TPTP Problem File: SLH0963^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Safe_Range_RC/0022_Restrict_Bounds/prob_00028_000783__17590072_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1485 ( 623 unt; 198 typ;   0 def)
%            Number of atoms       : 4325 (1724 equ;   0 cnn)
%            Maximal formula atoms :   45 (   3 avg)
%            Number of connectives : 13165 ( 840   ~; 121   |; 372   &;9866   @)
%                                         (   0 <=>;1966  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   28 (   6 avg)
%            Number of types       :   27 (  26 usr)
%            Number of type conns  :  739 ( 739   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  175 ( 172 usr;  13 con; 0-4 aty)
%            Number of variables   : 4016 ( 290   ^;3526   !; 200   ?;4016   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 14:26:37.471
%------------------------------------------------------------------------------
% Could-be-implicit typings (26)
thf(ty_n_t__Product____Type__Oprod_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_I_062_It__Product____Type__Oprod_Itf__b_Mt__Nat__Onat_J_Mt__Set__Oset_It__List__Olist_Itf__a_J_J_J_M_062_It__Nat__Onat_Mtf__a_J_J_J,type,
    produc1132964494702330949_nat_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_Itf__b_Mt__Nat__Onat_J_Mt__Set__Oset_It__List__Olist_Itf__a_J_J_J_M_062_It__Nat__Onat_Mtf__a_J_J,type,
    produc5835360497134304175_nat_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc8867654947514737559at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_Mt__Nat__Onat_J,type,
    produc7366699395886430672_b_nat: $tType ).

thf(ty_n_t__Relational____Calculus__Oterm_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    relati112041753218324778la_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_J,type,
    set_se6865892389300016395la_a_b: $tType ).

thf(ty_n_t__List__Olist_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    list_R8263082107343818799la_a_b: $tType ).

thf(ty_n_t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    set_Re381260168593705685la_a_b: $tType ).

thf(ty_n_t__List__Olist_It__Relational____Calculus__Oterm_Itf__a_J_J,type,
    list_R6823256787227418703term_a: $tType ).

thf(ty_n_t__Set__Oset_It__Relational____Calculus__Oterm_Itf__a_J_J,type,
    set_Re5178783185447174953term_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Relational____Calculus__Oterm_It__Nat__Onat_J,type,
    relational_term_nat: $tType ).

thf(ty_n_t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    relational_fmla_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__b_Mt__Nat__Onat_J,type,
    product_prod_b_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Relational____Calculus__Oterm_Itf__a_J,type,
    relational_term_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    set_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (172)
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    comple8442120529048846632la_a_b: set_se6865892389300016395la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_Itf__a_J,type,
    comple2307003609928055243_set_a: set_set_a > set_a ).

thf(sy_c_Finite__Set_OFpow_001t__Nat__Onat,type,
    finite_Fpow_nat: set_nat > set_set_nat ).

thf(sy_c_Finite__Set_OFpow_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    finite3079993003003454393la_a_b: set_Re381260168593705685la_a_b > set_se6865892389300016395la_a_b ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_Itf__a_J,type,
    finite_finite_list_a: set_list_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    finite5600759454172676150la_a_b: set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite1152437895449049373et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    finite5238674622262875500la_a_b: set_se6865892389300016395la_a_b > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__b,type,
    finite_finite_b: set_b > $o ).

thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    fun_up6290740034186280484la_a_b: ( nat > set_Re381260168593705685la_a_b ) > nat > set_Re381260168593705685la_a_b > nat > set_Re381260168593705685la_a_b ).

thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001tf__a,type,
    fun_upd_nat_a: ( nat > a ) > nat > a > nat > a ).

thf(sy_c_Fun_Ofun__upd_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    fun_up452696389778429683la_a_b: ( relational_fmla_a_b > set_Re381260168593705685la_a_b ) > relational_fmla_a_b > set_Re381260168593705685la_a_b > relational_fmla_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_M_Eo_J,type,
    minus_9215201808853403479_a_b_o: ( relational_fmla_a_b > $o ) > ( relational_fmla_a_b > $o ) > relational_fmla_a_b > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    minus_4077726661957047470la_a_b: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_J,type,
    minus_4705846553145473764la_a_b: set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    if_Rel1279876242545935705la_a_b: $o > relational_fmla_a_b > relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_If_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    if_set2835548578466827919la_a_b: $o > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Nat__Onat_M_Eo_J,type,
    sup_sup_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_M_Eo_J,type,
    sup_su1471977682094119364_a_b_o: ( relational_fmla_a_b > $o ) > ( relational_fmla_a_b > $o ) > relational_fmla_a_b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_Eo,type,
    sup_sup_o: $o > $o > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    sup_sup_set_list_a: set_list_a > set_list_a > set_list_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    sup_su5130108678486352897la_a_b: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    sup_sup_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_J,type,
    sup_su4783144482993978935la_a_b: set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__b_J,type,
    sup_sup_set_b: set_b > set_b > set_b ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Nat__Onat,type,
    lattic7446932960582359483at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    lattic5380700691367270794_b_nat: ( relational_fmla_a_b > nat ) > set_Re381260168593705685la_a_b > relational_fmla_a_b ).

thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Nat__Onat,type,
    lattic1093996805478795353in_nat: set_nat > nat ).

thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    lattic7150925611526040158la_a_b: set_se6865892389300016395la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_List_Olist_Omap_001t__Relational____Calculus__Oterm_Itf__a_J_001t__Relational____Calculus__Oterm_Itf__a_J,type,
    map_Re5736185711816362116term_a: ( relational_term_a > relational_term_a ) > list_R6823256787227418703term_a > list_R6823256787227418703term_a ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    set_Re9104216502384355786la_a_b: list_R8263082107343818799la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_List_Olist_Oset_001t__Relational____Calculus__Oterm_Itf__a_J,type,
    set_Re3569617851344498910term_a: list_R6823256787227418703term_a > set_Re5178783185447174953term_a ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_M_Eo_J,type,
    bot_bo8852203127187332700_a_b_o: relational_fmla_a_b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_Eo,type,
    bot_bot_o: $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    bot_bot_set_list_a: set_list_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    bot_bo4495933725496725865la_a_b: set_Re381260168593705685la_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_J,type,
    bot_bo2891247006866115487la_a_b: set_se6865892389300016395la_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__b_J,type,
    bot_bot_set_b: set_b ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_M_Eo_J,type,
    ord_le6021219098528097948_a_b_o: ( relational_fmla_a_b > $o ) > ( relational_fmla_a_b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    ord_le7152733262289451305la_a_b: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_M_Eo_J,type,
    ord_le7191224889845164944_a_b_o: ( relational_fmla_a_b > $o ) > ( relational_fmla_a_b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    ord_le4112832032246704949la_a_b: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_J,type,
    ord_le1577343677690852715la_a_b: set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_Itf__b_Mt__Nat__Onat_J_Mt__Set__Oset_It__List__Olist_Itf__a_J_J_J_001_062_It__Nat__Onat_Mtf__a_J,type,
    produc2895298938842563487_nat_a: ( product_prod_b_nat > set_list_a ) > ( nat > a ) > produc5835360497134304175_nat_a ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    produc4282057684358614024_b_nat: relational_fmla_a_b > nat > produc7366699395886430672_b_nat ).

thf(sy_c_Product__Type_OPair_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_Itf__b_Mt__Nat__Onat_J_Mt__Set__Oset_It__List__Olist_Itf__a_J_J_J_M_062_It__Nat__Onat_Mtf__a_J_J,type,
    produc6598558901832717687_nat_a: relational_fmla_a_b > produc5835360497134304175_nat_a > produc1132964494702330949_nat_a ).

thf(sy_c_Product__Type_OPair_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc6913411929637712585at_nat: relational_fmla_a_b > product_prod_nat_nat > produc8867654947514737559at_nat ).

thf(sy_c_Relational__Calculus_Oadom_001tf__b_001tf__a,type,
    relational_adom_b_a: ( product_prod_b_nat > set_list_a ) > set_a ).

thf(sy_c_Relational__Calculus_Oap_001tf__a_001tf__b,type,
    relational_ap_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Ocov_001tf__a_001tf__b,type,
    relational_cov_a_b: nat > relational_fmla_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Relational__Calculus_Ocov_H_001tf__a_001tf__b,type,
    relational_cov_a_b2: nat > relational_fmla_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Relational__Calculus_Ocp_001tf__a_001tf__b,type,
    relational_cp_a_b: relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ocpropagated_001tf__a_001tf__b,type,
    relati1591879772219623554ed_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Ocsts_001tf__a_001tf__b,type,
    relational_csts_a_b: relational_fmla_a_b > set_a ).

thf(sy_c_Relational__Calculus_Ocsts__rel_001tf__a_001tf__b,type,
    relati7137348651719826542el_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Ocsts__term_001t__Nat__Onat,type,
    relati694035416245573993rm_nat: relational_term_nat > set_nat ).

thf(sy_c_Relational__Calculus_Ocsts__term_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    relati1926769566493843000la_a_b: relati112041753218324778la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Relational__Calculus_Ocsts__term_001tf__a,type,
    relati6638259395341848997term_a: relational_term_a > set_a ).

thf(sy_c_Relational__Calculus_Oeqs_001tf__a_001tf__b,type,
    relational_eqs_a_b: nat > set_Re381260168593705685la_a_b > set_nat ).

thf(sy_c_Relational__Calculus_Oequiv_001tf__a_001tf__b,type,
    relational_equiv_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Oerase_001tf__a_001tf__b,type,
    relational_erase_a_b: relational_fmla_a_b > nat > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Oerase__rel_001tf__a_001tf__b,type,
    relati5987653437628155313el_a_b: produc7366699395886430672_b_nat > produc7366699395886430672_b_nat > $o ).

thf(sy_c_Relational__Calculus_Oeval_001tf__a_001tf__b,type,
    relational_eval_a_b: relational_fmla_a_b > ( product_prod_b_nat > set_list_a ) > set_list_a ).

thf(sy_c_Relational__Calculus_Oeval__on_001tf__a_001tf__b,type,
    relati8814510239606734169on_a_b: set_nat > relational_fmla_a_b > ( product_prod_b_nat > set_list_a ) > set_list_a ).

thf(sy_c_Relational__Calculus_Oexists_001tf__a_001tf__b,type,
    relati3989891337220013914ts_a_b: nat > relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_OBool_001tf__a_001tf__b,type,
    relational_Bool_a_b: $o > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_OConj_001tf__a_001tf__b,type,
    relational_Conj_a_b: relational_fmla_a_b > relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_ODisj_001tf__a_001tf__b,type,
    relational_Disj_a_b: relational_fmla_a_b > relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_OEq_001tf__a_001tf__b,type,
    relational_Eq_a_b: nat > relational_term_a > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_OExists_001tf__a_001tf__b,type,
    relati591517084277583526ts_a_b: nat > relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_ONeg_001tf__a_001tf__b,type,
    relational_Neg_a_b: relational_fmla_a_b > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_OPred_001tf__b_001tf__a,type,
    relational_Pred_b_a: b > list_R6823256787227418703term_a > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Ofmla_Oset2__fmla_001tf__a_001tf__b,type,
    relati8924981150291758614la_a_b: relational_fmla_a_b > set_b ).

thf(sy_c_Relational__Calculus_Ofresh2_001tf__a_001tf__b,type,
    relati2677767559083392098h2_a_b: nat > nat > relational_fmla_a_b > nat ).

thf(sy_c_Relational__Calculus_Ofv_001tf__a_001tf__b,type,
    relational_fv_a_b: relational_fmla_a_b > set_nat ).

thf(sy_c_Relational__Calculus_Ofv__rel_001tf__a_001tf__b,type,
    relati5703530512245835757el_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Ofv__term__set_001tf__a,type,
    relati6004689760767320788_set_a: relational_term_a > set_nat ).

thf(sy_c_Relational__Calculus_Ofv__terms__set_001tf__a,type,
    relati4569515538964159125_set_a: list_R6823256787227418703term_a > set_nat ).

thf(sy_c_Relational__Calculus_Ogen_001tf__a_001tf__b,type,
    relational_gen_a_b: nat > relational_fmla_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Relational__Calculus_Ogen_H_001tf__a_001tf__b,type,
    relational_gen_a_b2: nat > relational_fmla_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Relational__Calculus_Ogenempty_001tf__a_001tf__b,type,
    relati5999705594545617851ty_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Onocp_001tf__a_001tf__b,type,
    relational_nocp_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Onocp__rel_001tf__a_001tf__b,type,
    relati3149960101488570543el_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Onongens_001tf__a_001tf__b,type,
    relati62690040636126068ns_a_b: relational_fmla_a_b > set_nat ).

thf(sy_c_Relational__Calculus_Oqp_001tf__a_001tf__b,type,
    relational_qp_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Oqp__impl_001tf__a_001tf__b,type,
    relati3725921752842749053pl_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Oqp__impl__rel_001tf__a_001tf__b,type,
    relati7364465619720499582el_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Oqps_001tf__a_001tf__b,type,
    relational_qps_a_b: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Relational__Calculus_Orrb_001tf__a_001tf__b,type,
    relational_rrb_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Osat_001tf__a_001tf__b,type,
    relational_sat_a_b: relational_fmla_a_b > ( product_prod_b_nat > set_list_a ) > ( nat > a ) > $o ).

thf(sy_c_Relational__Calculus_Osr_001tf__a_001tf__b,type,
    relational_sr_a_b: relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Osub_001tf__a_001tf__b,type,
    relational_sub_a_b: relational_fmla_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Relational__Calculus_Osub__rel_001tf__a_001tf__b,type,
    relati7309537865537208983el_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Relational__Calculus_Osubst_001tf__a_001tf__b,type,
    relational_subst_a_b: relational_fmla_a_b > nat > nat > relational_fmla_a_b ).

thf(sy_c_Relational__Calculus_Osubst__term_001tf__a,type,
    relati7175845559408349773term_a: relational_term_a > nat > nat > relational_term_a ).

thf(sy_c_Relational__Calculus_Oterm_OConst_001tf__a,type,
    relational_Const_a: a > relational_term_a ).

thf(sy_c_Relational__Calculus_Oterm_OVar_001tf__a,type,
    relational_Var_a: nat > relational_term_a ).

thf(sy_c_Relational__Calculus_Oterm_Ocase__term_001tf__a_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    relati582353067970734056la_a_b: ( a > relational_fmla_a_b ) > ( nat > relational_fmla_a_b ) > relational_term_a > relational_fmla_a_b ).

thf(sy_c_Restrict__Bounds_Oflat__Disj_001tf__a_001tf__b,type,
    restri569617705344514291sj_a_b: relational_fmla_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Restrict__Bounds_Oflat__Disj__rel_001tf__a_001tf__b,type,
    restri7773364413411414152el_a_b: relational_fmla_a_b > relational_fmla_a_b > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    collec3419995626248312948la_a_b: ( relational_fmla_a_b > $o ) > set_Re381260168593705685la_a_b ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    collec2099942116761351594la_a_b: ( set_Re381260168593705685la_a_b > $o ) > set_se6865892389300016395la_a_b ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_OCollect_001tf__b,type,
    collect_b: ( b > $o ) > set_b ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    image_4386371547000553590la_a_b: ( nat > relational_fmla_a_b ) > set_nat > set_Re381260168593705685la_a_b ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    image_654480401538864556la_a_b: ( nat > set_Re381260168593705685la_a_b ) > set_nat > set_se6865892389300016395la_a_b ).

thf(sy_c_Set_Oimage_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
    image_341122591648980342_b_nat: ( relational_fmla_a_b > nat ) > set_Re381260168593705685la_a_b > set_nat ).

thf(sy_c_Set_Oimage_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    image_6790371041703824709la_a_b: ( relational_fmla_a_b > relational_fmla_a_b ) > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Set_Oimage_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_8719518604786020652et_nat: ( relational_fmla_a_b > set_nat ) > set_Re381260168593705685la_a_b > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    image_8209480069293074043la_a_b: ( relational_fmla_a_b > set_Re381260168593705685la_a_b ) > set_Re381260168593705685la_a_b > set_se6865892389300016395la_a_b ).

thf(sy_c_Set_Oimage_001t__Relational____Calculus__Oterm_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    image_1080223610614215258_set_a: ( relational_term_a > set_a ) > set_Re5178783185447174953term_a > set_set_a ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7916887816326733075et_nat: ( set_nat > set_nat ) > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    image_7051608999182166449la_a_b: ( set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ) > set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b ).

thf(sy_c_Set_Oinsert_001t__List__Olist_Itf__a_J,type,
    insert_list_a: list_a > set_list_a > set_list_a ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    insert7010464514620295119la_a_b: relational_fmla_a_b > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Nat__Onat_J,type,
    insert_set_nat: set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    insert2023870700798818565la_a_b: set_Re381260168593705685la_a_b > set_se6865892389300016395la_a_b > set_se6865892389300016395la_a_b ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Oinsert_001tf__b,type,
    insert_b: b > set_b > set_b ).

thf(sy_c_Set_Ois__singleton_001t__Nat__Onat,type,
    is_singleton_nat: set_nat > $o ).

thf(sy_c_Set_Ois__singleton_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    is_sin6594375743535830443la_a_b: set_Re381260168593705685la_a_b > $o ).

thf(sy_c_Set_Ois__singleton_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    is_sin1114528679824004833la_a_b: set_se6865892389300016395la_a_b > $o ).

thf(sy_c_Set_Ois__singleton_001tf__a,type,
    is_singleton_a: set_a > $o ).

thf(sy_c_Set_Ois__singleton_001tf__b,type,
    is_singleton_b: set_b > $o ).

thf(sy_c_Set_Oremove_001t__Nat__Onat,type,
    remove_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oremove_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    remove4261432235257513082la_a_b: relational_fmla_a_b > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Set_Othe__elem_001t__Nat__Onat,type,
    the_elem_nat: set_nat > nat ).

thf(sy_c_Set_Othe__elem_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    the_el6350558617753882986la_a_b: set_Re381260168593705685la_a_b > relational_fmla_a_b ).

thf(sy_c_Set_Othe__elem_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    the_el7486773796875720352la_a_b: set_se6865892389300016395la_a_b > set_Re381260168593705685la_a_b ).

thf(sy_c_Set_Othe__elem_001tf__a,type,
    the_elem_a: set_a > a ).

thf(sy_c_Set_Othe__elem_001tf__b,type,
    the_elem_b: set_b > b ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_Mt__Nat__Onat_J,type,
    accp_P4351966040938400857_b_nat: ( produc7366699395886430672_b_nat > produc7366699395886430672_b_nat > $o ) > produc7366699395886430672_b_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    accp_R989495437599811158la_a_b: ( relational_fmla_a_b > relational_fmla_a_b > $o ) > relational_fmla_a_b > $o ).

thf(sy_c_member_001t__List__Olist_Itf__a_J,type,
    member_list_a: list_a > set_list_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J,type,
    member4680049679412964150la_a_b: relational_fmla_a_b > set_Re381260168593705685la_a_b > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J,type,
    member3481406638322139244la_a_b: set_Re381260168593705685la_a_b > set_se6865892389300016395la_a_b > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_c_member_001tf__b,type,
    member_b: b > set_b > $o ).

thf(sy_v_Q,type,
    q: relational_fmla_a_b ).

thf(sy_v_Q_H,type,
    q2: relational_fmla_a_b ).

% Relevant facts (1277)
thf(fact_0_finite__flat__Disj,axiom,
    ! [Q: relational_fmla_a_b] : ( finite5600759454172676150la_a_b @ ( restri569617705344514291sj_a_b @ Q ) ) ).

% finite_flat_Disj
thf(fact_1_fv__flat__DisjD,axiom,
    ! [Q2: relational_fmla_a_b,Q: relational_fmla_a_b,X: nat] :
      ( ( member4680049679412964150la_a_b @ Q2 @ ( restri569617705344514291sj_a_b @ Q ) )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q2 ) )
       => ( member_nat @ X @ ( relational_fv_a_b @ Q ) ) ) ) ).

% fv_flat_DisjD
thf(fact_2_cpropagated__simps_I1_J,axiom,
    ! [B: $o] : ( relati1591879772219623554ed_a_b @ ( relational_Bool_a_b @ B ) ) ).

% cpropagated_simps(1)
thf(fact_3_cpropagated__simps_I2_J,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a] : ( relati1591879772219623554ed_a_b @ ( relational_Pred_b_a @ P @ Ts ) ) ).

% cpropagated_simps(2)
thf(fact_4_cpropagated__sub,axiom,
    ! [Q: relational_fmla_a_b,Q2: relational_fmla_a_b] :
      ( ( relati1591879772219623554ed_a_b @ Q )
     => ( ( member4680049679412964150la_a_b @ Q2 @ ( relational_sub_a_b @ Q ) )
       => ( relati1591879772219623554ed_a_b @ Q2 ) ) ) ).

% cpropagated_sub
thf(fact_5_nocp__cpropagated,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ Q )
     => ( relati1591879772219623554ed_a_b @ Q ) ) ).

% nocp_cpropagated
thf(fact_6_cpropagated__cp,axiom,
    ! [Q: relational_fmla_a_b] : ( relati1591879772219623554ed_a_b @ ( relational_cp_a_b @ Q ) ) ).

% cpropagated_cp
thf(fact_7_cpropagated__cp__triv,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relati1591879772219623554ed_a_b @ Q )
     => ( ( relational_cp_a_b @ Q )
        = Q ) ) ).

% cpropagated_cp_triv
thf(fact_8_flat__Disj_Osimps_I1_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( restri569617705344514291sj_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
      = ( sup_su5130108678486352897la_a_b @ ( restri569617705344514291sj_a_b @ Q1 ) @ ( restri569617705344514291sj_a_b @ Q22 ) ) ) ).

% flat_Disj.simps(1)
thf(fact_9_cpropagated__simps_I6_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relati1591879772219623554ed_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
      = ( ( relational_nocp_a_b @ Q1 )
        & ( relational_nocp_a_b @ Q22 ) ) ) ).

% cpropagated_simps(6)
thf(fact_10_cpropagated__simps_I4_J,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relati1591879772219623554ed_a_b @ ( relational_Neg_a_b @ Q ) )
      = ( relational_nocp_a_b @ Q ) ) ).

% cpropagated_simps(4)
thf(fact_11_fmla_Oinject_I6_J,axiom,
    ! [X61: relational_fmla_a_b,X62: relational_fmla_a_b,Y61: relational_fmla_a_b,Y62: relational_fmla_a_b] :
      ( ( ( relational_Disj_a_b @ X61 @ X62 )
        = ( relational_Disj_a_b @ Y61 @ Y62 ) )
      = ( ( X61 = Y61 )
        & ( X62 = Y62 ) ) ) ).

% fmla.inject(6)
thf(fact_12_fmla_Oinject_I4_J,axiom,
    ! [X4: relational_fmla_a_b,Y4: relational_fmla_a_b] :
      ( ( ( relational_Neg_a_b @ X4 )
        = ( relational_Neg_a_b @ Y4 ) )
      = ( X4 = Y4 ) ) ).

% fmla.inject(4)
thf(fact_13_fmla_Oinject_I2_J,axiom,
    ! [X2: $o,Y2: $o] :
      ( ( ( relational_Bool_a_b @ X2 )
        = ( relational_Bool_a_b @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% fmla.inject(2)
thf(fact_14_fmla_Oinject_I1_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,Y11: b,Y12: list_R6823256787227418703term_a] :
      ( ( ( relational_Pred_b_a @ X11 @ X12 )
        = ( relational_Pred_b_a @ Y11 @ Y12 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 ) ) ) ).

% fmla.inject(1)
thf(fact_15_cp__idem,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_cp_a_b @ ( relational_cp_a_b @ Q ) )
      = ( relational_cp_a_b @ Q ) ) ).

% cp_idem
thf(fact_16_equiv__refl,axiom,
    ! [Q: relational_fmla_a_b] : ( relational_equiv_a_b @ Q @ Q ) ).

% equiv_refl
thf(fact_17_cp_Osimps_I7_J,axiom,
    ! [V: $o] :
      ( ( relational_cp_a_b @ ( relational_Bool_a_b @ V ) )
      = ( relational_Bool_a_b @ V ) ) ).

% cp.simps(7)
thf(fact_18_cp_Osimps_I6_J,axiom,
    ! [V: b,Va: list_R6823256787227418703term_a] :
      ( ( relational_cp_a_b @ ( relational_Pred_b_a @ V @ Va ) )
      = ( relational_Pred_b_a @ V @ Va ) ) ).

% cp.simps(6)
thf(fact_19_fv_Osimps_I4_J,axiom,
    ! [Phi: relational_fmla_a_b] :
      ( ( relational_fv_a_b @ ( relational_Neg_a_b @ Phi ) )
      = ( relational_fv_a_b @ Phi ) ) ).

% fv.simps(4)
thf(fact_20_nocp_Osimps_I6_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
      = ( ( relational_nocp_a_b @ Q1 )
        & ( relational_nocp_a_b @ Q22 ) ) ) ).

% nocp.simps(6)
thf(fact_21_nocp_Osimps_I4_J,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ ( relational_Neg_a_b @ Q ) )
      = ( relational_nocp_a_b @ Q ) ) ).

% nocp.simps(4)
thf(fact_22_nocp_Osimps_I2_J,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a] : ( relational_nocp_a_b @ ( relational_Pred_b_a @ P @ Ts ) ) ).

% nocp.simps(2)
thf(fact_23_nocp_Osimps_I1_J,axiom,
    ! [B: $o] :
      ~ ( relational_nocp_a_b @ ( relational_Bool_a_b @ B ) ) ).

% nocp.simps(1)
thf(fact_24_fmla_Odistinct_I33_J,axiom,
    ! [X4: relational_fmla_a_b,X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( relational_Neg_a_b @ X4 )
     != ( relational_Disj_a_b @ X61 @ X62 ) ) ).

% fmla.distinct(33)
thf(fact_25_fmla_Odistinct_I19_J,axiom,
    ! [X2: $o,X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( relational_Bool_a_b @ X2 )
     != ( relational_Disj_a_b @ X61 @ X62 ) ) ).

% fmla.distinct(19)
thf(fact_26_fmla_Odistinct_I15_J,axiom,
    ! [X2: $o,X4: relational_fmla_a_b] :
      ( ( relational_Bool_a_b @ X2 )
     != ( relational_Neg_a_b @ X4 ) ) ).

% fmla.distinct(15)
thf(fact_27_fmla_Odistinct_I9_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( relational_Pred_b_a @ X11 @ X12 )
     != ( relational_Disj_a_b @ X61 @ X62 ) ) ).

% fmla.distinct(9)
thf(fact_28_fmla_Odistinct_I5_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,X4: relational_fmla_a_b] :
      ( ( relational_Pred_b_a @ X11 @ X12 )
     != ( relational_Neg_a_b @ X4 ) ) ).

% fmla.distinct(5)
thf(fact_29_fmla_Odistinct_I1_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,X2: $o] :
      ( ( relational_Pred_b_a @ X11 @ X12 )
     != ( relational_Bool_a_b @ X2 ) ) ).

% fmla.distinct(1)
thf(fact_30_equiv__cp,axiom,
    ! [Q: relational_fmla_a_b] : ( relational_equiv_a_b @ ( relational_cp_a_b @ Q ) @ Q ) ).

% equiv_cp
thf(fact_31_equiv__sym,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_equiv_a_b @ Q1 @ Q22 )
     => ( relational_equiv_a_b @ Q22 @ Q1 ) ) ).

% equiv_sym
thf(fact_32_equiv__trans,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,Q3: relational_fmla_a_b] :
      ( ( relational_equiv_a_b @ Q1 @ Q22 )
     => ( ( relational_equiv_a_b @ Q22 @ Q3 )
       => ( relational_equiv_a_b @ Q1 @ Q3 ) ) ) ).

% equiv_trans
thf(fact_33_nocp__cp__triv,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ Q )
     => ( ( relational_cp_a_b @ Q )
        = Q ) ) ).

% nocp_cp_triv
thf(fact_34_equiv__cp__cong,axiom,
    ! [Q: relational_fmla_a_b,Q2: relational_fmla_a_b] :
      ( ( relational_equiv_a_b @ Q @ Q2 )
     => ( relational_equiv_a_b @ ( relational_cp_a_b @ Q ) @ ( relational_cp_a_b @ Q2 ) ) ) ).

% equiv_cp_cong
thf(fact_35_equiv__Neg__cong,axiom,
    ! [Q: relational_fmla_a_b,Q2: relational_fmla_a_b] :
      ( ( relational_equiv_a_b @ Q @ Q2 )
     => ( relational_equiv_a_b @ ( relational_Neg_a_b @ Q ) @ ( relational_Neg_a_b @ Q2 ) ) ) ).

% equiv_Neg_cong
thf(fact_36_equiv__Disj__cong,axiom,
    ! [Q1: relational_fmla_a_b,Q12: relational_fmla_a_b,Q22: relational_fmla_a_b,Q23: relational_fmla_a_b] :
      ( ( relational_equiv_a_b @ Q1 @ Q12 )
     => ( ( relational_equiv_a_b @ Q22 @ Q23 )
       => ( relational_equiv_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ ( relational_Disj_a_b @ Q12 @ Q23 ) ) ) ) ).

% equiv_Disj_cong
thf(fact_37_cpropagated__nocp,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relati1591879772219623554ed_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_nocp_a_b @ Q ) ) ) ).

% cpropagated_nocp
thf(fact_38_equiv__Disj__Assoc,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,Q3: relational_fmla_a_b] : ( relational_equiv_a_b @ ( relational_Disj_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ Q3 ) @ ( relational_Disj_a_b @ Q1 @ ( relational_Disj_a_b @ Q22 @ Q3 ) ) ) ).

% equiv_Disj_Assoc
thf(fact_39_finite__Un,axiom,
    ! [F: set_list_a,G: set_list_a] :
      ( ( finite_finite_list_a @ ( sup_sup_set_list_a @ F @ G ) )
      = ( ( finite_finite_list_a @ F )
        & ( finite_finite_list_a @ G ) ) ) ).

% finite_Un
thf(fact_40_finite__Un,axiom,
    ! [F: set_se6865892389300016395la_a_b,G: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ ( sup_su4783144482993978935la_a_b @ F @ G ) )
      = ( ( finite5238674622262875500la_a_b @ F )
        & ( finite5238674622262875500la_a_b @ G ) ) ) ).

% finite_Un
thf(fact_41_finite__Un,axiom,
    ! [F: set_set_nat,G: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ ( sup_sup_set_set_nat @ F @ G ) )
      = ( ( finite1152437895449049373et_nat @ F )
        & ( finite1152437895449049373et_nat @ G ) ) ) ).

% finite_Un
thf(fact_42_finite__Un,axiom,
    ! [F: set_b,G: set_b] :
      ( ( finite_finite_b @ ( sup_sup_set_b @ F @ G ) )
      = ( ( finite_finite_b @ F )
        & ( finite_finite_b @ G ) ) ) ).

% finite_Un
thf(fact_43_finite__Un,axiom,
    ! [F: set_a,G: set_a] :
      ( ( finite_finite_a @ ( sup_sup_set_a @ F @ G ) )
      = ( ( finite_finite_a @ F )
        & ( finite_finite_a @ G ) ) ) ).

% finite_Un
thf(fact_44_finite__Un,axiom,
    ! [F: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ ( sup_sup_set_nat @ F @ G ) )
      = ( ( finite_finite_nat @ F )
        & ( finite_finite_nat @ G ) ) ) ).

% finite_Un
thf(fact_45_finite__Un,axiom,
    ! [F: set_Re381260168593705685la_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ ( sup_su5130108678486352897la_a_b @ F @ G ) )
      = ( ( finite5600759454172676150la_a_b @ F )
        & ( finite5600759454172676150la_a_b @ G ) ) ) ).

% finite_Un
thf(fact_46_UnCI,axiom,
    ! [C: set_nat,B2: set_set_nat,A: set_set_nat] :
      ( ( ~ ( member_set_nat @ C @ B2 )
       => ( member_set_nat @ C @ A ) )
     => ( member_set_nat @ C @ ( sup_sup_set_set_nat @ A @ B2 ) ) ) ).

% UnCI
thf(fact_47_UnCI,axiom,
    ! [C: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( ~ ( member3481406638322139244la_a_b @ C @ B2 )
       => ( member3481406638322139244la_a_b @ C @ A ) )
     => ( member3481406638322139244la_a_b @ C @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) ) ) ).

% UnCI
thf(fact_48_UnCI,axiom,
    ! [C: b,B2: set_b,A: set_b] :
      ( ( ~ ( member_b @ C @ B2 )
       => ( member_b @ C @ A ) )
     => ( member_b @ C @ ( sup_sup_set_b @ A @ B2 ) ) ) ).

% UnCI
thf(fact_49_UnCI,axiom,
    ! [C: a,B2: set_a,A: set_a] :
      ( ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ A ) )
     => ( member_a @ C @ ( sup_sup_set_a @ A @ B2 ) ) ) ).

% UnCI
thf(fact_50_UnCI,axiom,
    ! [C: nat,B2: set_nat,A: set_nat] :
      ( ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ A ) )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A @ B2 ) ) ) ).

% UnCI
thf(fact_51_UnCI,axiom,
    ! [C: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( ~ ( member4680049679412964150la_a_b @ C @ B2 )
       => ( member4680049679412964150la_a_b @ C @ A ) )
     => ( member4680049679412964150la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ) ).

% UnCI
thf(fact_52_Un__iff,axiom,
    ! [C: set_nat,A: set_set_nat,B2: set_set_nat] :
      ( ( member_set_nat @ C @ ( sup_sup_set_set_nat @ A @ B2 ) )
      = ( ( member_set_nat @ C @ A )
        | ( member_set_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_53_Un__iff,axiom,
    ! [C: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ C @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) )
      = ( ( member3481406638322139244la_a_b @ C @ A )
        | ( member3481406638322139244la_a_b @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_54_Un__iff,axiom,
    ! [C: b,A: set_b,B2: set_b] :
      ( ( member_b @ C @ ( sup_sup_set_b @ A @ B2 ) )
      = ( ( member_b @ C @ A )
        | ( member_b @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_55_Un__iff,axiom,
    ! [C: a,A: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A @ B2 ) )
      = ( ( member_a @ C @ A )
        | ( member_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_56_Un__iff,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A @ B2 ) )
      = ( ( member_nat @ C @ A )
        | ( member_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_57_Un__iff,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
      = ( ( member4680049679412964150la_a_b @ C @ A )
        | ( member4680049679412964150la_a_b @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_58_mem__Collect__eq,axiom,
    ! [A2: b,P2: b > $o] :
      ( ( member_b @ A2 @ ( collect_b @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_59_mem__Collect__eq,axiom,
    ! [A2: a,P2: a > $o] :
      ( ( member_a @ A2 @ ( collect_a @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_60_mem__Collect__eq,axiom,
    ! [A2: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( member3481406638322139244la_a_b @ A2 @ ( collec2099942116761351594la_a_b @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_61_mem__Collect__eq,axiom,
    ! [A2: set_nat,P2: set_nat > $o] :
      ( ( member_set_nat @ A2 @ ( collect_set_nat @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_62_mem__Collect__eq,axiom,
    ! [A2: relational_fmla_a_b,P2: relational_fmla_a_b > $o] :
      ( ( member4680049679412964150la_a_b @ A2 @ ( collec3419995626248312948la_a_b @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_63_mem__Collect__eq,axiom,
    ! [A2: nat,P2: nat > $o] :
      ( ( member_nat @ A2 @ ( collect_nat @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_64_Collect__mem__eq,axiom,
    ! [A: set_b] :
      ( ( collect_b
        @ ^ [X3: b] : ( member_b @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_65_Collect__mem__eq,axiom,
    ! [A: set_a] :
      ( ( collect_a
        @ ^ [X3: a] : ( member_a @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_66_Collect__mem__eq,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( collec2099942116761351594la_a_b
        @ ^ [X3: set_Re381260168593705685la_a_b] : ( member3481406638322139244la_a_b @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_67_Collect__mem__eq,axiom,
    ! [A: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_68_Collect__mem__eq,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( collec3419995626248312948la_a_b
        @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_69_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_70_Collect__cong,axiom,
    ! [P2: relational_fmla_a_b > $o,Q: relational_fmla_a_b > $o] :
      ( ! [X5: relational_fmla_a_b] :
          ( ( P2 @ X5 )
          = ( Q @ X5 ) )
     => ( ( collec3419995626248312948la_a_b @ P2 )
        = ( collec3419995626248312948la_a_b @ Q ) ) ) ).

% Collect_cong
thf(fact_71_Collect__cong,axiom,
    ! [P2: set_Re381260168593705685la_a_b > $o,Q: set_Re381260168593705685la_a_b > $o] :
      ( ! [X5: set_Re381260168593705685la_a_b] :
          ( ( P2 @ X5 )
          = ( Q @ X5 ) )
     => ( ( collec2099942116761351594la_a_b @ P2 )
        = ( collec2099942116761351594la_a_b @ Q ) ) ) ).

% Collect_cong
thf(fact_72_Collect__cong,axiom,
    ! [P2: set_nat > $o,Q: set_nat > $o] :
      ( ! [X5: set_nat] :
          ( ( P2 @ X5 )
          = ( Q @ X5 ) )
     => ( ( collect_set_nat @ P2 )
        = ( collect_set_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_73_Collect__cong,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ! [X5: nat] :
          ( ( P2 @ X5 )
          = ( Q @ X5 ) )
     => ( ( collect_nat @ P2 )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_74_sup_Oidem,axiom,
    ! [A2: set_b] :
      ( ( sup_sup_set_b @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_75_sup_Oidem,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_76_sup_Oidem,axiom,
    ! [A2: nat] :
      ( ( sup_sup_nat @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_77_sup_Oidem,axiom,
    ! [A2: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_78_sup_Oidem,axiom,
    ! [A2: nat > $o] :
      ( ( sup_sup_nat_o @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_79_sup_Oidem,axiom,
    ! [A2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_80_sup__idem,axiom,
    ! [X: set_b] :
      ( ( sup_sup_set_b @ X @ X )
      = X ) ).

% sup_idem
thf(fact_81_sup__idem,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ X )
      = X ) ).

% sup_idem
thf(fact_82_sup__idem,axiom,
    ! [X: nat] :
      ( ( sup_sup_nat @ X @ X )
      = X ) ).

% sup_idem
thf(fact_83_sup__idem,axiom,
    ! [X: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ X )
      = X ) ).

% sup_idem
thf(fact_84_sup__idem,axiom,
    ! [X: nat > $o] :
      ( ( sup_sup_nat_o @ X @ X )
      = X ) ).

% sup_idem
thf(fact_85_sup__idem,axiom,
    ! [X: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ X )
      = X ) ).

% sup_idem
thf(fact_86_sup_Oleft__idem,axiom,
    ! [A2: set_b,B: set_b] :
      ( ( sup_sup_set_b @ A2 @ ( sup_sup_set_b @ A2 @ B ) )
      = ( sup_sup_set_b @ A2 @ B ) ) ).

% sup.left_idem
thf(fact_87_sup_Oleft__idem,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) )
      = ( sup_sup_set_a @ A2 @ B ) ) ).

% sup.left_idem
thf(fact_88_sup_Oleft__idem,axiom,
    ! [A2: nat,B: nat] :
      ( ( sup_sup_nat @ A2 @ ( sup_sup_nat @ A2 @ B ) )
      = ( sup_sup_nat @ A2 @ B ) ) ).

% sup.left_idem
thf(fact_89_sup_Oleft__idem,axiom,
    ! [A2: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ A2 @ ( sup_su1471977682094119364_a_b_o @ A2 @ B ) )
      = ( sup_su1471977682094119364_a_b_o @ A2 @ B ) ) ).

% sup.left_idem
thf(fact_90_sup_Oleft__idem,axiom,
    ! [A2: nat > $o,B: nat > $o] :
      ( ( sup_sup_nat_o @ A2 @ ( sup_sup_nat_o @ A2 @ B ) )
      = ( sup_sup_nat_o @ A2 @ B ) ) ).

% sup.left_idem
thf(fact_91_sup_Oleft__idem,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A2 @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) )
      = ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ).

% sup.left_idem
thf(fact_92_sup__left__idem,axiom,
    ! [X: set_b,Y: set_b] :
      ( ( sup_sup_set_b @ X @ ( sup_sup_set_b @ X @ Y ) )
      = ( sup_sup_set_b @ X @ Y ) ) ).

% sup_left_idem
thf(fact_93_sup__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% sup_left_idem
thf(fact_94_sup__left__idem,axiom,
    ! [X: nat,Y: nat] :
      ( ( sup_sup_nat @ X @ ( sup_sup_nat @ X @ Y ) )
      = ( sup_sup_nat @ X @ Y ) ) ).

% sup_left_idem
thf(fact_95_sup__left__idem,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ ( sup_su1471977682094119364_a_b_o @ X @ Y ) )
      = ( sup_su1471977682094119364_a_b_o @ X @ Y ) ) ).

% sup_left_idem
thf(fact_96_sup__left__idem,axiom,
    ! [X: nat > $o,Y: nat > $o] :
      ( ( sup_sup_nat_o @ X @ ( sup_sup_nat_o @ X @ Y ) )
      = ( sup_sup_nat_o @ X @ Y ) ) ).

% sup_left_idem
thf(fact_97_sup__left__idem,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ X @ Y ) )
      = ( sup_su5130108678486352897la_a_b @ X @ Y ) ) ).

% sup_left_idem
thf(fact_98_sup_Oright__idem,axiom,
    ! [A2: set_b,B: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ A2 @ B ) @ B )
      = ( sup_sup_set_b @ A2 @ B ) ) ).

% sup.right_idem
thf(fact_99_sup_Oright__idem,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B ) @ B )
      = ( sup_sup_set_a @ A2 @ B ) ) ).

% sup.right_idem
thf(fact_100_sup_Oright__idem,axiom,
    ! [A2: nat,B: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ A2 @ B ) @ B )
      = ( sup_sup_nat @ A2 @ B ) ) ).

% sup.right_idem
thf(fact_101_sup_Oright__idem,axiom,
    ! [A2: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ ( sup_su1471977682094119364_a_b_o @ A2 @ B ) @ B )
      = ( sup_su1471977682094119364_a_b_o @ A2 @ B ) ) ).

% sup.right_idem
thf(fact_102_sup_Oright__idem,axiom,
    ! [A2: nat > $o,B: nat > $o] :
      ( ( sup_sup_nat_o @ ( sup_sup_nat_o @ A2 @ B ) @ B )
      = ( sup_sup_nat_o @ A2 @ B ) ) ).

% sup.right_idem
thf(fact_103_sup_Oright__idem,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) @ B )
      = ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ).

% sup.right_idem
thf(fact_104_sup__apply,axiom,
    ( sup_su1471977682094119364_a_b_o
    = ( ^ [F2: relational_fmla_a_b > $o,G2: relational_fmla_a_b > $o,X3: relational_fmla_a_b] : ( sup_sup_o @ ( F2 @ X3 ) @ ( G2 @ X3 ) ) ) ) ).

% sup_apply
thf(fact_105_sup__apply,axiom,
    ( sup_sup_nat_o
    = ( ^ [F2: nat > $o,G2: nat > $o,X3: nat] : ( sup_sup_o @ ( F2 @ X3 ) @ ( G2 @ X3 ) ) ) ) ).

% sup_apply
thf(fact_106_finite__UnI,axiom,
    ! [F: set_list_a,G: set_list_a] :
      ( ( finite_finite_list_a @ F )
     => ( ( finite_finite_list_a @ G )
       => ( finite_finite_list_a @ ( sup_sup_set_list_a @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_107_finite__UnI,axiom,
    ! [F: set_se6865892389300016395la_a_b,G: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ F )
     => ( ( finite5238674622262875500la_a_b @ G )
       => ( finite5238674622262875500la_a_b @ ( sup_su4783144482993978935la_a_b @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_108_finite__UnI,axiom,
    ! [F: set_set_nat,G: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ F )
     => ( ( finite1152437895449049373et_nat @ G )
       => ( finite1152437895449049373et_nat @ ( sup_sup_set_set_nat @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_109_finite__UnI,axiom,
    ! [F: set_b,G: set_b] :
      ( ( finite_finite_b @ F )
     => ( ( finite_finite_b @ G )
       => ( finite_finite_b @ ( sup_sup_set_b @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_110_finite__UnI,axiom,
    ! [F: set_a,G: set_a] :
      ( ( finite_finite_a @ F )
     => ( ( finite_finite_a @ G )
       => ( finite_finite_a @ ( sup_sup_set_a @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_111_finite__UnI,axiom,
    ! [F: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ F )
     => ( ( finite_finite_nat @ G )
       => ( finite_finite_nat @ ( sup_sup_set_nat @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_112_finite__UnI,axiom,
    ! [F: set_Re381260168593705685la_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( ( finite5600759454172676150la_a_b @ G )
       => ( finite5600759454172676150la_a_b @ ( sup_su5130108678486352897la_a_b @ F @ G ) ) ) ) ).

% finite_UnI
thf(fact_113_Un__infinite,axiom,
    ! [S: set_list_a,T: set_list_a] :
      ( ~ ( finite_finite_list_a @ S )
     => ~ ( finite_finite_list_a @ ( sup_sup_set_list_a @ S @ T ) ) ) ).

% Un_infinite
thf(fact_114_Un__infinite,axiom,
    ! [S: set_se6865892389300016395la_a_b,T: set_se6865892389300016395la_a_b] :
      ( ~ ( finite5238674622262875500la_a_b @ S )
     => ~ ( finite5238674622262875500la_a_b @ ( sup_su4783144482993978935la_a_b @ S @ T ) ) ) ).

% Un_infinite
thf(fact_115_Un__infinite,axiom,
    ! [S: set_set_nat,T: set_set_nat] :
      ( ~ ( finite1152437895449049373et_nat @ S )
     => ~ ( finite1152437895449049373et_nat @ ( sup_sup_set_set_nat @ S @ T ) ) ) ).

% Un_infinite
thf(fact_116_Un__infinite,axiom,
    ! [S: set_b,T: set_b] :
      ( ~ ( finite_finite_b @ S )
     => ~ ( finite_finite_b @ ( sup_sup_set_b @ S @ T ) ) ) ).

% Un_infinite
thf(fact_117_Un__infinite,axiom,
    ! [S: set_a,T: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) ) ).

% Un_infinite
thf(fact_118_Un__infinite,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) ) ).

% Un_infinite
thf(fact_119_Un__infinite,axiom,
    ! [S: set_Re381260168593705685la_a_b,T: set_Re381260168593705685la_a_b] :
      ( ~ ( finite5600759454172676150la_a_b @ S )
     => ~ ( finite5600759454172676150la_a_b @ ( sup_su5130108678486352897la_a_b @ S @ T ) ) ) ).

% Un_infinite
thf(fact_120_finite__fv,axiom,
    ! [Phi: relational_fmla_a_b] : ( finite_finite_nat @ ( relational_fv_a_b @ Phi ) ) ).

% finite_fv
thf(fact_121_fv_Osimps_I6_J,axiom,
    ! [Phi: relational_fmla_a_b,Psi: relational_fmla_a_b] :
      ( ( relational_fv_a_b @ ( relational_Disj_a_b @ Phi @ Psi ) )
      = ( sup_sup_set_nat @ ( relational_fv_a_b @ Phi ) @ ( relational_fv_a_b @ Psi ) ) ) ).

% fv.simps(6)
thf(fact_122_sup__fun__def,axiom,
    ( sup_su1471977682094119364_a_b_o
    = ( ^ [F2: relational_fmla_a_b > $o,G2: relational_fmla_a_b > $o,X3: relational_fmla_a_b] : ( sup_sup_o @ ( F2 @ X3 ) @ ( G2 @ X3 ) ) ) ) ).

% sup_fun_def
thf(fact_123_sup__fun__def,axiom,
    ( sup_sup_nat_o
    = ( ^ [F2: nat > $o,G2: nat > $o,X3: nat] : ( sup_sup_o @ ( F2 @ X3 ) @ ( G2 @ X3 ) ) ) ) ).

% sup_fun_def
thf(fact_124_sup__left__commute,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( sup_sup_set_b @ X @ ( sup_sup_set_b @ Y @ Z ) )
      = ( sup_sup_set_b @ Y @ ( sup_sup_set_b @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_125_sup__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_126_sup__left__commute,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( sup_sup_nat @ X @ ( sup_sup_nat @ Y @ Z ) )
      = ( sup_sup_nat @ Y @ ( sup_sup_nat @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_127_sup__left__commute,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o,Z: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ ( sup_su1471977682094119364_a_b_o @ Y @ Z ) )
      = ( sup_su1471977682094119364_a_b_o @ Y @ ( sup_su1471977682094119364_a_b_o @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_128_sup__left__commute,axiom,
    ! [X: nat > $o,Y: nat > $o,Z: nat > $o] :
      ( ( sup_sup_nat_o @ X @ ( sup_sup_nat_o @ Y @ Z ) )
      = ( sup_sup_nat_o @ Y @ ( sup_sup_nat_o @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_129_sup__left__commute,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b,Z: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ Y @ Z ) )
      = ( sup_su5130108678486352897la_a_b @ Y @ ( sup_su5130108678486352897la_a_b @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_130_sup_Oleft__commute,axiom,
    ! [B: set_b,A2: set_b,C: set_b] :
      ( ( sup_sup_set_b @ B @ ( sup_sup_set_b @ A2 @ C ) )
      = ( sup_sup_set_b @ A2 @ ( sup_sup_set_b @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_131_sup_Oleft__commute,axiom,
    ! [B: set_a,A2: set_a,C: set_a] :
      ( ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A2 @ C ) )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_132_sup_Oleft__commute,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( sup_sup_nat @ B @ ( sup_sup_nat @ A2 @ C ) )
      = ( sup_sup_nat @ A2 @ ( sup_sup_nat @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_133_sup_Oleft__commute,axiom,
    ! [B: relational_fmla_a_b > $o,A2: relational_fmla_a_b > $o,C: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ B @ ( sup_su1471977682094119364_a_b_o @ A2 @ C ) )
      = ( sup_su1471977682094119364_a_b_o @ A2 @ ( sup_su1471977682094119364_a_b_o @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_134_sup_Oleft__commute,axiom,
    ! [B: nat > $o,A2: nat > $o,C: nat > $o] :
      ( ( sup_sup_nat_o @ B @ ( sup_sup_nat_o @ A2 @ C ) )
      = ( sup_sup_nat_o @ A2 @ ( sup_sup_nat_o @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_135_sup_Oleft__commute,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ B @ ( sup_su5130108678486352897la_a_b @ A2 @ C ) )
      = ( sup_su5130108678486352897la_a_b @ A2 @ ( sup_su5130108678486352897la_a_b @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_136_sup__commute,axiom,
    ( sup_sup_set_b
    = ( ^ [X3: set_b,Y3: set_b] : ( sup_sup_set_b @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_137_sup__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( sup_sup_set_a @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_138_sup__commute,axiom,
    ( sup_sup_nat
    = ( ^ [X3: nat,Y3: nat] : ( sup_sup_nat @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_139_sup__commute,axiom,
    ( sup_su1471977682094119364_a_b_o
    = ( ^ [X3: relational_fmla_a_b > $o,Y3: relational_fmla_a_b > $o] : ( sup_su1471977682094119364_a_b_o @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_140_sup__commute,axiom,
    ( sup_sup_nat_o
    = ( ^ [X3: nat > $o,Y3: nat > $o] : ( sup_sup_nat_o @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_141_sup__commute,axiom,
    ( sup_su5130108678486352897la_a_b
    = ( ^ [X3: set_Re381260168593705685la_a_b,Y3: set_Re381260168593705685la_a_b] : ( sup_su5130108678486352897la_a_b @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_142_sup_Ocommute,axiom,
    ( sup_sup_set_b
    = ( ^ [A3: set_b,B3: set_b] : ( sup_sup_set_b @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_143_sup_Ocommute,axiom,
    ( sup_sup_set_a
    = ( ^ [A3: set_a,B3: set_a] : ( sup_sup_set_a @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_144_sup_Ocommute,axiom,
    ( sup_sup_nat
    = ( ^ [A3: nat,B3: nat] : ( sup_sup_nat @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_145_sup_Ocommute,axiom,
    ( sup_su1471977682094119364_a_b_o
    = ( ^ [A3: relational_fmla_a_b > $o,B3: relational_fmla_a_b > $o] : ( sup_su1471977682094119364_a_b_o @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_146_sup_Ocommute,axiom,
    ( sup_sup_nat_o
    = ( ^ [A3: nat > $o,B3: nat > $o] : ( sup_sup_nat_o @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_147_sup_Ocommute,axiom,
    ( sup_su5130108678486352897la_a_b
    = ( ^ [A3: set_Re381260168593705685la_a_b,B3: set_Re381260168593705685la_a_b] : ( sup_su5130108678486352897la_a_b @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_148_sup__assoc,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ X @ Y ) @ Z )
      = ( sup_sup_set_b @ X @ ( sup_sup_set_b @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_149_sup__assoc,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_150_sup__assoc,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
      = ( sup_sup_nat @ X @ ( sup_sup_nat @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_151_sup__assoc,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o,Z: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ ( sup_su1471977682094119364_a_b_o @ X @ Y ) @ Z )
      = ( sup_su1471977682094119364_a_b_o @ X @ ( sup_su1471977682094119364_a_b_o @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_152_sup__assoc,axiom,
    ! [X: nat > $o,Y: nat > $o,Z: nat > $o] :
      ( ( sup_sup_nat_o @ ( sup_sup_nat_o @ X @ Y ) @ Z )
      = ( sup_sup_nat_o @ X @ ( sup_sup_nat_o @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_153_sup__assoc,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b,Z: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( sup_su5130108678486352897la_a_b @ X @ Y ) @ Z )
      = ( sup_su5130108678486352897la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_154_sup_Oassoc,axiom,
    ! [A2: set_b,B: set_b,C: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ A2 @ B ) @ C )
      = ( sup_sup_set_b @ A2 @ ( sup_sup_set_b @ B @ C ) ) ) ).

