TPTP Problem File: SLH0931^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Quasi_Borel_Spaces/0000_StandardBorel/prob_00677_025208__15075842_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1383 (1019 unt; 108 typ;   0 def)
%            Number of atoms       : 2507 (1797 equ;   0 cnn)
%            Maximal formula atoms :   11 (   1 avg)
%            Number of connectives : 7842 ( 152   ~;  66   |;  86   &;7121   @)
%                                         (   0 <=>; 417  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   4 avg)
%            Number of types       :   15 (  14 usr)
%            Number of type conns  :  179 ( 179   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   97 (  94 usr;  18 con; 0-3 aty)
%            Number of variables   : 2360 (  42   ^;2304   !;  14   ?;2360   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 14:07:13.137
%------------------------------------------------------------------------------
% Could-be-implicit typings (14)
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    numera4273646738625120315l_num1: $tType ).

thf(ty_n_t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
    numera6367994245245682809l_num1: $tType ).

thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
    numera2417102609627094330l_num1: $tType ).

thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
    extend8495563244428889912nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    set_Extended_enat: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (94)
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
    one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    one_on7795324986448017462l_num1: numera4273646738625120315l_num1 ).

thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
    one_on3868389512446148991l_num1: numera2417102609627094330l_num1 ).

thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
    one_on7819281148064737470l_num1: numera6367994245245682809l_num1 ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
    plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    plus_p1441664204671982194l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    plus_p3482335003337316477d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Int__Oint_J,type,
    plus_plus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
    plus_plus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Num__Onum_J,type,
    plus_plus_set_num: set_num > set_num > set_num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Real__Oreal_J,type,
    plus_plus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nonnegative____Real__Oennreal,type,
    times_1893300245718287421nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    times_2938166955517408246l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    times_2438108612031896577d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Int__Oint_J,type,
    times_times_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
    times_times_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Num__Onum_J,type,
    times_times_set_num: set_num > set_num > set_num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Real__Oreal_J,type,
    times_times_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    uminus1336558196688952754l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
    zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    zero_z2241845390563828978l_num1: numera4273646738625120315l_num1 ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
    semiri4216267220026989637d_enat: nat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nonnegative____Real__Oennreal,type,
    semiri6283507881447550617nnreal: nat > extend8495563244428889912nnreal ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    semiri5667362542588693146l_num1: nat > numera4273646738625120315l_num1 ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    neg_nu5816564918971239084l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nonnegative____Real__Oennreal,type,
    numera4658534427948366547nnreal: num > extend8495563244428889912nnreal ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    numera7754357348821619680l_num1: num > numera4273646738625120315l_num1 ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
    numera2161328050825114965l_num1: num > numera2417102609627094330l_num1 ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
    numera6112219686443703444l_num1: num > numera6367994245245682809l_num1 ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nat__Oenat,type,
    power_8040749407984259932d_enat: extended_enat > nat > extended_enat ).

thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nonnegative____Real__Oennreal,type,
    power_6007165696250533058nnreal: extend8495563244428889912nnreal > nat > extend8495563244428889912nnreal ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
    power_1002146276965246001l_num1: numera4273646738625120315l_num1 > nat > numera4273646738625120315l_num1 ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Nonnegative____Real__Oennreal,type,
    divide4826598186094686858nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_member_001t__Extended____Nat__Oenat,type,
    member_Extended_enat: extended_enat > set_Extended_enat > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_a,type,
    a: nat > nat ).

thf(sy_v_n,type,
    n: nat ).

% Relevant facts (1271)
thf(fact_0_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_1_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_2_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_3_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_4_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_5_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_6_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_7_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_8_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_le3935885782089961368nnreal @ ( numera4658534427948366547nnreal @ N ) @ one_on2969667320475766781nnreal )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_9_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_10_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_11_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_12_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_13_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N )
        = ( semiri4216267220026989637d_enat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_14_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = ( semiri1316708129612266289at_nat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_15_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
        = ( semiri5074537144036343181t_real @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_16_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = ( semiri1314217659103216013at_int @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_17_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ X ) @ N )
        = ( semiri6283507881447550617nnreal @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_18_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ Y )
        = ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_19_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_20_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ Y )
        = ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_21_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_22_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri6283507881447550617nnreal @ Y )
        = ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_23_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_24_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_25_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_26_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_27_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_28_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_29_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera4658534427948366547nnreal @ N )
        = one_on2969667320475766781nnreal )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_30_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera1916890842035813515d_enat @ N )
        = one_on7984719198319812577d_enat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_31_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_32_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_33_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_34_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_on7984719198319812577d_enat
        = ( numera1916890842035813515d_enat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_35_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_36_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_37_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_38_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_on2969667320475766781nnreal
        = ( numera4658534427948366547nnreal @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_39_half__bounded__equal,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( times_times_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real )
        = ( X
          = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% half_bounded_equal
thf(fact_40_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera1916890842035813515d_enat @ M )
        = ( numera1916890842035813515d_enat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_41_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_42_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_43_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_44_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera4658534427948366547nnreal @ M )
        = ( numera4658534427948366547nnreal @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_45_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_46_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_47_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_48_power__one__right,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( power_6007165696250533058nnreal @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_49_power__one__right,axiom,
    ! [A: extended_enat] :
      ( ( power_8040749407984259932d_enat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_50_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Z ) )
      = ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_51_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
      = ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_52_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_53_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_54_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_55_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ W ) @ Z ) )
      = ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_56_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N ) )
      = ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_57_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_58_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_59_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_60_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_61_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N ) )
      = ( numera4658534427948366547nnreal @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_62_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_63_power__one,axiom,
    ! [N: nat] :
      ( ( power_1002146276965246001l_num1 @ one_on7795324986448017462l_num1 @ N )
      = one_on7795324986448017462l_num1 ) ).

% power_one
thf(fact_64_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_65_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_66_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_67_power__one,axiom,
    ! [N: nat] :
      ( ( power_6007165696250533058nnreal @ one_on2969667320475766781nnreal @ N )
      = one_on2969667320475766781nnreal ) ).

% power_one
thf(fact_68_power__one,axiom,
    ! [N: nat] :
      ( ( power_8040749407984259932d_enat @ one_on7984719198319812577d_enat @ N )
      = one_on7984719198319812577d_enat ) ).

% power_one
thf(fact_69_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_numeral
thf(fact_70_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_numeral
thf(fact_71_power__mult__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_72_power__mult__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_73_power__mult__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_74_power__mult__numeral,axiom,
    ! [A: extend8495563244428889912nnreal,M: num,N: num] :
      ( ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_75_power__mult__numeral,axiom,
    ! [A: extended_enat,M: num,N: num] :
      ( ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_76_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri5667362542588693146l_num1 @ ( numeral_numeral_nat @ N ) )
      = ( numera7754357348821619680l_num1 @ N ) ) ).

% of_nat_numeral
thf(fact_77_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% of_nat_numeral
thf(fact_78_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% of_nat_numeral
thf(fact_79_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ N ) )
      = ( numera4658534427948366547nnreal @ N ) ) ).

% of_nat_numeral
thf(fact_80_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ N ) ) ).

% of_nat_numeral
thf(fact_81_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N ) )
      = ( numera1916890842035813515d_enat @ N ) ) ).

% of_nat_numeral
thf(fact_82_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_83_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_84_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri6283507881447550617nnreal @ X )
        = ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_85_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_86_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri4216267220026989637d_enat @ X )
        = ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_87_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_88_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_89_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ B ) @ W )
        = ( semiri6283507881447550617nnreal @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_90_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_91_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ B ) @ W )
        = ( semiri4216267220026989637d_enat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_92_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).

% of_nat_power
thf(fact_93_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_94_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri6283507881447550617nnreal @ ( power_power_nat @ M @ N ) )
      = ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ M ) @ N ) ) ).

% of_nat_power
thf(fact_95_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_96_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( power_power_nat @ M @ N ) )
      = ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_97_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le3935885782089961368nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_98_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_99_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_100_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_101_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_102_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_103_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_104_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_105_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_106_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_107_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_108_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_109_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_110_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_111_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_112_power__mult,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_113_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_114_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_115_power__mult,axiom,
    ! [A: extend8495563244428889912nnreal,M: nat,N: nat] :
      ( ( power_6007165696250533058nnreal @ A @ ( times_times_nat @ M @ N ) )
      = ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_116_power__mult,axiom,
    ! [A: extended_enat,M: nat,N: nat] :
      ( ( power_8040749407984259932d_enat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_117_power__even__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_118_power__even__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_119_power__even__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_120_power__even__eq,axiom,
    ! [A: extend8495563244428889912nnreal,N: nat] :
      ( ( power_6007165696250533058nnreal @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_121_power__even__eq,axiom,
    ! [A: extended_enat,N: nat] :
      ( ( power_8040749407984259932d_enat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_122_power2__eq__square,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_1893300245718287421nnreal @ A @ A ) ) ).

