TPTP Problem File: SLH0933^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Quasi_Borel_Spaces/0012_Bayesian_Linear_Regression/prob_00442_027252__15526794_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1413 ( 831 unt; 130 typ; 0 def)
% Number of atoms : 2903 (1655 equ; 0 cnn)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 9176 ( 354 ~; 104 |; 154 &;7753 @)
% ( 0 <=>; 811 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Number of types : 15 ( 14 usr)
% Number of type conns : 287 ( 287 >; 0 *; 0 +; 0 <<)
% Number of symbols : 119 ( 116 usr; 20 con; 0-3 aty)
% Number of variables : 2617 ( 61 ^;2425 !; 131 ?;2617 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 14:12:04.133
%------------------------------------------------------------------------------
% Could-be-implicit typings (14)
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
numera4273646738625120315l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
numera6367994245245682809l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2417102609627094330l_num1: $tType ).
thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
extend8495563244428889912nnreal: $tType ).
thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
set_Extended_enat: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (116)
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
bit_se8568078237143864401it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
bit_se8570568707652914677it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
bit_se2159334234014336723it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
bit_se4205575877204974255it_nat: nat > nat > nat ).
thf(sy_c_Discrete_Olog,type,
log: nat > nat ).
thf(sy_c_Distributions_Onormal__density,type,
normal_density: real > real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nonnegative____Real__Oennreal,type,
minus_8429688780609304081nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
minus_5410813661909488930l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
minus_838314146864362899l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
one_on7795324986448017462l_num1: numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
one_on3868389512446148991l_num1: numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
one_on7819281148064737470l_num1: numera6367994245245682809l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nonnegative____Real__Oennreal,type,
times_1893300245718287421nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
times_2938166955517408246l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
times_8498157372700349887l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
times_2438108612031896577d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Int__Oint_J,type,
times_times_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
times_times_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Num__Onum_J,type,
times_times_set_num: set_num > set_num > set_num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Real__Oreal_J,type,
times_times_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
uminus1336558196688952754l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
uminus7224005126491068675l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
zero_z2241845390563828978l_num1: numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
zero_z5982384998485459395l_num1: numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Extended____Nat__Oenat,type,
if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).
thf(sy_c_If_001t__Extended____Nonnegative____Real__Oennreal,type,
if_Ext9135588136721118450nnreal: $o > extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
if_Num3220014061592582145l_num1: $o > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
if_Num9196306924077011444l_num1: $o > numera2417102609627094330l_num1 > numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set_nat ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
neg_nu5816564918971239084l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
neg_nu5590746349488142217l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
neg_nu7886226890278435366l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
neg_nu228592723992507279l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
neg_nu6075765906172075777c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
neg_nu5172728937851396970l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
neg_nu4048618728508742987l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
neg_numeral_sub_int: num > num > int ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
neg_nu3067386718351260922l_num1: num > num > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
neg_nu3733408198258700219l_num1: num > num > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Real__Oreal,type,
neg_numeral_sub_real: num > num > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nonnegative____Real__Oennreal,type,
numera4658534427948366547nnreal: num > extend8495563244428889912nnreal ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
numera7754357348821619680l_num1: num > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2161328050825114965l_num1: num > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
numera6112219686443703444l_num1: num > numera6367994245245682809l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nonnegative____Real__Oennreal,type,
power_6007165696250533058nnreal: extend8495563244428889912nnreal > nat > extend8495563244428889912nnreal ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Nonnegative____Real__Oennreal,type,
divide4826598186094686858nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Extended____Nat__Oenat,type,
dvd_dv3785147216227455552d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Extended____Nonnegative____Real__Oennreal,type,
dvd_dv1013850698770059486nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
dvd_dv3197633198374779157l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
dvd_dv2285863382094241760l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
dvd_dvd_real: real > real > $o ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_member_001t__Extended____Nat__Oenat,type,
member_Extended_enat: extended_enat > set_Extended_enat > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_x____,type,
x: real ).
thf(sy_v_y____,type,
y: real ).
% Relevant facts (1267)
thf(fact_0_normal__density__mu__x__swap,axiom,
( normal_density
= ( ^ [Mu: real,Sigma: real,X: real] : ( normal_density @ X @ Sigma @ Mu ) ) ) ).
% normal_density_mu_x_swap
thf(fact_1_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_2_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_3_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_4_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_5_real__sqrt__four,axiom,
( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% real_sqrt_four
thf(fact_6_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_7_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_8_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_9_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_10_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_11_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_12_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_13_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_14_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_15_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_16_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_17_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_18_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_19_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_20_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_21_real__sqrt__eq__iff,axiom,
! [X2: real,Y: real] :
( ( ( sqrt @ X2 )
= ( sqrt @ Y ) )
= ( X2 = Y ) ) ).
% real_sqrt_eq_iff
thf(fact_22_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_23_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_24_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_25_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_26_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_27_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_28_mult__eq__0__iff,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( ( times_1893300245718287421nnreal @ A @ B )
= zero_z7100319975126383169nnreal )
= ( ( A = zero_z7100319975126383169nnreal )
| ( B = zero_z7100319975126383169nnreal ) ) ) ).
% mult_eq_0_iff
thf(fact_29_mult__eq__0__iff,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
= zero_z5237406670263579293d_enat )
= ( ( A = zero_z5237406670263579293d_enat )
| ( B = zero_z5237406670263579293d_enat ) ) ) ).
% mult_eq_0_iff
thf(fact_30_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_31_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_32_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_33_mult__zero__right,axiom,
! [A: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ A @ zero_z7100319975126383169nnreal )
= zero_z7100319975126383169nnreal ) ).
% mult_zero_right
thf(fact_34_mult__zero__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ zero_z5237406670263579293d_enat )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_right
thf(fact_35_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_36_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_37_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_38_mult__zero__left,axiom,
! [A: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ zero_z7100319975126383169nnreal @ A )
= zero_z7100319975126383169nnreal ) ).
% mult_zero_left
thf(fact_39_mult__zero__left,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ zero_z5237406670263579293d_enat @ A )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_left
thf(fact_40_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_41_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_42_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_43_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Z ) )
= ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_44_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_45_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_46_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_47_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_48_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N ) )
= ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_49_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_50_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_51_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_52_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_53_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_54_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_55_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_56_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_57_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_58_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_59_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_60_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_61_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_62_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_63_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_64_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_65_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_66_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_67_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_68_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_69_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_70_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_71_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_72_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_73_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_74_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_75_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_76_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_77_real__divide__square__eq,axiom,
! [R: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
= ( divide_divide_real @ A @ R ) ) ).
% real_divide_square_eq
thf(fact_78_real__sqrt__eq__zero__cancel__iff,axiom,
! [X2: real] :
( ( ( sqrt @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% real_sqrt_eq_zero_cancel_iff
thf(fact_79_real__sqrt__zero,axiom,
( ( sqrt @ zero_zero_real )
= zero_zero_real ) ).
% real_sqrt_zero
thf(fact_80_real__sqrt__eq__1__iff,axiom,
! [X2: real] :
( ( ( sqrt @ X2 )
= one_one_real )
= ( X2 = one_one_real ) ) ).
% real_sqrt_eq_1_iff
thf(fact_81_real__sqrt__one,axiom,
( ( sqrt @ one_one_real )
= one_one_real ) ).
% real_sqrt_one
thf(fact_82_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_83_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_84_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_85_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_86_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera1916890842035813515d_enat @ N )
= one_on7984719198319812577d_enat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_87_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_88_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_89_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_90_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_91_Collect__mem__eq,axiom,
! [A2: set_nat] :
( ( collect_nat
@ ^ [X: nat] : ( member_nat @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_92_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_93_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_94_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_95_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_96_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_97_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_98_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_99_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_100_diff__numeral__special_I9_J,axiom,
( ( minus_838314146864362899l_num1 @ one_on3868389512446148991l_num1 @ one_on3868389512446148991l_num1 )
= zero_z5982384998485459395l_num1 ) ).
% diff_numeral_special(9)
thf(fact_101_diff__numeral__special_I9_J,axiom,
( ( minus_5410813661909488930l_num1 @ one_on7795324986448017462l_num1 @ one_on7795324986448017462l_num1 )
= zero_z2241845390563828978l_num1 ) ).
% diff_numeral_special(9)
thf(fact_102_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_103_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_104_right__diff__distrib__numeral,axiom,
! [V: num,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( minus_5410813661909488930l_num1 @ B @ C ) )
= ( minus_5410813661909488930l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ B ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_105_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_106_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_107_left__diff__distrib__numeral,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,V: num] :
( ( times_2938166955517408246l_num1 @ ( minus_5410813661909488930l_num1 @ A @ B ) @ ( numera7754357348821619680l_num1 @ V ) )
= ( minus_5410813661909488930l_num1 @ ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ B @ ( numera7754357348821619680l_num1 @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_108_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_109_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_110_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_111_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_112_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_113_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_114_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_115_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_116_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_117_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_118_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_119_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_120_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_121_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_122_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_123_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_124_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_125_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_126_div__mult2__numeral__eq,axiom,
! [A: int,K: num,L: num] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_127_div__mult2__numeral__eq,axiom,
! [A: nat,K: num,L: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_128_zero__neq__numeral,axiom,
! [N: num] :
( zero_z7100319975126383169nnreal
!= ( numera4658534427948366547nnreal @ N ) ) ).
% zero_neq_numeral
thf(fact_129_zero__neq__numeral,axiom,
! [N: num] :
( zero_z5237406670263579293d_enat
!= ( numera1916890842035813515d_enat @ N ) ) ).
% zero_neq_numeral
thf(fact_130_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_131_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_132_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_133_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_134_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_135_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_136_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_137_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_138_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_139_no__zero__divisors,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( A != zero_z7100319975126383169nnreal )
=> ( ( B != zero_z7100319975126383169nnreal )
=> ( ( times_1893300245718287421nnreal @ A @ B )
!= zero_z7100319975126383169nnreal ) ) ) ).
% no_zero_divisors
thf(fact_140_no__zero__divisors,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A != zero_z5237406670263579293d_enat )
=> ( ( B != zero_z5237406670263579293d_enat )
=> ( ( times_7803423173614009249d_enat @ A @ B )
!= zero_z5237406670263579293d_enat ) ) ) ).
% no_zero_divisors
thf(fact_141_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_142_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_143_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_144_divisors__zero,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( ( times_1893300245718287421nnreal @ A @ B )
= zero_z7100319975126383169nnreal )
=> ( ( A = zero_z7100319975126383169nnreal )
| ( B = zero_z7100319975126383169nnreal ) ) ) ).
% divisors_zero
thf(fact_145_divisors__zero,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
= zero_z5237406670263579293d_enat )
=> ( ( A = zero_z5237406670263579293d_enat )
| ( B = zero_z5237406670263579293d_enat ) ) ) ).
% divisors_zero
thf(fact_146_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_147_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_148_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_149_mult__not__zero,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( ( times_1893300245718287421nnreal @ A @ B )
!= zero_z7100319975126383169nnreal )
=> ( ( A != zero_z7100319975126383169nnreal )
& ( B != zero_z7100319975126383169nnreal ) ) ) ).
% mult_not_zero
thf(fact_150_mult__not__zero,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
!= zero_z5237406670263579293d_enat )
=> ( ( A != zero_z5237406670263579293d_enat )
& ( B != zero_z5237406670263579293d_enat ) ) ) ).
% mult_not_zero
thf(fact_151_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_152_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_153_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_154_zero__neq__one,axiom,
zero_z5982384998485459395l_num1 != one_on3868389512446148991l_num1 ).
% zero_neq_one
thf(fact_155_zero__neq__one,axiom,
zero_z2241845390563828978l_num1 != one_on7795324986448017462l_num1 ).
% zero_neq_one
thf(fact_156_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_157_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_158_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_159_zero__neq__one,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_neq_one
thf(fact_160_zero__neq__one,axiom,
zero_z7100319975126383169nnreal != one_on2969667320475766781nnreal ).
% zero_neq_one
thf(fact_161_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_162_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_163_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_164_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_165_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_166_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_167_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_168_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_169_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_170_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_171_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_172_divide__divide__times__eq,axiom,
! [X2: real,Y: real,Z: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X2 @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_173_times__divide__times__eq,axiom,
! [X2: real,Y: real,Z: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).
% times_divide_times_eq
thf(fact_174_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_175_real__sqrt__mult,axiom,
! [X2: real,Y: real] :
( ( sqrt @ ( times_times_real @ X2 @ Y ) )
= ( times_times_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).
% real_sqrt_mult
thf(fact_176_real__sqrt__divide,axiom,
! [X2: real,Y: real] :
( ( sqrt @ ( divide_divide_real @ X2 @ Y ) )
= ( divide_divide_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).
% real_sqrt_divide
thf(fact_177_mult__numeral__1__right,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_178_mult__numeral__1__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_179_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_180_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_181_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_182_mult__numeral__1,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_183_mult__numeral__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_184_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_185_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_186_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_187_numeral__One,axiom,
( ( numera2161328050825114965l_num1 @ one )
= one_on3868389512446148991l_num1 ) ).