% sup.assoc
thf(fact_155_sup_Oassoc,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.assoc
thf(fact_156_sup_Oassoc,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ A2 @ B ) @ C )
      = ( sup_sup_nat @ A2 @ ( sup_sup_nat @ B @ C ) ) ) ).

% sup.assoc
thf(fact_157_sup_Oassoc,axiom,
    ! [A2: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o,C: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ ( sup_su1471977682094119364_a_b_o @ A2 @ B ) @ C )
      = ( sup_su1471977682094119364_a_b_o @ A2 @ ( sup_su1471977682094119364_a_b_o @ B @ C ) ) ) ).

% sup.assoc
thf(fact_158_sup_Oassoc,axiom,
    ! [A2: nat > $o,B: nat > $o,C: nat > $o] :
      ( ( sup_sup_nat_o @ ( sup_sup_nat_o @ A2 @ B ) @ C )
      = ( sup_sup_nat_o @ A2 @ ( sup_sup_nat_o @ B @ C ) ) ) ).

% sup.assoc
thf(fact_159_sup_Oassoc,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) @ C )
      = ( sup_su5130108678486352897la_a_b @ A2 @ ( sup_su5130108678486352897la_a_b @ B @ C ) ) ) ).

% sup.assoc
thf(fact_160_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_b
    = ( ^ [X3: set_b,Y3: set_b] : ( sup_sup_set_b @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_161_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( sup_sup_set_a @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_162_inf__sup__aci_I5_J,axiom,
    ( sup_sup_nat
    = ( ^ [X3: nat,Y3: nat] : ( sup_sup_nat @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_163_inf__sup__aci_I5_J,axiom,
    ( sup_su1471977682094119364_a_b_o
    = ( ^ [X3: relational_fmla_a_b > $o,Y3: relational_fmla_a_b > $o] : ( sup_su1471977682094119364_a_b_o @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_164_inf__sup__aci_I5_J,axiom,
    ( sup_sup_nat_o
    = ( ^ [X3: nat > $o,Y3: nat > $o] : ( sup_sup_nat_o @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_165_inf__sup__aci_I5_J,axiom,
    ( sup_su5130108678486352897la_a_b
    = ( ^ [X3: set_Re381260168593705685la_a_b,Y3: set_Re381260168593705685la_a_b] : ( sup_su5130108678486352897la_a_b @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_166_inf__sup__aci_I6_J,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ X @ Y ) @ Z )
      = ( sup_sup_set_b @ X @ ( sup_sup_set_b @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_167_inf__sup__aci_I6_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_168_inf__sup__aci_I6_J,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
      = ( sup_sup_nat @ X @ ( sup_sup_nat @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_169_inf__sup__aci_I6_J,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o,Z: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ ( sup_su1471977682094119364_a_b_o @ X @ Y ) @ Z )
      = ( sup_su1471977682094119364_a_b_o @ X @ ( sup_su1471977682094119364_a_b_o @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_170_inf__sup__aci_I6_J,axiom,
    ! [X: nat > $o,Y: nat > $o,Z: nat > $o] :
      ( ( sup_sup_nat_o @ ( sup_sup_nat_o @ X @ Y ) @ Z )
      = ( sup_sup_nat_o @ X @ ( sup_sup_nat_o @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_171_inf__sup__aci_I6_J,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b,Z: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( sup_su5130108678486352897la_a_b @ X @ Y ) @ Z )
      = ( sup_su5130108678486352897la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_172_inf__sup__aci_I7_J,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( sup_sup_set_b @ X @ ( sup_sup_set_b @ Y @ Z ) )
      = ( sup_sup_set_b @ Y @ ( sup_sup_set_b @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_173_inf__sup__aci_I7_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_174_inf__sup__aci_I7_J,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( sup_sup_nat @ X @ ( sup_sup_nat @ Y @ Z ) )
      = ( sup_sup_nat @ Y @ ( sup_sup_nat @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_175_inf__sup__aci_I7_J,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o,Z: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ ( sup_su1471977682094119364_a_b_o @ Y @ Z ) )
      = ( sup_su1471977682094119364_a_b_o @ Y @ ( sup_su1471977682094119364_a_b_o @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_176_inf__sup__aci_I7_J,axiom,
    ! [X: nat > $o,Y: nat > $o,Z: nat > $o] :
      ( ( sup_sup_nat_o @ X @ ( sup_sup_nat_o @ Y @ Z ) )
      = ( sup_sup_nat_o @ Y @ ( sup_sup_nat_o @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_177_inf__sup__aci_I7_J,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b,Z: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ Y @ Z ) )
      = ( sup_su5130108678486352897la_a_b @ Y @ ( sup_su5130108678486352897la_a_b @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_178_inf__sup__aci_I8_J,axiom,
    ! [X: set_b,Y: set_b] :
      ( ( sup_sup_set_b @ X @ ( sup_sup_set_b @ X @ Y ) )
      = ( sup_sup_set_b @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_179_inf__sup__aci_I8_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_180_inf__sup__aci_I8_J,axiom,
    ! [X: nat,Y: nat] :
      ( ( sup_sup_nat @ X @ ( sup_sup_nat @ X @ Y ) )
      = ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_181_inf__sup__aci_I8_J,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ ( sup_su1471977682094119364_a_b_o @ X @ Y ) )
      = ( sup_su1471977682094119364_a_b_o @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_182_inf__sup__aci_I8_J,axiom,
    ! [X: nat > $o,Y: nat > $o] :
      ( ( sup_sup_nat_o @ X @ ( sup_sup_nat_o @ X @ Y ) )
      = ( sup_sup_nat_o @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_183_inf__sup__aci_I8_J,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ X @ Y ) )
      = ( sup_su5130108678486352897la_a_b @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_184_Un__left__commute,axiom,
    ! [A: set_b,B2: set_b,C2: set_b] :
      ( ( sup_sup_set_b @ A @ ( sup_sup_set_b @ B2 @ C2 ) )
      = ( sup_sup_set_b @ B2 @ ( sup_sup_set_b @ A @ C2 ) ) ) ).

% Un_left_commute
thf(fact_185_Un__left__commute,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ B2 @ ( sup_sup_set_a @ A @ C2 ) ) ) ).

% Un_left_commute
thf(fact_186_Un__left__commute,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A @ ( sup_su5130108678486352897la_a_b @ B2 @ C2 ) )
      = ( sup_su5130108678486352897la_a_b @ B2 @ ( sup_su5130108678486352897la_a_b @ A @ C2 ) ) ) ).

% Un_left_commute
thf(fact_187_Un__left__absorb,axiom,
    ! [A: set_b,B2: set_b] :
      ( ( sup_sup_set_b @ A @ ( sup_sup_set_b @ A @ B2 ) )
      = ( sup_sup_set_b @ A @ B2 ) ) ).

% Un_left_absorb
thf(fact_188_Un__left__absorb,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B2 ) )
      = ( sup_sup_set_a @ A @ B2 ) ) ).

% Un_left_absorb
thf(fact_189_Un__left__absorb,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
      = ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ).

% Un_left_absorb
thf(fact_190_Un__commute,axiom,
    ( sup_sup_set_b
    = ( ^ [A4: set_b,B4: set_b] : ( sup_sup_set_b @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_191_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( sup_sup_set_a @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_192_Un__commute,axiom,
    ( sup_su5130108678486352897la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] : ( sup_su5130108678486352897la_a_b @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_193_Un__absorb,axiom,
    ! [A: set_b] :
      ( ( sup_sup_set_b @ A @ A )
      = A ) ).

% Un_absorb
thf(fact_194_Un__absorb,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ A )
      = A ) ).

% Un_absorb
thf(fact_195_Un__absorb,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A @ A )
      = A ) ).

% Un_absorb
thf(fact_196_Un__assoc,axiom,
    ! [A: set_b,B2: set_b,C2: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ A @ B2 ) @ C2 )
      = ( sup_sup_set_b @ A @ ( sup_sup_set_b @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_197_Un__assoc,axiom,
    ! [A: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B2 ) @ C2 )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_198_Un__assoc,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) @ C2 )
      = ( sup_su5130108678486352897la_a_b @ A @ ( sup_su5130108678486352897la_a_b @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_199_ball__Un,axiom,
    ! [A: set_b,B2: set_b,P2: b > $o] :
      ( ( ! [X3: b] :
            ( ( member_b @ X3 @ ( sup_sup_set_b @ A @ B2 ) )
           => ( P2 @ X3 ) ) )
      = ( ! [X3: b] :
            ( ( member_b @ X3 @ A )
           => ( P2 @ X3 ) )
        & ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( P2 @ X3 ) ) ) ) ).

% ball_Un
thf(fact_200_ball__Un,axiom,
    ! [A: set_a,B2: set_a,P2: a > $o] :
      ( ( ! [X3: a] :
            ( ( member_a @ X3 @ ( sup_sup_set_a @ A @ B2 ) )
           => ( P2 @ X3 ) ) )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A )
           => ( P2 @ X3 ) )
        & ! [X3: a] :
            ( ( member_a @ X3 @ B2 )
           => ( P2 @ X3 ) ) ) ) ).

% ball_Un
thf(fact_201_ball__Un,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,P2: relational_fmla_a_b > $o] :
      ( ( ! [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
           => ( P2 @ X3 ) ) )
      = ( ! [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ A )
           => ( P2 @ X3 ) )
        & ! [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ B2 )
           => ( P2 @ X3 ) ) ) ) ).

% ball_Un
thf(fact_202_bex__Un,axiom,
    ! [A: set_b,B2: set_b,P2: b > $o] :
      ( ( ? [X3: b] :
            ( ( member_b @ X3 @ ( sup_sup_set_b @ A @ B2 ) )
            & ( P2 @ X3 ) ) )
      = ( ? [X3: b] :
            ( ( member_b @ X3 @ A )
            & ( P2 @ X3 ) )
        | ? [X3: b] :
            ( ( member_b @ X3 @ B2 )
            & ( P2 @ X3 ) ) ) ) ).

% bex_Un
thf(fact_203_bex__Un,axiom,
    ! [A: set_a,B2: set_a,P2: a > $o] :
      ( ( ? [X3: a] :
            ( ( member_a @ X3 @ ( sup_sup_set_a @ A @ B2 ) )
            & ( P2 @ X3 ) ) )
      = ( ? [X3: a] :
            ( ( member_a @ X3 @ A )
            & ( P2 @ X3 ) )
        | ? [X3: a] :
            ( ( member_a @ X3 @ B2 )
            & ( P2 @ X3 ) ) ) ) ).

% bex_Un
thf(fact_204_bex__Un,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,P2: relational_fmla_a_b > $o] :
      ( ( ? [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
            & ( P2 @ X3 ) ) )
      = ( ? [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ A )
            & ( P2 @ X3 ) )
        | ? [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ B2 )
            & ( P2 @ X3 ) ) ) ) ).

% bex_Un
thf(fact_205_UnI2,axiom,
    ! [C: set_nat,B2: set_set_nat,A: set_set_nat] :
      ( ( member_set_nat @ C @ B2 )
     => ( member_set_nat @ C @ ( sup_sup_set_set_nat @ A @ B2 ) ) ) ).

% UnI2
thf(fact_206_UnI2,axiom,
    ! [C: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ C @ B2 )
     => ( member3481406638322139244la_a_b @ C @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) ) ) ).

% UnI2
thf(fact_207_UnI2,axiom,
    ! [C: b,B2: set_b,A: set_b] :
      ( ( member_b @ C @ B2 )
     => ( member_b @ C @ ( sup_sup_set_b @ A @ B2 ) ) ) ).

% UnI2
thf(fact_208_UnI2,axiom,
    ! [C: a,B2: set_a,A: set_a] :
      ( ( member_a @ C @ B2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A @ B2 ) ) ) ).

% UnI2
thf(fact_209_UnI2,axiom,
    ! [C: nat,B2: set_nat,A: set_nat] :
      ( ( member_nat @ C @ B2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A @ B2 ) ) ) ).

% UnI2
thf(fact_210_UnI2,axiom,
    ! [C: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ B2 )
     => ( member4680049679412964150la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ) ).

% UnI2
thf(fact_211_UnI1,axiom,
    ! [C: set_nat,A: set_set_nat,B2: set_set_nat] :
      ( ( member_set_nat @ C @ A )
     => ( member_set_nat @ C @ ( sup_sup_set_set_nat @ A @ B2 ) ) ) ).

% UnI1
thf(fact_212_UnI1,axiom,
    ! [C: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ C @ A )
     => ( member3481406638322139244la_a_b @ C @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) ) ) ).

% UnI1
thf(fact_213_UnI1,axiom,
    ! [C: b,A: set_b,B2: set_b] :
      ( ( member_b @ C @ A )
     => ( member_b @ C @ ( sup_sup_set_b @ A @ B2 ) ) ) ).

% UnI1
thf(fact_214_UnI1,axiom,
    ! [C: a,A: set_a,B2: set_a] :
      ( ( member_a @ C @ A )
     => ( member_a @ C @ ( sup_sup_set_a @ A @ B2 ) ) ) ).

% UnI1
thf(fact_215_UnI1,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A @ B2 ) ) ) ).

% UnI1
thf(fact_216_UnI1,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ A )
     => ( member4680049679412964150la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ) ).

% UnI1
thf(fact_217_UnE,axiom,
    ! [C: set_nat,A: set_set_nat,B2: set_set_nat] :
      ( ( member_set_nat @ C @ ( sup_sup_set_set_nat @ A @ B2 ) )
     => ( ~ ( member_set_nat @ C @ A )
       => ( member_set_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_218_UnE,axiom,
    ! [C: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ C @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) )
     => ( ~ ( member3481406638322139244la_a_b @ C @ A )
       => ( member3481406638322139244la_a_b @ C @ B2 ) ) ) ).

% UnE
thf(fact_219_UnE,axiom,
    ! [C: b,A: set_b,B2: set_b] :
      ( ( member_b @ C @ ( sup_sup_set_b @ A @ B2 ) )
     => ( ~ ( member_b @ C @ A )
       => ( member_b @ C @ B2 ) ) ) ).

% UnE
thf(fact_220_UnE,axiom,
    ! [C: a,A: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A @ B2 ) )
     => ( ~ ( member_a @ C @ A )
       => ( member_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_221_UnE,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A @ B2 ) )
     => ( ~ ( member_nat @ C @ A )
       => ( member_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_222_UnE,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
     => ( ~ ( member4680049679412964150la_a_b @ C @ A )
       => ( member4680049679412964150la_a_b @ C @ B2 ) ) ) ).

% UnE
thf(fact_223_infinite__Un,axiom,
    ! [S: set_list_a,T: set_list_a] :
      ( ( ~ ( finite_finite_list_a @ ( sup_sup_set_list_a @ S @ T ) ) )
      = ( ~ ( finite_finite_list_a @ S )
        | ~ ( finite_finite_list_a @ T ) ) ) ).

% infinite_Un
thf(fact_224_infinite__Un,axiom,
    ! [S: set_se6865892389300016395la_a_b,T: set_se6865892389300016395la_a_b] :
      ( ( ~ ( finite5238674622262875500la_a_b @ ( sup_su4783144482993978935la_a_b @ S @ T ) ) )
      = ( ~ ( finite5238674622262875500la_a_b @ S )
        | ~ ( finite5238674622262875500la_a_b @ T ) ) ) ).

% infinite_Un
thf(fact_225_infinite__Un,axiom,
    ! [S: set_set_nat,T: set_set_nat] :
      ( ( ~ ( finite1152437895449049373et_nat @ ( sup_sup_set_set_nat @ S @ T ) ) )
      = ( ~ ( finite1152437895449049373et_nat @ S )
        | ~ ( finite1152437895449049373et_nat @ T ) ) ) ).

% infinite_Un
thf(fact_226_infinite__Un,axiom,
    ! [S: set_b,T: set_b] :
      ( ( ~ ( finite_finite_b @ ( sup_sup_set_b @ S @ T ) ) )
      = ( ~ ( finite_finite_b @ S )
        | ~ ( finite_finite_b @ T ) ) ) ).

% infinite_Un
thf(fact_227_infinite__Un,axiom,
    ! [S: set_a,T: set_a] :
      ( ( ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) )
      = ( ~ ( finite_finite_a @ S )
        | ~ ( finite_finite_a @ T ) ) ) ).

% infinite_Un
thf(fact_228_infinite__Un,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) )
      = ( ~ ( finite_finite_nat @ S )
        | ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_Un
thf(fact_229_infinite__Un,axiom,
    ! [S: set_Re381260168593705685la_a_b,T: set_Re381260168593705685la_a_b] :
      ( ( ~ ( finite5600759454172676150la_a_b @ ( sup_su5130108678486352897la_a_b @ S @ T ) ) )
      = ( ~ ( finite5600759454172676150la_a_b @ S )
        | ~ ( finite5600759454172676150la_a_b @ T ) ) ) ).

% infinite_Un
thf(fact_230_cpropagated__simps_I7_J,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relati1591879772219623554ed_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) )
      = ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
        & ( relational_nocp_a_b @ Q ) ) ) ).

% cpropagated_simps(7)
thf(fact_231_sub_Osimps_I6_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_sub_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ ( relational_sub_a_b @ Q1 ) @ ( relational_sub_a_b @ Q22 ) ) ) ) ).

% sub.simps(6)
thf(fact_232_fv_Osimps_I1_J,axiom,
    ! [Uu: b,Ts: list_R6823256787227418703term_a] :
      ( ( relational_fv_a_b @ ( relational_Pred_b_a @ Uu @ Ts ) )
      = ( relati4569515538964159125_set_a @ Ts ) ) ).

% fv.simps(1)
thf(fact_233_insert__absorb2,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( insert7010464514620295119la_a_b @ X @ ( insert7010464514620295119la_a_b @ X @ A ) )
      = ( insert7010464514620295119la_a_b @ X @ A ) ) ).

% insert_absorb2
thf(fact_234_insert__absorb2,axiom,
    ! [X: nat,A: set_nat] :
      ( ( insert_nat @ X @ ( insert_nat @ X @ A ) )
      = ( insert_nat @ X @ A ) ) ).

% insert_absorb2
thf(fact_235_insert__absorb2,axiom,
    ! [X: b,A: set_b] :
      ( ( insert_b @ X @ ( insert_b @ X @ A ) )
      = ( insert_b @ X @ A ) ) ).

% insert_absorb2
thf(fact_236_insert__absorb2,axiom,
    ! [X: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( insert2023870700798818565la_a_b @ X @ ( insert2023870700798818565la_a_b @ X @ A ) )
      = ( insert2023870700798818565la_a_b @ X @ A ) ) ).

% insert_absorb2
thf(fact_237_insert__iff,axiom,
    ! [A2: b,B: b,A: set_b] :
      ( ( member_b @ A2 @ ( insert_b @ B @ A ) )
      = ( ( A2 = B )
        | ( member_b @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_238_insert__iff,axiom,
    ! [A2: set_nat,B: set_nat,A: set_set_nat] :
      ( ( member_set_nat @ A2 @ ( insert_set_nat @ B @ A ) )
      = ( ( A2 = B )
        | ( member_set_nat @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_239_insert__iff,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ B @ A ) )
      = ( ( A2 = B )
        | ( member3481406638322139244la_a_b @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_240_insert__iff,axiom,
    ! [A2: a,B: a,A: set_a] :
      ( ( member_a @ A2 @ ( insert_a @ B @ A ) )
      = ( ( A2 = B )
        | ( member_a @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_241_insert__iff,axiom,
    ! [A2: relational_fmla_a_b,B: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ B @ A ) )
      = ( ( A2 = B )
        | ( member4680049679412964150la_a_b @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_242_insert__iff,axiom,
    ! [A2: nat,B: nat,A: set_nat] :
      ( ( member_nat @ A2 @ ( insert_nat @ B @ A ) )
      = ( ( A2 = B )
        | ( member_nat @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_243_insertCI,axiom,
    ! [A2: b,B2: set_b,B: b] :
      ( ( ~ ( member_b @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member_b @ A2 @ ( insert_b @ B @ B2 ) ) ) ).

% insertCI
thf(fact_244_insertCI,axiom,
    ! [A2: set_nat,B2: set_set_nat,B: set_nat] :
      ( ( ~ ( member_set_nat @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member_set_nat @ A2 @ ( insert_set_nat @ B @ B2 ) ) ) ).

% insertCI
thf(fact_245_insertCI,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ~ ( member3481406638322139244la_a_b @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member3481406638322139244la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ B @ B2 ) ) ) ).

% insertCI
thf(fact_246_insertCI,axiom,
    ! [A2: a,B2: set_a,B: a] :
      ( ( ~ ( member_a @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member_a @ A2 @ ( insert_a @ B @ B2 ) ) ) ).

% insertCI
thf(fact_247_insertCI,axiom,
    ! [A2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,B: relational_fmla_a_b] :
      ( ( ~ ( member4680049679412964150la_a_b @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member4680049679412964150la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ B @ B2 ) ) ) ).

% insertCI
thf(fact_248_insertCI,axiom,
    ! [A2: nat,B2: set_nat,B: nat] :
      ( ( ~ ( member_nat @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member_nat @ A2 @ ( insert_nat @ B @ B2 ) ) ) ).

% insertCI
thf(fact_249_fmla_Oinject_I7_J,axiom,
    ! [X71: nat,X72: relational_fmla_a_b,Y71: nat,Y72: relational_fmla_a_b] :
      ( ( ( relati591517084277583526ts_a_b @ X71 @ X72 )
        = ( relati591517084277583526ts_a_b @ Y71 @ Y72 ) )
      = ( ( X71 = Y71 )
        & ( X72 = Y72 ) ) ) ).

% fmla.inject(7)
thf(fact_250_finite__insert,axiom,
    ! [A2: b,A: set_b] :
      ( ( finite_finite_b @ ( insert_b @ A2 @ A ) )
      = ( finite_finite_b @ A ) ) ).

% finite_insert
thf(fact_251_finite__insert,axiom,
    ! [A2: list_a,A: set_list_a] :
      ( ( finite_finite_list_a @ ( insert_list_a @ A2 @ A ) )
      = ( finite_finite_list_a @ A ) ) ).

% finite_insert
thf(fact_252_finite__insert,axiom,
    ! [A2: a,A: set_a] :
      ( ( finite_finite_a @ ( insert_a @ A2 @ A ) )
      = ( finite_finite_a @ A ) ) ).

% finite_insert
thf(fact_253_finite__insert,axiom,
    ! [A2: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ ( insert2023870700798818565la_a_b @ A2 @ A ) )
      = ( finite5238674622262875500la_a_b @ A ) ) ).

% finite_insert
thf(fact_254_finite__insert,axiom,
    ! [A2: set_nat,A: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ ( insert_set_nat @ A2 @ A ) )
      = ( finite1152437895449049373et_nat @ A ) ) ).

% finite_insert
thf(fact_255_finite__insert,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( finite_finite_nat @ ( insert_nat @ A2 @ A ) )
      = ( finite_finite_nat @ A ) ) ).

% finite_insert
thf(fact_256_finite__insert,axiom,
    ! [A2: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ ( insert7010464514620295119la_a_b @ A2 @ A ) )
      = ( finite5600759454172676150la_a_b @ A ) ) ).

% finite_insert
thf(fact_257_Un__insert__left,axiom,
    ! [A2: nat,B2: set_nat,C2: set_nat] :
      ( ( sup_sup_set_nat @ ( insert_nat @ A2 @ B2 ) @ C2 )
      = ( insert_nat @ A2 @ ( sup_sup_set_nat @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_258_Un__insert__left,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b,C2: set_se6865892389300016395la_a_b] :
      ( ( sup_su4783144482993978935la_a_b @ ( insert2023870700798818565la_a_b @ A2 @ B2 ) @ C2 )
      = ( insert2023870700798818565la_a_b @ A2 @ ( sup_su4783144482993978935la_a_b @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_259_Un__insert__left,axiom,
    ! [A2: b,B2: set_b,C2: set_b] :
      ( ( sup_sup_set_b @ ( insert_b @ A2 @ B2 ) @ C2 )
      = ( insert_b @ A2 @ ( sup_sup_set_b @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_260_Un__insert__left,axiom,
    ! [A2: a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( insert_a @ A2 @ B2 ) @ C2 )
      = ( insert_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_261_Un__insert__left,axiom,
    ! [A2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( insert7010464514620295119la_a_b @ A2 @ B2 ) @ C2 )
      = ( insert7010464514620295119la_a_b @ A2 @ ( sup_su5130108678486352897la_a_b @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_262_Un__insert__right,axiom,
    ! [A: set_nat,A2: nat,B2: set_nat] :
      ( ( sup_sup_set_nat @ A @ ( insert_nat @ A2 @ B2 ) )
      = ( insert_nat @ A2 @ ( sup_sup_set_nat @ A @ B2 ) ) ) ).

% Un_insert_right
thf(fact_263_Un__insert__right,axiom,
    ! [A: set_se6865892389300016395la_a_b,A2: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( sup_su4783144482993978935la_a_b @ A @ ( insert2023870700798818565la_a_b @ A2 @ B2 ) )
      = ( insert2023870700798818565la_a_b @ A2 @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) ) ) ).

% Un_insert_right
thf(fact_264_Un__insert__right,axiom,
    ! [A: set_b,A2: b,B2: set_b] :
      ( ( sup_sup_set_b @ A @ ( insert_b @ A2 @ B2 ) )
      = ( insert_b @ A2 @ ( sup_sup_set_b @ A @ B2 ) ) ) ).

% Un_insert_right
thf(fact_265_Un__insert__right,axiom,
    ! [A: set_a,A2: a,B2: set_a] :
      ( ( sup_sup_set_a @ A @ ( insert_a @ A2 @ B2 ) )
      = ( insert_a @ A2 @ ( sup_sup_set_a @ A @ B2 ) ) ) ).

% Un_insert_right
thf(fact_266_Un__insert__right,axiom,
    ! [A: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A @ ( insert7010464514620295119la_a_b @ A2 @ B2 ) )
      = ( insert7010464514620295119la_a_b @ A2 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ) ).

% Un_insert_right
thf(fact_267_finite__fv__terms__set,axiom,
    ! [Ts: list_R6823256787227418703term_a] : ( finite_finite_nat @ ( relati4569515538964159125_set_a @ Ts ) ) ).

% finite_fv_terms_set
thf(fact_268_mk__disjoint__insert,axiom,
    ! [A2: b,A: set_b] :
      ( ( member_b @ A2 @ A )
     => ? [B5: set_b] :
          ( ( A
            = ( insert_b @ A2 @ B5 ) )
          & ~ ( member_b @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_269_mk__disjoint__insert,axiom,
    ! [A2: set_nat,A: set_set_nat] :
      ( ( member_set_nat @ A2 @ A )
     => ? [B5: set_set_nat] :
          ( ( A
            = ( insert_set_nat @ A2 @ B5 ) )
          & ~ ( member_set_nat @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_270_mk__disjoint__insert,axiom,
    ! [A2: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ A2 @ A )
     => ? [B5: set_se6865892389300016395la_a_b] :
          ( ( A
            = ( insert2023870700798818565la_a_b @ A2 @ B5 ) )
          & ~ ( member3481406638322139244la_a_b @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_271_mk__disjoint__insert,axiom,
    ! [A2: a,A: set_a] :
      ( ( member_a @ A2 @ A )
     => ? [B5: set_a] :
          ( ( A
            = ( insert_a @ A2 @ B5 ) )
          & ~ ( member_a @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_272_mk__disjoint__insert,axiom,
    ! [A2: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ A2 @ A )
     => ? [B5: set_Re381260168593705685la_a_b] :
          ( ( A
            = ( insert7010464514620295119la_a_b @ A2 @ B5 ) )
          & ~ ( member4680049679412964150la_a_b @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_273_mk__disjoint__insert,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat @ A2 @ A )
     => ? [B5: set_nat] :
          ( ( A
            = ( insert_nat @ A2 @ B5 ) )
          & ~ ( member_nat @ A2 @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_274_insert__commute,axiom,
    ! [X: relational_fmla_a_b,Y: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( insert7010464514620295119la_a_b @ X @ ( insert7010464514620295119la_a_b @ Y @ A ) )
      = ( insert7010464514620295119la_a_b @ Y @ ( insert7010464514620295119la_a_b @ X @ A ) ) ) ).

% insert_commute
thf(fact_275_insert__commute,axiom,
    ! [X: nat,Y: nat,A: set_nat] :
      ( ( insert_nat @ X @ ( insert_nat @ Y @ A ) )
      = ( insert_nat @ Y @ ( insert_nat @ X @ A ) ) ) ).

% insert_commute
thf(fact_276_insert__commute,axiom,
    ! [X: b,Y: b,A: set_b] :
      ( ( insert_b @ X @ ( insert_b @ Y @ A ) )
      = ( insert_b @ Y @ ( insert_b @ X @ A ) ) ) ).

% insert_commute
thf(fact_277_insert__commute,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( insert2023870700798818565la_a_b @ X @ ( insert2023870700798818565la_a_b @ Y @ A ) )
      = ( insert2023870700798818565la_a_b @ Y @ ( insert2023870700798818565la_a_b @ X @ A ) ) ) ).

% insert_commute
thf(fact_278_insert__eq__iff,axiom,
    ! [A2: b,A: set_b,B: b,B2: set_b] :
      ( ~ ( member_b @ A2 @ A )
     => ( ~ ( member_b @ B @ B2 )
       => ( ( ( insert_b @ A2 @ A )
            = ( insert_b @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C3: set_b] :
                  ( ( A
                    = ( insert_b @ B @ C3 ) )
                  & ~ ( member_b @ B @ C3 )
                  & ( B2
                    = ( insert_b @ A2 @ C3 ) )
                  & ~ ( member_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_279_insert__eq__iff,axiom,
    ! [A2: set_nat,A: set_set_nat,B: set_nat,B2: set_set_nat] :
      ( ~ ( member_set_nat @ A2 @ A )
     => ( ~ ( member_set_nat @ B @ B2 )
       => ( ( ( insert_set_nat @ A2 @ A )
            = ( insert_set_nat @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C3: set_set_nat] :
                  ( ( A
                    = ( insert_set_nat @ B @ C3 ) )
                  & ~ ( member_set_nat @ B @ C3 )
                  & ( B2
                    = ( insert_set_nat @ A2 @ C3 ) )
                  & ~ ( member_set_nat @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_280_insert__eq__iff,axiom,
    ! [A2: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b,B: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ~ ( member3481406638322139244la_a_b @ A2 @ A )
     => ( ~ ( member3481406638322139244la_a_b @ B @ B2 )
       => ( ( ( insert2023870700798818565la_a_b @ A2 @ A )
            = ( insert2023870700798818565la_a_b @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C3: set_se6865892389300016395la_a_b] :
                  ( ( A
                    = ( insert2023870700798818565la_a_b @ B @ C3 ) )
                  & ~ ( member3481406638322139244la_a_b @ B @ C3 )
                  & ( B2
                    = ( insert2023870700798818565la_a_b @ A2 @ C3 ) )
                  & ~ ( member3481406638322139244la_a_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_281_insert__eq__iff,axiom,
    ! [A2: a,A: set_a,B: a,B2: set_a] :
      ( ~ ( member_a @ A2 @ A )
     => ( ~ ( member_a @ B @ B2 )
       => ( ( ( insert_a @ A2 @ A )
            = ( insert_a @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C3: set_a] :
                  ( ( A
                    = ( insert_a @ B @ C3 ) )
                  & ~ ( member_a @ B @ C3 )
                  & ( B2
                    = ( insert_a @ A2 @ C3 ) )
                  & ~ ( member_a @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_282_insert__eq__iff,axiom,
    ! [A2: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ A2 @ A )
     => ( ~ ( member4680049679412964150la_a_b @ B @ B2 )
       => ( ( ( insert7010464514620295119la_a_b @ A2 @ A )
            = ( insert7010464514620295119la_a_b @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C3: set_Re381260168593705685la_a_b] :
                  ( ( A
                    = ( insert7010464514620295119la_a_b @ B @ C3 ) )
                  & ~ ( member4680049679412964150la_a_b @ B @ C3 )
                  & ( B2
                    = ( insert7010464514620295119la_a_b @ A2 @ C3 ) )
                  & ~ ( member4680049679412964150la_a_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_283_insert__eq__iff,axiom,
    ! [A2: nat,A: set_nat,B: nat,B2: set_nat] :
      ( ~ ( member_nat @ A2 @ A )
     => ( ~ ( member_nat @ B @ B2 )
       => ( ( ( insert_nat @ A2 @ A )
            = ( insert_nat @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C3: set_nat] :
                  ( ( A
                    = ( insert_nat @ B @ C3 ) )
                  & ~ ( member_nat @ B @ C3 )
                  & ( B2
                    = ( insert_nat @ A2 @ C3 ) )
                  & ~ ( member_nat @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_284_insert__absorb,axiom,
    ! [A2: b,A: set_b] :
      ( ( member_b @ A2 @ A )
     => ( ( insert_b @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_285_insert__absorb,axiom,
    ! [A2: set_nat,A: set_set_nat] :
      ( ( member_set_nat @ A2 @ A )
     => ( ( insert_set_nat @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_286_insert__absorb,axiom,
    ! [A2: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ A2 @ A )
     => ( ( insert2023870700798818565la_a_b @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_287_insert__absorb,axiom,
    ! [A2: a,A: set_a] :
      ( ( member_a @ A2 @ A )
     => ( ( insert_a @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_288_insert__absorb,axiom,
    ! [A2: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ A2 @ A )
     => ( ( insert7010464514620295119la_a_b @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_289_insert__absorb,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat @ A2 @ A )
     => ( ( insert_nat @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_290_insert__ident,axiom,
    ! [X: b,A: set_b,B2: set_b] :
      ( ~ ( member_b @ X @ A )
     => ( ~ ( member_b @ X @ B2 )
       => ( ( ( insert_b @ X @ A )
            = ( insert_b @ X @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_291_insert__ident,axiom,
    ! [X: set_nat,A: set_set_nat,B2: set_set_nat] :
      ( ~ ( member_set_nat @ X @ A )
     => ( ~ ( member_set_nat @ X @ B2 )
       => ( ( ( insert_set_nat @ X @ A )
            = ( insert_set_nat @ X @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_292_insert__ident,axiom,
    ! [X: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ~ ( member3481406638322139244la_a_b @ X @ A )
     => ( ~ ( member3481406638322139244la_a_b @ X @ B2 )
       => ( ( ( insert2023870700798818565la_a_b @ X @ A )
            = ( insert2023870700798818565la_a_b @ X @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_293_insert__ident,axiom,
    ! [X: a,A: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A )
     => ( ~ ( member_a @ X @ B2 )
       => ( ( ( insert_a @ X @ A )
            = ( insert_a @ X @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_294_insert__ident,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ X @ A )
     => ( ~ ( member4680049679412964150la_a_b @ X @ B2 )
       => ( ( ( insert7010464514620295119la_a_b @ X @ A )
            = ( insert7010464514620295119la_a_b @ X @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_295_insert__ident,axiom,
    ! [X: nat,A: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A )
     => ( ~ ( member_nat @ X @ B2 )
       => ( ( ( insert_nat @ X @ A )
            = ( insert_nat @ X @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_296_Set_Oset__insert,axiom,
    ! [X: b,A: set_b] :
      ( ( member_b @ X @ A )
     => ~ ! [B5: set_b] :
            ( ( A
              = ( insert_b @ X @ B5 ) )
           => ( member_b @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_297_Set_Oset__insert,axiom,
    ! [X: set_nat,A: set_set_nat] :
      ( ( member_set_nat @ X @ A )
     => ~ ! [B5: set_set_nat] :
            ( ( A
              = ( insert_set_nat @ X @ B5 ) )
           => ( member_set_nat @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_298_Set_Oset__insert,axiom,
    ! [X: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ X @ A )
     => ~ ! [B5: set_se6865892389300016395la_a_b] :
            ( ( A
              = ( insert2023870700798818565la_a_b @ X @ B5 ) )
           => ( member3481406638322139244la_a_b @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_299_Set_Oset__insert,axiom,
    ! [X: a,A: set_a] :
      ( ( member_a @ X @ A )
     => ~ ! [B5: set_a] :
            ( ( A
              = ( insert_a @ X @ B5 ) )
           => ( member_a @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_300_Set_Oset__insert,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ A )
     => ~ ! [B5: set_Re381260168593705685la_a_b] :
            ( ( A
              = ( insert7010464514620295119la_a_b @ X @ B5 ) )
           => ( member4680049679412964150la_a_b @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_301_Set_Oset__insert,axiom,
    ! [X: nat,A: set_nat] :
      ( ( member_nat @ X @ A )
     => ~ ! [B5: set_nat] :
            ( ( A
              = ( insert_nat @ X @ B5 ) )
           => ( member_nat @ X @ B5 ) ) ) ).

% Set.set_insert
thf(fact_302_insertI2,axiom,
    ! [A2: b,B2: set_b,B: b] :
      ( ( member_b @ A2 @ B2 )
     => ( member_b @ A2 @ ( insert_b @ B @ B2 ) ) ) ).

% insertI2
thf(fact_303_insertI2,axiom,
    ! [A2: set_nat,B2: set_set_nat,B: set_nat] :
      ( ( member_set_nat @ A2 @ B2 )
     => ( member_set_nat @ A2 @ ( insert_set_nat @ B @ B2 ) ) ) ).

% insertI2
thf(fact_304_insertI2,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( member3481406638322139244la_a_b @ A2 @ B2 )
     => ( member3481406638322139244la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ B @ B2 ) ) ) ).

% insertI2
thf(fact_305_insertI2,axiom,
    ! [A2: a,B2: set_a,B: a] :
      ( ( member_a @ A2 @ B2 )
     => ( member_a @ A2 @ ( insert_a @ B @ B2 ) ) ) ).

% insertI2
thf(fact_306_insertI2,axiom,
    ! [A2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,B: relational_fmla_a_b] :
      ( ( member4680049679412964150la_a_b @ A2 @ B2 )
     => ( member4680049679412964150la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ B @ B2 ) ) ) ).

% insertI2
thf(fact_307_insertI2,axiom,
    ! [A2: nat,B2: set_nat,B: nat] :
      ( ( member_nat @ A2 @ B2 )
     => ( member_nat @ A2 @ ( insert_nat @ B @ B2 ) ) ) ).

% insertI2
thf(fact_308_insertI1,axiom,
    ! [A2: b,B2: set_b] : ( member_b @ A2 @ ( insert_b @ A2 @ B2 ) ) ).

% insertI1
thf(fact_309_insertI1,axiom,
    ! [A2: set_nat,B2: set_set_nat] : ( member_set_nat @ A2 @ ( insert_set_nat @ A2 @ B2 ) ) ).

% insertI1
thf(fact_310_insertI1,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b] : ( member3481406638322139244la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ A2 @ B2 ) ) ).

% insertI1
thf(fact_311_insertI1,axiom,
    ! [A2: a,B2: set_a] : ( member_a @ A2 @ ( insert_a @ A2 @ B2 ) ) ).

% insertI1
thf(fact_312_insertI1,axiom,
    ! [A2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] : ( member4680049679412964150la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ A2 @ B2 ) ) ).

% insertI1
thf(fact_313_insertI1,axiom,
    ! [A2: nat,B2: set_nat] : ( member_nat @ A2 @ ( insert_nat @ A2 @ B2 ) ) ).

% insertI1
thf(fact_314_insertE,axiom,
    ! [A2: b,B: b,A: set_b] :
      ( ( member_b @ A2 @ ( insert_b @ B @ A ) )
     => ( ( A2 != B )
       => ( member_b @ A2 @ A ) ) ) ).

% insertE
thf(fact_315_insertE,axiom,
    ! [A2: set_nat,B: set_nat,A: set_set_nat] :
      ( ( member_set_nat @ A2 @ ( insert_set_nat @ B @ A ) )
     => ( ( A2 != B )
       => ( member_set_nat @ A2 @ A ) ) ) ).

% insertE
thf(fact_316_insertE,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( member3481406638322139244la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ B @ A ) )
     => ( ( A2 != B )
       => ( member3481406638322139244la_a_b @ A2 @ A ) ) ) ).

% insertE
thf(fact_317_insertE,axiom,
    ! [A2: a,B: a,A: set_a] :
      ( ( member_a @ A2 @ ( insert_a @ B @ A ) )
     => ( ( A2 != B )
       => ( member_a @ A2 @ A ) ) ) ).

% insertE
thf(fact_318_insertE,axiom,
    ! [A2: relational_fmla_a_b,B: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ B @ A ) )
     => ( ( A2 != B )
       => ( member4680049679412964150la_a_b @ A2 @ A ) ) ) ).

% insertE
thf(fact_319_insertE,axiom,
    ! [A2: nat,B: nat,A: set_nat] :
      ( ( member_nat @ A2 @ ( insert_nat @ B @ A ) )
     => ( ( A2 != B )
       => ( member_nat @ A2 @ A ) ) ) ).

% insertE
thf(fact_320_sub_Osimps_I7_J,axiom,
    ! [Z: nat,Q: relational_fmla_a_b] :
      ( ( relational_sub_a_b @ ( relati591517084277583526ts_a_b @ Z @ Q ) )
      = ( insert7010464514620295119la_a_b @ ( relati591517084277583526ts_a_b @ Z @ Q ) @ ( relational_sub_a_b @ Q ) ) ) ).

% sub.simps(7)
thf(fact_321_fmla_Odistinct_I41_J,axiom,
    ! [X61: relational_fmla_a_b,X62: relational_fmla_a_b,X71: nat,X72: relational_fmla_a_b] :
      ( ( relational_Disj_a_b @ X61 @ X62 )
     != ( relati591517084277583526ts_a_b @ X71 @ X72 ) ) ).

% fmla.distinct(41)
thf(fact_322_fmla_Odistinct_I35_J,axiom,
    ! [X4: relational_fmla_a_b,X71: nat,X72: relational_fmla_a_b] :
      ( ( relational_Neg_a_b @ X4 )
     != ( relati591517084277583526ts_a_b @ X71 @ X72 ) ) ).

% fmla.distinct(35)
thf(fact_323_fmla_Odistinct_I21_J,axiom,
    ! [X2: $o,X71: nat,X72: relational_fmla_a_b] :
      ( ( relational_Bool_a_b @ X2 )
     != ( relati591517084277583526ts_a_b @ X71 @ X72 ) ) ).

% fmla.distinct(21)
thf(fact_324_finite_OinsertI,axiom,
    ! [A: set_b,A2: b] :
      ( ( finite_finite_b @ A )
     => ( finite_finite_b @ ( insert_b @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_325_finite_OinsertI,axiom,
    ! [A: set_list_a,A2: list_a] :
      ( ( finite_finite_list_a @ A )
     => ( finite_finite_list_a @ ( insert_list_a @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_326_finite_OinsertI,axiom,
    ! [A: set_a,A2: a] :
      ( ( finite_finite_a @ A )
     => ( finite_finite_a @ ( insert_a @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_327_finite_OinsertI,axiom,
    ! [A: set_se6865892389300016395la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( finite5238674622262875500la_a_b @ ( insert2023870700798818565la_a_b @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_328_finite_OinsertI,axiom,
    ! [A: set_set_nat,A2: set_nat] :
      ( ( finite1152437895449049373et_nat @ A )
     => ( finite1152437895449049373et_nat @ ( insert_set_nat @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_329_finite_OinsertI,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( finite_finite_nat @ ( insert_nat @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_330_finite_OinsertI,axiom,
    ! [A: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( finite5600759454172676150la_a_b @ ( insert7010464514620295119la_a_b @ A2 @ A ) ) ) ).

% finite.insertI
thf(fact_331_fmla_Odistinct_I11_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,X71: nat,X72: relational_fmla_a_b] :
      ( ( relational_Pred_b_a @ X11 @ X12 )
     != ( relati591517084277583526ts_a_b @ X71 @ X72 ) ) ).

% fmla.distinct(11)
thf(fact_332_equiv__Exists__cong,axiom,
    ! [Q: relational_fmla_a_b,Q2: relational_fmla_a_b,X: nat] :
      ( ( relational_equiv_a_b @ Q @ Q2 )
     => ( relational_equiv_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) @ ( relati591517084277583526ts_a_b @ X @ Q2 ) ) ) ).

% equiv_Exists_cong
thf(fact_333_sr__False,axiom,
    relational_sr_a_b @ ( relational_Bool_a_b @ $false ) ).

% sr_False
thf(fact_334_sr__cp,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_sr_a_b @ Q )
     => ( relational_sr_a_b @ ( relational_cp_a_b @ Q ) ) ) ).

% sr_cp
thf(fact_335_nocp_Osimps_I7_J,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) )
      = ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
        & ( relational_nocp_a_b @ Q ) ) ) ).

% nocp.simps(7)
thf(fact_336_equiv__Exists__Disj,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] : ( relational_equiv_a_b @ ( relati591517084277583526ts_a_b @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) ) @ ( relational_Disj_a_b @ ( relati591517084277583526ts_a_b @ X @ Q1 ) @ ( relati591517084277583526ts_a_b @ X @ Q22 ) ) ) ).

% equiv_Exists_Disj
thf(fact_337_Exists__nonfree__equiv,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
     => ( relational_equiv_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) @ Q ) ) ).

% Exists_nonfree_equiv
thf(fact_338_sub_Osimps_I4_J,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_sub_a_b @ ( relational_Neg_a_b @ Q ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Neg_a_b @ Q ) @ ( relational_sub_a_b @ Q ) ) ) ).

% sub.simps(4)
thf(fact_339_sr__Disj,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( ( relational_fv_a_b @ Q1 )
        = ( relational_fv_a_b @ Q22 ) )
     => ( ( relational_sr_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
        = ( ( relational_sr_a_b @ Q1 )
          & ( relational_sr_a_b @ Q22 ) ) ) ) ).

% sr_Disj
thf(fact_340_flat__Disj_Osimps_I2_J,axiom,
    ! [V: b,Va: list_R6823256787227418703term_a] :
      ( ( restri569617705344514291sj_a_b @ ( relational_Pred_b_a @ V @ Va ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ V @ Va ) @ bot_bo4495933725496725865la_a_b ) ) ).

% flat_Disj.simps(2)
thf(fact_341_flat__Disj_Osimps_I7_J,axiom,
    ! [V: nat,Va: relational_fmla_a_b] :
      ( ( restri569617705344514291sj_a_b @ ( relati591517084277583526ts_a_b @ V @ Va ) )
      = ( insert7010464514620295119la_a_b @ ( relati591517084277583526ts_a_b @ V @ Va ) @ bot_bo4495933725496725865la_a_b ) ) ).

% flat_Disj.simps(7)
thf(fact_342_flat__Disj_Osimps_I3_J,axiom,
    ! [V: $o] :
      ( ( restri569617705344514291sj_a_b @ ( relational_Bool_a_b @ V ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Bool_a_b @ V ) @ bot_bo4495933725496725865la_a_b ) ) ).

% flat_Disj.simps(3)
thf(fact_343_flat__Disj_Osimps_I5_J,axiom,
    ! [V: relational_fmla_a_b] :
      ( ( restri569617705344514291sj_a_b @ ( relational_Neg_a_b @ V ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Neg_a_b @ V ) @ bot_bo4495933725496725865la_a_b ) ) ).

% flat_Disj.simps(5)
thf(fact_344_sub_Osimps_I2_J,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a] :
      ( ( relational_sub_a_b @ ( relational_Pred_b_a @ P @ Ts ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ P @ Ts ) @ bot_bo4495933725496725865la_a_b ) ) ).

% sub.simps(2)
thf(fact_345_eqs__union,axiom,
    ! [X: nat,X6: set_Re381260168593705685la_a_b,Y5: set_Re381260168593705685la_a_b] :
      ( ( relational_eqs_a_b @ X @ ( sup_su5130108678486352897la_a_b @ X6 @ Y5 ) )
      = ( sup_sup_set_nat @ ( relational_eqs_a_b @ X @ X6 ) @ ( relational_eqs_a_b @ X @ Y5 ) ) ) ).

% eqs_union
thf(fact_346_sub_Osimps_I1_J,axiom,
    ! [T2: $o] :
      ( ( relational_sub_a_b @ ( relational_Bool_a_b @ T2 ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Bool_a_b @ T2 ) @ bot_bo4495933725496725865la_a_b ) ) ).

% sub.simps(1)
thf(fact_347_sub_Osimps_I5_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_sub_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ ( relational_sub_a_b @ Q1 ) @ ( relational_sub_a_b @ Q22 ) ) ) ) ).

% sub.simps(5)
thf(fact_348_erase_Osimps_I2_J,axiom,
    ! [X: nat,Ts: list_R6823256787227418703term_a,P: b] :
      ( ( ( member_nat @ X @ ( relati4569515538964159125_set_a @ Ts ) )
       => ( ( relational_erase_a_b @ ( relational_Pred_b_a @ P @ Ts ) @ X )
          = ( relational_Bool_a_b @ $false ) ) )
      & ( ~ ( member_nat @ X @ ( relati4569515538964159125_set_a @ Ts ) )
       => ( ( relational_erase_a_b @ ( relational_Pred_b_a @ P @ Ts ) @ X )
          = ( relational_Pred_b_a @ P @ Ts ) ) ) ) ).

% erase.simps(2)
thf(fact_349_boolean__algebra__cancel_Osup1,axiom,
    ! [A: set_b,K: set_b,A2: set_b,B: set_b] :
      ( ( A
        = ( sup_sup_set_b @ K @ A2 ) )
     => ( ( sup_sup_set_b @ A @ B )
        = ( sup_sup_set_b @ K @ ( sup_sup_set_b @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_350_boolean__algebra__cancel_Osup1,axiom,
    ! [A: set_a,K: set_a,A2: set_a,B: set_a] :
      ( ( A
        = ( sup_sup_set_a @ K @ A2 ) )
     => ( ( sup_sup_set_a @ A @ B )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_351_boolean__algebra__cancel_Osup1,axiom,
    ! [A: nat,K: nat,A2: nat,B: nat] :
      ( ( A
        = ( sup_sup_nat @ K @ A2 ) )
     => ( ( sup_sup_nat @ A @ B )
        = ( sup_sup_nat @ K @ ( sup_sup_nat @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_352_boolean__algebra__cancel_Osup1,axiom,
    ! [A: relational_fmla_a_b > $o,K: relational_fmla_a_b > $o,A2: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o] :
      ( ( A
        = ( sup_su1471977682094119364_a_b_o @ K @ A2 ) )
     => ( ( sup_su1471977682094119364_a_b_o @ A @ B )
        = ( sup_su1471977682094119364_a_b_o @ K @ ( sup_su1471977682094119364_a_b_o @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_353_boolean__algebra__cancel_Osup1,axiom,
    ! [A: nat > $o,K: nat > $o,A2: nat > $o,B: nat > $o] :
      ( ( A
        = ( sup_sup_nat_o @ K @ A2 ) )
     => ( ( sup_sup_nat_o @ A @ B )
        = ( sup_sup_nat_o @ K @ ( sup_sup_nat_o @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_354_boolean__algebra__cancel_Osup1,axiom,
    ! [A: set_Re381260168593705685la_a_b,K: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( A
        = ( sup_su5130108678486352897la_a_b @ K @ A2 ) )
     => ( ( sup_su5130108678486352897la_a_b @ A @ B )
        = ( sup_su5130108678486352897la_a_b @ K @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_355_empty__iff,axiom,
    ! [C: set_nat] :
      ~ ( member_set_nat @ C @ bot_bot_set_set_nat ) ).

% empty_iff
thf(fact_356_empty__iff,axiom,
    ! [C: set_Re381260168593705685la_a_b] :
      ~ ( member3481406638322139244la_a_b @ C @ bot_bo2891247006866115487la_a_b ) ).

% empty_iff
thf(fact_357_empty__iff,axiom,
    ! [C: b] :
      ~ ( member_b @ C @ bot_bot_set_b ) ).

% empty_iff
thf(fact_358_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_359_empty__iff,axiom,
    ! [C: relational_fmla_a_b] :
      ~ ( member4680049679412964150la_a_b @ C @ bot_bo4495933725496725865la_a_b ) ).

% empty_iff
thf(fact_360_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_361_all__not__in__conv,axiom,
    ! [A: set_set_nat] :
      ( ( ! [X3: set_nat] :
            ~ ( member_set_nat @ X3 @ A ) )
      = ( A = bot_bot_set_set_nat ) ) ).

% all_not_in_conv
thf(fact_362_all__not__in__conv,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( ! [X3: set_Re381260168593705685la_a_b] :
            ~ ( member3481406638322139244la_a_b @ X3 @ A ) )
      = ( A = bot_bo2891247006866115487la_a_b ) ) ).

% all_not_in_conv
thf(fact_363_all__not__in__conv,axiom,
    ! [A: set_b] :
      ( ( ! [X3: b] :
            ~ ( member_b @ X3 @ A ) )
      = ( A = bot_bot_set_b ) ) ).