% power2_eq_square
thf(fact_123_power2__eq__square,axiom,
    ! [A: extended_enat] :
      ( ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_7803423173614009249d_enat @ A @ A ) ) ).

% power2_eq_square
thf(fact_124_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_125_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_126_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_127_power4__eq__xxxx,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( power_6007165696250533058nnreal @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_128_power4__eq__xxxx,axiom,
    ! [X: extended_enat] :
      ( ( power_8040749407984259932d_enat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_129_power4__eq__xxxx,axiom,
    ! [X: real] :
      ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_130_power4__eq__xxxx,axiom,
    ! [X: nat] :
      ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_131_power4__eq__xxxx,axiom,
    ! [X: int] :
      ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_132_one__power2,axiom,
    ( ( power_1002146276965246001l_num1 @ one_on7795324986448017462l_num1 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_on7795324986448017462l_num1 ) ).

% one_power2
thf(fact_133_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_134_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_135_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_136_one__power2,axiom,
    ( ( power_6007165696250533058nnreal @ one_on2969667320475766781nnreal @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_on2969667320475766781nnreal ) ).

% one_power2
thf(fact_137_one__power2,axiom,
    ( ( power_8040749407984259932d_enat @ one_on7984719198319812577d_enat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_on7984719198319812577d_enat ) ).

% one_power2
thf(fact_138_power__odd__eq,axiom,
    ! [A: extend8495563244428889912nnreal,N: nat] :
      ( ( power_6007165696250533058nnreal @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_1893300245718287421nnreal @ A @ ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_139_power__odd__eq,axiom,
    ! [A: extended_enat,N: nat] :
      ( ( power_8040749407984259932d_enat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_140_power__odd__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_141_power__odd__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_142_power__odd__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_143_abs__le__square__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y ) )
      = ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_144_abs__le__square__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y ) )
      = ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_145_abs__square__eq__1,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_146_abs__square__eq__1,axiom,
    ! [X: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_147_abs__square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_148_abs__square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_149_le__numeral__extra_I4_J,axiom,
    ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ).

% le_numeral_extra(4)
thf(fact_150_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_151_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_152_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_153_power__commuting__commutes,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
      ( ( ( times_1893300245718287421nnreal @ X @ Y )
        = ( times_1893300245718287421nnreal @ Y @ X ) )
     => ( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ X @ N ) @ Y )
        = ( times_1893300245718287421nnreal @ Y @ ( power_6007165696250533058nnreal @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_154_power__commuting__commutes,axiom,
    ! [X: extended_enat,Y: extended_enat,N: nat] :
      ( ( ( times_7803423173614009249d_enat @ X @ Y )
        = ( times_7803423173614009249d_enat @ Y @ X ) )
     => ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ X @ N ) @ Y )
        = ( times_7803423173614009249d_enat @ Y @ ( power_8040749407984259932d_enat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_155_power__commuting__commutes,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y )
        = ( times_times_real @ Y @ ( power_power_real @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_156_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_157_power__commuting__commutes,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = ( times_times_int @ Y @ X ) )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y )
        = ( times_times_int @ Y @ ( power_power_int @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_158_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_159_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_160_power__mult__distrib,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,N: nat] :
      ( ( power_6007165696250533058nnreal @ ( times_1893300245718287421nnreal @ A @ B ) @ N )
      = ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ N ) @ ( power_6007165696250533058nnreal @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_161_power__mult__distrib,axiom,
    ! [A: extended_enat,B: extended_enat,N: nat] :
      ( ( power_8040749407984259932d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ N )
      = ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ ( power_8040749407984259932d_enat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_162_power__mult__distrib,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_163_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_164_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_165_power__commutes,axiom,
    ! [A: extend8495563244428889912nnreal,N: nat] :
      ( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ N ) @ A )
      = ( times_1893300245718287421nnreal @ A @ ( power_6007165696250533058nnreal @ A @ N ) ) ) ).

% power_commutes
thf(fact_166_power__commutes,axiom,
    ! [A: extended_enat,N: nat] :
      ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ A )
      = ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ A @ N ) ) ) ).

% power_commutes
thf(fact_167_power__commutes,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_commutes
thf(fact_168_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_169_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_170_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_171_power__abs,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% power_abs
thf(fact_172_power__abs,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% power_abs
thf(fact_173_one__le__numeral,axiom,
    ! [N: num] : ( ord_le3935885782089961368nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N ) ) ).

% one_le_numeral
thf(fact_174_one__le__numeral,axiom,
    ! [N: num] : ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).

% one_le_numeral
thf(fact_175_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_176_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_177_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_178_power__increasing,axiom,
    ! [N: nat,N2: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_increasing
thf(fact_179_power__increasing,axiom,
    ! [N: nat,N2: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_increasing
thf(fact_180_power__increasing,axiom,
    ! [N: nat,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_increasing
thf(fact_181_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_182_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_183_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_184_mult__numeral__1__right,axiom,
    ! [A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_185_mult__numeral__1__right,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_186_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_187_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_188_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_189_mult__numeral__1__right,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ A @ ( numera4658534427948366547nnreal @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_190_mult__numeral__1,axiom,
    ! [A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_191_mult__numeral__1,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_192_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_193_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_194_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_195_mult__numeral__1,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_196_numeral__One,axiom,
    ( ( numera7754357348821619680l_num1 @ one )
    = one_on7795324986448017462l_num1 ) ).

% numeral_One
thf(fact_197_numeral__One,axiom,
    ( ( numera1916890842035813515d_enat @ one )
    = one_on7984719198319812577d_enat ) ).

% numeral_One
thf(fact_198_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_199_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_200_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_201_numeral__One,axiom,
    ( ( numera4658534427948366547nnreal @ one )
    = one_on2969667320475766781nnreal ) ).

% numeral_One
thf(fact_202_left__right__inverse__power,axiom,
    ! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1,N: nat] :
      ( ( ( times_2938166955517408246l_num1 @ X @ Y )
        = one_on7795324986448017462l_num1 )
     => ( ( times_2938166955517408246l_num1 @ ( power_1002146276965246001l_num1 @ X @ N ) @ ( power_1002146276965246001l_num1 @ Y @ N ) )
        = one_on7795324986448017462l_num1 ) ) ).

% left_right_inverse_power
thf(fact_203_left__right__inverse__power,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
      ( ( ( times_1893300245718287421nnreal @ X @ Y )
        = one_on2969667320475766781nnreal )
     => ( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ X @ N ) @ ( power_6007165696250533058nnreal @ Y @ N ) )
        = one_on2969667320475766781nnreal ) ) ).

% left_right_inverse_power
thf(fact_204_left__right__inverse__power,axiom,
    ! [X: extended_enat,Y: extended_enat,N: nat] :
      ( ( ( times_7803423173614009249d_enat @ X @ Y )
        = one_on7984719198319812577d_enat )
     => ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ X @ N ) @ ( power_8040749407984259932d_enat @ Y @ N ) )
        = one_on7984719198319812577d_enat ) ) ).

% left_right_inverse_power
thf(fact_205_left__right__inverse__power,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( ( times_times_real @ X @ Y )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_206_left__right__inverse__power,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_207_left__right__inverse__power,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_208_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_209_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_210_power__Suc2,axiom,
    ! [A: extend8495563244428889912nnreal,N: nat] :
      ( ( power_6007165696250533058nnreal @ A @ ( suc @ N ) )
      = ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_211_power__Suc2,axiom,
    ! [A: extended_enat,N: nat] :
      ( ( power_8040749407984259932d_enat @ A @ ( suc @ N ) )
      = ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_212_power__Suc2,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_213_power__Suc2,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_214_power__Suc2,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_215_power__Suc,axiom,
    ! [A: extend8495563244428889912nnreal,N: nat] :
      ( ( power_6007165696250533058nnreal @ A @ ( suc @ N ) )
      = ( times_1893300245718287421nnreal @ A @ ( power_6007165696250533058nnreal @ A @ N ) ) ) ).

% power_Suc
thf(fact_216_power__Suc,axiom,
    ! [A: extended_enat,N: nat] :
      ( ( power_8040749407984259932d_enat @ A @ ( suc @ N ) )
      = ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ A @ N ) ) ) ).

% power_Suc
thf(fact_217_power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_Suc
thf(fact_218_power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_Suc
thf(fact_219_power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_Suc
thf(fact_220_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_221_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_222_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_223_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le3935885782089961368nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_224_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_225_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_226_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_227_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_228_four__x__squared,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_229_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_230_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_231_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_232_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_233_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% abs_of_nat
thf(fact_234_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_235_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_236_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_237_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_238_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_239_nat_Oinject,axiom,
    ! [X22: nat,Y2: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y2 ) )
      = ( X22 = Y2 ) ) ).