% numeral_One
thf(fact_188_numeral__One,axiom,
( ( numera7754357348821619680l_num1 @ one )
= one_on7795324986448017462l_num1 ) ).
% numeral_One
thf(fact_189_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_190_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_191_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_192_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_193_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one )
=> ( ! [X22: num] :
( Y
!= ( bit0 @ X22 ) )
=> ~ ! [X3: num] :
( Y
!= ( bit1 @ X3 ) ) ) ) ).
% num.exhaust
thf(fact_194_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_195_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_196_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_197_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_198_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_199_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_200_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_201_frac__eq__eq,axiom,
! [Y: real,Z: real,X2: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ( divide_divide_real @ X2 @ Y )
= ( divide_divide_real @ W @ Z ) )
= ( ( times_times_real @ X2 @ Z )
= ( times_times_real @ W @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_202_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_203_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_204_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_205_divide__diff__eq__iff,axiom,
! [Z: real,X2: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Z ) @ Y )
= ( divide_divide_real @ ( minus_minus_real @ X2 @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_206_diff__divide__eq__iff,axiom,
! [Z: real,X2: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ X2 @ ( divide_divide_real @ Y @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ Y ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_207_diff__frac__eq,axiom,
! [Y: real,Z: real,X2: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_208_add__divide__eq__if__simps_I4_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_209_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_210_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_211_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_212_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_213_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_214_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_215_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_216_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_217_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_218_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_219_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_220_semiring__norm_I14_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).
% semiring_norm(14)
thf(fact_221_semiring__norm_I15_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).
% semiring_norm(15)
thf(fact_222_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_223_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_224_mult__1,axiom,
! [A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ one_on3868389512446148991l_num1 @ A )
= A ) ).
% mult_1
thf(fact_225_mult__1,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ one_on7795324986448017462l_num1 @ A )
= A ) ).
% mult_1
thf(fact_226_mult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% mult_1
thf(fact_227_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_228_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_229_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_230_vector__space__over__itself_Oscale__one,axiom,
! [X2: real] :
( ( times_times_real @ one_one_real @ X2 )
= X2 ) ).
% vector_space_over_itself.scale_one
thf(fact_231_mult_Oright__neutral,axiom,
! [A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ A @ one_on3868389512446148991l_num1 )
= A ) ).
% mult.right_neutral
thf(fact_232_mult_Oright__neutral,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ A @ one_on7795324986448017462l_num1 )
= A ) ).
% mult.right_neutral
thf(fact_233_mult_Oright__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.right_neutral
thf(fact_234_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_235_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_236_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_237_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_238_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_239_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_240_vector__space__over__itself_Oscale__eq__0__iff,axiom,
! [A: real,X2: real] :
( ( ( times_times_real @ A @ X2 )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( X2 = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_eq_0_iff
thf(fact_241_vector__space__over__itself_Oscale__zero__left,axiom,
! [X2: real] :
( ( times_times_real @ zero_zero_real @ X2 )
= zero_zero_real ) ).
% vector_space_over_itself.scale_zero_left
thf(fact_242_vector__space__over__itself_Oscale__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% vector_space_over_itself.scale_zero_right
thf(fact_243_vector__space__over__itself_Oscale__cancel__left,axiom,
! [A: real,X2: real,Y: real] :
( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ A @ Y ) )
= ( ( X2 = Y )
| ( A = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_cancel_left
thf(fact_244_vector__space__over__itself_Oscale__cancel__right,axiom,
! [A: real,X2: real,B: real] :
( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ B @ X2 ) )
= ( ( A = B )
| ( X2 = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_cancel_right
thf(fact_245_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_246_semiring__norm_I84_J,axiom,
! [N: num] :
( one
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_247_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_248_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_249_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_250_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_251_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_252_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_253_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_254_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_255_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_256_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_257_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_258_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_259_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_260_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_261_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_262_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_263_zero__reorient,axiom,
! [X2: real] :
( ( zero_zero_real = X2 )
= ( X2 = zero_zero_real ) ) ).
% zero_reorient
thf(fact_264_zero__reorient,axiom,
! [X2: nat] :
( ( zero_zero_nat = X2 )
= ( X2 = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_265_zero__reorient,axiom,
! [X2: int] :
( ( zero_zero_int = X2 )
= ( X2 = zero_zero_int ) ) ).
% zero_reorient
thf(fact_266_zero__reorient,axiom,
! [X2: extended_enat] :
( ( zero_z5237406670263579293d_enat = X2 )
= ( X2 = zero_z5237406670263579293d_enat ) ) ).
% zero_reorient
thf(fact_267_zero__reorient,axiom,
! [X2: extend8495563244428889912nnreal] :
( ( zero_z7100319975126383169nnreal = X2 )
= ( X2 = zero_z7100319975126383169nnreal ) ) ).
% zero_reorient
thf(fact_268_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_269_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_270_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_271_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_272_mult_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_273_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_274_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_275_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_276_mult_Ocommute,axiom,
( times_7803423173614009249d_enat
= ( ^ [A3: extended_enat,B2: extended_enat] : ( times_7803423173614009249d_enat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_277_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_278_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_279_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_280_mult_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ B @ ( times_7803423173614009249d_enat @ A @ C ) )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_281_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_282_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_283_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_284_vector__space__over__itself_Oscale__scale,axiom,
! [A: real,B: real,X2: real] :
( ( times_times_real @ A @ ( times_times_real @ B @ X2 ) )
= ( times_times_real @ ( times_times_real @ A @ B ) @ X2 ) ) ).
% vector_space_over_itself.scale_scale
thf(fact_285_vector__space__over__itself_Oscale__left__commute,axiom,
! [A: real,B: real,X2: real] :
( ( times_times_real @ A @ ( times_times_real @ B @ X2 ) )
= ( times_times_real @ B @ ( times_times_real @ A @ X2 ) ) ) ).
% vector_space_over_itself.scale_left_commute
thf(fact_286_one__reorient,axiom,
! [X2: numera2417102609627094330l_num1] :
( ( one_on3868389512446148991l_num1 = X2 )
= ( X2 = one_on3868389512446148991l_num1 ) ) ).
% one_reorient
thf(fact_287_one__reorient,axiom,
! [X2: numera4273646738625120315l_num1] :
( ( one_on7795324986448017462l_num1 = X2 )
= ( X2 = one_on7795324986448017462l_num1 ) ) ).
% one_reorient
thf(fact_288_one__reorient,axiom,
! [X2: real] :
( ( one_one_real = X2 )
= ( X2 = one_one_real ) ) ).
% one_reorient
thf(fact_289_one__reorient,axiom,
! [X2: nat] :
( ( one_one_nat = X2 )
= ( X2 = one_one_nat ) ) ).
% one_reorient
thf(fact_290_one__reorient,axiom,
! [X2: int] :
( ( one_one_int = X2 )
= ( X2 = one_one_int ) ) ).
% one_reorient
thf(fact_291_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_292_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_293_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_294_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_295_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_296_vector__space__over__itself_Oscale__left__imp__eq,axiom,
! [A: real,X2: real,Y: real] :
( ( A != zero_zero_real )
=> ( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ A @ Y ) )
=> ( X2 = Y ) ) ) ).
% vector_space_over_itself.scale_left_imp_eq
thf(fact_297_vector__space__over__itself_Oscale__right__imp__eq,axiom,
! [X2: real,A: real,B: real] :
( ( X2 != zero_zero_real )
=> ( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ B @ X2 ) )
=> ( A = B ) ) ) ).
% vector_space_over_itself.scale_right_imp_eq
thf(fact_298_eq__iff__diff__eq__0,axiom,
( ( ^ [Y2: real,Z2: real] : ( Y2 = Z2 ) )
= ( ^ [A3: real,B2: real] :
( ( minus_minus_real @ A3 @ B2 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_299_eq__iff__diff__eq__0,axiom,
( ( ^ [Y2: int,Z2: int] : ( Y2 = Z2 ) )
= ( ^ [A3: int,B2: int] :
( ( minus_minus_int @ A3 @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_300_forall__2,axiom,
( ( ^ [P2: numera2417102609627094330l_num1 > $o] :
! [X4: numera2417102609627094330l_num1] : ( P2 @ X4 ) )
= ( ^ [P3: numera2417102609627094330l_num1 > $o] :
( ( P3 @ one_on3868389512446148991l_num1 )
& ( P3 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ) ) ).
% forall_2
thf(fact_301_exhaust__2,axiom,
! [X2: numera2417102609627094330l_num1] :
( ( X2 = one_on3868389512446148991l_num1 )
| ( X2
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% exhaust_2
thf(fact_302_comm__monoid__mult__class_Omult__1,axiom,
! [A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ one_on3868389512446148991l_num1 @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_303_comm__monoid__mult__class_Omult__1,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ one_on7795324986448017462l_num1 @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_304_comm__monoid__mult__class_Omult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_305_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_306_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_307_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_308_mult_Ocomm__neutral,axiom,
! [A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ A @ one_on3868389512446148991l_num1 )
= A ) ).
% mult.comm_neutral
thf(fact_309_mult_Ocomm__neutral,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ A @ one_on7795324986448017462l_num1 )
= A ) ).
% mult.comm_neutral
thf(fact_310_mult_Ocomm__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.comm_neutral
thf(fact_311_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_312_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_313_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_314_vector__space__over__itself_Oscale__left__diff__distrib,axiom,
! [A: real,B: real,X2: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ X2 )
= ( minus_minus_real @ ( times_times_real @ A @ X2 ) @ ( times_times_real @ B @ X2 ) ) ) ).
% vector_space_over_itself.scale_left_diff_distrib
thf(fact_315_vector__space__over__itself_Oscale__right__diff__distrib,axiom,
! [A: real,X2: real,Y: real] :
( ( times_times_real @ A @ ( minus_minus_real @ X2 @ Y ) )
= ( minus_minus_real @ ( times_times_real @ A @ X2 ) @ ( times_times_real @ A @ Y ) ) ) ).
% vector_space_over_itself.scale_right_diff_distrib
thf(fact_316_forall__3,axiom,
( ( ^ [P2: numera6367994245245682809l_num1 > $o] :
! [X4: numera6367994245245682809l_num1] : ( P2 @ X4 ) )
= ( ^ [P3: numera6367994245245682809l_num1 > $o] :
( ( P3 @ one_on7819281148064737470l_num1 )
& ( P3 @ ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
& ( P3 @ ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ) ) ).
% forall_3
thf(fact_317_exhaust__3,axiom,
! [X2: numera6367994245245682809l_num1] :
( ( X2 = one_on7819281148064737470l_num1 )
| ( X2
= ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
| ( X2
= ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ).
% exhaust_3
thf(fact_318_forall__4,axiom,
( ( ^ [P2: numera4273646738625120315l_num1 > $o] :
! [X4: numera4273646738625120315l_num1] : ( P2 @ X4 ) )
= ( ^ [P3: numera4273646738625120315l_num1 > $o] :
( ( P3 @ one_on7795324986448017462l_num1 )
& ( P3 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
& ( P3 @ ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
& ( P3 @ ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ).
% forall_4
thf(fact_319_exhaust__4,axiom,
! [X2: numera4273646738625120315l_num1] :
( ( X2 = one_on7795324986448017462l_num1 )
| ( X2
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
| ( X2
= ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
| ( X2
= ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% exhaust_4
thf(fact_320_unset__bit__0,axiom,
! [A: nat] :
( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_321_unset__bit__0,axiom,
! [A: int] :
( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_322_dbl__inc__simps_I3_J,axiom,
( ( neg_nu4048618728508742987l_num1 @ one_on3868389512446148991l_num1 )
= ( numera2161328050825114965l_num1 @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_323_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5172728937851396970l_num1 @ one_on7795324986448017462l_num1 )
= ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_324_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8295874005876285629c_real @ one_one_real )
= ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_325_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5851722552734809277nc_int @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_326_dbl__simps_I3_J,axiom,
( ( neg_nu5590746349488142217l_num1 @ one_on3868389512446148991l_num1 )
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_327_dbl__simps_I3_J,axiom,
( ( neg_nu5816564918971239084l_num1 @ one_on7795324986448017462l_num1 )
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_328_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_329_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_330_mult__if__delta,axiom,
! [P: $o,Q: numera2417102609627094330l_num1] :
( ( P
=> ( ( times_8498157372700349887l_num1 @ ( if_Num9196306924077011444l_num1 @ P @ one_on3868389512446148991l_num1 @ zero_z5982384998485459395l_num1 ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_8498157372700349887l_num1 @ ( if_Num9196306924077011444l_num1 @ P @ one_on3868389512446148991l_num1 @ zero_z5982384998485459395l_num1 ) @ Q )
= zero_z5982384998485459395l_num1 ) ) ) ).