% all_not_in_conv
thf(fact_364_all__not__in__conv,axiom,
    ! [A: set_a] :
      ( ( ! [X3: a] :
            ~ ( member_a @ X3 @ A ) )
      = ( A = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_365_all__not__in__conv,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( ! [X3: relational_fmla_a_b] :
            ~ ( member4680049679412964150la_a_b @ X3 @ A ) )
      = ( A = bot_bo4495933725496725865la_a_b ) ) ).

% all_not_in_conv
thf(fact_366_all__not__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ! [X3: nat] :
            ~ ( member_nat @ X3 @ A ) )
      = ( A = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_367_Collect__empty__eq,axiom,
    ! [P2: relational_fmla_a_b > $o] :
      ( ( ( collec3419995626248312948la_a_b @ P2 )
        = bot_bo4495933725496725865la_a_b )
      = ( ! [X3: relational_fmla_a_b] :
            ~ ( P2 @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_368_Collect__empty__eq,axiom,
    ! [P2: set_Re381260168593705685la_a_b > $o] :
      ( ( ( collec2099942116761351594la_a_b @ P2 )
        = bot_bo2891247006866115487la_a_b )
      = ( ! [X3: set_Re381260168593705685la_a_b] :
            ~ ( P2 @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_369_Collect__empty__eq,axiom,
    ! [P2: set_nat > $o] :
      ( ( ( collect_set_nat @ P2 )
        = bot_bot_set_set_nat )
      = ( ! [X3: set_nat] :
            ~ ( P2 @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_370_Collect__empty__eq,axiom,
    ! [P2: b > $o] :
      ( ( ( collect_b @ P2 )
        = bot_bot_set_b )
      = ( ! [X3: b] :
            ~ ( P2 @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_371_Collect__empty__eq,axiom,
    ! [P2: a > $o] :
      ( ( ( collect_a @ P2 )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ~ ( P2 @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_372_Collect__empty__eq,axiom,
    ! [P2: nat > $o] :
      ( ( ( collect_nat @ P2 )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ~ ( P2 @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_373_empty__Collect__eq,axiom,
    ! [P2: relational_fmla_a_b > $o] :
      ( ( bot_bo4495933725496725865la_a_b
        = ( collec3419995626248312948la_a_b @ P2 ) )
      = ( ! [X3: relational_fmla_a_b] :
            ~ ( P2 @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_374_empty__Collect__eq,axiom,
    ! [P2: set_Re381260168593705685la_a_b > $o] :
      ( ( bot_bo2891247006866115487la_a_b
        = ( collec2099942116761351594la_a_b @ P2 ) )
      = ( ! [X3: set_Re381260168593705685la_a_b] :
            ~ ( P2 @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_375_empty__Collect__eq,axiom,
    ! [P2: set_nat > $o] :
      ( ( bot_bot_set_set_nat
        = ( collect_set_nat @ P2 ) )
      = ( ! [X3: set_nat] :
            ~ ( P2 @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_376_empty__Collect__eq,axiom,
    ! [P2: b > $o] :
      ( ( bot_bot_set_b
        = ( collect_b @ P2 ) )
      = ( ! [X3: b] :
            ~ ( P2 @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_377_empty__Collect__eq,axiom,
    ! [P2: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P2 ) )
      = ( ! [X3: a] :
            ~ ( P2 @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_378_empty__Collect__eq,axiom,
    ! [P2: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P2 ) )
      = ( ! [X3: nat] :
            ~ ( P2 @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_379_fmla_Oinject_I5_J,axiom,
    ! [X51: relational_fmla_a_b,X52: relational_fmla_a_b,Y51: relational_fmla_a_b,Y52: relational_fmla_a_b] :
      ( ( ( relational_Conj_a_b @ X51 @ X52 )
        = ( relational_Conj_a_b @ Y51 @ Y52 ) )
      = ( ( X51 = Y51 )
        & ( X52 = Y52 ) ) ) ).

% fmla.inject(5)
thf(fact_380_singletonI,axiom,
    ! [A2: set_nat] : ( member_set_nat @ A2 @ ( insert_set_nat @ A2 @ bot_bot_set_set_nat ) ) ).

% singletonI
thf(fact_381_singletonI,axiom,
    ! [A2: set_Re381260168593705685la_a_b] : ( member3481406638322139244la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ A2 @ bot_bo2891247006866115487la_a_b ) ) ).

% singletonI
thf(fact_382_singletonI,axiom,
    ! [A2: b] : ( member_b @ A2 @ ( insert_b @ A2 @ bot_bot_set_b ) ) ).

% singletonI
thf(fact_383_singletonI,axiom,
    ! [A2: a] : ( member_a @ A2 @ ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_384_singletonI,axiom,
    ! [A2: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ A2 @ bot_bo4495933725496725865la_a_b ) ) ).

% singletonI
thf(fact_385_singletonI,axiom,
    ! [A2: nat] : ( member_nat @ A2 @ ( insert_nat @ A2 @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_386_sup__bot_Oright__neutral,axiom,
    ! [A2: set_b] :
      ( ( sup_sup_set_b @ A2 @ bot_bot_set_b )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_387_sup__bot_Oright__neutral,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_388_sup__bot_Oright__neutral,axiom,
    ! [A2: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ A2 @ bot_bo8852203127187332700_a_b_o )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_389_sup__bot_Oright__neutral,axiom,
    ! [A2: nat > $o] :
      ( ( sup_sup_nat_o @ A2 @ bot_bot_nat_o )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_390_sup__bot_Oright__neutral,axiom,
    ! [A2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A2 @ bot_bo4495933725496725865la_a_b )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_391_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_b,B: set_b] :
      ( ( bot_bot_set_b
        = ( sup_sup_set_b @ A2 @ B ) )
      = ( ( A2 = bot_bot_set_b )
        & ( B = bot_bot_set_b ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_392_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ A2 @ B ) )
      = ( ( A2 = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_393_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o] :
      ( ( bot_bo8852203127187332700_a_b_o
        = ( sup_su1471977682094119364_a_b_o @ A2 @ B ) )
      = ( ( A2 = bot_bo8852203127187332700_a_b_o )
        & ( B = bot_bo8852203127187332700_a_b_o ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_394_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: nat > $o,B: nat > $o] :
      ( ( bot_bot_nat_o
        = ( sup_sup_nat_o @ A2 @ B ) )
      = ( ( A2 = bot_bot_nat_o )
        & ( B = bot_bot_nat_o ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_395_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( bot_bo4495933725496725865la_a_b
        = ( sup_su5130108678486352897la_a_b @ A2 @ B ) )
      = ( ( A2 = bot_bo4495933725496725865la_a_b )
        & ( B = bot_bo4495933725496725865la_a_b ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_396_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_b] :
      ( ( sup_sup_set_b @ bot_bot_set_b @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_397_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_398_sup__bot_Oleft__neutral,axiom,
    ! [A2: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ bot_bo8852203127187332700_a_b_o @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_399_sup__bot_Oleft__neutral,axiom,
    ! [A2: nat > $o] :
      ( ( sup_sup_nat_o @ bot_bot_nat_o @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_400_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ bot_bo4495933725496725865la_a_b @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_401_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_b,B: set_b] :
      ( ( ( sup_sup_set_b @ A2 @ B )
        = bot_bot_set_b )
      = ( ( A2 = bot_bot_set_b )
        & ( B = bot_bot_set_b ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_402_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_403_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o] :
      ( ( ( sup_su1471977682094119364_a_b_o @ A2 @ B )
        = bot_bo8852203127187332700_a_b_o )
      = ( ( A2 = bot_bo8852203127187332700_a_b_o )
        & ( B = bot_bo8852203127187332700_a_b_o ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_404_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: nat > $o,B: nat > $o] :
      ( ( ( sup_sup_nat_o @ A2 @ B )
        = bot_bot_nat_o )
      = ( ( A2 = bot_bot_nat_o )
        & ( B = bot_bot_nat_o ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_405_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ( sup_su5130108678486352897la_a_b @ A2 @ B )
        = bot_bo4495933725496725865la_a_b )
      = ( ( A2 = bot_bo4495933725496725865la_a_b )
        & ( B = bot_bo4495933725496725865la_a_b ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_406_sup__eq__bot__iff,axiom,
    ! [X: set_b,Y: set_b] :
      ( ( ( sup_sup_set_b @ X @ Y )
        = bot_bot_set_b )
      = ( ( X = bot_bot_set_b )
        & ( Y = bot_bot_set_b ) ) ) ).

% sup_eq_bot_iff
thf(fact_407_sup__eq__bot__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( sup_sup_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% sup_eq_bot_iff
thf(fact_408_sup__eq__bot__iff,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o] :
      ( ( ( sup_su1471977682094119364_a_b_o @ X @ Y )
        = bot_bo8852203127187332700_a_b_o )
      = ( ( X = bot_bo8852203127187332700_a_b_o )
        & ( Y = bot_bo8852203127187332700_a_b_o ) ) ) ).

% sup_eq_bot_iff
thf(fact_409_sup__eq__bot__iff,axiom,
    ! [X: nat > $o,Y: nat > $o] :
      ( ( ( sup_sup_nat_o @ X @ Y )
        = bot_bot_nat_o )
      = ( ( X = bot_bot_nat_o )
        & ( Y = bot_bot_nat_o ) ) ) ).

% sup_eq_bot_iff
thf(fact_410_sup__eq__bot__iff,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( ( sup_su5130108678486352897la_a_b @ X @ Y )
        = bot_bo4495933725496725865la_a_b )
      = ( ( X = bot_bo4495933725496725865la_a_b )
        & ( Y = bot_bo4495933725496725865la_a_b ) ) ) ).

% sup_eq_bot_iff
thf(fact_411_bot__eq__sup__iff,axiom,
    ! [X: set_b,Y: set_b] :
      ( ( bot_bot_set_b
        = ( sup_sup_set_b @ X @ Y ) )
      = ( ( X = bot_bot_set_b )
        & ( Y = bot_bot_set_b ) ) ) ).

% bot_eq_sup_iff
thf(fact_412_bot__eq__sup__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ X @ Y ) )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% bot_eq_sup_iff
thf(fact_413_bot__eq__sup__iff,axiom,
    ! [X: relational_fmla_a_b > $o,Y: relational_fmla_a_b > $o] :
      ( ( bot_bo8852203127187332700_a_b_o
        = ( sup_su1471977682094119364_a_b_o @ X @ Y ) )
      = ( ( X = bot_bo8852203127187332700_a_b_o )
        & ( Y = bot_bo8852203127187332700_a_b_o ) ) ) ).

% bot_eq_sup_iff
thf(fact_414_bot__eq__sup__iff,axiom,
    ! [X: nat > $o,Y: nat > $o] :
      ( ( bot_bot_nat_o
        = ( sup_sup_nat_o @ X @ Y ) )
      = ( ( X = bot_bot_nat_o )
        & ( Y = bot_bot_nat_o ) ) ) ).

% bot_eq_sup_iff
thf(fact_415_bot__eq__sup__iff,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( bot_bo4495933725496725865la_a_b
        = ( sup_su5130108678486352897la_a_b @ X @ Y ) )
      = ( ( X = bot_bo4495933725496725865la_a_b )
        & ( Y = bot_bo4495933725496725865la_a_b ) ) ) ).

% bot_eq_sup_iff
thf(fact_416_sup__bot__right,axiom,
    ! [X: set_b] :
      ( ( sup_sup_set_b @ X @ bot_bot_set_b )
      = X ) ).

% sup_bot_right
thf(fact_417_sup__bot__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% sup_bot_right
thf(fact_418_sup__bot__right,axiom,
    ! [X: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ bot_bo8852203127187332700_a_b_o )
      = X ) ).

% sup_bot_right
thf(fact_419_sup__bot__right,axiom,
    ! [X: nat > $o] :
      ( ( sup_sup_nat_o @ X @ bot_bot_nat_o )
      = X ) ).

% sup_bot_right
thf(fact_420_sup__bot__right,axiom,
    ! [X: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ bot_bo4495933725496725865la_a_b )
      = X ) ).

% sup_bot_right
thf(fact_421_sup__bot__left,axiom,
    ! [X: set_b] :
      ( ( sup_sup_set_b @ bot_bot_set_b @ X )
      = X ) ).

% sup_bot_left
thf(fact_422_sup__bot__left,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ X )
      = X ) ).

% sup_bot_left
thf(fact_423_sup__bot__left,axiom,
    ! [X: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ bot_bo8852203127187332700_a_b_o @ X )
      = X ) ).

% sup_bot_left
thf(fact_424_sup__bot__left,axiom,
    ! [X: nat > $o] :
      ( ( sup_sup_nat_o @ bot_bot_nat_o @ X )
      = X ) ).

% sup_bot_left
thf(fact_425_sup__bot__left,axiom,
    ! [X: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ bot_bo4495933725496725865la_a_b @ X )
      = X ) ).

% sup_bot_left
thf(fact_426_Un__empty,axiom,
    ! [A: set_b,B2: set_b] :
      ( ( ( sup_sup_set_b @ A @ B2 )
        = bot_bot_set_b )
      = ( ( A = bot_bot_set_b )
        & ( B2 = bot_bot_set_b ) ) ) ).

% Un_empty
thf(fact_427_Un__empty,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ( sup_sup_set_a @ A @ B2 )
        = bot_bot_set_a )
      = ( ( A = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_428_Un__empty,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ( sup_su5130108678486352897la_a_b @ A @ B2 )
        = bot_bo4495933725496725865la_a_b )
      = ( ( A = bot_bo4495933725496725865la_a_b )
        & ( B2 = bot_bo4495933725496725865la_a_b ) ) ) ).

% Un_empty
thf(fact_429_cpropagated__simps_I5_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relati1591879772219623554ed_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) )
      = ( ( relational_nocp_a_b @ Q1 )
        & ( relational_nocp_a_b @ Q22 ) ) ) ).

% cpropagated_simps(5)
thf(fact_430_erase_Osimps_I5_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,X: nat] :
      ( ( relational_erase_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ X )
      = ( relational_Conj_a_b @ ( relational_erase_a_b @ Q1 @ X ) @ ( relational_erase_a_b @ Q22 @ X ) ) ) ).

% erase.simps(5)
thf(fact_431_eqs__noteq,axiom,
    ! [Y: nat,X: nat,Q: set_Re381260168593705685la_a_b] :
      ( ( member_nat @ Y @ ( relational_eqs_a_b @ X @ Q ) )
     => ( X != Y ) ) ).

% eqs_noteq
thf(fact_432_not__self__eqs,axiom,
    ! [X: nat,G: set_Re381260168593705685la_a_b] :
      ~ ( member_nat @ X @ ( relational_eqs_a_b @ X @ G ) ) ).

% not_self_eqs
thf(fact_433_emptyE,axiom,
    ! [A2: set_nat] :
      ~ ( member_set_nat @ A2 @ bot_bot_set_set_nat ) ).

% emptyE
thf(fact_434_emptyE,axiom,
    ! [A2: set_Re381260168593705685la_a_b] :
      ~ ( member3481406638322139244la_a_b @ A2 @ bot_bo2891247006866115487la_a_b ) ).

% emptyE
thf(fact_435_emptyE,axiom,
    ! [A2: b] :
      ~ ( member_b @ A2 @ bot_bot_set_b ) ).

% emptyE
thf(fact_436_emptyE,axiom,
    ! [A2: a] :
      ~ ( member_a @ A2 @ bot_bot_set_a ) ).

% emptyE
thf(fact_437_emptyE,axiom,
    ! [A2: relational_fmla_a_b] :
      ~ ( member4680049679412964150la_a_b @ A2 @ bot_bo4495933725496725865la_a_b ) ).

% emptyE
thf(fact_438_emptyE,axiom,
    ! [A2: nat] :
      ~ ( member_nat @ A2 @ bot_bot_set_nat ) ).

% emptyE
thf(fact_439_equals0D,axiom,
    ! [A: set_set_nat,A2: set_nat] :
      ( ( A = bot_bot_set_set_nat )
     => ~ ( member_set_nat @ A2 @ A ) ) ).

% equals0D
thf(fact_440_equals0D,axiom,
    ! [A: set_se6865892389300016395la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( A = bot_bo2891247006866115487la_a_b )
     => ~ ( member3481406638322139244la_a_b @ A2 @ A ) ) ).

% equals0D
thf(fact_441_equals0D,axiom,
    ! [A: set_b,A2: b] :
      ( ( A = bot_bot_set_b )
     => ~ ( member_b @ A2 @ A ) ) ).

% equals0D
thf(fact_442_equals0D,axiom,
    ! [A: set_a,A2: a] :
      ( ( A = bot_bot_set_a )
     => ~ ( member_a @ A2 @ A ) ) ).

% equals0D
thf(fact_443_equals0D,axiom,
    ! [A: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b] :
      ( ( A = bot_bo4495933725496725865la_a_b )
     => ~ ( member4680049679412964150la_a_b @ A2 @ A ) ) ).

% equals0D
thf(fact_444_equals0D,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( A = bot_bot_set_nat )
     => ~ ( member_nat @ A2 @ A ) ) ).

% equals0D
thf(fact_445_equals0I,axiom,
    ! [A: set_set_nat] :
      ( ! [Y6: set_nat] :
          ~ ( member_set_nat @ Y6 @ A )
     => ( A = bot_bot_set_set_nat ) ) ).

% equals0I
thf(fact_446_equals0I,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ! [Y6: set_Re381260168593705685la_a_b] :
          ~ ( member3481406638322139244la_a_b @ Y6 @ A )
     => ( A = bot_bo2891247006866115487la_a_b ) ) ).

% equals0I
thf(fact_447_equals0I,axiom,
    ! [A: set_b] :
      ( ! [Y6: b] :
          ~ ( member_b @ Y6 @ A )
     => ( A = bot_bot_set_b ) ) ).

% equals0I
thf(fact_448_equals0I,axiom,
    ! [A: set_a] :
      ( ! [Y6: a] :
          ~ ( member_a @ Y6 @ A )
     => ( A = bot_bot_set_a ) ) ).

% equals0I
thf(fact_449_equals0I,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ! [Y6: relational_fmla_a_b] :
          ~ ( member4680049679412964150la_a_b @ Y6 @ A )
     => ( A = bot_bo4495933725496725865la_a_b ) ) ).

% equals0I
thf(fact_450_equals0I,axiom,
    ! [A: set_nat] :
      ( ! [Y6: nat] :
          ~ ( member_nat @ Y6 @ A )
     => ( A = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_451_ex__in__conv,axiom,
    ! [A: set_set_nat] :
      ( ( ? [X3: set_nat] : ( member_set_nat @ X3 @ A ) )
      = ( A != bot_bot_set_set_nat ) ) ).

% ex_in_conv
thf(fact_452_ex__in__conv,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( ? [X3: set_Re381260168593705685la_a_b] : ( member3481406638322139244la_a_b @ X3 @ A ) )
      = ( A != bot_bo2891247006866115487la_a_b ) ) ).

% ex_in_conv
thf(fact_453_ex__in__conv,axiom,
    ! [A: set_b] :
      ( ( ? [X3: b] : ( member_b @ X3 @ A ) )
      = ( A != bot_bot_set_b ) ) ).

% ex_in_conv
thf(fact_454_ex__in__conv,axiom,
    ! [A: set_a] :
      ( ( ? [X3: a] : ( member_a @ X3 @ A ) )
      = ( A != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_455_ex__in__conv,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( ? [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ A ) )
      = ( A != bot_bo4495933725496725865la_a_b ) ) ).

% ex_in_conv
thf(fact_456_ex__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ? [X3: nat] : ( member_nat @ X3 @ A ) )
      = ( A != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_457_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_b] :
      ( ( sup_sup_set_b @ X @ bot_bot_set_b )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_458_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_459_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: relational_fmla_a_b > $o] :
      ( ( sup_su1471977682094119364_a_b_o @ X @ bot_bo8852203127187332700_a_b_o )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_460_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: nat > $o] :
      ( ( sup_sup_nat_o @ X @ bot_bot_nat_o )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_461_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ X @ bot_bo4495933725496725865la_a_b )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_462_erase_Osimps_I6_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,X: nat] :
      ( ( relational_erase_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ X )
      = ( relational_Disj_a_b @ ( relational_erase_a_b @ Q1 @ X ) @ ( relational_erase_a_b @ Q22 @ X ) ) ) ).

% erase.simps(6)
thf(fact_463_erase_Osimps_I4_J,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_erase_a_b @ ( relational_Neg_a_b @ Q ) @ X )
      = ( relational_Neg_a_b @ ( relational_erase_a_b @ Q @ X ) ) ) ).

% erase.simps(4)
thf(fact_464_erase_Osimps_I1_J,axiom,
    ! [T2: $o,X: nat] :
      ( ( relational_erase_a_b @ ( relational_Bool_a_b @ T2 ) @ X )
      = ( relational_Bool_a_b @ T2 ) ) ).

% erase.simps(1)
thf(fact_465_erase_Osimps_I7_J,axiom,
    ! [X: nat,Z: nat,Q: relational_fmla_a_b] :
      ( ( ( X = Z )
       => ( ( relational_erase_a_b @ ( relati591517084277583526ts_a_b @ Z @ Q ) @ X )
          = ( relati591517084277583526ts_a_b @ X @ Q ) ) )
      & ( ( X != Z )
       => ( ( relational_erase_a_b @ ( relati591517084277583526ts_a_b @ Z @ Q ) @ X )
          = ( relati591517084277583526ts_a_b @ Z @ ( relational_erase_a_b @ Q @ X ) ) ) ) ) ).

% erase.simps(7)
thf(fact_466_fmla_Odistinct_I37_J,axiom,
    ! [X51: relational_fmla_a_b,X52: relational_fmla_a_b,X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( relational_Conj_a_b @ X51 @ X52 )
     != ( relational_Disj_a_b @ X61 @ X62 ) ) ).

% fmla.distinct(37)
thf(fact_467_fmla_Odistinct_I31_J,axiom,
    ! [X4: relational_fmla_a_b,X51: relational_fmla_a_b,X52: relational_fmla_a_b] :
      ( ( relational_Neg_a_b @ X4 )
     != ( relational_Conj_a_b @ X51 @ X52 ) ) ).

% fmla.distinct(31)
thf(fact_468_fmla_Odistinct_I17_J,axiom,
    ! [X2: $o,X51: relational_fmla_a_b,X52: relational_fmla_a_b] :
      ( ( relational_Bool_a_b @ X2 )
     != ( relational_Conj_a_b @ X51 @ X52 ) ) ).

% fmla.distinct(17)
thf(fact_469_fmla_Odistinct_I39_J,axiom,
    ! [X51: relational_fmla_a_b,X52: relational_fmla_a_b,X71: nat,X72: relational_fmla_a_b] :
      ( ( relational_Conj_a_b @ X51 @ X52 )
     != ( relati591517084277583526ts_a_b @ X71 @ X72 ) ) ).

% fmla.distinct(39)
thf(fact_470_fmla_Odistinct_I7_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,X51: relational_fmla_a_b,X52: relational_fmla_a_b] :
      ( ( relational_Pred_b_a @ X11 @ X12 )
     != ( relational_Conj_a_b @ X51 @ X52 ) ) ).

% fmla.distinct(7)
thf(fact_471_flat__Disj_Osimps_I6_J,axiom,
    ! [V: relational_fmla_a_b,Va: relational_fmla_a_b] :
      ( ( restri569617705344514291sj_a_b @ ( relational_Conj_a_b @ V @ Va ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Conj_a_b @ V @ Va ) @ bot_bo4495933725496725865la_a_b ) ) ).

% flat_Disj.simps(6)
thf(fact_472_nocp_Osimps_I5_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) )
      = ( ( relational_nocp_a_b @ Q1 )
        & ( relational_nocp_a_b @ Q22 ) ) ) ).

% nocp.simps(5)
thf(fact_473_singletonD,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( member_set_nat @ B @ ( insert_set_nat @ A2 @ bot_bot_set_set_nat ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_474_singletonD,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( member3481406638322139244la_a_b @ B @ ( insert2023870700798818565la_a_b @ A2 @ bot_bo2891247006866115487la_a_b ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_475_singletonD,axiom,
    ! [B: b,A2: b] :
      ( ( member_b @ B @ ( insert_b @ A2 @ bot_bot_set_b ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_476_singletonD,axiom,
    ! [B: a,A2: a] :
      ( ( member_a @ B @ ( insert_a @ A2 @ bot_bot_set_a ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_477_singletonD,axiom,
    ! [B: relational_fmla_a_b,A2: relational_fmla_a_b] :
      ( ( member4680049679412964150la_a_b @ B @ ( insert7010464514620295119la_a_b @ A2 @ bot_bo4495933725496725865la_a_b ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_478_singletonD,axiom,
    ! [B: nat,A2: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A2 @ bot_bot_set_nat ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_479_singleton__iff,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( member_set_nat @ B @ ( insert_set_nat @ A2 @ bot_bot_set_set_nat ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_480_singleton__iff,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( member3481406638322139244la_a_b @ B @ ( insert2023870700798818565la_a_b @ A2 @ bot_bo2891247006866115487la_a_b ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_481_singleton__iff,axiom,
    ! [B: b,A2: b] :
      ( ( member_b @ B @ ( insert_b @ A2 @ bot_bot_set_b ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_482_singleton__iff,axiom,
    ! [B: a,A2: a] :
      ( ( member_a @ B @ ( insert_a @ A2 @ bot_bot_set_a ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_483_singleton__iff,axiom,
    ! [B: relational_fmla_a_b,A2: relational_fmla_a_b] :
      ( ( member4680049679412964150la_a_b @ B @ ( insert7010464514620295119la_a_b @ A2 @ bot_bo4495933725496725865la_a_b ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_484_singleton__iff,axiom,
    ! [B: nat,A2: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A2 @ bot_bot_set_nat ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_485_doubleton__eq__iff,axiom,
    ! [A2: relational_fmla_a_b,B: relational_fmla_a_b,C: relational_fmla_a_b,D: relational_fmla_a_b] :
      ( ( ( insert7010464514620295119la_a_b @ A2 @ ( insert7010464514620295119la_a_b @ B @ bot_bo4495933725496725865la_a_b ) )
        = ( insert7010464514620295119la_a_b @ C @ ( insert7010464514620295119la_a_b @ D @ bot_bo4495933725496725865la_a_b ) ) )
      = ( ( ( A2 = C )
          & ( B = D ) )
        | ( ( A2 = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_486_doubleton__eq__iff,axiom,
    ! [A2: nat,B: nat,C: nat,D: nat] :
      ( ( ( insert_nat @ A2 @ ( insert_nat @ B @ bot_bot_set_nat ) )
        = ( insert_nat @ C @ ( insert_nat @ D @ bot_bot_set_nat ) ) )
      = ( ( ( A2 = C )
          & ( B = D ) )
        | ( ( A2 = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_487_doubleton__eq__iff,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b,D: set_Re381260168593705685la_a_b] :
      ( ( ( insert2023870700798818565la_a_b @ A2 @ ( insert2023870700798818565la_a_b @ B @ bot_bo2891247006866115487la_a_b ) )
        = ( insert2023870700798818565la_a_b @ C @ ( insert2023870700798818565la_a_b @ D @ bot_bo2891247006866115487la_a_b ) ) )
      = ( ( ( A2 = C )
          & ( B = D ) )
        | ( ( A2 = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_488_doubleton__eq__iff,axiom,
    ! [A2: b,B: b,C: b,D: b] :
      ( ( ( insert_b @ A2 @ ( insert_b @ B @ bot_bot_set_b ) )
        = ( insert_b @ C @ ( insert_b @ D @ bot_bot_set_b ) ) )
      = ( ( ( A2 = C )
          & ( B = D ) )
        | ( ( A2 = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_489_doubleton__eq__iff,axiom,
    ! [A2: a,B: a,C: a,D: a] :
      ( ( ( insert_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) )
        = ( insert_a @ C @ ( insert_a @ D @ bot_bot_set_a ) ) )
      = ( ( ( A2 = C )
          & ( B = D ) )
        | ( ( A2 = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_490_insert__not__empty,axiom,
    ! [A2: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( insert7010464514620295119la_a_b @ A2 @ A )
     != bot_bo4495933725496725865la_a_b ) ).

% insert_not_empty
thf(fact_491_insert__not__empty,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( insert_nat @ A2 @ A )
     != bot_bot_set_nat ) ).

% insert_not_empty
thf(fact_492_insert__not__empty,axiom,
    ! [A2: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( insert2023870700798818565la_a_b @ A2 @ A )
     != bot_bo2891247006866115487la_a_b ) ).

% insert_not_empty
thf(fact_493_insert__not__empty,axiom,
    ! [A2: b,A: set_b] :
      ( ( insert_b @ A2 @ A )
     != bot_bot_set_b ) ).

% insert_not_empty
thf(fact_494_insert__not__empty,axiom,
    ! [A2: a,A: set_a] :
      ( ( insert_a @ A2 @ A )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_495_singleton__inject,axiom,
    ! [A2: relational_fmla_a_b,B: relational_fmla_a_b] :
      ( ( ( insert7010464514620295119la_a_b @ A2 @ bot_bo4495933725496725865la_a_b )
        = ( insert7010464514620295119la_a_b @ B @ bot_bo4495933725496725865la_a_b ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_496_singleton__inject,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( insert_nat @ A2 @ bot_bot_set_nat )
        = ( insert_nat @ B @ bot_bot_set_nat ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_497_singleton__inject,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ( insert2023870700798818565la_a_b @ A2 @ bot_bo2891247006866115487la_a_b )
        = ( insert2023870700798818565la_a_b @ B @ bot_bo2891247006866115487la_a_b ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_498_singleton__inject,axiom,
    ! [A2: b,B: b] :
      ( ( ( insert_b @ A2 @ bot_bot_set_b )
        = ( insert_b @ B @ bot_bot_set_b ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_499_singleton__inject,axiom,
    ! [A2: a,B: a] :
      ( ( ( insert_a @ A2 @ bot_bot_set_a )
        = ( insert_a @ B @ bot_bot_set_a ) )
     => ( A2 = B ) ) ).

% singleton_inject
thf(fact_500_infinite__imp__nonempty,axiom,
    ! [S: set_list_a] :
      ( ~ ( finite_finite_list_a @ S )
     => ( S != bot_bot_set_list_a ) ) ).

% infinite_imp_nonempty
thf(fact_501_infinite__imp__nonempty,axiom,
    ! [S: set_se6865892389300016395la_a_b] :
      ( ~ ( finite5238674622262875500la_a_b @ S )
     => ( S != bot_bo2891247006866115487la_a_b ) ) ).

% infinite_imp_nonempty
thf(fact_502_infinite__imp__nonempty,axiom,
    ! [S: set_set_nat] :
      ( ~ ( finite1152437895449049373et_nat @ S )
     => ( S != bot_bot_set_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_503_infinite__imp__nonempty,axiom,
    ! [S: set_b] :
      ( ~ ( finite_finite_b @ S )
     => ( S != bot_bot_set_b ) ) ).

% infinite_imp_nonempty
thf(fact_504_infinite__imp__nonempty,axiom,
    ! [S: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ( S != bot_bot_set_a ) ) ).

% infinite_imp_nonempty
thf(fact_505_infinite__imp__nonempty,axiom,
    ! [S: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( S != bot_bot_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_506_infinite__imp__nonempty,axiom,
    ! [S: set_Re381260168593705685la_a_b] :
      ( ~ ( finite5600759454172676150la_a_b @ S )
     => ( S != bot_bo4495933725496725865la_a_b ) ) ).

% infinite_imp_nonempty
thf(fact_507_finite_OemptyI,axiom,
    finite_finite_list_a @ bot_bot_set_list_a ).

% finite.emptyI
thf(fact_508_finite_OemptyI,axiom,
    finite5238674622262875500la_a_b @ bot_bo2891247006866115487la_a_b ).

% finite.emptyI
thf(fact_509_finite_OemptyI,axiom,
    finite1152437895449049373et_nat @ bot_bot_set_set_nat ).

% finite.emptyI
thf(fact_510_finite_OemptyI,axiom,
    finite_finite_b @ bot_bot_set_b ).

% finite.emptyI
thf(fact_511_finite_OemptyI,axiom,
    finite_finite_a @ bot_bot_set_a ).

% finite.emptyI
thf(fact_512_finite_OemptyI,axiom,
    finite_finite_nat @ bot_bot_set_nat ).

% finite.emptyI
thf(fact_513_finite_OemptyI,axiom,
    finite5600759454172676150la_a_b @ bot_bo4495933725496725865la_a_b ).

% finite.emptyI
thf(fact_514_equiv__Conj__cong,axiom,
    ! [Q1: relational_fmla_a_b,Q12: relational_fmla_a_b,Q22: relational_fmla_a_b,Q23: relational_fmla_a_b] :
      ( ( relational_equiv_a_b @ Q1 @ Q12 )
     => ( ( relational_equiv_a_b @ Q22 @ Q23 )
       => ( relational_equiv_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ ( relational_Conj_a_b @ Q12 @ Q23 ) ) ) ) ).

% equiv_Conj_cong
thf(fact_515_Un__empty__right,axiom,
    ! [A: set_b] :
      ( ( sup_sup_set_b @ A @ bot_bot_set_b )
      = A ) ).

% Un_empty_right
thf(fact_516_Un__empty__right,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ bot_bot_set_a )
      = A ) ).

% Un_empty_right
thf(fact_517_Un__empty__right,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A @ bot_bo4495933725496725865la_a_b )
      = A ) ).

% Un_empty_right
thf(fact_518_Un__empty__left,axiom,
    ! [B2: set_b] :
      ( ( sup_sup_set_b @ bot_bot_set_b @ B2 )
      = B2 ) ).

% Un_empty_left
thf(fact_519_Un__empty__left,axiom,
    ! [B2: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ B2 )
      = B2 ) ).

% Un_empty_left
thf(fact_520_Un__empty__left,axiom,
    ! [B2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ bot_bo4495933725496725865la_a_b @ B2 )
      = B2 ) ).

% Un_empty_left
thf(fact_521_finite_Ocases,axiom,
    ! [A2: set_list_a] :
      ( ( finite_finite_list_a @ A2 )
     => ( ( A2 != bot_bot_set_list_a )
       => ~ ! [A5: set_list_a] :
              ( ? [A6: list_a] :
                  ( A2
                  = ( insert_list_a @ A6 @ A5 ) )
             => ~ ( finite_finite_list_a @ A5 ) ) ) ) ).

% finite.cases
thf(fact_522_finite_Ocases,axiom,
    ! [A2: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A2 )
     => ( ( A2 != bot_bo2891247006866115487la_a_b )
       => ~ ! [A5: set_se6865892389300016395la_a_b] :
              ( ? [A6: set_Re381260168593705685la_a_b] :
                  ( A2
                  = ( insert2023870700798818565la_a_b @ A6 @ A5 ) )
             => ~ ( finite5238674622262875500la_a_b @ A5 ) ) ) ) ).

% finite.cases
thf(fact_523_finite_Ocases,axiom,
    ! [A2: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( A2 != bot_bot_set_set_nat )
       => ~ ! [A5: set_set_nat] :
              ( ? [A6: set_nat] :
                  ( A2
                  = ( insert_set_nat @ A6 @ A5 ) )
             => ~ ( finite1152437895449049373et_nat @ A5 ) ) ) ) ).

% finite.cases
thf(fact_524_finite_Ocases,axiom,
    ! [A2: set_b] :
      ( ( finite_finite_b @ A2 )
     => ( ( A2 != bot_bot_set_b )
       => ~ ! [A5: set_b] :
              ( ? [A6: b] :
                  ( A2
                  = ( insert_b @ A6 @ A5 ) )
             => ~ ( finite_finite_b @ A5 ) ) ) ) ).

% finite.cases
thf(fact_525_finite_Ocases,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( A2 != bot_bot_set_a )
       => ~ ! [A5: set_a] :
              ( ? [A6: a] :
                  ( A2
                  = ( insert_a @ A6 @ A5 ) )
             => ~ ( finite_finite_a @ A5 ) ) ) ) ).

% finite.cases
thf(fact_526_finite_Ocases,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ~ ! [A5: set_nat] :
              ( ? [A6: nat] :
                  ( A2
                  = ( insert_nat @ A6 @ A5 ) )
             => ~ ( finite_finite_nat @ A5 ) ) ) ) ).

% finite.cases
thf(fact_527_finite_Ocases,axiom,
    ! [A2: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ A2 )
     => ( ( A2 != bot_bo4495933725496725865la_a_b )
       => ~ ! [A5: set_Re381260168593705685la_a_b] :
              ( ? [A6: relational_fmla_a_b] :
                  ( A2
                  = ( insert7010464514620295119la_a_b @ A6 @ A5 ) )
             => ~ ( finite5600759454172676150la_a_b @ A5 ) ) ) ) ).

% finite.cases
thf(fact_528_finite_Osimps,axiom,
    ( finite_finite_list_a
    = ( ^ [A3: set_list_a] :
          ( ( A3 = bot_bot_set_list_a )
          | ? [A4: set_list_a,B3: list_a] :
              ( ( A3
                = ( insert_list_a @ B3 @ A4 ) )
              & ( finite_finite_list_a @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_529_finite_Osimps,axiom,
    ( finite5238674622262875500la_a_b
    = ( ^ [A3: set_se6865892389300016395la_a_b] :
          ( ( A3 = bot_bo2891247006866115487la_a_b )
          | ? [A4: set_se6865892389300016395la_a_b,B3: set_Re381260168593705685la_a_b] :
              ( ( A3
                = ( insert2023870700798818565la_a_b @ B3 @ A4 ) )
              & ( finite5238674622262875500la_a_b @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_530_finite_Osimps,axiom,
    ( finite1152437895449049373et_nat
    = ( ^ [A3: set_set_nat] :
          ( ( A3 = bot_bot_set_set_nat )
          | ? [A4: set_set_nat,B3: set_nat] :
              ( ( A3
                = ( insert_set_nat @ B3 @ A4 ) )
              & ( finite1152437895449049373et_nat @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_531_finite_Osimps,axiom,
    ( finite_finite_b
    = ( ^ [A3: set_b] :
          ( ( A3 = bot_bot_set_b )
          | ? [A4: set_b,B3: b] :
              ( ( A3
                = ( insert_b @ B3 @ A4 ) )
              & ( finite_finite_b @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_532_finite_Osimps,axiom,
    ( finite_finite_a
    = ( ^ [A3: set_a] :
          ( ( A3 = bot_bot_set_a )
          | ? [A4: set_a,B3: a] :
              ( ( A3
                = ( insert_a @ B3 @ A4 ) )
              & ( finite_finite_a @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_533_finite_Osimps,axiom,
    ( finite_finite_nat
    = ( ^ [A3: set_nat] :
          ( ( A3 = bot_bot_set_nat )
          | ? [A4: set_nat,B3: nat] :
              ( ( A3
                = ( insert_nat @ B3 @ A4 ) )
              & ( finite_finite_nat @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_534_finite_Osimps,axiom,
    ( finite5600759454172676150la_a_b
    = ( ^ [A3: set_Re381260168593705685la_a_b] :
          ( ( A3 = bot_bo4495933725496725865la_a_b )
          | ? [A4: set_Re381260168593705685la_a_b,B3: relational_fmla_a_b] :
              ( ( A3
                = ( insert7010464514620295119la_a_b @ B3 @ A4 ) )
              & ( finite5600759454172676150la_a_b @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_535_finite__induct,axiom,
    ! [F: set_list_a,P2: set_list_a > $o] :
      ( ( finite_finite_list_a @ F )
     => ( ( P2 @ bot_bot_set_list_a )
       => ( ! [X5: list_a,F3: set_list_a] :
              ( ( finite_finite_list_a @ F3 )
             => ( ~ ( member_list_a @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_list_a @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_536_finite__induct,axiom,
    ! [F: set_se6865892389300016395la_a_b,P2: set_se6865892389300016395la_a_b > $o] :
      ( ( finite5238674622262875500la_a_b @ F )
     => ( ( P2 @ bot_bo2891247006866115487la_a_b )
       => ( ! [X5: set_Re381260168593705685la_a_b,F3: set_se6865892389300016395la_a_b] :
              ( ( finite5238674622262875500la_a_b @ F3 )
             => ( ~ ( member3481406638322139244la_a_b @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert2023870700798818565la_a_b @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_537_finite__induct,axiom,
    ! [F: set_set_nat,P2: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ F )
     => ( ( P2 @ bot_bot_set_set_nat )
       => ( ! [X5: set_nat,F3: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ F3 )
             => ( ~ ( member_set_nat @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_set_nat @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_538_finite__induct,axiom,
    ! [F: set_b,P2: set_b > $o] :
      ( ( finite_finite_b @ F )
     => ( ( P2 @ bot_bot_set_b )
       => ( ! [X5: b,F3: set_b] :
              ( ( finite_finite_b @ F3 )
             => ( ~ ( member_b @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_b @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_539_finite__induct,axiom,
    ! [F: set_a,P2: set_a > $o] :
      ( ( finite_finite_a @ F )
     => ( ( P2 @ bot_bot_set_a )
       => ( ! [X5: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_a @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_540_finite__induct,axiom,
    ! [F: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ F )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [X5: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_nat @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_541_finite__induct,axiom,
    ! [F: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( ( P2 @ bot_bo4495933725496725865la_a_b )
       => ( ! [X5: relational_fmla_a_b,F3: set_Re381260168593705685la_a_b] :
              ( ( finite5600759454172676150la_a_b @ F3 )
             => ( ~ ( member4680049679412964150la_a_b @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert7010464514620295119la_a_b @ X5 @ F3 ) ) ) ) )
         => ( P2 @ F ) ) ) ) ).

% finite_induct
thf(fact_542_finite__ne__induct,axiom,
    ! [F: set_list_a,P2: set_list_a > $o] :
      ( ( finite_finite_list_a @ F )
     => ( ( F != bot_bot_set_list_a )
       => ( ! [X5: list_a] : ( P2 @ ( insert_list_a @ X5 @ bot_bot_set_list_a ) )
         => ( ! [X5: list_a,F3: set_list_a] :
                ( ( finite_finite_list_a @ F3 )
               => ( ( F3 != bot_bot_set_list_a )
                 => ( ~ ( member_list_a @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert_list_a @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_543_finite__ne__induct,axiom,
    ! [F: set_se6865892389300016395la_a_b,P2: set_se6865892389300016395la_a_b > $o] :
      ( ( finite5238674622262875500la_a_b @ F )
     => ( ( F != bot_bo2891247006866115487la_a_b )
       => ( ! [X5: set_Re381260168593705685la_a_b] : ( P2 @ ( insert2023870700798818565la_a_b @ X5 @ bot_bo2891247006866115487la_a_b ) )
         => ( ! [X5: set_Re381260168593705685la_a_b,F3: set_se6865892389300016395la_a_b] :
                ( ( finite5238674622262875500la_a_b @ F3 )
               => ( ( F3 != bot_bo2891247006866115487la_a_b )
                 => ( ~ ( member3481406638322139244la_a_b @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert2023870700798818565la_a_b @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_544_finite__ne__induct,axiom,
    ! [F: set_set_nat,P2: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ F )
     => ( ( F != bot_bot_set_set_nat )
       => ( ! [X5: set_nat] : ( P2 @ ( insert_set_nat @ X5 @ bot_bot_set_set_nat ) )
         => ( ! [X5: set_nat,F3: set_set_nat] :
                ( ( finite1152437895449049373et_nat @ F3 )
               => ( ( F3 != bot_bot_set_set_nat )
                 => ( ~ ( member_set_nat @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert_set_nat @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_545_finite__ne__induct,axiom,
    ! [F: set_b,P2: set_b > $o] :
      ( ( finite_finite_b @ F )
     => ( ( F != bot_bot_set_b )
       => ( ! [X5: b] : ( P2 @ ( insert_b @ X5 @ bot_bot_set_b ) )
         => ( ! [X5: b,F3: set_b] :
                ( ( finite_finite_b @ F3 )
               => ( ( F3 != bot_bot_set_b )
                 => ( ~ ( member_b @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert_b @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_546_finite__ne__induct,axiom,
    ! [F: set_a,P2: set_a > $o] :
      ( ( finite_finite_a @ F )
     => ( ( F != bot_bot_set_a )
       => ( ! [X5: a] : ( P2 @ ( insert_a @ X5 @ bot_bot_set_a ) )
         => ( ! [X5: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( F3 != bot_bot_set_a )
                 => ( ~ ( member_a @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert_a @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_547_finite__ne__induct,axiom,
    ! [F: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ F )
     => ( ( F != bot_bot_set_nat )
       => ( ! [X5: nat] : ( P2 @ ( insert_nat @ X5 @ bot_bot_set_nat ) )
         => ( ! [X5: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( F3 != bot_bot_set_nat )
                 => ( ~ ( member_nat @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert_nat @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_548_finite__ne__induct,axiom,
    ! [F: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( ( F != bot_bo4495933725496725865la_a_b )
       => ( ! [X5: relational_fmla_a_b] : ( P2 @ ( insert7010464514620295119la_a_b @ X5 @ bot_bo4495933725496725865la_a_b ) )
         => ( ! [X5: relational_fmla_a_b,F3: set_Re381260168593705685la_a_b] :
                ( ( finite5600759454172676150la_a_b @ F3 )
               => ( ( F3 != bot_bo4495933725496725865la_a_b )
                 => ( ~ ( member4680049679412964150la_a_b @ X5 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert7010464514620295119la_a_b @ X5 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_ne_induct
thf(fact_549_infinite__finite__induct,axiom,
    ! [P2: set_list_a > $o,A: set_list_a] :
      ( ! [A5: set_list_a] :
          ( ~ ( finite_finite_list_a @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bot_set_list_a )
       => ( ! [X5: list_a,F3: set_list_a] :
              ( ( finite_finite_list_a @ F3 )
             => ( ~ ( member_list_a @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_list_a @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_550_infinite__finite__induct,axiom,
    ! [P2: set_se6865892389300016395la_a_b > $o,A: set_se6865892389300016395la_a_b] :
      ( ! [A5: set_se6865892389300016395la_a_b] :
          ( ~ ( finite5238674622262875500la_a_b @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bo2891247006866115487la_a_b )
       => ( ! [X5: set_Re381260168593705685la_a_b,F3: set_se6865892389300016395la_a_b] :
              ( ( finite5238674622262875500la_a_b @ F3 )
             => ( ~ ( member3481406638322139244la_a_b @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert2023870700798818565la_a_b @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_551_infinite__finite__induct,axiom,
    ! [P2: set_set_nat > $o,A: set_set_nat] :
      ( ! [A5: set_set_nat] :
          ( ~ ( finite1152437895449049373et_nat @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bot_set_set_nat )
       => ( ! [X5: set_nat,F3: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ F3 )
             => ( ~ ( member_set_nat @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_set_nat @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_552_infinite__finite__induct,axiom,
    ! [P2: set_b > $o,A: set_b] :
      ( ! [A5: set_b] :
          ( ~ ( finite_finite_b @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bot_set_b )
       => ( ! [X5: b,F3: set_b] :
              ( ( finite_finite_b @ F3 )
             => ( ~ ( member_b @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_b @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_553_infinite__finite__induct,axiom,
    ! [P2: set_a > $o,A: set_a] :
      ( ! [A5: set_a] :
          ( ~ ( finite_finite_a @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bot_set_a )
       => ( ! [X5: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_a @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_554_infinite__finite__induct,axiom,
    ! [P2: set_nat > $o,A: set_nat] :
      ( ! [A5: set_nat] :
          ( ~ ( finite_finite_nat @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [X5: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert_nat @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_555_infinite__finite__induct,axiom,
    ! [P2: set_Re381260168593705685la_a_b > $o,A: set_Re381260168593705685la_a_b] :
      ( ! [A5: set_Re381260168593705685la_a_b] :
          ( ~ ( finite5600759454172676150la_a_b @ A5 )
         => ( P2 @ A5 ) )
     => ( ( P2 @ bot_bo4495933725496725865la_a_b )
       => ( ! [X5: relational_fmla_a_b,F3: set_Re381260168593705685la_a_b] :
              ( ( finite5600759454172676150la_a_b @ F3 )
             => ( ~ ( member4680049679412964150la_a_b @ X5 @ F3 )
               => ( ( P2 @ F3 )
                 => ( P2 @ ( insert7010464514620295119la_a_b @ X5 @ F3 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% infinite_finite_induct
thf(fact_556_insert__is__Un,axiom,
    ( insert_nat
    = ( ^ [A3: nat] : ( sup_sup_set_nat @ ( insert_nat @ A3 @ bot_bot_set_nat ) ) ) ) ).

% insert_is_Un
thf(fact_557_insert__is__Un,axiom,
    ( insert2023870700798818565la_a_b
    = ( ^ [A3: set_Re381260168593705685la_a_b] : ( sup_su4783144482993978935la_a_b @ ( insert2023870700798818565la_a_b @ A3 @ bot_bo2891247006866115487la_a_b ) ) ) ) ).

% insert_is_Un
thf(fact_558_insert__is__Un,axiom,
    ( insert_b
    = ( ^ [A3: b] : ( sup_sup_set_b @ ( insert_b @ A3 @ bot_bot_set_b ) ) ) ) ).

% insert_is_Un
thf(fact_559_insert__is__Un,axiom,
    ( insert_a
    = ( ^ [A3: a] : ( sup_sup_set_a @ ( insert_a @ A3 @ bot_bot_set_a ) ) ) ) ).

% insert_is_Un
thf(fact_560_insert__is__Un,axiom,
    ( insert7010464514620295119la_a_b
    = ( ^ [A3: relational_fmla_a_b] : ( sup_su5130108678486352897la_a_b @ ( insert7010464514620295119la_a_b @ A3 @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% insert_is_Un
thf(fact_561_Un__singleton__iff,axiom,
    ! [A: set_nat,B2: set_nat,X: nat] :
      ( ( ( sup_sup_set_nat @ A @ B2 )
        = ( insert_nat @ X @ bot_bot_set_nat ) )
      = ( ( ( A = bot_bot_set_nat )
          & ( B2
            = ( insert_nat @ X @ bot_bot_set_nat ) ) )
        | ( ( A
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B2 = bot_bot_set_nat ) )
        | ( ( A
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B2
            = ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_562_Un__singleton__iff,axiom,
    ! [A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( ( sup_su4783144482993978935la_a_b @ A @ B2 )
        = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
      = ( ( ( A = bot_bo2891247006866115487la_a_b )
          & ( B2
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) )
        | ( ( A
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
          & ( B2 = bot_bo2891247006866115487la_a_b ) )
        | ( ( A
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
          & ( B2
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_563_Un__singleton__iff,axiom,
    ! [A: set_b,B2: set_b,X: b] :
      ( ( ( sup_sup_set_b @ A @ B2 )
        = ( insert_b @ X @ bot_bot_set_b ) )
      = ( ( ( A = bot_bot_set_b )
          & ( B2
            = ( insert_b @ X @ bot_bot_set_b ) ) )
        | ( ( A
            = ( insert_b @ X @ bot_bot_set_b ) )
          & ( B2 = bot_bot_set_b ) )
        | ( ( A
            = ( insert_b @ X @ bot_bot_set_b ) )
          & ( B2
            = ( insert_b @ X @ bot_bot_set_b ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_564_Un__singleton__iff,axiom,
    ! [A: set_a,B2: set_a,X: a] :
      ( ( ( sup_sup_set_a @ A @ B2 )
        = ( insert_a @ X @ bot_bot_set_a ) )
      = ( ( ( A = bot_bot_set_a )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2 = bot_bot_set_a ) )
        | ( ( A
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_565_Un__singleton__iff,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,X: relational_fmla_a_b] :
      ( ( ( sup_su5130108678486352897la_a_b @ A @ B2 )
        = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
      = ( ( ( A = bot_bo4495933725496725865la_a_b )
          & ( B2
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) )
        | ( ( A
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
          & ( B2 = bot_bo4495933725496725865la_a_b ) )
        | ( ( A
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
          & ( B2
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_566_singleton__Un__iff,axiom,
    ! [X: nat,A: set_nat,B2: set_nat] :
      ( ( ( insert_nat @ X @ bot_bot_set_nat )
        = ( sup_sup_set_nat @ A @ B2 ) )
      = ( ( ( A = bot_bot_set_nat )
          & ( B2
            = ( insert_nat @ X @ bot_bot_set_nat ) ) )
        | ( ( A
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B2 = bot_bot_set_nat ) )
        | ( ( A
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B2
            = ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_567_singleton__Un__iff,axiom,
    ! [X: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b )
        = ( sup_su4783144482993978935la_a_b @ A @ B2 ) )
      = ( ( ( A = bot_bo2891247006866115487la_a_b )
          & ( B2
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) )
        | ( ( A
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
          & ( B2 = bot_bo2891247006866115487la_a_b ) )
        | ( ( A
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
          & ( B2
            = ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_568_singleton__Un__iff,axiom,
    ! [X: b,A: set_b,B2: set_b] :
      ( ( ( insert_b @ X @ bot_bot_set_b )
        = ( sup_sup_set_b @ A @ B2 ) )
      = ( ( ( A = bot_bot_set_b )
          & ( B2
            = ( insert_b @ X @ bot_bot_set_b ) ) )
        | ( ( A
            = ( insert_b @ X @ bot_bot_set_b ) )
          & ( B2 = bot_bot_set_b ) )
        | ( ( A
            = ( insert_b @ X @ bot_bot_set_b ) )
          & ( B2
            = ( insert_b @ X @ bot_bot_set_b ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_569_singleton__Un__iff,axiom,
    ! [X: a,A: set_a,B2: set_a] :
      ( ( ( insert_a @ X @ bot_bot_set_a )
        = ( sup_sup_set_a @ A @ B2 ) )
      = ( ( ( A = bot_bot_set_a )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2 = bot_bot_set_a ) )
        | ( ( A
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_570_singleton__Un__iff,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b )
        = ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
      = ( ( ( A = bot_bo4495933725496725865la_a_b )
          & ( B2
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) )
        | ( ( A
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
          & ( B2 = bot_bo4495933725496725865la_a_b ) )
        | ( ( A
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
          & ( B2
            = ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_571_fv_Osimps_I5_J,axiom,
    ! [Phi: relational_fmla_a_b,Psi: relational_fmla_a_b] :
      ( ( relational_fv_a_b @ ( relational_Conj_a_b @ Phi @ Psi ) )
      = ( sup_sup_set_nat @ ( relational_fv_a_b @ Phi ) @ ( relational_fv_a_b @ Psi ) ) ) ).

