @ M3 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_310_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_311_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_312_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_313_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_314_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_315_le__simps_I1_J,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% le_simps(1)
thf(fact_316_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
& ( M2 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_317_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_318_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_319_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_320_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_321_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_322_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_323_order__trans__rules_I22_J,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_real @ X2 @ Z2 ) ) ) ).
% order_trans_rules(22)
thf(fact_324_order__trans__rules_I22_J,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_nat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(22)
thf(fact_325_order__trans__rules_I22_J,axiom,
! [X2: set_nat,Y: set_nat,Z2: set_nat] :
( ( ord_less_set_nat @ X2 @ Y )
=> ( ( ord_less_eq_set_nat @ Y @ Z2 )
=> ( ord_less_set_nat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(22)
thf(fact_326_order__trans__rules_I22_J,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_int @ X2 @ Z2 ) ) ) ).
% order_trans_rules(22)
thf(fact_327_order__trans__rules_I22_J,axiom,
! [X2: rat,Y: rat,Z2: rat] :
( ( ord_less_rat @ X2 @ Y )
=> ( ( ord_less_eq_rat @ Y @ Z2 )
=> ( ord_less_rat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(22)
thf(fact_328_order__trans__rules_I21_J,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X2 @ Z2 ) ) ) ).
% order_trans_rules(21)
thf(fact_329_order__trans__rules_I21_J,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(21)
thf(fact_330_order__trans__rules_I21_J,axiom,
! [X2: set_nat,Y: set_nat,Z2: set_nat] :
( ( ord_less_eq_set_nat @ X2 @ Y )
=> ( ( ord_less_set_nat @ Y @ Z2 )
=> ( ord_less_set_nat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(21)
thf(fact_331_order__trans__rules_I21_J,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X2 @ Z2 ) ) ) ).
% order_trans_rules(21)
thf(fact_332_order__trans__rules_I21_J,axiom,
! [X2: rat,Y: rat,Z2: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
=> ( ( ord_less_rat @ Y @ Z2 )
=> ( ord_less_rat @ X2 @ Z2 ) ) ) ).
% order_trans_rules(21)
thf(fact_333_order__trans__rules_I18_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_trans_rules(18)
thf(fact_334_order__trans__rules_I18_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_trans_rules(18)
thf(fact_335_order__trans__rules_I18_J,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_set_nat @ A @ B ) ) ) ).
% order_trans_rules(18)
thf(fact_336_order__trans__rules_I18_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_trans_rules(18)
thf(fact_337_order__trans__rules_I18_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( A != B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_trans_rules(18)
thf(fact_338_order__trans__rules_I17_J,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_trans_rules(17)
thf(fact_339_order__trans__rules_I17_J,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_trans_rules(17)
thf(fact_340_order__trans__rules_I17_J,axiom,
! [A: set_nat,B: set_nat] :
( ( A != B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ord_less_set_nat @ A @ B ) ) ) ).
% order_trans_rules(17)
thf(fact_341_order__trans__rules_I17_J,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_trans_rules(17)
thf(fact_342_order__trans__rules_I17_J,axiom,
! [A: rat,B: rat] :
( ( A != B )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_trans_rules(17)
thf(fact_343_order__trans__rules_I6_J,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_344_order__trans__rules_I6_J,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_345_order__trans__rules_I6_J,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_346_order__trans__rules_I6_J,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_347_order__trans__rules_I6_J,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_348_order__trans__rules_I6_J,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_349_order__trans__rules_I6_J,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_350_order__trans__rules_I6_J,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_351_order__trans__rules_I6_J,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_352_order__trans__rules_I6_J,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(6)
thf(fact_353_order__trans__rules_I5_J,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_354_order__trans__rules_I5_J,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_355_order__trans__rules_I5_J,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_356_order__trans__rules_I5_J,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_357_order__trans__rules_I5_J,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_358_order__trans__rules_I5_J,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_359_order__trans__rules_I5_J,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_360_order__trans__rules_I5_J,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_361_order__trans__rules_I5_J,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_362_order__trans__rules_I5_J,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(5)
thf(fact_363_order__trans__rules_I4_J,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_364_order__trans__rules_I4_J,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_365_order__trans__rules_I4_J,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_366_order__trans__rules_I4_J,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_367_order__trans__rules_I4_J,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_368_order__trans__rules_I4_J,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_369_order__trans__rules_I4_J,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_370_order__trans__rules_I4_J,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_371_order__trans__rules_I4_J,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_372_order__trans__rules_I4_J,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_trans_rules(4)
thf(fact_373_order__trans__rules_I3_J,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_374_order__trans__rules_I3_J,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_375_order__trans__rules_I3_J,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_376_order__trans__rules_I3_J,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_377_order__trans__rules_I3_J,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_378_order__trans__rules_I3_J,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_379_order__trans__rules_I3_J,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_380_order__trans__rules_I3_J,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_381_order__trans__rules_I3_J,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_382_order__trans__rules_I3_J,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_trans_rules(3)
thf(fact_383_leD,axiom,
! [Y: real,X2: real] :
( ( ord_less_eq_real @ Y @ X2 )
=> ~ ( ord_less_real @ X2 @ Y ) ) ).
% leD
thf(fact_384_leD,axiom,
! [Y: nat,X2: nat] :
( ( ord_less_eq_nat @ Y @ X2 )
=> ~ ( ord_less_nat @ X2 @ Y ) ) ).
% leD
thf(fact_385_leD,axiom,
! [Y: set_nat,X2: set_nat] :
( ( ord_less_eq_set_nat @ Y @ X2 )
=> ~ ( ord_less_set_nat @ X2 @ Y ) ) ).
% leD
thf(fact_386_leD,axiom,
! [Y: int,X2: int] :
( ( ord_less_eq_int @ Y @ X2 )
=> ~ ( ord_less_int @ X2 @ Y ) ) ).
% leD
thf(fact_387_leD,axiom,
! [Y: rat,X2: rat] :
( ( ord_less_eq_rat @ Y @ X2 )
=> ~ ( ord_less_rat @ X2 @ Y ) ) ).
% leD
thf(fact_388_leI,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_real @ X2 @ Y )
=> ( ord_less_eq_real @ Y @ X2 ) ) ).
% leI
thf(fact_389_leI,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ Y @ X2 ) ) ).
% leI
thf(fact_390_leI,axiom,
! [X2: int,Y: int] :
( ~ ( ord_less_int @ X2 @ Y )
=> ( ord_less_eq_int @ Y @ X2 ) ) ).
% leI
thf(fact_391_leI,axiom,
! [X2: rat,Y: rat] :
( ~ ( ord_less_rat @ X2 @ Y )
=> ( ord_less_eq_rat @ Y @ X2 ) ) ).
% leI
thf(fact_392_le__less,axiom,
( ord_less_eq_real
= ( ^ [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
| ( X = Y4 ) ) ) ) ).
% le_less
thf(fact_393_le__less,axiom,
( ord_less_eq_nat
= ( ^ [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
| ( X = Y4 ) ) ) ) ).
% le_less
thf(fact_394_le__less,axiom,
( ord_less_eq_set_nat
= ( ^ [X: set_nat,Y4: set_nat] :
( ( ord_less_set_nat @ X @ Y4 )
| ( X = Y4 ) ) ) ) ).
% le_less
thf(fact_395_le__less,axiom,
( ord_less_eq_int
= ( ^ [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
| ( X = Y4 ) ) ) ) ).
% le_less
thf(fact_396_le__less,axiom,
( ord_less_eq_rat
= ( ^ [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
| ( X = Y4 ) ) ) ) ).
% le_less
thf(fact_397_less__le,axiom,
( ord_less_real
= ( ^ [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
& ( X != Y4 ) ) ) ) ).
% less_le
thf(fact_398_less__le,axiom,
( ord_less_nat
= ( ^ [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
& ( X != Y4 ) ) ) ) ).
% less_le
thf(fact_399_less__le,axiom,
( ord_less_set_nat
= ( ^ [X: set_nat,Y4: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y4 )
& ( X != Y4 ) ) ) ) ).