% mult_if_delta
thf(fact_331_mult__if__delta,axiom,
! [P: $o,Q: numera4273646738625120315l_num1] :
( ( P
=> ( ( times_2938166955517408246l_num1 @ ( if_Num3220014061592582145l_num1 @ P @ one_on7795324986448017462l_num1 @ zero_z2241845390563828978l_num1 ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_2938166955517408246l_num1 @ ( if_Num3220014061592582145l_num1 @ P @ one_on7795324986448017462l_num1 @ zero_z2241845390563828978l_num1 ) @ Q )
= zero_z2241845390563828978l_num1 ) ) ) ).
% mult_if_delta
thf(fact_332_mult__if__delta,axiom,
! [P: $o,Q: extend8495563244428889912nnreal] :
( ( P
=> ( ( times_1893300245718287421nnreal @ ( if_Ext9135588136721118450nnreal @ P @ one_on2969667320475766781nnreal @ zero_z7100319975126383169nnreal ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_1893300245718287421nnreal @ ( if_Ext9135588136721118450nnreal @ P @ one_on2969667320475766781nnreal @ zero_z7100319975126383169nnreal ) @ Q )
= zero_z7100319975126383169nnreal ) ) ) ).
% mult_if_delta
thf(fact_333_mult__if__delta,axiom,
! [P: $o,Q: extended_enat] :
( ( P
=> ( ( times_7803423173614009249d_enat @ ( if_Extended_enat @ P @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_7803423173614009249d_enat @ ( if_Extended_enat @ P @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) @ Q )
= zero_z5237406670263579293d_enat ) ) ) ).
% mult_if_delta
thf(fact_334_mult__if__delta,axiom,
! [P: $o,Q: real] :
( ( P
=> ( ( times_times_real @ ( if_real @ P @ one_one_real @ zero_zero_real ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_times_real @ ( if_real @ P @ one_one_real @ zero_zero_real ) @ Q )
= zero_zero_real ) ) ) ).
% mult_if_delta
thf(fact_335_mult__if__delta,axiom,
! [P: $o,Q: nat] :
( ( P
=> ( ( times_times_nat @ ( if_nat @ P @ one_one_nat @ zero_zero_nat ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_times_nat @ ( if_nat @ P @ one_one_nat @ zero_zero_nat ) @ Q )
= zero_zero_nat ) ) ) ).
% mult_if_delta
thf(fact_336_mult__if__delta,axiom,
! [P: $o,Q: int] :
( ( P
=> ( ( times_times_int @ ( if_int @ P @ one_one_int @ zero_zero_int ) @ Q )
= Q ) )
& ( ~ P
=> ( ( times_times_int @ ( if_int @ P @ one_one_int @ zero_zero_int ) @ Q )
= zero_zero_int ) ) ) ).
% mult_if_delta
thf(fact_337_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_338_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_339_verit__eq__simplify_I8_J,axiom,
! [X23: num,Y22: num] :
( ( ( bit0 @ X23 )
= ( bit0 @ Y22 ) )
= ( X23 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_340_set__times__intro,axiom,
! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D2: set_Extended_enat] :
( ( member_Extended_enat @ A @ C2 )
=> ( ( member_Extended_enat @ B @ D2 )
=> ( member_Extended_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_2438108612031896577d_enat @ C2 @ D2 ) ) ) ) ).
% set_times_intro
thf(fact_341_set__times__intro,axiom,
! [A: real,C2: set_real,B: real,D2: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D2 )
=> ( member_real @ ( times_times_real @ A @ B ) @ ( times_times_set_real @ C2 @ D2 ) ) ) ) ).
% set_times_intro
thf(fact_342_set__times__intro,axiom,
! [A: num,C2: set_num,B: num,D2: set_num] :
( ( member_num @ A @ C2 )
=> ( ( member_num @ B @ D2 )
=> ( member_num @ ( times_times_num @ A @ B ) @ ( times_times_set_num @ C2 @ D2 ) ) ) ) ).
% set_times_intro
thf(fact_343_set__times__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D2: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D2 )
=> ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C2 @ D2 ) ) ) ) ).
% set_times_intro
thf(fact_344_set__times__intro,axiom,
! [A: int,C2: set_int,B: int,D2: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D2 )
=> ( member_int @ ( times_times_int @ A @ B ) @ ( times_times_set_int @ C2 @ D2 ) ) ) ) ).
% set_times_intro
thf(fact_345_verit__eq__simplify_I9_J,axiom,
! [X32: num,Y3: num] :
( ( ( bit1 @ X32 )
= ( bit1 @ Y3 ) )
= ( X32 = Y3 ) ) ).
% verit_eq_simplify(9)
thf(fact_346_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_347_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_348_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_349_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_350_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_351_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_352_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_353_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_354_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5816564918971239084l_num1 @ ( numera7754357348821619680l_num1 @ K ) )
= ( numera7754357348821619680l_num1 @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_355_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_356_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_357_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5172728937851396970l_num1 @ ( numera7754357348821619680l_num1 @ K ) )
= ( numera7754357348821619680l_num1 @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_358_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_359_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_360_dbl__inc__simps_I2_J,axiom,
( ( neg_nu4048618728508742987l_num1 @ zero_z5982384998485459395l_num1 )
= one_on3868389512446148991l_num1 ) ).
% dbl_inc_simps(2)
thf(fact_361_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5172728937851396970l_num1 @ zero_z2241845390563828978l_num1 )
= one_on7795324986448017462l_num1 ) ).
% dbl_inc_simps(2)
thf(fact_362_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_363_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_364_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_365_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_366_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_367_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_368_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_369_div__mult2__eq,axiom,
! [M: nat,N: nat,Q: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) ).
% div_mult2_eq
thf(fact_370_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_371_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_372_set__times__elim,axiom,
! [X2: extended_enat,A2: set_Extended_enat,B3: set_Extended_enat] :
( ( member_Extended_enat @ X2 @ ( times_2438108612031896577d_enat @ A2 @ B3 ) )
=> ~ ! [A4: extended_enat,B4: extended_enat] :
( ( X2
= ( times_7803423173614009249d_enat @ A4 @ B4 ) )
=> ( ( member_Extended_enat @ A4 @ A2 )
=> ~ ( member_Extended_enat @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_373_set__times__elim,axiom,
! [X2: real,A2: set_real,B3: set_real] :
( ( member_real @ X2 @ ( times_times_set_real @ A2 @ B3 ) )
=> ~ ! [A4: real,B4: real] :
( ( X2
= ( times_times_real @ A4 @ B4 ) )
=> ( ( member_real @ A4 @ A2 )
=> ~ ( member_real @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_374_set__times__elim,axiom,
! [X2: num,A2: set_num,B3: set_num] :
( ( member_num @ X2 @ ( times_times_set_num @ A2 @ B3 ) )
=> ~ ! [A4: num,B4: num] :
( ( X2
= ( times_times_num @ A4 @ B4 ) )
=> ( ( member_num @ A4 @ A2 )
=> ~ ( member_num @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_375_set__times__elim,axiom,
! [X2: nat,A2: set_nat,B3: set_nat] :
( ( member_nat @ X2 @ ( times_times_set_nat @ A2 @ B3 ) )
=> ~ ! [A4: nat,B4: nat] :
( ( X2
= ( times_times_nat @ A4 @ B4 ) )
=> ( ( member_nat @ A4 @ A2 )
=> ~ ( member_nat @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_376_set__times__elim,axiom,
! [X2: int,A2: set_int,B3: set_int] :
( ( member_int @ X2 @ ( times_times_set_int @ A2 @ B3 ) )
=> ~ ! [A4: int,B4: int] :
( ( X2
= ( times_times_int @ A4 @ B4 ) )
=> ( ( member_int @ A4 @ A2 )
=> ~ ( member_int @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_377_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_378_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_379_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_380_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_381_verit__eq__simplify_I10_J,axiom,
! [X23: num] :
( one
!= ( bit0 @ X23 ) ) ).
% verit_eq_simplify(10)
thf(fact_382_verit__eq__simplify_I14_J,axiom,
! [X23: num,X32: num] :
( ( bit0 @ X23 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_383_d__positive,axiom,
! [Mu2: real,X2: real] : ( ord_less_real @ zero_zero_real @ ( normal_density @ Mu2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) ) ).
% d_positive
thf(fact_384_inf__period_I1_J,axiom,
! [P: real > $o,D2: real,Q2: real > $o] :
( ! [X5: real,K2: real] :
( ( P @ X5 )
= ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D2 ) ) ) )
=> ( ! [X5: real,K2: real] :
( ( Q2 @ X5 )
= ( Q2 @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D2 ) ) ) )
=> ! [X6: real,K3: real] :
( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P @ ( minus_minus_real @ X6 @ ( times_times_real @ K3 @ D2 ) ) )
& ( Q2 @ ( minus_minus_real @ X6 @ ( times_times_real @ K3 @ D2 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_385_inf__period_I1_J,axiom,
! [P: int > $o,D2: int,Q2: int > $o] :
( ! [X5: int,K2: int] :
( ( P @ X5 )
= ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D2 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( Q2 @ X5 )
= ( Q2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D2 ) ) ) )
=> ! [X6: int,K3: int] :
( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K3 @ D2 ) ) )
& ( Q2 @ ( minus_minus_int @ X6 @ ( times_times_int @ K3 @ D2 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_386_inf__period_I2_J,axiom,
! [P: real > $o,D2: real,Q2: real > $o] :
( ! [X5: real,K2: real] :
( ( P @ X5 )
= ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D2 ) ) ) )
=> ( ! [X5: real,K2: real] :
( ( Q2 @ X5 )
= ( Q2 @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D2 ) ) ) )
=> ! [X6: real,K3: real] :
( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P @ ( minus_minus_real @ X6 @ ( times_times_real @ K3 @ D2 ) ) )
| ( Q2 @ ( minus_minus_real @ X6 @ ( times_times_real @ K3 @ D2 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_387_inf__period_I2_J,axiom,
! [P: int > $o,D2: int,Q2: int > $o] :
( ! [X5: int,K2: int] :
( ( P @ X5 )
= ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D2 ) ) ) )
=> ( ! [X5: int,K2: int] :
( ( Q2 @ X5 )
= ( Q2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D2 ) ) ) )
=> ! [X6: int,K3: int] :
( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K3 @ D2 ) ) )
| ( Q2 @ ( minus_minus_int @ X6 @ ( times_times_int @ K3 @ D2 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_388_dbl__simps_I4_J,axiom,
( ( neg_nu5590746349488142217l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_389_dbl__simps_I4_J,axiom,
( ( neg_nu5816564918971239084l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_390_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_391_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_392_mult__delta__right,axiom,
! [B: $o,X2: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( B
=> ( ( times_1893300245718287421nnreal @ X2 @ ( if_Ext9135588136721118450nnreal @ B @ Y @ zero_z7100319975126383169nnreal ) )
= ( times_1893300245718287421nnreal @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_1893300245718287421nnreal @ X2 @ ( if_Ext9135588136721118450nnreal @ B @ Y @ zero_z7100319975126383169nnreal ) )
= zero_z7100319975126383169nnreal ) ) ) ).
% mult_delta_right
thf(fact_393_mult__delta__right,axiom,
! [B: $o,X2: extended_enat,Y: extended_enat] :
( ( B
=> ( ( times_7803423173614009249d_enat @ X2 @ ( if_Extended_enat @ B @ Y @ zero_z5237406670263579293d_enat ) )
= ( times_7803423173614009249d_enat @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_7803423173614009249d_enat @ X2 @ ( if_Extended_enat @ B @ Y @ zero_z5237406670263579293d_enat ) )
= zero_z5237406670263579293d_enat ) ) ) ).
% mult_delta_right
thf(fact_394_mult__delta__right,axiom,
! [B: $o,X2: real,Y: real] :
( ( B
=> ( ( times_times_real @ X2 @ ( if_real @ B @ Y @ zero_zero_real ) )
= ( times_times_real @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_times_real @ X2 @ ( if_real @ B @ Y @ zero_zero_real ) )
= zero_zero_real ) ) ) ).
% mult_delta_right
thf(fact_395_mult__delta__right,axiom,
! [B: $o,X2: nat,Y: nat] :
( ( B
=> ( ( times_times_nat @ X2 @ ( if_nat @ B @ Y @ zero_zero_nat ) )
= ( times_times_nat @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_times_nat @ X2 @ ( if_nat @ B @ Y @ zero_zero_nat ) )
= zero_zero_nat ) ) ) ).
% mult_delta_right
thf(fact_396_mult__delta__right,axiom,
! [B: $o,X2: int,Y: int] :
( ( B
=> ( ( times_times_int @ X2 @ ( if_int @ B @ Y @ zero_zero_int ) )
= ( times_times_int @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_times_int @ X2 @ ( if_int @ B @ Y @ zero_zero_int ) )
= zero_zero_int ) ) ) ).
