TPTP Problem File: SLH0916^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Khovanskii_Theorem/0008_Khovanskii/prob_00527_018279__13474138_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1434 ( 864 unt; 163 typ;   0 def)
%            Number of atoms       : 2692 (1583 equ;   0 cnn)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives : 8396 ( 288   ~;  33   |; 112   &;7131   @)
%                                         (   0 <=>; 832  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   29 (   5 avg)
%            Number of types       :   18 (  17 usr)
%            Number of type conns  :  375 ( 375   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  149 ( 146 usr;  23 con; 0-8 aty)
%            Number of variables   : 2751 (  95   ^;2604   !;  52   ?;2751   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:14:24.939
%------------------------------------------------------------------------------
% Could-be-implicit typings (17)
thf(ty_n_t__List__Olist_It__Extended____Nonnegative____Real__Oennreal_J,type,
    list_E5688521862016077384nnreal: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    list_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Int__Oint_J_J,type,
    list_list_int: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
    extend8495563244428889912nnreal: $tType ).

thf(ty_n_t__List__Olist_It__Extended____Nat__Oenat_J,type,
    list_Extended_enat: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
    list_num: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (146)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nonnegative____Real__Oennreal,type,
    minus_8429688780609304081nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__List__Olist_It__Extended____Nat__Oenat_J,type,
    minus_388785356899630291d_enat: list_Extended_enat > list_Extended_enat > list_Extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__List__Olist_It__Int__Oint_J,type,
    minus_minus_list_int: list_int > list_int > list_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    minus_3911745200923244873st_nat: list_list_nat > list_list_nat > list_list_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__List__Olist_It__Nat__Onat_J,type,
    minus_minus_list_nat: list_nat > list_nat > list_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__List__Olist_It__Real__Oreal_J,type,
    minus_9191544370096132885t_real: list_real > list_real > list_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
    one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
    plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__List__Olist_It__Int__Oint_J,type,
    plus_plus_list_int: list_int > list_int > list_int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    plus_p2116291331692525561st_nat: list_list_nat > list_list_nat > list_list_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__List__Olist_It__Nat__Onat_J,type,
    plus_plus_list_nat: list_nat > list_nat > list_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__List__Olist_It__Num__Onum_J,type,
    plus_plus_list_num: list_num > list_num > list_num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__List__Olist_It__Real__Oreal_J,type,
    plus_plus_list_real: list_real > list_real > list_real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
    zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001t__Nat__Onat_001t__Extended____Nat__Oenat,type,
    groups1549203402269857401d_enat: ( nat > extended_enat ) > extended_enat > list_nat > extended_enat ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001t__Nat__Onat_001t__Extended____Nonnegative____Real__Oennreal,type,
    groups135001740595899237nnreal: ( nat > extend8495563244428889912nnreal ) > extend8495563244428889912nnreal > list_nat > extend8495563244428889912nnreal ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001t__Nat__Onat_001t__Int__Oint,type,
    groups7485877704341954137at_int: ( nat > int ) > int > list_nat > int ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups7488368174851004413at_nat: ( nat > nat ) > nat > list_nat > nat ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups3482786445295563865t_real: ( nat > real ) > real > list_nat > real ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Extended____Nat__Oenat,type,
    groups5145338220374282879d_enat: list_Extended_enat > extended_enat ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Extended____Nonnegative____Real__Oennreal,type,
    groups2217173247284669407nnreal: list_E5688521862016077384nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Int__Oint,type,
    groups4559388385066561235st_int: list_int > int ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
    groups4561878855575611511st_nat: list_nat > nat ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Real__Oreal,type,
    groups6723090944982001619t_real: list_real > real ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Khovanskii_OKhovanskii_Olength__sum__set,type,
    length_sum_set: nat > nat > set_list_nat ).

thf(sy_c_Khovanskii_OKhovanskii_Olist__incr,type,
    list_incr: nat > list_nat > list_nat ).

thf(sy_c_Khovanskii_Opointwise__le,type,
    pointwise_le: list_nat > list_nat > $o ).

thf(sy_c_Khovanskii_Opointwise__less,type,
    pointwise_less: list_nat > list_nat > $o ).

thf(sy_c_List_Ogen__length_001t__Int__Oint,type,
    gen_length_int: nat > list_int > nat ).

thf(sy_c_List_Ogen__length_001t__Nat__Onat,type,
    gen_length_nat: nat > list_nat > nat ).

thf(sy_c_List_Olast_001t__Int__Oint,type,
    last_int: list_int > int ).

thf(sy_c_List_Olast_001t__Nat__Onat,type,
    last_nat: list_nat > nat ).

thf(sy_c_List_Olist_OCons_001t__Extended____Nat__Oenat,type,
    cons_Extended_enat: extended_enat > list_Extended_enat > list_Extended_enat ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Int__Oint_J,type,
    cons_list_int: list_int > list_list_int > list_list_int ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Nat__Onat_J,type,
    cons_list_nat: list_nat > list_list_nat > list_list_nat ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Num__Onum,type,
    cons_num: num > list_num > list_num ).

thf(sy_c_List_Olist_OCons_001t__Real__Oreal,type,
    cons_real: real > list_real > list_real ).

thf(sy_c_List_Olist_ONil_001t__Extended____Nat__Oenat,type,
    nil_Extended_enat: list_Extended_enat ).