% less_le
thf(fact_400_less__le,axiom,
( ord_less_int
= ( ^ [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
& ( X != Y4 ) ) ) ) ).
% less_le
thf(fact_401_less__le,axiom,
( ord_less_rat
= ( ^ [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
& ( X != Y4 ) ) ) ) ).
% less_le
thf(fact_402_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_403_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_404_nless__le,axiom,
! [A: set_nat,B: set_nat] :
( ( ~ ( ord_less_set_nat @ A @ B ) )
= ( ~ ( ord_less_eq_set_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_405_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_406_nless__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_rat @ A @ B ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_407_not__le,axiom,
! [X2: real,Y: real] :
( ( ~ ( ord_less_eq_real @ X2 @ Y ) )
= ( ord_less_real @ Y @ X2 ) ) ).
% not_le
thf(fact_408_not__le,axiom,
! [X2: nat,Y: nat] :
( ( ~ ( ord_less_eq_nat @ X2 @ Y ) )
= ( ord_less_nat @ Y @ X2 ) ) ).
% not_le
thf(fact_409_not__le,axiom,
! [X2: int,Y: int] :
( ( ~ ( ord_less_eq_int @ X2 @ Y ) )
= ( ord_less_int @ Y @ X2 ) ) ).
% not_le
thf(fact_410_not__le,axiom,
! [X2: rat,Y: rat] :
( ( ~ ( ord_less_eq_rat @ X2 @ Y ) )
= ( ord_less_rat @ Y @ X2 ) ) ).
% not_le
thf(fact_411_not__less,axiom,
! [X2: real,Y: real] :
( ( ~ ( ord_less_real @ X2 @ Y ) )
= ( ord_less_eq_real @ Y @ X2 ) ) ).
% not_less
thf(fact_412_not__less,axiom,
! [X2: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X2 @ Y ) )
= ( ord_less_eq_nat @ Y @ X2 ) ) ).
% not_less
thf(fact_413_not__less,axiom,
! [X2: int,Y: int] :
( ( ~ ( ord_less_int @ X2 @ Y ) )
= ( ord_less_eq_int @ Y @ X2 ) ) ).
% not_less
thf(fact_414_not__less,axiom,
! [X2: rat,Y: rat] :
( ( ~ ( ord_less_rat @ X2 @ Y ) )
= ( ord_less_eq_rat @ Y @ X2 ) ) ).
% not_less
thf(fact_415_antisym__conv1,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv1
thf(fact_416_antisym__conv1,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv1
thf(fact_417_antisym__conv1,axiom,
! [X2: set_nat,Y: set_nat] :
( ~ ( ord_less_set_nat @ X2 @ Y )
=> ( ( ord_less_eq_set_nat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv1
thf(fact_418_antisym__conv1,axiom,
! [X2: int,Y: int] :
( ~ ( ord_less_int @ X2 @ Y )
=> ( ( ord_less_eq_int @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv1
thf(fact_419_antisym__conv1,axiom,
! [X2: rat,Y: rat] :
( ~ ( ord_less_rat @ X2 @ Y )
=> ( ( ord_less_eq_rat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% antisym_conv1
thf(fact_420_antisym__conv2,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ~ ( ord_less_real @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv2
thf(fact_421_antisym__conv2,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ~ ( ord_less_nat @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv2
thf(fact_422_antisym__conv2,axiom,
! [X2: set_nat,Y: set_nat] :
( ( ord_less_eq_set_nat @ X2 @ Y )
=> ( ( ~ ( ord_less_set_nat @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv2
thf(fact_423_antisym__conv2,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ~ ( ord_less_int @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv2
thf(fact_424_antisym__conv2,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
=> ( ( ~ ( ord_less_rat @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv2
thf(fact_425_less__imp__le,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_eq_real @ X2 @ Y ) ) ).
% less_imp_le
thf(fact_426_less__imp__le,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ X2 @ Y ) ) ).
% less_imp_le
thf(fact_427_less__imp__le,axiom,
! [X2: set_nat,Y: set_nat] :
( ( ord_less_set_nat @ X2 @ Y )
=> ( ord_less_eq_set_nat @ X2 @ Y ) ) ).
% less_imp_le
thf(fact_428_less__imp__le,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_eq_int @ X2 @ Y ) ) ).
% less_imp_le
thf(fact_429_less__imp__le,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_rat @ X2 @ Y )
=> ( ord_less_eq_rat @ X2 @ Y ) ) ).
% less_imp_le
thf(fact_430_dense__ge,axiom,
! [Z2: real,Y: real] :
( ! [X3: real] :
( ( ord_less_real @ Z2 @ X3 )
=> ( ord_less_eq_real @ Y @ X3 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_ge
thf(fact_431_dense__ge,axiom,
! [Z2: rat,Y: rat] :
( ! [X3: rat] :
( ( ord_less_rat @ Z2 @ X3 )
=> ( ord_less_eq_rat @ Y @ X3 ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ).
% dense_ge
thf(fact_432_dense__le,axiom,
! [Y: real,Z2: real] :
( ! [X3: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_eq_real @ X3 @ Z2 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_le
thf(fact_433_dense__le,axiom,
! [Y: rat,Z2: rat] :
( ! [X3: rat] :
( ( ord_less_rat @ X3 @ Y )
=> ( ord_less_eq_rat @ X3 @ Z2 ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ).
% dense_le
thf(fact_434_le__less__linear,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
| ( ord_less_real @ Y @ X2 ) ) ).
% le_less_linear
thf(fact_435_le__less__linear,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
| ( ord_less_nat @ Y @ X2 ) ) ).
% le_less_linear
thf(fact_436_le__less__linear,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
| ( ord_less_int @ Y @ X2 ) ) ).
% le_less_linear
thf(fact_437_le__less__linear,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
| ( ord_less_rat @ Y @ X2 ) ) ).
% le_less_linear
thf(fact_438_le__imp__less__or__eq,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_real @ X2 @ Y )
| ( X2 = Y ) ) ) ).
% le_imp_less_or_eq
thf(fact_439_le__imp__less__or__eq,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_nat @ X2 @ Y )
| ( X2 = Y ) ) ) ).
% le_imp_less_or_eq
thf(fact_440_le__imp__less__or__eq,axiom,
! [X2: set_nat,Y: set_nat] :
( ( ord_less_eq_set_nat @ X2 @ Y )
=> ( ( ord_less_set_nat @ X2 @ Y )
| ( X2 = Y ) ) ) ).
% le_imp_less_or_eq
thf(fact_441_le__imp__less__or__eq,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ord_less_int @ X2 @ Y )
| ( X2 = Y ) ) ) ).
% le_imp_less_or_eq
thf(fact_442_le__imp__less__or__eq,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_eq_rat @ X2 @ Y )
=> ( ( ord_less_rat @ X2 @ Y )
| ( X2 = Y ) ) ) ).
% le_imp_less_or_eq
thf(fact_443_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
& ~ ( ord_less_eq_real @ Y4 @ X ) ) ) ) ).
% less_le_not_le
thf(fact_444_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
& ~ ( ord_less_eq_nat @ Y4 @ X ) ) ) ) ).
% less_le_not_le
thf(fact_445_less__le__not__le,axiom,
( ord_less_set_nat
= ( ^ [X: set_nat,Y4: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y4 )
& ~ ( ord_less_eq_set_nat @ Y4 @ X ) ) ) ) ).
% less_le_not_le
thf(fact_446_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
& ~ ( ord_less_eq_int @ Y4 @ X ) ) ) ) ).
% less_le_not_le
thf(fact_447_less__le__not__le,axiom,
( ord_less_rat
= ( ^ [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
& ~ ( ord_less_eq_rat @ Y4 @ X ) ) ) ) ).
% less_le_not_le
thf(fact_448_not__le__imp__less,axiom,
! [Y: real,X2: real] :
( ~ ( ord_less_eq_real @ Y @ X2 )
=> ( ord_less_real @ X2 @ Y ) ) ).