% mult_delta_right
thf(fact_397_mult__delta__left,axiom,
! [B: $o,X2: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( B
=> ( ( times_1893300245718287421nnreal @ ( if_Ext9135588136721118450nnreal @ B @ X2 @ zero_z7100319975126383169nnreal ) @ Y )
= ( times_1893300245718287421nnreal @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_1893300245718287421nnreal @ ( if_Ext9135588136721118450nnreal @ B @ X2 @ zero_z7100319975126383169nnreal ) @ Y )
= zero_z7100319975126383169nnreal ) ) ) ).
% mult_delta_left
thf(fact_398_mult__delta__left,axiom,
! [B: $o,X2: extended_enat,Y: extended_enat] :
( ( B
=> ( ( times_7803423173614009249d_enat @ ( if_Extended_enat @ B @ X2 @ zero_z5237406670263579293d_enat ) @ Y )
= ( times_7803423173614009249d_enat @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_7803423173614009249d_enat @ ( if_Extended_enat @ B @ X2 @ zero_z5237406670263579293d_enat ) @ Y )
= zero_z5237406670263579293d_enat ) ) ) ).
% mult_delta_left
thf(fact_399_mult__delta__left,axiom,
! [B: $o,X2: real,Y: real] :
( ( B
=> ( ( times_times_real @ ( if_real @ B @ X2 @ zero_zero_real ) @ Y )
= ( times_times_real @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_times_real @ ( if_real @ B @ X2 @ zero_zero_real ) @ Y )
= zero_zero_real ) ) ) ).
% mult_delta_left
thf(fact_400_mult__delta__left,axiom,
! [B: $o,X2: nat,Y: nat] :
( ( B
=> ( ( times_times_nat @ ( if_nat @ B @ X2 @ zero_zero_nat ) @ Y )
= ( times_times_nat @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_times_nat @ ( if_nat @ B @ X2 @ zero_zero_nat ) @ Y )
= zero_zero_nat ) ) ) ).
% mult_delta_left
thf(fact_401_mult__delta__left,axiom,
! [B: $o,X2: int,Y: int] :
( ( B
=> ( ( times_times_int @ ( if_int @ B @ X2 @ zero_zero_int ) @ Y )
= ( times_times_int @ X2 @ Y ) ) )
& ( ~ B
=> ( ( times_times_int @ ( if_int @ B @ X2 @ zero_zero_int ) @ Y )
= zero_zero_int ) ) ) ).
% mult_delta_left
thf(fact_402_drop__bit__rec,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N2: nat,A3: int] : ( if_int @ ( N2 = zero_zero_nat ) @ A3 @ ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% drop_bit_rec
thf(fact_403_drop__bit__rec,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N2: nat,A3: nat] : ( if_nat @ ( N2 = zero_zero_nat ) @ A3 @ ( bit_se8570568707652914677it_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% drop_bit_rec
thf(fact_404_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( ( ord_less_real @ zero_zero_real @ U )
=> ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_405_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_406_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_407_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_408_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_409_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_410_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_411_not__gr__zero,axiom,
! [N: extend8495563244428889912nnreal] :
( ( ~ ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ N ) )
= ( N = zero_z7100319975126383169nnreal ) ) ).
% not_gr_zero
thf(fact_412_not__gr__zero,axiom,
! [N: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% not_gr_zero
thf(fact_413_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_414_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_415_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_416_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_417_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_418_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_419_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_420_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_421_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_422_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_423_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_424_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_425_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_426_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_427_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_428_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_429_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_430_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_431_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_432_vector__space__over__itself_Oscale__minus__left,axiom,
! [A: real,X2: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ X2 )
= ( uminus_uminus_real @ ( times_times_real @ A @ X2 ) ) ) ).
% vector_space_over_itself.scale_minus_left
thf(fact_433_vector__space__over__itself_Oscale__minus__right,axiom,
! [A: real,X2: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ X2 ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ X2 ) ) ) ).
% vector_space_over_itself.scale_minus_right
thf(fact_434_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_435_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_436_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_437_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_438_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_439_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_440_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_441_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_442_div__minus__minus,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% div_minus_minus
thf(fact_443_real__sqrt__less__iff,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) )
= ( ord_less_real @ X2 @ Y ) ) ).
% real_sqrt_less_iff
thf(fact_444_drop__bit__of__0,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% drop_bit_of_0
thf(fact_445_drop__bit__of__0,axiom,
! [N: nat] :
( ( bit_se8570568707652914677it_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% drop_bit_of_0
thf(fact_446_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_447_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_448_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_449_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_450_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_451_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_452_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_453_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_454_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_455_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_456_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_457_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_458_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_459_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_460_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_461_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_462_mult__minus1,axiom,
! [Z: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ Z )
= ( uminus7224005126491068675l_num1 @ Z ) ) ).
% mult_minus1
thf(fact_463_mult__minus1,axiom,
! [Z: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ Z )
= ( uminus1336558196688952754l_num1 @ Z ) ) ).
% mult_minus1
thf(fact_464_mult__minus1,axiom,
! [Z: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1
thf(fact_465_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_466_mult__minus1__right,axiom,
! [Z: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ Z @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ Z ) ) ).
% mult_minus1_right
thf(fact_467_mult__minus1__right,axiom,
! [Z: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ Z @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( uminus1336558196688952754l_num1 @ Z ) ) ).
% mult_minus1_right
thf(fact_468_mult__minus1__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1_right
thf(fact_469_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_470_not__real__square__gt__zero,axiom,
! [X2: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X2 @ X2 ) ) )
= ( X2 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_471_div__minus1__right,axiom,
! [A: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% div_minus1_right
thf(fact_472_divide__minus1,axiom,
! [X2: real] :
( ( divide_divide_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X2 ) ) ).
% divide_minus1
thf(fact_473_real__sqrt__gt__0__iff,axiom,
! [Y: real] :
( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y ) )
= ( ord_less_real @ zero_zero_real @ Y ) ) ).
% real_sqrt_gt_0_iff
thf(fact_474_real__sqrt__lt__0__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( sqrt @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% real_sqrt_lt_0_iff
thf(fact_475_real__sqrt__gt__1__iff,axiom,
! [Y: real] :
( ( ord_less_real @ one_one_real @ ( sqrt @ Y ) )
= ( ord_less_real @ one_one_real @ Y ) ) ).
% real_sqrt_gt_1_iff
thf(fact_476_real__sqrt__lt__1__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( sqrt @ X2 ) @ one_one_real )
= ( ord_less_real @ X2 @ one_one_real ) ) ).
% real_sqrt_lt_1_iff
thf(fact_477_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5816564918971239084l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) )
= ( uminus1336558196688952754l_num1 @ ( neg_nu5816564918971239084l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_478_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_479_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_480_dbl__inc__simps_I4_J,axiom,
( ( neg_nu4048618728508742987l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) ) ).
% dbl_inc_simps(4)
thf(fact_481_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5172728937851396970l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) ) ).
% dbl_inc_simps(4)
thf(fact_482_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_inc_simps(4)
thf(fact_483_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_inc_simps(4)
thf(fact_484_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_485_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_486_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_487_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_488_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_489_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_490_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_491_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_492_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_493_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_494_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_495_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_496_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_497_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_498_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_499_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_500_diff__numeral__special_I12_J,axiom,
( ( minus_838314146864362899l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= zero_z5982384998485459395l_num1 ) ).
% diff_numeral_special(12)
thf(fact_501_diff__numeral__special_I12_J,axiom,
( ( minus_5410813661909488930l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= zero_z2241845390563828978l_num1 ) ).
% diff_numeral_special(12)
thf(fact_502_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_503_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_504_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ W ) ) @ Y ) )
= ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_505_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_506_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_507_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ W ) ) @ Y ) )
= ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_508_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_509_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_510_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Y ) )
= ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_511_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_512_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_513_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_514_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_515_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_516_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( numera7754357348821619680l_num1 @ N ) )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_517_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_518_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_519_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
= ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_520_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_521_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_522_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_523_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_524_divide__eq__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_525_eq__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_526_divide__less__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_527_less__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_528_diff__numeral__special_I11_J,axiom,
( ( minus_838314146864362899l_num1 @ one_on3868389512446148991l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_529_diff__numeral__special_I11_J,axiom,
( ( minus_5410813661909488930l_num1 @ one_on7795324986448017462l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_530_diff__numeral__special_I11_J,axiom,
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_531_diff__numeral__special_I11_J,axiom,
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_532_diff__numeral__special_I10_J,axiom,
( ( minus_838314146864362899l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ one_on3868389512446148991l_num1 )
= ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_533_diff__numeral__special_I10_J,axiom,
( ( minus_5410813661909488930l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ one_on7795324986448017462l_num1 )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_534_diff__numeral__special_I10_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_535_diff__numeral__special_I10_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_536_minus__1__div__2__eq,axiom,
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_2_eq
thf(fact_537_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_538_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_539_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_540_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_541_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_542_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_543_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_544_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_545_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_546_verit__comp__simplify1_I1_J,axiom,
! [A: extended_enat] :
~ ( ord_le72135733267957522d_enat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_547_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_548_verit__comp__simplify1_I1_J,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_549_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_550_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_551_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_552_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_553_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_554_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_555_linordered__field__no__lb,axiom,
! [X6: real] :
? [Y4: real] : ( ord_less_real @ Y4 @ X6 ) ).
% linordered_field_no_lb
thf(fact_556_linordered__field__no__ub,axiom,
! [X6: real] :
? [X_1: real] : ( ord_less_real @ X6 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_557_linorder__neqE__linordered__idom,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
=> ( ~ ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_558_linorder__neqE__linordered__idom,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
=> ( ~ ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_559_pinf_I1_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q2: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X6 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_560_pinf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ Z4 @ X6 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_561_pinf_I1_J,axiom,
! [P: num > $o,P4: num > $o,Q2: num > $o,Q3: num > $o] :
( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ Z4 @ X6 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_562_pinf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z4 @ X6 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_563_pinf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ Z4 @ X6 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_564_pinf_I2_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q2: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X6 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_565_pinf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ Z4 @ X6 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_566_pinf_I2_J,axiom,
! [P: num > $o,P4: num > $o,Q2: num > $o,Q3: num > $o] :
( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ Z4 @ X6 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_567_pinf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z4 @ X6 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_568_pinf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ Z4 @ X6 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_569_pinf_I3_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_570_pinf_I3_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_571_pinf_I3_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_572_pinf_I3_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_573_pinf_I3_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_574_pinf_I4_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_575_pinf_I4_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_576_pinf_I4_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_577_pinf_I4_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_578_pinf_I4_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ Z4 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_579_pinf_I5_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X6 )
=> ~ ( ord_le72135733267957522d_enat @ X6 @ T ) ) ).
% pinf(5)
thf(fact_580_pinf_I5_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ Z4 @ X6 )
=> ~ ( ord_less_real @ X6 @ T ) ) ).
% pinf(5)
thf(fact_581_pinf_I5_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ Z4 @ X6 )
=> ~ ( ord_less_num @ X6 @ T ) ) ).
% pinf(5)
thf(fact_582_pinf_I5_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z4 @ X6 )
=> ~ ( ord_less_nat @ X6 @ T ) ) ).
% pinf(5)
thf(fact_583_pinf_I5_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ Z4 @ X6 )
=> ~ ( ord_less_int @ X6 @ T ) ) ).
% pinf(5)
thf(fact_584_pinf_I7_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X6 )
=> ( ord_le72135733267957522d_enat @ T @ X6 ) ) ).
% pinf(7)
thf(fact_585_pinf_I7_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ Z4 @ X6 )
=> ( ord_less_real @ T @ X6 ) ) ).
% pinf(7)
thf(fact_586_pinf_I7_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ Z4 @ X6 )
=> ( ord_less_num @ T @ X6 ) ) ).
% pinf(7)
thf(fact_587_pinf_I7_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z4 @ X6 )
=> ( ord_less_nat @ T @ X6 ) ) ).
% pinf(7)
thf(fact_588_pinf_I7_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ Z4 @ X6 )
=> ( ord_less_int @ T @ X6 ) ) ).
% pinf(7)
thf(fact_589_minf_I1_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q2: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z4 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_590_minf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z4 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_591_minf_I1_J,axiom,
! [P: num > $o,P4: num > $o,Q2: num > $o,Q3: num > $o] :
( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z4 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_592_minf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z4 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_593_minf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z4 )
=> ( ( ( P @ X6 )
& ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_594_minf_I2_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q2: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: extended_enat] :
! [X5: extended_enat] :
( ( ord_le72135733267957522d_enat @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z4 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_595_minf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z4 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_596_minf_I2_J,axiom,
! [P: num > $o,P4: num > $o,Q2: num > $o,Q3: num > $o] :
( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z4 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_597_minf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z4 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_598_minf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( Q2 @ X5 )
= ( Q3 @ X5 ) ) )
=> ? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z4 )
=> ( ( ( P @ X6 )
| ( Q2 @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_599_minf_I3_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_600_minf_I3_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_601_minf_I3_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_602_minf_I3_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_603_minf_I3_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_604_minf_I4_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_605_minf_I4_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_606_minf_I4_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_607_minf_I4_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_608_minf_I4_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z4 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_609_minf_I5_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z4 )
=> ( ord_le72135733267957522d_enat @ X6 @ T ) ) ).