% nat.inject
thf(fact_240_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_241_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_242_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_243_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri6283507881447550617nnreal @ M )
        = ( semiri6283507881447550617nnreal @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_244_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_245_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ M )
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_246_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_247_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_248_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_249_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_250_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_251_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_252_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_253_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_mult
thf(fact_254_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_255_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri6283507881447550617nnreal @ ( times_times_nat @ M @ N ) )
      = ( times_1893300245718287421nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) ) ) ).

% of_nat_mult
thf(fact_256_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_257_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( times_times_nat @ M @ N ) )
      = ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).

% of_nat_mult
thf(fact_258_of__nat__1,axiom,
    ( ( semiri5667362542588693146l_num1 @ one_one_nat )
    = one_on7795324986448017462l_num1 ) ).

% of_nat_1
thf(fact_259_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_260_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_261_of__nat__1,axiom,
    ( ( semiri6283507881447550617nnreal @ one_one_nat )
    = one_on2969667320475766781nnreal ) ).

% of_nat_1
thf(fact_262_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_263_of__nat__1,axiom,
    ( ( semiri4216267220026989637d_enat @ one_one_nat )
    = one_on7984719198319812577d_enat ) ).

% of_nat_1
thf(fact_264_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_265_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_266_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_on2969667320475766781nnreal
        = ( semiri6283507881447550617nnreal @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_267_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_268_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_on7984719198319812577d_enat
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_269_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_270_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_271_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri6283507881447550617nnreal @ N )
        = one_on2969667320475766781nnreal )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_272_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_273_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ N )
        = one_on7984719198319812577d_enat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_274_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_275_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_276_zdiv__int,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% zdiv_int
thf(fact_277_div__mult2__eq,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) ).

% div_mult2_eq
thf(fact_278_complete__real,axiom,
    ! [S: set_real] :
      ( ? [X3: real] : ( member_real @ X3 @ S )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S )
           => ( ord_less_eq_real @ X4 @ Z2 ) )
       => ? [Y3: real] :
            ( ! [X3: real] :
                ( ( member_real @ X3 @ S )
               => ( ord_less_eq_real @ X3 @ Y3 ) )
            & ! [Z2: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S )
                   => ( ord_less_eq_real @ X4 @ Z2 ) )
               => ( ord_less_eq_real @ Y3 @ Z2 ) ) ) ) ) ).

% complete_real
thf(fact_279_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_280_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_281_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_282_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_283_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_284_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_285_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_286_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_287_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_288_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_289_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_290_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_291_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_292_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_293_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_294_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_295_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_296_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_297_mult__of__nat__commute,axiom,
    ! [X: nat,Y: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
      = ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_298_mult__of__nat__commute,axiom,
    ! [X: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_299_mult__of__nat__commute,axiom,
    ! [X: nat,Y: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ ( semiri6283507881447550617nnreal @ X ) @ Y )
      = ( times_1893300245718287421nnreal @ Y @ ( semiri6283507881447550617nnreal @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_300_mult__of__nat__commute,axiom,
    ! [X: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_301_mult__of__nat__commute,axiom,
    ! [X: nat,Y: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ X ) @ Y )
      = ( times_7803423173614009249d_enat @ Y @ ( semiri4216267220026989637d_enat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_302_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_303_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_304_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_305_Suc__le__D,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M2 )
     => ? [M3: nat] :
          ( M2
          = ( suc @ M3 ) ) ) ).

% Suc_le_D
thf(fact_306_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_307_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_308_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_309_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N3 )
             => ( P @ M4 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_310_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_311_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X4: nat] : ( R2 @ X4 @ X4 )
       => ( ! [X4: nat,Y3: nat,Z3: nat] :
              ( ( R2 @ X4 @ Y3 )
             => ( ( R2 @ Y3 @ Z3 )
               => ( R2 @ X4 @ Z3 ) ) )
         => ( ! [N3: nat] : ( R2 @ N3 @ ( suc @ N3 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_312_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_313_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_314_lift__Suc__mono__le,axiom,
    ! [F: nat > extended_enat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_le2932123472753598470d_enat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_le2932123472753598470d_enat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_315_lift__Suc__mono__le,axiom,
    ! [F: nat > real,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_real @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_316_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_317_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_318_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_319_lift__Suc__antimono__le,axiom,
    ! [F: nat > extended_enat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_le2932123472753598470d_enat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_le2932123472753598470d_enat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_320_lift__Suc__antimono__le,axiom,
    ! [F: nat > real,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_real @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_321_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_num @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_322_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_323_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_324_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_le3935885782089961368nnreal @ ( semiri6283507881447550617nnreal @ I ) @ ( semiri6283507881447550617nnreal @ J ) ) ) ).

% of_nat_mono
thf(fact_325_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ I ) @ ( semiri4216267220026989637d_enat @ J ) ) ) ).

% of_nat_mono
thf(fact_326_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_327_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_328_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_329_real__of__nat__div4,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% real_of_nat_div4
thf(fact_330_real__of__nat__ge__one__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ one_one_nat @ N ) ) ).

% real_of_nat_ge_one_iff
thf(fact_331_abs__divide,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_divide
thf(fact_332_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_333_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_334_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_335_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_336_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_337_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_338_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_339_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_340_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_341_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_342_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_343_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_344_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_345_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_346_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_347_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_348_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_349_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_350_divide__divide__times__eq,axiom,
    ! [X: real,Y: real,Z: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_351_times__divide__times__eq,axiom,
    ! [X: real,Y: real,Z: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_352_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_353_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_354_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_355_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_356_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% div_mult2_eq'
thf(fact_357_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% div_mult2_eq'
thf(fact_358_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_359_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_360_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_361_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_362_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_363_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_364_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_365_mult__1,axiom,
    ! [A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ one_on7795324986448017462l_num1 @ A )
      = A ) ).

% mult_1
thf(fact_366_mult__1,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
      = A ) ).

% mult_1
thf(fact_367_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_368_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_369_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_370_vector__space__over__itself_Oscale__one,axiom,
    ! [X: real] :
      ( ( times_times_real @ one_one_real @ X )
      = X ) ).

% vector_space_over_itself.scale_one
thf(fact_371_mult_Oright__neutral,axiom,
    ! [A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ A @ one_on7795324986448017462l_num1 )
      = A ) ).

% mult.right_neutral
thf(fact_372_mult_Oright__neutral,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
      = A ) ).

% mult.right_neutral
thf(fact_373_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_374_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_375_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_376_int__ops_I8_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(8)
thf(fact_377_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_378_dbl__simps_I3_J,axiom,
    ( ( neg_nu5816564918971239084l_num1 @ one_on7795324986448017462l_num1 )
    = ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_379_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_380_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_381_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_1002146276965246001l_num1 @ ( numera7754357348821619680l_num1 @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numera7754357348821619680l_num1 @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_382_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numera1916890842035813515d_enat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_383_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_384_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_385_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_386_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numera4658534427948366547nnreal @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_387_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_388_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_389_verit__eq__simplify_I8_J,axiom,
    ! [X22: num,Y2: num] :
      ( ( ( bit0 @ X22 )
        = ( bit0 @ Y2 ) )
      = ( X22 = Y2 ) ) ).

% verit_eq_simplify(8)
thf(fact_390_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5816564918971239084l_num1 @ ( numera7754357348821619680l_num1 @ K ) )
      = ( numera7754357348821619680l_num1 @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_391_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_392_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_393_pow_Osimps_I1_J,axiom,
    ! [X: num] :
      ( ( pow @ X @ one )
      = X ) ).

% pow.simps(1)
thf(fact_394_verit__comp__simplify1_I2_J,axiom,
    ! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_395_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_396_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_397_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_398_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_399_verit__la__disequality,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A = B )
      | ~ ( ord_le2932123472753598470d_enat @ A @ B )
      | ~ ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_400_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_401_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_402_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_403_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_404_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
      = ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_405_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_406_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_407_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_408_mult_Oassoc,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
      = ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_409_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_410_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_411_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_412_mult_Ocommute,axiom,
    ( times_7803423173614009249d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] : ( times_7803423173614009249d_enat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_413_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_414_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_415_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_416_mult_Oleft__commute,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( times_7803423173614009249d_enat @ B @ ( times_7803423173614009249d_enat @ A @ C ) )
      = ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_417_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_418_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_419_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_420_vector__space__over__itself_Oscale__scale,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ A @ ( times_times_real @ B @ X ) )
      = ( times_times_real @ ( times_times_real @ A @ B ) @ X ) ) ).

% vector_space_over_itself.scale_scale
thf(fact_421_vector__space__over__itself_Oscale__left__commute,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ A @ ( times_times_real @ B @ X ) )
      = ( times_times_real @ B @ ( times_times_real @ A @ X ) ) ) ).