% fv.simps(5)
thf(fact_572_finite__eqs,axiom,
    ! [G: set_Re381260168593705685la_a_b,X: nat] :
      ( ( finite5600759454172676150la_a_b @ G )
     => ( finite_finite_nat @ ( relational_eqs_a_b @ X @ G ) ) ) ).

% finite_eqs
thf(fact_573_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: set_b,K: set_b,B: set_b,A2: set_b] :
      ( ( B2
        = ( sup_sup_set_b @ K @ B ) )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = ( sup_sup_set_b @ K @ ( sup_sup_set_b @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_574_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: set_a,K: set_a,B: set_a,A2: set_a] :
      ( ( B2
        = ( sup_sup_set_a @ K @ B ) )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_575_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: nat,K: nat,B: nat,A2: nat] :
      ( ( B2
        = ( sup_sup_nat @ K @ B ) )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = ( sup_sup_nat @ K @ ( sup_sup_nat @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_576_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: relational_fmla_a_b > $o,K: relational_fmla_a_b > $o,B: relational_fmla_a_b > $o,A2: relational_fmla_a_b > $o] :
      ( ( B2
        = ( sup_su1471977682094119364_a_b_o @ K @ B ) )
     => ( ( sup_su1471977682094119364_a_b_o @ A2 @ B2 )
        = ( sup_su1471977682094119364_a_b_o @ K @ ( sup_su1471977682094119364_a_b_o @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_577_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: nat > $o,K: nat > $o,B: nat > $o,A2: nat > $o] :
      ( ( B2
        = ( sup_sup_nat_o @ K @ B ) )
     => ( ( sup_sup_nat_o @ A2 @ B2 )
        = ( sup_sup_nat_o @ K @ ( sup_sup_nat_o @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_578_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: set_Re381260168593705685la_a_b,K: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( B2
        = ( sup_su5130108678486352897la_a_b @ K @ B ) )
     => ( ( sup_su5130108678486352897la_a_b @ A2 @ B2 )
        = ( sup_su5130108678486352897la_a_b @ K @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_579_flat__Disj_Oelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( ( restri569617705344514291sj_a_b @ X )
        = Y )
     => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
            ( ( X
              = ( relational_Disj_a_b @ Q13 @ Q24 ) )
           => ( Y
             != ( sup_su5130108678486352897la_a_b @ ( restri569617705344514291sj_a_b @ Q13 ) @ ( restri569617705344514291sj_a_b @ Q24 ) ) ) )
       => ( ! [V2: b,Va2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ V2 @ Va2 ) )
             => ( Y
               != ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) ) )
         => ( ! [V2: $o] :
                ( ( X
                  = ( relational_Bool_a_b @ V2 ) )
               => ( Y
                 != ( insert7010464514620295119la_a_b @ ( relational_Bool_a_b @ V2 ) @ bot_bo4495933725496725865la_a_b ) ) )
           => ( ! [V2: nat,Va2: relational_term_a] :
                  ( ( X
                    = ( relational_Eq_a_b @ V2 @ Va2 ) )
                 => ( Y
                   != ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) ) )
             => ( ! [V2: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ V2 ) )
                   => ( Y
                     != ( insert7010464514620295119la_a_b @ ( relational_Neg_a_b @ V2 ) @ bot_bo4495933725496725865la_a_b ) ) )
               => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ V2 @ Va2 ) )
                     => ( Y
                       != ( insert7010464514620295119la_a_b @ ( relational_Conj_a_b @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) ) )
                 => ~ ! [V2: nat,Va2: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ V2 @ Va2 ) )
                       => ( Y
                         != ( insert7010464514620295119la_a_b @ ( relati591517084277583526ts_a_b @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) ) ) ) ) ) ) ) ) ) ).

% flat_Disj.elims
thf(fact_580_sub_Oelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( ( relational_sub_a_b @ X )
        = Y )
     => ( ! [T3: $o] :
            ( ( X
              = ( relational_Bool_a_b @ T3 ) )
           => ( Y
             != ( insert7010464514620295119la_a_b @ ( relational_Bool_a_b @ T3 ) @ bot_bo4495933725496725865la_a_b ) ) )
       => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ P3 @ Ts2 ) )
             => ( Y
               != ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ P3 @ Ts2 ) @ bot_bo4495933725496725865la_a_b ) ) )
         => ( ! [X5: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ X5 @ T3 ) )
               => ( Y
                 != ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) @ bot_bo4495933725496725865la_a_b ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( Y
                   != ( insert7010464514620295119la_a_b @ ( relational_Neg_a_b @ Q4 ) @ ( relational_sub_a_b @ Q4 ) ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( Y
                     != ( insert7010464514620295119la_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) @ ( sup_su5130108678486352897la_a_b @ ( relational_sub_a_b @ Q13 ) @ ( relational_sub_a_b @ Q24 ) ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( Y
                       != ( insert7010464514620295119la_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) @ ( sup_su5130108678486352897la_a_b @ ( relational_sub_a_b @ Q13 ) @ ( relational_sub_a_b @ Q24 ) ) ) ) )
                 => ~ ! [Z2: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) )
                       => ( Y
                         != ( insert7010464514620295119la_a_b @ ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) @ ( relational_sub_a_b @ Q4 ) ) ) ) ) ) ) ) ) ) ) ).

% sub.elims
thf(fact_581_the__elem__eq,axiom,
    ! [X: relational_fmla_a_b] :
      ( ( the_el6350558617753882986la_a_b @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
      = X ) ).

% the_elem_eq
thf(fact_582_the__elem__eq,axiom,
    ! [X: nat] :
      ( ( the_elem_nat @ ( insert_nat @ X @ bot_bot_set_nat ) )
      = X ) ).

% the_elem_eq
thf(fact_583_the__elem__eq,axiom,
    ! [X: set_Re381260168593705685la_a_b] :
      ( ( the_el7486773796875720352la_a_b @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
      = X ) ).

% the_elem_eq
thf(fact_584_the__elem__eq,axiom,
    ! [X: b] :
      ( ( the_elem_b @ ( insert_b @ X @ bot_bot_set_b ) )
      = X ) ).

% the_elem_eq
thf(fact_585_the__elem__eq,axiom,
    ! [X: a] :
      ( ( the_elem_a @ ( insert_a @ X @ bot_bot_set_a ) )
      = X ) ).

% the_elem_eq
thf(fact_586_bot__apply,axiom,
    ( bot_bo8852203127187332700_a_b_o
    = ( ^ [X3: relational_fmla_a_b] : bot_bot_o ) ) ).

% bot_apply
thf(fact_587_bot__apply,axiom,
    ( bot_bot_nat_o
    = ( ^ [X3: nat] : bot_bot_o ) ) ).

% bot_apply
thf(fact_588_is__singletonI,axiom,
    ! [X: set_Re381260168593705685la_a_b] : ( is_sin1114528679824004833la_a_b @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) ).

% is_singletonI
thf(fact_589_is__singletonI,axiom,
    ! [X: nat] : ( is_singleton_nat @ ( insert_nat @ X @ bot_bot_set_nat ) ) ).

% is_singletonI
thf(fact_590_is__singletonI,axiom,
    ! [X: relational_fmla_a_b] : ( is_sin6594375743535830443la_a_b @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) ).

% is_singletonI
thf(fact_591_is__singletonI,axiom,
    ! [X: b] : ( is_singleton_b @ ( insert_b @ X @ bot_bot_set_b ) ) ).

% is_singletonI
thf(fact_592_is__singletonI,axiom,
    ! [X: a] : ( is_singleton_a @ ( insert_a @ X @ bot_bot_set_a ) ) ).

% is_singletonI
thf(fact_593_finite__transitivity__chain,axiom,
    ! [A: set_list_a,R: list_a > list_a > $o] :
      ( ( finite_finite_list_a @ A )
     => ( ! [X5: list_a] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: list_a,Y6: list_a,Z2: list_a] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: list_a] :
                ( ( member_list_a @ X5 @ A )
               => ? [Y7: list_a] :
                    ( ( member_list_a @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bot_set_list_a ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_594_finite__transitivity__chain,axiom,
    ! [A: set_se6865892389300016395la_a_b,R: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > $o] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ! [X5: set_Re381260168593705685la_a_b] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b,Z2: set_Re381260168593705685la_a_b] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: set_Re381260168593705685la_a_b] :
                ( ( member3481406638322139244la_a_b @ X5 @ A )
               => ? [Y7: set_Re381260168593705685la_a_b] :
                    ( ( member3481406638322139244la_a_b @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bo2891247006866115487la_a_b ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_595_finite__transitivity__chain,axiom,
    ! [A: set_set_nat,R: set_nat > set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ A )
     => ( ! [X5: set_nat] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: set_nat,Y6: set_nat,Z2: set_nat] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: set_nat] :
                ( ( member_set_nat @ X5 @ A )
               => ? [Y7: set_nat] :
                    ( ( member_set_nat @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bot_set_set_nat ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_596_finite__transitivity__chain,axiom,
    ! [A: set_b,R: b > b > $o] :
      ( ( finite_finite_b @ A )
     => ( ! [X5: b] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: b,Y6: b,Z2: b] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: b] :
                ( ( member_b @ X5 @ A )
               => ? [Y7: b] :
                    ( ( member_b @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bot_set_b ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_597_finite__transitivity__chain,axiom,
    ! [A: set_a,R: a > a > $o] :
      ( ( finite_finite_a @ A )
     => ( ! [X5: a] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: a,Y6: a,Z2: a] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: a] :
                ( ( member_a @ X5 @ A )
               => ? [Y7: a] :
                    ( ( member_a @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bot_set_a ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_598_finite__transitivity__chain,axiom,
    ! [A: set_nat,R: nat > nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ! [X5: nat] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: nat,Y6: nat,Z2: nat] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ A )
               => ? [Y7: nat] :
                    ( ( member_nat @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bot_set_nat ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_599_finite__transitivity__chain,axiom,
    ! [A: set_Re381260168593705685la_a_b,R: relational_fmla_a_b > relational_fmla_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ! [X5: relational_fmla_a_b] :
            ~ ( R @ X5 @ X5 )
       => ( ! [X5: relational_fmla_a_b,Y6: relational_fmla_a_b,Z2: relational_fmla_a_b] :
              ( ( R @ X5 @ Y6 )
             => ( ( R @ Y6 @ Z2 )
               => ( R @ X5 @ Z2 ) ) )
         => ( ! [X5: relational_fmla_a_b] :
                ( ( member4680049679412964150la_a_b @ X5 @ A )
               => ? [Y7: relational_fmla_a_b] :
                    ( ( member4680049679412964150la_a_b @ Y7 @ A )
                    & ( R @ X5 @ Y7 ) ) )
           => ( A = bot_bo4495933725496725865la_a_b ) ) ) ) ) ).

% finite_transitivity_chain
thf(fact_600_fmla_Oexhaust,axiom,
    ! [Y: relational_fmla_a_b] :
      ( ! [X112: b,X122: list_R6823256787227418703term_a] :
          ( Y
         != ( relational_Pred_b_a @ X112 @ X122 ) )
     => ( ! [X22: $o] :
            ( Y
           != ( relational_Bool_a_b @ X22 ) )
       => ( ! [X31: nat,X32: relational_term_a] :
              ( Y
             != ( relational_Eq_a_b @ X31 @ X32 ) )
         => ( ! [X42: relational_fmla_a_b] :
                ( Y
               != ( relational_Neg_a_b @ X42 ) )
           => ( ! [X512: relational_fmla_a_b,X522: relational_fmla_a_b] :
                  ( Y
                 != ( relational_Conj_a_b @ X512 @ X522 ) )
             => ( ! [X612: relational_fmla_a_b,X622: relational_fmla_a_b] :
                    ( Y
                   != ( relational_Disj_a_b @ X612 @ X622 ) )
               => ~ ! [X712: nat,X722: relational_fmla_a_b] :
                      ( Y
                     != ( relati591517084277583526ts_a_b @ X712 @ X722 ) ) ) ) ) ) ) ) ).

% fmla.exhaust
thf(fact_601_fmla_Oinject_I3_J,axiom,
    ! [X312: nat,X322: relational_term_a,Y31: nat,Y32: relational_term_a] :
      ( ( ( relational_Eq_a_b @ X312 @ X322 )
        = ( relational_Eq_a_b @ Y31 @ Y32 ) )
      = ( ( X312 = Y31 )
        & ( X322 = Y32 ) ) ) ).

% fmla.inject(3)
thf(fact_602_bot__set__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat @ bot_bot_nat_o ) ) ).

% bot_set_def
thf(fact_603_fmla_Odistinct_I27_J,axiom,
    ! [X312: nat,X322: relational_term_a,X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( relational_Eq_a_b @ X312 @ X322 )
     != ( relational_Disj_a_b @ X61 @ X62 ) ) ).

% fmla.distinct(27)
thf(fact_604_fmla_Odistinct_I13_J,axiom,
    ! [X2: $o,X312: nat,X322: relational_term_a] :
      ( ( relational_Bool_a_b @ X2 )
     != ( relational_Eq_a_b @ X312 @ X322 ) ) ).

% fmla.distinct(13)
thf(fact_605_fmla_Odistinct_I3_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a,X312: nat,X322: relational_term_a] :
      ( ( relational_Pred_b_a @ X11 @ X12 )
     != ( relational_Eq_a_b @ X312 @ X322 ) ) ).

% fmla.distinct(3)
thf(fact_606_fv_Osimps_I2_J,axiom,
    ! [B: $o] :
      ( ( relational_fv_a_b @ ( relational_Bool_a_b @ B ) )
      = bot_bot_set_nat ) ).

% fv.simps(2)
thf(fact_607_is__singletonI_H,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( A != bot_bo4495933725496725865la_a_b )
     => ( ! [X5: relational_fmla_a_b,Y6: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X5 @ A )
           => ( ( member4680049679412964150la_a_b @ Y6 @ A )
             => ( X5 = Y6 ) ) )
       => ( is_sin6594375743535830443la_a_b @ A ) ) ) ).

% is_singletonI'
thf(fact_608_is__singletonI_H,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
     => ( ! [X5: nat,Y6: nat] :
            ( ( member_nat @ X5 @ A )
           => ( ( member_nat @ Y6 @ A )
             => ( X5 = Y6 ) ) )
       => ( is_singleton_nat @ A ) ) ) ).

% is_singletonI'
thf(fact_609_sub_Osimps_I3_J,axiom,
    ! [X: nat,T2: relational_term_a] :
      ( ( relational_sub_a_b @ ( relational_Eq_a_b @ X @ T2 ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X @ T2 ) @ bot_bo4495933725496725865la_a_b ) ) ).

% sub.simps(3)
thf(fact_610_flat__Disj_Osimps_I4_J,axiom,
    ! [V: nat,Va: relational_term_a] :
      ( ( restri569617705344514291sj_a_b @ ( relational_Eq_a_b @ V @ Va ) )
      = ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ V @ Va ) @ bot_bo4495933725496725865la_a_b ) ) ).

% flat_Disj.simps(4)
thf(fact_611_cp_Ocases,axiom,
    ! [X: relational_fmla_a_b] :
      ( ! [X5: nat,T3: relational_term_a] :
          ( X
         != ( relational_Eq_a_b @ X5 @ T3 ) )
     => ( ! [Q4: relational_fmla_a_b] :
            ( X
           != ( relational_Neg_a_b @ Q4 ) )
       => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
              ( X
             != ( relational_Conj_a_b @ Q13 @ Q24 ) )
         => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                ( X
               != ( relational_Disj_a_b @ Q13 @ Q24 ) )
           => ( ! [X5: nat,Q4: relational_fmla_a_b] :
                  ( X
                 != ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
             => ( ! [V2: b,Va2: list_R6823256787227418703term_a] :
                    ( X
                   != ( relational_Pred_b_a @ V2 @ Va2 ) )
               => ~ ! [V2: $o] :
                      ( X
                     != ( relational_Bool_a_b @ V2 ) ) ) ) ) ) ) ) ).

% cp.cases
thf(fact_612_fv_Ocases,axiom,
    ! [X: relational_fmla_a_b] :
      ( ! [Uu2: b,Ts2: list_R6823256787227418703term_a] :
          ( X
         != ( relational_Pred_b_a @ Uu2 @ Ts2 ) )
     => ( ! [B6: $o] :
            ( X
           != ( relational_Bool_a_b @ B6 ) )
       => ( ! [X5: nat,T4: relational_term_a] :
              ( X
             != ( relational_Eq_a_b @ X5 @ T4 ) )
         => ( ! [Phi2: relational_fmla_a_b] :
                ( X
               != ( relational_Neg_a_b @ Phi2 ) )
           => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b] :
                  ( X
                 != ( relational_Conj_a_b @ Phi2 @ Psi2 ) )
             => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b] :
                    ( X
                   != ( relational_Disj_a_b @ Phi2 @ Psi2 ) )
               => ~ ! [Z2: nat,Phi2: relational_fmla_a_b] :
                      ( X
                     != ( relati591517084277583526ts_a_b @ Z2 @ Phi2 ) ) ) ) ) ) ) ) ).

% fv.cases
thf(fact_613_nocp_Ocases,axiom,
    ! [X: relational_fmla_a_b] :
      ( ! [B6: $o] :
          ( X
         != ( relational_Bool_a_b @ B6 ) )
     => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
            ( X
           != ( relational_Pred_b_a @ P3 @ Ts2 ) )
       => ( ! [X5: nat,T3: relational_term_a] :
              ( X
             != ( relational_Eq_a_b @ X5 @ T3 ) )
         => ( ! [Q4: relational_fmla_a_b] :
                ( X
               != ( relational_Neg_a_b @ Q4 ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                  ( X
                 != ( relational_Conj_a_b @ Q13 @ Q24 ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( X
                   != ( relational_Disj_a_b @ Q13 @ Q24 ) )
               => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                      ( X
                     != ( relati591517084277583526ts_a_b @ X5 @ Q4 ) ) ) ) ) ) ) ) ).

% nocp.cases
thf(fact_614_flat__Disj_Ocases,axiom,
    ! [X: relational_fmla_a_b] :
      ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
          ( X
         != ( relational_Disj_a_b @ Q13 @ Q24 ) )
     => ( ! [V2: b,Va2: list_R6823256787227418703term_a] :
            ( X
           != ( relational_Pred_b_a @ V2 @ Va2 ) )
       => ( ! [V2: $o] :
              ( X
             != ( relational_Bool_a_b @ V2 ) )
         => ( ! [V2: nat,Va2: relational_term_a] :
                ( X
               != ( relational_Eq_a_b @ V2 @ Va2 ) )
           => ( ! [V2: relational_fmla_a_b] :
                  ( X
                 != ( relational_Neg_a_b @ V2 ) )
             => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                    ( X
                   != ( relational_Conj_a_b @ V2 @ Va2 ) )
               => ~ ! [V2: nat,Va2: relational_fmla_a_b] :
                      ( X
                     != ( relati591517084277583526ts_a_b @ V2 @ Va2 ) ) ) ) ) ) ) ) ).

% flat_Disj.cases
thf(fact_615_nocp_Oelims_I1_J,axiom,
    ! [X: relational_fmla_a_b,Y: $o] :
      ( ( ( relational_nocp_a_b @ X )
        = Y )
     => ( ( ? [B6: $o] :
              ( X
              = ( relational_Bool_a_b @ B6 ) )
         => Y )
       => ( ( ? [P3: b,Ts2: list_R6823256787227418703term_a] :
                ( X
                = ( relational_Pred_b_a @ P3 @ Ts2 ) )
           => ~ Y )
         => ( ! [X5: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ X5 @ T3 ) )
               => ( Y
                  = ( T3
                    = ( relational_Var_a @ X5 ) ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( Y
                    = ( ~ ( relational_nocp_a_b @ Q4 ) ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( Y
                      = ( ~ ( ( relational_nocp_a_b @ Q13 )
                            & ( relational_nocp_a_b @ Q24 ) ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( Y
                        = ( ~ ( ( relational_nocp_a_b @ Q13 )
                              & ( relational_nocp_a_b @ Q24 ) ) ) ) )
                 => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                       => ( Y
                          = ( ~ ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                                & ( relational_nocp_a_b @ Q4 ) ) ) ) ) ) ) ) ) ) ) ) ).

% nocp.elims(1)
thf(fact_616_nocp_Oelims_I2_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ X )
     => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
            ( X
           != ( relational_Pred_b_a @ P3 @ Ts2 ) )
       => ( ! [X5: nat,T3: relational_term_a] :
              ( ( X
                = ( relational_Eq_a_b @ X5 @ T3 ) )
             => ( T3
                = ( relational_Var_a @ X5 ) ) )
         => ( ! [Q4: relational_fmla_a_b] :
                ( ( X
                  = ( relational_Neg_a_b @ Q4 ) )
               => ~ ( relational_nocp_a_b @ Q4 ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                 => ~ ( ( relational_nocp_a_b @ Q13 )
                      & ( relational_nocp_a_b @ Q24 ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                   => ~ ( ( relational_nocp_a_b @ Q13 )
                        & ( relational_nocp_a_b @ Q24 ) ) )
               => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                      ( ( X
                        = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                     => ~ ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                          & ( relational_nocp_a_b @ Q4 ) ) ) ) ) ) ) ) ) ).

% nocp.elims(2)
thf(fact_617_nocp_Oelims_I3_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ~ ( relational_nocp_a_b @ X )
     => ( ! [B6: $o] :
            ( X
           != ( relational_Bool_a_b @ B6 ) )
       => ( ! [X5: nat,T3: relational_term_a] :
              ( ( X
                = ( relational_Eq_a_b @ X5 @ T3 ) )
             => ( T3
               != ( relational_Var_a @ X5 ) ) )
         => ( ! [Q4: relational_fmla_a_b] :
                ( ( X
                  = ( relational_Neg_a_b @ Q4 ) )
               => ( relational_nocp_a_b @ Q4 ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                 => ( ( relational_nocp_a_b @ Q13 )
                    & ( relational_nocp_a_b @ Q24 ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                   => ( ( relational_nocp_a_b @ Q13 )
                      & ( relational_nocp_a_b @ Q24 ) ) )
               => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                      ( ( X
                        = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                     => ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                        & ( relational_nocp_a_b @ Q4 ) ) ) ) ) ) ) ) ) ).

% nocp.elims(3)
thf(fact_618_erase_Ocases,axiom,
    ! [X: produc7366699395886430672_b_nat] :
      ( ! [T3: $o,X5: nat] :
          ( X
         != ( produc4282057684358614024_b_nat @ ( relational_Bool_a_b @ T3 ) @ X5 ) )
     => ( ! [P3: b,Ts2: list_R6823256787227418703term_a,X5: nat] :
            ( X
           != ( produc4282057684358614024_b_nat @ ( relational_Pred_b_a @ P3 @ Ts2 ) @ X5 ) )
       => ( ! [Z2: nat,T3: relational_term_a,X5: nat] :
              ( X
             != ( produc4282057684358614024_b_nat @ ( relational_Eq_a_b @ Z2 @ T3 ) @ X5 ) )
         => ( ! [Q4: relational_fmla_a_b,X5: nat] :
                ( X
               != ( produc4282057684358614024_b_nat @ ( relational_Neg_a_b @ Q4 ) @ X5 ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b,X5: nat] :
                  ( X
                 != ( produc4282057684358614024_b_nat @ ( relational_Conj_a_b @ Q13 @ Q24 ) @ X5 ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b,X5: nat] :
                    ( X
                   != ( produc4282057684358614024_b_nat @ ( relational_Disj_a_b @ Q13 @ Q24 ) @ X5 ) )
               => ~ ! [Z2: nat,Q4: relational_fmla_a_b,X5: nat] :
                      ( X
                     != ( produc4282057684358614024_b_nat @ ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) @ X5 ) ) ) ) ) ) ) ) ).

% erase.cases
thf(fact_619_flat__Disj_Opelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( ( restri569617705344514291sj_a_b @ X )
        = Y )
     => ( ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ X )
       => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
              ( ( X
                = ( relational_Disj_a_b @ Q13 @ Q24 ) )
             => ( ( Y
                  = ( sup_su5130108678486352897la_a_b @ ( restri569617705344514291sj_a_b @ Q13 ) @ ( restri569617705344514291sj_a_b @ Q24 ) ) )
               => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) ) )
         => ( ! [V2: b,Va2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ V2 @ Va2 ) )
               => ( ( Y
                    = ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) )
                 => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relational_Pred_b_a @ V2 @ Va2 ) ) ) )
           => ( ! [V2: $o] :
                  ( ( X
                    = ( relational_Bool_a_b @ V2 ) )
                 => ( ( Y
                      = ( insert7010464514620295119la_a_b @ ( relational_Bool_a_b @ V2 ) @ bot_bo4495933725496725865la_a_b ) )
                   => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relational_Bool_a_b @ V2 ) ) ) )
             => ( ! [V2: nat,Va2: relational_term_a] :
                    ( ( X
                      = ( relational_Eq_a_b @ V2 @ Va2 ) )
                   => ( ( Y
                        = ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) )
                     => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relational_Eq_a_b @ V2 @ Va2 ) ) ) )
               => ( ! [V2: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Neg_a_b @ V2 ) )
                     => ( ( Y
                          = ( insert7010464514620295119la_a_b @ ( relational_Neg_a_b @ V2 ) @ bot_bo4495933725496725865la_a_b ) )
                       => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relational_Neg_a_b @ V2 ) ) ) )
                 => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Conj_a_b @ V2 @ Va2 ) )
                       => ( ( Y
                            = ( insert7010464514620295119la_a_b @ ( relational_Conj_a_b @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) )
                         => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relational_Conj_a_b @ V2 @ Va2 ) ) ) )
                   => ~ ! [V2: nat,Va2: relational_fmla_a_b] :
                          ( ( X
                            = ( relati591517084277583526ts_a_b @ V2 @ Va2 ) )
                         => ( ( Y
                              = ( insert7010464514620295119la_a_b @ ( relati591517084277583526ts_a_b @ V2 @ Va2 ) @ bot_bo4495933725496725865la_a_b ) )
                           => ~ ( accp_R989495437599811158la_a_b @ restri7773364413411414152el_a_b @ ( relati591517084277583526ts_a_b @ V2 @ Va2 ) ) ) ) ) ) ) ) ) ) ) ) ).

% flat_Disj.pelims
thf(fact_620_sub_Opelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( ( relational_sub_a_b @ X )
        = Y )
     => ( ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ X )
       => ( ! [T3: $o] :
              ( ( X
                = ( relational_Bool_a_b @ T3 ) )
             => ( ( Y
                  = ( insert7010464514620295119la_a_b @ ( relational_Bool_a_b @ T3 ) @ bot_bo4495933725496725865la_a_b ) )
               => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relational_Bool_a_b @ T3 ) ) ) )
         => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ P3 @ Ts2 ) )
               => ( ( Y
                    = ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ P3 @ Ts2 ) @ bot_bo4495933725496725865la_a_b ) )
                 => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relational_Pred_b_a @ P3 @ Ts2 ) ) ) )
           => ( ! [X5: nat,T3: relational_term_a] :
                  ( ( X
                    = ( relational_Eq_a_b @ X5 @ T3 ) )
                 => ( ( Y
                      = ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) @ bot_bo4495933725496725865la_a_b ) )
                   => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) ) ) )
             => ( ! [Q4: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ Q4 ) )
                   => ( ( Y
                        = ( insert7010464514620295119la_a_b @ ( relational_Neg_a_b @ Q4 ) @ ( relational_sub_a_b @ Q4 ) ) )
                     => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relational_Neg_a_b @ Q4 ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ( ( Y
                          = ( insert7010464514620295119la_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) @ ( sup_su5130108678486352897la_a_b @ ( relational_sub_a_b @ Q13 ) @ ( relational_sub_a_b @ Q24 ) ) ) )
                       => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) ) )
                 => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                       => ( ( Y
                            = ( insert7010464514620295119la_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) @ ( sup_su5130108678486352897la_a_b @ ( relational_sub_a_b @ Q13 ) @ ( relational_sub_a_b @ Q24 ) ) ) )
                         => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) ) )
                   => ~ ! [Z2: nat,Q4: relational_fmla_a_b] :
                          ( ( X
                            = ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) )
                         => ( ( Y
                              = ( insert7010464514620295119la_a_b @ ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) @ ( relational_sub_a_b @ Q4 ) ) )
                           => ~ ( accp_R989495437599811158la_a_b @ relati7309537865537208983el_a_b @ ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) ) ) ) ) ) ) ) ) ) ) ) ).

% sub.pelims
thf(fact_621_fv_Oelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_nat] :
      ( ( ( relational_fv_a_b @ X )
        = Y )
     => ( ! [Uu2: b,Ts2: list_R6823256787227418703term_a] :
            ( ( X
              = ( relational_Pred_b_a @ Uu2 @ Ts2 ) )
           => ( Y
             != ( relati4569515538964159125_set_a @ Ts2 ) ) )
       => ( ( ? [B6: $o] :
                ( X
                = ( relational_Bool_a_b @ B6 ) )
           => ( Y != bot_bot_set_nat ) )
         => ( ! [X5: nat,T4: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ X5 @ T4 ) )
               => ( Y
                 != ( sup_sup_set_nat @ ( insert_nat @ X5 @ bot_bot_set_nat ) @ ( relati6004689760767320788_set_a @ T4 ) ) ) )
           => ( ! [Phi2: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Phi2 ) )
                 => ( Y
                   != ( relational_fv_a_b @ Phi2 ) ) )
             => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Phi2 @ Psi2 ) )
                   => ( Y
                     != ( sup_sup_set_nat @ ( relational_fv_a_b @ Phi2 ) @ ( relational_fv_a_b @ Psi2 ) ) ) )
               => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Phi2 @ Psi2 ) )
                     => ( Y
                       != ( sup_sup_set_nat @ ( relational_fv_a_b @ Phi2 ) @ ( relational_fv_a_b @ Psi2 ) ) ) )
                 => ~ ! [Z2: nat,Phi2: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ Z2 @ Phi2 ) )
                       => ( Y
                         != ( minus_minus_set_nat @ ( relational_fv_a_b @ Phi2 ) @ ( insert_nat @ Z2 @ bot_bot_set_nat ) ) ) ) ) ) ) ) ) ) ) ).

% fv.elims
thf(fact_622_DiffI,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ A )
     => ( ~ ( member4680049679412964150la_a_b @ C @ B2 )
       => ( member4680049679412964150la_a_b @ C @ ( minus_4077726661957047470la_a_b @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_623_DiffI,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A )
     => ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_624_Diff__iff,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ ( minus_4077726661957047470la_a_b @ A @ B2 ) )
      = ( ( member4680049679412964150la_a_b @ C @ A )
        & ~ ( member4680049679412964150la_a_b @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_625_Diff__iff,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A @ B2 ) )
      = ( ( member_nat @ C @ A )
        & ~ ( member_nat @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_626_Diff__insert0,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ X @ A )
     => ( ( minus_4077726661957047470la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ B2 ) )
        = ( minus_4077726661957047470la_a_b @ A @ B2 ) ) ) ).

% Diff_insert0
thf(fact_627_Diff__insert0,axiom,
    ! [X: nat,A: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A )
     => ( ( minus_minus_set_nat @ A @ ( insert_nat @ X @ B2 ) )
        = ( minus_minus_set_nat @ A @ B2 ) ) ) ).

% Diff_insert0
thf(fact_628_insert__Diff1,axiom,
    ! [X: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ B2 )
     => ( ( minus_4077726661957047470la_a_b @ ( insert7010464514620295119la_a_b @ X @ A ) @ B2 )
        = ( minus_4077726661957047470la_a_b @ A @ B2 ) ) ) ).

% insert_Diff1
thf(fact_629_insert__Diff1,axiom,
    ! [X: nat,B2: set_nat,A: set_nat] :
      ( ( member_nat @ X @ B2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A ) @ B2 )
        = ( minus_minus_set_nat @ A @ B2 ) ) ) ).

% insert_Diff1
thf(fact_630_finite__Diff2,axiom,
    ! [B2: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A @ B2 ) )
        = ( finite_finite_nat @ A ) ) ) ).

% finite_Diff2
thf(fact_631_finite__Diff2,axiom,
    ! [B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ B2 )
     => ( ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ A @ B2 ) )
        = ( finite5600759454172676150la_a_b @ A ) ) ) ).

% finite_Diff2
thf(fact_632_finite__Diff,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A @ B2 ) ) ) ).

% finite_Diff
thf(fact_633_finite__Diff,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ A @ B2 ) ) ) ).

% finite_Diff
thf(fact_634_Un__Diff__cancel2,axiom,
    ! [B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ ( minus_4077726661957047470la_a_b @ B2 @ A ) @ A )
      = ( sup_su5130108678486352897la_a_b @ B2 @ A ) ) ).

% Un_Diff_cancel2
thf(fact_635_Un__Diff__cancel,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( sup_su5130108678486352897la_a_b @ A @ ( minus_4077726661957047470la_a_b @ B2 @ A ) )
      = ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ).

% Un_Diff_cancel
thf(fact_636_finite__Diff__insert,axiom,
    ! [A: set_nat,A2: nat,B2: set_nat] :
      ( ( finite_finite_nat @ ( minus_minus_set_nat @ A @ ( insert_nat @ A2 @ B2 ) ) )
      = ( finite_finite_nat @ ( minus_minus_set_nat @ A @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_637_finite__Diff__insert,axiom,
    ! [A: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ A @ ( insert7010464514620295119la_a_b @ A2 @ B2 ) ) )
      = ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ A @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_638_cpropagated__simps_I3_J,axiom,
    ! [X: nat,T2: relational_term_a] :
      ( ( relati1591879772219623554ed_a_b @ ( relational_Eq_a_b @ X @ T2 ) )
      = ( T2
       != ( relational_Var_a @ X ) ) ) ).

% cpropagated_simps(3)
thf(fact_639_DiffE,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ ( minus_4077726661957047470la_a_b @ A @ B2 ) )
     => ~ ( ( member4680049679412964150la_a_b @ C @ A )
         => ( member4680049679412964150la_a_b @ C @ B2 ) ) ) ).

% DiffE
thf(fact_640_DiffE,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A @ B2 ) )
     => ~ ( ( member_nat @ C @ A )
         => ( member_nat @ C @ B2 ) ) ) ).

% DiffE
thf(fact_641_DiffD1,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ ( minus_4077726661957047470la_a_b @ A @ B2 ) )
     => ( member4680049679412964150la_a_b @ C @ A ) ) ).

% DiffD1
thf(fact_642_DiffD1,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A @ B2 ) )
     => ( member_nat @ C @ A ) ) ).

% DiffD1
thf(fact_643_DiffD2,axiom,
    ! [C: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ C @ ( minus_4077726661957047470la_a_b @ A @ B2 ) )
     => ~ ( member4680049679412964150la_a_b @ C @ B2 ) ) ).

% DiffD2
thf(fact_644_DiffD2,axiom,
    ! [C: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A @ B2 ) )
     => ~ ( member_nat @ C @ B2 ) ) ).

% DiffD2
thf(fact_645_insert__Diff__if,axiom,
    ! [X: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( ( member4680049679412964150la_a_b @ X @ B2 )
       => ( ( minus_4077726661957047470la_a_b @ ( insert7010464514620295119la_a_b @ X @ A ) @ B2 )
          = ( minus_4077726661957047470la_a_b @ A @ B2 ) ) )
      & ( ~ ( member4680049679412964150la_a_b @ X @ B2 )
       => ( ( minus_4077726661957047470la_a_b @ ( insert7010464514620295119la_a_b @ X @ A ) @ B2 )
          = ( insert7010464514620295119la_a_b @ X @ ( minus_4077726661957047470la_a_b @ A @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_646_insert__Diff__if,axiom,
    ! [X: nat,B2: set_nat,A: set_nat] :
      ( ( ( member_nat @ X @ B2 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A ) @ B2 )
          = ( minus_minus_set_nat @ A @ B2 ) ) )
      & ( ~ ( member_nat @ X @ B2 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A ) @ B2 )
          = ( insert_nat @ X @ ( minus_minus_set_nat @ A @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_647_Diff__infinite__finite,axiom,
    ! [T: set_nat,S: set_nat] :
      ( ( finite_finite_nat @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_648_Diff__infinite__finite,axiom,
    ! [T: set_Re381260168593705685la_a_b,S: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ T )
     => ( ~ ( finite5600759454172676150la_a_b @ S )
       => ~ ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_649_Un__Diff,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( minus_4077726661957047470la_a_b @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) @ C2 )
      = ( sup_su5130108678486352897la_a_b @ ( minus_4077726661957047470la_a_b @ A @ C2 ) @ ( minus_4077726661957047470la_a_b @ B2 @ C2 ) ) ) ).

% Un_Diff
thf(fact_650_erase_Osimps_I3_J,axiom,
    ! [T2: relational_term_a,Z: nat,X: nat] :
      ( ( ( T2
          = ( relational_Var_a @ Z ) )
       => ( ( relational_erase_a_b @ ( relational_Eq_a_b @ Z @ T2 ) @ X )
          = ( relational_Bool_a_b @ $true ) ) )
      & ( ( T2
         != ( relational_Var_a @ Z ) )
       => ( ( ( ( X = Z )
              | ( member_nat @ X @ ( relati6004689760767320788_set_a @ T2 ) ) )
           => ( ( relational_erase_a_b @ ( relational_Eq_a_b @ Z @ T2 ) @ X )
              = ( relational_Bool_a_b @ $false ) ) )
          & ( ~ ( ( X = Z )
                | ( member_nat @ X @ ( relati6004689760767320788_set_a @ T2 ) ) )
           => ( ( relational_erase_a_b @ ( relational_Eq_a_b @ Z @ T2 ) @ X )
              = ( relational_Eq_a_b @ Z @ T2 ) ) ) ) ) ) ).

% erase.simps(3)
thf(fact_651_Diff__insert__absorb,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ X @ A )
     => ( ( minus_4077726661957047470la_a_b @ ( insert7010464514620295119la_a_b @ X @ A ) @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_652_Diff__insert__absorb,axiom,
    ! [X: nat,A: set_nat] :
      ( ~ ( member_nat @ X @ A )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A ) @ ( insert_nat @ X @ bot_bot_set_nat ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_653_insert__Diff,axiom,
    ! [A2: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ A2 @ A )
     => ( ( insert7010464514620295119la_a_b @ A2 @ ( minus_4077726661957047470la_a_b @ A @ ( insert7010464514620295119la_a_b @ A2 @ bot_bo4495933725496725865la_a_b ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_654_insert__Diff,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat @ A2 @ A )
     => ( ( insert_nat @ A2 @ ( minus_minus_set_nat @ A @ ( insert_nat @ A2 @ bot_bot_set_nat ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_655_nocp_Osimps_I3_J,axiom,
    ! [X: nat,T2: relational_term_a] :
      ( ( relational_nocp_a_b @ ( relational_Eq_a_b @ X @ T2 ) )
      = ( T2
       != ( relational_Var_a @ X ) ) ) ).

% nocp.simps(3)
thf(fact_656_notin__eqs,axiom,
    ! [X: nat,Y: nat,G: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ G )
     => ~ ( member_nat @ Y @ ( relational_eqs_a_b @ X @ G ) ) ) ).

% notin_eqs
thf(fact_657_eqs__in,axiom,
    ! [Y: nat,X: nat,G: set_Re381260168593705685la_a_b] :
      ( ( member_nat @ Y @ ( relational_eqs_a_b @ X @ G ) )
     => ( member4680049679412964150la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ G ) ) ).

% eqs_in
thf(fact_658_fv_Osimps_I7_J,axiom,
    ! [Z: nat,Phi: relational_fmla_a_b] :
      ( ( relational_fv_a_b @ ( relati591517084277583526ts_a_b @ Z @ Phi ) )
      = ( minus_minus_set_nat @ ( relational_fv_a_b @ Phi ) @ ( insert_nat @ Z @ bot_bot_set_nat ) ) ) ).

% fv.simps(7)
thf(fact_659_finite__empty__induct,axiom,
    ! [A: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ( P2 @ A )
       => ( ! [A6: nat,A5: set_nat] :
              ( ( finite_finite_nat @ A5 )
             => ( ( member_nat @ A6 @ A5 )
               => ( ( P2 @ A5 )
                 => ( P2 @ ( minus_minus_set_nat @ A5 @ ( insert_nat @ A6 @ bot_bot_set_nat ) ) ) ) ) )
         => ( P2 @ bot_bot_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_660_finite__empty__induct,axiom,
    ! [A: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ( P2 @ A )
       => ( ! [A6: relational_fmla_a_b,A5: set_Re381260168593705685la_a_b] :
              ( ( finite5600759454172676150la_a_b @ A5 )
             => ( ( member4680049679412964150la_a_b @ A6 @ A5 )
               => ( ( P2 @ A5 )
                 => ( P2 @ ( minus_4077726661957047470la_a_b @ A5 @ ( insert7010464514620295119la_a_b @ A6 @ bot_bo4495933725496725865la_a_b ) ) ) ) ) )
         => ( P2 @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% finite_empty_induct
thf(fact_661_infinite__coinduct,axiom,
    ! [X6: set_nat > $o,A: set_nat] :
      ( ( X6 @ A )
     => ( ! [A5: set_nat] :
            ( ( X6 @ A5 )
           => ? [X7: nat] :
                ( ( member_nat @ X7 @ A5 )
                & ( ( X6 @ ( minus_minus_set_nat @ A5 @ ( insert_nat @ X7 @ bot_bot_set_nat ) ) )
                  | ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A5 @ ( insert_nat @ X7 @ bot_bot_set_nat ) ) ) ) ) )
       => ~ ( finite_finite_nat @ A ) ) ) ).

% infinite_coinduct
thf(fact_662_infinite__coinduct,axiom,
    ! [X6: set_Re381260168593705685la_a_b > $o,A: set_Re381260168593705685la_a_b] :
      ( ( X6 @ A )
     => ( ! [A5: set_Re381260168593705685la_a_b] :
            ( ( X6 @ A5 )
           => ? [X7: relational_fmla_a_b] :
                ( ( member4680049679412964150la_a_b @ X7 @ A5 )
                & ( ( X6 @ ( minus_4077726661957047470la_a_b @ A5 @ ( insert7010464514620295119la_a_b @ X7 @ bot_bo4495933725496725865la_a_b ) ) )
                  | ~ ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ A5 @ ( insert7010464514620295119la_a_b @ X7 @ bot_bo4495933725496725865la_a_b ) ) ) ) ) )
       => ~ ( finite5600759454172676150la_a_b @ A ) ) ) ).

% infinite_coinduct
thf(fact_663_infinite__remove,axiom,
    ! [S: set_nat,A2: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ ( insert_nat @ A2 @ bot_bot_set_nat ) ) ) ) ).

% infinite_remove
thf(fact_664_infinite__remove,axiom,
    ! [S: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b] :
      ( ~ ( finite5600759454172676150la_a_b @ S )
     => ~ ( finite5600759454172676150la_a_b @ ( minus_4077726661957047470la_a_b @ S @ ( insert7010464514620295119la_a_b @ A2 @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% infinite_remove
thf(fact_665_sr__Conj__eq,axiom,
    ! [Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( relational_sr_a_b @ Q )
     => ( ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
          | ( member_nat @ Y @ ( relational_fv_a_b @ Q ) ) )
       => ( relational_sr_a_b @ ( relational_Conj_a_b @ Q @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) ) ) ) ) ).

% sr_Conj_eq
thf(fact_666_fv_Osimps_I3_J,axiom,
    ! [X: nat,T5: relational_term_a] :
      ( ( relational_fv_a_b @ ( relational_Eq_a_b @ X @ T5 ) )
      = ( sup_sup_set_nat @ ( insert_nat @ X @ bot_bot_set_nat ) @ ( relati6004689760767320788_set_a @ T5 ) ) ) ).

% fv.simps(3)
thf(fact_667_erase_Oelims,axiom,
    ! [X: relational_fmla_a_b,Xa: nat,Y: relational_fmla_a_b] :
      ( ( ( relational_erase_a_b @ X @ Xa )
        = Y )
     => ( ! [T3: $o] :
            ( ( X
              = ( relational_Bool_a_b @ T3 ) )
           => ( Y
             != ( relational_Bool_a_b @ T3 ) ) )
       => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ P3 @ Ts2 ) )
             => ~ ( ( ( member_nat @ Xa @ ( relati4569515538964159125_set_a @ Ts2 ) )
                   => ( Y
                      = ( relational_Bool_a_b @ $false ) ) )
                  & ( ~ ( member_nat @ Xa @ ( relati4569515538964159125_set_a @ Ts2 ) )
                   => ( Y
                      = ( relational_Pred_b_a @ P3 @ Ts2 ) ) ) ) )
         => ( ! [Z2: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ Z2 @ T3 ) )
               => ~ ( ( ( T3
                        = ( relational_Var_a @ Z2 ) )
                     => ( Y
                        = ( relational_Bool_a_b @ $true ) ) )
                    & ( ( T3
                       != ( relational_Var_a @ Z2 ) )
                     => ( ( ( ( Xa = Z2 )
                            | ( member_nat @ Xa @ ( relati6004689760767320788_set_a @ T3 ) ) )
                         => ( Y
                            = ( relational_Bool_a_b @ $false ) ) )
                        & ( ~ ( ( Xa = Z2 )
                              | ( member_nat @ Xa @ ( relati6004689760767320788_set_a @ T3 ) ) )
                         => ( Y
                            = ( relational_Eq_a_b @ Z2 @ T3 ) ) ) ) ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( Y
                   != ( relational_Neg_a_b @ ( relational_erase_a_b @ Q4 @ Xa ) ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( Y
                     != ( relational_Conj_a_b @ ( relational_erase_a_b @ Q13 @ Xa ) @ ( relational_erase_a_b @ Q24 @ Xa ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( Y
                       != ( relational_Disj_a_b @ ( relational_erase_a_b @ Q13 @ Xa ) @ ( relational_erase_a_b @ Q24 @ Xa ) ) ) )
                 => ~ ! [Z2: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) )
                       => ~ ( ( ( Xa = Z2 )
                             => ( Y
                                = ( relati591517084277583526ts_a_b @ Xa @ Q4 ) ) )
                            & ( ( Xa != Z2 )
                             => ( Y
                                = ( relati591517084277583526ts_a_b @ Z2 @ ( relational_erase_a_b @ Q4 @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% erase.elims
thf(fact_668_fv_Opelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_nat] :
      ( ( ( relational_fv_a_b @ X )
        = Y )
     => ( ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ X )
       => ( ! [Uu2: b,Ts2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ Uu2 @ Ts2 ) )
             => ( ( Y
                  = ( relati4569515538964159125_set_a @ Ts2 ) )
               => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relational_Pred_b_a @ Uu2 @ Ts2 ) ) ) )
         => ( ! [B6: $o] :
                ( ( X
                  = ( relational_Bool_a_b @ B6 ) )
               => ( ( Y = bot_bot_set_nat )
                 => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relational_Bool_a_b @ B6 ) ) ) )
           => ( ! [X5: nat,T4: relational_term_a] :
                  ( ( X
                    = ( relational_Eq_a_b @ X5 @ T4 ) )
                 => ( ( Y
                      = ( sup_sup_set_nat @ ( insert_nat @ X5 @ bot_bot_set_nat ) @ ( relati6004689760767320788_set_a @ T4 ) ) )
                   => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relational_Eq_a_b @ X5 @ T4 ) ) ) )
             => ( ! [Phi2: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ Phi2 ) )
                   => ( ( Y
                        = ( relational_fv_a_b @ Phi2 ) )
                     => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relational_Neg_a_b @ Phi2 ) ) ) )
               => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ Phi2 @ Psi2 ) )
                     => ( ( Y
                          = ( sup_sup_set_nat @ ( relational_fv_a_b @ Phi2 ) @ ( relational_fv_a_b @ Psi2 ) ) )
                       => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relational_Conj_a_b @ Phi2 @ Psi2 ) ) ) )
                 => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Disj_a_b @ Phi2 @ Psi2 ) )
                       => ( ( Y
                            = ( sup_sup_set_nat @ ( relational_fv_a_b @ Phi2 ) @ ( relational_fv_a_b @ Psi2 ) ) )
                         => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relational_Disj_a_b @ Phi2 @ Psi2 ) ) ) )
                   => ~ ! [Z2: nat,Phi2: relational_fmla_a_b] :
                          ( ( X
                            = ( relati591517084277583526ts_a_b @ Z2 @ Phi2 ) )
                         => ( ( Y
                              = ( minus_minus_set_nat @ ( relational_fv_a_b @ Phi2 ) @ ( insert_nat @ Z2 @ bot_bot_set_nat ) ) )
                           => ~ ( accp_R989495437599811158la_a_b @ relati5703530512245835757el_a_b @ ( relati591517084277583526ts_a_b @ Z2 @ Phi2 ) ) ) ) ) ) ) ) ) ) ) ) ).

% fv.pelims
thf(fact_669_nocp_Opelims_I1_J,axiom,
    ! [X: relational_fmla_a_b,Y: $o] :
      ( ( ( relational_nocp_a_b @ X )
        = Y )
     => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ X )
       => ( ! [B6: $o] :
              ( ( X
                = ( relational_Bool_a_b @ B6 ) )
             => ( ~ Y
               => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Bool_a_b @ B6 ) ) ) )
         => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ P3 @ Ts2 ) )
               => ( Y
                 => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Pred_b_a @ P3 @ Ts2 ) ) ) )
           => ( ! [X5: nat,T3: relational_term_a] :
                  ( ( X
                    = ( relational_Eq_a_b @ X5 @ T3 ) )
                 => ( ( Y
                      = ( T3
                       != ( relational_Var_a @ X5 ) ) )
                   => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) ) ) )
             => ( ! [Q4: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ Q4 ) )
                   => ( ( Y
                        = ( relational_nocp_a_b @ Q4 ) )
                     => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Neg_a_b @ Q4 ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ( ( Y
                          = ( ( relational_nocp_a_b @ Q13 )
                            & ( relational_nocp_a_b @ Q24 ) ) )
                       => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) ) )
                 => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                       => ( ( Y
                            = ( ( relational_nocp_a_b @ Q13 )
                              & ( relational_nocp_a_b @ Q24 ) ) )
                         => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) ) )
                   => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                          ( ( X
                            = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                         => ( ( Y
                              = ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                                & ( relational_nocp_a_b @ Q4 ) ) )
                           => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) ) ) ) ) ) ) ) ) ) ) ) ).

% nocp.pelims(1)
thf(fact_670_nocp_Opelims_I2_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ X )
     => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ X )
       => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ P3 @ Ts2 ) )
             => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Pred_b_a @ P3 @ Ts2 ) ) )
         => ( ! [X5: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ X5 @ T3 ) )
               => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) )
                 => ( T3
                    = ( relational_Var_a @ X5 ) ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Neg_a_b @ Q4 ) )
                   => ~ ( relational_nocp_a_b @ Q4 ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ~ ( ( relational_nocp_a_b @ Q13 )
                          & ( relational_nocp_a_b @ Q24 ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) )
                       => ~ ( ( relational_nocp_a_b @ Q13 )
                            & ( relational_nocp_a_b @ Q24 ) ) ) )
                 => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                       => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                         => ~ ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                              & ( relational_nocp_a_b @ Q4 ) ) ) ) ) ) ) ) ) ) ) ).

% nocp.pelims(2)
thf(fact_671_nocp_Opelims_I3_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ~ ( relational_nocp_a_b @ X )
     => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ X )
       => ( ! [B6: $o] :
              ( ( X
                = ( relational_Bool_a_b @ B6 ) )
             => ~ ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Bool_a_b @ B6 ) ) )
         => ( ! [X5: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ X5 @ T3 ) )
               => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) )
                 => ( T3
                   != ( relational_Var_a @ X5 ) ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Neg_a_b @ Q4 ) )
                   => ( relational_nocp_a_b @ Q4 ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ( ( relational_nocp_a_b @ Q13 )
                        & ( relational_nocp_a_b @ Q24 ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) )
                       => ( ( relational_nocp_a_b @ Q13 )
                          & ( relational_nocp_a_b @ Q24 ) ) ) )
                 => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                       => ( ( accp_R989495437599811158la_a_b @ relati3149960101488570543el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                         => ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                            & ( relational_nocp_a_b @ Q4 ) ) ) ) ) ) ) ) ) ) ) ).