% minf(5)
thf(fact_610_minf_I5_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z4 )
=> ( ord_less_real @ X6 @ T ) ) ).
% minf(5)
thf(fact_611_minf_I5_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z4 )
=> ( ord_less_num @ X6 @ T ) ) ).
% minf(5)
thf(fact_612_minf_I5_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z4 )
=> ( ord_less_nat @ X6 @ T ) ) ).
% minf(5)
thf(fact_613_minf_I5_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z4 )
=> ( ord_less_int @ X6 @ T ) ) ).
% minf(5)
thf(fact_614_minf_I7_J,axiom,
! [T: extended_enat] :
? [Z4: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z4 )
=> ~ ( ord_le72135733267957522d_enat @ T @ X6 ) ) ).
% minf(7)
thf(fact_615_minf_I7_J,axiom,
! [T: real] :
? [Z4: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z4 )
=> ~ ( ord_less_real @ T @ X6 ) ) ).
% minf(7)
thf(fact_616_minf_I7_J,axiom,
! [T: num] :
? [Z4: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z4 )
=> ~ ( ord_less_num @ T @ X6 ) ) ).
% minf(7)
thf(fact_617_minf_I7_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z4 )
=> ~ ( ord_less_nat @ T @ X6 ) ) ).
% minf(7)
thf(fact_618_minf_I7_J,axiom,
! [T: int] :
? [Z4: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z4 )
=> ~ ( ord_less_int @ T @ X6 ) ) ).
% minf(7)
thf(fact_619_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_620_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_621_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_622_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_623_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_624_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_625_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_626_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_627_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_less_zero
thf(fact_628_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_less_zero
thf(fact_629_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_630_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_631_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_632_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_633_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_634_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_635_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_less_one
thf(fact_636_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_less_one
thf(fact_637_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_less_numeral
thf(fact_638_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_less_numeral
thf(fact_639_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_less_neg_one
thf(fact_640_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_less_neg_one
thf(fact_641_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_642_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_643_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_644_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_645_drop__bit__int__code_I1_J,axiom,
! [I: int] :
( ( bit_se8568078237143864401it_int @ zero_zero_nat @ I )
= I ) ).
% drop_bit_int_code(1)
thf(fact_646_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
!= ( numeral_numeral_real @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_647_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
!= ( numeral_numeral_int @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_648_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_real @ M )
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_649_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ M )
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_650_gr__zeroI,axiom,
! [N: extend8495563244428889912nnreal] :
( ( N != zero_z7100319975126383169nnreal )
=> ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ N ) ) ).
% gr_zeroI
thf(fact_651_gr__zeroI,axiom,
! [N: extended_enat] :
( ( N != zero_z5237406670263579293d_enat )
=> ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ).
% gr_zeroI
thf(fact_652_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_653_not__less__zero,axiom,
! [N: extend8495563244428889912nnreal] :
~ ( ord_le7381754540660121996nnreal @ N @ zero_z7100319975126383169nnreal ) ).
% not_less_zero
thf(fact_654_not__less__zero,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_less_zero
thf(fact_655_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_656_gr__implies__not__zero,axiom,
! [M: extend8495563244428889912nnreal,N: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ M @ N )
=> ( N != zero_z7100319975126383169nnreal ) ) ).
% gr_implies_not_zero
thf(fact_657_gr__implies__not__zero,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ M @ N )
=> ( N != zero_z5237406670263579293d_enat ) ) ).
% gr_implies_not_zero
thf(fact_658_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_659_zero__less__iff__neq__zero,axiom,
! [N: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ N )
= ( N != zero_z7100319975126383169nnreal ) ) ).
% zero_less_iff_neq_zero
thf(fact_660_zero__less__iff__neq__zero,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% zero_less_iff_neq_zero
thf(fact_661_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_662_less__numeral__extra_I3_J,axiom,
~ ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ zero_z7100319975126383169nnreal ) ).
% less_numeral_extra(3)
thf(fact_663_less__numeral__extra_I3_J,axiom,
~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ zero_z5237406670263579293d_enat ) ).
% less_numeral_extra(3)
thf(fact_664_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_665_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_666_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_667_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_668_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_669_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_670_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_671_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_672_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_673_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_674_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_675_less__numeral__extra_I4_J,axiom,
~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ) ).
% less_numeral_extra(4)
thf(fact_676_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_677_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_678_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_679_div__minus__right,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% div_minus_right
thf(fact_680_minus__divide__right,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_divide_right
thf(fact_681_minus__divide__divide,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ).
% minus_divide_divide
thf(fact_682_minus__divide__left,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_683_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_684_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_685_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_686_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_687_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_688_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_689_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_690_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_691_real__sqrt__minus,axiom,
! [X2: real] :
( ( sqrt @ ( uminus_uminus_real @ X2 ) )
= ( uminus_uminus_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_minus
thf(fact_692_real__sqrt__less__mono,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y ) ) ) ).
% real_sqrt_less_mono
thf(fact_693_less__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_694_minus__divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_695_neg__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_696_neg__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_697_pos__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_698_pos__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_699_divide__less__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_700_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_701_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_702_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_703_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_704_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_705_numeral__times__minus__swap,axiom,
! [W: num,X2: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ ( uminus1336558196688952754l_num1 @ X2 ) )
= ( times_2938166955517408246l_num1 @ X2 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_706_numeral__times__minus__swap,axiom,
! [W: num,X2: real] :
( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X2 ) )
= ( times_times_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_707_numeral__times__minus__swap,axiom,
! [W: num,X2: int] :
( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X2 ) )
= ( times_times_int @ X2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_708_zero__less__numeral,axiom,
! [N: num] : ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( numera4658534427948366547nnreal @ N ) ) ).
% zero_less_numeral
thf(fact_709_zero__less__numeral,axiom,
! [N: num] : ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).
% zero_less_numeral
thf(fact_710_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_711_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_712_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_713_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_le7381754540660121996nnreal @ ( numera4658534427948366547nnreal @ N ) @ zero_z7100319975126383169nnreal ) ).
% not_numeral_less_zero
thf(fact_714_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ zero_z5237406670263579293d_enat ) ).
% not_numeral_less_zero
thf(fact_715_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_716_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_717_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_718_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_real @ N )
!= ( uminus_uminus_real @ one_one_real ) ) ).
% numeral_neq_neg_one
thf(fact_719_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_int @ N )
!= ( uminus_uminus_int @ one_one_int ) ) ).
% numeral_neq_neg_one
thf(fact_720_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_721_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_722_nonzero__minus__divide__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_723_nonzero__minus__divide__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_724_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_725_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_726_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_727_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_728_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_729_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_730_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_731_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_732_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_733_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_734_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_735_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_736_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_737_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_738_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_739_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_740_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_741_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_742_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_743_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_744_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_745_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_746_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_747_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_748_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_749_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_750_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_751_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_752_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_753_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_754_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_755_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_756_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_757_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_758_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_759_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_760_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_761_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_762_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_763_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_764_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_765_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_766_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_767_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_768_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_769_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_770_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_771_square__eq__1__iff,axiom,
! [X2: real] :
( ( ( times_times_real @ X2 @ X2 )
= one_one_real )
= ( ( X2 = one_one_real )
| ( X2
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_772_square__eq__1__iff,axiom,
! [X2: int] :
( ( ( times_times_int @ X2 @ X2 )
= one_one_int )
= ( ( X2 = one_one_int )
| ( X2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_773_less__numeral__extra_I1_J,axiom,
ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).
% less_numeral_extra(1)
thf(fact_774_less__numeral__extra_I1_J,axiom,
ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% less_numeral_extra(1)
thf(fact_775_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_776_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_777_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_778_zero__less__one,axiom,
ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).
% zero_less_one
thf(fact_779_zero__less__one,axiom,
ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% zero_less_one
thf(fact_780_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_781_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_782_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_783_not__one__less__zero,axiom,
~ ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ zero_z7100319975126383169nnreal ) ).
% not_one_less_zero
thf(fact_784_not__one__less__zero,axiom,
~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) ).
% not_one_less_zero
thf(fact_785_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_786_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_787_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_788_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_789_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_790_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat ) ).
% not_numeral_less_one
thf(fact_791_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_792_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_793_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_794_divide__neg__neg,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_795_divide__neg__pos,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_796_divide__pos__neg,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_797_divide__pos__pos,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_798_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_799_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_800_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_801_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_802_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_803_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_804_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_805_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_806_real__sqrt__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_gt_zero
thf(fact_807_mult__1s__ring__1_I2_J,axiom,
! [B: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ B @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ one ) ) )
= ( uminus1336558196688952754l_num1 @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_808_mult__1s__ring__1_I2_J,axiom,
! [B: real] :
( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_809_mult__1s__ring__1_I2_J,axiom,
! [B: int] :
( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_810_mult__1s__ring__1_I1_J,axiom,
! [B: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ one ) ) @ B )
= ( uminus1336558196688952754l_num1 @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_811_mult__1s__ring__1_I1_J,axiom,
! [B: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_812_mult__1s__ring__1_I1_J,axiom,
! [B: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_813_uminus__numeral__One,axiom,
( ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ one ) )
= ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) ) ).
% uminus_numeral_One
thf(fact_814_uminus__numeral__One,axiom,
( ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ one ) )
= ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) ) ).
% uminus_numeral_One
thf(fact_815_uminus__numeral__One,axiom,
( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% uminus_numeral_One
thf(fact_816_uminus__numeral__One,axiom,
( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% uminus_numeral_One
thf(fact_817_eq__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= ( uminus_uminus_real @ B ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_818_minus__divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
= A )
= ( ( ( C != zero_zero_real )
=> ( ( uminus_uminus_real @ B )
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_819_nonzero__neg__divide__eq__eq,axiom,
! [B: real,A: real,C: real] :
( ( B != zero_zero_real )
=> ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= C )
= ( ( uminus_uminus_real @ A )
= ( times_times_real @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_820_nonzero__neg__divide__eq__eq2,axiom,
! [B: real,C: real,A: real] :
( ( B != zero_zero_real )
=> ( ( C
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
= ( ( times_times_real @ C @ B )
= ( uminus_uminus_real @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_821_divide__eq__minus__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= ( uminus_uminus_real @ one_one_real ) )
= ( ( B != zero_zero_real )
& ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_822_divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_823_less__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_824_neg__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_825_neg__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_826_pos__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_827_pos__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_828_mult__imp__div__pos__less,axiom,
! [Y: real,X2: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X2 @ ( times_times_real @ Z @ Y ) )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ Z ) ) ) ).
% mult_imp_div_pos_less
thf(fact_829_mult__imp__less__div__pos,axiom,
! [Y: real,Z: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( times_times_real @ Z @ Y ) @ X2 )
=> ( ord_less_real @ Z @ ( divide_divide_real @ X2 @ Y ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_830_divide__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_831_divide__strict__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_832_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_833_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_834_divide__eq__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_835_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_836_add__divide__eq__if__simps_I6_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_837_add__divide__eq__if__simps_I5_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_838_minus__divide__diff__eq__iff,axiom,
! [Z: real,X2: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_839_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_840_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_841_frac__less__eq,axiom,
! [Y: real,Z: real,X2: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ X2 @ Y ) @ ( divide_divide_real @ W @ Z ) )
= ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) @ zero_zero_real ) ) ) ) ).
% frac_less_eq
thf(fact_842_drop__bit__half,axiom,
! [N: nat,A: int] :
( ( bit_se8568078237143864401it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( divide_divide_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% drop_bit_half
thf(fact_843_drop__bit__half,axiom,
! [N: nat,A: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( divide_divide_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% drop_bit_half
thf(fact_844_stable__imp__drop__bit__eq,axiom,
! [A: int,N: nat] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se8568078237143864401it_int @ N @ A )
= A ) ) ).
% stable_imp_drop_bit_eq
thf(fact_845_stable__imp__drop__bit__eq,axiom,
! [A: nat,N: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se8570568707652914677it_nat @ N @ A )
= A ) ) ).
% stable_imp_drop_bit_eq
thf(fact_846_sqrt2__less__2,axiom,
ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% sqrt2_less_2
thf(fact_847_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_848_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_849_dbl__dec__simps_I4_J,axiom,
( ( neg_nu228592723992507279l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_850_dbl__dec__simps_I4_J,axiom,
( ( neg_nu7886226890278435366l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_851_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_852_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_853_minus__one__less,axiom,
! [X2: real] : ( ord_less_real @ ( minus_minus_real @ X2 @ one_one_real ) @ X2 ) ).
% minus_one_less
thf(fact_854_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7886226890278435366l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) )
= ( uminus1336558196688952754l_num1 @ ( neg_nu5172728937851396970l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_855_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_856_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_857_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5172728937851396970l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) )
= ( uminus1336558196688952754l_num1 @ ( neg_nu7886226890278435366l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_858_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_859_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_860_normal__density__pos,axiom,
! [Sigma2: real,Mu2: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Sigma2 )
=> ( ord_less_real @ zero_zero_real @ ( normal_density @ Mu2 @ Sigma2 @ X2 ) ) ) ).