% vector_space_over_itself.scale_left_commute
thf(fact_422_one__reorient,axiom,
    ! [X: numera4273646738625120315l_num1] :
      ( ( one_on7795324986448017462l_num1 = X )
      = ( X = one_on7795324986448017462l_num1 ) ) ).

% one_reorient
thf(fact_423_one__reorient,axiom,
    ! [X: extended_enat] :
      ( ( one_on7984719198319812577d_enat = X )
      = ( X = one_on7984719198319812577d_enat ) ) ).

% one_reorient
thf(fact_424_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_425_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_426_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_427_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_428_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_429_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_430_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ one_on7795324986448017462l_num1 @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_431_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_432_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_433_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_434_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_435_mult_Ocomm__neutral,axiom,
    ! [A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ A @ one_on7795324986448017462l_num1 )
      = A ) ).

% mult.comm_neutral
thf(fact_436_mult_Ocomm__neutral,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
      = A ) ).

% mult.comm_neutral
thf(fact_437_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_438_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_439_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_440_verit__eq__simplify_I10_J,axiom,
    ! [X22: num] :
      ( one
     != ( bit0 @ X22 ) ) ).

% verit_eq_simplify(10)
thf(fact_441_forall__2,axiom,
    ( ( ^ [P2: numera2417102609627094330l_num1 > $o] :
        ! [X5: numera2417102609627094330l_num1] : ( P2 @ X5 ) )
    = ( ^ [P3: numera2417102609627094330l_num1 > $o] :
          ( ( P3 @ one_on3868389512446148991l_num1 )
          & ( P3 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ) ) ).

% forall_2
thf(fact_442_exhaust__2,axiom,
    ! [X: numera2417102609627094330l_num1] :
      ( ( X = one_on3868389512446148991l_num1 )
      | ( X
        = ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).

% exhaust_2
thf(fact_443_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_444_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_445_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_446_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_447_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_448_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_449_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_450_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_451_set__times__intro,axiom,
    ! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D: set_Extended_enat] :
      ( ( member_Extended_enat @ A @ C2 )
     => ( ( member_Extended_enat @ B @ D )
       => ( member_Extended_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_2438108612031896577d_enat @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_452_set__times__intro,axiom,
    ! [A: real,C2: set_real,B: real,D: set_real] :
      ( ( member_real @ A @ C2 )
     => ( ( member_real @ B @ D )
       => ( member_real @ ( times_times_real @ A @ B ) @ ( times_times_set_real @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_453_set__times__intro,axiom,
    ! [A: num,C2: set_num,B: num,D: set_num] :
      ( ( member_num @ A @ C2 )
     => ( ( member_num @ B @ D )
       => ( member_num @ ( times_times_num @ A @ B ) @ ( times_times_set_num @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_454_set__times__intro,axiom,
    ! [A: nat,C2: set_nat,B: nat,D: set_nat] :
      ( ( member_nat @ A @ C2 )
     => ( ( member_nat @ B @ D )
       => ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_455_set__times__intro,axiom,
    ! [A: int,C2: set_int,B: int,D: set_int] :
      ( ( member_int @ A @ C2 )
     => ( ( member_int @ B @ D )
       => ( member_int @ ( times_times_int @ A @ B ) @ ( times_times_set_int @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_456_order__refl,axiom,
    ! [X: extended_enat] : ( ord_le2932123472753598470d_enat @ X @ X ) ).

% order_refl
thf(fact_457_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_458_order__refl,axiom,
    ! [X: num] : ( ord_less_eq_num @ X @ X ) ).

% order_refl
thf(fact_459_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_460_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_461_dual__order_Orefl,axiom,
    ! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).

% dual_order.refl
thf(fact_462_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_463_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_464_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_465_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_466_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_467_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_468_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N5: nat] : ( divide_divide_nat @ ( times_times_nat @ N5 @ ( suc @ N5 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_469_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_1002146276965246001l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_on7795324986448017462l_num1 ) ).

% power_minus1_even
thf(fact_470_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_471_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_472_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_473_Suc__0__div__numeral_I1_J,axiom,
    ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
    = one_one_nat ) ).

% Suc_0_div_numeral(1)
thf(fact_474_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_475_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_476_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_477_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_478_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_479_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_480_set__plus__intro,axiom,
    ! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D: set_Extended_enat] :
      ( ( member_Extended_enat @ A @ C2 )
     => ( ( member_Extended_enat @ B @ D )
       => ( member_Extended_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3482335003337316477d_enat @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_481_set__plus__intro,axiom,
    ! [A: real,C2: set_real,B: real,D: set_real] :
      ( ( member_real @ A @ C2 )
     => ( ( member_real @ B @ D )
       => ( member_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_set_real @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_482_set__plus__intro,axiom,
    ! [A: num,C2: set_num,B: num,D: set_num] :
      ( ( member_num @ A @ C2 )
     => ( ( member_num @ B @ D )
       => ( member_num @ ( plus_plus_num @ A @ B ) @ ( plus_plus_set_num @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_483_set__plus__intro,axiom,
    ! [A: nat,C2: set_nat,B: nat,D: set_nat] :
      ( ( member_nat @ A @ C2 )
     => ( ( member_nat @ B @ D )
       => ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_484_set__plus__intro,axiom,
    ! [A: int,C2: set_int,B: int,D: set_int] :
      ( ( member_int @ A @ C2 )
     => ( ( member_int @ B @ D )
       => ( member_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_set_int @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_485_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_486_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_487_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_488_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_489_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_490_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_491_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_492_le__zero__eq,axiom,
    ! [N: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ N @ zero_z7100319975126383169nnreal )
      = ( N = zero_z7100319975126383169nnreal ) ) ).

% le_zero_eq
thf(fact_493_le__zero__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% le_zero_eq
thf(fact_494_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_495_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_496_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_497_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_498_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_499_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_500_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_501_mult__eq__0__iff,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( times_1893300245718287421nnreal @ A @ B )
        = zero_z7100319975126383169nnreal )
      = ( ( A = zero_z7100319975126383169nnreal )
        | ( B = zero_z7100319975126383169nnreal ) ) ) ).

% mult_eq_0_iff
thf(fact_502_mult__eq__0__iff,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ A @ B )
        = zero_z5237406670263579293d_enat )
      = ( ( A = zero_z5237406670263579293d_enat )
        | ( B = zero_z5237406670263579293d_enat ) ) ) ).

% mult_eq_0_iff
thf(fact_503_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_504_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_505_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_506_mult__zero__right,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ A @ zero_z7100319975126383169nnreal )
      = zero_z7100319975126383169nnreal ) ).

% mult_zero_right
thf(fact_507_mult__zero__right,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ A @ zero_z5237406670263579293d_enat )
      = zero_z5237406670263579293d_enat ) ).

% mult_zero_right
thf(fact_508_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_509_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_510_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_511_mult__zero__left,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ zero_z7100319975126383169nnreal @ A )
      = zero_z7100319975126383169nnreal ) ).

% mult_zero_left
thf(fact_512_mult__zero__left,axiom,
    ! [A: extended_enat] :
      ( ( times_7803423173614009249d_enat @ zero_z5237406670263579293d_enat @ A )
      = zero_z5237406670263579293d_enat ) ).

% mult_zero_left
thf(fact_513_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_514_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_515_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_516_vector__space__over__itself_Oscale__cancel__right,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ B @ X ) )
      = ( ( A = B )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_right
thf(fact_517_vector__space__over__itself_Oscale__cancel__left,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ A @ Y ) )
      = ( ( X = Y )
        | ( A = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_left
thf(fact_518_vector__space__over__itself_Oscale__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_right
thf(fact_519_vector__space__over__itself_Oscale__zero__left,axiom,
    ! [X: real] :
      ( ( times_times_real @ zero_zero_real @ X )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_left
thf(fact_520_vector__space__over__itself_Oscale__eq__0__iff,axiom,
    ! [A: real,X: real] :
      ( ( ( times_times_real @ A @ X )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_eq_0_iff
thf(fact_521_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_522_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_523_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_524_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_525_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_526_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_527_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_528_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_529_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_530_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_531_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_532_add__0,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
      = A ) ).

% add_0
thf(fact_533_add__0,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ zero_z7100319975126383169nnreal @ A )
      = A ) ).