% not_le_imp_less
thf(fact_449_not__le__imp__less,axiom,
! [Y: nat,X2: nat] :
( ~ ( ord_less_eq_nat @ Y @ X2 )
=> ( ord_less_nat @ X2 @ Y ) ) ).
% not_le_imp_less
thf(fact_450_not__le__imp__less,axiom,
! [Y: int,X2: int] :
( ~ ( ord_less_eq_int @ Y @ X2 )
=> ( ord_less_int @ X2 @ Y ) ) ).
% not_le_imp_less
thf(fact_451_not__le__imp__less,axiom,
! [Y: rat,X2: rat] :
( ~ ( ord_less_eq_rat @ Y @ X2 )
=> ( ord_less_rat @ X2 @ Y ) ) ).
% not_le_imp_less
thf(fact_452_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_real @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_453_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_454_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_nat
= ( ^ [A2: set_nat,B2: set_nat] :
( ( ord_less_set_nat @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_455_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_int @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_456_order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [A2: rat,B2: rat] :
( ( ord_less_rat @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_457_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_458_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_459_order_Ostrict__iff__order,axiom,
( ord_less_set_nat
= ( ^ [A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_460_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_461_order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [A2: rat,B2: rat] :
( ( ord_less_eq_rat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_462_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_463_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_464_order_Ostrict__trans1,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_set_nat @ B @ C )
=> ( ord_less_set_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_465_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_466_order_Ostrict__trans1,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_467_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_468_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_469_order_Ostrict__trans2,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_set_nat @ A @ B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ord_less_set_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_470_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_471_order_Ostrict__trans2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_472_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ~ ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_473_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_474_order_Ostrict__iff__not,axiom,
( ord_less_set_nat
= ( ^ [A2: set_nat,B2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B2 )
& ~ ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_475_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ~ ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_476_order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [A2: rat,B2: rat] :
( ( ord_less_eq_rat @ A2 @ B2 )
& ~ ( ord_less_eq_rat @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_477_dense__ge__bounded,axiom,
! [Z2: real,X2: real,Y: real] :
( ( ord_less_real @ Z2 @ X2 )
=> ( ! [W: real] :
( ( ord_less_real @ Z2 @ W )
=> ( ( ord_less_real @ W @ X2 )
=> ( ord_less_eq_real @ Y @ W ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_478_dense__ge__bounded,axiom,
! [Z2: rat,X2: rat,Y: rat] :
( ( ord_less_rat @ Z2 @ X2 )
=> ( ! [W: rat] :
( ( ord_less_rat @ Z2 @ W )
=> ( ( ord_less_rat @ W @ X2 )
=> ( ord_less_eq_rat @ Y @ W ) ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_479_dense__le__bounded,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ! [W: real] :
( ( ord_less_real @ X2 @ W )
=> ( ( ord_less_real @ W @ Y )
=> ( ord_less_eq_real @ W @ Z2 ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_480_dense__le__bounded,axiom,
! [X2: rat,Y: rat,Z2: rat] :
( ( ord_less_rat @ X2 @ Y )
=> ( ! [W: rat] :
( ( ord_less_rat @ X2 @ W )
=> ( ( ord_less_rat @ W @ Y )
=> ( ord_less_eq_rat @ W @ Z2 ) ) )
=> ( ord_less_eq_rat @ Y @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_481_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_real @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_482_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_483_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_nat
= ( ^ [B2: set_nat,A2: set_nat] :
( ( ord_less_set_nat @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_484_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_int @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_485_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [B2: rat,A2: rat] :
( ( ord_less_rat @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_486_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_487_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_488_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_nat
= ( ^ [B2: set_nat,A2: set_nat] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_489_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_490_dual__order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [B2: rat,A2: rat] :
( ( ord_less_eq_rat @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_491_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_492_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_493_dual__order_Ostrict__trans1,axiom,
! [B: set_nat,A: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ B @ A )
=> ( ( ord_less_set_nat @ C @ B )
=> ( ord_less_set_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_494_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_495_dual__order_Ostrict__trans1,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_496_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_497_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_498_dual__order_Ostrict__trans2,axiom,
! [B: set_nat,A: set_nat,C: set_nat] :
( ( ord_less_set_nat @ B @ A )
=> ( ( ord_less_eq_set_nat @ C @ B )
=> ( ord_less_set_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_499_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_500_dual__order_Ostrict__trans2,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_501_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ~ ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_502_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ~ ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_503_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_nat
= ( ^ [B2: set_nat,A2: set_nat] :
( ( ord_less_eq_set_nat @ B2 @ A2 )
& ~ ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_504_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ~ ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_505_dual__order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [B2: rat,A2: rat] :
( ( ord_less_eq_rat @ B2 @ A2 )
& ~ ( ord_less_eq_rat @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_506_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_507_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_508_order_Ostrict__implies__order,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_set_nat @ A @ B )
=> ( ord_less_eq_set_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_509_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_510_order_Ostrict__implies__order,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_511_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_512_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_513_dual__order_Ostrict__implies__order,axiom,
! [B: set_nat,A: set_nat] :
( ( ord_less_set_nat @ B @ A )
=> ( ord_less_eq_set_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_514_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_515_dual__order_Ostrict__implies__order,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_516_rel__simps_I71_J,axiom,
~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).
% rel_simps(71)
thf(fact_517_rel__simps_I71_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% rel_simps(71)
thf(fact_518_rel__simps_I71_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% rel_simps(71)
thf(fact_519_rel__simps_I71_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% rel_simps(71)
thf(fact_520_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_521_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_522_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_523_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_524_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_525_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_526_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_527_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_528_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_529_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_530_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_531_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_532_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_533_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_534_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_535_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_536_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_537_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_538_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_539_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_540_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_541__092_060open_062_092_060omega_062_A_092_060notin_062_A_123_092_060omega_062_O_At_A_092_060le_062_AQ_Au_A_092_060omega_062_A_092_060or_062_AQ_Av_A_092_060omega_062_A_060_At_A_092_060or_062_A_092_060not_062_Ahas__no__collision_A_092_060omega_062_125_092_060close_062,axiom,
~ ( member_list_nat @ omega
@ ( collect_list_nat
@ ^ [Omega: list_nat] :
( ( ord_less_eq_nat @ ( frequency_Moment_t @ delta ) @ ( frequency_Moment_Q @ n @ as @ u @ Omega ) )
| ( ord_less_nat @ ( frequency_Moment_Q @ n @ as @ v @ Omega ) @ ( frequency_Moment_t @ delta ) )
| ~ ( has_no_collision @ Omega ) ) ) ) ).
% \<open>\<omega> \<notin> {\<omega>. t \<le> Q u \<omega> \<or> Q v \<omega> < t \<or> \<not> has_no_collision \<omega>}\<close>
thf(fact_542__092_060open_062_092_060not_062_A_It_A_092_060le_062_AQ_Au_A_092_060omega_062_A_092_060or_062_AQ_Av_A_092_060omega_062_A_060_At_A_092_060or_062_A_092_060not_062_Ahas__no__collision_A_092_060omega_062_J_092_060close_062,axiom,
~ ( ( ord_less_eq_nat @ ( frequency_Moment_t @ delta ) @ ( frequency_Moment_Q @ n @ as @ u @ omega ) )
| ( ord_less_nat @ ( frequency_Moment_Q @ n @ as @ v @ omega ) @ ( frequency_Moment_t @ delta ) )
| ~ ( has_no_collision @ omega ) ) ).
% \<open>\<not> (t \<le> Q u \<omega> \<or> Q v \<omega> < t \<or> \<not> has_no_collision \<omega>)\<close>
thf(fact_543_lessThan__subset__iff,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X2 ) @ ( set_or5984915006950818249n_real @ Y ) )
= ( ord_less_eq_real @ X2 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_544_lessThan__subset__iff,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X2 ) @ ( set_ord_lessThan_int @ Y ) )
= ( ord_less_eq_int @ X2 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_545_lessThan__subset__iff,axiom,
! [X2: rat,Y: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X2 ) @ ( set_ord_lessThan_rat @ Y ) )
= ( ord_less_eq_rat @ X2 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_546_lessThan__subset__iff,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X2 ) @ ( set_ord_lessThan_nat @ Y ) )
= ( ord_less_eq_nat @ X2 @ Y ) ) ).