% normal_density_pos
thf(fact_861_mult__less__iff1,axiom,
! [Z: real,X2: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y @ Z ) )
= ( ord_less_real @ X2 @ Y ) ) ) ).
% mult_less_iff1
thf(fact_862_mult__less__iff1,axiom,
! [Z: int,X2: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y @ Z ) )
= ( ord_less_int @ X2 @ Y ) ) ) ).
% mult_less_iff1
thf(fact_863_dbl__dec__simps_I2_J,axiom,
( ( neg_nu228592723992507279l_num1 @ zero_z5982384998485459395l_num1 )
= ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) ) ).
% dbl_dec_simps(2)
thf(fact_864_dbl__dec__simps_I2_J,axiom,
( ( neg_nu7886226890278435366l_num1 @ zero_z2241845390563828978l_num1 )
= ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) ) ).
% dbl_dec_simps(2)
thf(fact_865_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6075765906172075777c_real @ zero_zero_real )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_dec_simps(2)
thf(fact_866_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_867_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_868_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_869_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_870_drop__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% drop_bit_minus_one
thf(fact_871_drop__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% drop_bit_negative_int_iff
thf(fact_872_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_873_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_874_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_875_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_876_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_877_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_878_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_879_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_880_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_881_dbl__dec__simps_I3_J,axiom,
( ( neg_nu228592723992507279l_num1 @ one_on3868389512446148991l_num1 )
= one_on3868389512446148991l_num1 ) ).
% dbl_dec_simps(3)
thf(fact_882_dbl__dec__simps_I3_J,axiom,
( ( neg_nu7886226890278435366l_num1 @ one_on7795324986448017462l_num1 )
= one_on7795324986448017462l_num1 ) ).
% dbl_dec_simps(3)
thf(fact_883_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6075765906172075777c_real @ one_one_real )
= one_one_real ) ).
% dbl_dec_simps(3)
thf(fact_884_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3811975205180677377ec_int @ one_one_int )
= one_one_int ) ).
% dbl_dec_simps(3)
thf(fact_885_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_886_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_887_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_888_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_889_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_890_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_891_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_892_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_893_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_894_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_895_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_896_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_897_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_898_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_899_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_900_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_901_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_902_int__div__less__self,axiom,
! [X2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X2 )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X2 @ K ) @ X2 ) ) ) ).
% int_div_less_self
thf(fact_903_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_904_div__eq__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% div_eq_minus1
thf(fact_905_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_906_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_907_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_908_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_909_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_910_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_911_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_912_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_913_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_914_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_915_div__less__iff__less__mult,axiom,
! [Q: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_916_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_917_one__less__numeral,axiom,
! [N: num] :
( ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral
thf(fact_918_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_919_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_920_minus__sub__one__diff__one,axiom,
! [M: num] :
( ( minus_838314146864362899l_num1 @ ( uminus7224005126491068675l_num1 @ ( neg_nu3733408198258700219l_num1 @ M @ one ) ) @ one_on3868389512446148991l_num1 )
= ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ M ) ) ) ).
% minus_sub_one_diff_one
thf(fact_921_minus__sub__one__diff__one,axiom,
! [M: num] :
( ( minus_5410813661909488930l_num1 @ ( uminus1336558196688952754l_num1 @ ( neg_nu3067386718351260922l_num1 @ M @ one ) ) @ one_on7795324986448017462l_num1 )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) ) ).
% minus_sub_one_diff_one
thf(fact_922_minus__sub__one__diff__one,axiom,
! [M: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( neg_numeral_sub_real @ M @ one ) ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% minus_sub_one_diff_one
thf(fact_923_minus__sub__one__diff__one,axiom,
! [M: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( neg_numeral_sub_int @ M @ one ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% minus_sub_one_diff_one
thf(fact_924_one__divide__one__divide__ennreal,axiom,
! [C: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ C ) )
= C ) ).
% one_divide_one_divide_ennreal
thf(fact_925_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_926_dvd__0__right,axiom,
! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).
% dvd_0_right
thf(fact_927_dvd__0__right,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% dvd_0_right
thf(fact_928_dvd__0__right,axiom,
! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).
% dvd_0_right
thf(fact_929_dvd__0__right,axiom,
! [A: extended_enat] : ( dvd_dv3785147216227455552d_enat @ A @ zero_z5237406670263579293d_enat ) ).
% dvd_0_right
thf(fact_930_dvd__0__right,axiom,
! [A: extend8495563244428889912nnreal] : ( dvd_dv1013850698770059486nnreal @ A @ zero_z7100319975126383169nnreal ) ).
% dvd_0_right
thf(fact_931_dvd__0__left__iff,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
= ( A = zero_zero_real ) ) ).
% dvd_0_left_iff
thf(fact_932_dvd__0__left__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% dvd_0_left_iff
thf(fact_933_dvd__0__left__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
= ( A = zero_zero_int ) ) ).
% dvd_0_left_iff
thf(fact_934_dvd__0__left__iff,axiom,
! [A: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ zero_z5237406670263579293d_enat @ A )
= ( A = zero_z5237406670263579293d_enat ) ) ).
% dvd_0_left_iff
thf(fact_935_dvd__0__left__iff,axiom,
! [A: extend8495563244428889912nnreal] :
( ( dvd_dv1013850698770059486nnreal @ zero_z7100319975126383169nnreal @ A )
= ( A = zero_z7100319975126383169nnreal ) ) ).
% dvd_0_left_iff
thf(fact_936_dvd__minus__iff,axiom,
! [X2: real,Y: real] :
( ( dvd_dvd_real @ X2 @ ( uminus_uminus_real @ Y ) )
= ( dvd_dvd_real @ X2 @ Y ) ) ).
% dvd_minus_iff
thf(fact_937_dvd__minus__iff,axiom,
! [X2: int,Y: int] :
( ( dvd_dvd_int @ X2 @ ( uminus_uminus_int @ Y ) )
= ( dvd_dvd_int @ X2 @ Y ) ) ).
% dvd_minus_iff
thf(fact_938_minus__dvd__iff,axiom,
! [X2: real,Y: real] :
( ( dvd_dvd_real @ ( uminus_uminus_real @ X2 ) @ Y )
= ( dvd_dvd_real @ X2 @ Y ) ) ).
% minus_dvd_iff
thf(fact_939_minus__dvd__iff,axiom,
! [X2: int,Y: int] :
( ( dvd_dvd_int @ ( uminus_uminus_int @ X2 ) @ Y )
= ( dvd_dvd_int @ X2 @ Y ) ) ).
% minus_dvd_iff
thf(fact_940_div__dvd__div,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_941_div__dvd__div,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_942_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_943_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_944_dvd__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_945_dvd__mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_946_dvd__mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_947_dvd__mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_948_dvd__times__left__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_949_dvd__times__left__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_950_dvd__times__right__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_951_dvd__times__right__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_952_unit__prod,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_prod
thf(fact_953_unit__prod,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_prod
thf(fact_954_dvd__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_955_dvd__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_956_dvd__mult__div__cancel,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_957_dvd__mult__div__cancel,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_958_unit__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_div
thf(fact_959_unit__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_div
thf(fact_960_unit__div__1__unit,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).
% unit_div_1_unit
thf(fact_961_unit__div__1__unit,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).
% unit_div_1_unit
thf(fact_962_unit__div__1__div__1,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_963_unit__div__1__div__1,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_964_div__diff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_965_sub__num__simps_I1_J,axiom,
( ( neg_numeral_sub_real @ one @ one )
= zero_zero_real ) ).
% sub_num_simps(1)
thf(fact_966_sub__num__simps_I1_J,axiom,
( ( neg_numeral_sub_int @ one @ one )
= zero_zero_int ) ).
% sub_num_simps(1)
thf(fact_967_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_968_diff__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( minus_5410813661909488930l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N ) )
= ( neg_nu3067386718351260922l_num1 @ M @ N ) ) ).
% diff_numeral_simps(1)
thf(fact_969_diff__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( neg_numeral_sub_real @ M @ N ) ) ).
% diff_numeral_simps(1)
thf(fact_970_diff__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( neg_numeral_sub_int @ M @ N ) ) ).
% diff_numeral_simps(1)
thf(fact_971_unit__mult__div__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_972_unit__mult__div__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
= ( divide_divide_nat @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_973_unit__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_974_unit__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_975_diff__numeral__simps_I4_J,axiom,
! [M: num,N: num] :
( ( minus_5410813661909488930l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
= ( neg_nu3067386718351260922l_num1 @ N @ M ) ) ).
% diff_numeral_simps(4)
thf(fact_976_diff__numeral__simps_I4_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( neg_numeral_sub_real @ N @ M ) ) ).
% diff_numeral_simps(4)
thf(fact_977_diff__numeral__simps_I4_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( neg_numeral_sub_int @ N @ M ) ) ).
% diff_numeral_simps(4)
thf(fact_978_even__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_979_even__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_980_sub__num__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu3067386718351260922l_num1 @ ( bit1 @ K ) @ one )
= ( numera7754357348821619680l_num1 @ ( bit0 @ K ) ) ) ).
% sub_num_simps(5)
thf(fact_981_sub__num__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_sub_real @ ( bit1 @ K ) @ one )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% sub_num_simps(5)
thf(fact_982_sub__num__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_sub_int @ ( bit1 @ K ) @ one )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% sub_num_simps(5)
thf(fact_983_diff__numeral__special_I2_J,axiom,
! [M: num] :
( ( minus_838314146864362899l_num1 @ ( numera2161328050825114965l_num1 @ M ) @ one_on3868389512446148991l_num1 )
= ( neg_nu3733408198258700219l_num1 @ M @ one ) ) ).
% diff_numeral_special(2)
thf(fact_984_diff__numeral__special_I2_J,axiom,
! [M: num] :
( ( minus_5410813661909488930l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ one_on7795324986448017462l_num1 )
= ( neg_nu3067386718351260922l_num1 @ M @ one ) ) ).
% diff_numeral_special(2)
thf(fact_985_diff__numeral__special_I2_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ one_one_real )
= ( neg_numeral_sub_real @ M @ one ) ) ).
% diff_numeral_special(2)
thf(fact_986_diff__numeral__special_I2_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int )
= ( neg_numeral_sub_int @ M @ one ) ) ).
% diff_numeral_special(2)
thf(fact_987_diff__numeral__special_I1_J,axiom,
! [N: num] :
( ( minus_838314146864362899l_num1 @ one_on3868389512446148991l_num1 @ ( numera2161328050825114965l_num1 @ N ) )
= ( neg_nu3733408198258700219l_num1 @ one @ N ) ) ).
% diff_numeral_special(1)
thf(fact_988_diff__numeral__special_I1_J,axiom,
! [N: num] :
( ( minus_5410813661909488930l_num1 @ one_on7795324986448017462l_num1 @ ( numera7754357348821619680l_num1 @ N ) )
= ( neg_nu3067386718351260922l_num1 @ one @ N ) ) ).
% diff_numeral_special(1)
thf(fact_989_diff__numeral__special_I1_J,axiom,
! [N: num] :
( ( minus_minus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( neg_numeral_sub_real @ one @ N ) ) ).
% diff_numeral_special(1)
thf(fact_990_diff__numeral__special_I1_J,axiom,
! [N: num] :
( ( minus_minus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( neg_numeral_sub_int @ one @ N ) ) ).
% diff_numeral_special(1)
thf(fact_991_sub__num__simps_I3_J,axiom,
! [L: num] :
( ( neg_nu3067386718351260922l_num1 @ one @ ( bit1 @ L ) )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ L ) ) ) ) ).
% sub_num_simps(3)
thf(fact_992_sub__num__simps_I3_J,axiom,
! [L: num] :
( ( neg_numeral_sub_real @ one @ ( bit1 @ L ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ L ) ) ) ) ).
% sub_num_simps(3)
thf(fact_993_sub__num__simps_I3_J,axiom,
! [L: num] :
( ( neg_numeral_sub_int @ one @ ( bit1 @ L ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ L ) ) ) ) ).
% sub_num_simps(3)
thf(fact_994_diff__numeral__special_I8_J,axiom,
! [M: num] :
( ( minus_838314146864362899l_num1 @ ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ M ) ) @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( neg_nu3733408198258700219l_num1 @ one @ M ) ) ).
% diff_numeral_special(8)
thf(fact_995_diff__numeral__special_I8_J,axiom,
! [M: num] :
( ( minus_5410813661909488930l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( neg_nu3067386718351260922l_num1 @ one @ M ) ) ).
% diff_numeral_special(8)
thf(fact_996_diff__numeral__special_I8_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( neg_numeral_sub_real @ one @ M ) ) ).
% diff_numeral_special(8)
thf(fact_997_diff__numeral__special_I8_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( neg_numeral_sub_int @ one @ M ) ) ).