% add_0
thf(fact_534_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_535_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( zero_z5237406670263579293d_enat
        = ( plus_p3455044024723400733d_enat @ X @ Y ) )
      = ( ( X = zero_z5237406670263579293d_enat )
        & ( Y = zero_z5237406670263579293d_enat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_536_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( zero_z7100319975126383169nnreal
        = ( plus_p1859984266308609217nnreal @ X @ Y ) )
      = ( ( X = zero_z7100319975126383169nnreal )
        & ( Y = zero_z7100319975126383169nnreal ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_537_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_538_add__eq__0__iff__both__eq__0,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ X @ Y )
        = zero_z5237406670263579293d_enat )
      = ( ( X = zero_z5237406670263579293d_enat )
        & ( Y = zero_z5237406670263579293d_enat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_539_add__eq__0__iff__both__eq__0,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( ( plus_p1859984266308609217nnreal @ X @ Y )
        = zero_z7100319975126383169nnreal )
      = ( ( X = zero_z7100319975126383169nnreal )
        & ( Y = zero_z7100319975126383169nnreal ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_540_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_541_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_542_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_543_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_544_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_545_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_546_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_547_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_548_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_549_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_550_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_551_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_552_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_553_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_554_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_555_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_556_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_557_add_Oright__neutral,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
      = A ) ).

% add.right_neutral
thf(fact_558_add_Oright__neutral,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ A @ zero_z7100319975126383169nnreal )
      = A ) ).

% add.right_neutral
thf(fact_559_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_560_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_561_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_562_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_563_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_564_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_565_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_566_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_567_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_568_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_569_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_570_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_571_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_572_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_573_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_574_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_575_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_576_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_577_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_578_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_579_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_580_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_581_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_582_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_583_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_584_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_585_add__numeral__left,axiom,
    ! [V: num,W: num,Z: numera4273646738625120315l_num1] :
      ( ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Z ) )
      = ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_586_add__numeral__left,axiom,
    ! [V: num,W: num,Z: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
      = ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_587_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_588_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_589_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_590_add__numeral__left,axiom,
    ! [V: num,W: num,Z: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ W ) @ Z ) )
      = ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_591_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N ) )
      = ( numera7754357348821619680l_num1 @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_592_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_593_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_594_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_595_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_596_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N ) )
      = ( numera4658534427948366547nnreal @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_597_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_598_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_599_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_600_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_601_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_602_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_603_vector__space__over__itself_Oscale__minus__right,axiom,
    ! [A: real,X: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ X ) ) ) ).

% vector_space_over_itself.scale_minus_right
thf(fact_604_vector__space__over__itself_Oscale__minus__left,axiom,
    ! [A: real,X: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ X )
      = ( uminus_uminus_real @ ( times_times_real @ A @ X ) ) ) ).

% vector_space_over_itself.scale_minus_left
thf(fact_605_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_606_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_607_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_608_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_609_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_610_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_611_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_612_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_613_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_614_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_615_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_616_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_617_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_618_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_619_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_620_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_621_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_622_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_623_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_624_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri6283507881447550617nnreal @ ( plus_plus_nat @ M @ N ) )
      = ( plus_p1859984266308609217nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) ) ) ).

% of_nat_add
thf(fact_625_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_626_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).

% of_nat_add
thf(fact_627_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_628_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_629_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_630_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_631_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_632_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_633_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_634_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_635_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_636_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_637_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_638_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_639_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_640_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_641_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_642_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_643_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_644_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_645_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_646_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_647_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_648_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_649_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_650_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_651_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_652_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_653_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_654_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_655_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_656_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_657_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_658_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_659_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_660_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_661_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_662_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_663_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_664_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_665_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_666_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_667_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_668_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_669_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_670_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_671_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_672_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_673_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_674_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_675_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_676_sum__squares__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_677_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_678_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_679_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_680_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_681_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_682_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_683_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_684_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_685_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_686_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_687_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_688_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_689_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_690_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_691_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_692_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_693_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_694_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_695_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_696_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_697_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_698_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_699_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_700_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_701_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_702_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_703_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_704_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_705_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_706_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_707_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_708_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_709_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_710_distrib__right__numeral,axiom,
    ! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,V: num] :
      ( ( times_2938166955517408246l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ ( numera7754357348821619680l_num1 @ V ) )
      = ( plus_p1441664204671982194l_num1 @ ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ B @ ( numera7754357348821619680l_num1 @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_711_distrib__right__numeral,axiom,
    ! [A: extended_enat,B: extended_enat,V: num] :
      ( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( numera1916890842035813515d_enat @ V ) )
      = ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ V ) ) @ ( times_7803423173614009249d_enat @ B @ ( numera1916890842035813515d_enat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_712_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_713_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_714_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_715_distrib__right__numeral,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,V: num] :
      ( ( times_1893300245718287421nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ ( numera4658534427948366547nnreal @ V ) )
      = ( plus_p1859984266308609217nnreal @ ( times_1893300245718287421nnreal @ A @ ( numera4658534427948366547nnreal @ V ) ) @ ( times_1893300245718287421nnreal @ B @ ( numera4658534427948366547nnreal @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_716_distrib__left__numeral,axiom,
    ! [V: num,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( plus_p1441664204671982194l_num1 @ B @ C ) )
      = ( plus_p1441664204671982194l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ B ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_717_distrib__left__numeral,axiom,
    ! [V: num,B: extended_enat,C: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ B @ C ) )
      = ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ B ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_718_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_719_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_720_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_721_distrib__left__numeral,axiom,
    ! [V: num,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( plus_p1859984266308609217nnreal @ B @ C ) )
      = ( plus_p1859984266308609217nnreal @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ B ) @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_722_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_723_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_724_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_725_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_726_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_727_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_728_mult__minus1__right,axiom,
    ! [Z: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ Z @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
      = ( uminus1336558196688952754l_num1 @ Z ) ) ).

% mult_minus1_right
thf(fact_729_mult__minus1__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1_right
thf(fact_730_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_731_mult__minus1,axiom,
    ! [Z: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ Z )
      = ( uminus1336558196688952754l_num1 @ Z ) ) ).

% mult_minus1
thf(fact_732_mult__minus1,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1
thf(fact_733_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_734_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p1441664204671982194l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
      = ( uminus1336558196688952754l_num1 @ ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_735_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_736_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_737_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: numera4273646738625120315l_num1] :
      ( ( plus_p1441664204671982194l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ V ) ) @ ( plus_p1441664204671982194l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ W ) ) @ Y ) )
      = ( plus_p1441664204671982194l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_738_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_739_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_740_divide__minus1,axiom,
    ! [X: real] :
      ( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X ) ) ).

% divide_minus1
thf(fact_741_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_742_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_743_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_744_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_745_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ ( suc @ N ) )
      = zero_z7100319975126383169nnreal ) ).

% power_0_Suc
thf(fact_746_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( suc @ N ) )
      = zero_z5237406670263579293d_enat ) ).

% power_0_Suc
thf(fact_747_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_748_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_749_of__nat__0,axiom,
    ( ( semiri6283507881447550617nnreal @ zero_zero_nat )
    = zero_z7100319975126383169nnreal ) ).

% of_nat_0
thf(fact_750_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_751_of__nat__0,axiom,
    ( ( semiri4216267220026989637d_enat @ zero_zero_nat )
    = zero_z5237406670263579293d_enat ) ).

% of_nat_0
thf(fact_752_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_753_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_754_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_z7100319975126383169nnreal
        = ( semiri6283507881447550617nnreal @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_755_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_756_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_z5237406670263579293d_enat
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_757_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_758_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_759_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri6283507881447550617nnreal @ M )
        = zero_z7100319975126383169nnreal )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_760_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_761_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri4216267220026989637d_enat @ M )
        = zero_z5237406670263579293d_enat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_762_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_763_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_764_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_765_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ ( numeral_numeral_nat @ K ) )
      = zero_z7100319975126383169nnreal ) ).

% power_zero_numeral
thf(fact_766_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( numeral_numeral_nat @ K ) )
      = zero_z5237406670263579293d_enat ) ).

% power_zero_numeral
thf(fact_767_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_768_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_769_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_neg_numeral
thf(fact_770_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_neg_numeral
thf(fact_771_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_772_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_773_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_774_power__Suc0__right,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( power_6007165696250533058nnreal @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_775_power__Suc0__right,axiom,
    ! [A: extended_enat] :
      ( ( power_8040749407984259932d_enat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_776_abs__power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_777_abs__power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_778_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_779_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_780_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_781_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_782_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_783_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5816564918971239084l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) )
      = ( uminus1336558196688952754l_num1 @ ( neg_nu5816564918971239084l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_784_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_785_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_786_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_787_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_788_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_789_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_790_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_791_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_792_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_793_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_794_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_795_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_796_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_797_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_798_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p1441664204671982194l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ one_on7795324986448017462l_num1 )
    = zero_z2241845390563828978l_num1 ) ).

% add_neg_numeral_special(8)
thf(fact_799_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_800_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_801_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
    = zero_z2241845390563828978l_num1 ) ).