% nocp.pelims(3)
thf(fact_672_set__minus__singleton__eq,axiom,
    ! [X: relational_fmla_a_b,X6: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ X @ X6 )
     => ( ( minus_4077726661957047470la_a_b @ X6 @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) )
        = X6 ) ) ).

% set_minus_singleton_eq
thf(fact_673_set__minus__singleton__eq,axiom,
    ! [X: nat,X6: set_nat] :
      ( ~ ( member_nat @ X @ X6 )
     => ( ( minus_minus_set_nat @ X6 @ ( insert_nat @ X @ bot_bot_set_nat ) )
        = X6 ) ) ).

% set_minus_singleton_eq
thf(fact_674_set__notEmptyE,axiom,
    ! [S: set_Re381260168593705685la_a_b] :
      ( ( S != bot_bo4495933725496725865la_a_b )
     => ~ ! [X5: relational_fmla_a_b] :
            ~ ( member4680049679412964150la_a_b @ X5 @ S ) ) ).

% set_notEmptyE
thf(fact_675_set__notEmptyE,axiom,
    ! [S: set_nat] :
      ( ( S != bot_bot_set_nat )
     => ~ ! [X5: nat] :
            ~ ( member_nat @ X5 @ S ) ) ).

% set_notEmptyE
thf(fact_676_memb__imp__not__empty,axiom,
    ! [X: relational_fmla_a_b,S: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ S )
     => ( S != bot_bo4495933725496725865la_a_b ) ) ).

% memb_imp_not_empty
thf(fact_677_memb__imp__not__empty,axiom,
    ! [X: nat,S: set_nat] :
      ( ( member_nat @ X @ S )
     => ( S != bot_bot_set_nat ) ) ).

% memb_imp_not_empty
thf(fact_678_set__diff__diff__left,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( minus_4077726661957047470la_a_b @ ( minus_4077726661957047470la_a_b @ A @ B2 ) @ C2 )
      = ( minus_4077726661957047470la_a_b @ A @ ( sup_su5130108678486352897la_a_b @ B2 @ C2 ) ) ) ).

% set_diff_diff_left
thf(fact_679_insert__remove__id,axiom,
    ! [X: relational_fmla_a_b,X6: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ X6 )
     => ( X6
        = ( insert7010464514620295119la_a_b @ X @ ( minus_4077726661957047470la_a_b @ X6 @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) ) ) ) ).

% insert_remove_id
thf(fact_680_insert__remove__id,axiom,
    ! [X: nat,X6: set_nat] :
      ( ( member_nat @ X @ X6 )
     => ( X6
        = ( insert_nat @ X @ ( minus_minus_set_nat @ X6 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ).

% insert_remove_id
thf(fact_681_erase_Opelims,axiom,
    ! [X: relational_fmla_a_b,Xa: nat,Y: relational_fmla_a_b] :
      ( ( ( relational_erase_a_b @ X @ Xa )
        = Y )
     => ( ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ X @ Xa ) )
       => ( ! [T3: $o] :
              ( ( X
                = ( relational_Bool_a_b @ T3 ) )
             => ( ( Y
                  = ( relational_Bool_a_b @ T3 ) )
               => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relational_Bool_a_b @ T3 ) @ Xa ) ) ) )
         => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ P3 @ Ts2 ) )
               => ( ( ( ( member_nat @ Xa @ ( relati4569515538964159125_set_a @ Ts2 ) )
                     => ( Y
                        = ( relational_Bool_a_b @ $false ) ) )
                    & ( ~ ( member_nat @ Xa @ ( relati4569515538964159125_set_a @ Ts2 ) )
                     => ( Y
                        = ( relational_Pred_b_a @ P3 @ Ts2 ) ) ) )
                 => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relational_Pred_b_a @ P3 @ Ts2 ) @ Xa ) ) ) )
           => ( ! [Z2: nat,T3: relational_term_a] :
                  ( ( X
                    = ( relational_Eq_a_b @ Z2 @ T3 ) )
                 => ( ( ( ( T3
                          = ( relational_Var_a @ Z2 ) )
                       => ( Y
                          = ( relational_Bool_a_b @ $true ) ) )
                      & ( ( T3
                         != ( relational_Var_a @ Z2 ) )
                       => ( ( ( ( Xa = Z2 )
                              | ( member_nat @ Xa @ ( relati6004689760767320788_set_a @ T3 ) ) )
                           => ( Y
                              = ( relational_Bool_a_b @ $false ) ) )
                          & ( ~ ( ( Xa = Z2 )
                                | ( member_nat @ Xa @ ( relati6004689760767320788_set_a @ T3 ) ) )
                           => ( Y
                              = ( relational_Eq_a_b @ Z2 @ T3 ) ) ) ) ) )
                   => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relational_Eq_a_b @ Z2 @ T3 ) @ Xa ) ) ) )
             => ( ! [Q4: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ Q4 ) )
                   => ( ( Y
                        = ( relational_Neg_a_b @ ( relational_erase_a_b @ Q4 @ Xa ) ) )
                     => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relational_Neg_a_b @ Q4 ) @ Xa ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ( ( Y
                          = ( relational_Conj_a_b @ ( relational_erase_a_b @ Q13 @ Xa ) @ ( relational_erase_a_b @ Q24 @ Xa ) ) )
                       => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relational_Conj_a_b @ Q13 @ Q24 ) @ Xa ) ) ) )
                 => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                       => ( ( Y
                            = ( relational_Disj_a_b @ ( relational_erase_a_b @ Q13 @ Xa ) @ ( relational_erase_a_b @ Q24 @ Xa ) ) )
                         => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relational_Disj_a_b @ Q13 @ Q24 ) @ Xa ) ) ) )
                   => ~ ! [Z2: nat,Q4: relational_fmla_a_b] :
                          ( ( X
                            = ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) )
                         => ( ( ( ( Xa = Z2 )
                               => ( Y
                                  = ( relati591517084277583526ts_a_b @ Xa @ Q4 ) ) )
                              & ( ( Xa != Z2 )
                               => ( Y
                                  = ( relati591517084277583526ts_a_b @ Z2 @ ( relational_erase_a_b @ Q4 @ Xa ) ) ) ) )
                           => ~ ( accp_P4351966040938400857_b_nat @ relati5987653437628155313el_a_b @ ( produc4282057684358614024_b_nat @ ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ).

% erase.pelims
thf(fact_682_Collect__empty__eq__bot,axiom,
    ! [P2: nat > $o] :
      ( ( ( collect_nat @ P2 )
        = bot_bot_set_nat )
      = ( P2 = bot_bot_nat_o ) ) ).

% Collect_empty_eq_bot
thf(fact_683_bot__empty__eq,axiom,
    ( bot_bo8852203127187332700_a_b_o
    = ( ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ bot_bo4495933725496725865la_a_b ) ) ) ).

% bot_empty_eq
thf(fact_684_bot__empty__eq,axiom,
    ( bot_bot_nat_o
    = ( ^ [X3: nat] : ( member_nat @ X3 @ bot_bot_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_685_qps__union,axiom,
    ! [X6: set_Re381260168593705685la_a_b,Y5: set_Re381260168593705685la_a_b] :
      ( ( relational_qps_a_b @ ( sup_su5130108678486352897la_a_b @ X6 @ Y5 ) )
      = ( sup_su5130108678486352897la_a_b @ ( relational_qps_a_b @ X6 ) @ ( relational_qps_a_b @ Y5 ) ) ) ).

% qps_union
thf(fact_686_qps__in,axiom,
    ! [Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ Q @ ( relational_qps_a_b @ G ) )
     => ( member4680049679412964150la_a_b @ Q @ G ) ) ).

% qps_in
thf(fact_687_finite__qps,axiom,
    ! [G: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ G )
     => ( finite5600759454172676150la_a_b @ ( relational_qps_a_b @ G ) ) ) ).

% finite_qps
thf(fact_688_qp__impl_Ocases,axiom,
    ! [X: relational_fmla_a_b] :
      ( ! [X5: nat,C4: a] :
          ( X
         != ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) )
     => ( ! [X5: b,Ts2: list_R6823256787227418703term_a] :
            ( X
           != ( relational_Pred_b_a @ X5 @ Ts2 ) )
       => ( ! [X5: nat,Q4: relational_fmla_a_b] :
              ( X
             != ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
         => ( ! [V2: $o] :
                ( X
               != ( relational_Bool_a_b @ V2 ) )
           => ( ! [V2: nat,Vb: nat] :
                  ( X
                 != ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) )
             => ( ! [V2: relational_fmla_a_b] :
                    ( X
                   != ( relational_Neg_a_b @ V2 ) )
               => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                      ( X
                     != ( relational_Conj_a_b @ V2 @ Va2 ) )
                 => ~ ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                        ( X
                       != ( relational_Disj_a_b @ V2 @ Va2 ) ) ) ) ) ) ) ) ) ).

% qp_impl.cases
thf(fact_689_genempty_Osimps,axiom,
    ( relati5999705594545617851ty_a_b
    = ( ^ [A3: relational_fmla_a_b] :
          ( ( A3
            = ( relational_Bool_a_b @ $false ) )
          | ? [Q5: relational_fmla_a_b] :
              ( ( A3
                = ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q5 ) ) )
              & ( relati5999705594545617851ty_a_b @ Q5 ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A3
                = ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q14 @ Q25 ) ) )
              & ( relati5999705594545617851ty_a_b @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q14 ) @ ( relational_Neg_a_b @ Q25 ) ) ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A3
                = ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q14 @ Q25 ) ) )
              & ( relati5999705594545617851ty_a_b @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q14 ) @ ( relational_Neg_a_b @ Q25 ) ) ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A3
                = ( relational_Disj_a_b @ Q14 @ Q25 ) )
              & ( relati5999705594545617851ty_a_b @ Q14 )
              & ( relati5999705594545617851ty_a_b @ Q25 ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A3
                = ( relational_Conj_a_b @ Q14 @ Q25 ) )
              & ( ( relati5999705594545617851ty_a_b @ Q14 )
                | ( relati5999705594545617851ty_a_b @ Q25 ) ) )
          | ? [Q5: relational_fmla_a_b] :
              ( ? [X3: nat,Y3: nat] :
                  ( A3
                  = ( relational_Conj_a_b @ Q5 @ ( relational_Eq_a_b @ X3 @ ( relational_Var_a @ Y3 ) ) ) )
              & ( relati5999705594545617851ty_a_b @ Q5 ) )
          | ? [Q5: relational_fmla_a_b] :
              ( ? [Y3: nat] :
                  ( A3
                  = ( relati591517084277583526ts_a_b @ Y3 @ Q5 ) )
              & ( relati5999705594545617851ty_a_b @ Q5 ) ) ) ) ) ).

% genempty.simps
thf(fact_690_genempty_Ocases,axiom,
    ! [A2: relational_fmla_a_b] :
      ( ( relati5999705594545617851ty_a_b @ A2 )
     => ( ( A2
         != ( relational_Bool_a_b @ $false ) )
       => ( ! [Q4: relational_fmla_a_b] :
              ( ( A2
                = ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q4 ) ) )
             => ~ ( relati5999705594545617851ty_a_b @ Q4 ) )
         => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                ( ( A2
                  = ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) )
               => ~ ( relati5999705594545617851ty_a_b @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                  ( ( A2
                    = ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) )
                 => ~ ( relati5999705594545617851ty_a_b @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( A2
                      = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                   => ( ( relati5999705594545617851ty_a_b @ Q13 )
                     => ~ ( relati5999705594545617851ty_a_b @ Q24 ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( A2
                        = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ~ ( ( relati5999705594545617851ty_a_b @ Q13 )
                          | ( relati5999705594545617851ty_a_b @ Q24 ) ) )
                 => ( ! [Q4: relational_fmla_a_b] :
                        ( ? [X5: nat,Y6: nat] :
                            ( A2
                            = ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ X5 @ ( relational_Var_a @ Y6 ) ) ) )
                       => ~ ( relati5999705594545617851ty_a_b @ Q4 ) )
                   => ( ! [Q4: relational_fmla_a_b] :
                          ( ? [Y6: nat,X5: nat] :
                              ( A2
                              = ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ Y6 @ ( relational_Var_a @ X5 ) ) ) )
                         => ~ ( relati5999705594545617851ty_a_b @ Q4 ) )
                     => ~ ! [Q4: relational_fmla_a_b] :
                            ( ? [Y6: nat] :
                                ( A2
                                = ( relati591517084277583526ts_a_b @ Y6 @ Q4 ) )
                           => ~ ( relati5999705594545617851ty_a_b @ Q4 ) ) ) ) ) ) ) ) ) ) ) ).

% genempty.cases
thf(fact_691_member__remove,axiom,
    ! [X: relational_fmla_a_b,Y: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ ( remove4261432235257513082la_a_b @ Y @ A ) )
      = ( ( member4680049679412964150la_a_b @ X @ A )
        & ( X != Y ) ) ) ).

% member_remove
thf(fact_692_member__remove,axiom,
    ! [X: nat,Y: nat,A: set_nat] :
      ( ( member_nat @ X @ ( remove_nat @ Y @ A ) )
      = ( ( member_nat @ X @ A )
        & ( X != Y ) ) ) ).

% member_remove
thf(fact_693_genempty_Ointros_I5_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relati5999705594545617851ty_a_b @ Q1 )
     => ( ( relati5999705594545617851ty_a_b @ Q22 )
       => ( relati5999705594545617851ty_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) ) ) ) ).

% genempty.intros(5)
thf(fact_694_genempty_Ointros_I1_J,axiom,
    relati5999705594545617851ty_a_b @ ( relational_Bool_a_b @ $false ) ).

% genempty.intros(1)
thf(fact_695_genempty__cp,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relati5999705594545617851ty_a_b @ Q )
     => ( ( relational_cp_a_b @ Q )
        = ( relational_Bool_a_b @ $false ) ) ) ).

% genempty_cp
thf(fact_696_genempty_Ointros_I4_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relati5999705594545617851ty_a_b @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q1 ) @ ( relational_Neg_a_b @ Q22 ) ) )
     => ( relati5999705594545617851ty_a_b @ ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) ) ) ) ).

% genempty.intros(4)
thf(fact_697_genempty_Ointros_I3_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relati5999705594545617851ty_a_b @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q1 ) @ ( relational_Neg_a_b @ Q22 ) ) )
     => ( relati5999705594545617851ty_a_b @ ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) ) ) ) ).

% genempty.intros(3)
thf(fact_698_qp__impl_Oelims_I1_J,axiom,
    ! [X: relational_fmla_a_b,Y: $o] :
      ( ( ( relati3725921752842749053pl_a_b @ X )
        = Y )
     => ( ( ? [X5: nat,C4: a] :
              ( X
              = ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) )
         => ~ Y )
       => ( ( ? [X5: b,Ts2: list_R6823256787227418703term_a] :
                ( X
                = ( relational_Pred_b_a @ X5 @ Ts2 ) )
           => ~ Y )
         => ( ! [X5: nat,Q4: relational_fmla_a_b] :
                ( ( X
                  = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
               => ( Y
                  = ( ~ ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                        & ( relational_qp_a_b @ Q4 ) ) ) ) )
           => ( ( ? [V2: $o] :
                    ( X
                    = ( relational_Bool_a_b @ V2 ) )
               => Y )
             => ( ( ? [V2: nat,Vb: nat] :
                      ( X
                      = ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) )
                 => Y )
               => ( ( ? [V2: relational_fmla_a_b] :
                        ( X
                        = ( relational_Neg_a_b @ V2 ) )
                   => Y )
                 => ( ( ? [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                          ( X
                          = ( relational_Conj_a_b @ V2 @ Va2 ) )
                     => Y )
                   => ~ ( ? [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                            ( X
                            = ( relational_Disj_a_b @ V2 @ Va2 ) )
                       => Y ) ) ) ) ) ) ) ) ) ).

% qp_impl.elims(1)
thf(fact_699_fv__erase,axiom,
    ! [Q: relational_fmla_a_b,X: nat] : ( ord_less_eq_set_nat @ ( relational_fv_a_b @ ( relational_erase_a_b @ Q @ X ) ) @ ( minus_minus_set_nat @ ( relational_fv_a_b @ Q ) @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ).

% fv_erase
thf(fact_700_fv__exists,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relational_fv_a_b @ ( relati3989891337220013914ts_a_b @ X @ Q ) )
      = ( minus_minus_set_nat @ ( relational_fv_a_b @ Q ) @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ).

% fv_exists
thf(fact_701_infinite__eval__Conj,axiom,
    ! [X: nat,Q: relational_fmla_a_b,I: product_prod_b_nat > set_list_a,Y: nat] :
      ( ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
     => ( ~ ( finite_finite_list_a @ ( relational_eval_a_b @ Q @ I ) )
       => ~ ( finite_finite_list_a @ ( relational_eval_a_b @ ( relational_Conj_a_b @ Q @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) ) @ I ) ) ) ) ).

% infinite_eval_Conj
thf(fact_702_fmla_Oset__cases_I2_J,axiom,
    ! [E: b,A2: relational_fmla_a_b] :
      ( ( member_b @ E @ ( relati8924981150291758614la_a_b @ A2 ) )
     => ( ! [Z22: list_R6823256787227418703term_a] :
            ( A2
           != ( relational_Pred_b_a @ E @ Z22 ) )
       => ( ! [Z2: relational_fmla_a_b] :
              ( ( A2
                = ( relational_Neg_a_b @ Z2 ) )
             => ~ ( member_b @ E @ ( relati8924981150291758614la_a_b @ Z2 ) ) )
         => ( ! [Z1: relational_fmla_a_b] :
                ( ? [Z22: relational_fmla_a_b] :
                    ( A2
                    = ( relational_Conj_a_b @ Z1 @ Z22 ) )
               => ~ ( member_b @ E @ ( relati8924981150291758614la_a_b @ Z1 ) ) )
           => ( ! [Z1: relational_fmla_a_b,Z22: relational_fmla_a_b] :
                  ( ( A2
                    = ( relational_Conj_a_b @ Z1 @ Z22 ) )
                 => ~ ( member_b @ E @ ( relati8924981150291758614la_a_b @ Z22 ) ) )
             => ( ! [Z1: relational_fmla_a_b] :
                    ( ? [Z22: relational_fmla_a_b] :
                        ( A2
                        = ( relational_Disj_a_b @ Z1 @ Z22 ) )
                   => ~ ( member_b @ E @ ( relati8924981150291758614la_a_b @ Z1 ) ) )
               => ( ! [Z1: relational_fmla_a_b,Z22: relational_fmla_a_b] :
                      ( ( A2
                        = ( relational_Disj_a_b @ Z1 @ Z22 ) )
                     => ~ ( member_b @ E @ ( relati8924981150291758614la_a_b @ Z22 ) ) )
                 => ~ ! [Z1: nat,Z22: relational_fmla_a_b] :
                        ( ( A2
                          = ( relati591517084277583526ts_a_b @ Z1 @ Z22 ) )
                       => ~ ( member_b @ E @ ( relati8924981150291758614la_a_b @ Z22 ) ) ) ) ) ) ) ) ) ) ).

% fmla.set_cases(2)
thf(fact_703_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_704_subsetI,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ! [X5: relational_fmla_a_b] :
          ( ( member4680049679412964150la_a_b @ X5 @ A )
         => ( member4680049679412964150la_a_b @ X5 @ B2 ) )
     => ( ord_le4112832032246704949la_a_b @ A @ B2 ) ) ).

% subsetI
thf(fact_705_subsetI,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A )
         => ( member_nat @ X5 @ B2 ) )
     => ( ord_less_eq_set_nat @ A @ B2 ) ) ).

% subsetI
thf(fact_706_sup_Obounded__iff,axiom,
    ! [B: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ B @ C ) @ A2 )
      = ( ( ord_le4112832032246704949la_a_b @ B @ A2 )
        & ( ord_le4112832032246704949la_a_b @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_707_sup_Obounded__iff,axiom,
    ! [B: nat,C: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A2 )
      = ( ( ord_less_eq_nat @ B @ A2 )
        & ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_708_le__sup__iff,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b,Z: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ X @ Y ) @ Z )
      = ( ( ord_le4112832032246704949la_a_b @ X @ Z )
        & ( ord_le4112832032246704949la_a_b @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_709_le__sup__iff,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
      = ( ( ord_less_eq_nat @ X @ Z )
        & ( ord_less_eq_nat @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_710_insert__subset,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( insert7010464514620295119la_a_b @ X @ A ) @ B2 )
      = ( ( member4680049679412964150la_a_b @ X @ B2 )
        & ( ord_le4112832032246704949la_a_b @ A @ B2 ) ) ) ).

% insert_subset
thf(fact_711_insert__subset,axiom,
    ! [X: nat,A: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat @ X @ A ) @ B2 )
      = ( ( member_nat @ X @ B2 )
        & ( ord_less_eq_set_nat @ A @ B2 ) ) ) ).

% insert_subset
thf(fact_712_Un__subset__iff,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) @ C2 )
      = ( ( ord_le4112832032246704949la_a_b @ A @ C2 )
        & ( ord_le4112832032246704949la_a_b @ B2 @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_713_cp__exists,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relational_cp_a_b @ ( relati3989891337220013914ts_a_b @ X @ Q ) )
      = ( relati3989891337220013914ts_a_b @ X @ ( relational_cp_a_b @ Q ) ) ) ).

% cp_exists
thf(fact_714_nocp__exists,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relational_nocp_a_b @ ( relati3989891337220013914ts_a_b @ X @ Q ) )
      = ( relational_nocp_a_b @ Q ) ) ).

% nocp_exists
thf(fact_715_eval__Bool__False,axiom,
    ! [I: product_prod_b_nat > set_list_a] :
      ( ( relational_eval_a_b @ ( relational_Bool_a_b @ $false ) @ I )
      = bot_bot_set_list_a ) ).

% eval_Bool_False
thf(fact_716_nle__le,axiom,
    ! [A2: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B ) )
      = ( ( ord_less_eq_nat @ B @ A2 )
        & ( B != A2 ) ) ) ).

% nle_le
thf(fact_717_le__cases3,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_718_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y8: nat,Z3: nat] : ( Y8 = Z3 ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_719_ord__eq__le__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( A2 = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_720_ord__le__eq__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_721_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_722_order_Otrans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_723_order__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_724_linorder__wlog,axiom,
    ! [P2: nat > nat > $o,A2: nat,B: nat] :
      ( ! [A6: nat,B6: nat] :
          ( ( ord_less_eq_nat @ A6 @ B6 )
         => ( P2 @ A6 @ B6 ) )
     => ( ! [A6: nat,B6: nat] :
            ( ( P2 @ B6 @ A6 )
           => ( P2 @ A6 @ B6 ) )
       => ( P2 @ A2 @ B ) ) ) ).

% linorder_wlog
thf(fact_725_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y8: nat,Z3: nat] : ( Y8 = Z3 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_726_dual__order_Oantisym,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B )
       => ( A2 = B ) ) ) ).

% dual_order.antisym
thf(fact_727_dual__order_Otrans,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_728_antisym,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ B @ A2 )
       => ( A2 = B ) ) ) ).

% antisym
thf(fact_729_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y8: nat,Z3: nat] : ( Y8 = Z3 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_730_order__subst1,axiom,
    ! [A2: nat,F4: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F4 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y6 )
             => ( ord_less_eq_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F4 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_731_order__subst2,axiom,
    ! [A2: nat,B: nat,F4: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ ( F4 @ B ) @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y6 )
             => ( ord_less_eq_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F4 @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_732_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_733_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_734_ord__eq__le__subst,axiom,
    ! [A2: nat,F4: nat > nat,B: nat,C: nat] :
      ( ( A2
        = ( F4 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y6 )
             => ( ord_less_eq_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F4 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_735_ord__le__eq__subst,axiom,
    ! [A2: nat,B: nat,F4: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ( F4 @ B )
          = C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y6 )
             => ( ord_less_eq_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_eq_nat @ ( F4 @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_736_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_737_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_738_in__mono,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,X: relational_fmla_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ B2 )
     => ( ( member4680049679412964150la_a_b @ X @ A )
       => ( member4680049679412964150la_a_b @ X @ B2 ) ) ) ).

% in_mono
thf(fact_739_in__mono,axiom,
    ! [A: set_nat,B2: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A @ B2 )
     => ( ( member_nat @ X @ A )
       => ( member_nat @ X @ B2 ) ) ) ).

% in_mono
thf(fact_740_subsetD,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C: relational_fmla_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ B2 )
     => ( ( member4680049679412964150la_a_b @ C @ A )
       => ( member4680049679412964150la_a_b @ C @ B2 ) ) ) ).

% subsetD
thf(fact_741_subsetD,axiom,
    ! [A: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ B2 )
     => ( ( member_nat @ C @ A )
       => ( member_nat @ C @ B2 ) ) ) ).

% subsetD
thf(fact_742_subset__eq,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
        ! [X3: relational_fmla_a_b] :
          ( ( member4680049679412964150la_a_b @ X3 @ A4 )
         => ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_743_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ A4 )
         => ( member_nat @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_744_subset__iff,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
        ! [T6: relational_fmla_a_b] :
          ( ( member4680049679412964150la_a_b @ T6 @ A4 )
         => ( member4680049679412964150la_a_b @ T6 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_745_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
        ! [T6: nat] :
          ( ( member_nat @ T6 @ A4 )
         => ( member_nat @ T6 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_746_Collect__mono,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ! [X5: nat] :
          ( ( P2 @ X5 )
         => ( Q @ X5 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P2 ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_747_Collect__mono__iff,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P2 ) @ ( collect_nat @ Q ) )
      = ( ! [X3: nat] :
            ( ( P2 @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_748_bot_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A2 ) ).

% bot.extremum
thf(fact_749_bot_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
      = ( A2 = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_750_bot_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
     => ( A2 = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_751_fmla_Oset__intros_I13_J,axiom,
    ! [Yy: b,X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( member_b @ Yy @ ( relati8924981150291758614la_a_b @ X61 ) )
     => ( member_b @ Yy @ ( relati8924981150291758614la_a_b @ ( relational_Disj_a_b @ X61 @ X62 ) ) ) ) ).

% fmla.set_intros(13)
thf(fact_752_fmla_Oset__intros_I14_J,axiom,
    ! [Za: b,X62: relational_fmla_a_b,X61: relational_fmla_a_b] :
      ( ( member_b @ Za @ ( relati8924981150291758614la_a_b @ X62 ) )
     => ( member_b @ Za @ ( relati8924981150291758614la_a_b @ ( relational_Disj_a_b @ X61 @ X62 ) ) ) ) ).

% fmla.set_intros(14)
thf(fact_753_finite__has__minimal2,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat @ A2 @ A )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A )
            & ( ord_less_eq_nat @ X5 @ A2 )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A )
               => ( ( ord_less_eq_nat @ Xa2 @ X5 )
                 => ( X5 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_754_finite__has__maximal2,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat @ A2 @ A )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A )
            & ( ord_less_eq_nat @ A2 @ X5 )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A )
               => ( ( ord_less_eq_nat @ X5 @ Xa2 )
                 => ( X5 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_755_subset__insert,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ~ ( member4680049679412964150la_a_b @ X @ A )
     => ( ( ord_le4112832032246704949la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ B2 ) )
        = ( ord_le4112832032246704949la_a_b @ A @ B2 ) ) ) ).

% subset_insert
thf(fact_756_subset__insert,axiom,
    ! [X: nat,A: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A )
     => ( ( ord_less_eq_set_nat @ A @ ( insert_nat @ X @ B2 ) )
        = ( ord_less_eq_set_nat @ A @ B2 ) ) ) ).

% subset_insert
thf(fact_757_rev__finite__subset,axiom,
    ! [B2: set_nat,A: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A @ B2 )
       => ( finite_finite_nat @ A ) ) ) ).

% rev_finite_subset
thf(fact_758_rev__finite__subset,axiom,
    ! [B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ B2 )
     => ( ( ord_le4112832032246704949la_a_b @ A @ B2 )
       => ( finite5600759454172676150la_a_b @ A ) ) ) ).

% rev_finite_subset
thf(fact_759_infinite__super,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ord_less_eq_set_nat @ S @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_super
thf(fact_760_infinite__super,axiom,
    ! [S: set_Re381260168593705685la_a_b,T: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ S @ T )
     => ( ~ ( finite5600759454172676150la_a_b @ S )
       => ~ ( finite5600759454172676150la_a_b @ T ) ) ) ).

% infinite_super
thf(fact_761_finite__subset,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B2 )
     => ( ( finite_finite_nat @ B2 )
       => ( finite_finite_nat @ A ) ) ) ).

% finite_subset
thf(fact_762_finite__subset,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ B2 )
     => ( ( finite5600759454172676150la_a_b @ B2 )
       => ( finite5600759454172676150la_a_b @ A ) ) ) ).

% finite_subset
thf(fact_763_sup_OcoboundedI2,axiom,
    ! [C: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ C @ B )
     => ( ord_le4112832032246704949la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% sup.coboundedI2
thf(fact_764_sup_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% sup.coboundedI2
thf(fact_765_sup_OcoboundedI1,axiom,
    ! [C: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ C @ A2 )
     => ( ord_le4112832032246704949la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% sup.coboundedI1
thf(fact_766_sup_OcoboundedI1,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A2 )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% sup.coboundedI1
thf(fact_767_sup_Oabsorb__iff2,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [A3: set_Re381260168593705685la_a_b,B3: set_Re381260168593705685la_a_b] :
          ( ( sup_su5130108678486352897la_a_b @ A3 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_768_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( sup_sup_nat @ A3 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_769_sup_Oabsorb__iff1,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [B3: set_Re381260168593705685la_a_b,A3: set_Re381260168593705685la_a_b] :
          ( ( sup_su5130108678486352897la_a_b @ A3 @ B3 )
          = A3 ) ) ) ).

% sup.absorb_iff1
thf(fact_770_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( sup_sup_nat @ A3 @ B3 )
          = A3 ) ) ) ).

% sup.absorb_iff1
thf(fact_771_sup_Ocobounded2,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ B @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ).

% sup.cobounded2
thf(fact_772_sup_Ocobounded2,axiom,
    ! [B: nat,A2: nat] : ( ord_less_eq_nat @ B @ ( sup_sup_nat @ A2 @ B ) ) ).

% sup.cobounded2
thf(fact_773_sup_Ocobounded1,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ A2 @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ).

% sup.cobounded1
thf(fact_774_sup_Ocobounded1,axiom,
    ! [A2: nat,B: nat] : ( ord_less_eq_nat @ A2 @ ( sup_sup_nat @ A2 @ B ) ) ).

% sup.cobounded1
thf(fact_775_sup_Oorder__iff,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [B3: set_Re381260168593705685la_a_b,A3: set_Re381260168593705685la_a_b] :
          ( A3
          = ( sup_su5130108678486352897la_a_b @ A3 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_776_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( A3
          = ( sup_sup_nat @ A3 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_777_sup_OboundedI,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ B @ A2 )
     => ( ( ord_le4112832032246704949la_a_b @ C @ A2 )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ B @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_778_sup_OboundedI,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_779_sup_OboundedE,axiom,
    ! [B: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ B @ C ) @ A2 )
     => ~ ( ( ord_le4112832032246704949la_a_b @ B @ A2 )
         => ~ ( ord_le4112832032246704949la_a_b @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_780_sup_OboundedE,axiom,
    ! [B: nat,C: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A2 )
     => ~ ( ( ord_less_eq_nat @ B @ A2 )
         => ~ ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_781_sup__absorb2,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ X @ Y )
     => ( ( sup_su5130108678486352897la_a_b @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_782_sup__absorb2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( sup_sup_nat @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_783_sup__absorb1,axiom,
    ! [Y: set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ Y @ X )
     => ( ( sup_su5130108678486352897la_a_b @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_784_sup__absorb1,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( sup_sup_nat @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_785_sup_Oabsorb2,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A2 @ B )
     => ( ( sup_su5130108678486352897la_a_b @ A2 @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_786_sup_Oabsorb2,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( sup_sup_nat @ A2 @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_787_sup_Oabsorb1,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ B @ A2 )
     => ( ( sup_su5130108678486352897la_a_b @ A2 @ B )
        = A2 ) ) ).

% sup.absorb1
thf(fact_788_sup_Oabsorb1,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( sup_sup_nat @ A2 @ B )
        = A2 ) ) ).

% sup.absorb1
thf(fact_789_sup__unique,axiom,
    ! [F4: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ X5 @ ( F4 @ X5 @ Y6 ) )
     => ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ Y6 @ ( F4 @ X5 @ Y6 ) )
       => ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b,Z2: set_Re381260168593705685la_a_b] :
              ( ( ord_le4112832032246704949la_a_b @ Y6 @ X5 )
             => ( ( ord_le4112832032246704949la_a_b @ Z2 @ X5 )
               => ( ord_le4112832032246704949la_a_b @ ( F4 @ Y6 @ Z2 ) @ X5 ) ) )
         => ( ( sup_su5130108678486352897la_a_b @ X @ Y )
            = ( F4 @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_790_sup__unique,axiom,
    ! [F4: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X5: nat,Y6: nat] : ( ord_less_eq_nat @ X5 @ ( F4 @ X5 @ Y6 ) )
     => ( ! [X5: nat,Y6: nat] : ( ord_less_eq_nat @ Y6 @ ( F4 @ X5 @ Y6 ) )
       => ( ! [X5: nat,Y6: nat,Z2: nat] :
              ( ( ord_less_eq_nat @ Y6 @ X5 )
             => ( ( ord_less_eq_nat @ Z2 @ X5 )
               => ( ord_less_eq_nat @ ( F4 @ Y6 @ Z2 ) @ X5 ) ) )
         => ( ( sup_sup_nat @ X @ Y )
            = ( F4 @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_791_sup_OorderI,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( A2
        = ( sup_su5130108678486352897la_a_b @ A2 @ B ) )
     => ( ord_le4112832032246704949la_a_b @ B @ A2 ) ) ).

% sup.orderI
thf(fact_792_sup_OorderI,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2
        = ( sup_sup_nat @ A2 @ B ) )
     => ( ord_less_eq_nat @ B @ A2 ) ) ).

% sup.orderI
thf(fact_793_sup_OorderE,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ B @ A2 )
     => ( A2
        = ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% sup.orderE
thf(fact_794_sup_OorderE,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( A2
        = ( sup_sup_nat @ A2 @ B ) ) ) ).

% sup.orderE
thf(fact_795_le__iff__sup,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [X3: set_Re381260168593705685la_a_b,Y3: set_Re381260168593705685la_a_b] :
          ( ( sup_su5130108678486352897la_a_b @ X3 @ Y3 )
          = Y3 ) ) ) ).

% le_iff_sup
thf(fact_796_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( sup_sup_nat @ X3 @ Y3 )
          = Y3 ) ) ) ).

% le_iff_sup
thf(fact_797_sup__least,axiom,
    ! [Y: set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b,Z: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ Y @ X )
     => ( ( ord_le4112832032246704949la_a_b @ Z @ X )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_798_sup__least,axiom,
    ! [Y: nat,X: nat,Z: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ Z @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_799_sup__mono,axiom,
    ! [A2: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,D: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A2 @ C )
     => ( ( ord_le4112832032246704949la_a_b @ B @ D )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) @ ( sup_su5130108678486352897la_a_b @ C @ D ) ) ) ) ).

% sup_mono
thf(fact_800_sup__mono,axiom,
    ! [A2: nat,C: nat,B: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B @ D )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B ) @ ( sup_sup_nat @ C @ D ) ) ) ) ).

% sup_mono
thf(fact_801_sup_Omono,axiom,
    ! [C: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,D: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ C @ A2 )
     => ( ( ord_le4112832032246704949la_a_b @ D @ B )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ C @ D ) @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ) ).

% sup.mono
thf(fact_802_sup_Omono,axiom,
    ! [C: nat,A2: nat,D: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A2 )
     => ( ( ord_less_eq_nat @ D @ B )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C @ D ) @ ( sup_sup_nat @ A2 @ B ) ) ) ) ).

% sup.mono
thf(fact_803_le__supI2,axiom,
    ! [X: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ X @ B )
     => ( ord_le4112832032246704949la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% le_supI2
thf(fact_804_le__supI2,axiom,
    ! [X: nat,B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ X @ B )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% le_supI2
thf(fact_805_le__supI1,axiom,
    ! [X: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ X @ A2 )
     => ( ord_le4112832032246704949la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% le_supI1
thf(fact_806_le__supI1,axiom,
    ! [X: nat,A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ A2 )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% le_supI1
thf(fact_807_sup__ge2,axiom,
    ! [Y: set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ Y @ ( sup_su5130108678486352897la_a_b @ X @ Y ) ) ).

% sup_ge2
thf(fact_808_sup__ge2,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge2
thf(fact_809_sup__ge1,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ X @ Y ) ) ).

% sup_ge1
thf(fact_810_sup__ge1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge1
thf(fact_811_le__supI,axiom,
    ! [A2: set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A2 @ X )
     => ( ( ord_le4112832032246704949la_a_b @ B @ X )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) @ X ) ) ) ).

% le_supI
thf(fact_812_le__supI,axiom,
    ! [A2: nat,X: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ X )
     => ( ( ord_less_eq_nat @ B @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B ) @ X ) ) ) ).

% le_supI
thf(fact_813_le__supE,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) @ X )
     => ~ ( ( ord_le4112832032246704949la_a_b @ A2 @ X )
         => ~ ( ord_le4112832032246704949la_a_b @ B @ X ) ) ) ).

% le_supE
thf(fact_814_le__supE,axiom,
    ! [A2: nat,B: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B ) @ X )
     => ~ ( ( ord_less_eq_nat @ A2 @ X )
         => ~ ( ord_less_eq_nat @ B @ X ) ) ) ).

% le_supE
thf(fact_815_inf__sup__ord_I3_J,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_816_inf__sup__ord_I3_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_817_inf__sup__ord_I4_J,axiom,
    ! [Y: set_Re381260168593705685la_a_b,X: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ Y @ ( sup_su5130108678486352897la_a_b @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_818_inf__sup__ord_I4_J,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_819_fmla_Oset__intros_I9_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a] : ( member_b @ X11 @ ( relati8924981150291758614la_a_b @ ( relational_Pred_b_a @ X11 @ X12 ) ) ) ).

% fmla.set_intros(9)
thf(fact_820_subset__Un__eq,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( ( sup_su5130108678486352897la_a_b @ A4 @ B4 )
          = B4 ) ) ) ).

% subset_Un_eq
thf(fact_821_subset__UnE,axiom,
    ! [C2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ C2 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
     => ~ ! [A7: set_Re381260168593705685la_a_b] :
            ( ( ord_le4112832032246704949la_a_b @ A7 @ A )
           => ! [B7: set_Re381260168593705685la_a_b] :
                ( ( ord_le4112832032246704949la_a_b @ B7 @ B2 )
               => ( C2
                 != ( sup_su5130108678486352897la_a_b @ A7 @ B7 ) ) ) ) ) ).

% subset_UnE
thf(fact_822_Un__absorb2,axiom,
    ! [B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ B2 @ A )
     => ( ( sup_su5130108678486352897la_a_b @ A @ B2 )
        = A ) ) ).

% Un_absorb2
thf(fact_823_Un__absorb1,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ B2 )
     => ( ( sup_su5130108678486352897la_a_b @ A @ B2 )
        = B2 ) ) ).

% Un_absorb1
thf(fact_824_Un__upper2,axiom,
    ! [B2: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ B2 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ).

% Un_upper2
thf(fact_825_Un__upper1,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ A @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) ).

% Un_upper1
thf(fact_826_Un__least,axiom,
    ! [A: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ C2 )
     => ( ( ord_le4112832032246704949la_a_b @ B2 @ C2 )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) @ C2 ) ) ) ).

% Un_least
thf(fact_827_Un__mono,axiom,
    ! [A: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,D2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ C2 )
     => ( ( ord_le4112832032246704949la_a_b @ B2 @ D2 )
       => ( ord_le4112832032246704949la_a_b @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) @ ( sup_su5130108678486352897la_a_b @ C2 @ D2 ) ) ) ) ).

% Un_mono
thf(fact_828_qp__Disj,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ~ ( relational_qp_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) ) ).

% qp_Disj
thf(fact_829_qp__impl_Osimps_I3_J,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relati3725921752842749053pl_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) )
      = ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
        & ( relational_qp_a_b @ Q ) ) ) ).

% qp_impl.simps(3)
thf(fact_830_qp__cp__triv,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_qp_a_b @ Q )
     => ( ( relational_cp_a_b @ Q )
        = Q ) ) ).

% qp_cp_triv
thf(fact_831_qp__cp,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_qp_a_b @ Q )
     => ( relational_qp_a_b @ ( relational_cp_a_b @ Q ) ) ) ).

% qp_cp
thf(fact_832_qps__qp,axiom,
    ! [Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ Q @ ( relational_qps_a_b @ G ) )
     => ( relational_qp_a_b @ Q ) ) ).

% qps_qp
thf(fact_833_finite__eval__Disj2D,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,I: product_prod_b_nat > set_list_a] :
      ( ( finite_finite_list_a @ ( relational_eval_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ I ) )
     => ( finite_finite_list_a @ ( relational_eval_a_b @ Q22 @ I ) ) ) ).

% finite_eval_Disj2D
thf(fact_834_qp__impl_Osimps_I8_J,axiom,
    ! [V: relational_fmla_a_b,Va: relational_fmla_a_b] :
      ~ ( relati3725921752842749053pl_a_b @ ( relational_Disj_a_b @ V @ Va ) ) ).

% qp_impl.simps(8)
thf(fact_835_qp__impl_Osimps_I4_J,axiom,
    ! [V: $o] :
      ~ ( relati3725921752842749053pl_a_b @ ( relational_Bool_a_b @ V ) ) ).

% qp_impl.simps(4)
thf(fact_836_qp__impl_Osimps_I2_J,axiom,
    ! [X: b,Ts: list_R6823256787227418703term_a] : ( relati3725921752842749053pl_a_b @ ( relational_Pred_b_a @ X @ Ts ) ) ).

% qp_impl.simps(2)
thf(fact_837_finite__csts__term,axiom,
    ! [T2: relational_term_nat] : ( finite_finite_nat @ ( relati694035416245573993rm_nat @ T2 ) ) ).

% finite_csts_term
thf(fact_838_finite__csts__term,axiom,
    ! [T2: relati112041753218324778la_a_b] : ( finite5600759454172676150la_a_b @ ( relati1926769566493843000la_a_b @ T2 ) ) ).

% finite_csts_term
thf(fact_839_fmla_Osimps_I128_J,axiom,
    ! [X2: $o] :
      ( ( relati8924981150291758614la_a_b @ ( relational_Bool_a_b @ X2 ) )
      = bot_bot_set_b ) ).

% fmla.simps(128)
thf(fact_840_fmla_Osimps_I132_J,axiom,
    ! [X61: relational_fmla_a_b,X62: relational_fmla_a_b] :
      ( ( relati8924981150291758614la_a_b @ ( relational_Disj_a_b @ X61 @ X62 ) )
      = ( sup_sup_set_b @ ( relati8924981150291758614la_a_b @ X61 ) @ ( relati8924981150291758614la_a_b @ X62 ) ) ) ).

% fmla.simps(132)
thf(fact_841_finite__has__minimal,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A )
               => ( ( ord_less_eq_nat @ Xa2 @ X5 )
                 => ( X5 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_842_finite__has__maximal,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A )
               => ( ( ord_less_eq_nat @ X5 @ Xa2 )
                 => ( X5 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_843_subset__Diff__insert,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,X: relational_fmla_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ ( minus_4077726661957047470la_a_b @ B2 @ ( insert7010464514620295119la_a_b @ X @ C2 ) ) )
      = ( ( ord_le4112832032246704949la_a_b @ A @ ( minus_4077726661957047470la_a_b @ B2 @ C2 ) )
        & ~ ( member4680049679412964150la_a_b @ X @ A ) ) ) ).

% subset_Diff_insert
thf(fact_844_subset__Diff__insert,axiom,
    ! [A: set_nat,B2: set_nat,X: nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( minus_minus_set_nat @ B2 @ ( insert_nat @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_nat @ A @ ( minus_minus_set_nat @ B2 @ C2 ) )
        & ~ ( member_nat @ X @ A ) ) ) ).

% subset_Diff_insert
thf(fact_845_exists__Exists,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
     => ( ( relati3989891337220013914ts_a_b @ X @ Q )
        = ( relati591517084277583526ts_a_b @ X @ Q ) ) ) ).

% exists_Exists
thf(fact_846_exists__def,axiom,
    ( relati3989891337220013914ts_a_b
    = ( ^ [X3: nat,Q5: relational_fmla_a_b] : ( if_Rel1279876242545935705la_a_b @ ( member_nat @ X3 @ ( relational_fv_a_b @ Q5 ) ) @ ( relati591517084277583526ts_a_b @ X3 @ Q5 ) @ Q5 ) ) ) ).

% exists_def
thf(fact_847_Diff__subset__conv,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ ( minus_4077726661957047470la_a_b @ A @ B2 ) @ C2 )
      = ( ord_le4112832032246704949la_a_b @ A @ ( sup_su5130108678486352897la_a_b @ B2 @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_848_Diff__partition,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ B2 )
     => ( ( sup_su5130108678486352897la_a_b @ A @ ( minus_4077726661957047470la_a_b @ B2 @ A ) )
        = B2 ) ) ).

% Diff_partition
thf(fact_849_cp_Osimps_I5_J,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relational_cp_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) )
      = ( relati3989891337220013914ts_a_b @ X @ ( relational_cp_a_b @ Q ) ) ) ).

% cp.simps(5)
thf(fact_850_exists__cp__erase,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relati3989891337220013914ts_a_b @ X @ ( relational_cp_a_b @ ( relational_erase_a_b @ Q @ X ) ) )
      = ( relational_cp_a_b @ ( relational_erase_a_b @ Q @ X ) ) ) ).

% exists_cp_erase
thf(fact_851_qp__ExistsE,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ( relational_qp_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) )
     => ~ ( ( relational_qp_a_b @ Q )
         => ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) ) ) ) ).

% qp_ExistsE
thf(fact_852_qp__Exists,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_qp_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_qp_a_b @ ( relati591517084277583526ts_a_b @ X @ Q ) ) ) ) ).

% qp_Exists
thf(fact_853_fv__cp,axiom,
    ! [Q: relational_fmla_a_b] : ( ord_less_eq_set_nat @ ( relational_fv_a_b @ ( relational_cp_a_b @ Q ) ) @ ( relational_fv_a_b @ Q ) ) ).

% fv_cp
thf(fact_854_fmla_Osimps_I127_J,axiom,
    ! [X11: b,X12: list_R6823256787227418703term_a] :
      ( ( relati8924981150291758614la_a_b @ ( relational_Pred_b_a @ X11 @ X12 ) )
      = ( insert_b @ X11 @ bot_bot_set_b ) ) ).

% fmla.simps(127)
thf(fact_855_finite__subset__induct_H,axiom,
    ! [F: set_nat,A: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ F )
     => ( ( ord_less_eq_set_nat @ F @ A )
       => ( ( P2 @ bot_bot_set_nat )
         => ( ! [A6: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A6 @ A )
                 => ( ( ord_less_eq_set_nat @ F3 @ A )
                   => ( ~ ( member_nat @ A6 @ F3 )
                     => ( ( P2 @ F3 )
                       => ( P2 @ ( insert_nat @ A6 @ F3 ) ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_856_finite__subset__induct_H,axiom,
    ! [F: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( ( ord_le4112832032246704949la_a_b @ F @ A )
       => ( ( P2 @ bot_bo4495933725496725865la_a_b )
         => ( ! [A6: relational_fmla_a_b,F3: set_Re381260168593705685la_a_b] :
                ( ( finite5600759454172676150la_a_b @ F3 )
               => ( ( member4680049679412964150la_a_b @ A6 @ A )
                 => ( ( ord_le4112832032246704949la_a_b @ F3 @ A )
                   => ( ~ ( member4680049679412964150la_a_b @ A6 @ F3 )
                     => ( ( P2 @ F3 )
                       => ( P2 @ ( insert7010464514620295119la_a_b @ A6 @ F3 ) ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_857_finite__subset__induct,axiom,
    ! [F: set_nat,A: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ F )
     => ( ( ord_less_eq_set_nat @ F @ A )
       => ( ( P2 @ bot_bot_set_nat )
         => ( ! [A6: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A6 @ A )
                 => ( ~ ( member_nat @ A6 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert_nat @ A6 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_subset_induct
thf(fact_858_finite__subset__induct,axiom,
    ! [F: set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( ( ord_le4112832032246704949la_a_b @ F @ A )
       => ( ( P2 @ bot_bo4495933725496725865la_a_b )
         => ( ! [A6: relational_fmla_a_b,F3: set_Re381260168593705685la_a_b] :
                ( ( finite5600759454172676150la_a_b @ F3 )
               => ( ( member4680049679412964150la_a_b @ A6 @ A )
                 => ( ~ ( member4680049679412964150la_a_b @ A6 @ F3 )
                   => ( ( P2 @ F3 )
                     => ( P2 @ ( insert7010464514620295119la_a_b @ A6 @ F3 ) ) ) ) ) )
           => ( P2 @ F ) ) ) ) ) ).

% finite_subset_induct
thf(fact_859_subset__insert__iff,axiom,
    ! [A: set_Re381260168593705685la_a_b,X: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ B2 ) )
      = ( ( ( member4680049679412964150la_a_b @ X @ A )
         => ( ord_le4112832032246704949la_a_b @ ( minus_4077726661957047470la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) @ B2 ) )
        & ( ~ ( member4680049679412964150la_a_b @ X @ A )
         => ( ord_le4112832032246704949la_a_b @ A @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_860_subset__insert__iff,axiom,
    ! [A: set_nat,X: nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( insert_nat @ X @ B2 ) )
      = ( ( ( member_nat @ X @ A )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) )
        & ( ~ ( member_nat @ X @ A )
         => ( ord_less_eq_set_nat @ A @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_861_qp__impl_Oelims_I2_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ( relati3725921752842749053pl_a_b @ X )
     => ( ! [X5: nat,C4: a] :
            ( X
           != ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) )
       => ( ! [X5: b,Ts2: list_R6823256787227418703term_a] :
              ( X
             != ( relational_Pred_b_a @ X5 @ Ts2 ) )
         => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                ( ( X
                  = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
               => ~ ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                    & ( relational_qp_a_b @ Q4 ) ) ) ) ) ) ).

% qp_impl.elims(2)
thf(fact_862_finite__remove__induct,axiom,
    ! [B2: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [A5: set_nat] :
              ( ( finite_finite_nat @ A5 )
             => ( ( A5 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A5 @ B2 )
                 => ( ! [X7: nat] :
                        ( ( member_nat @ X7 @ A5 )
                       => ( P2 @ ( minus_minus_set_nat @ A5 @ ( insert_nat @ X7 @ bot_bot_set_nat ) ) ) )
                   => ( P2 @ A5 ) ) ) ) )
         => ( P2 @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_863_finite__remove__induct,axiom,
    ! [B2: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ B2 )
     => ( ( P2 @ bot_bo4495933725496725865la_a_b )
       => ( ! [A5: set_Re381260168593705685la_a_b] :
              ( ( finite5600759454172676150la_a_b @ A5 )
             => ( ( A5 != bot_bo4495933725496725865la_a_b )
               => ( ( ord_le4112832032246704949la_a_b @ A5 @ B2 )
                 => ( ! [X7: relational_fmla_a_b] :
                        ( ( member4680049679412964150la_a_b @ X7 @ A5 )
                       => ( P2 @ ( minus_4077726661957047470la_a_b @ A5 @ ( insert7010464514620295119la_a_b @ X7 @ bot_bo4495933725496725865la_a_b ) ) ) )
                   => ( P2 @ A5 ) ) ) ) )
         => ( P2 @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_864_remove__induct,axiom,
    ! [P2: set_nat > $o,B2: set_nat] :
      ( ( P2 @ bot_bot_set_nat )
     => ( ( ~ ( finite_finite_nat @ B2 )
         => ( P2 @ B2 ) )
       => ( ! [A5: set_nat] :
              ( ( finite_finite_nat @ A5 )
             => ( ( A5 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A5 @ B2 )
                 => ( ! [X7: nat] :
                        ( ( member_nat @ X7 @ A5 )
                       => ( P2 @ ( minus_minus_set_nat @ A5 @ ( insert_nat @ X7 @ bot_bot_set_nat ) ) ) )
                   => ( P2 @ A5 ) ) ) ) )
         => ( P2 @ B2 ) ) ) ) ).

% remove_induct
thf(fact_865_remove__induct,axiom,
    ! [P2: set_Re381260168593705685la_a_b > $o,B2: set_Re381260168593705685la_a_b] :
      ( ( P2 @ bot_bo4495933725496725865la_a_b )
     => ( ( ~ ( finite5600759454172676150la_a_b @ B2 )
         => ( P2 @ B2 ) )
       => ( ! [A5: set_Re381260168593705685la_a_b] :
              ( ( finite5600759454172676150la_a_b @ A5 )
             => ( ( A5 != bot_bo4495933725496725865la_a_b )
               => ( ( ord_le4112832032246704949la_a_b @ A5 @ B2 )
                 => ( ! [X7: relational_fmla_a_b] :
                        ( ( member4680049679412964150la_a_b @ X7 @ A5 )
                       => ( P2 @ ( minus_4077726661957047470la_a_b @ A5 @ ( insert7010464514620295119la_a_b @ X7 @ bot_bo4495933725496725865la_a_b ) ) ) )
                   => ( P2 @ A5 ) ) ) ) )
         => ( P2 @ B2 ) ) ) ) ).