% diff_numeral_special(8)
thf(fact_998_diff__numeral__special_I7_J,axiom,
! [N: num] :
( ( minus_838314146864362899l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ N ) ) )
= ( neg_nu3733408198258700219l_num1 @ N @ one ) ) ).
% diff_numeral_special(7)
thf(fact_999_diff__numeral__special_I7_J,axiom,
! [N: num] :
( ( minus_5410813661909488930l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
= ( neg_nu3067386718351260922l_num1 @ N @ one ) ) ).
% diff_numeral_special(7)
thf(fact_1000_diff__numeral__special_I7_J,axiom,
! [N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( neg_numeral_sub_real @ N @ one ) ) ).
% diff_numeral_special(7)
thf(fact_1001_diff__numeral__special_I7_J,axiom,
! [N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( neg_numeral_sub_int @ N @ one ) ) ).
% diff_numeral_special(7)
thf(fact_1002_plusinfinity,axiom,
! [D: int,P4: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K2: int] :
( ( P4 @ X5 )
= ( P4 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P4 @ X5 ) ) )
=> ( ? [X_12: int] : ( P4 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_1003_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K2: int] :
( ( P1 @ X5 )
= ( P1 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P1 @ X5 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_1004_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_1005_diff__gr0__ennreal,axiom,
! [B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ B @ A )
=> ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) ) ) ).
% diff_gr0_ennreal
thf(fact_1006_ennreal__zero__less__one,axiom,
ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).
% ennreal_zero_less_one
thf(fact_1007_ennreal__zero__less__mult__iff,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( times_1893300245718287421nnreal @ A @ B ) )
= ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ A )
& ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ B ) ) ) ).
% ennreal_zero_less_mult_iff
thf(fact_1008_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
= ( ( ord_less_nat @ N @ M )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_1009_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_1010_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_1011_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_1012_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_1013_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_1014_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_1015_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N3 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_1016_linorder__neqE__nat,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_neqE_nat
thf(fact_1017_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_1018_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_1019_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N3: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_le72135733267957522d_enat @ M2 @ N3 )
=> ( P @ M2 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_1020_dvd__0__left,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
=> ( A = zero_zero_real ) ) ).
% dvd_0_left
thf(fact_1021_dvd__0__left,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% dvd_0_left
thf(fact_1022_dvd__0__left,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
=> ( A = zero_zero_int ) ) ).
% dvd_0_left
thf(fact_1023_dvd__0__left,axiom,
! [A: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ zero_z5237406670263579293d_enat @ A )
=> ( A = zero_z5237406670263579293d_enat ) ) ).
% dvd_0_left
thf(fact_1024_dvd__0__left,axiom,
! [A: extend8495563244428889912nnreal] :
( ( dvd_dv1013850698770059486nnreal @ zero_z7100319975126383169nnreal @ A )
=> ( A = zero_z7100319975126383169nnreal ) ) ).
% dvd_0_left
thf(fact_1025_dvd__field__iff,axiom,
( dvd_dvd_real
= ( ^ [A3: real,B2: real] :
( ( A3 = zero_zero_real )
=> ( B2 = zero_zero_real ) ) ) ) ).
% dvd_field_iff
thf(fact_1026_dvd__triv__right,axiom,
! [A: extended_enat,B: extended_enat] : ( dvd_dv3785147216227455552d_enat @ A @ ( times_7803423173614009249d_enat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_1027_dvd__triv__right,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).
% dvd_triv_right
thf(fact_1028_dvd__triv__right,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_1029_dvd__triv__right,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).
% dvd_triv_right
thf(fact_1030_dvd__mult__right,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
=> ( dvd_dv3785147216227455552d_enat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_1031_dvd__mult__right,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ B @ C ) ) ).
% dvd_mult_right
thf(fact_1032_dvd__mult__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_1033_dvd__mult__right,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ B @ C ) ) ).
% dvd_mult_right
thf(fact_1034_mult__dvd__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat,D: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ A @ B )
=> ( ( dvd_dv3785147216227455552d_enat @ C @ D )
=> ( dvd_dv3785147216227455552d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_1035_mult__dvd__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ C @ D )
=> ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_1036_mult__dvd__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_1037_mult__dvd__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_1038_dvd__triv__left,axiom,
! [A: extended_enat,B: extended_enat] : ( dvd_dv3785147216227455552d_enat @ A @ ( times_7803423173614009249d_enat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_1039_dvd__triv__left,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).
% dvd_triv_left
thf(fact_1040_dvd__triv__left,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_1041_dvd__triv__left,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).
% dvd_triv_left
thf(fact_1042_dvd__mult__left,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
=> ( dvd_dv3785147216227455552d_enat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_1043_dvd__mult__left,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ A @ C ) ) ).
% dvd_mult_left
thf(fact_1044_dvd__mult__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_1045_dvd__mult__left,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ A @ C ) ) ).
% dvd_mult_left
thf(fact_1046_dvd__mult2,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ A @ B )
=> ( dvd_dv3785147216227455552d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_1047_dvd__mult2,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_1048_dvd__mult2,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_1049_dvd__mult2,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_1050_dvd__mult,axiom,
! [A: extended_enat,C: extended_enat,B: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ A @ C )
=> ( dvd_dv3785147216227455552d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_1051_dvd__mult,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult
thf(fact_1052_dvd__mult,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_1053_dvd__mult,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult
thf(fact_1054_dvd__def,axiom,
( dvd_dv3785147216227455552d_enat
= ( ^ [B2: extended_enat,A3: extended_enat] :
? [K4: extended_enat] :
( A3
= ( times_7803423173614009249d_enat @ B2 @ K4 ) ) ) ) ).
% dvd_def
thf(fact_1055_dvd__def,axiom,
( dvd_dvd_real
= ( ^ [B2: real,A3: real] :
? [K4: real] :
( A3
= ( times_times_real @ B2 @ K4 ) ) ) ) ).
% dvd_def
thf(fact_1056_dvd__def,axiom,
( dvd_dvd_nat
= ( ^ [B2: nat,A3: nat] :
? [K4: nat] :
( A3
= ( times_times_nat @ B2 @ K4 ) ) ) ) ).
% dvd_def
thf(fact_1057_dvd__def,axiom,
( dvd_dvd_int
= ( ^ [B2: int,A3: int] :
? [K4: int] :
( A3
= ( times_times_int @ B2 @ K4 ) ) ) ) ).
% dvd_def
thf(fact_1058_dvdI,axiom,
! [A: extended_enat,B: extended_enat,K: extended_enat] :
( ( A
= ( times_7803423173614009249d_enat @ B @ K ) )
=> ( dvd_dv3785147216227455552d_enat @ B @ A ) ) ).
% dvdI
thf(fact_1059_dvdI,axiom,
! [A: real,B: real,K: real] :
( ( A
= ( times_times_real @ B @ K ) )
=> ( dvd_dvd_real @ B @ A ) ) ).
% dvdI
thf(fact_1060_dvdI,axiom,
! [A: nat,B: nat,K: nat] :
( ( A
= ( times_times_nat @ B @ K ) )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% dvdI
thf(fact_1061_dvdI,axiom,
! [A: int,B: int,K: int] :
( ( A
= ( times_times_int @ B @ K ) )
=> ( dvd_dvd_int @ B @ A ) ) ).
% dvdI
thf(fact_1062_dvdE,axiom,
! [B: extended_enat,A: extended_enat] :
( ( dvd_dv3785147216227455552d_enat @ B @ A )
=> ~ ! [K2: extended_enat] :
( A
!= ( times_7803423173614009249d_enat @ B @ K2 ) ) ) ).
% dvdE
thf(fact_1063_dvdE,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ~ ! [K2: real] :
( A
!= ( times_times_real @ B @ K2 ) ) ) ).
% dvdE
thf(fact_1064_dvdE,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ~ ! [K2: nat] :
( A
!= ( times_times_nat @ B @ K2 ) ) ) ).
% dvdE
thf(fact_1065_dvdE,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ~ ! [K2: int] :
( A
!= ( times_times_int @ B @ K2 ) ) ) ).
% dvdE
thf(fact_1066_dvd__unit__imp__unit,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1067_dvd__unit__imp__unit,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ A @ one_one_int ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1068_unit__imp__dvd,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1069_unit__imp__dvd,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1070_one__dvd,axiom,
! [A: numera2417102609627094330l_num1] : ( dvd_dv2285863382094241760l_num1 @ one_on3868389512446148991l_num1 @ A ) ).
% one_dvd
thf(fact_1071_one__dvd,axiom,
! [A: numera4273646738625120315l_num1] : ( dvd_dv3197633198374779157l_num1 @ one_on7795324986448017462l_num1 @ A ) ).
% one_dvd
thf(fact_1072_one__dvd,axiom,
! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).
% one_dvd
thf(fact_1073_one__dvd,axiom,
! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).
% one_dvd
thf(fact_1074_one__dvd,axiom,
! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).
% one_dvd
thf(fact_1075_dvd__diff,axiom,
! [X2: real,Y: real,Z: real] :
( ( dvd_dvd_real @ X2 @ Y )
=> ( ( dvd_dvd_real @ X2 @ Z )
=> ( dvd_dvd_real @ X2 @ ( minus_minus_real @ Y @ Z ) ) ) ) ).
% dvd_diff
thf(fact_1076_dvd__diff,axiom,
! [X2: int,Y: int,Z: int] :
( ( dvd_dvd_int @ X2 @ Y )
=> ( ( dvd_dvd_int @ X2 @ Z )
=> ( dvd_dvd_int @ X2 @ ( minus_minus_int @ Y @ Z ) ) ) ) ).
% dvd_diff
thf(fact_1077_dvd__diff__commute,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
= ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_1078_div__div__div__same,axiom,
! [D: int,B: int,A: int] :
( ( dvd_dvd_int @ D @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_1079_div__div__div__same,axiom,
! [D: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ D @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_1080_dvd__div__eq__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
=> ( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_1081_dvd__div__eq__cancel,axiom,
! [A: int,C: int,B: int] :
( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
=> ( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_1082_dvd__div__eq__cancel,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_1083_dvd__div__eq__iff,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_1084_dvd__div__eq__iff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_1085_dvd__div__eq__iff,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_1086_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_1087_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_1088_dvd__refl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% dvd_refl
thf(fact_1089_dvd__refl,axiom,
! [A: int] : ( dvd_dvd_int @ A @ A ) ).
% dvd_refl
thf(fact_1090_dvd__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_trans
thf(fact_1091_dvd__trans,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ C )
=> ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_trans
thf(fact_1092_not__is__unit__0,axiom,
~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).
% not_is_unit_0
thf(fact_1093_not__is__unit__0,axiom,
~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).
% not_is_unit_0
thf(fact_1094_dvd__div__eq__0__iff,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1095_dvd__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1096_dvd__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1097_is__unit__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% is_unit_mult_iff
thf(fact_1098_is__unit__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% is_unit_mult_iff
thf(fact_1099_dvd__mult__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_1100_dvd__mult__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_1101_mult__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_1102_mult__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_1103_dvd__mult__unit__iff_H,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_1104_dvd__mult__unit__iff_H,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_1105_mult__unit__dvd__iff_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_1106_mult__unit__dvd__iff_H,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_1107_unit__mult__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= ( times_times_nat @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_1108_unit__mult__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= ( times_times_int @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_1109_unit__mult__right__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ B @ A )
= ( times_times_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_1110_unit__mult__right__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ B @ A )
= ( times_times_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_1111_dvd__div__mult,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
= ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_1112_dvd__div__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
= ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_1113_div__mult__swap,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_1114_div__mult__swap,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_1115_div__div__eq__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_1116_div__div__eq__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_1117_dvd__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_1118_dvd__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_1119_dvd__mult__imp__div,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
=> ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_1120_dvd__mult__imp__div,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
=> ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_1121_div__mult__div__if__dvd,axiom,
! [B: int,A: int,D: int,C: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ D @ C )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_1122_div__mult__div__if__dvd,axiom,
! [B: nat,A: nat,D: nat,C: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ D @ C )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_1123_unit__div__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_1124_unit__div__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_1125_div__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_1126_div__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_1127_dvd__div__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_1128_dvd__div__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_1129_dvd__div__neg,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_1130_dvd__div__neg,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_1131_dvd__neg__div,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_1132_dvd__neg__div,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_1133_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_1134_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_1135_neg__numeral__class_Osub__def,axiom,
( neg_nu3067386718351260922l_num1
= ( ^ [K4: num,L2: num] : ( minus_5410813661909488930l_num1 @ ( numera7754357348821619680l_num1 @ K4 ) @ ( numera7754357348821619680l_num1 @ L2 ) ) ) ) ).
% neg_numeral_class.sub_def
thf(fact_1136_neg__numeral__class_Osub__def,axiom,
( neg_numeral_sub_real
= ( ^ [K4: num,L2: num] : ( minus_minus_real @ ( numeral_numeral_real @ K4 ) @ ( numeral_numeral_real @ L2 ) ) ) ) ).