% add_neg_numeral_special(7)
thf(fact_802_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_803_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_804_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_805_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_806_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_le3935885782089961368nnreal @ ( semiri6283507881447550617nnreal @ M ) @ zero_z7100319975126383169nnreal )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_807_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_808_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_809_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_810_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_811_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ ( numera7754357348821619680l_num1 @ N ) )
      = ( numera7754357348821619680l_num1 @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_812_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_813_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_814_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_815_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_816_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N ) )
      = ( numera4658534427948366547nnreal @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_817_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ N ) @ one_on7795324986448017462l_num1 )
      = ( numera7754357348821619680l_num1 @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_818_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_819_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_820_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_821_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_822_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ N ) @ one_on2969667320475766781nnreal )
      = ( numera4658534427948366547nnreal @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_823_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_824_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_825_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_826_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_827_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_828_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_829_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_830_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_831_left__minus__one__mult__self,axiom,
    ! [N: nat,A: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( power_1002146276965246001l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ N ) @ ( times_2938166955517408246l_num1 @ ( power_1002146276965246001l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_832_left__minus__one__mult__self,axiom,
    ! [N: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_833_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_834_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_2938166955517408246l_num1 @ ( power_1002146276965246001l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ N ) @ ( power_1002146276965246001l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ N ) )
      = one_on7795324986448017462l_num1 ) ).

% minus_one_mult_self
thf(fact_835_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_836_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_837_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5667362542588693146l_num1 @ ( suc @ M ) )
      = ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ ( semiri5667362542588693146l_num1 @ M ) ) ) ).

% of_nat_Suc
thf(fact_838_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_839_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_840_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri6283507881447550617nnreal @ ( suc @ M ) )
      = ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( semiri6283507881447550617nnreal @ M ) ) ) ).

% of_nat_Suc
thf(fact_841_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_842_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri4216267220026989637d_enat @ ( suc @ M ) )
      = ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( semiri4216267220026989637d_enat @ M ) ) ) ).

% of_nat_Suc
thf(fact_843_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_844_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
      = ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_845_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_846_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_847_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ M ) ) @ ( numera7754357348821619680l_num1 @ N ) )
      = ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_848_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_849_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_850_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ N ) ) )
      = ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_851_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_852_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_853_semiring__norm_I169_J,axiom,
    ! [V: num,W: num,Y: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Y ) )
      = ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(169)
thf(fact_854_semiring__norm_I169_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(169)
thf(fact_855_semiring__norm_I169_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(169)
thf(fact_856_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ W ) ) @ Y ) )
      = ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_857_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_858_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_859_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: numera4273646738625120315l_num1] :
      ( ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ W ) ) @ Y ) )
      = ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_860_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_861_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_862_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_863_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_864_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_865_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_866_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_867_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_868_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_869_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_870_one__add__one,axiom,
    ( ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ one_on7795324986448017462l_num1 )
    = ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_871_one__add__one,axiom,
    ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
    = ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_872_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_873_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_874_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_875_one__add__one,axiom,
    ( ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ one_on2969667320475766781nnreal )
    = ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_876_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_877_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_878_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_879_zero__eq__power2,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_z7100319975126383169nnreal )
      = ( A = zero_z7100319975126383169nnreal ) ) ).

% zero_eq_power2
thf(fact_880_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_881_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_882_Suc__0__div__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
      = zero_zero_nat ) ).

% Suc_0_div_numeral(2)
thf(fact_883_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_884_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_885_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_886_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_887_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_888_power2__eq__iff__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_889_power2__eq__iff__nonneg,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_890_power2__eq__iff__nonneg,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_891_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_892_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_893_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p1441664204671982194l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
    = ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_894_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_895_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_896_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_897_sum__power2__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_898_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_899_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_900_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_901_dbl__simps_I4_J,axiom,
    ( ( neg_nu5816564918971239084l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
    = ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_902_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_903_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_904_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_905_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_906_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_907_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_908_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_909_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_910_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_911_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_912_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_913_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_914_zero__reorient,axiom,
    ! [X: extended_enat] :
      ( ( zero_z5237406670263579293d_enat = X )
      = ( X = zero_z5237406670263579293d_enat ) ) ).

% zero_reorient
thf(fact_915_zero__reorient,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( zero_z7100319975126383169nnreal = X )
      = ( X = zero_z7100319975126383169nnreal ) ) ).

% zero_reorient
thf(fact_916_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_917_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_918_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_919_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_920_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_921_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_922_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_923_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_924_add_Oleft__commute,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_925_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_926_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_927_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_928_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_929_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_930_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_931_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_932_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_933_add_Ocomm__neutral,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
      = A ) ).

% add.comm_neutral
thf(fact_934_add_Ocomm__neutral,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ A @ zero_z7100319975126383169nnreal )
      = A ) ).

% add.comm_neutral
thf(fact_935_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_936_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_937_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_938_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_939_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_940_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_941_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_942_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_943_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_944_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_945_add_Ocommute,axiom,
    ( plus_p3455044024723400733d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] : ( plus_p3455044024723400733d_enat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_946_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_947_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_948_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_949_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_950_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_951_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_952_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_953_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_954_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_955_add_Oassoc,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
      = ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% add.assoc
thf(fact_956_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_957_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_958_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_959_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_960_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_961_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_962_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_963_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_964_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_965_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ zero_z7100319975126383169nnreal @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_966_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_967_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_968_group__cancel_Oadd2,axiom,
    ! [B3: extended_enat,K: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( B3
        = ( plus_p3455044024723400733d_enat @ K @ B ) )
     => ( ( plus_p3455044024723400733d_enat @ A @ B3 )
        = ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_969_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_970_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_971_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_972_group__cancel_Oadd1,axiom,
    ! [A2: extended_enat,K: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( A2
        = ( plus_p3455044024723400733d_enat @ K @ A ) )
     => ( ( plus_p3455044024723400733d_enat @ A2 @ B )
        = ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_973_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_974_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_975_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_976_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_p3455044024723400733d_enat @ I @ K )
        = ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_977_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_978_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_979_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_980_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
      = ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_981_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_982_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_983_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_984_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_985_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_986_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_987_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_988_zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_989_abs__zmult__eq__1,axiom,
    ! [M: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_990_add__nonpos__eq__0__iff,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ X @ zero_z7100319975126383169nnreal )
     => ( ( ord_le3935885782089961368nnreal @ Y @ zero_z7100319975126383169nnreal )
       => ( ( ( plus_p1859984266308609217nnreal @ X @ Y )
            = zero_z7100319975126383169nnreal )
          = ( ( X = zero_z7100319975126383169nnreal )
            & ( Y = zero_z7100319975126383169nnreal ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_991_add__nonpos__eq__0__iff,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ zero_z5237406670263579293d_enat )
     => ( ( ord_le2932123472753598470d_enat @ Y @ zero_z5237406670263579293d_enat )
       => ( ( ( plus_p3455044024723400733d_enat @ X @ Y )
            = zero_z5237406670263579293d_enat )
          = ( ( X = zero_z5237406670263579293d_enat )
            & ( Y = zero_z5237406670263579293d_enat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_992_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_993_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_994_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_995_add__nonneg__eq__0__iff,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ X )
     => ( ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ Y )
       => ( ( ( plus_p1859984266308609217nnreal @ X @ Y )
            = zero_z7100319975126383169nnreal )
          = ( ( X = zero_z7100319975126383169nnreal )
            & ( Y = zero_z7100319975126383169nnreal ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_996_add__nonneg__eq__0__iff,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ X )
     => ( ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ Y )
       => ( ( ( plus_p3455044024723400733d_enat @ X @ Y )
            = zero_z5237406670263579293d_enat )
          = ( ( X = zero_z5237406670263579293d_enat )
            & ( Y = zero_z5237406670263579293d_enat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_997_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_998_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_999_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1000_add__nonpos__nonpos,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ zero_z7100319975126383169nnreal )
     => ( ( ord_le3935885782089961368nnreal @ B @ zero_z7100319975126383169nnreal )
       => ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ zero_z7100319975126383169nnreal ) ) ) ).