% remove_induct
thf(fact_866_qp__cp__erase,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_qp_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q @ X ) )
          = ( relational_Bool_a_b @ $false ) ) ) ) ).

% qp_cp_erase
thf(fact_867_qp__impl_Oelims_I3_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ~ ( relati3725921752842749053pl_a_b @ X )
     => ( ! [X5: nat,Q4: relational_fmla_a_b] :
            ( ( X
              = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
           => ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
              & ( relational_qp_a_b @ Q4 ) ) )
       => ( ! [V2: $o] :
              ( X
             != ( relational_Bool_a_b @ V2 ) )
         => ( ! [V2: nat,Vb: nat] :
                ( X
               != ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) )
           => ( ! [V2: relational_fmla_a_b] :
                  ( X
                 != ( relational_Neg_a_b @ V2 ) )
             => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                    ( X
                   != ( relational_Conj_a_b @ V2 @ Va2 ) )
               => ~ ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                      ( X
                     != ( relational_Disj_a_b @ V2 @ Va2 ) ) ) ) ) ) ) ) ).

% qp_impl.elims(3)
thf(fact_868_qp__impl_Opelims_I1_J,axiom,
    ! [X: relational_fmla_a_b,Y: $o] :
      ( ( ( relati3725921752842749053pl_a_b @ X )
        = Y )
     => ( ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ X )
       => ( ! [X5: nat,C4: a] :
              ( ( X
                = ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) )
             => ( Y
               => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) ) ) )
         => ( ! [X5: b,Ts2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ X5 @ Ts2 ) )
               => ( Y
                 => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Pred_b_a @ X5 @ Ts2 ) ) ) )
           => ( ! [X5: nat,Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                 => ( ( Y
                      = ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                        & ( relational_qp_a_b @ Q4 ) ) )
                   => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) ) ) )
             => ( ! [V2: $o] :
                    ( ( X
                      = ( relational_Bool_a_b @ V2 ) )
                   => ( ~ Y
                     => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Bool_a_b @ V2 ) ) ) )
               => ( ! [V2: nat,Vb: nat] :
                      ( ( X
                        = ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) )
                     => ( ~ Y
                       => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) ) ) )
                 => ( ! [V2: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Neg_a_b @ V2 ) )
                       => ( ~ Y
                         => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Neg_a_b @ V2 ) ) ) )
                   => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                          ( ( X
                            = ( relational_Conj_a_b @ V2 @ Va2 ) )
                         => ( ~ Y
                           => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Conj_a_b @ V2 @ Va2 ) ) ) )
                     => ~ ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                            ( ( X
                              = ( relational_Disj_a_b @ V2 @ Va2 ) )
                           => ( ~ Y
                             => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Disj_a_b @ V2 @ Va2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% qp_impl.pelims(1)
thf(fact_869_qp__impl_Opelims_I3_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ~ ( relati3725921752842749053pl_a_b @ X )
     => ( ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ X )
       => ( ! [X5: nat,Q4: relational_fmla_a_b] :
              ( ( X
                = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
             => ( ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
               => ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                  & ( relational_qp_a_b @ Q4 ) ) ) )
         => ( ! [V2: $o] :
                ( ( X
                  = ( relational_Bool_a_b @ V2 ) )
               => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Bool_a_b @ V2 ) ) )
           => ( ! [V2: nat,Vb: nat] :
                  ( ( X
                    = ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) )
                 => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Eq_a_b @ V2 @ ( relational_Var_a @ Vb ) ) ) )
             => ( ! [V2: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ V2 ) )
                   => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Neg_a_b @ V2 ) ) )
               => ( ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ V2 @ Va2 ) )
                     => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Conj_a_b @ V2 @ Va2 ) ) )
                 => ~ ! [V2: relational_fmla_a_b,Va2: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Disj_a_b @ V2 @ Va2 ) )
                       => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Disj_a_b @ V2 @ Va2 ) ) ) ) ) ) ) ) ) ) ).

% qp_impl.pelims(3)
thf(fact_870_it__step__insert__iff,axiom,
    ! [It: set_Re381260168593705685la_a_b,S: set_Re381260168593705685la_a_b,X: relational_fmla_a_b] :
      ( ( ord_le4112832032246704949la_a_b @ It @ S )
     => ( ( member4680049679412964150la_a_b @ X @ It )
       => ( ( minus_4077726661957047470la_a_b @ S @ ( minus_4077726661957047470la_a_b @ It @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) )
          = ( insert7010464514620295119la_a_b @ X @ ( minus_4077726661957047470la_a_b @ S @ It ) ) ) ) ) ).

% it_step_insert_iff
thf(fact_871_it__step__insert__iff,axiom,
    ! [It: set_nat,S: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ It @ S )
     => ( ( member_nat @ X @ It )
       => ( ( minus_minus_set_nat @ S @ ( minus_minus_set_nat @ It @ ( insert_nat @ X @ bot_bot_set_nat ) ) )
          = ( insert_nat @ X @ ( minus_minus_set_nat @ S @ It ) ) ) ) ) ).

% it_step_insert_iff
thf(fact_872_finite__ranking__induct,axiom,
    ! [S: set_nat,P2: set_nat > $o,F4: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [X5: nat,S2: set_nat] :
              ( ( finite_finite_nat @ S2 )
             => ( ! [Y7: nat] :
                    ( ( member_nat @ Y7 @ S2 )
                   => ( ord_less_eq_nat @ ( F4 @ Y7 ) @ ( F4 @ X5 ) ) )
               => ( ( P2 @ S2 )
                 => ( P2 @ ( insert_nat @ X5 @ S2 ) ) ) ) )
         => ( P2 @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_873_finite__ranking__induct,axiom,
    ! [S: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o,F4: relational_fmla_a_b > nat] :
      ( ( finite5600759454172676150la_a_b @ S )
     => ( ( P2 @ bot_bo4495933725496725865la_a_b )
       => ( ! [X5: relational_fmla_a_b,S2: set_Re381260168593705685la_a_b] :
              ( ( finite5600759454172676150la_a_b @ S2 )
             => ( ! [Y7: relational_fmla_a_b] :
                    ( ( member4680049679412964150la_a_b @ Y7 @ S2 )
                   => ( ord_less_eq_nat @ ( F4 @ Y7 ) @ ( F4 @ X5 ) ) )
               => ( ( P2 @ S2 )
                 => ( P2 @ ( insert7010464514620295119la_a_b @ X5 @ S2 ) ) ) ) )
         => ( P2 @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_874_qp__impl_Opelims_I2_J,axiom,
    ! [X: relational_fmla_a_b] :
      ( ( relati3725921752842749053pl_a_b @ X )
     => ( ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ X )
       => ( ! [X5: nat,C4: a] :
              ( ( X
                = ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) )
             => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) ) )
         => ( ! [X5: b,Ts2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ X5 @ Ts2 ) )
               => ~ ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relational_Pred_b_a @ X5 @ Ts2 ) ) )
           => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                 => ( ( accp_R989495437599811158la_a_b @ relati7364465619720499582el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                   => ~ ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                        & ( relational_qp_a_b @ Q4 ) ) ) ) ) ) ) ) ).

% qp_impl.pelims(2)
thf(fact_875_image__eqI,axiom,
    ! [B: relational_fmla_a_b,F4: relational_fmla_a_b > relational_fmla_a_b,X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( B
        = ( F4 @ X ) )
     => ( ( member4680049679412964150la_a_b @ X @ A )
       => ( member4680049679412964150la_a_b @ B @ ( image_6790371041703824709la_a_b @ F4 @ A ) ) ) ) ).

% image_eqI
thf(fact_876_image__eqI,axiom,
    ! [B: nat,F4: relational_fmla_a_b > nat,X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( B
        = ( F4 @ X ) )
     => ( ( member4680049679412964150la_a_b @ X @ A )
       => ( member_nat @ B @ ( image_341122591648980342_b_nat @ F4 @ A ) ) ) ) ).

% image_eqI
thf(fact_877_image__eqI,axiom,
    ! [B: relational_fmla_a_b,F4: nat > relational_fmla_a_b,X: nat,A: set_nat] :
      ( ( B
        = ( F4 @ X ) )
     => ( ( member_nat @ X @ A )
       => ( member4680049679412964150la_a_b @ B @ ( image_4386371547000553590la_a_b @ F4 @ A ) ) ) ) ).

% image_eqI
thf(fact_878_image__eqI,axiom,
    ! [B: nat,F4: nat > nat,X: nat,A: set_nat] :
      ( ( B
        = ( F4 @ X ) )
     => ( ( member_nat @ X @ A )
       => ( member_nat @ B @ ( image_nat_nat @ F4 @ A ) ) ) ) ).

% image_eqI
thf(fact_879_finite__imageI,axiom,
    ! [F: set_nat,H: nat > nat] :
      ( ( finite_finite_nat @ F )
     => ( finite_finite_nat @ ( image_nat_nat @ H @ F ) ) ) ).

% finite_imageI
thf(fact_880_finite__imageI,axiom,
    ! [F: set_nat,H: nat > relational_fmla_a_b] :
      ( ( finite_finite_nat @ F )
     => ( finite5600759454172676150la_a_b @ ( image_4386371547000553590la_a_b @ H @ F ) ) ) ).

% finite_imageI
thf(fact_881_finite__imageI,axiom,
    ! [F: set_Re381260168593705685la_a_b,H: relational_fmla_a_b > nat] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( finite_finite_nat @ ( image_341122591648980342_b_nat @ H @ F ) ) ) ).

% finite_imageI
thf(fact_882_finite__imageI,axiom,
    ! [F: set_Re381260168593705685la_a_b,H: relational_fmla_a_b > relational_fmla_a_b] :
      ( ( finite5600759454172676150la_a_b @ F )
     => ( finite5600759454172676150la_a_b @ ( image_6790371041703824709la_a_b @ H @ F ) ) ) ).

% finite_imageI
thf(fact_883_rev__image__eqI,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B: relational_fmla_a_b,F4: relational_fmla_a_b > relational_fmla_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ A )
     => ( ( B
          = ( F4 @ X ) )
       => ( member4680049679412964150la_a_b @ B @ ( image_6790371041703824709la_a_b @ F4 @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_884_rev__image__eqI,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B: nat,F4: relational_fmla_a_b > nat] :
      ( ( member4680049679412964150la_a_b @ X @ A )
     => ( ( B
          = ( F4 @ X ) )
       => ( member_nat @ B @ ( image_341122591648980342_b_nat @ F4 @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_885_rev__image__eqI,axiom,
    ! [X: nat,A: set_nat,B: relational_fmla_a_b,F4: nat > relational_fmla_a_b] :
      ( ( member_nat @ X @ A )
     => ( ( B
          = ( F4 @ X ) )
       => ( member4680049679412964150la_a_b @ B @ ( image_4386371547000553590la_a_b @ F4 @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_886_rev__image__eqI,axiom,
    ! [X: nat,A: set_nat,B: nat,F4: nat > nat] :
      ( ( member_nat @ X @ A )
     => ( ( B
          = ( F4 @ X ) )
       => ( member_nat @ B @ ( image_nat_nat @ F4 @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_887_imageI,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > relational_fmla_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ A )
     => ( member4680049679412964150la_a_b @ ( F4 @ X ) @ ( image_6790371041703824709la_a_b @ F4 @ A ) ) ) ).

% imageI
thf(fact_888_imageI,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > nat] :
      ( ( member4680049679412964150la_a_b @ X @ A )
     => ( member_nat @ ( F4 @ X ) @ ( image_341122591648980342_b_nat @ F4 @ A ) ) ) ).

% imageI
thf(fact_889_imageI,axiom,
    ! [X: nat,A: set_nat,F4: nat > relational_fmla_a_b] :
      ( ( member_nat @ X @ A )
     => ( member4680049679412964150la_a_b @ ( F4 @ X ) @ ( image_4386371547000553590la_a_b @ F4 @ A ) ) ) ).

% imageI
thf(fact_890_imageI,axiom,
    ! [X: nat,A: set_nat,F4: nat > nat] :
      ( ( member_nat @ X @ A )
     => ( member_nat @ ( F4 @ X ) @ ( image_nat_nat @ F4 @ A ) ) ) ).

% imageI
thf(fact_891_image__subsetI,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ! [X5: relational_fmla_a_b] :
          ( ( member4680049679412964150la_a_b @ X5 @ A )
         => ( member4680049679412964150la_a_b @ ( F4 @ X5 ) @ B2 ) )
     => ( ord_le4112832032246704949la_a_b @ ( image_6790371041703824709la_a_b @ F4 @ A ) @ B2 ) ) ).

% image_subsetI
thf(fact_892_image__subsetI,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > nat,B2: set_nat] :
      ( ! [X5: relational_fmla_a_b] :
          ( ( member4680049679412964150la_a_b @ X5 @ A )
         => ( member_nat @ ( F4 @ X5 ) @ B2 ) )
     => ( ord_less_eq_set_nat @ ( image_341122591648980342_b_nat @ F4 @ A ) @ B2 ) ) ).

% image_subsetI
thf(fact_893_image__subsetI,axiom,
    ! [A: set_nat,F4: nat > relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A )
         => ( member4680049679412964150la_a_b @ ( F4 @ X5 ) @ B2 ) )
     => ( ord_le4112832032246704949la_a_b @ ( image_4386371547000553590la_a_b @ F4 @ A ) @ B2 ) ) ).

% image_subsetI
thf(fact_894_image__subsetI,axiom,
    ! [A: set_nat,F4: nat > nat,B2: set_nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A )
         => ( member_nat @ ( F4 @ X5 ) @ B2 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F4 @ A ) @ B2 ) ) ).

% image_subsetI
thf(fact_895_image__Un,axiom,
    ! [F4: relational_fmla_a_b > relational_fmla_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( image_6790371041703824709la_a_b @ F4 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) )
      = ( sup_su5130108678486352897la_a_b @ ( image_6790371041703824709la_a_b @ F4 @ A ) @ ( image_6790371041703824709la_a_b @ F4 @ B2 ) ) ) ).

% image_Un
thf(fact_896_infinite__nat__iff__unbounded__le,axiom,
    ! [S: set_nat] :
      ( ( ~ ( finite_finite_nat @ S ) )
      = ( ! [M: nat] :
          ? [N: nat] :
            ( ( ord_less_eq_nat @ M @ N )
            & ( member_nat @ N @ S ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_897_infinite__surj,axiom,
    ! [A: set_nat,F4: nat > nat,B2: set_nat] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( ord_less_eq_set_nat @ A @ ( image_nat_nat @ F4 @ B2 ) )
       => ~ ( finite_finite_nat @ B2 ) ) ) ).

% infinite_surj
thf(fact_898_infinite__surj,axiom,
    ! [A: set_nat,F4: relational_fmla_a_b > nat,B2: set_Re381260168593705685la_a_b] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( ord_less_eq_set_nat @ A @ ( image_341122591648980342_b_nat @ F4 @ B2 ) )
       => ~ ( finite5600759454172676150la_a_b @ B2 ) ) ) ).

% infinite_surj
thf(fact_899_infinite__surj,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: nat > relational_fmla_a_b,B2: set_nat] :
      ( ~ ( finite5600759454172676150la_a_b @ A )
     => ( ( ord_le4112832032246704949la_a_b @ A @ ( image_4386371547000553590la_a_b @ F4 @ B2 ) )
       => ~ ( finite_finite_nat @ B2 ) ) ) ).

% infinite_surj
thf(fact_900_infinite__surj,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ~ ( finite5600759454172676150la_a_b @ A )
     => ( ( ord_le4112832032246704949la_a_b @ A @ ( image_6790371041703824709la_a_b @ F4 @ B2 ) )
       => ~ ( finite5600759454172676150la_a_b @ B2 ) ) ) ).

% infinite_surj
thf(fact_901_finite__surj,axiom,
    ! [A: set_nat,B2: set_nat,F4: nat > nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F4 @ A ) )
       => ( finite_finite_nat @ B2 ) ) ) ).

% finite_surj
thf(fact_902_finite__surj,axiom,
    ! [A: set_nat,B2: set_Re381260168593705685la_a_b,F4: nat > relational_fmla_a_b] :
      ( ( finite_finite_nat @ A )
     => ( ( ord_le4112832032246704949la_a_b @ B2 @ ( image_4386371547000553590la_a_b @ F4 @ A ) )
       => ( finite5600759454172676150la_a_b @ B2 ) ) ) ).

% finite_surj
thf(fact_903_finite__surj,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_nat,F4: relational_fmla_a_b > nat] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_341122591648980342_b_nat @ F4 @ A ) )
       => ( finite_finite_nat @ B2 ) ) ) ).

% finite_surj
thf(fact_904_finite__surj,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > relational_fmla_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ( ord_le4112832032246704949la_a_b @ B2 @ ( image_6790371041703824709la_a_b @ F4 @ A ) )
       => ( finite5600759454172676150la_a_b @ B2 ) ) ) ).

% finite_surj
thf(fact_905_finite__subset__image,axiom,
    ! [B2: set_nat,F4: nat > nat,A: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F4 @ A ) )
       => ? [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A )
            & ( finite_finite_nat @ C5 )
            & ( B2
              = ( image_nat_nat @ F4 @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_906_finite__subset__image,axiom,
    ! [B2: set_nat,F4: relational_fmla_a_b > nat,A: set_Re381260168593705685la_a_b] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_341122591648980342_b_nat @ F4 @ A ) )
       => ? [C5: set_Re381260168593705685la_a_b] :
            ( ( ord_le4112832032246704949la_a_b @ C5 @ A )
            & ( finite5600759454172676150la_a_b @ C5 )
            & ( B2
              = ( image_341122591648980342_b_nat @ F4 @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_907_finite__subset__image,axiom,
    ! [B2: set_Re381260168593705685la_a_b,F4: nat > relational_fmla_a_b,A: set_nat] :
      ( ( finite5600759454172676150la_a_b @ B2 )
     => ( ( ord_le4112832032246704949la_a_b @ B2 @ ( image_4386371547000553590la_a_b @ F4 @ A ) )
       => ? [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A )
            & ( finite_finite_nat @ C5 )
            & ( B2
              = ( image_4386371547000553590la_a_b @ F4 @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_908_finite__subset__image,axiom,
    ! [B2: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ B2 )
     => ( ( ord_le4112832032246704949la_a_b @ B2 @ ( image_6790371041703824709la_a_b @ F4 @ A ) )
       => ? [C5: set_Re381260168593705685la_a_b] :
            ( ( ord_le4112832032246704949la_a_b @ C5 @ A )
            & ( finite5600759454172676150la_a_b @ C5 )
            & ( B2
              = ( image_6790371041703824709la_a_b @ F4 @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_909_ex__finite__subset__image,axiom,
    ! [F4: nat > nat,A: set_nat,P2: set_nat > $o] :
      ( ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ ( image_nat_nat @ F4 @ A ) )
            & ( P2 @ B4 ) ) )
      = ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ A )
            & ( P2 @ ( image_nat_nat @ F4 @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_910_ex__finite__subset__image,axiom,
    ! [F4: relational_fmla_a_b > nat,A: set_Re381260168593705685la_a_b,P2: set_nat > $o] :
      ( ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ ( image_341122591648980342_b_nat @ F4 @ A ) )
            & ( P2 @ B4 ) ) )
      = ( ? [B4: set_Re381260168593705685la_a_b] :
            ( ( finite5600759454172676150la_a_b @ B4 )
            & ( ord_le4112832032246704949la_a_b @ B4 @ A )
            & ( P2 @ ( image_341122591648980342_b_nat @ F4 @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_911_ex__finite__subset__image,axiom,
    ! [F4: nat > relational_fmla_a_b,A: set_nat,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( ? [B4: set_Re381260168593705685la_a_b] :
            ( ( finite5600759454172676150la_a_b @ B4 )
            & ( ord_le4112832032246704949la_a_b @ B4 @ ( image_4386371547000553590la_a_b @ F4 @ A ) )
            & ( P2 @ B4 ) ) )
      = ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ A )
            & ( P2 @ ( image_4386371547000553590la_a_b @ F4 @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_912_ex__finite__subset__image,axiom,
    ! [F4: relational_fmla_a_b > relational_fmla_a_b,A: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( ? [B4: set_Re381260168593705685la_a_b] :
            ( ( finite5600759454172676150la_a_b @ B4 )
            & ( ord_le4112832032246704949la_a_b @ B4 @ ( image_6790371041703824709la_a_b @ F4 @ A ) )
            & ( P2 @ B4 ) ) )
      = ( ? [B4: set_Re381260168593705685la_a_b] :
            ( ( finite5600759454172676150la_a_b @ B4 )
            & ( ord_le4112832032246704949la_a_b @ B4 @ A )
            & ( P2 @ ( image_6790371041703824709la_a_b @ F4 @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_913_all__finite__subset__image,axiom,
    ! [F4: nat > nat,A: set_nat,P2: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ ( image_nat_nat @ F4 @ A ) ) )
           => ( P2 @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ A ) )
           => ( P2 @ ( image_nat_nat @ F4 @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_914_all__finite__subset__image,axiom,
    ! [F4: relational_fmla_a_b > nat,A: set_Re381260168593705685la_a_b,P2: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ ( image_341122591648980342_b_nat @ F4 @ A ) ) )
           => ( P2 @ B4 ) ) )
      = ( ! [B4: set_Re381260168593705685la_a_b] :
            ( ( ( finite5600759454172676150la_a_b @ B4 )
              & ( ord_le4112832032246704949la_a_b @ B4 @ A ) )
           => ( P2 @ ( image_341122591648980342_b_nat @ F4 @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_915_all__finite__subset__image,axiom,
    ! [F4: nat > relational_fmla_a_b,A: set_nat,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( ! [B4: set_Re381260168593705685la_a_b] :
            ( ( ( finite5600759454172676150la_a_b @ B4 )
              & ( ord_le4112832032246704949la_a_b @ B4 @ ( image_4386371547000553590la_a_b @ F4 @ A ) ) )
           => ( P2 @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ A ) )
           => ( P2 @ ( image_4386371547000553590la_a_b @ F4 @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_916_all__finite__subset__image,axiom,
    ! [F4: relational_fmla_a_b > relational_fmla_a_b,A: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( ! [B4: set_Re381260168593705685la_a_b] :
            ( ( ( finite5600759454172676150la_a_b @ B4 )
              & ( ord_le4112832032246704949la_a_b @ B4 @ ( image_6790371041703824709la_a_b @ F4 @ A ) ) )
           => ( P2 @ B4 ) ) )
      = ( ! [B4: set_Re381260168593705685la_a_b] :
            ( ( ( finite5600759454172676150la_a_b @ B4 )
              & ( ord_le4112832032246704949la_a_b @ B4 @ A ) )
           => ( P2 @ ( image_6790371041703824709la_a_b @ F4 @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_917_arg__min__least,axiom,
    ! [S: set_nat,Y: nat,F4: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ( ( member_nat @ Y @ S )
         => ( ord_less_eq_nat @ ( F4 @ ( lattic7446932960582359483at_nat @ F4 @ S ) ) @ ( F4 @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_918_arg__min__least,axiom,
    ! [S: set_Re381260168593705685la_a_b,Y: relational_fmla_a_b,F4: relational_fmla_a_b > nat] :
      ( ( finite5600759454172676150la_a_b @ S )
     => ( ( S != bot_bo4495933725496725865la_a_b )
       => ( ( member4680049679412964150la_a_b @ Y @ S )
         => ( ord_less_eq_nat @ ( F4 @ ( lattic5380700691367270794_b_nat @ F4 @ S ) ) @ ( F4 @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_919_insert__subsetI,axiom,
    ! [X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b,X6: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ A )
     => ( ( ord_le4112832032246704949la_a_b @ X6 @ A )
       => ( ord_le4112832032246704949la_a_b @ ( insert7010464514620295119la_a_b @ X @ X6 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_920_insert__subsetI,axiom,
    ! [X: nat,A: set_nat,X6: set_nat] :
      ( ( member_nat @ X @ A )
     => ( ( ord_less_eq_set_nat @ X6 @ A )
       => ( ord_less_eq_set_nat @ ( insert_nat @ X @ X6 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_921_subset__emptyI,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ! [X5: relational_fmla_a_b] :
          ~ ( member4680049679412964150la_a_b @ X5 @ A )
     => ( ord_le4112832032246704949la_a_b @ A @ bot_bo4495933725496725865la_a_b ) ) ).

% subset_emptyI
thf(fact_922_subset__emptyI,axiom,
    ! [A: set_nat] :
      ( ! [X5: nat] :
          ~ ( member_nat @ X5 @ A )
     => ( ord_less_eq_set_nat @ A @ bot_bot_set_nat ) ) ).

% subset_emptyI
thf(fact_923_in__image__insert__iff,axiom,
    ! [B2: set_se6865892389300016395la_a_b,X: relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ! [C5: set_Re381260168593705685la_a_b] :
          ( ( member3481406638322139244la_a_b @ C5 @ B2 )
         => ~ ( member4680049679412964150la_a_b @ X @ C5 ) )
     => ( ( member3481406638322139244la_a_b @ A @ ( image_7051608999182166449la_a_b @ ( insert7010464514620295119la_a_b @ X ) @ B2 ) )
        = ( ( member4680049679412964150la_a_b @ X @ A )
          & ( member3481406638322139244la_a_b @ ( minus_4077726661957047470la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_924_in__image__insert__iff,axiom,
    ! [B2: set_set_nat,X: nat,A: set_nat] :
      ( ! [C5: set_nat] :
          ( ( member_set_nat @ C5 @ B2 )
         => ~ ( member_nat @ X @ C5 ) )
     => ( ( member_set_nat @ A @ ( image_7916887816326733075et_nat @ ( insert_nat @ X ) @ B2 ) )
        = ( ( member_nat @ X @ A )
          & ( member_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_925_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N2: set_nat] :
        ? [M: nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ N2 )
         => ( ord_less_eq_nat @ X3 @ M ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_926_equiv__eval__eqI,axiom,
    ! [I: product_prod_b_nat > set_list_a,Q: relational_fmla_a_b,Q2: relational_fmla_a_b] :
      ( ( finite_finite_a @ ( relational_adom_b_a @ I ) )
     => ( ( ( relational_fv_a_b @ Q )
          = ( relational_fv_a_b @ Q2 ) )
       => ( ( relational_equiv_a_b @ Q @ Q2 )
         => ( ( relational_eval_a_b @ Q @ I )
            = ( relational_eval_a_b @ Q2 @ I ) ) ) ) ) ).

% equiv_eval_eqI
thf(fact_927_Sup__fin_Oinsert__remove,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ( ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) )
            = bot_bot_set_nat )
         => ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A ) )
            = X ) )
        & ( ( ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) )
           != bot_bot_set_nat )
         => ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A ) )
            = ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ) ).

% Sup_fin.insert_remove
thf(fact_928_Sup__fin_Oinsert__remove,axiom,
    ! [A: set_se6865892389300016395la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( ( ( minus_4705846553145473764la_a_b @ A @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
            = bot_bo2891247006866115487la_a_b )
         => ( ( lattic7150925611526040158la_a_b @ ( insert2023870700798818565la_a_b @ X @ A ) )
            = X ) )
        & ( ( ( minus_4705846553145473764la_a_b @ A @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
           != bot_bo2891247006866115487la_a_b )
         => ( ( lattic7150925611526040158la_a_b @ ( insert2023870700798818565la_a_b @ X @ A ) )
            = ( sup_su5130108678486352897la_a_b @ X @ ( lattic7150925611526040158la_a_b @ ( minus_4705846553145473764la_a_b @ A @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) ) ) ) ) ) ) ).

% Sup_fin.insert_remove
thf(fact_929_Sup__fin_Oremove,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat @ X @ A )
       => ( ( ( ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) )
              = bot_bot_set_nat )
           => ( ( lattic1093996805478795353in_nat @ A )
              = X ) )
          & ( ( ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) )
             != bot_bot_set_nat )
           => ( ( lattic1093996805478795353in_nat @ A )
              = ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ) ) ).

% Sup_fin.remove
thf(fact_930_Sup__fin_Oremove,axiom,
    ! [A: set_se6865892389300016395la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( member3481406638322139244la_a_b @ X @ A )
       => ( ( ( ( minus_4705846553145473764la_a_b @ A @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
              = bot_bo2891247006866115487la_a_b )
           => ( ( lattic7150925611526040158la_a_b @ A )
              = X ) )
          & ( ( ( minus_4705846553145473764la_a_b @ A @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) )
             != bot_bo2891247006866115487la_a_b )
           => ( ( lattic7150925611526040158la_a_b @ A )
              = ( sup_su5130108678486352897la_a_b @ X @ ( lattic7150925611526040158la_a_b @ ( minus_4705846553145473764la_a_b @ A @ ( insert2023870700798818565la_a_b @ X @ bot_bo2891247006866115487la_a_b ) ) ) ) ) ) ) ) ) ).

% Sup_fin.remove
thf(fact_931_Sup__fin_Oinsert,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A ) )
          = ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A ) ) ) ) ) ).

% Sup_fin.insert
thf(fact_932_Sup__fin_Oinsert,axiom,
    ! [A: set_se6865892389300016395la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( A != bot_bo2891247006866115487la_a_b )
       => ( ( lattic7150925611526040158la_a_b @ ( insert2023870700798818565la_a_b @ X @ A ) )
          = ( sup_su5130108678486352897la_a_b @ X @ ( lattic7150925611526040158la_a_b @ A ) ) ) ) ) ).

% Sup_fin.insert
thf(fact_933_Sup__fin_OcoboundedI,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat @ A2 @ A )
       => ( ord_less_eq_nat @ A2 @ ( lattic1093996805478795353in_nat @ A ) ) ) ) ).

% Sup_fin.coboundedI
thf(fact_934_Sup__fin_Oin__idem,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( member_nat @ X @ A )
       => ( ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A ) )
          = ( lattic1093996805478795353in_nat @ A ) ) ) ) ).

% Sup_fin.in_idem
thf(fact_935_Sup__fin_Oin__idem,axiom,
    ! [A: set_se6865892389300016395la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( member3481406638322139244la_a_b @ X @ A )
       => ( ( sup_su5130108678486352897la_a_b @ X @ ( lattic7150925611526040158la_a_b @ A ) )
          = ( lattic7150925611526040158la_a_b @ A ) ) ) ) ).

% Sup_fin.in_idem
thf(fact_936_Sup__fin_Obounded__iff,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ( ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ X )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ A )
               => ( ord_less_eq_nat @ X3 @ X ) ) ) ) ) ) ).

% Sup_fin.bounded_iff
thf(fact_937_Sup__fin_OboundedI,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ( ! [A6: nat] :
              ( ( member_nat @ A6 @ A )
             => ( ord_less_eq_nat @ A6 @ X ) )
         => ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ X ) ) ) ) ).

% Sup_fin.boundedI
thf(fact_938_Sup__fin_OboundedE,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ( ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ X )
         => ! [A8: nat] :
              ( ( member_nat @ A8 @ A )
             => ( ord_less_eq_nat @ A8 @ X ) ) ) ) ) ).

% Sup_fin.boundedE
thf(fact_939_Sup__fin_Osubset__imp,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B2 )
     => ( ( A != bot_bot_set_nat )
       => ( ( finite_finite_nat @ B2 )
         => ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ ( lattic1093996805478795353in_nat @ B2 ) ) ) ) ) ).

% Sup_fin.subset_imp
thf(fact_940_Sup__fin_Ohom__commute,axiom,
    ! [H: nat > nat,N3: set_nat] :
      ( ! [X5: nat,Y6: nat] :
          ( ( H @ ( sup_sup_nat @ X5 @ Y6 ) )
          = ( sup_sup_nat @ ( H @ X5 ) @ ( H @ Y6 ) ) )
     => ( ( finite_finite_nat @ N3 )
       => ( ( N3 != bot_bot_set_nat )
         => ( ( H @ ( lattic1093996805478795353in_nat @ N3 ) )
            = ( lattic1093996805478795353in_nat @ ( image_nat_nat @ H @ N3 ) ) ) ) ) ) ).

% Sup_fin.hom_commute
thf(fact_941_Sup__fin_Ohom__commute,axiom,
    ! [H: set_Re381260168593705685la_a_b > set_Re381260168593705685la_a_b,N3: set_se6865892389300016395la_a_b] :
      ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b] :
          ( ( H @ ( sup_su5130108678486352897la_a_b @ X5 @ Y6 ) )
          = ( sup_su5130108678486352897la_a_b @ ( H @ X5 ) @ ( H @ Y6 ) ) )
     => ( ( finite5238674622262875500la_a_b @ N3 )
       => ( ( N3 != bot_bo2891247006866115487la_a_b )
         => ( ( H @ ( lattic7150925611526040158la_a_b @ N3 ) )
            = ( lattic7150925611526040158la_a_b @ ( image_7051608999182166449la_a_b @ H @ N3 ) ) ) ) ) ) ).

% Sup_fin.hom_commute
thf(fact_942_Sup__fin_Osubset,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( B2 != bot_bot_set_nat )
       => ( ( ord_less_eq_set_nat @ B2 @ A )
         => ( ( sup_sup_nat @ ( lattic1093996805478795353in_nat @ B2 ) @ ( lattic1093996805478795353in_nat @ A ) )
            = ( lattic1093996805478795353in_nat @ A ) ) ) ) ) ).

% Sup_fin.subset
thf(fact_943_Sup__fin_Osubset,axiom,
    ! [A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( B2 != bot_bo2891247006866115487la_a_b )
       => ( ( ord_le1577343677690852715la_a_b @ B2 @ A )
         => ( ( sup_su5130108678486352897la_a_b @ ( lattic7150925611526040158la_a_b @ B2 ) @ ( lattic7150925611526040158la_a_b @ A ) )
            = ( lattic7150925611526040158la_a_b @ A ) ) ) ) ) ).

% Sup_fin.subset
thf(fact_944_Sup__fin_Oinsert__not__elem,axiom,
    ! [A: set_nat,X: nat] :
      ( ( finite_finite_nat @ A )
     => ( ~ ( member_nat @ X @ A )
       => ( ( A != bot_bot_set_nat )
         => ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A ) )
            = ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A ) ) ) ) ) ) ).

% Sup_fin.insert_not_elem
thf(fact_945_Sup__fin_Oinsert__not__elem,axiom,
    ! [A: set_se6865892389300016395la_a_b,X: set_Re381260168593705685la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ~ ( member3481406638322139244la_a_b @ X @ A )
       => ( ( A != bot_bo2891247006866115487la_a_b )
         => ( ( lattic7150925611526040158la_a_b @ ( insert2023870700798818565la_a_b @ X @ A ) )
            = ( sup_su5130108678486352897la_a_b @ X @ ( lattic7150925611526040158la_a_b @ A ) ) ) ) ) ) ).

% Sup_fin.insert_not_elem
thf(fact_946_Sup__fin_Oclosed,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ( ! [X5: nat,Y6: nat] : ( member_nat @ ( sup_sup_nat @ X5 @ Y6 ) @ ( insert_nat @ X5 @ ( insert_nat @ Y6 @ bot_bot_set_nat ) ) )
         => ( member_nat @ ( lattic1093996805478795353in_nat @ A ) @ A ) ) ) ) ).

% Sup_fin.closed
thf(fact_947_Sup__fin_Oclosed,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( A != bot_bo2891247006866115487la_a_b )
       => ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b] : ( member3481406638322139244la_a_b @ ( sup_su5130108678486352897la_a_b @ X5 @ Y6 ) @ ( insert2023870700798818565la_a_b @ X5 @ ( insert2023870700798818565la_a_b @ Y6 @ bot_bo2891247006866115487la_a_b ) ) )
         => ( member3481406638322139244la_a_b @ ( lattic7150925611526040158la_a_b @ A ) @ A ) ) ) ) ).

% Sup_fin.closed
thf(fact_948_Sup__fin_Ounion,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ( ( finite_finite_nat @ B2 )
         => ( ( B2 != bot_bot_set_nat )
           => ( ( lattic1093996805478795353in_nat @ ( sup_sup_set_nat @ A @ B2 ) )
              = ( sup_sup_nat @ ( lattic1093996805478795353in_nat @ A ) @ ( lattic1093996805478795353in_nat @ B2 ) ) ) ) ) ) ) ).

% Sup_fin.union
thf(fact_949_Sup__fin_Ounion,axiom,
    ! [A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( A != bot_bo2891247006866115487la_a_b )
       => ( ( finite5238674622262875500la_a_b @ B2 )
         => ( ( B2 != bot_bo2891247006866115487la_a_b )
           => ( ( lattic7150925611526040158la_a_b @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) )
              = ( sup_su5130108678486352897la_a_b @ ( lattic7150925611526040158la_a_b @ A ) @ ( lattic7150925611526040158la_a_b @ B2 ) ) ) ) ) ) ) ).

% Sup_fin.union
thf(fact_950_equiv__eval__on__eval__eqI,axiom,
    ! [I: product_prod_b_nat > set_list_a,Q: relational_fmla_a_b,Q2: relational_fmla_a_b] :
      ( ( finite_finite_a @ ( relational_adom_b_a @ I ) )
     => ( ( ord_less_eq_set_nat @ ( relational_fv_a_b @ Q ) @ ( relational_fv_a_b @ Q2 ) )
       => ( ( relational_equiv_a_b @ Q @ Q2 )
         => ( ( relati8814510239606734169on_a_b @ ( relational_fv_a_b @ Q2 ) @ Q @ I )
            = ( relational_eval_a_b @ Q2 @ I ) ) ) ) ) ).

% equiv_eval_on_eval_eqI
thf(fact_951_eval__on__False,axiom,
    ! [X6: set_nat,I: product_prod_b_nat > set_list_a] :
      ( ( relati8814510239606734169on_a_b @ X6 @ ( relational_Bool_a_b @ $false ) @ I )
      = bot_bot_set_list_a ) ).

% eval_on_False
thf(fact_952_eval__on__cp,axiom,
    ! [X6: set_nat,Q: relational_fmla_a_b] :
      ( ( relati8814510239606734169on_a_b @ X6 @ ( relational_cp_a_b @ Q ) )
      = ( relati8814510239606734169on_a_b @ X6 @ Q ) ) ).

% eval_on_cp
thf(fact_953_Relational__Calculus_Oeval__def,axiom,
    ( relational_eval_a_b
    = ( ^ [Q5: relational_fmla_a_b] : ( relati8814510239606734169on_a_b @ ( relational_fv_a_b @ Q5 ) @ Q5 ) ) ) ).

% Relational_Calculus.eval_def
thf(fact_954_finite__eval__on__Disj2D,axiom,
    ! [X6: set_nat,Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,I: product_prod_b_nat > set_list_a] :
      ( ( finite_finite_nat @ X6 )
     => ( ( finite_finite_list_a @ ( relati8814510239606734169on_a_b @ X6 @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ I ) )
       => ( finite_finite_list_a @ ( relati8814510239606734169on_a_b @ X6 @ Q22 @ I ) ) ) ) ).

% finite_eval_on_Disj2D
thf(fact_955_cov_H_OExists,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( X != Y )
     => ( ( relational_cov_a_b2 @ X @ Q @ G )
       => ( ~ ( member4680049679412964150la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ G )
         => ( relational_cov_a_b2 @ X @ ( relati591517084277583526ts_a_b @ Y @ Q ) @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y ) @ G ) ) ) ) ) ).

% cov'.Exists
thf(fact_956_gen__Bool__True,axiom,
    ! [X: nat,G: set_Re381260168593705685la_a_b] :
      ~ ( relational_gen_a_b @ X @ ( relational_Bool_a_b @ $true ) @ G ) ).

% gen_Bool_True
thf(fact_957_gen__Bool__False,axiom,
    ! [X: nat,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ X @ ( relational_Bool_a_b @ $false ) @ G )
      = ( G = bot_bo4495933725496725865la_a_b ) ) ).

% gen_Bool_False
thf(fact_958_gen__Pred,axiom,
    ! [Z: nat,P: b,Ts: list_R6823256787227418703term_a,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ Z @ ( relational_Pred_b_a @ P @ Ts ) @ G )
      = ( ( member_nat @ Z @ ( relati4569515538964159125_set_a @ Ts ) )
        & ( G
          = ( insert7010464514620295119la_a_b @ ( relational_Pred_b_a @ P @ Ts ) @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% gen_Pred
thf(fact_959_gen__finite,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ X @ Q @ G )
     => ( finite5600759454172676150la_a_b @ G ) ) ).

% gen_finite
thf(fact_960_gen__qp,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_gen_a_b @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( relational_qp_a_b @ Qqp ) ) ) ).

% gen_qp
thf(fact_961_gen__Gen__cp,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ X @ Q @ G )
     => ? [X_1: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ X @ ( relational_cp_a_b @ Q ) @ X_1 ) ) ).

% gen_Gen_cp
thf(fact_962_Gen__cp,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ? [X_12: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ X @ Q @ X_12 )
     => ? [X_1: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ X @ ( relational_cp_a_b @ Q ) @ X_1 ) ) ).

% Gen_cp
thf(fact_963_gen_Ointros_I1_J,axiom,
    ! [X: nat] : ( relational_gen_a_b @ X @ ( relational_Bool_a_b @ $false ) @ bot_bo4495933725496725865la_a_b ) ).

% gen.intros(1)
thf(fact_964_gen__fv,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_gen_a_b @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( ( member_nat @ X @ ( relational_fv_a_b @ Qqp ) )
          & ( ord_less_eq_set_nat @ ( relational_fv_a_b @ Qqp ) @ ( relational_fv_a_b @ Q ) ) ) ) ) ).

% gen_fv
thf(fact_965_gen_Ointros_I6_J,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G1: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b,G22: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ X @ Q1 @ G1 )
     => ( ( relational_gen_a_b @ X @ Q22 @ G22 )
       => ( relational_gen_a_b @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ G1 @ G22 ) ) ) ) ).

% gen.intros(6)
thf(fact_966_qp__Gen,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_qp_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ? [X_1: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ X @ Q @ X_1 ) ) ) ).

% qp_Gen
thf(fact_967_cov_H_Ononfree,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
     => ( relational_cov_a_b2 @ X @ Q @ bot_bo4495933725496725865la_a_b ) ) ).

% cov'.nonfree
thf(fact_968_cov_H_ODisj,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G1: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b,G22: set_Re381260168593705685la_a_b] :
      ( ( relational_cov_a_b2 @ X @ Q1 @ G1 )
     => ( ( relational_cov_a_b2 @ X @ Q22 @ G22 )
       => ( relational_cov_a_b2 @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ G1 @ G22 ) ) ) ) ).

% cov'.Disj
thf(fact_969_cov_H_OConj,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G1: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b,G22: set_Re381260168593705685la_a_b] :
      ( ( relational_cov_a_b2 @ X @ Q1 @ G1 )
     => ( ( relational_cov_a_b2 @ X @ Q22 @ G22 )
       => ( relational_cov_a_b2 @ X @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ G1 @ G22 ) ) ) ) ).

% cov'.Conj
thf(fact_970_gen_Ointros_I5_J,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ X @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q1 ) @ ( relational_Neg_a_b @ Q22 ) ) @ G )
     => ( relational_gen_a_b @ X @ ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) ) @ G ) ) ).

% gen.intros(5)
thf(fact_971_gen_Ointros_I4_J,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ X @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q1 ) @ ( relational_Neg_a_b @ Q22 ) ) @ G )
     => ( relational_gen_a_b @ X @ ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) ) @ G ) ) ).

% gen.intros(4)
thf(fact_972_gen__empty__cp,axiom,
    ! [Z: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ Z @ Q @ G )
     => ( ( G = bot_bo4495933725496725865la_a_b )
       => ( ( relational_cp_a_b @ Q )
          = ( relational_Bool_a_b @ $false ) ) ) ) ).

% gen_empty_cp
thf(fact_973_gen__cp__erase,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_gen_a_b @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( ( relational_cp_a_b @ ( relational_erase_a_b @ Qqp @ X ) )
          = ( relational_Bool_a_b @ $false ) ) ) ) ).

% gen_cp_erase
thf(fact_974_qp__gen,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_qp_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_gen_a_b @ X @ Q @ ( insert7010464514620295119la_a_b @ Q @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% qp_gen
thf(fact_975_cov_H_ODisjL,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_cov_a_b2 @ X @ Q1 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q1 @ X ) )
          = ( relational_Bool_a_b @ $true ) )
       => ( relational_cov_a_b2 @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov'.DisjL
thf(fact_976_cov_H_ODisjR,axiom,
    ! [X: nat,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q1: relational_fmla_a_b] :
      ( ( relational_cov_a_b2 @ X @ Q22 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q22 @ X ) )
          = ( relational_Bool_a_b @ $true ) )
       => ( relational_cov_a_b2 @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov'.DisjR
thf(fact_977_cov_H_OConjL,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_cov_a_b2 @ X @ Q1 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q1 @ X ) )
          = ( relational_Bool_a_b @ $false ) )
       => ( relational_cov_a_b2 @ X @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov'.ConjL
thf(fact_978_cov_H_OConjR,axiom,
    ! [X: nat,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q1: relational_fmla_a_b] :
      ( ( relational_cov_a_b2 @ X @ Q22 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q22 @ X ) )
          = ( relational_Bool_a_b @ $false ) )
       => ( relational_cov_a_b2 @ X @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov'.ConjR
thf(fact_979_nongens__cp,axiom,
    ! [Q: relational_fmla_a_b] : ( ord_less_eq_set_nat @ ( relati62690040636126068ns_a_b @ ( relational_cp_a_b @ Q ) ) @ ( relati62690040636126068ns_a_b @ Q ) ) ).

% nongens_cp
thf(fact_980_sat__cp,axiom,
    ! [Q: relational_fmla_a_b,I: product_prod_b_nat > set_list_a,Sigma: nat > a] :
      ( ( relational_sat_a_b @ ( relational_cp_a_b @ Q ) @ I @ Sigma )
      = ( relational_sat_a_b @ Q @ I @ Sigma ) ) ).

% sat_cp
thf(fact_981_rrb__simps_I5_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_rrb_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
      = ( ( relational_rrb_a_b @ Q1 )
        & ( relational_rrb_a_b @ Q22 ) ) ) ).

% rrb_simps(5)
thf(fact_982_rrb__simps_I1_J,axiom,
    ! [B: $o] : ( relational_rrb_a_b @ ( relational_Bool_a_b @ B ) ) ).

% rrb_simps(1)
thf(fact_983_rrb__simps_I2_J,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a] : ( relational_rrb_a_b @ ( relational_Pred_b_a @ P @ Ts ) ) ).

% rrb_simps(2)
thf(fact_984_rrb__simps_I8_J,axiom,
    ! [Y: nat,Qy: relational_fmla_a_b] :
      ( ( relational_rrb_a_b @ ( relati3989891337220013914ts_a_b @ Y @ Qy ) )
      = ( ( ( member_nat @ Y @ ( relational_fv_a_b @ Qy ) )
         => ? [X8: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ Y @ Qy @ X8 ) )
        & ( relational_rrb_a_b @ Qy ) ) ) ).

% rrb_simps(8)
thf(fact_985_sat__fv__cong,axiom,
    ! [Phi: relational_fmla_a_b,Sigma: nat > a,Sigma2: nat > a,I: product_prod_b_nat > set_list_a] :
      ( ! [N4: nat] :
          ( ( member_nat @ N4 @ ( relational_fv_a_b @ Phi ) )
         => ( ( Sigma @ N4 )
            = ( Sigma2 @ N4 ) ) )
     => ( ( relational_sat_a_b @ Phi @ I @ Sigma )
        = ( relational_sat_a_b @ Phi @ I @ Sigma2 ) ) ) ).

% sat_fv_cong
thf(fact_986_cov__finite,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_cov_a_b @ X @ Q @ G )
     => ( finite5600759454172676150la_a_b @ G ) ) ).

% cov_finite
thf(fact_987_rrb__cp,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_rrb_a_b @ Q )
     => ( relational_rrb_a_b @ ( relational_cp_a_b @ Q ) ) ) ).

% rrb_cp
thf(fact_988_ex__cov,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_rrb_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ? [X_1: set_Re381260168593705685la_a_b] : ( relational_cov_a_b @ X @ Q @ X_1 ) ) ) ).

% ex_cov
thf(fact_989_sat_Osimps_I2_J,axiom,
    ! [B: $o,I: product_prod_b_nat > set_list_a,Sigma: nat > a] :
      ( ( relational_sat_a_b @ ( relational_Bool_a_b @ B ) @ I @ Sigma )
      = B ) ).

% sat.simps(2)
thf(fact_990_sat_Osimps_I6_J,axiom,
    ! [Phi: relational_fmla_a_b,Psi: relational_fmla_a_b,I: product_prod_b_nat > set_list_a,Sigma: nat > a] :
      ( ( relational_sat_a_b @ ( relational_Disj_a_b @ Phi @ Psi ) @ I @ Sigma )
      = ( ( relational_sat_a_b @ Phi @ I @ Sigma )
        | ( relational_sat_a_b @ Psi @ I @ Sigma ) ) ) ).

% sat.simps(6)
thf(fact_991_qps__rrb,axiom,
    ! [Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ Q @ ( relational_qps_a_b @ G ) )
     => ( relational_rrb_a_b @ Q ) ) ).

% qps_rrb
thf(fact_992_sat__fun__upd,axiom,
    ! [N5: nat,Q: relational_fmla_a_b,I: product_prod_b_nat > set_list_a,Sigma: nat > a,Z: a] :
      ( ~ ( member_nat @ N5 @ ( relational_fv_a_b @ Q ) )
     => ( ( relational_sat_a_b @ Q @ I @ ( fun_upd_nat_a @ Sigma @ N5 @ Z ) )
        = ( relational_sat_a_b @ Q @ I @ Sigma ) ) ) ).

% sat_fun_upd
thf(fact_993_eval__cong,axiom,
    ! [Q: relational_fmla_a_b,Q2: relational_fmla_a_b,I: product_prod_b_nat > set_list_a] :
      ( ( ( relational_fv_a_b @ Q )
        = ( relational_fv_a_b @ Q2 ) )
     => ( ! [Sigma3: nat > a] :
            ( ( relational_sat_a_b @ Q @ I @ Sigma3 )
            = ( relational_sat_a_b @ Q2 @ I @ Sigma3 ) )
       => ( ( relational_eval_a_b @ Q @ I )
          = ( relational_eval_a_b @ Q2 @ I ) ) ) ) ).

% eval_cong
thf(fact_994_cov_Ononfree,axiom,
    ! [X: nat,Q: relational_fmla_a_b] :
      ( ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
     => ( relational_cov_a_b @ X @ Q @ bot_bo4495933725496725865la_a_b ) ) ).

% cov.nonfree
thf(fact_995_cov__fv,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q @ G )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( ( member4680049679412964150la_a_b @ Qqp @ G )
         => ( ( member_nat @ X @ ( relational_fv_a_b @ Qqp ) )
            & ( ord_less_eq_set_nat @ ( relational_fv_a_b @ Qqp ) @ ( relational_fv_a_b @ Q ) ) ) ) ) ) ).

% cov_fv
thf(fact_996_cov_ODisj,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G1: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b,G22: set_Re381260168593705685la_a_b] :
      ( ( relational_cov_a_b @ X @ Q1 @ G1 )
     => ( ( relational_cov_a_b @ X @ Q22 @ G22 )
       => ( relational_cov_a_b @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ G1 @ G22 ) ) ) ) ).

% cov.Disj
thf(fact_997_cov_OConj,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G1: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b,G22: set_Re381260168593705685la_a_b] :
      ( ( relational_cov_a_b @ X @ Q1 @ G1 )
     => ( ( relational_cov_a_b @ X @ Q22 @ G22 )
       => ( relational_cov_a_b @ X @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ G1 @ G22 ) ) ) ) ).

% cov.Conj
thf(fact_998_rrb__def,axiom,
    ( relational_rrb_a_b
    = ( ^ [Q5: relational_fmla_a_b] :
        ! [Y3: nat,Qy2: relational_fmla_a_b] :
          ( ( member4680049679412964150la_a_b @ ( relati591517084277583526ts_a_b @ Y3 @ Qy2 ) @ ( relational_sub_a_b @ Q5 ) )
         => ? [X8: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ Y3 @ Qy2 @ X8 ) ) ) ) ).

% rrb_def
thf(fact_999_cov_ODisjR,axiom,
    ! [X: nat,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q1: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q22 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q22 @ X ) )
          = ( relational_Bool_a_b @ $true ) )
       => ( relational_cov_a_b @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov.DisjR
thf(fact_1000_cov_ODisjL,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q1 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q1 @ X ) )
          = ( relational_Bool_a_b @ $true ) )
       => ( relational_cov_a_b @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov.DisjL
thf(fact_1001_cov_OConjR,axiom,
    ! [X: nat,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q1: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q22 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q22 @ X ) )
          = ( relational_Bool_a_b @ $false ) )
       => ( relational_cov_a_b @ X @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov.ConjR
thf(fact_1002_cov_OConjL,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q1 @ G )
     => ( ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q1 @ X ) )
          = ( relational_Bool_a_b @ $false ) )
       => ( relational_cov_a_b @ X @ ( relational_Conj_a_b @ Q1 @ Q22 ) @ G ) ) ) ).