% neg_numeral_class.sub_def
thf(fact_1137_neg__numeral__class_Osub__def,axiom,
( neg_numeral_sub_int
= ( ^ [K4: num,L2: num] : ( minus_minus_int @ ( numeral_numeral_int @ K4 ) @ ( numeral_numeral_int @ L2 ) ) ) ) ).
% neg_numeral_class.sub_def
thf(fact_1138_unit__dvdE,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [C3: nat] :
( B
!= ( times_times_nat @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_1139_unit__dvdE,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [C3: int] :
( B
!= ( times_times_int @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_1140_even__numeral,axiom,
! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_1141_even__numeral,axiom,
! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_1142_dvd__div__eq__mult,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( ( divide_divide_int @ B @ A )
= C )
= ( B
= ( times_times_int @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_1143_dvd__div__eq__mult,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( ( divide_divide_nat @ B @ A )
= C )
= ( B
= ( times_times_nat @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_1144_div__dvd__iff__mult,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_1145_div__dvd__iff__mult,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_1146_dvd__div__iff__mult,axiom,
! [C: int,B: int,A: int] :
( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
= ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_1147_dvd__div__iff__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_1148_dvd__div__div__eq__mult,axiom,
! [A: int,C: int,B: int,D: int] :
( ( A != zero_zero_int )
=> ( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ D @ C ) )
= ( ( times_times_int @ B @ C )
= ( times_times_int @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_1149_dvd__div__div__eq__mult,axiom,
! [A: nat,C: nat,B: nat,D: nat] :
( ( A != zero_zero_nat )
=> ( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ D @ C ) )
= ( ( times_times_nat @ B @ C )
= ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_1150_unit__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% unit_div_eq_0_iff
thf(fact_1151_unit__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% unit_div_eq_0_iff
thf(fact_1152_unit__eq__div1,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= C )
= ( A
= ( times_times_int @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_1153_unit__eq__div1,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= C )
= ( A
= ( times_times_nat @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_1154_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_1155_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_1156_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_1157_div2__even__ext__nat,axiom,
! [X2: nat,Y: nat] :
( ( ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y ) )
=> ( X2 = Y ) ) ) ).
% div2_even_ext_nat
thf(fact_1158_bezout1__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y4 ) )
= D3 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y4 ) )
= D3 ) ) ) ).
% bezout1_nat
thf(fact_1159_ennreal__zero__divide,axiom,
! [X2: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ zero_z7100319975126383169nnreal @ X2 )
= zero_z7100319975126383169nnreal ) ).
% ennreal_zero_divide
thf(fact_1160_ennreal__divide__times,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( divide4826598186094686858nnreal @ A @ B ) @ C )
= ( times_1893300245718287421nnreal @ A @ ( divide4826598186094686858nnreal @ C @ B ) ) ) ).
% ennreal_divide_times
thf(fact_1161_ennreal__times__divide,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ A @ ( divide4826598186094686858nnreal @ B @ C ) )
= ( divide4826598186094686858nnreal @ ( times_1893300245718287421nnreal @ A @ B ) @ C ) ) ).
% ennreal_times_divide
thf(fact_1162_uminus__dvd__conv_I1_J,axiom,
( dvd_dvd_int
= ( ^ [D4: int] : ( dvd_dvd_int @ ( uminus_uminus_int @ D4 ) ) ) ) ).
% uminus_dvd_conv(1)
thf(fact_1163_uminus__dvd__conv_I2_J,axiom,
( dvd_dvd_int
= ( ^ [D4: int,T2: int] : ( dvd_dvd_int @ D4 @ ( uminus_uminus_int @ T2 ) ) ) ) ).
% uminus_dvd_conv(2)
thf(fact_1164_zdvd__mono,axiom,
! [K: int,M: int,T: int] :
( ( K != zero_zero_int )
=> ( ( dvd_dvd_int @ M @ T )
= ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).
% zdvd_mono
thf(fact_1165_gcd__nat_Oextremum,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_1166_gcd__nat_Oextremum__strict,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
& ( zero_zero_nat != A ) ) ).
% gcd_nat.extremum_strict
thf(fact_1167_gcd__nat_Oextremum__unique,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_1168_gcd__nat_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ( dvd_dvd_nat @ A @ zero_zero_nat )
& ( A != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_1169_gcd__nat_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_1170_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_1171_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1172_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_1173_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus_int @ zero_zero_int @ L )
= ( uminus_uminus_int @ L ) ) ).
% minus_int_code(2)
thf(fact_1174_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1175_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N )
=> ~ ( dvd_dvd_int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_1176_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_1177_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1178_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1179_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1180_set__decode__0,axiom,
! [X2: nat] :
( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X2 ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) ) ) ).
% set_decode_0
thf(fact_1181_log__half,axiom,
! [N: nat] :
( ( log @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ ( log @ N ) @ one_one_nat ) ) ).
% log_half
thf(fact_1182_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_1183_log__zero,axiom,
( ( log @ zero_zero_nat )
= zero_zero_nat ) ).
% log_zero
thf(fact_1184_Discrete_Olog__one,axiom,
( ( log @ one_one_nat )
= zero_zero_nat ) ).
% Discrete.log_one
thf(fact_1185_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_1186_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1187_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1188_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1189_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1190_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_1191_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_1192_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_1193_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1194_flip__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% flip_bit_negative_int_iff
thf(fact_1195_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_1196_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_1197_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_1198_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).
% semiring_norm(4)
thf(fact_1199_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_1200_semiring__norm_I16_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_1201_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_1202_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_1203_add__divide__distrib__ennreal,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ C )
= ( plus_p1859984266308609217nnreal @ ( divide4826598186094686858nnreal @ A @ C ) @ ( divide4826598186094686858nnreal @ B @ C ) ) ) ).
% add_divide_distrib_ennreal
thf(fact_1204_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1205_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1206_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1207_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1208_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1209_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1210_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_1211_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1212_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1213_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
= ( P @ B4 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1214_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_1215_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1216_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1217_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1218_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1219_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1220_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1221_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1222_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1223_normal__density__plus__shift,axiom,
! [Mu2: real,Sigma2: real,X2: real,Y: real] :
( ( normal_density @ Mu2 @ Sigma2 @ ( plus_plus_real @ X2 @ Y ) )
= ( normal_density @ ( minus_minus_real @ Mu2 @ X2 ) @ Sigma2 @ Y ) ) ).
% normal_density_plus_shift
thf(fact_1224_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1225_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1226_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1227_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1228_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_1229_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1230_bezout__lemma__nat,axiom,
! [D: nat,A: nat,B: nat,X2: nat,Y: nat] :
( ( dvd_dvd_nat @ D @ A )
=> ( ( dvd_dvd_nat @ D @ B )
=> ( ( ( ( times_times_nat @ A @ X2 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D ) )
| ( ( times_times_nat @ B @ X2 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D ) ) )
=> ? [X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D @ A )
& ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
& ( ( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y4 ) @ D ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_1231_bezout__add__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D3 ) )
| ( ( times_times_nat @ B @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D3 ) ) ) ) ).
% bezout_add_nat
thf(fact_1232_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
=> ( P @ D4 ) ) ) ) ).
% nat_diff_split
thf(fact_1233_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
& ~ ( P @ D4 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1234_bezout__add__strong__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [D3: nat,X5: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( times_times_nat @ A @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D3 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_1235_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1236_nat__add__1__add__1,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ one_one_nat )
= ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% nat_add_1_add_1
thf(fact_1237_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_1238_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M3: nat,N2: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N2 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1239_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_1240_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_1241_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I3: nat,J2: nat] :
( ( ( ord_less_nat @ J2 @ N )
& ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I3 ) @ J2 ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% split_div
thf(fact_1242_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_1243_even__diff__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_diff_iff
thf(fact_1244_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ zero_zero_int )
=> ( ( P @ ( uminus_uminus_int @ one_one_int ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2 != zero_zero_int )
=> ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( uminus_uminus_int @ one_one_int ) )
=> ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_1245_real__average__minus__first,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_first
thf(fact_1246_real__average__minus__second,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_second
thf(fact_1247_real__add__minus__iff,axiom,
! [X2: real,A: real] :
( ( ( plus_plus_real @ X2 @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X2 = A ) ) ).
% real_add_minus_iff
thf(fact_1248_minus__real__def,axiom,
( minus_minus_real
= ( ^ [X: real,Y5: real] : ( plus_plus_real @ X @ ( uminus_uminus_real @ Y5 ) ) ) ) ).
% minus_real_def
thf(fact_1249_real__add__less__0__iff,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X2 @ Y ) @ zero_zero_real )
= ( ord_less_real @ Y @ ( uminus_uminus_real @ X2 ) ) ) ).
% real_add_less_0_iff
thf(fact_1250_real__0__less__add__iff,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y ) )
= ( ord_less_real @ ( uminus_uminus_real @ X2 ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_1251_square__bound__lemma,axiom,
! [X2: real] : ( ord_less_real @ X2 @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( plus_plus_real @ one_one_real @ X2 ) ) ) ).
% square_bound_lemma
thf(fact_1252_nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X2 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1253_log__exp,axiom,
! [N: nat] :
( ( log @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= N ) ).
% log_exp
thf(fact_1254_real__sqrt__sum__squares__mult__squared__eq,axiom,
! [X2: real,Y: real,Xa: real,Ya: real] :
( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_squared_eq
thf(fact_1255_real__arch__pow__inv,axiom,
! [Y: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X2 @ N3 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1256_real__arch__pow,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ? [N3: nat] : ( ord_less_real @ Y @ ( power_power_real @ X2 @ N3 ) ) ) ).
% real_arch_pow
thf(fact_1257_real__sqrt__power,axiom,
! [X2: real,K: nat] :
( ( sqrt @ ( power_power_real @ X2 @ K ) )
= ( power_power_real @ ( sqrt @ X2 ) @ K ) ) ).
% real_sqrt_power
thf(fact_1258_power__divide__distrib__ennreal,axiom,
! [X2: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
( ( power_6007165696250533058nnreal @ ( divide4826598186094686858nnreal @ X2 @ Y ) @ N )
= ( divide4826598186094686858nnreal @ ( power_6007165696250533058nnreal @ X2 @ N ) @ ( power_6007165696250533058nnreal @ Y @ N ) ) ) ).
% power_divide_distrib_ennreal
thf(fact_1259_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_1260_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_1261_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1262_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X5: real] :
( ( ord_less_real @ zero_zero_real @ X5 )
& ( ( power_power_real @ X5 @ N )
= A )
& ! [Y6: real] :
( ( ( ord_less_real @ zero_zero_real @ Y6 )
& ( ( power_power_real @ Y6 @ N )
= A ) )
=> ( Y6 = X5 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1263_drop__bit__nat__def,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N2: nat,M3: nat] : ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% drop_bit_nat_def
thf(fact_1264_four__x__squared,axiom,
! [X2: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_1265_real__less__rsqrt,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
=> ( ord_less_real @ X2 @ ( sqrt @ Y ) ) ) ).
% real_less_rsqrt
thf(fact_1266_drop__bit__int__def,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N2: nat,K4: int] : ( divide_divide_int @ K4 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% drop_bit_int_def
% Helper facts (15)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X2: int,Y: int] :
( ( if_int @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X2: int,Y: int] :
( ( if_int @ $true @ X2 @ Y )
= X2 ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y: nat] :
( ( if_nat @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y: nat] :
( ( if_nat @ $true @ X2 @ Y )
= X2 ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X2: real,Y: real] :
( ( if_real @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X2: real,Y: real] :
( ( if_real @ $true @ X2 @ Y )
= X2 ) ).
thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X2: extended_enat,Y: extended_enat] :
( ( if_Extended_enat @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X2: extended_enat,Y: extended_enat] :
( ( if_Extended_enat @ $true @ X2 @ Y )
= X2 ) ).
thf(help_If_2_1_If_001t__Extended____Nonnegative____Real__Oennreal_T,axiom,
! [X2: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( if_Ext9135588136721118450nnreal @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Extended____Nonnegative____Real__Oennreal_T,axiom,
! [X2: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( if_Ext9135588136721118450nnreal @ $true @ X2 @ Y )
= X2 ) ).
thf(help_If_2_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_T,axiom,
! [X2: numera2417102609627094330l_num1,Y: numera2417102609627094330l_num1] :
( ( if_Num9196306924077011444l_num1 @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_T,axiom,
! [X2: numera2417102609627094330l_num1,Y: numera2417102609627094330l_num1] :
( ( if_Num9196306924077011444l_num1 @ $true @ X2 @ Y )
= X2 ) ).
thf(help_If_3_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_T,axiom,
! [X2: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( if_Num3220014061592582145l_num1 @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_T,axiom,
! [X2: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( if_Num3220014061592582145l_num1 @ $true @ X2 @ Y )
= X2 ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( times_times_real @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ x ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ ( minus_minus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ zero_zero_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ y ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( normal_density @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ x ) @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ x ) ) @ ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) @ y ) ) @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ ( minus_minus_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ ( minus_minus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ x @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ y ) ) @ ( normal_density @ zero_zero_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ y ) ) ) ).
%------------------------------------------------------------------------------