% lessThan_subset_iff
thf(fact_547_card__Collect__less__nat,axiom,
! [N: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [I3: nat] : ( ord_less_nat @ I3 @ N ) ) )
= N ) ).
% card_Collect_less_nat
thf(fact_548_card__lessThan,axiom,
! [U: nat] :
( ( finite_card_nat @ ( set_ord_lessThan_nat @ U ) )
= U ) ).
% card_lessThan
thf(fact_549__092_060open_062real_At_A_092_060le_062_Areal_Am_092_060close_062,axiom,
ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) ).
% \<open>real t \<le> real m\<close>
thf(fact_550_count__diff,axiom,
! [M4: multiset_real,N4: multiset_real,A: real] :
( ( count_real @ ( minus_3865385036109388885t_real @ M4 @ N4 ) @ A )
= ( minus_minus_nat @ ( count_real @ M4 @ A ) @ ( count_real @ N4 @ A ) ) ) ).
% count_diff
thf(fact_551_lb,axiom,
ord_less_nat @ ( frequency_Moment_Q @ n @ as @ u @ omega ) @ ( frequency_Moment_t @ delta ) ).
% lb
thf(fact_552_lessThan__iff,axiom,
! [I: list_nat,K: list_nat] :
( ( member_list_nat @ I @ ( set_or3033090826390029821st_nat @ K ) )
= ( ord_less_list_nat @ I @ K ) ) ).
% lessThan_iff
thf(fact_553_lessThan__iff,axiom,
! [I: rat,K: rat] :
( ( member_rat @ I @ ( set_ord_lessThan_rat @ K ) )
= ( ord_less_rat @ I @ K ) ) ).
% lessThan_iff
thf(fact_554_lessThan__iff,axiom,
! [I: int,K: int] :
( ( member_int @ I @ ( set_ord_lessThan_int @ K ) )
= ( ord_less_int @ I @ K ) ) ).
% lessThan_iff
thf(fact_555_lessThan__iff,axiom,
! [I: real,K: real] :
( ( member_real @ I @ ( set_or5984915006950818249n_real @ K ) )
= ( ord_less_real @ I @ K ) ) ).
% lessThan_iff
thf(fact_556_lessThan__iff,axiom,
! [I: nat,K: nat] :
( ( member_nat @ I @ ( set_ord_lessThan_nat @ K ) )
= ( ord_less_nat @ I @ K ) ) ).
% lessThan_iff
thf(fact_557_t__gt__0,axiom,
ord_less_nat @ zero_zero_nat @ ( frequency_Moment_t @ delta ) ).
% t_gt_0
thf(fact_558_a__ge__1,axiom,
ord_less_eq_int @ one_one_int @ u ).
% a_ge_1
thf(fact_559_p__gt__0,axiom,
ord_less_nat @ zero_zero_nat @ ( frequency_Moment_p @ n ) ).
% p_gt_0
thf(fact_560_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_561_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_562_lessThan__eq__iff,axiom,
! [X2: nat,Y: nat] :
( ( ( set_ord_lessThan_nat @ X2 )
= ( set_ord_lessThan_nat @ Y ) )
= ( X2 = Y ) ) ).
% lessThan_eq_iff
thf(fact_563_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_564_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_565_arith__simps_I57_J,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% arith_simps(57)
thf(fact_566_arith__simps_I57_J,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% arith_simps(57)
thf(fact_567_arith__simps_I57_J,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% arith_simps(57)
thf(fact_568_diff__self,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% diff_self
thf(fact_569_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_570_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_571_right__minus__eq,axiom,
! [A: rat,B: rat] :
( ( ( minus_minus_rat @ A @ B )
= zero_zero_rat )
= ( A = B ) ) ).
% right_minus_eq
thf(fact_572_right__minus__eq,axiom,
! [A: int,B: int] :
( ( ( minus_minus_int @ A @ B )
= zero_zero_int )
= ( A = B ) ) ).
% right_minus_eq
thf(fact_573_right__minus__eq,axiom,
! [A: real,B: real] :
( ( ( minus_minus_real @ A @ B )
= zero_zero_real )
= ( A = B ) ) ).
% right_minus_eq
thf(fact_574_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_575_diff__zero,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_zero
thf(fact_576_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_577_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_578_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_579_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_580_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_581_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_582_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_583_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_584_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_585_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_586_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_587_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_588_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_589_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_590_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_591_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_592_diff__ge__0__iff__ge,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_593_diff__le__0__iff__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ B ) ) ).
% diff_le_0_iff_le
thf(fact_594_diff__le__0__iff__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ B ) ) ).
% diff_le_0_iff_le
thf(fact_595_diff__le__0__iff__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ B ) ) ).
% diff_le_0_iff_le
thf(fact_596_diff__gt__0__iff__gt,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_rat @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_597_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_598_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_599_diff__less__0__iff__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ zero_zero_rat )
= ( ord_less_rat @ A @ B ) ) ).
% diff_less_0_iff_less
thf(fact_600_diff__less__0__iff__less,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ B ) ) ).
% diff_less_0_iff_less
thf(fact_601_diff__less__0__iff__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ zero_zero_real )
= ( ord_less_real @ A @ B ) ) ).
% diff_less_0_iff_less
thf(fact_602_arith__special_I21_J,axiom,
( ( minus_minus_rat @ one_one_rat @ one_one_rat )
= zero_zero_rat ) ).
% arith_special(21)
thf(fact_603_arith__special_I21_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% arith_special(21)
thf(fact_604_arith__special_I21_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% arith_special(21)
thf(fact_605_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_606_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_607_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_608_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_609_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_610_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_611_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_612_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_613_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_614_of__nat__0,axiom,
( ( semiri681578069525770553at_rat @ zero_zero_nat )
= zero_zero_rat ) ).
% of_nat_0
thf(fact_615_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_616_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_617_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_618_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_619_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_620_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_621_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_622_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_623_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_624_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% Num.of_nat_simps(2)
thf(fact_625_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri681578069525770553at_rat @ one_one_nat )
= one_one_rat ) ).
% Num.of_nat_simps(2)
thf(fact_626_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% Num.of_nat_simps(2)
thf(fact_627_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% Num.of_nat_simps(2)
thf(fact_628_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_629_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri681578069525770553at_rat @ N )
= one_one_rat )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_630_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_631_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_632_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_633_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_634_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_635_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_636_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_637_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_638_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_639_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_640_count__mset__set_I3_J,axiom,
! [X2: list_nat,A4: set_list_nat] :
( ~ ( member_list_nat @ X2 @ A4 )
=> ( ( count_list_nat @ ( mset_set_list_nat @ A4 ) @ X2 )
= zero_zero_nat ) ) ).
% count_mset_set(3)
thf(fact_641_count__mset__set_I3_J,axiom,
! [X2: rat,A4: set_rat] :
( ~ ( member_rat @ X2 @ A4 )
=> ( ( count_rat @ ( mset_set_rat @ A4 ) @ X2 )
= zero_zero_nat ) ) ).
% count_mset_set(3)
thf(fact_642_count__mset__set_I3_J,axiom,
! [X2: nat,A4: set_nat] :
( ~ ( member_nat @ X2 @ A4 )
=> ( ( count_nat @ ( mset_set_nat @ A4 ) @ X2 )
= zero_zero_nat ) ) ).
% count_mset_set(3)
thf(fact_643_count__mset__set_I3_J,axiom,
! [X2: real,A4: set_real] :
( ~ ( member_real @ X2 @ A4 )
=> ( ( count_real @ ( mset_set_real @ A4 ) @ X2 )
= zero_zero_nat ) ) ).
% count_mset_set(3)
thf(fact_644_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_645_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_646_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_647_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_648_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_649_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_650_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_651_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_652_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_653_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_654_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_655_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_656_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).