% add_nonpos_nonpos
thf(fact_1001_add__nonpos__nonpos,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ zero_z5237406670263579293d_enat )
     => ( ( ord_le2932123472753598470d_enat @ B @ zero_z5237406670263579293d_enat )
       => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ zero_z5237406670263579293d_enat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1002_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_1003_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1004_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_1005_add__nonneg__nonneg,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ A )
     => ( ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ B )
       => ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1006_add__nonneg__nonneg,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ A )
     => ( ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ B )
       => ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1007_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1008_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1009_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1010_add__increasing2,axiom,
    ! [C: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ C )
     => ( ( ord_le3935885782089961368nnreal @ B @ A )
       => ( ord_le3935885782089961368nnreal @ B @ ( plus_p1859984266308609217nnreal @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1011_add__increasing2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ C )
     => ( ( ord_le2932123472753598470d_enat @ B @ A )
       => ( ord_le2932123472753598470d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1012_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1013_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1014_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1015_add__decreasing2,axiom,
    ! [C: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ C @ zero_z7100319975126383169nnreal )
     => ( ( ord_le3935885782089961368nnreal @ A @ B )
       => ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1016_add__decreasing2,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ zero_z5237406670263579293d_enat )
     => ( ( ord_le2932123472753598470d_enat @ A @ B )
       => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1017_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1018_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1019_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1020_add__increasing,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ zero_z7100319975126383169nnreal @ A )
     => ( ( ord_le3935885782089961368nnreal @ B @ C )
       => ( ord_le3935885782089961368nnreal @ B @ ( plus_p1859984266308609217nnreal @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1021_add__increasing,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ A )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ord_le2932123472753598470d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1022_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1023_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1024_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1025_add__decreasing,axiom,
    ! [A: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ zero_z7100319975126383169nnreal )
     => ( ( ord_le3935885782089961368nnreal @ C @ B )
       => ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1026_add__decreasing,axiom,
    ! [A: extended_enat,C: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ zero_z5237406670263579293d_enat )
     => ( ( ord_le2932123472753598470d_enat @ C @ B )
       => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1027_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1028_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1029_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1030_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_1031_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_1032_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_1033_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N3: nat] :
            ( X
           != ( suc @ N3 ) ) ) ).

% list_decode.cases
thf(fact_1034_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_1035_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1036_set__plus__elim,axiom,
    ! [X: extended_enat,A2: set_Extended_enat,B3: set_Extended_enat] :
      ( ( member_Extended_enat @ X @ ( plus_p3482335003337316477d_enat @ A2 @ B3 ) )
     => ~ ! [A4: extended_enat,B4: extended_enat] :
            ( ( X
              = ( plus_p3455044024723400733d_enat @ A4 @ B4 ) )
           => ( ( member_Extended_enat @ A4 @ A2 )
             => ~ ( member_Extended_enat @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_1037_set__plus__elim,axiom,
    ! [X: real,A2: set_real,B3: set_real] :
      ( ( member_real @ X @ ( plus_plus_set_real @ A2 @ B3 ) )
     => ~ ! [A4: real,B4: real] :
            ( ( X
              = ( plus_plus_real @ A4 @ B4 ) )
           => ( ( member_real @ A4 @ A2 )
             => ~ ( member_real @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_1038_set__plus__elim,axiom,
    ! [X: num,A2: set_num,B3: set_num] :
      ( ( member_num @ X @ ( plus_plus_set_num @ A2 @ B3 ) )
     => ~ ! [A4: num,B4: num] :
            ( ( X
              = ( plus_plus_num @ A4 @ B4 ) )
           => ( ( member_num @ A4 @ A2 )
             => ~ ( member_num @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_1039_set__plus__elim,axiom,
    ! [X: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ X @ ( plus_plus_set_nat @ A2 @ B3 ) )
     => ~ ! [A4: nat,B4: nat] :
            ( ( X
              = ( plus_plus_nat @ A4 @ B4 ) )
           => ( ( member_nat @ A4 @ A2 )
             => ~ ( member_nat @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_1040_set__plus__elim,axiom,
    ! [X: int,A2: set_int,B3: set_int] :
      ( ( member_int @ X @ ( plus_plus_set_int @ A2 @ B3 ) )
     => ~ ! [A4: int,B4: int] :
            ( ( X
              = ( plus_plus_int @ A4 @ B4 ) )
           => ( ( member_int @ A4 @ A2 )
             => ~ ( member_int @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_1041_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_1042_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_1043_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_1044_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_1045_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_1046_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_1047_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_1048_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_1049_minus__divide__add__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z ) ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_1050_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_1051_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_1052_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_1053_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_1054_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_1055_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_1056_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_1057_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_1058_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_1059_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_1060_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_1061_sum__squares__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_1062_sum__squares__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_1063_sum__squares__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_1064_sum__squares__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_1065_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_1066_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_1067_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_1068_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_1069_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_1070_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_1071_int__cases2,axiom,
    ! [Z: int] :
      ( ! [N3: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% int_cases2
thf(fact_1072_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% not0_implies_Suc
thf(fact_1073_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_1074_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_1075_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1076_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1077_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X4: nat,Y3: nat] :
              ( ( P @ X4 @ Y3 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_1078_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_1079_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1080_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1081_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1082_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1083_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1084_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1085_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1086_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1087_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1088_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1089_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1090_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_1091_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_1092_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_1093_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_1094_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_1095_real__minus__mult__self__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_1096_int__cases,axiom,
    ! [Z: int] :
      ( ! [N3: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% int_cases
thf(fact_1097_int__of__nat__induct,axiom,
    ! [P: int > $o,Z: int] :
      ( ! [N3: nat] : ( P @ ( semiri1314217659103216013at_int @ N3 ) )
     => ( ! [N3: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) )
       => ( P @ Z ) ) ) ).

% int_of_nat_induct
thf(fact_1098_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1099_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1100_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_1101_Bernoulli__inequality,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).

% Bernoulli_inequality
thf(fact_1102_sum__le__prod1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ B @ one_one_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ A @ B ) ) ) ) ) ).

% sum_le_prod1
thf(fact_1103_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_1104_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_1105_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_1106_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_1107_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_1108_realpow__square__minus__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_1109_linear__plus__1__le__power,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).

% linear_plus_1_le_power
thf(fact_1110_triangle__lemma,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z )
         => ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
           => ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ Z ) ) ) ) ) ) ).

% triangle_lemma
thf(fact_1111_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q2: nat > $o] :
      ( ! [X4: nat > real] :
          ( ( P @ X4 )
         => ( P @ ( F @ X4 ) ) )
     => ( ! [X4: nat > real] :
            ( ( P @ X4 )
           => ! [I2: nat] :
                ( ( Q2 @ I2 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X4 @ I2 ) )
                  & ( ord_less_eq_real @ ( X4 @ I2 ) @ one_one_real ) ) ) )
       => ? [L2: ( nat > real ) > nat > nat] :
            ( ! [X3: nat > real,I3: nat] : ( ord_less_eq_nat @ ( L2 @ X3 @ I3 ) @ one_one_nat )
            & ! [X3: nat > real,I3: nat] :
                ( ( ( P @ X3 )
                  & ( Q2 @ I3 )
                  & ( ( X3 @ I3 )
                    = zero_zero_real ) )
               => ( ( L2 @ X3 @ I3 )
                  = zero_zero_nat ) )
            & ! [X3: nat > real,I3: nat] :
                ( ( ( P @ X3 )
                  & ( Q2 @ I3 )
                  & ( ( X3 @ I3 )
                    = one_one_real ) )
               => ( ( L2 @ X3 @ I3 )
                  = one_one_nat ) )
            & ! [X3: nat > real,I3: nat] :
                ( ( ( P @ X3 )
                  & ( Q2 @ I3 )
                  & ( ( L2 @ X3 @ I3 )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X3 @ I3 ) @ ( F @ X3 @ I3 ) ) )
            & ! [X3: nat > real,I3: nat] :
                ( ( ( P @ X3 )
                  & ( Q2 @ I3 )
                  & ( ( L2 @ X3 @ I3 )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F @ X3 @ I3 ) @ ( X3 @ I3 ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_1112_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1113_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1114_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_1115_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1116_set__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_1117_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_1118_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1119_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_1120_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_1121_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_1122_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_1123_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_1124_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_1125_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_1126_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_1127_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1128_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_1129_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1130_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1131_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_1132_imult__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_1133_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_1134_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_1135_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1136_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1137_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1138_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1139_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1140_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N5: nat] :
        ? [K2: nat] :
          ( N5
          = ( plus_plus_nat @ M5 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1141_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_1142_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_1143_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_1144_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_1145_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_1146_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1147_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_1148_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_1149_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_1150_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1151_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1152_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1153_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1154_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_1155_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_1156_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_1157_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_1158_set__bit__greater__eq,axiom,
    ! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).

% set_bit_greater_eq
thf(fact_1159_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1160_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1161_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1162_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1163_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N5: nat] : ( plus_plus_nat @ N5 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1164_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1165_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1166_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z5: int] :
        ? [N5: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N5 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1167_real__eq__0__iff__le__ge__0,axiom,
    ! [X: real] :
      ( ( X = zero_zero_real )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).

% real_eq_0_iff_le_ge_0
thf(fact_1168_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1169_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1170_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_1171_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_1172_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K3: int] :
              ( ( P @ K3 )
             => ( ( K3 != zero_zero_int )
               => ( P @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K3: int] :
                ( ( P @ K3 )
               => ( ( K3
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_1173_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_1174_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_1175_nat__add__1__add__1,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ one_one_nat )
      = ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% nat_add_1_add_1
thf(fact_1176_power__le__one__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
        = ( ( N = zero_zero_nat )
          | ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).