% cov.ConjL
thf(fact_1003_infinite__Implies__mono__on,axiom,
    ! [X6: set_nat,Q: relational_fmla_a_b,I: product_prod_b_nat > set_list_a,Q2: relational_fmla_a_b] :
      ( ~ ( finite_finite_list_a @ ( relati8814510239606734169on_a_b @ X6 @ Q @ I ) )
     => ( ( finite_finite_nat @ X6 )
       => ( ! [X_1: nat > a] : ( relational_sat_a_b @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q ) @ Q2 ) @ I @ X_1 )
         => ~ ( finite_finite_list_a @ ( relati8814510239606734169on_a_b @ X6 @ Q2 @ I ) ) ) ) ) ).

% infinite_Implies_mono_on
thf(fact_1004_cov_OExists,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( X != Y )
     => ( ( relational_cov_a_b @ X @ Q @ G )
       => ( ~ ( member4680049679412964150la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ G )
         => ( relational_cov_a_b @ X @ ( relati591517084277583526ts_a_b @ Y @ Q ) @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y ) @ G ) ) ) ) ) ).

% cov.Exists
thf(fact_1005_cov__fv__aux,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( ( member_nat @ X @ ( relational_fv_a_b @ Qqp ) )
          & ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( relational_fv_a_b @ Qqp ) @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( relational_fv_a_b @ Q ) ) ) ) ) ).

% cov_fv_aux
thf(fact_1006_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_1007_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_1008_nless__le,axiom,
    ! [A2: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B )
        | ( A2 = B ) ) ) ).

% nless_le
thf(fact_1009_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1010_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1011_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ~ ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1012_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1013_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1014_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1015_order_Ostrict__trans1,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_1016_order_Ostrict__trans2,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_1017_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1018_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_nat @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1019_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1020_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A2 )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_1021_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_1022_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1023_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ord_less_eq_nat @ A2 @ B ) ) ).

% order.strict_implies_order
thf(fact_1024_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ord_less_eq_nat @ B @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_1025_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_nat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1026_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1027_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1028_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1029_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1030_order__le__neq__trans,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( A2 != B )
       => ( ord_less_nat @ A2 @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1031_order__neq__le__trans,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2 != B )
     => ( ( ord_less_eq_nat @ A2 @ B )
       => ( ord_less_nat @ A2 @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1032_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1033_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1034_order__le__less__subst1,axiom,
    ! [A2: nat,F4: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F4 @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_nat @ X5 @ Y6 )
             => ( ord_less_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ A2 @ ( F4 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1035_order__le__less__subst2,axiom,
    ! [A2: nat,B: nat,F4: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_nat @ ( F4 @ B ) @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y6 )
             => ( ord_less_eq_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ ( F4 @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1036_order__less__le__subst1,axiom,
    ! [A2: nat,F4: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F4 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y6 )
             => ( ord_less_eq_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ A2 @ ( F4 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1037_order__less__le__subst2,axiom,
    ! [A2: nat,B: nat,F4: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ ( F4 @ B ) @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_nat @ X5 @ Y6 )
             => ( ord_less_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ ( F4 @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1038_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1039_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1040_psubsetD,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,C: relational_fmla_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ A @ B2 )
     => ( ( member4680049679412964150la_a_b @ C @ A )
       => ( member4680049679412964150la_a_b @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1041_psubsetD,axiom,
    ! [A: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A @ B2 )
     => ( ( member_nat @ C @ A )
       => ( member_nat @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1042_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1043_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1044_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1045_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1046_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P2: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_1047_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1048_order__less__subst2,axiom,
    ! [A2: nat,B: nat,F4: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_nat @ ( F4 @ B ) @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_nat @ X5 @ Y6 )
             => ( ord_less_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ ( F4 @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1049_order__less__subst1,axiom,
    ! [A2: nat,F4: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F4 @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_nat @ X5 @ Y6 )
             => ( ord_less_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ A2 @ ( F4 @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1050_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_1051_ord__less__eq__subst,axiom,
    ! [A2: nat,B: nat,F4: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ( F4 @ B )
          = C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_nat @ X5 @ Y6 )
             => ( ord_less_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ ( F4 @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1052_ord__eq__less__subst,axiom,
    ! [A2: nat,F4: nat > nat,B: nat,C: nat] :
      ( ( A2
        = ( F4 @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y6: nat] :
              ( ( ord_less_nat @ X5 @ Y6 )
             => ( ord_less_nat @ ( F4 @ X5 ) @ ( F4 @ Y6 ) ) )
         => ( ord_less_nat @ A2 @ ( F4 @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1053_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1054_order__less__asym_H,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ~ ( ord_less_nat @ B @ A2 ) ) ).

% order_less_asym'
thf(fact_1055_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1056_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_1057_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1058_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( A2 != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1059_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( A2 != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1060_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_1061_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1062_order_Ostrict__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_1063_linorder__less__wlog,axiom,
    ! [P2: nat > nat > $o,A2: nat,B: nat] :
      ( ! [A6: nat,B6: nat] :
          ( ( ord_less_nat @ A6 @ B6 )
         => ( P2 @ A6 @ B6 ) )
     => ( ! [A6: nat] : ( P2 @ A6 @ A6 )
       => ( ! [A6: nat,B6: nat] :
              ( ( P2 @ B6 @ A6 )
             => ( P2 @ A6 @ B6 ) )
         => ( P2 @ A2 @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1064_exists__least__iff,axiom,
    ( ( ^ [P4: nat > $o] :
        ? [X9: nat] : ( P4 @ X9 ) )
    = ( ^ [P5: nat > $o] :
        ? [N: nat] :
          ( ( P5 @ N )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N )
             => ~ ( P5 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_1065_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_1066_dual__order_Oasym,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ~ ( ord_less_nat @ A2 @ B ) ) ).

% dual_order.asym
thf(fact_1067_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1068_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1069_less__induct,axiom,
    ! [P2: nat > $o,A2: nat] :
      ( ! [X5: nat] :
          ( ! [Y7: nat] :
              ( ( ord_less_nat @ Y7 @ X5 )
             => ( P2 @ Y7 ) )
         => ( P2 @ X5 ) )
     => ( P2 @ A2 ) ) ).

% less_induct
thf(fact_1070_ord__less__eq__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1071_ord__eq__less__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( A2 = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1072_order_Oasym,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ~ ( ord_less_nat @ B @ A2 ) ) ).

% order.asym
thf(fact_1073_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1074_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_1075_psubset__imp__ex__mem,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ A @ B2 )
     => ? [B6: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ B6 @ ( minus_4077726661957047470la_a_b @ B2 @ A ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1076_psubset__imp__ex__mem,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A @ B2 )
     => ? [B6: nat] : ( member_nat @ B6 @ ( minus_minus_set_nat @ B2 @ A ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1077_sup_Ostrict__coboundedI2,axiom,
    ! [C: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ C @ B )
     => ( ord_le7152733262289451305la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_1078_sup_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A2: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_1079_sup_Ostrict__coboundedI1,axiom,
    ! [C: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ C @ A2 )
     => ( ord_le7152733262289451305la_a_b @ C @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_1080_sup_Ostrict__coboundedI1,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_nat @ C @ A2 )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_1081_sup_Ostrict__order__iff,axiom,
    ( ord_le7152733262289451305la_a_b
    = ( ^ [B3: set_Re381260168593705685la_a_b,A3: set_Re381260168593705685la_a_b] :
          ( ( A3
            = ( sup_su5130108678486352897la_a_b @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_1082_sup_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( A3
            = ( sup_sup_nat @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_1083_sup_Ostrict__boundedE,axiom,
    ! [B: set_Re381260168593705685la_a_b,C: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ ( sup_su5130108678486352897la_a_b @ B @ C ) @ A2 )
     => ~ ( ( ord_le7152733262289451305la_a_b @ B @ A2 )
         => ~ ( ord_le7152733262289451305la_a_b @ C @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_1084_sup_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A2: nat] :
      ( ( ord_less_nat @ ( sup_sup_nat @ B @ C ) @ A2 )
     => ~ ( ( ord_less_nat @ B @ A2 )
         => ~ ( ord_less_nat @ C @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_1085_sup_Oabsorb4,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ A2 @ B )
     => ( ( sup_su5130108678486352897la_a_b @ A2 @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_1086_sup_Oabsorb4,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( sup_sup_nat @ A2 @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_1087_sup_Oabsorb3,axiom,
    ! [B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ B @ A2 )
     => ( ( sup_su5130108678486352897la_a_b @ A2 @ B )
        = A2 ) ) ).

% sup.absorb3
thf(fact_1088_sup_Oabsorb3,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ B @ A2 )
     => ( ( sup_sup_nat @ A2 @ B )
        = A2 ) ) ).

% sup.absorb3
thf(fact_1089_less__supI2,axiom,
    ! [X: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ X @ B )
     => ( ord_le7152733262289451305la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% less_supI2
thf(fact_1090_less__supI2,axiom,
    ! [X: nat,B: nat,A2: nat] :
      ( ( ord_less_nat @ X @ B )
     => ( ord_less_nat @ X @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% less_supI2
thf(fact_1091_less__supI1,axiom,
    ! [X: set_Re381260168593705685la_a_b,A2: set_Re381260168593705685la_a_b,B: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ X @ A2 )
     => ( ord_le7152733262289451305la_a_b @ X @ ( sup_su5130108678486352897la_a_b @ A2 @ B ) ) ) ).

% less_supI1
thf(fact_1092_less__supI1,axiom,
    ! [X: nat,A2: nat,B: nat] :
      ( ( ord_less_nat @ X @ A2 )
     => ( ord_less_nat @ X @ ( sup_sup_nat @ A2 @ B ) ) ) ).

% less_supI1
thf(fact_1093_finite__psubset__induct,axiom,
    ! [A: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ! [A5: set_nat] :
            ( ( finite_finite_nat @ A5 )
           => ( ! [B8: set_nat] :
                  ( ( ord_less_set_nat @ B8 @ A5 )
                 => ( P2 @ B8 ) )
             => ( P2 @ A5 ) ) )
       => ( P2 @ A ) ) ) ).

% finite_psubset_induct
thf(fact_1094_finite__psubset__induct,axiom,
    ! [A: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ! [A5: set_Re381260168593705685la_a_b] :
            ( ( finite5600759454172676150la_a_b @ A5 )
           => ( ! [B8: set_Re381260168593705685la_a_b] :
                  ( ( ord_le7152733262289451305la_a_b @ B8 @ A5 )
                 => ( P2 @ B8 ) )
             => ( P2 @ A5 ) ) )
       => ( P2 @ A ) ) ) ).

% finite_psubset_induct
thf(fact_1095_bot_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_1096_bot_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_1097_ex__min__if__finite,axiom,
    ! [S: set_nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ S )
            & ~ ? [Xa2: nat] :
                  ( ( member_nat @ Xa2 @ S )
                  & ( ord_less_nat @ Xa2 @ X5 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1098_infinite__growing,axiom,
    ! [X6: set_nat] :
      ( ( X6 != bot_bot_set_nat )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ X6 )
           => ? [Xa2: nat] :
                ( ( member_nat @ Xa2 @ X6 )
                & ( ord_less_nat @ X5 @ Xa2 ) ) )
       => ~ ( finite_finite_nat @ X6 ) ) ) ).

% infinite_growing
thf(fact_1099_finite__linorder__max__induct,axiom,
    ! [A: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [B6: nat,A5: set_nat] :
              ( ( finite_finite_nat @ A5 )
             => ( ! [X7: nat] :
                    ( ( member_nat @ X7 @ A5 )
                   => ( ord_less_nat @ X7 @ B6 ) )
               => ( ( P2 @ A5 )
                 => ( P2 @ ( insert_nat @ B6 @ A5 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_1100_finite__linorder__min__induct,axiom,
    ! [A: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ A )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [B6: nat,A5: set_nat] :
              ( ( finite_finite_nat @ A5 )
             => ( ! [X7: nat] :
                    ( ( member_nat @ X7 @ A5 )
                   => ( ord_less_nat @ B6 @ X7 ) )
               => ( ( P2 @ A5 )
                 => ( P2 @ ( insert_nat @ B6 @ A5 ) ) ) ) )
         => ( P2 @ A ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_1101_remove__subset,axiom,
    ! [X: relational_fmla_a_b,S: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ X @ S )
     => ( ord_le7152733262289451305la_a_b @ ( minus_4077726661957047470la_a_b @ S @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) @ S ) ) ).

% remove_subset
thf(fact_1102_remove__subset,axiom,
    ! [X: nat,S: set_nat] :
      ( ( member_nat @ X @ S )
     => ( ord_less_set_nat @ ( minus_minus_set_nat @ S @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ S ) ) ).

% remove_subset
thf(fact_1103_arg__min__if__finite_I2_J,axiom,
    ! [S: set_nat,F4: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ~ ? [X7: nat] :
              ( ( member_nat @ X7 @ S )
              & ( ord_less_nat @ ( F4 @ X7 ) @ ( F4 @ ( lattic7446932960582359483at_nat @ F4 @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_1104_arg__min__if__finite_I2_J,axiom,
    ! [S: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > nat] :
      ( ( finite5600759454172676150la_a_b @ S )
     => ( ( S != bot_bo4495933725496725865la_a_b )
       => ~ ? [X7: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X7 @ S )
              & ( ord_less_nat @ ( F4 @ X7 ) @ ( F4 @ ( lattic5380700691367270794_b_nat @ F4 @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_1105_psubset__insert__iff,axiom,
    ! [A: set_Re381260168593705685la_a_b,X: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( ord_le7152733262289451305la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ B2 ) )
      = ( ( ( member4680049679412964150la_a_b @ X @ B2 )
         => ( ord_le7152733262289451305la_a_b @ A @ B2 ) )
        & ( ~ ( member4680049679412964150la_a_b @ X @ B2 )
         => ( ( ( member4680049679412964150la_a_b @ X @ A )
             => ( ord_le7152733262289451305la_a_b @ ( minus_4077726661957047470la_a_b @ A @ ( insert7010464514620295119la_a_b @ X @ bot_bo4495933725496725865la_a_b ) ) @ B2 ) )
            & ( ~ ( member4680049679412964150la_a_b @ X @ A )
             => ( ord_le4112832032246704949la_a_b @ A @ B2 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_1106_psubset__insert__iff,axiom,
    ! [A: set_nat,X: nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A @ ( insert_nat @ X @ B2 ) )
      = ( ( ( member_nat @ X @ B2 )
         => ( ord_less_set_nat @ A @ B2 ) )
        & ( ~ ( member_nat @ X @ B2 )
         => ( ( ( member_nat @ X @ A )
             => ( ord_less_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) )
            & ( ~ ( member_nat @ X @ A )
             => ( ord_less_eq_set_nat @ A @ B2 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_1107_finite__induct__select,axiom,
    ! [S: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ S )
     => ( ( P2 @ bot_bot_set_nat )
       => ( ! [T7: set_nat] :
              ( ( ord_less_set_nat @ T7 @ S )
             => ( ( P2 @ T7 )
               => ? [X7: nat] :
                    ( ( member_nat @ X7 @ ( minus_minus_set_nat @ S @ T7 ) )
                    & ( P2 @ ( insert_nat @ X7 @ T7 ) ) ) ) )
         => ( P2 @ S ) ) ) ) ).

% finite_induct_select
thf(fact_1108_finite__induct__select,axiom,
    ! [S: set_Re381260168593705685la_a_b,P2: set_Re381260168593705685la_a_b > $o] :
      ( ( finite5600759454172676150la_a_b @ S )
     => ( ( P2 @ bot_bo4495933725496725865la_a_b )
       => ( ! [T7: set_Re381260168593705685la_a_b] :
              ( ( ord_le7152733262289451305la_a_b @ T7 @ S )
             => ( ( P2 @ T7 )
               => ? [X7: relational_fmla_a_b] :
                    ( ( member4680049679412964150la_a_b @ X7 @ ( minus_4077726661957047470la_a_b @ S @ T7 ) )
                    & ( P2 @ ( insert7010464514620295119la_a_b @ X7 @ T7 ) ) ) ) )
         => ( P2 @ S ) ) ) ) ).

% finite_induct_select
thf(fact_1109_qp__fresh__val,axiom,
    ! [Q: relational_fmla_a_b,Sigma: nat > a,X: nat,I: product_prod_b_nat > set_list_a] :
      ( ( relational_qp_a_b @ Q )
     => ( ~ ( member_a @ ( Sigma @ X ) @ ( relational_adom_b_a @ I ) )
       => ( ~ ( member_a @ ( Sigma @ X ) @ ( relational_csts_a_b @ Q ) )
         => ( ( relational_sat_a_b @ Q @ I @ Sigma )
           => ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) ) ) ) ) ) ).

% qp_fresh_val
thf(fact_1110_finite__Collect__conjI,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ( ( finite_finite_nat @ ( collect_nat @ P2 ) )
        | ( finite_finite_nat @ ( collect_nat @ Q ) ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( P2 @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1111_finite__Collect__conjI,axiom,
    ! [P2: relational_fmla_a_b > $o,Q: relational_fmla_a_b > $o] :
      ( ( ( finite5600759454172676150la_a_b @ ( collec3419995626248312948la_a_b @ P2 ) )
        | ( finite5600759454172676150la_a_b @ ( collec3419995626248312948la_a_b @ Q ) ) )
     => ( finite5600759454172676150la_a_b
        @ ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( P2 @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_1112_finite__Collect__disjI,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( P2 @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite_finite_nat @ ( collect_nat @ P2 ) )
        & ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1113_finite__Collect__disjI,axiom,
    ! [P2: relational_fmla_a_b > $o,Q: relational_fmla_a_b > $o] :
      ( ( finite5600759454172676150la_a_b
        @ ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( P2 @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite5600759454172676150la_a_b @ ( collec3419995626248312948la_a_b @ P2 ) )
        & ( finite5600759454172676150la_a_b @ ( collec3419995626248312948la_a_b @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_1114_finite__Collect__less__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N: nat] : ( ord_less_nat @ N @ K ) ) ) ).

% finite_Collect_less_nat
thf(fact_1115_singleton__conv,axiom,
    ! [A2: nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( X3 = A2 ) )
      = ( insert_nat @ A2 @ bot_bot_set_nat ) ) ).

% singleton_conv
thf(fact_1116_singleton__conv2,axiom,
    ! [A2: nat] :
      ( ( collect_nat
        @ ( ^ [Y8: nat,Z3: nat] : ( Y8 = Z3 )
          @ A2 ) )
      = ( insert_nat @ A2 @ bot_bot_set_nat ) ) ).

% singleton_conv2
thf(fact_1117_finite__Collect__subsets,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [B4: set_nat] : ( ord_less_eq_set_nat @ B4 @ A ) ) ) ) ).

% finite_Collect_subsets
thf(fact_1118_finite__Collect__subsets,axiom,
    ! [A: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( finite5238674622262875500la_a_b
        @ ( collec2099942116761351594la_a_b
          @ ^ [B4: set_Re381260168593705685la_a_b] : ( ord_le4112832032246704949la_a_b @ B4 @ A ) ) ) ) ).

% finite_Collect_subsets
thf(fact_1119_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N: nat] : ( ord_less_eq_nat @ N @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_1120_finite__less__ub,axiom,
    ! [F4: nat > nat,U: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ N4 @ ( F4 @ N4 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N: nat] : ( ord_less_eq_nat @ ( F4 @ N ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_1121_less__eq__set__def,axiom,
    ( ord_le4112832032246704949la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( ord_le7191224889845164944_a_b_o
          @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ A4 )
          @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1122_less__eq__set__def,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( ord_less_eq_nat_o
          @ ^ [X3: nat] : ( member_nat @ X3 @ A4 )
          @ ^ [X3: nat] : ( member_nat @ X3 @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1123_Collect__subset,axiom,
    ! [A: set_Re381260168593705685la_a_b,P2: relational_fmla_a_b > $o] :
      ( ord_le4112832032246704949la_a_b
      @ ( collec3419995626248312948la_a_b
        @ ^ [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ A )
            & ( P2 @ X3 ) ) )
      @ A ) ).

% Collect_subset
thf(fact_1124_Collect__subset,axiom,
    ! [A: set_nat,P2: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ A )
            & ( P2 @ X3 ) ) )
      @ A ) ).

% Collect_subset
thf(fact_1125_Fpow__def,axiom,
    ( finite_Fpow_nat
    = ( ^ [A4: set_nat] :
          ( collect_set_nat
          @ ^ [X8: set_nat] :
              ( ( ord_less_eq_set_nat @ X8 @ A4 )
              & ( finite_finite_nat @ X8 ) ) ) ) ) ).

% Fpow_def
thf(fact_1126_Fpow__def,axiom,
    ( finite3079993003003454393la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b] :
          ( collec2099942116761351594la_a_b
          @ ^ [X8: set_Re381260168593705685la_a_b] :
              ( ( ord_le4112832032246704949la_a_b @ X8 @ A4 )
              & ( finite5600759454172676150la_a_b @ X8 ) ) ) ) ) ).

% Fpow_def
thf(fact_1127_less__set__def,axiom,
    ( ord_le7152733262289451305la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( ord_le6021219098528097948_a_b_o
          @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ A4 )
          @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1128_less__set__def,axiom,
    ( ord_less_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( ord_less_nat_o
          @ ^ [X3: nat] : ( member_nat @ X3 @ A4 )
          @ ^ [X3: nat] : ( member_nat @ X3 @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1129_infinite__nat__iff__unbounded,axiom,
    ! [S: set_nat] :
      ( ( ~ ( finite_finite_nat @ S ) )
      = ( ! [M: nat] :
          ? [N: nat] :
            ( ( ord_less_nat @ M @ N )
            & ( member_nat @ N @ S ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_1130_unbounded__k__infinite,axiom,
    ! [K: nat,S: set_nat] :
      ( ! [M2: nat] :
          ( ( ord_less_nat @ K @ M2 )
         => ? [N6: nat] :
              ( ( ord_less_nat @ M2 @ N6 )
              & ( member_nat @ N6 @ S ) ) )
     => ~ ( finite_finite_nat @ S ) ) ).

% unbounded_k_infinite
thf(fact_1131_finite__M__bounded__by__nat,axiom,
    ! [P2: nat > $o,I2: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [K2: nat] :
            ( ( P2 @ K2 )
            & ( ord_less_nat @ K2 @ I2 ) ) ) ) ).

% finite_M_bounded_by_nat
thf(fact_1132_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N2: set_nat] :
        ? [M: nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ N2 )
         => ( ord_less_nat @ X3 @ M ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_1133_bounded__nat__set__is__finite,axiom,
    ! [N3: set_nat,N5: nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ N3 )
         => ( ord_less_nat @ X5 @ N5 ) )
     => ( finite_finite_nat @ N3 ) ) ).

% bounded_nat_set_is_finite
thf(fact_1134_finite__conv__nat__seg__image,axiom,
    ( finite_finite_nat
    = ( ^ [A4: set_nat] :
        ? [N: nat,F2: nat > nat] :
          ( A4
          = ( image_nat_nat @ F2
            @ ( collect_nat
              @ ^ [I3: nat] : ( ord_less_nat @ I3 @ N ) ) ) ) ) ) ).

% finite_conv_nat_seg_image
thf(fact_1135_finite__conv__nat__seg__image,axiom,
    ( finite5600759454172676150la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b] :
        ? [N: nat,F2: nat > relational_fmla_a_b] :
          ( A4
          = ( image_4386371547000553590la_a_b @ F2
            @ ( collect_nat
              @ ^ [I3: nat] : ( ord_less_nat @ I3 @ N ) ) ) ) ) ) ).

% finite_conv_nat_seg_image
thf(fact_1136_nat__seg__image__imp__finite,axiom,
    ! [A: set_nat,F4: nat > nat,N5: nat] :
      ( ( A
        = ( image_nat_nat @ F4
          @ ( collect_nat
            @ ^ [I3: nat] : ( ord_less_nat @ I3 @ N5 ) ) ) )
     => ( finite_finite_nat @ A ) ) ).

% nat_seg_image_imp_finite
thf(fact_1137_nat__seg__image__imp__finite,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: nat > relational_fmla_a_b,N5: nat] :
      ( ( A
        = ( image_4386371547000553590la_a_b @ F4
          @ ( collect_nat
            @ ^ [I3: nat] : ( ord_less_nat @ I3 @ N5 ) ) ) )
     => ( finite5600759454172676150la_a_b @ A ) ) ).

% nat_seg_image_imp_finite
thf(fact_1138_Collect__conv__if,axiom,
    ! [P2: nat > $o,A2: nat] :
      ( ( ( P2 @ A2 )
       => ( ( collect_nat
            @ ^ [X3: nat] :
                ( ( X3 = A2 )
                & ( P2 @ X3 ) ) )
          = ( insert_nat @ A2 @ bot_bot_set_nat ) ) )
      & ( ~ ( P2 @ A2 )
       => ( ( collect_nat
            @ ^ [X3: nat] :
                ( ( X3 = A2 )
                & ( P2 @ X3 ) ) )
          = bot_bot_set_nat ) ) ) ).

% Collect_conv_if
thf(fact_1139_Collect__conv__if2,axiom,
    ! [P2: nat > $o,A2: nat] :
      ( ( ( P2 @ A2 )
       => ( ( collect_nat
            @ ^ [X3: nat] :
                ( ( A2 = X3 )
                & ( P2 @ X3 ) ) )
          = ( insert_nat @ A2 @ bot_bot_set_nat ) ) )
      & ( ~ ( P2 @ A2 )
       => ( ( collect_nat
            @ ^ [X3: nat] :
                ( ( A2 = X3 )
                & ( P2 @ X3 ) ) )
          = bot_bot_set_nat ) ) ) ).

% Collect_conv_if2
thf(fact_1140_Set_Oempty__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat
      @ ^ [X3: nat] : $false ) ) ).

% Set.empty_def
thf(fact_1141_pigeonhole__infinite,axiom,
    ! [A: set_nat,F4: nat > nat] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( finite_finite_nat @ ( image_nat_nat @ F4 @ A ) )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A3: nat] :
                      ( ( member_nat @ A3 @ A )
                      & ( ( F4 @ A3 )
                        = ( F4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1142_pigeonhole__infinite,axiom,
    ! [A: set_nat,F4: nat > relational_fmla_a_b] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( finite5600759454172676150la_a_b @ ( image_4386371547000553590la_a_b @ F4 @ A ) )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A3: nat] :
                      ( ( member_nat @ A3 @ A )
                      & ( ( F4 @ A3 )
                        = ( F4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1143_pigeonhole__infinite,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > nat] :
      ( ~ ( finite5600759454172676150la_a_b @ A )
     => ( ( finite_finite_nat @ ( image_341122591648980342_b_nat @ F4 @ A ) )
       => ? [X5: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X5 @ A )
            & ~ ( finite5600759454172676150la_a_b
                @ ( collec3419995626248312948la_a_b
                  @ ^ [A3: relational_fmla_a_b] :
                      ( ( member4680049679412964150la_a_b @ A3 @ A )
                      & ( ( F4 @ A3 )
                        = ( F4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1144_pigeonhole__infinite,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > relational_fmla_a_b] :
      ( ~ ( finite5600759454172676150la_a_b @ A )
     => ( ( finite5600759454172676150la_a_b @ ( image_6790371041703824709la_a_b @ F4 @ A ) )
       => ? [X5: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X5 @ A )
            & ~ ( finite5600759454172676150la_a_b
                @ ( collec3419995626248312948la_a_b
                  @ ^ [A3: relational_fmla_a_b] :
                      ( ( member4680049679412964150la_a_b @ A3 @ A )
                      & ( ( F4 @ A3 )
                        = ( F4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1145_Compr__image__eq,axiom,
    ! [F4: relational_fmla_a_b > relational_fmla_a_b,A: set_Re381260168593705685la_a_b,P2: relational_fmla_a_b > $o] :
      ( ( collec3419995626248312948la_a_b
        @ ^ [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ ( image_6790371041703824709la_a_b @ F4 @ A ) )
            & ( P2 @ X3 ) ) )
      = ( image_6790371041703824709la_a_b @ F4
        @ ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X3 @ A )
              & ( P2 @ ( F4 @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1146_Compr__image__eq,axiom,
    ! [F4: nat > relational_fmla_a_b,A: set_nat,P2: relational_fmla_a_b > $o] :
      ( ( collec3419995626248312948la_a_b
        @ ^ [X3: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X3 @ ( image_4386371547000553590la_a_b @ F4 @ A ) )
            & ( P2 @ X3 ) ) )
      = ( image_4386371547000553590la_a_b @ F4
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A )
              & ( P2 @ ( F4 @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1147_Compr__image__eq,axiom,
    ! [F4: relational_fmla_a_b > nat,A: set_Re381260168593705685la_a_b,P2: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_341122591648980342_b_nat @ F4 @ A ) )
            & ( P2 @ X3 ) ) )
      = ( image_341122591648980342_b_nat @ F4
        @ ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X3 @ A )
              & ( P2 @ ( F4 @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1148_Compr__image__eq,axiom,
    ! [F4: nat > nat,A: set_nat,P2: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_nat_nat @ F4 @ A ) )
            & ( P2 @ X3 ) ) )
      = ( image_nat_nat @ F4
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A )
              & ( P2 @ ( F4 @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1149_imageE,axiom,
    ! [B: relational_fmla_a_b,F4: relational_fmla_a_b > relational_fmla_a_b,A: set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ B @ ( image_6790371041703824709la_a_b @ F4 @ A ) )
     => ~ ! [X5: relational_fmla_a_b] :
            ( ( B
              = ( F4 @ X5 ) )
           => ~ ( member4680049679412964150la_a_b @ X5 @ A ) ) ) ).

% imageE
thf(fact_1150_imageE,axiom,
    ! [B: relational_fmla_a_b,F4: nat > relational_fmla_a_b,A: set_nat] :
      ( ( member4680049679412964150la_a_b @ B @ ( image_4386371547000553590la_a_b @ F4 @ A ) )
     => ~ ! [X5: nat] :
            ( ( B
              = ( F4 @ X5 ) )
           => ~ ( member_nat @ X5 @ A ) ) ) ).

% imageE
thf(fact_1151_imageE,axiom,
    ! [B: nat,F4: relational_fmla_a_b > nat,A: set_Re381260168593705685la_a_b] :
      ( ( member_nat @ B @ ( image_341122591648980342_b_nat @ F4 @ A ) )
     => ~ ! [X5: relational_fmla_a_b] :
            ( ( B
              = ( F4 @ X5 ) )
           => ~ ( member4680049679412964150la_a_b @ X5 @ A ) ) ) ).

% imageE
thf(fact_1152_imageE,axiom,
    ! [B: nat,F4: nat > nat,A: set_nat] :
      ( ( member_nat @ B @ ( image_nat_nat @ F4 @ A ) )
     => ~ ! [X5: nat] :
            ( ( B
              = ( F4 @ X5 ) )
           => ~ ( member_nat @ X5 @ A ) ) ) ).

% imageE
thf(fact_1153_qps__def,axiom,
    ( relational_qps_a_b
    = ( ^ [G3: set_Re381260168593705685la_a_b] :
          ( collec3419995626248312948la_a_b
          @ ^ [Q5: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ Q5 @ G3 )
              & ( relational_qp_a_b @ Q5 ) ) ) ) ) ).

% qps_def
thf(fact_1154_subst_Osimps_I6_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( relational_subst_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ X @ Y )
      = ( relational_Disj_a_b @ ( relational_subst_a_b @ Q1 @ X @ Y ) @ ( relational_subst_a_b @ Q22 @ X @ Y ) ) ) ).

% subst.simps(6)
thf(fact_1155_subst_Osimps_I1_J,axiom,
    ! [T2: $o,X: nat,Y: nat] :
      ( ( relational_subst_a_b @ ( relational_Bool_a_b @ T2 ) @ X @ Y )
      = ( relational_Bool_a_b @ T2 ) ) ).

% subst.simps(1)
thf(fact_1156_eqs__def,axiom,
    ( relational_eqs_a_b
    = ( ^ [X3: nat,G3: set_Re381260168593705685la_a_b] :
          ( collect_nat
          @ ^ [Y3: nat] :
              ( ( X3 != Y3 )
              & ( member4680049679412964150la_a_b @ ( relational_Eq_a_b @ X3 @ ( relational_Var_a @ Y3 ) ) @ G3 ) ) ) ) ) ).

% eqs_def
thf(fact_1157_set__diff__eq,axiom,
    ( minus_4077726661957047470la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X3 @ A4 )
              & ~ ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1158_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A4 )
              & ~ ( member_nat @ X3 @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1159_minus__set__def,axiom,
    ( minus_4077726661957047470la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( collec3419995626248312948la_a_b
          @ ( minus_9215201808853403479_a_b_o
            @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ A4 )
            @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_1160_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X3: nat] : ( member_nat @ X3 @ A4 )
            @ ^ [X3: nat] : ( member_nat @ X3 @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_1161_insert__def,axiom,
    ( insert_nat
    = ( ^ [A3: nat] :
          ( sup_sup_set_nat
          @ ( collect_nat
            @ ^ [X3: nat] : ( X3 = A3 ) ) ) ) ) ).

% insert_def
thf(fact_1162_insert__def,axiom,
    ( insert7010464514620295119la_a_b
    = ( ^ [A3: relational_fmla_a_b] :
          ( sup_su5130108678486352897la_a_b
          @ ( collec3419995626248312948la_a_b
            @ ^ [X3: relational_fmla_a_b] : ( X3 = A3 ) ) ) ) ) ).

% insert_def
thf(fact_1163_Un__def,axiom,
    ( sup_sup_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A4 )
              | ( member_nat @ X3 @ B4 ) ) ) ) ) ).

% Un_def
thf(fact_1164_Un__def,axiom,
    ( sup_su5130108678486352897la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X3 @ A4 )
              | ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ) ).

% Un_def
thf(fact_1165_sup__set__def,axiom,
    ( sup_sup_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( collect_nat
          @ ( sup_sup_nat_o
            @ ^ [X3: nat] : ( member_nat @ X3 @ A4 )
            @ ^ [X3: nat] : ( member_nat @ X3 @ B4 ) ) ) ) ) ).

% sup_set_def
thf(fact_1166_sup__set__def,axiom,
    ( sup_su5130108678486352897la_a_b
    = ( ^ [A4: set_Re381260168593705685la_a_b,B4: set_Re381260168593705685la_a_b] :
          ( collec3419995626248312948la_a_b
          @ ( sup_su1471977682094119364_a_b_o
            @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ A4 )
            @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ) ).

% sup_set_def
thf(fact_1167_Collect__disj__eq,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( P2 @ X3 )
            | ( Q @ X3 ) ) )
      = ( sup_sup_set_nat @ ( collect_nat @ P2 ) @ ( collect_nat @ Q ) ) ) ).

% Collect_disj_eq
thf(fact_1168_Collect__disj__eq,axiom,
    ! [P2: relational_fmla_a_b > $o,Q: relational_fmla_a_b > $o] :
      ( ( collec3419995626248312948la_a_b
        @ ^ [X3: relational_fmla_a_b] :
            ( ( P2 @ X3 )
            | ( Q @ X3 ) ) )
      = ( sup_su5130108678486352897la_a_b @ ( collec3419995626248312948la_a_b @ P2 ) @ ( collec3419995626248312948la_a_b @ Q ) ) ) ).

% Collect_disj_eq
thf(fact_1169_insert__Collect,axiom,
    ! [A2: nat,P2: nat > $o] :
      ( ( insert_nat @ A2 @ ( collect_nat @ P2 ) )
      = ( collect_nat
        @ ^ [U2: nat] :
            ( ( U2 != A2 )
           => ( P2 @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_1170_insert__compr,axiom,
    ( insert7010464514620295119la_a_b
    = ( ^ [A3: relational_fmla_a_b,B4: set_Re381260168593705685la_a_b] :
          ( collec3419995626248312948la_a_b
          @ ^ [X3: relational_fmla_a_b] :
              ( ( X3 = A3 )
              | ( member4680049679412964150la_a_b @ X3 @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_1171_insert__compr,axiom,
    ( insert_nat
    = ( ^ [A3: nat,B4: set_nat] :
          ( collect_nat
          @ ^ [X3: nat] :
              ( ( X3 = A3 )
              | ( member_nat @ X3 @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_1172_sup__Un__eq,axiom,
    ! [R: set_nat,S: set_nat] :
      ( ( sup_sup_nat_o
        @ ^ [X3: nat] : ( member_nat @ X3 @ R )
        @ ^ [X3: nat] : ( member_nat @ X3 @ S ) )
      = ( ^ [X3: nat] : ( member_nat @ X3 @ ( sup_sup_set_nat @ R @ S ) ) ) ) ).

% sup_Un_eq
thf(fact_1173_sup__Un__eq,axiom,
    ! [R: set_Re381260168593705685la_a_b,S: set_Re381260168593705685la_a_b] :
      ( ( sup_su1471977682094119364_a_b_o
        @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ R )
        @ ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ S ) )
      = ( ^ [X3: relational_fmla_a_b] : ( member4680049679412964150la_a_b @ X3 @ ( sup_su5130108678486352897la_a_b @ R @ S ) ) ) ) ).

% sup_Un_eq
thf(fact_1174_pigeonhole__infinite__rel,axiom,
    ! [A: set_nat,B2: set_nat,R: nat > nat > $o] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( finite_finite_nat @ B2 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ A )
             => ? [Xa2: nat] :
                  ( ( member_nat @ Xa2 @ B2 )
                  & ( R @ X5 @ Xa2 ) ) )
         => ? [X5: nat] :
              ( ( member_nat @ X5 @ B2 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A )
                        & ( R @ A3 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1175_pigeonhole__infinite__rel,axiom,
    ! [A: set_nat,B2: set_Re381260168593705685la_a_b,R: nat > relational_fmla_a_b > $o] :
      ( ~ ( finite_finite_nat @ A )
     => ( ( finite5600759454172676150la_a_b @ B2 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ A )
             => ? [Xa2: relational_fmla_a_b] :
                  ( ( member4680049679412964150la_a_b @ Xa2 @ B2 )
                  & ( R @ X5 @ Xa2 ) ) )
         => ? [X5: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X5 @ B2 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A )
                        & ( R @ A3 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1176_pigeonhole__infinite__rel,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_nat,R: relational_fmla_a_b > nat > $o] :
      ( ~ ( finite5600759454172676150la_a_b @ A )
     => ( ( finite_finite_nat @ B2 )
       => ( ! [X5: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X5 @ A )
             => ? [Xa2: nat] :
                  ( ( member_nat @ Xa2 @ B2 )
                  & ( R @ X5 @ Xa2 ) ) )
         => ? [X5: nat] :
              ( ( member_nat @ X5 @ B2 )
              & ~ ( finite5600759454172676150la_a_b
                  @ ( collec3419995626248312948la_a_b
                    @ ^ [A3: relational_fmla_a_b] :
                        ( ( member4680049679412964150la_a_b @ A3 @ A )
                        & ( R @ A3 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1177_pigeonhole__infinite__rel,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b,R: relational_fmla_a_b > relational_fmla_a_b > $o] :
      ( ~ ( finite5600759454172676150la_a_b @ A )
     => ( ( finite5600759454172676150la_a_b @ B2 )
       => ( ! [X5: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X5 @ A )
             => ? [Xa2: relational_fmla_a_b] :
                  ( ( member4680049679412964150la_a_b @ Xa2 @ B2 )
                  & ( R @ X5 @ Xa2 ) ) )
         => ? [X5: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X5 @ B2 )
              & ~ ( finite5600759454172676150la_a_b
                  @ ( collec3419995626248312948la_a_b
                    @ ^ [A3: relational_fmla_a_b] :
                        ( ( member4680049679412964150la_a_b @ A3 @ A )
                        & ( R @ A3 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_1178_not__finite__existsD,axiom,
    ! [P2: nat > $o] :
      ( ~ ( finite_finite_nat @ ( collect_nat @ P2 ) )
     => ? [X_1: nat] : ( P2 @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1179_not__finite__existsD,axiom,
    ! [P2: relational_fmla_a_b > $o] :
      ( ~ ( finite5600759454172676150la_a_b @ ( collec3419995626248312948la_a_b @ P2 ) )
     => ? [X_1: relational_fmla_a_b] : ( P2 @ X_1 ) ) ).

% not_finite_existsD
thf(fact_1180_finite__if__eq__beyond__finite,axiom,
    ! [S: set_nat,S3: set_nat] :
      ( ( finite_finite_nat @ S )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [S4: set_nat] :
              ( ( minus_minus_set_nat @ S4 @ S )
              = ( minus_minus_set_nat @ S3 @ S ) ) ) ) ) ).

% finite_if_eq_beyond_finite
thf(fact_1181_finite__if__eq__beyond__finite,axiom,
    ! [S: set_Re381260168593705685la_a_b,S3: set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ S )
     => ( finite5238674622262875500la_a_b
        @ ( collec2099942116761351594la_a_b
          @ ^ [S4: set_Re381260168593705685la_a_b] :
              ( ( minus_4077726661957047470la_a_b @ S4 @ S )
              = ( minus_4077726661957047470la_a_b @ S3 @ S ) ) ) ) ) ).

% finite_if_eq_beyond_finite
thf(fact_1182_gen_Ointros_I8_J,axiom,
    ! [Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,X: nat] :
      ( ( relational_gen_a_b @ Y @ Q @ G )
     => ( relational_gen_a_b @ X @ ( relational_Conj_a_b @ Q @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) )
        @ ( image_6790371041703824709la_a_b
          @ ^ [Q5: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Q5 @ Y @ X ) )
          @ G ) ) ) ).

% gen.intros(8)
thf(fact_1183_gen_Ointros_I9_J,axiom,
    ! [Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,X: nat] :
      ( ( relational_gen_a_b @ Y @ Q @ G )
     => ( relational_gen_a_b @ X @ ( relational_Conj_a_b @ Q @ ( relational_Eq_a_b @ Y @ ( relational_Var_a @ X ) ) )
        @ ( image_6790371041703824709la_a_b
          @ ^ [Q5: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Q5 @ Y @ X ) )
          @ G ) ) ) ).

% gen.intros(9)
thf(fact_1184_Gen__cp__subst,axiom,
    ! [Z: nat,Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ? [X_12: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ Z @ Q @ X_12 )
     => ( ( Z != X )
       => ? [X_1: set_Re381260168593705685la_a_b] : ( relational_gen_a_b @ Z @ ( relational_cp_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) ) @ X_1 ) ) ) ).

% Gen_cp_subst
thf(fact_1185_exists__cp__subst,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b] :
      ( ( X != Y )
     => ( ( relati3989891337220013914ts_a_b @ X @ ( relational_cp_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) ) )
        = ( relational_cp_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) ) ) ) ).

% exists_cp_subst
thf(fact_1186_qp__cp__subst__triv,axiom,
    ! [Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( relational_qp_a_b @ Q )
     => ( ( relational_cp_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) )
        = ( relational_subst_a_b @ Q @ X @ Y ) ) ) ).

% qp_cp_subst_triv
thf(fact_1187_rrb__cp__subst,axiom,
    ! [Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( relational_rrb_a_b @ Q )
     => ( relational_rrb_a_b @ ( relational_cp_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) ) ) ) ).

% rrb_cp_subst
thf(fact_1188_csts_Osimps_I1_J,axiom,
    ! [B: $o] :
      ( ( relational_csts_a_b @ ( relational_Bool_a_b @ B ) )
      = bot_bot_set_a ) ).

% csts.simps(1)
thf(fact_1189_csts_Osimps_I6_J,axiom,
    ! [Q1: relational_fmla_a_b,Q22: relational_fmla_a_b] :
      ( ( relational_csts_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) )
      = ( sup_sup_set_a @ ( relational_csts_a_b @ Q1 ) @ ( relational_csts_a_b @ Q22 ) ) ) ).

% csts.simps(6)
thf(fact_1190_gen__csts,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_gen_a_b @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( ord_less_eq_set_a @ ( relational_csts_a_b @ Qqp ) @ ( relational_csts_a_b @ Q ) ) ) ) ).

% gen_csts
thf(fact_1191_cov__csts,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_cov_a_b @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( ord_less_eq_set_a @ ( relational_csts_a_b @ Qqp ) @ ( relational_csts_a_b @ Q ) ) ) ) ).

% cov_csts
thf(fact_1192_cov__nocp__intros,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Gy: set_Re381260168593705685la_a_b] :
      ( ( X != Y )
     => ( ( relational_cov_a_b @ X @ Q @ G )
       => ( ( relational_gen_a_b @ Y @ Q @ Gy )
         => ( relational_cov_a_b @ X @ ( relati591517084277583526ts_a_b @ Y @ Q )
            @ ( sup_su5130108678486352897la_a_b @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y ) @ ( minus_4077726661957047470la_a_b @ G @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ bot_bo4495933725496725865la_a_b ) ) )
              @ ( image_6790371041703824709la_a_b
                @ ^ [Q5: relational_fmla_a_b] : ( relational_subst_a_b @ Q5 @ Y @ X )
                @ Gy ) ) ) ) ) ) ).

% cov_nocp_intros
thf(fact_1193_cov_H_OExists__gen,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Gy: set_Re381260168593705685la_a_b] :
      ( ( X != Y )
     => ( ( relational_cov_a_b2 @ X @ Q @ G )
       => ( ( relational_gen_a_b @ Y @ Q @ Gy )
         => ( relational_cov_a_b2 @ X @ ( relati591517084277583526ts_a_b @ Y @ Q )
            @ ( sup_su5130108678486352897la_a_b @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y ) @ ( minus_4077726661957047470la_a_b @ G @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ bot_bo4495933725496725865la_a_b ) ) )
              @ ( image_6790371041703824709la_a_b
                @ ^ [Q5: relational_fmla_a_b] : ( relational_subst_a_b @ Q5 @ Y @ X )
                @ Gy ) ) ) ) ) ) ).

% cov'.Exists_gen
thf(fact_1194_cov_OExists__gen,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Gy: set_Re381260168593705685la_a_b] :
      ( ( X != Y )
     => ( ( relational_cov_a_b @ X @ Q @ G )
       => ( ( relational_gen_a_b @ Y @ Q @ Gy )
         => ( relational_cov_a_b @ X @ ( relati591517084277583526ts_a_b @ Y @ Q )
            @ ( sup_su5130108678486352897la_a_b @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y ) @ ( minus_4077726661957047470la_a_b @ G @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ bot_bo4495933725496725865la_a_b ) ) )
              @ ( image_6790371041703824709la_a_b
                @ ^ [Q5: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Q5 @ Y @ X ) )
                @ Gy ) ) ) ) ) ) ).

% cov.Exists_gen
thf(fact_1195_cov_H__cp__intros,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Gy: set_Re381260168593705685la_a_b] :
      ( ( X != Y )
     => ( ( relational_cov_a_b2 @ X @ Q @ G )
       => ( ( relational_gen_a_b @ Y @ Q @ Gy )
         => ( relational_cov_a_b2 @ X @ ( relati591517084277583526ts_a_b @ Y @ Q )
            @ ( sup_su5130108678486352897la_a_b @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y ) @ ( minus_4077726661957047470la_a_b @ G @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) @ bot_bo4495933725496725865la_a_b ) ) )
              @ ( image_6790371041703824709la_a_b
                @ ^ [Q5: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Q5 @ Y @ X ) )
                @ Gy ) ) ) ) ) ) ).

% cov'_cp_intros
thf(fact_1196_Eq__eq__subst__iff,axiom,
    ! [Y: nat,Z: nat,Q: relational_fmla_a_b,X: nat] :
      ( ( ( relational_Eq_a_b @ Y @ ( relational_Var_a @ Z ) )
        = ( relational_subst_a_b @ Q @ X @ Y ) )
      = ( ( ( Z = X )
         => ( ( X = Y )
            & ( Q
              = ( relational_Eq_a_b @ X @ ( relational_Var_a @ X ) ) ) ) )
        & ( ( Z != X )
         => ( ( Q
              = ( relational_Eq_a_b @ X @ ( relational_Var_a @ Z ) ) )
            | ( Q
              = ( relational_Eq_a_b @ Y @ ( relational_Var_a @ Z ) ) )
            | ( ( Z = Y )
              & ( member4680049679412964150la_a_b @ Q @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ X ) ) @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ Y @ ( relational_Var_a @ Y ) ) @ ( insert7010464514620295119la_a_b @ ( relational_Eq_a_b @ Y @ ( relational_Var_a @ X ) ) @ bot_bo4495933725496725865la_a_b ) ) ) ) ) ) ) ) ) ).

% Eq_eq_subst_iff
thf(fact_1197_fv__subst,axiom,
    ! [X: nat,Q: relational_fmla_a_b,Y: nat] :
      ( ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( ( relational_fv_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) )
          = ( insert_nat @ Y @ ( minus_minus_set_nat @ ( relational_fv_a_b @ Q ) @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) )
      & ( ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( ( relational_fv_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) )
          = ( relational_fv_a_b @ Q ) ) ) ) ).

% fv_subst
thf(fact_1198_ap__cp__triv,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_ap_a_b @ Q )
     => ( ( relational_cp_a_b @ Q )
        = Q ) ) ).

% ap_cp_triv
thf(fact_1199_ap__cp,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( relational_ap_a_b @ Q )
     => ( relational_ap_a_b @ ( relational_cp_a_b @ Q ) ) ) ).

% ap_cp
thf(fact_1200_Pred,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a] : ( relational_ap_a_b @ ( relational_Pred_b_a @ P @ Ts ) ) ).

% Pred
thf(fact_1201_ap__cp__subst__triv,axiom,
    ! [Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( relational_ap_a_b @ Q )
     => ( ( relational_cp_a_b @ ( relational_subst_a_b @ Q @ X @ Y ) )
        = ( relational_subst_a_b @ Q @ X @ Y ) ) ) ).

% ap_cp_subst_triv
thf(fact_1202_sat_Ocases,axiom,
    ! [X: produc1132964494702330949_nat_a] :
      ( ! [R2: b,Ts2: list_R6823256787227418703term_a,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
          ( X
         != ( produc6598558901832717687_nat_a @ ( relational_Pred_b_a @ R2 @ Ts2 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) )
     => ( ! [B6: $o,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
            ( X
           != ( produc6598558901832717687_nat_a @ ( relational_Bool_a_b @ B6 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) )
       => ( ! [X5: nat,T4: relational_term_a,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
              ( X
             != ( produc6598558901832717687_nat_a @ ( relational_Eq_a_b @ X5 @ T4 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) )
         => ( ! [Phi2: relational_fmla_a_b,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
                ( X
               != ( produc6598558901832717687_nat_a @ ( relational_Neg_a_b @ Phi2 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) )
           => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
                  ( X
                 != ( produc6598558901832717687_nat_a @ ( relational_Conj_a_b @ Phi2 @ Psi2 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) )
             => ( ! [Phi2: relational_fmla_a_b,Psi2: relational_fmla_a_b,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
                    ( X
                   != ( produc6598558901832717687_nat_a @ ( relational_Disj_a_b @ Phi2 @ Psi2 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) )
               => ~ ! [Z2: nat,Phi2: relational_fmla_a_b,I4: product_prod_b_nat > set_list_a,Sigma3: nat > a] :
                      ( X
                     != ( produc6598558901832717687_nat_a @ ( relati591517084277583526ts_a_b @ Z2 @ Phi2 ) @ ( produc2895298938842563487_nat_a @ I4 @ Sigma3 ) ) ) ) ) ) ) ) ) ).

% sat.cases
thf(fact_1203_subst_Ocases,axiom,
    ! [X: produc8867654947514737559at_nat] :
      ( ! [T3: $o,X5: nat,Y6: nat] :
          ( X
         != ( produc6913411929637712585at_nat @ ( relational_Bool_a_b @ T3 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) )
     => ( ! [P3: b,Ts2: list_R6823256787227418703term_a,X5: nat,Y6: nat] :
            ( X
           != ( produc6913411929637712585at_nat @ ( relational_Pred_b_a @ P3 @ Ts2 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) )
       => ( ! [Z2: nat,T3: relational_term_a,X5: nat,Y6: nat] :
              ( X
             != ( produc6913411929637712585at_nat @ ( relational_Eq_a_b @ Z2 @ T3 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) )
         => ( ! [Q4: relational_fmla_a_b,X5: nat,Y6: nat] :
                ( X
               != ( produc6913411929637712585at_nat @ ( relational_Neg_a_b @ Q4 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b,X5: nat,Y6: nat] :
                  ( X
                 != ( produc6913411929637712585at_nat @ ( relational_Conj_a_b @ Q13 @ Q24 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b,X5: nat,Y6: nat] :
                    ( X
                   != ( produc6913411929637712585at_nat @ ( relational_Disj_a_b @ Q13 @ Q24 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) )
               => ~ ! [Z2: nat,Q4: relational_fmla_a_b,X5: nat,Y6: nat] :
                      ( X
                     != ( produc6913411929637712585at_nat @ ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) @ ( product_Pair_nat_nat @ X5 @ Y6 ) ) ) ) ) ) ) ) ) ).

% subst.cases
thf(fact_1204_ap_Osimps,axiom,
    ( relational_ap_a_b
    = ( ^ [A3: relational_fmla_a_b] :
          ( ? [P6: b,Ts3: list_R6823256787227418703term_a] :
              ( A3
              = ( relational_Pred_b_a @ P6 @ Ts3 ) )
          | ? [X3: nat,C6: a] :
              ( A3
              = ( relational_Eq_a_b @ X3 @ ( relational_Const_a @ C6 ) ) ) ) ) ) ).