% of_nat_less_0_iff
thf(fact_657_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_658_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_659_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_660_zero__reorient,axiom,
! [X2: nat] :
( ( zero_zero_nat = X2 )
= ( X2 = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_661_zero__reorient,axiom,
! [X2: int] :
( ( zero_zero_int = X2 )
= ( X2 = zero_zero_int ) ) ).
% zero_reorient
thf(fact_662_zero__reorient,axiom,
! [X2: real] :
( ( zero_zero_real = X2 )
= ( X2 = zero_zero_real ) ) ).
% zero_reorient
thf(fact_663_zero__reorient,axiom,
! [X2: rat] :
( ( zero_zero_rat = X2 )
= ( X2 = zero_zero_rat ) ) ).
% zero_reorient
thf(fact_664_zero__le,axiom,
! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).
% zero_le
thf(fact_665_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_666_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_667_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_668_le__numeral__extra_I3_J,axiom,
ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).
% le_numeral_extra(3)
thf(fact_669_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_670_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_671_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_672_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_673_less__numeral__extra_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).
% less_numeral_extra(3)
thf(fact_674_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_675_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_676_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_677_semiring__norm_I159_J,axiom,
zero_zero_nat != one_one_nat ).
% semiring_norm(159)
thf(fact_678_semiring__norm_I159_J,axiom,
zero_zero_int != one_one_int ).
% semiring_norm(159)
thf(fact_679_semiring__norm_I159_J,axiom,
zero_zero_real != one_one_real ).
% semiring_norm(159)
thf(fact_680_semiring__norm_I159_J,axiom,
zero_zero_rat != one_one_rat ).
% semiring_norm(159)
thf(fact_681_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_682_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_683_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_684_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_685_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_686_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_687_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
& ~ ( P @ M3 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_688_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_689_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_690_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_691_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_692_minus__nat_Osimps_I1_J,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.simps(1)
thf(fact_693_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_694_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_695_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_696_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_697_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).
% of_nat_mono
thf(fact_698_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_699_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_700_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_701_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_702_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_703_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_704_le__numeral__extra_I1_J,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% le_numeral_extra(1)
thf(fact_705_le__numeral__extra_I1_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% le_numeral_extra(1)
thf(fact_706_le__numeral__extra_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% le_numeral_extra(1)
thf(fact_707_le__numeral__extra_I1_J,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% le_numeral_extra(1)
thf(fact_708_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% le_numeral_extra(2)
thf(fact_709_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% le_numeral_extra(2)
thf(fact_710_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% le_numeral_extra(2)
thf(fact_711_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).
% le_numeral_extra(2)
thf(fact_712_rel__simps_I69_J,axiom,
~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).
% rel_simps(69)
thf(fact_713_rel__simps_I69_J,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% rel_simps(69)
thf(fact_714_rel__simps_I69_J,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% rel_simps(69)
thf(fact_715_rel__simps_I69_J,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% rel_simps(69)
thf(fact_716_rel__simps_I68_J,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% rel_simps(68)
thf(fact_717_rel__simps_I68_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% rel_simps(68)
thf(fact_718_rel__simps_I68_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% rel_simps(68)
thf(fact_719_rel__simps_I68_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% rel_simps(68)
thf(fact_720_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_721_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_722_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_723_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_724_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% of_nat_diff
thf(fact_725_bounded__Max__nat,axiom,
! [P: nat > $o,X2: nat,M4: nat] :
( ( P @ X2 )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M4 ) )
=> ~ ! [M5: nat] :
( ( P @ M5 )
=> ~ ! [X5: nat] :
( ( P @ X5 )
=> ( ord_less_eq_nat @ X5 @ M5 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_726_multiset__eq__iff,axiom,
( ( ^ [Y3: multiset_real,Z: multiset_real] : ( Y3 = Z ) )
= ( ^ [M6: multiset_real,N5: multiset_real] :
! [A2: real] :
( ( count_real @ M6 @ A2 )
= ( count_real @ N5 @ A2 ) ) ) ) ).
% multiset_eq_iff
thf(fact_727_multiset__eqI,axiom,
! [A4: multiset_real,B4: multiset_real] :
( ! [X3: real] :
( ( count_real @ A4 @ X3 )
= ( count_real @ B4 @ X3 ) )
=> ( A4 = B4 ) ) ).
% multiset_eqI
thf(fact_728_count__inject,axiom,
! [X2: multiset_real,Y: multiset_real] :
( ( ( count_real @ X2 )
= ( count_real @ Y ) )
= ( X2 = Y ) ) ).
% count_inject
thf(fact_729_lessThan__strict__subset__iff,axiom,
! [M: int,N: int] :
( ( ord_less_set_int @ ( set_ord_lessThan_int @ M ) @ ( set_ord_lessThan_int @ N ) )
= ( ord_less_int @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_730_lessThan__strict__subset__iff,axiom,
! [M: real,N: real] :
( ( ord_less_set_real @ ( set_or5984915006950818249n_real @ M ) @ ( set_or5984915006950818249n_real @ N ) )
= ( ord_less_real @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_731_lessThan__strict__subset__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% lessThan_strict_subset_iff
thf(fact_732_minus__multiset_Orep__eq,axiom,
! [X2: multiset_real,Xa: multiset_real] :
( ( count_real @ ( minus_3865385036109388885t_real @ X2 @ Xa ) )
= ( ^ [A2: real] : ( minus_minus_nat @ ( count_real @ X2 @ A2 ) @ ( count_real @ Xa @ A2 ) ) ) ) ).
% minus_multiset.rep_eq
thf(fact_733_lessThan__def,axiom,
( set_or3033090826390029821st_nat
= ( ^ [U2: list_nat] :
( collect_list_nat
@ ^ [X: list_nat] : ( ord_less_list_nat @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_734_lessThan__def,axiom,
( set_ord_lessThan_int
= ( ^ [U2: int] :
( collect_int
@ ^ [X: int] : ( ord_less_int @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_735_lessThan__def,axiom,
( set_or5984915006950818249n_real
= ( ^ [U2: real] :
( collect_real
@ ^ [X: real] : ( ord_less_real @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_736_lessThan__def,axiom,
( set_ord_lessThan_nat
= ( ^ [U2: nat] :
( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_737_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri1316708129612266289at_nat @ X2 )
= one_one_nat )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_738_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri681578069525770553at_rat @ X2 )
= one_one_rat )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_739_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri5074537144036343181t_real @ X2 )
= one_one_real )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_740_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri1314217659103216013at_int @ X2 )
= one_one_int )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_741__092_060open_062real_Am_A_092_060le_062_A1_A_K_Areal_Ap_092_060close_062,axiom,
ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( times_times_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) ).
% \<open>real m \<le> 1 * real p\<close>
thf(fact_742__092_060open_0621_A_K_Areal_Ap_A_092_060le_062_Areal_At_A_K_Areal_Ap_092_060close_062,axiom,
ord_less_eq_real @ ( times_times_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) ).
% \<open>1 * real p \<le> real t * real p\<close>
thf(fact_743_finite__number__segment,axiom,
! [N: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M2 )
& ( ord_less_nat @ M2 @ N ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ).
% finite_number_segment
thf(fact_744_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_745_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_746_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_747_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_int @ one_one_int @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_748_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_749_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_750_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_int @ one_one_int @ ( semiri1314217659103216013at_int @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_751_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_752_v__gt__0,axiom,
ord_less_int @ zero_zero_int @ v ).
% v_gt_0
thf(fact_753_y_H__pos,axiom,
ord_less_real @ zero_zero_real @ y ).
% y'_pos
thf(fact_754_a__ge__0,axiom,
ord_less_eq_int @ zero_zero_int @ u ).
% a_ge_0
thf(fact_755_m__ge__0,axiom,
ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) ).
% m_ge_0
thf(fact_756_image__mset__empty,axiom,
! [F: nat > real] :
( ( image_mset_nat_real @ F @ zero_z7348594199698428585et_nat )
= zero_z8811559133707751557t_real ) ).