% power_le_one_iff
thf(fact_1177_numeral__eq__of__nat,axiom,
    ( numera4658534427948366547nnreal
    = ( ^ [A3: num] : ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ A3 ) ) ) ) ).

% numeral_eq_of_nat
thf(fact_1178_real__inverse__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ X ) @ one_one_real )
          = ( ( X = one_one_real )
            | ( X = zero_zero_real ) ) ) ) ) ).

% real_inverse_le_1_iff
thf(fact_1179_unset__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_1180_unset__bit__less__eq,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).

% unset_bit_less_eq
thf(fact_1181_sum__of__squares__ge__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) @ A ) @ B ) @ ( plus_p1859984266308609217nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_6007165696250533058nnreal @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_of_squares_ge_ennreal
thf(fact_1182_verit__eq__simplify_I9_J,axiom,
    ! [X32: num,Y32: num] :
      ( ( ( bit1 @ X32 )
        = ( bit1 @ Y32 ) )
      = ( X32 = Y32 ) ) ).

% verit_eq_simplify(9)
thf(fact_1183_semiring__norm_I90_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(90)
thf(fact_1184_semiring__norm_I89_J,axiom,
    ! [M: num,N: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N ) ) ).

% semiring_norm(89)
thf(fact_1185_semiring__norm_I88_J,axiom,
    ! [M: num,N: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N ) ) ).

% semiring_norm(88)
thf(fact_1186_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_1187_semiring__norm_I84_J,axiom,
    ! [N: num] :
      ( one
     != ( bit1 @ N ) ) ).

% semiring_norm(84)
thf(fact_1188_semiring__norm_I73_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(73)
thf(fact_1189_semiring__norm_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(9)
thf(fact_1190_semiring__norm_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(7)
thf(fact_1191_semiring__norm_I15_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).

% semiring_norm(15)
thf(fact_1192_semiring__norm_I14_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).

% semiring_norm(14)
thf(fact_1193_semiring__norm_I72_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(72)
thf(fact_1194_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_1195_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_1196_semiring__norm_I3_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% semiring_norm(3)
thf(fact_1197_semiring__norm_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).

% semiring_norm(4)
thf(fact_1198_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_1199_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_1200_semiring__norm_I10_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_1201_semiring__norm_I16_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_1202_Suc__0__div__numeral_I3_J,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) )
      = zero_zero_nat ) ).

% Suc_0_div_numeral(3)
thf(fact_1203_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_1204_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_1205_add__divide__distrib__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( divide4826598186094686858nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ C )
      = ( plus_p1859984266308609217nnreal @ ( divide4826598186094686858nnreal @ A @ C ) @ ( divide4826598186094686858nnreal @ B @ C ) ) ) ).

% add_divide_distrib_ennreal
thf(fact_1206_divide__right__mono__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B )
     => ( ord_le3935885782089961368nnreal @ ( divide4826598186094686858nnreal @ A @ C ) @ ( divide4826598186094686858nnreal @ B @ C ) ) ) ).

% divide_right_mono_ennreal
thf(fact_1207_forall__3,axiom,
    ( ( ^ [P2: numera6367994245245682809l_num1 > $o] :
        ! [X5: numera6367994245245682809l_num1] : ( P2 @ X5 ) )
    = ( ^ [P3: numera6367994245245682809l_num1 > $o] :
          ( ( P3 @ one_on7819281148064737470l_num1 )
          & ( P3 @ ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
          & ( P3 @ ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ) ) ).

% forall_3
thf(fact_1208_exhaust__3,axiom,
    ! [X: numera6367994245245682809l_num1] :
      ( ( X = one_on7819281148064737470l_num1 )
      | ( X
        = ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
      | ( X
        = ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ).

% exhaust_3
thf(fact_1209_forall__4,axiom,
    ( ( ^ [P2: numera4273646738625120315l_num1 > $o] :
        ! [X5: numera4273646738625120315l_num1] : ( P2 @ X5 ) )
    = ( ^ [P3: numera4273646738625120315l_num1 > $o] :
          ( ( P3 @ one_on7795324986448017462l_num1 )
          & ( P3 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
          & ( P3 @ ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
          & ( P3 @ ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ).

% forall_4
thf(fact_1210_exhaust__4,axiom,
    ! [X: numera4273646738625120315l_num1] :
      ( ( X = one_on7795324986448017462l_num1 )
      | ( X
        = ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
      | ( X
        = ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
      | ( X
        = ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% exhaust_4
thf(fact_1211_ennreal__divide__times,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ ( divide4826598186094686858nnreal @ A @ B ) @ C )
      = ( times_1893300245718287421nnreal @ A @ ( divide4826598186094686858nnreal @ C @ B ) ) ) ).

% ennreal_divide_times
thf(fact_1212_ennreal__times__divide,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( times_1893300245718287421nnreal @ A @ ( divide4826598186094686858nnreal @ B @ C ) )
      = ( divide4826598186094686858nnreal @ ( times_1893300245718287421nnreal @ A @ B ) @ C ) ) ).

% ennreal_times_divide
thf(fact_1213_verit__eq__simplify_I14_J,axiom,
    ! [X22: num,X32: num] :
      ( ( bit0 @ X22 )
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(14)
thf(fact_1214_verit__eq__simplify_I12_J,axiom,
    ! [X32: num] :
      ( one
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(12)
thf(fact_1215_num_Oexhaust,axiom,
    ! [Y: num] :
      ( ( Y != one )
     => ( ! [X23: num] :
            ( Y
           != ( bit0 @ X23 ) )
       => ~ ! [X33: num] :
              ( Y
             != ( bit1 @ X33 ) ) ) ) ).

% num.exhaust
thf(fact_1216_ennreal__mult__right__cong,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( ( A != zero_z7100319975126383169nnreal )
       => ( B = C ) )
     => ( ( times_1893300245718287421nnreal @ B @ A )
        = ( times_1893300245718287421nnreal @ C @ A ) ) ) ).

% ennreal_mult_right_cong
thf(fact_1217_ennreal__mult__left__cong,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
      ( ( ( A != zero_z7100319975126383169nnreal )
       => ( B = C ) )
     => ( ( times_1893300245718287421nnreal @ A @ B )
        = ( times_1893300245718287421nnreal @ A @ C ) ) ) ).

% ennreal_mult_left_cong
thf(fact_1218_power__mono__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
      ( ( ord_le3935885782089961368nnreal @ X @ Y )
     => ( ord_le3935885782089961368nnreal @ ( power_6007165696250533058nnreal @ X @ N ) @ ( power_6007165696250533058nnreal @ Y @ N ) ) ) ).

% power_mono_ennreal
thf(fact_1219_eval__nat__numeral_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_1220_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_1221_Suc3__eq__add__3,axiom,
    ! [N: nat] :
      ( ( suc @ ( suc @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).

% Suc3_eq_add_3
thf(fact_1222_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_div_eq_add3_div
thf(fact_1223_neq__4k1__k43,axiom,
    ! [M: nat,N: nat,M2: nat,N4: nat] :
      ( ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) )
     != ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ M2 ) ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).

% neq_4k1_k43
thf(fact_1224_one__divide__one__divide__ennreal,axiom,
    ! [C: extend8495563244428889912nnreal] :
      ( ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ C ) )
      = C ) ).

% one_divide_one_divide_ennreal
thf(fact_1225_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1226_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_1227_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1228_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_1229_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_1230_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_1231_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_1232_ennreal__zero__divide,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( divide4826598186094686858nnreal @ zero_z7100319975126383169nnreal @ X )
      = zero_z7100319975126383169nnreal ) ).

% ennreal_zero_divide
thf(fact_1233_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1234_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_1235_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1236_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1237_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1238_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1239_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1240_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1241_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1242_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1243_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1244_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_1245_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_1246_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1247_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_1248_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1249_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1250_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1251_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1252_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1253_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1254_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N3 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_1255_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1256_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1257_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1258_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N5: nat] :
          ( ( ord_less_nat @ M5 @ N5 )
          | ( M5 = N5 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1259_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1260_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N5: nat] :
          ( ( ord_less_eq_nat @ M5 @ N5 )
          & ( M5 != N5 ) ) ) ) ).

% nat_less_le
thf(fact_1261_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_1262_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_1263_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_1264_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_1265_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1266_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1267_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
         => ( ord_less_nat @ ( F @ M3 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1268_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1269_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N5: nat] :
        ? [K2: nat] :
          ( N5
          = ( suc @ ( plus_plus_nat @ M5 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1270_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2

% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_eq_real @ ( abs_abs_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( a @ n ) ) @ ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ n ) ) ) ) @ ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ n ) ) ).

%------------------------------------------------------------------------------