% ap.simps
thf(fact_1205_ap_Ocases,axiom,
    ! [A2: relational_fmla_a_b] :
      ( ( relational_ap_a_b @ A2 )
     => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
            ( A2
           != ( relational_Pred_b_a @ P3 @ Ts2 ) )
       => ~ ! [X5: nat,C4: a] :
              ( A2
             != ( relational_Eq_a_b @ X5 @ ( relational_Const_a @ C4 ) ) ) ) ) ).

% ap.cases
thf(fact_1206_ap__cp__erase,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_ap_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( ( relational_cp_a_b @ ( relational_erase_a_b @ Q @ X ) )
          = ( relational_Bool_a_b @ $false ) ) ) ) ).

% ap_cp_erase
thf(fact_1207_gen_Ointros_I2_J,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_ap_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_gen_a_b @ X @ Q @ ( insert7010464514620295119la_a_b @ Q @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% gen.intros(2)
thf(fact_1208_cov_Oap,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_ap_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_cov_a_b @ X @ Q @ ( insert7010464514620295119la_a_b @ Q @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% cov.ap
thf(fact_1209_cov_H_Oap,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_ap_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_cov_a_b2 @ X @ Q @ ( insert7010464514620295119la_a_b @ Q @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% cov'.ap
thf(fact_1210_ap__fresh__val,axiom,
    ! [Q: relational_fmla_a_b,Sigma: nat > a,X: nat,I: product_prod_b_nat > set_list_a] :
      ( ( relational_ap_a_b @ Q )
     => ( ~ ( member_a @ ( Sigma @ X ) @ ( relational_adom_b_a @ I ) )
       => ( ~ ( member_a @ ( Sigma @ X ) @ ( relational_csts_a_b @ Q ) )
         => ( ( relational_sat_a_b @ Q @ I @ Sigma )
           => ~ ( member_nat @ X @ ( relational_fv_a_b @ Q ) ) ) ) ) ) ).

% ap_fresh_val
thf(fact_1211_gen__induct,axiom,
    ! [X1: nat,X2: relational_fmla_a_b,X33: set_Re381260168593705685la_a_b,P2: nat > relational_fmla_a_b > set_Re381260168593705685la_a_b > $o] :
      ( ( relational_gen_a_b @ X1 @ X2 @ X33 )
     => ( ! [X5: nat] : ( P2 @ X5 @ ( relational_Bool_a_b @ $false ) @ bot_bo4495933725496725865la_a_b )
       => ( ! [Q4: relational_fmla_a_b] :
              ( ( relational_ap_a_b @ Q4 )
             => ! [X5: nat] :
                  ( ( member_nat @ X5 @ ( relational_fv_a_b @ Q4 ) )
                 => ( P2 @ X5 @ Q4 @ ( insert7010464514620295119la_a_b @ Q4 @ bot_bo4495933725496725865la_a_b ) ) ) )
         => ( ! [X5: nat,Q4: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b] :
                ( ( relational_gen_a_b @ X5 @ Q4 @ G4 )
               => ( ( P2 @ X5 @ Q4 @ G4 )
                 => ( P2 @ X5 @ ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q4 ) ) @ G4 ) ) )
           => ( ! [X5: nat,Q13: relational_fmla_a_b,Q24: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b] :
                  ( ( relational_gen_a_b @ X5 @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ G4 )
                 => ( ( P2 @ X5 @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ G4 )
                   => ( P2 @ X5 @ ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) @ G4 ) ) )
             => ( ! [X5: nat,Q13: relational_fmla_a_b,Q24: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b] :
                    ( ( relational_gen_a_b @ X5 @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ G4 )
                   => ( ( P2 @ X5 @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ G4 )
                     => ( P2 @ X5 @ ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) @ G4 ) ) )
               => ( ! [X5: nat,Q13: relational_fmla_a_b,G12: set_Re381260168593705685la_a_b] :
                      ( ( relational_gen_a_b @ X5 @ Q13 @ G12 )
                     => ( ( P2 @ X5 @ Q13 @ G12 )
                       => ! [Q24: relational_fmla_a_b,G23: set_Re381260168593705685la_a_b] :
                            ( ( relational_gen_a_b @ X5 @ Q24 @ G23 )
                           => ( ( P2 @ X5 @ Q24 @ G23 )
                             => ( P2 @ X5 @ ( relational_Disj_a_b @ Q13 @ Q24 ) @ ( sup_su5130108678486352897la_a_b @ G12 @ G23 ) ) ) ) ) )
                 => ( ! [X5: nat,Q13: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b,Q24: relational_fmla_a_b] :
                        ( ( ( ( relational_gen_a_b @ X5 @ Q13 @ G4 )
                            & ( P2 @ X5 @ Q13 @ G4 ) )
                          | ( ( relational_gen_a_b @ X5 @ Q24 @ G4 )
                            & ( P2 @ X5 @ Q24 @ G4 ) ) )
                       => ( P2 @ X5 @ ( relational_Conj_a_b @ Q13 @ Q24 ) @ G4 ) )
                   => ( ! [Y6: nat,Q4: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b] :
                          ( ( relational_gen_a_b @ Y6 @ Q4 @ G4 )
                         => ( ( P2 @ Y6 @ Q4 @ G4 )
                           => ! [X5: nat] :
                                ( P2 @ X5 @ ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ X5 @ ( relational_Var_a @ Y6 ) ) )
                                @ ( image_6790371041703824709la_a_b
                                  @ ^ [Qa: relational_fmla_a_b] : ( relational_subst_a_b @ Qa @ Y6 @ X5 )
                                  @ G4 ) ) ) )
                     => ( ! [Y6: nat,Q4: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b] :
                            ( ( relational_gen_a_b @ Y6 @ Q4 @ G4 )
                           => ( ( P2 @ Y6 @ Q4 @ G4 )
                             => ! [X5: nat] :
                                  ( P2 @ X5 @ ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ Y6 @ ( relational_Var_a @ X5 ) ) )
                                  @ ( image_6790371041703824709la_a_b
                                    @ ^ [Qa: relational_fmla_a_b] : ( relational_subst_a_b @ Qa @ Y6 @ X5 )
                                    @ G4 ) ) ) )
                       => ( ! [X5: nat,Y6: nat] :
                              ( ( X5 != Y6 )
                             => ! [Q4: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b] :
                                  ( ( relational_gen_a_b @ X5 @ Q4 @ G4 )
                                 => ( ( P2 @ X5 @ Q4 @ G4 )
                                   => ( P2 @ X5 @ ( relati591517084277583526ts_a_b @ Y6 @ Q4 ) @ ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y6 ) @ G4 ) ) ) ) )
                         => ( P2 @ X1 @ X2 @ X33 ) ) ) ) ) ) ) ) ) ) ) ) ).

% gen_induct
thf(fact_1212_gen_Ocases,axiom,
    ! [A1: nat,A22: relational_fmla_a_b,A32: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b @ A1 @ A22 @ A32 )
     => ( ( ( A22
            = ( relational_Bool_a_b @ $false ) )
         => ( A32 != bot_bo4495933725496725865la_a_b ) )
       => ( ( ( A32
              = ( insert7010464514620295119la_a_b @ A22 @ bot_bo4495933725496725865la_a_b ) )
           => ( ( relational_ap_a_b @ A22 )
             => ~ ( member_nat @ A1 @ ( relational_fv_a_b @ A22 ) ) ) )
         => ( ! [Q4: relational_fmla_a_b] :
                ( ( A22
                  = ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q4 ) ) )
               => ~ ( relational_gen_a_b @ A1 @ Q4 @ A32 ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                  ( ( A22
                    = ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) )
                 => ~ ( relational_gen_a_b @ A1 @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ A32 ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( A22
                      = ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) )
                   => ~ ( relational_gen_a_b @ A1 @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ A32 ) )
               => ( ! [Q13: relational_fmla_a_b,G12: set_Re381260168593705685la_a_b,Q24: relational_fmla_a_b] :
                      ( ( A22
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ! [G23: set_Re381260168593705685la_a_b] :
                          ( ( A32
                            = ( sup_su5130108678486352897la_a_b @ G12 @ G23 ) )
                         => ( ( relational_gen_a_b @ A1 @ Q13 @ G12 )
                           => ~ ( relational_gen_a_b @ A1 @ Q24 @ G23 ) ) ) )
                 => ( ! [Q13: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b,Q24: relational_fmla_a_b] :
                        ( ( A22
                          = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                       => ( ( A32 = G4 )
                         => ~ ( ( relational_gen_a_b @ A1 @ Q13 @ G4 )
                              | ( relational_gen_a_b @ A1 @ Q24 @ G4 ) ) ) )
                   => ( ! [Y6: nat,Q4: relational_fmla_a_b] :
                          ( ( A22
                            = ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ A1 @ ( relational_Var_a @ Y6 ) ) ) )
                         => ! [G4: set_Re381260168593705685la_a_b] :
                              ( ( A32
                                = ( image_6790371041703824709la_a_b
                                  @ ^ [Qa: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Qa @ Y6 @ A1 ) )
                                  @ G4 ) )
                             => ~ ( relational_gen_a_b @ Y6 @ Q4 @ G4 ) ) )
                     => ( ! [Y6: nat,Q4: relational_fmla_a_b] :
                            ( ( A22
                              = ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ Y6 @ ( relational_Var_a @ A1 ) ) ) )
                           => ! [G4: set_Re381260168593705685la_a_b] :
                                ( ( A32
                                  = ( image_6790371041703824709la_a_b
                                    @ ^ [Qa: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Qa @ Y6 @ A1 ) )
                                    @ G4 ) )
                               => ~ ( relational_gen_a_b @ Y6 @ Q4 @ G4 ) ) )
                       => ~ ! [Y6: nat,Q4: relational_fmla_a_b] :
                              ( ( A22
                                = ( relati591517084277583526ts_a_b @ Y6 @ Q4 ) )
                             => ! [G4: set_Re381260168593705685la_a_b] :
                                  ( ( A32
                                    = ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y6 ) @ G4 ) )
                                 => ( ( A1 != Y6 )
                                   => ~ ( relational_gen_a_b @ A1 @ Q4 @ G4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% gen.cases
thf(fact_1213_gen_Osimps,axiom,
    ( relational_gen_a_b
    = ( ^ [A12: nat,A23: relational_fmla_a_b,A33: set_Re381260168593705685la_a_b] :
          ( ( ( A23
              = ( relational_Bool_a_b @ $false ) )
            & ( A33 = bot_bo4495933725496725865la_a_b ) )
          | ( ( A33
              = ( insert7010464514620295119la_a_b @ A23 @ bot_bo4495933725496725865la_a_b ) )
            & ( relational_ap_a_b @ A23 )
            & ( member_nat @ A12 @ ( relational_fv_a_b @ A23 ) ) )
          | ? [Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q5 ) ) )
              & ( relational_gen_a_b @ A12 @ Q5 @ A33 ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q14 @ Q25 ) ) )
              & ( relational_gen_a_b @ A12 @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q14 ) @ ( relational_Neg_a_b @ Q25 ) ) @ A33 ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q14 @ Q25 ) ) )
              & ( relational_gen_a_b @ A12 @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q14 ) @ ( relational_Neg_a_b @ Q25 ) ) @ A33 ) )
          | ? [Q14: relational_fmla_a_b,G13: set_Re381260168593705685la_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Disj_a_b @ Q14 @ Q25 ) )
              & ? [G24: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( sup_su5130108678486352897la_a_b @ G13 @ G24 ) )
                  & ( relational_gen_a_b @ A12 @ Q14 @ G13 )
                  & ( relational_gen_a_b @ A12 @ Q25 @ G24 ) ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Conj_a_b @ Q14 @ Q25 ) )
              & ( ( relational_gen_a_b @ A12 @ Q14 @ A33 )
                | ( relational_gen_a_b @ A12 @ Q25 @ A33 ) ) )
          | ? [Y3: nat,Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Conj_a_b @ Q5 @ ( relational_Eq_a_b @ A12 @ ( relational_Var_a @ Y3 ) ) ) )
              & ? [G3: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( image_6790371041703824709la_a_b
                      @ ^ [Qa: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Qa @ Y3 @ A12 ) )
                      @ G3 ) )
                  & ( relational_gen_a_b @ Y3 @ Q5 @ G3 ) ) )
          | ? [Y3: nat,Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Conj_a_b @ Q5 @ ( relational_Eq_a_b @ Y3 @ ( relational_Var_a @ A12 ) ) ) )
              & ? [G3: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( image_6790371041703824709la_a_b
                      @ ^ [Qa: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Qa @ Y3 @ A12 ) )
                      @ G3 ) )
                  & ( relational_gen_a_b @ Y3 @ Q5 @ G3 ) ) )
          | ? [Y3: nat,Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relati591517084277583526ts_a_b @ Y3 @ Q5 ) )
              & ? [G3: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y3 ) @ G3 ) )
                  & ( A12 != Y3 )
                  & ( relational_gen_a_b @ A12 @ Q5 @ G3 ) ) ) ) ) ) ).

% gen.simps
thf(fact_1214_gen_H_Osimps,axiom,
    ( relational_gen_a_b2
    = ( ^ [A12: nat,A23: relational_fmla_a_b,A33: set_Re381260168593705685la_a_b] :
          ( ( ( A23
              = ( relational_Bool_a_b @ $false ) )
            & ( A33 = bot_bo4495933725496725865la_a_b ) )
          | ( ( A33
              = ( insert7010464514620295119la_a_b @ A23 @ bot_bo4495933725496725865la_a_b ) )
            & ( relational_ap_a_b @ A23 )
            & ( member_nat @ A12 @ ( relational_fv_a_b @ A23 ) ) )
          | ? [Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q5 ) ) )
              & ( relational_gen_a_b2 @ A12 @ Q5 @ A33 ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q14 @ Q25 ) ) )
              & ( relational_gen_a_b2 @ A12 @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q14 ) @ ( relational_Neg_a_b @ Q25 ) ) @ A33 ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q14 @ Q25 ) ) )
              & ( relational_gen_a_b2 @ A12 @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q14 ) @ ( relational_Neg_a_b @ Q25 ) ) @ A33 ) )
          | ? [Q14: relational_fmla_a_b,G13: set_Re381260168593705685la_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Disj_a_b @ Q14 @ Q25 ) )
              & ? [G24: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( sup_su5130108678486352897la_a_b @ G13 @ G24 ) )
                  & ( relational_gen_a_b2 @ A12 @ Q14 @ G13 )
                  & ( relational_gen_a_b2 @ A12 @ Q25 @ G24 ) ) )
          | ? [Q14: relational_fmla_a_b,Q25: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Conj_a_b @ Q14 @ Q25 ) )
              & ( ( relational_gen_a_b2 @ A12 @ Q14 @ A33 )
                | ( relational_gen_a_b2 @ A12 @ Q25 @ A33 ) ) )
          | ? [Y3: nat,Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Conj_a_b @ Q5 @ ( relational_Eq_a_b @ A12 @ ( relational_Var_a @ Y3 ) ) ) )
              & ? [G3: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( image_6790371041703824709la_a_b
                      @ ^ [Qa: relational_fmla_a_b] : ( relational_subst_a_b @ Qa @ Y3 @ A12 )
                      @ G3 ) )
                  & ( relational_gen_a_b2 @ Y3 @ Q5 @ G3 ) ) )
          | ? [Y3: nat,Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relational_Conj_a_b @ Q5 @ ( relational_Eq_a_b @ Y3 @ ( relational_Var_a @ A12 ) ) ) )
              & ? [G3: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( image_6790371041703824709la_a_b
                      @ ^ [Qa: relational_fmla_a_b] : ( relational_subst_a_b @ Qa @ Y3 @ A12 )
                      @ G3 ) )
                  & ( relational_gen_a_b2 @ Y3 @ Q5 @ G3 ) ) )
          | ? [Y3: nat,Q5: relational_fmla_a_b] :
              ( ( A23
                = ( relati591517084277583526ts_a_b @ Y3 @ Q5 ) )
              & ? [G3: set_Re381260168593705685la_a_b] :
                  ( ( A33
                    = ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y3 ) @ G3 ) )
                  & ( A12 != Y3 )
                  & ( relational_gen_a_b2 @ A12 @ Q5 @ G3 ) ) ) ) ) ) ).

% gen'.simps
thf(fact_1215_gen_H_Ointros_I1_J,axiom,
    ! [X: nat] : ( relational_gen_a_b2 @ X @ ( relational_Bool_a_b @ $false ) @ bot_bo4495933725496725865la_a_b ) ).

% gen'.intros(1)
thf(fact_1216_gen_H_Ointros_I6_J,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,G1: set_Re381260168593705685la_a_b,Q22: relational_fmla_a_b,G22: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b2 @ X @ Q1 @ G1 )
     => ( ( relational_gen_a_b2 @ X @ Q22 @ G22 )
       => ( relational_gen_a_b2 @ X @ ( relational_Disj_a_b @ Q1 @ Q22 ) @ ( sup_su5130108678486352897la_a_b @ G1 @ G22 ) ) ) ) ).

% gen'.intros(6)
thf(fact_1217_gen_H__qp,axiom,
    ! [X: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,Qqp: relational_fmla_a_b] :
      ( ( relational_gen_a_b2 @ X @ Q @ G )
     => ( ( member4680049679412964150la_a_b @ Qqp @ G )
       => ( relational_qp_a_b @ Qqp ) ) ) ).

% gen'_qp
thf(fact_1218_gen_H_Ointros_I4_J,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b2 @ X @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q1 ) @ ( relational_Neg_a_b @ Q22 ) ) @ G )
     => ( relational_gen_a_b2 @ X @ ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q1 @ Q22 ) ) @ G ) ) ).

% gen'.intros(4)
thf(fact_1219_gen_H_Ointros_I5_J,axiom,
    ! [X: nat,Q1: relational_fmla_a_b,Q22: relational_fmla_a_b,G: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b2 @ X @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q1 ) @ ( relational_Neg_a_b @ Q22 ) ) @ G )
     => ( relational_gen_a_b2 @ X @ ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q1 @ Q22 ) ) @ G ) ) ).

% gen'.intros(5)
thf(fact_1220_gen_H_Ointros_I2_J,axiom,
    ! [Q: relational_fmla_a_b,X: nat] :
      ( ( relational_ap_a_b @ Q )
     => ( ( member_nat @ X @ ( relational_fv_a_b @ Q ) )
       => ( relational_gen_a_b2 @ X @ Q @ ( insert7010464514620295119la_a_b @ Q @ bot_bo4495933725496725865la_a_b ) ) ) ) ).

% gen'.intros(2)
thf(fact_1221_gen_H__cp__intros_I2_J,axiom,
    ! [Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,X: nat] :
      ( ( relational_gen_a_b2 @ Y @ Q @ G )
     => ( relational_gen_a_b2 @ X @ ( relational_Conj_a_b @ Q @ ( relational_Eq_a_b @ Y @ ( relational_Var_a @ X ) ) )
        @ ( image_6790371041703824709la_a_b
          @ ^ [Q5: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Q5 @ Y @ X ) )
          @ G ) ) ) ).

% gen'_cp_intros(2)
thf(fact_1222_gen_H__cp__intros_I1_J,axiom,
    ! [Y: nat,Q: relational_fmla_a_b,G: set_Re381260168593705685la_a_b,X: nat] :
      ( ( relational_gen_a_b2 @ Y @ Q @ G )
     => ( relational_gen_a_b2 @ X @ ( relational_Conj_a_b @ Q @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y ) ) )
        @ ( image_6790371041703824709la_a_b
          @ ^ [Q5: relational_fmla_a_b] : ( relational_cp_a_b @ ( relational_subst_a_b @ Q5 @ Y @ X ) )
          @ G ) ) ) ).

% gen'_cp_intros(1)
thf(fact_1223_gen_H_Ocases,axiom,
    ! [A1: nat,A22: relational_fmla_a_b,A32: set_Re381260168593705685la_a_b] :
      ( ( relational_gen_a_b2 @ A1 @ A22 @ A32 )
     => ( ( ( A22
            = ( relational_Bool_a_b @ $false ) )
         => ( A32 != bot_bo4495933725496725865la_a_b ) )
       => ( ( ( A32
              = ( insert7010464514620295119la_a_b @ A22 @ bot_bo4495933725496725865la_a_b ) )
           => ( ( relational_ap_a_b @ A22 )
             => ~ ( member_nat @ A1 @ ( relational_fv_a_b @ A22 ) ) ) )
         => ( ! [Q4: relational_fmla_a_b] :
                ( ( A22
                  = ( relational_Neg_a_b @ ( relational_Neg_a_b @ Q4 ) ) )
               => ~ ( relational_gen_a_b2 @ A1 @ Q4 @ A32 ) )
           => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                  ( ( A22
                    = ( relational_Neg_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) )
                 => ~ ( relational_gen_a_b2 @ A1 @ ( relational_Conj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ A32 ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( A22
                      = ( relational_Neg_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) )
                   => ~ ( relational_gen_a_b2 @ A1 @ ( relational_Disj_a_b @ ( relational_Neg_a_b @ Q13 ) @ ( relational_Neg_a_b @ Q24 ) ) @ A32 ) )
               => ( ! [Q13: relational_fmla_a_b,G12: set_Re381260168593705685la_a_b,Q24: relational_fmla_a_b] :
                      ( ( A22
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ! [G23: set_Re381260168593705685la_a_b] :
                          ( ( A32
                            = ( sup_su5130108678486352897la_a_b @ G12 @ G23 ) )
                         => ( ( relational_gen_a_b2 @ A1 @ Q13 @ G12 )
                           => ~ ( relational_gen_a_b2 @ A1 @ Q24 @ G23 ) ) ) )
                 => ( ! [Q13: relational_fmla_a_b,G4: set_Re381260168593705685la_a_b,Q24: relational_fmla_a_b] :
                        ( ( A22
                          = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                       => ( ( A32 = G4 )
                         => ~ ( ( relational_gen_a_b2 @ A1 @ Q13 @ G4 )
                              | ( relational_gen_a_b2 @ A1 @ Q24 @ G4 ) ) ) )
                   => ( ! [Y6: nat,Q4: relational_fmla_a_b] :
                          ( ( A22
                            = ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ A1 @ ( relational_Var_a @ Y6 ) ) ) )
                         => ! [G4: set_Re381260168593705685la_a_b] :
                              ( ( A32
                                = ( image_6790371041703824709la_a_b
                                  @ ^ [Qa: relational_fmla_a_b] : ( relational_subst_a_b @ Qa @ Y6 @ A1 )
                                  @ G4 ) )
                             => ~ ( relational_gen_a_b2 @ Y6 @ Q4 @ G4 ) ) )
                     => ( ! [Y6: nat,Q4: relational_fmla_a_b] :
                            ( ( A22
                              = ( relational_Conj_a_b @ Q4 @ ( relational_Eq_a_b @ Y6 @ ( relational_Var_a @ A1 ) ) ) )
                           => ! [G4: set_Re381260168593705685la_a_b] :
                                ( ( A32
                                  = ( image_6790371041703824709la_a_b
                                    @ ^ [Qa: relational_fmla_a_b] : ( relational_subst_a_b @ Qa @ Y6 @ A1 )
                                    @ G4 ) )
                               => ~ ( relational_gen_a_b2 @ Y6 @ Q4 @ G4 ) ) )
                       => ~ ! [Y6: nat,Q4: relational_fmla_a_b] :
                              ( ( A22
                                = ( relati591517084277583526ts_a_b @ Y6 @ Q4 ) )
                             => ! [G4: set_Re381260168593705685la_a_b] :
                                  ( ( A32
                                    = ( image_6790371041703824709la_a_b @ ( relati3989891337220013914ts_a_b @ Y6 ) @ G4 ) )
                                 => ( ( A1 != Y6 )
                                   => ~ ( relational_gen_a_b2 @ A1 @ Q4 @ G4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% gen'.cases
thf(fact_1224_cp_Osimps_I1_J,axiom,
    ! [X: nat,T2: relational_term_a] :
      ( ( relational_cp_a_b @ ( relational_Eq_a_b @ X @ T2 ) )
      = ( relati582353067970734056la_a_b
        @ ^ [A3: a] : ( relational_Eq_a_b @ X @ T2 )
        @ ^ [Y3: nat] : ( if_Rel1279876242545935705la_a_b @ ( X = Y3 ) @ ( relational_Bool_a_b @ $true ) @ ( relational_Eq_a_b @ X @ ( relational_Var_a @ Y3 ) ) )
        @ T2 ) ) ).

% cp.simps(1)
thf(fact_1225_fresh2_I3_J,axiom,
    ! [X: nat,Y: nat,Q: relational_fmla_a_b] :
      ~ ( member_nat @ ( relati2677767559083392098h2_a_b @ X @ Y @ Q ) @ ( relational_fv_a_b @ Q ) ) ).

% fresh2(3)
thf(fact_1226_fresh2__gt_I3_J,axiom,
    ! [Z: nat,Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( member_nat @ Z @ ( relational_fv_a_b @ Q ) )
     => ( ord_less_nat @ Z @ ( relati2677767559083392098h2_a_b @ X @ Y @ Q ) ) ) ).

% fresh2_gt(3)
thf(fact_1227_subst__exists,axiom,
    ! [Z: nat,Q: relational_fmla_a_b,X: nat,Y: nat] :
      ( ( ( member_nat @ Z @ ( relational_fv_a_b @ Q ) )
       => ( ( ( X = Z )
           => ( ( relational_subst_a_b @ ( relati3989891337220013914ts_a_b @ Z @ Q ) @ X @ Y )
              = ( relati3989891337220013914ts_a_b @ X @ Q ) ) )
          & ( ( X != Z )
           => ( ( ( Z = Y )
               => ( ( relational_subst_a_b @ ( relati3989891337220013914ts_a_b @ Z @ Q ) @ X @ Y )
                  = ( relati3989891337220013914ts_a_b @ ( relati2677767559083392098h2_a_b @ X @ Y @ Q ) @ ( relational_subst_a_b @ ( relational_subst_a_b @ Q @ Z @ ( relati2677767559083392098h2_a_b @ X @ Y @ Q ) ) @ X @ Y ) ) ) )
              & ( ( Z != Y )
               => ( ( relational_subst_a_b @ ( relati3989891337220013914ts_a_b @ Z @ Q ) @ X @ Y )
                  = ( relati3989891337220013914ts_a_b @ Z @ ( relational_subst_a_b @ Q @ X @ Y ) ) ) ) ) ) ) )
      & ( ~ ( member_nat @ Z @ ( relational_fv_a_b @ Q ) )
       => ( ( relational_subst_a_b @ ( relati3989891337220013914ts_a_b @ Z @ Q ) @ X @ Y )
          = ( relational_subst_a_b @ Q @ X @ Y ) ) ) ) ).

% subst_exists
thf(fact_1228_subst_Oelims,axiom,
    ! [X: relational_fmla_a_b,Xa: nat,Xb: nat,Y: relational_fmla_a_b] :
      ( ( ( relational_subst_a_b @ X @ Xa @ Xb )
        = Y )
     => ( ! [T3: $o] :
            ( ( X
              = ( relational_Bool_a_b @ T3 ) )
           => ( Y
             != ( relational_Bool_a_b @ T3 ) ) )
       => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ P3 @ Ts2 ) )
             => ( Y
               != ( relational_Pred_b_a @ P3
                  @ ( map_Re5736185711816362116term_a
                    @ ^ [T6: relational_term_a] : ( relati7175845559408349773term_a @ T6 @ Xa @ Xb )
                    @ Ts2 ) ) ) )
         => ( ! [Z2: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ Z2 @ T3 ) )
               => ( Y
                 != ( relational_Eq_a_b @ ( if_nat @ ( Z2 = Xa ) @ Xb @ Z2 ) @ ( relati7175845559408349773term_a @ T3 @ Xa @ Xb ) ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( Y
                   != ( relational_Neg_a_b @ ( relational_subst_a_b @ Q4 @ Xa @ Xb ) ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( Y
                     != ( relational_Conj_a_b @ ( relational_subst_a_b @ Q13 @ Xa @ Xb ) @ ( relational_subst_a_b @ Q24 @ Xa @ Xb ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( Y
                       != ( relational_Disj_a_b @ ( relational_subst_a_b @ Q13 @ Xa @ Xb ) @ ( relational_subst_a_b @ Q24 @ Xa @ Xb ) ) ) )
                 => ~ ! [Z2: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ Z2 @ Q4 ) )
                       => ~ ( ( ( Xa = Z2 )
                             => ( Y
                                = ( relati591517084277583526ts_a_b @ Xa @ Q4 ) ) )
                            & ( ( Xa != Z2 )
                             => ( ( ( Z2 = Xb )
                                 => ( Y
                                    = ( relati591517084277583526ts_a_b @ ( relati2677767559083392098h2_a_b @ Xa @ Xb @ Q4 ) @ ( relational_subst_a_b @ ( relational_subst_a_b @ Q4 @ Z2 @ ( relati2677767559083392098h2_a_b @ Xa @ Xb @ Q4 ) ) @ Xa @ Xb ) ) ) )
                                & ( ( Z2 != Xb )
                                 => ( Y
                                    = ( relati591517084277583526ts_a_b @ Z2 @ ( relational_subst_a_b @ Q4 @ Xa @ Xb ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% subst.elims
thf(fact_1229_finite__UN,axiom,
    ! [A: set_nat,B2: nat > set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( finite_finite_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B2 @ A ) ) )
        = ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A )
             => ( finite_finite_nat @ ( B2 @ X3 ) ) ) ) ) ) ).

% finite_UN
thf(fact_1230_finite__UN,axiom,
    ! [A: set_nat,B2: nat > set_Re381260168593705685la_a_b] :
      ( ( finite_finite_nat @ A )
     => ( ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ B2 @ A ) ) )
        = ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A )
             => ( finite5600759454172676150la_a_b @ ( B2 @ X3 ) ) ) ) ) ) ).

% finite_UN
thf(fact_1231_finite__UN,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: relational_fmla_a_b > set_nat] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ( finite_finite_nat @ ( comple7399068483239264473et_nat @ ( image_8719518604786020652et_nat @ B2 @ A ) ) )
        = ( ! [X3: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X3 @ A )
             => ( finite_finite_nat @ ( B2 @ X3 ) ) ) ) ) ) ).

% finite_UN
thf(fact_1232_finite__UN,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: relational_fmla_a_b > set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ B2 @ A ) ) )
        = ( ! [X3: relational_fmla_a_b] :
              ( ( member4680049679412964150la_a_b @ X3 @ A )
             => ( finite5600759454172676150la_a_b @ ( B2 @ X3 ) ) ) ) ) ) ).

% finite_UN
thf(fact_1233_finite__Union,axiom,
    ! [A: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ A )
     => ( ! [M3: set_nat] :
            ( ( member_set_nat @ M3 @ A )
           => ( finite_finite_nat @ M3 ) )
       => ( finite_finite_nat @ ( comple7399068483239264473et_nat @ A ) ) ) ) ).

% finite_Union
thf(fact_1234_finite__Union,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ! [M3: set_Re381260168593705685la_a_b] :
            ( ( member3481406638322139244la_a_b @ M3 @ A )
           => ( finite5600759454172676150la_a_b @ M3 ) )
       => ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ A ) ) ) ) ).

% finite_Union
thf(fact_1235_finite__UN__I,axiom,
    ! [A: set_nat,B2: nat > set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ! [A6: nat] :
            ( ( member_nat @ A6 @ A )
           => ( finite_finite_nat @ ( B2 @ A6 ) ) )
       => ( finite_finite_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B2 @ A ) ) ) ) ) ).

% finite_UN_I
thf(fact_1236_finite__UN__I,axiom,
    ! [A: set_nat,B2: nat > set_Re381260168593705685la_a_b] :
      ( ( finite_finite_nat @ A )
     => ( ! [A6: nat] :
            ( ( member_nat @ A6 @ A )
           => ( finite5600759454172676150la_a_b @ ( B2 @ A6 ) ) )
       => ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ B2 @ A ) ) ) ) ) ).

% finite_UN_I
thf(fact_1237_finite__UN__I,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: relational_fmla_a_b > set_nat] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ! [A6: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ A6 @ A )
           => ( finite_finite_nat @ ( B2 @ A6 ) ) )
       => ( finite_finite_nat @ ( comple7399068483239264473et_nat @ ( image_8719518604786020652et_nat @ B2 @ A ) ) ) ) ) ).

% finite_UN_I
thf(fact_1238_finite__UN__I,axiom,
    ! [A: set_Re381260168593705685la_a_b,B2: relational_fmla_a_b > set_Re381260168593705685la_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ! [A6: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ A6 @ A )
           => ( finite5600759454172676150la_a_b @ ( B2 @ A6 ) ) )
       => ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ B2 @ A ) ) ) ) ) ).

% finite_UN_I
thf(fact_1239_finite__UNION__then__finite,axiom,
    ! [B2: relational_fmla_a_b > set_nat,A: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b] :
      ( ( finite_finite_nat @ ( comple7399068483239264473et_nat @ ( image_8719518604786020652et_nat @ B2 @ A ) ) )
     => ( ( member4680049679412964150la_a_b @ A2 @ A )
       => ( finite_finite_nat @ ( B2 @ A2 ) ) ) ) ).

% finite_UNION_then_finite
thf(fact_1240_finite__UNION__then__finite,axiom,
    ! [B2: nat > set_nat,A: set_nat,A2: nat] :
      ( ( finite_finite_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B2 @ A ) ) )
     => ( ( member_nat @ A2 @ A )
       => ( finite_finite_nat @ ( B2 @ A2 ) ) ) ) ).

% finite_UNION_then_finite
thf(fact_1241_finite__UNION__then__finite,axiom,
    ! [B2: relational_fmla_a_b > set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b,A2: relational_fmla_a_b] :
      ( ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ B2 @ A ) ) )
     => ( ( member4680049679412964150la_a_b @ A2 @ A )
       => ( finite5600759454172676150la_a_b @ ( B2 @ A2 ) ) ) ) ).

% finite_UNION_then_finite
thf(fact_1242_finite__UNION__then__finite,axiom,
    ! [B2: nat > set_Re381260168593705685la_a_b,A: set_nat,A2: nat] :
      ( ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ B2 @ A ) ) )
     => ( ( member_nat @ A2 @ A )
       => ( finite5600759454172676150la_a_b @ ( B2 @ A2 ) ) ) ) ).

% finite_UNION_then_finite
thf(fact_1243_finite__UnionD,axiom,
    ! [A: set_set_nat] :
      ( ( finite_finite_nat @ ( comple7399068483239264473et_nat @ A ) )
     => ( finite1152437895449049373et_nat @ A ) ) ).

% finite_UnionD
thf(fact_1244_finite__UnionD,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( finite5600759454172676150la_a_b @ ( comple8442120529048846632la_a_b @ A ) )
     => ( finite5238674622262875500la_a_b @ A ) ) ).

% finite_UnionD
thf(fact_1245_finite__Sup__in,axiom,
    ! [A: set_se6865892389300016395la_a_b] :
      ( ( finite5238674622262875500la_a_b @ A )
     => ( ( A != bot_bo2891247006866115487la_a_b )
       => ( ! [X5: set_Re381260168593705685la_a_b,Y6: set_Re381260168593705685la_a_b] :
              ( ( member3481406638322139244la_a_b @ X5 @ A )
             => ( ( member3481406638322139244la_a_b @ Y6 @ A )
               => ( member3481406638322139244la_a_b @ ( sup_su5130108678486352897la_a_b @ X5 @ Y6 ) @ A ) ) )
         => ( member3481406638322139244la_a_b @ ( comple8442120529048846632la_a_b @ A ) @ A ) ) ) ) ).

% finite_Sup_in
thf(fact_1246_subst_Osimps_I2_J,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a,X: nat,Y: nat] :
      ( ( relational_subst_a_b @ ( relational_Pred_b_a @ P @ Ts ) @ X @ Y )
      = ( relational_Pred_b_a @ P
        @ ( map_Re5736185711816362116term_a
          @ ^ [T6: relational_term_a] : ( relati7175845559408349773term_a @ T6 @ X @ Y )
          @ Ts ) ) ) ).

% subst.simps(2)
thf(fact_1247_Union__Un__distrib,axiom,
    ! [A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) )
      = ( sup_su5130108678486352897la_a_b @ ( comple8442120529048846632la_a_b @ A ) @ ( comple8442120529048846632la_a_b @ B2 ) ) ) ).

% Union_Un_distrib
thf(fact_1248_Sup__insert,axiom,
    ! [A2: set_Re381260168593705685la_a_b,A: set_se6865892389300016395la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( insert2023870700798818565la_a_b @ A2 @ A ) )
      = ( sup_su5130108678486352897la_a_b @ A2 @ ( comple8442120529048846632la_a_b @ A ) ) ) ).

% Sup_insert
thf(fact_1249_UN__Un,axiom,
    ! [M4: relational_fmla_a_b > set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ M4 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) )
      = ( sup_su5130108678486352897la_a_b @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ M4 @ A ) ) @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ M4 @ B2 ) ) ) ) ).

% UN_Un
thf(fact_1250_fv__flat__Disj,axiom,
    ! [Q: relational_fmla_a_b] :
      ( ( comple7399068483239264473et_nat @ ( image_8719518604786020652et_nat @ relational_fv_a_b @ ( restri569617705344514291sj_a_b @ Q ) ) )
      = ( relational_fv_a_b @ Q ) ) ).

% fv_flat_Disj
thf(fact_1251_Union__insert,axiom,
    ! [A2: set_Re381260168593705685la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( insert2023870700798818565la_a_b @ A2 @ B2 ) )
      = ( sup_su5130108678486352897la_a_b @ A2 @ ( comple8442120529048846632la_a_b @ B2 ) ) ) ).

% Union_insert
thf(fact_1252_Sup__union__distrib,axiom,
    ! [A: set_se6865892389300016395la_a_b,B2: set_se6865892389300016395la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( sup_su4783144482993978935la_a_b @ A @ B2 ) )
      = ( sup_su5130108678486352897la_a_b @ ( comple8442120529048846632la_a_b @ A ) @ ( comple8442120529048846632la_a_b @ B2 ) ) ) ).

% Sup_union_distrib
thf(fact_1253_SUP__absorb,axiom,
    ! [K: relational_fmla_a_b,I: set_Re381260168593705685la_a_b,A: relational_fmla_a_b > set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ K @ I )
     => ( ( sup_su5130108678486352897la_a_b @ ( A @ K ) @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ A @ I ) ) )
        = ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ A @ I ) ) ) ) ).

% SUP_absorb
thf(fact_1254_SUP__absorb,axiom,
    ! [K: nat,I: set_nat,A: nat > set_Re381260168593705685la_a_b] :
      ( ( member_nat @ K @ I )
     => ( ( sup_su5130108678486352897la_a_b @ ( A @ K ) @ ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ A @ I ) ) )
        = ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ A @ I ) ) ) ) ).

% SUP_absorb
thf(fact_1255_UN__absorb,axiom,
    ! [K: relational_fmla_a_b,I: set_Re381260168593705685la_a_b,A: relational_fmla_a_b > set_Re381260168593705685la_a_b] :
      ( ( member4680049679412964150la_a_b @ K @ I )
     => ( ( sup_su5130108678486352897la_a_b @ ( A @ K ) @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ A @ I ) ) )
        = ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ A @ I ) ) ) ) ).

% UN_absorb
thf(fact_1256_UN__absorb,axiom,
    ! [K: nat,I: set_nat,A: nat > set_Re381260168593705685la_a_b] :
      ( ( member_nat @ K @ I )
     => ( ( sup_su5130108678486352897la_a_b @ ( A @ K ) @ ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ A @ I ) ) )
        = ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ A @ I ) ) ) ) ).

% UN_absorb
thf(fact_1257_SUP__union,axiom,
    ! [M4: relational_fmla_a_b > set_Re381260168593705685la_a_b,A: set_Re381260168593705685la_a_b,B2: set_Re381260168593705685la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ M4 @ ( sup_su5130108678486352897la_a_b @ A @ B2 ) ) )
      = ( sup_su5130108678486352897la_a_b @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ M4 @ A ) ) @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ M4 @ B2 ) ) ) ) ).

% SUP_union
thf(fact_1258_UNION__fun__upd,axiom,
    ! [A: relational_fmla_a_b > set_Re381260168593705685la_a_b,I2: relational_fmla_a_b,B2: set_Re381260168593705685la_a_b,J: set_Re381260168593705685la_a_b] :
      ( ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ ( fun_up452696389778429683la_a_b @ A @ I2 @ B2 ) @ J ) )
      = ( sup_su5130108678486352897la_a_b @ ( comple8442120529048846632la_a_b @ ( image_8209480069293074043la_a_b @ A @ ( minus_4077726661957047470la_a_b @ J @ ( insert7010464514620295119la_a_b @ I2 @ bot_bo4495933725496725865la_a_b ) ) ) ) @ ( if_set2835548578466827919la_a_b @ ( member4680049679412964150la_a_b @ I2 @ J ) @ B2 @ bot_bo4495933725496725865la_a_b ) ) ) ).

% UNION_fun_upd
thf(fact_1259_UNION__fun__upd,axiom,
    ! [A: nat > set_Re381260168593705685la_a_b,I2: nat,B2: set_Re381260168593705685la_a_b,J: set_nat] :
      ( ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ ( fun_up6290740034186280484la_a_b @ A @ I2 @ B2 ) @ J ) )
      = ( sup_su5130108678486352897la_a_b @ ( comple8442120529048846632la_a_b @ ( image_654480401538864556la_a_b @ A @ ( minus_minus_set_nat @ J @ ( insert_nat @ I2 @ bot_bot_set_nat ) ) ) ) @ ( if_set2835548578466827919la_a_b @ ( member_nat @ I2 @ J ) @ B2 @ bot_bo4495933725496725865la_a_b ) ) ) ).

% UNION_fun_upd
thf(fact_1260_cSup__least,axiom,
    ! [X6: set_nat,Z: nat] :
      ( ( X6 != bot_bot_set_nat )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ X6 )
           => ( ord_less_eq_nat @ X5 @ Z ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ X6 ) @ Z ) ) ) ).

% cSup_least
thf(fact_1261_cSup__eq__non__empty,axiom,
    ! [X6: set_nat,A2: nat] :
      ( ( X6 != bot_bot_set_nat )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ X6 )
           => ( ord_less_eq_nat @ X5 @ A2 ) )
       => ( ! [Y6: nat] :
              ( ! [X7: nat] :
                  ( ( member_nat @ X7 @ X6 )
                 => ( ord_less_eq_nat @ X7 @ Y6 ) )
             => ( ord_less_eq_nat @ A2 @ Y6 ) )
         => ( ( complete_Sup_Sup_nat @ X6 )
            = A2 ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1262_less__cSupE,axiom,
    ! [Y: nat,X6: set_nat] :
      ( ( ord_less_nat @ Y @ ( complete_Sup_Sup_nat @ X6 ) )
     => ( ( X6 != bot_bot_set_nat )
       => ~ ! [X5: nat] :
              ( ( member_nat @ X5 @ X6 )
             => ~ ( ord_less_nat @ Y @ X5 ) ) ) ) ).

% less_cSupE
thf(fact_1263_less__cSupD,axiom,
    ! [X6: set_nat,Z: nat] :
      ( ( X6 != bot_bot_set_nat )
     => ( ( ord_less_nat @ Z @ ( complete_Sup_Sup_nat @ X6 ) )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ X6 )
            & ( ord_less_nat @ Z @ X5 ) ) ) ) ).

% less_cSupD
thf(fact_1264_le__cSup__finite,axiom,
    ! [X6: set_nat,X: nat] :
      ( ( finite_finite_nat @ X6 )
     => ( ( member_nat @ X @ X6 )
       => ( ord_less_eq_nat @ X @ ( complete_Sup_Sup_nat @ X6 ) ) ) ) ).

% le_cSup_finite
thf(fact_1265_finite__imp__Sup__less,axiom,
    ! [X6: set_nat,X: nat,A2: nat] :
      ( ( finite_finite_nat @ X6 )
     => ( ( member_nat @ X @ X6 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ X6 )
             => ( ord_less_nat @ X5 @ A2 ) )
         => ( ord_less_nat @ ( complete_Sup_Sup_nat @ X6 ) @ A2 ) ) ) ) ).

% finite_imp_Sup_less
thf(fact_1266_cSUP__least,axiom,
    ! [A: set_Re381260168593705685la_a_b,F4: relational_fmla_a_b > nat,M4: nat] :
      ( ( A != bot_bo4495933725496725865la_a_b )
     => ( ! [X5: relational_fmla_a_b] :
            ( ( member4680049679412964150la_a_b @ X5 @ A )
           => ( ord_less_eq_nat @ ( F4 @ X5 ) @ M4 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ ( image_341122591648980342_b_nat @ F4 @ A ) ) @ M4 ) ) ) ).

% cSUP_least
thf(fact_1267_cSUP__least,axiom,
    ! [A: set_nat,F4: nat > nat,M4: nat] :
      ( ( A != bot_bot_set_nat )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ A )
           => ( ord_less_eq_nat @ ( F4 @ X5 ) @ M4 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ ( image_nat_nat @ F4 @ A ) ) @ M4 ) ) ) ).

% cSUP_least
thf(fact_1268_finite__Sup__less__iff,axiom,
    ! [X6: set_nat,A2: nat] :
      ( ( finite_finite_nat @ X6 )
     => ( ( X6 != bot_bot_set_nat )
       => ( ( ord_less_nat @ ( complete_Sup_Sup_nat @ X6 ) @ A2 )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ X6 )
               => ( ord_less_nat @ X3 @ A2 ) ) ) ) ) ) ).

% finite_Sup_less_iff
thf(fact_1269_cSup__eq__Sup__fin,axiom,
    ! [X6: set_nat] :
      ( ( finite_finite_nat @ X6 )
     => ( ( X6 != bot_bot_set_nat )
       => ( ( complete_Sup_Sup_nat @ X6 )
          = ( lattic1093996805478795353in_nat @ X6 ) ) ) ) ).

% cSup_eq_Sup_fin
thf(fact_1270_finite__subset__Union,axiom,
    ! [A: set_nat,B9: set_set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( ord_less_eq_set_nat @ A @ ( comple7399068483239264473et_nat @ B9 ) )
       => ~ ! [F5: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ F5 )
             => ( ( ord_le6893508408891458716et_nat @ F5 @ B9 )
               => ~ ( ord_less_eq_set_nat @ A @ ( comple7399068483239264473et_nat @ F5 ) ) ) ) ) ) ).

% finite_subset_Union
thf(fact_1271_finite__subset__Union,axiom,
    ! [A: set_Re381260168593705685la_a_b,B9: set_se6865892389300016395la_a_b] :
      ( ( finite5600759454172676150la_a_b @ A )
     => ( ( ord_le4112832032246704949la_a_b @ A @ ( comple8442120529048846632la_a_b @ B9 ) )
       => ~ ! [F5: set_se6865892389300016395la_a_b] :
              ( ( finite5238674622262875500la_a_b @ F5 )
             => ( ( ord_le1577343677690852715la_a_b @ F5 @ B9 )
               => ~ ( ord_le4112832032246704949la_a_b @ A @ ( comple8442120529048846632la_a_b @ F5 ) ) ) ) ) ) ).

% finite_subset_Union
thf(fact_1272_csts_Oelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_a] :
      ( ( ( relational_csts_a_b @ X )
        = Y )
     => ( ( ? [B6: $o] :
              ( X
              = ( relational_Bool_a_b @ B6 ) )
         => ( Y != bot_bot_set_a ) )
       => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
              ( ( X
                = ( relational_Pred_b_a @ P3 @ Ts2 ) )
             => ( Y
               != ( comple2307003609928055243_set_a @ ( image_1080223610614215258_set_a @ relati6638259395341848997term_a @ ( set_Re3569617851344498910term_a @ Ts2 ) ) ) ) )
         => ( ! [X5: nat,T3: relational_term_a] :
                ( ( X
                  = ( relational_Eq_a_b @ X5 @ T3 ) )
               => ( Y
                 != ( relati6638259395341848997term_a @ T3 ) ) )
           => ( ! [Q4: relational_fmla_a_b] :
                  ( ( X
                    = ( relational_Neg_a_b @ Q4 ) )
                 => ( Y
                   != ( relational_csts_a_b @ Q4 ) ) )
             => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                   => ( Y
                     != ( sup_sup_set_a @ ( relational_csts_a_b @ Q13 ) @ ( relational_csts_a_b @ Q24 ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                     => ( Y
                       != ( sup_sup_set_a @ ( relational_csts_a_b @ Q13 ) @ ( relational_csts_a_b @ Q24 ) ) ) )
                 => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                        ( ( X
                          = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                       => ( Y
                         != ( relational_csts_a_b @ Q4 ) ) ) ) ) ) ) ) ) ) ).

% csts.elims
thf(fact_1273_csts_Osimps_I2_J,axiom,
    ! [P: b,Ts: list_R6823256787227418703term_a] :
      ( ( relational_csts_a_b @ ( relational_Pred_b_a @ P @ Ts ) )
      = ( comple2307003609928055243_set_a @ ( image_1080223610614215258_set_a @ relati6638259395341848997term_a @ ( set_Re3569617851344498910term_a @ Ts ) ) ) ) ).

% csts.simps(2)
thf(fact_1274_csts_Opelims,axiom,
    ! [X: relational_fmla_a_b,Y: set_a] :
      ( ( ( relational_csts_a_b @ X )
        = Y )
     => ( ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ X )
       => ( ! [B6: $o] :
              ( ( X
                = ( relational_Bool_a_b @ B6 ) )
             => ( ( Y = bot_bot_set_a )
               => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relational_Bool_a_b @ B6 ) ) ) )
         => ( ! [P3: b,Ts2: list_R6823256787227418703term_a] :
                ( ( X
                  = ( relational_Pred_b_a @ P3 @ Ts2 ) )
               => ( ( Y
                    = ( comple2307003609928055243_set_a @ ( image_1080223610614215258_set_a @ relati6638259395341848997term_a @ ( set_Re3569617851344498910term_a @ Ts2 ) ) ) )
                 => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relational_Pred_b_a @ P3 @ Ts2 ) ) ) )
           => ( ! [X5: nat,T3: relational_term_a] :
                  ( ( X
                    = ( relational_Eq_a_b @ X5 @ T3 ) )
                 => ( ( Y
                      = ( relati6638259395341848997term_a @ T3 ) )
                   => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relational_Eq_a_b @ X5 @ T3 ) ) ) )
             => ( ! [Q4: relational_fmla_a_b] :
                    ( ( X
                      = ( relational_Neg_a_b @ Q4 ) )
                   => ( ( Y
                        = ( relational_csts_a_b @ Q4 ) )
                     => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relational_Neg_a_b @ Q4 ) ) ) )
               => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                      ( ( X
                        = ( relational_Conj_a_b @ Q13 @ Q24 ) )
                     => ( ( Y
                          = ( sup_sup_set_a @ ( relational_csts_a_b @ Q13 ) @ ( relational_csts_a_b @ Q24 ) ) )
                       => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relational_Conj_a_b @ Q13 @ Q24 ) ) ) )
                 => ( ! [Q13: relational_fmla_a_b,Q24: relational_fmla_a_b] :
                        ( ( X
                          = ( relational_Disj_a_b @ Q13 @ Q24 ) )
                       => ( ( Y
                            = ( sup_sup_set_a @ ( relational_csts_a_b @ Q13 ) @ ( relational_csts_a_b @ Q24 ) ) )
                         => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relational_Disj_a_b @ Q13 @ Q24 ) ) ) )
                   => ~ ! [X5: nat,Q4: relational_fmla_a_b] :
                          ( ( X
                            = ( relati591517084277583526ts_a_b @ X5 @ Q4 ) )
                         => ( ( Y
                              = ( relational_csts_a_b @ Q4 ) )
                           => ~ ( accp_R989495437599811158la_a_b @ relati7137348651719826542el_a_b @ ( relati591517084277583526ts_a_b @ X5 @ Q4 ) ) ) ) ) ) ) ) ) ) ) ) ).

% csts.pelims
thf(fact_1275_List_Ofinite__set,axiom,
    ! [Xs: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs ) ) ).

% List.finite_set
thf(fact_1276_List_Ofinite__set,axiom,
    ! [Xs: list_R8263082107343818799la_a_b] : ( finite5600759454172676150la_a_b @ ( set_Re9104216502384355786la_a_b @ Xs ) ) ).

% List.finite_set

% Helper facts (7)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_T,axiom,
    ! [X: relational_fmla_a_b,Y: relational_fmla_a_b] :
      ( ( if_Rel1279876242545935705la_a_b @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_T,axiom,
    ! [X: relational_fmla_a_b,Y: relational_fmla_a_b] :
      ( ( if_Rel1279876242545935705la_a_b @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_T,axiom,
    ! [P2: $o] :
      ( ( P2 = $true )
      | ( P2 = $false ) ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_T,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( if_set2835548578466827919la_a_b @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Relational____Calculus__Ofmla_Itf__a_Mtf__b_J_J_T,axiom,
    ! [X: set_Re381260168593705685la_a_b,Y: set_Re381260168593705685la_a_b] :
      ( ( if_set2835548578466827919la_a_b @ $true @ X @ Y )
      = X ) ).

% Conjectures (3)
thf(conj_0,hypothesis,
    member4680049679412964150la_a_b @ q2 @ ( restri569617705344514291sj_a_b @ q ) ).

thf(conj_1,hypothesis,
    relati1591879772219623554ed_a_b @ q ).

thf(conj_2,conjecture,
    relati1591879772219623554ed_a_b @ q2 ).

%------------------------------------------------------------------------------