% image_mset_empty
thf(fact_757_image__mset__empty,axiom,
! [F: nat > int] :
( ( image_mset_nat_int @ F @ zero_z7348594199698428585et_nat )
= zero_z3170743180189231877et_int ) ).
% image_mset_empty
thf(fact_758_image__mset__is__empty__iff,axiom,
! [F: nat > real,M4: multiset_nat] :
( ( ( image_mset_nat_real @ F @ M4 )
= zero_z8811559133707751557t_real )
= ( M4 = zero_z7348594199698428585et_nat ) ) ).
% image_mset_is_empty_iff
thf(fact_759_image__mset__is__empty__iff,axiom,
! [F: nat > int,M4: multiset_nat] :
( ( ( image_mset_nat_int @ F @ M4 )
= zero_z3170743180189231877et_int )
= ( M4 = zero_z7348594199698428585et_nat ) ) ).
% image_mset_is_empty_iff
thf(fact_760_u__le__p,axiom,
ord_less_eq_int @ u @ ( semiri1314217659103216013at_int @ ( frequency_Moment_p @ n ) ) ).
% u_le_p
thf(fact_761_arith__simps_I63_J,axiom,
! [A: rat] :
( ( times_times_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% arith_simps(63)
thf(fact_762_arith__simps_I63_J,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% arith_simps(63)
thf(fact_763_arith__simps_I63_J,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% arith_simps(63)
thf(fact_764_arith__simps_I63_J,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% arith_simps(63)
thf(fact_765_arith__simps_I62_J,axiom,
! [A: rat] :
( ( times_times_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% arith_simps(62)
thf(fact_766_arith__simps_I62_J,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% arith_simps(62)
thf(fact_767_arith__simps_I62_J,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% arith_simps(62)
thf(fact_768_arith__simps_I62_J,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% arith_simps(62)
thf(fact_769_verit__prod__simplify_I1_J,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% verit_prod_simplify(1)
thf(fact_770_verit__prod__simplify_I1_J,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% verit_prod_simplify(1)
thf(fact_771_verit__prod__simplify_I1_J,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% verit_prod_simplify(1)
thf(fact_772_verit__prod__simplify_I1_J,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% verit_prod_simplify(1)
thf(fact_773_verit__prod__simplify_I2_J,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% verit_prod_simplify(2)
thf(fact_774_verit__prod__simplify_I2_J,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% verit_prod_simplify(2)
thf(fact_775_verit__prod__simplify_I2_J,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% verit_prod_simplify(2)
thf(fact_776_verit__prod__simplify_I2_J,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% verit_prod_simplify(2)
thf(fact_777_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_778_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_779_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_780_count__empty,axiom,
! [A: real] :
( ( count_real @ zero_z8811559133707751557t_real @ A )
= zero_zero_nat ) ).
% count_empty
thf(fact_781__092_060delta_062__range,axiom,
member_rat @ delta @ ( set_or5199638295745620268an_rat @ zero_zero_rat @ one_one_rat ) ).
% \<delta>_range
thf(fact_782_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_783_verit__la__generic,axiom,
! [A: int,X2: int] :
( ( ord_less_eq_int @ A @ X2 )
| ( A = X2 )
| ( ord_less_eq_int @ X2 @ A ) ) ).
% verit_la_generic
thf(fact_784_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_785_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_786_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_787_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_788_Groups_Omult__ac_I3_J,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% Groups.mult_ac(3)
thf(fact_789_Groups_Omult__ac_I3_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% Groups.mult_ac(3)
thf(fact_790_Groups_Omult__ac_I3_J,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% Groups.mult_ac(3)
thf(fact_791_Groups_Omult__ac_I2_J,axiom,
( times_times_real
= ( ^ [A2: real,B2: real] : ( times_times_real @ B2 @ A2 ) ) ) ).
% Groups.mult_ac(2)
thf(fact_792_Groups_Omult__ac_I2_J,axiom,
( times_times_nat
= ( ^ [A2: nat,B2: nat] : ( times_times_nat @ B2 @ A2 ) ) ) ).
% Groups.mult_ac(2)
thf(fact_793_Groups_Omult__ac_I2_J,axiom,
( times_times_int
= ( ^ [A2: int,B2: int] : ( times_times_int @ B2 @ A2 ) ) ) ).
% Groups.mult_ac(2)
thf(fact_794_Groups_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% Groups.mult_ac(1)
thf(fact_795_Groups_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% Groups.mult_ac(1)
thf(fact_796_Groups_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% Groups.mult_ac(1)
thf(fact_797_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_798_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_799_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_800_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_less_as_int
thf(fact_801_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_leq_as_int
thf(fact_802_comm__monoid__mult__class_Omult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_803_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_804_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_805_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_806_mult_Ocomm__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.comm_neutral
thf(fact_807_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_808_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_809_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_810_mult__of__nat__commute,axiom,
! [X2: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_811_mult__of__nat__commute,axiom,
! [X2: nat,Y: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X2 ) @ Y )
= ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_812_mult__of__nat__commute,axiom,
! [X2: nat,Y: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X2 ) @ Y )
= ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_813_mult__eq__1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ( ( times_times_real @ A @ B )
= one_one_real )
= ( ( A = one_one_real )
& ( B = one_one_real ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_814_mult__eq__1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= one_one_nat )
= ( ( A = one_one_nat )
& ( B = one_one_nat ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_815_mult__eq__1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= one_one_int )
= ( ( A = one_one_int )
& ( B = one_one_int ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_816_mult__eq__1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ( ord_less_eq_rat @ B @ one_one_rat )
=> ( ( ( times_times_rat @ A @ B )
= one_one_rat )
= ( ( A = one_one_rat )
& ( B = one_one_rat ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_817_zero__multiset_Orep__eq,axiom,
( ( count_real @ zero_z8811559133707751557t_real )
= ( ^ [A2: real] : zero_zero_nat ) ) ).
% zero_multiset.rep_eq
thf(fact_818_verit__comp__simplify_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify(2)
thf(fact_819_verit__comp__simplify_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify(2)
thf(fact_820_verit__comp__simplify_I2_J,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).
% verit_comp_simplify(2)
thf(fact_821_verit__comp__simplify_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify(2)
thf(fact_822_verit__comp__simplify_I2_J,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% verit_comp_simplify(2)
thf(fact_823_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_824_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_825_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_826_verit__la__disequality,axiom,
! [A: rat,B: rat] :
( ( A = B )
| ~ ( ord_less_eq_rat @ A @ B )
| ~ ( ord_less_eq_rat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_827_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_828_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_829_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_830_nat__exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X4: nat] : ( P2 @ X4 ) )
= ( ^ [P3: nat > $o] :
? [N2: nat] :
( ( P3 @ N2 )
& ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ~ ( P3 @ M2 ) ) ) ) ) ).
% nat_exists_least_iff
thf(fact_831_verit__comp__simplify_I3_J,axiom,
! [B5: real,A5: real] :
( ( ~ ( ord_less_eq_real @ B5 @ A5 ) )
= ( ord_less_real @ A5 @ B5 ) ) ).
% verit_comp_simplify(3)
thf(fact_832_verit__comp__simplify_I3_J,axiom,
! [B5: nat,A5: nat] :
( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
= ( ord_less_nat @ A5 @ B5 ) ) ).
% verit_comp_simplify(3)
thf(fact_833_verit__comp__simplify_I3_J,axiom,
! [B5: int,A5: int] :
( ( ~ ( ord_less_eq_int @ B5 @ A5 ) )
= ( ord_less_int @ A5 @ B5 ) ) ).
% verit_comp_simplify(3)
thf(fact_834_verit__comp__simplify_I3_J,axiom,
! [B5: rat,A5: rat] :
( ( ~ ( ord_less_eq_rat @ B5 @ A5 ) )
= ( ord_less_rat @ A5 @ B5 ) ) ).
% verit_comp_simplify(3)
thf(fact_835_verit__comp__simplify_I28_J,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% verit_comp_simplify(28)
thf(fact_836_verit__comp__simplify_I28_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% verit_comp_simplify(28)
thf(fact_837_verit__comp__simplify_I28_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% verit_comp_simplify(28)
thf(fact_838_verit__comp__simplify_I28_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% verit_comp_simplify(28)
thf(fact_839_Q__def,axiom,
! [Y: int,Omega2: list_nat] :
( ( frequency_Moment_Q @ n @ as @ Y @ Omega2 )
= ( finite_card_nat
@ ( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ ( set_nat2 @ as ) )
& ( ord_less_int @ ( semiri1314217659103216013at_int @ ( freque1172397775421732366t_hash @ ( frequency_Moment_p @ n ) @ X @ Omega2 ) ) @ Y ) ) ) ) ) ).
% Q_def
thf(fact_840__092_060open_062real_Am_A_K_A_I1_A_N_A_092_060delta_062_H_J_A_060_Areal_At_A_K_Areal_Ap_092_060close_062,axiom,
ord_less_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( minus_minus_real @ one_one_real @ delta2 ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) ).
% \<open>real m * (1 - \<delta>') < real t * real p\<close>
thf(fact_841_mult__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_left1
thf(fact_842_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_843_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_844_mult__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ( times_times_rat @ C @ A )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_left2
thf(fact_845_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_846_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_847_mult__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_right1
thf(fact_848_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_849_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_850__092_060delta_062_H__gt__0,axiom,
ord_less_real @ zero_zero_real @ delta2 ).
% \<delta>'_gt_0
thf(fact_851__092_060delta_062_H__lt__1,axiom,
ord_less_real @ delta2 @ one_one_real ).
% \<delta>'_lt_1
thf(fact_852_mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_853_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_854_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_855_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_856_mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_857_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_858_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_859_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_860_mult__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% mult_eq_0_iff
thf(fact_861_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_862_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_863_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_864_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_865_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_866_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_867_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_868_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_869_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_870_greaterThanLessThan__iff,axiom,
! [I: list_nat,L: list_nat,U: list_nat] :
( ( member_list_nat @ I @ ( set_or8018300007763170356st_nat @ L @ U ) )
= ( ( ord_less_list_nat @ L @ I )
& ( ord_less_list_nat @ I @ U ) ) ) ).
% greaterThanLessThan_iff
thf(fact_871_greaterThanLessThan__iff,axiom,
! [I: nat,L: nat,U: nat] :
( ( member_nat @ I @ ( set_or5834768355832116004an_nat @ L @ U ) )
= ( ( ord_less_nat @ L @ I )
& ( ord_less_nat @ I @ U ) ) ) ).
% greaterThanLessThan_iff
thf(fact_872_greaterThanLessThan__iff,axiom,
! [I: int,L: int,U: int] :
( ( member_int @ I @ ( set_or5832277885323065728an_int @ L @ U ) )
= ( ( ord_less_int @ L @ I )
& ( ord_less_int @ I @ U ) ) ) ).
% greaterThanLessThan_iff
thf(fact_873_greaterThanLessThan__iff,axiom,
! [I: real,L: real,U: real] :
( ( member_real @ I @ ( set_or1633881224788618240n_real @ L @ U ) )
= ( ( ord_less_real @ L @ I )
& ( ord_less_real @ I @ U ) ) ) ).
% greaterThanLessThan_iff
thf(fact_874_greaterThanLessThan__iff,axiom,
! [I: rat,L: rat,U: rat] :
( ( member_rat @ I @ ( set_or5199638295745620268an_rat @ L @ U ) )
= ( ( ord_less_rat @ L @ I )
& ( ord_less_rat @ I @ U ) ) ) ).
% greaterThanLessThan_iff
thf(fact_875__092_060epsilon_062__range,axiom,
member_rat @ epsilon @ ( set_or5199638295745620268an_rat @ zero_zero_rat @ one_one_rat ) ).
% \<epsilon>_range
thf(fact_876__092_060open_062real_Am_A_K_A_I1_A_N_A_092_060delta_062_H_J_A_060_Areal_Am_092_060close_062,axiom,
ord_less_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( minus_minus_real @ one_one_real @ delta2 ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) ).
% \<open>real m * (1 - \<delta>') < real m\<close>
thf(fact_877_mult__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ( times_times_rat @ A @ C )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_right2
thf(fact_878_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_879_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_880_mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel1
thf(fact_881_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_882_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_883_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_884_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_885_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_886_nat__int__comparison_I1_J,axiom,
( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
= ( ^ [A2: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A2 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_887_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_888_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_889_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_890_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_891_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_892_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_893_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_894_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_895_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_896_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_897_nat__distrib_I4_J,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% nat_distrib(4)
thf(fact_898_nat__distrib_I3_J,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% nat_distrib(3)
thf(fact_899_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_900_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_901_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_902_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_903_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_904_greaterThanLessThan__subseteq__greaterThanLessThan,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_set_real @ ( set_or1633881224788618240n_real @ A @ B ) @ ( set_or1633881224788618240n_real @ C @ D ) )
= ( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanLessThan
thf(fact_905_greaterThanLessThan__subseteq__greaterThanLessThan,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_set_rat @ ( set_or5199638295745620268an_rat @ A @ B ) @ ( set_or5199638295745620268an_rat @ C @ D ) )
= ( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanLessThan
thf(fact_906_linorder__neqE__linordered__idom,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
=> ( ~ ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_907_linorder__neqE__linordered__idom,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
=> ( ~ ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_908_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_909_mult__right__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_910_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_911_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_912_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_913_mult__left__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_914_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_915_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_916_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_917_no__zero__divisors,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( times_times_rat @ A @ B )
!= zero_zero_rat ) ) ) ).
% no_zero_divisors
thf(fact_918_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_919_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_920_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_921_divisors__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
=> ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divisors_zero
thf(fact_922_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_923_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_924_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_925_mult__not__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
!= zero_zero_rat )
=> ( ( A != zero_zero_rat )
& ( B != zero_zero_rat ) ) ) ).
% mult_not_zero
thf(fact_926_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_927_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_928_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_929_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_930_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_931_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_932_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_933_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_934_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_935_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_936_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_937_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_938_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_939_lambda__zero,axiom,
( ( ^ [H: rat] : zero_zero_rat )
= ( times_times_rat @ zero_zero_rat ) ) ).
% lambda_zero
thf(fact_940_lambda__zero,axiom,
( ( ^ [H: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_941_lambda__zero,axiom,
( ( ^ [H: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_942_lambda__zero,axiom,
( ( ^ [H: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_943_lambda__one,axiom,
( ( ^ [X: rat] : X )
= ( times_times_rat @ one_one_rat ) ) ).
% lambda_one
thf(fact_944_lambda__one,axiom,
( ( ^ [X: real] : X )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_945_lambda__one,axiom,
( ( ^ [X: nat] : X )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_946_lambda__one,axiom,
( ( ^ [X: int] : X )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_947_mult__sign__intros_I4_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_sign_intros(4)
thf(fact_948_mult__sign__intros_I4_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_sign_intros(4)
thf(fact_949_mult__sign__intros_I4_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_sign_intros(4)
thf(fact_950_mult__sign__intros_I3_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_sign_intros(3)
thf(fact_951_mult__sign__intros_I3_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_sign_intros(3)
thf(fact_952_mult__sign__intros_I3_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_sign_intros(3)
thf(fact_953_mult__sign__intros_I3_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_sign_intros(3)
thf(fact_954_mult__sign__intros_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_sign_intros(2)
thf(fact_955_mult__sign__intros_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_sign_intros(2)
thf(fact_956_mult__sign__intros_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_sign_intros(2)
thf(fact_957_mult__sign__intros_I2_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_sign_intros(2)
thf(fact_958_mult__sign__intros_I1_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_959_mult__sign__intros_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_960_mult__sign__intros_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_961_mult__sign__intros_I1_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_962_mult__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_963_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_964_mult__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_965_mult__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_966_mult__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_967_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_968_mult__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_969_mult__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_970_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_971_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_972_zero__le__square,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).
% zero_le_square
thf(fact_973_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_974_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_975_split__mult__pos__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_976_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_977_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_978_mult__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_979_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_980_mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_981_zle__diff1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_982_a__le__p__aux,axiom,
ord_less_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( times_times_real @ ( plus_plus_real @ one_one_real @ delta2 ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) ) ).
% a_le_p_aux
thf(fact_983_rank__t__ub,axiom,
ord_less_eq_int @ y2 @ ( minus_minus_int @ v @ one_one_int ) ).
% rank_t_ub
thf(fact_984_not__real__square__gt__zero,axiom,
! [X2: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X2 @ X2 ) ) )
= ( X2 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_985__092_060open_062real_Am_A_060_A_I1_A_L_A_092_060delta_062_H_J_A_K_Areal_Am_092_060close_062,axiom,
ord_less_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( times_times_real @ ( plus_plus_real @ one_one_real @ delta2 ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) ) ).
% \<open>real m < (1 + \<delta>') * real m\<close>
thf(fact_986_rank__t__lb,axiom,
ord_less_eq_int @ u @ y2 ).
% rank_t_lb
thf(fact_987_s__gt__0,axiom,
ord_less_nat @ zero_zero_nat @ ( frequency_Moment_s @ epsilon ) ).
% s_gt_0
thf(fact_988_y__def,axiom,
( y2
= ( k_nth_mset_int @ ( minus_minus_nat @ ( frequency_Moment_t @ delta ) @ one_one_nat )
@ ( image_mset_nat_int
@ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( freque1172397775421732366t_hash @ ( frequency_Moment_p @ n ) @ X @ omega ) )
@ ( mset_set_nat @ ( set_nat2 @ as ) ) ) ) ) ).
% y_def
thf(fact_989_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_990_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_991_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_992_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W2 )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(3)
thf(fact_993_int__distrib_I4_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_994_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_995_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_996_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_997_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_998_int__diff__cases,axiom,
! [Z2: int] :
~ ! [M5: nat,N3: nat] :
( Z2
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_diff_cases
thf(fact_999_nonneg__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% nonneg_eq_int
thf(fact_1000_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1001_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_1002_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1003_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_1004_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_1005_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1006_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_1007_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1008_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_1009__092_060open_062real_At_A_K_Areal_Ap_A_P_A_Ireal_Am_A_K_A_I1_A_L_A_092_060delta_062_H_J_J_A_L_A1_A_060_Areal_Ap_A_L_A1_092_060close_062,axiom,
ord_less_real @ ( plus_plus_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( plus_plus_real @ one_one_real @ delta2 ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) @ one_one_real ) ).
% \<open>real t * real p / (real m * (1 + \<delta>')) + 1 < real p + 1\<close>
thf(fact_1010_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1011_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1012_real__divide__square__eq,axiom,
! [R: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
= ( divide_divide_real @ A @ R ) ) ).
% real_divide_square_eq
thf(fact_1013_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1014_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_1015_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1016_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1017_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1018_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1019_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1020_zle__add1__eq__le,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_1021_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_1022_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_1023_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_1024_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_1025_zadd__int__left,axiom,
! [M: nat,N: nat,Z2: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_1026_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1027_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W2 )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(1)
thf(fact_1028_int__distrib_I2_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_1029_nat__distrib_I1_J,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% nat_distrib(1)
thf(fact_1030_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1031_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1032_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1033_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1034_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1035_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1036_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1037_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1038_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1039_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1040_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1041_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
? [K3: nat] :
( N2
= ( plus_plus_nat @ M2 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1042_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1043_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1044_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1045_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1046_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_1047_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1048_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1049_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1050_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1051_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1052_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1053_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1054_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1055_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1056_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1057_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1058_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_nat @ M5 @ N3 )
=> ( ord_less_nat @ ( F @ M5 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1059_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1060_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1061_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_1062_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1063_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1064_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1065_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1066_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1067_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1068_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z4: int] :
? [N2: nat] :
( Z4
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_1069_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1070_zless__add1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W2 @ Z2 )
| ( W2 = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_1071_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D2: nat] :
( ( A
= ( plus_plus_nat @ B @ D2 ) )
& ~ ( P @ D2 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1072_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D2: nat] :
( ( A
= ( plus_plus_nat @ B @ D2 ) )
=> ( P @ D2 ) ) ) ) ).
% nat_diff_split
thf(fact_1073_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1074_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1075_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_1076_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1077_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_1078_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1079_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_1080_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1081_zless__imp__add1__zle,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_1082_add1__zle__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% add1_zle_eq
thf(fact_1083_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_1084_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M2: nat,N2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N2 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1085_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_1086_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_1087_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1088__092_060open_062real__of__int_Av_A_092_060le_062_Areal_At_A_K_Areal_Ap_A_P_A_Ireal_Am_A_K_A_I1_A_N_A_092_060delta_062_H_J_J_092_060close_062,axiom,
ord_less_eq_real @ ( ring_1_of_int_real @ v ) @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( minus_minus_real @ one_one_real @ delta2 ) ) ) ).
% \<open>real_of_int v \<le> real t * real p / (real m * (1 - \<delta>'))\<close>
thf(fact_1089__092_060open_062real__of__int_Au_A_092_060le_062_Areal_At_A_K_Areal_Ap_A_P_A_Ireal_Am_A_K_A_I1_A_L_A_092_060delta_062_H_J_J_A_L_A1_092_060close_062,axiom,
ord_less_eq_real @ ( ring_1_of_int_real @ u ) @ ( plus_plus_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_t @ delta ) ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( frequency_Moment_m @ as ) ) @ ( plus_plus_real @ one_one_real @ delta2 ) ) ) @ one_one_real ) ).
% \<open>real_of_int u \<le> real t * real p / (real m * (1 + \<delta>')) + 1\<close>
thf(fact_1090_v__ge__1,axiom,
ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ v ) ).
% v_ge_1
thf(fact_1091_y__ge__0,axiom,
ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ y2 ) ).
% y_ge_0
thf(fact_1092__092_060open_062y_H_A_092_060le_062_Areal__of__int_Ay_092_060close_062,axiom,
ord_less_eq_real @ y @ ( ring_1_of_int_real @ y2 ) ).
% \<open>y' \<le> real_of_int y\<close>
thf(fact_1093__092_060open_062real__of__int_Au_A_092_060le_062_Areal_Ap_092_060close_062,axiom,
ord_less_eq_real @ ( ring_1_of_int_real @ u ) @ ( semiri5074537144036343181t_real @ ( frequency_Moment_p @ n ) ) ).
% \<open>real_of_int u \<le> real p\<close>
thf(fact_1094__092_060open_062real__of__int_Ay_A_092_060le_062_Areal__of__int_A_Iv_A_N_A1_J_092_060close_062,axiom,
ord_less_eq_real @ ( ring_1_of_int_real @ y2 ) @ ( ring_1_of_int_real @ ( minus_minus_int @ v @ one_one_int ) ) ).
% \<open>real_of_int y \<le> real_of_int (v - 1)\<close>
thf(fact_1095_rank__t__ub_H,axiom,
ord_less_eq_real @ y @ ( ring_1_of_int_real @ ( minus_minus_int @ v @ one_one_int ) ) ).
% rank_t_ub'
thf(fact_1096_int__ops_I8_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(8)
thf(fact_1097_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_1098_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y: nat] :
( ( if_nat @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y: nat] :
( ( if_nat @ $true @ X2 @ Y )
= X2 ) ).
% Conjectures (2)
thf(conj_0,hypothesis,
ord_less_eq_real @ x @ y ).
thf(conj_1,conjecture,
( ord_less_eq_nat
@ ( count_real
@ ( image_mset_nat_real
@ ^ [X: nat] : ( freque8618693816294223308r_hash @ delta @ n @ X @ omega )
@ ( mset_set_nat @ ( set_nat2 @ as ) ) )
@ x )
@ one_one_nat ) ).
%------------------------------------------------------------------------------