thf(sy_c_List_Olist_ONil_001t__Extended____Nonnegative____Real__Oennreal,type,
    nil_Ex5797981321109338546nnreal: list_E5688521862016077384nnreal ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Int__Oint_J,type,
    nil_list_int: list_list_int ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Nat__Onat_J,type,
    nil_list_nat: list_list_nat ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001t__Real__Oreal,type,
    nil_real: list_real ).

thf(sy_c_List_Olist__ex1_001t__Nat__Onat,type,
    list_ex1_nat: ( nat > $o ) > list_nat > $o ).

thf(sy_c_List_Olist__update_001t__Int__Oint,type,
    list_update_int: list_int > nat > int > list_int ).

thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
    list_update_nat: list_nat > nat > nat > list_nat ).

thf(sy_c_List_Omember_001t__Int__Oint,type,
    member_int: list_int > int > $o ).

thf(sy_c_List_Omember_001t__Nat__Onat,type,
    member_nat: list_nat > nat > $o ).

thf(sy_c_List_On__lists_001t__Nat__Onat,type,
    n_lists_nat: nat > list_nat > list_list_nat ).

thf(sy_c_List_Onth_001t__Extended____Nat__Oenat,type,
    nth_Extended_enat: list_Extended_enat > nat > extended_enat ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__List__Olist_It__Nat__Onat_J,type,
    nth_list_nat: list_list_nat > nat > list_nat ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Num__Onum,type,
    nth_num: list_num > nat > num ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Oproduct__lists_001t__Nat__Onat,type,
    product_lists_nat: list_list_nat > list_list_nat ).

thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
    replicate_int: nat > int > list_int ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Osubseqs_001t__Nat__Onat,type,
    subseqs_nat: list_nat > list_list_nat ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
    semiri4216267220026989637d_enat: nat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nonnegative____Real__Oennreal,type,
    semiri6283507881447550617nnreal: nat > extend8495563244428889912nnreal ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Extended____Nat__Oenat_J,type,
    size_s3941691890525107288d_enat: list_Extended_enat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    size_s3023201423986296836st_nat: list_list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
    size_size_list_num: list_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nonnegative____Real__Oennreal,type,
    numera4658534427948366547nnreal: num > extend8495563244428889912nnreal ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Extended____Nat__Oenat_J,type,
    ord_le4445849522347344536d_enat: list_Extended_enat > list_Extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Int__Oint_J,type,
    ord_less_list_int: list_int > list_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Nat__Onat_J,type,
    ord_less_list_nat: list_nat > list_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Num__Onum_J,type,
    ord_less_list_num: list_num > list_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__List__Olist_It__Real__Oreal_J,type,
    ord_less_list_real: list_real > list_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_n,type,
    n: nat ).

thf(sy_v_r,type,
    r: nat ).

thf(sy_v_x____,type,
    x: list_nat ).

% Relevant facts (1265)
thf(fact_0_that_I2_J,axiom,
    ( r
    = ( size_size_list_nat @ x ) ) ).

% that(2)
thf(fact_1_replicate__eq__replicate,axiom,
    ! [M: nat,X: nat,N: nat,Y: nat] :
      ( ( ( replicate_nat @ M @ X )
        = ( replicate_nat @ N @ Y ) )
      = ( ( M = N )
        & ( ( M != zero_zero_nat )
         => ( X = Y ) ) ) ) ).

% replicate_eq_replicate
thf(fact_2_zero__natural_Orsp,axiom,
    zero_zero_nat = zero_zero_nat ).

% zero_natural.rsp
thf(fact_3_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_4_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_5_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_6_zero__reorient,axiom,
    ! [X: extended_enat] :
      ( ( zero_z5237406670263579293d_enat = X )
      = ( X = zero_z5237406670263579293d_enat ) ) ).

% zero_reorient
thf(fact_7_zero__reorient,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( zero_z7100319975126383169nnreal = X )
      = ( X = zero_z7100319975126383169nnreal ) ) ).

% zero_reorient
thf(fact_8_that_I1_J,axiom,
    ( ( groups4561878855575611511st_nat @ x )
    = ( suc @ n ) ) ).

% that(1)
thf(fact_9_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_10_arsinh__0,axiom,
    ( ( arsinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% arsinh_0
thf(fact_11_artanh__0,axiom,
    ( ( artanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% artanh_0
thf(fact_12_last__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( N != zero_zero_nat )
     => ( ( last_nat @ ( replicate_nat @ N @ X ) )
        = X ) ) ).

% last_replicate
thf(fact_13_mask__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% mask_0
thf(fact_14_mask__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
    = zero_zero_int ) ).

% mask_0
thf(fact_15_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2002935070580805687sk_nat @ N )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_16_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2000444600071755411sk_int @ N )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_17_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_18_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_19_length__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( size_size_list_nat @ ( replicate_nat @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_20_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_21_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_22_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs: list_nat] :
      ( ( size_size_list_nat @ Xs )
      = N ) ).

% Ex_list_of_length
thf(fact_23_neq__if__length__neq,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
       != ( size_size_list_nat @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_24_size__neq__size__imp__neq,axiom,
    ! [X: list_nat,Y: list_nat] :
      ( ( ( size_size_list_nat @ X )
       != ( size_size_list_nat @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_25_size__neq__size__imp__neq,axiom,
    ! [X: char,Y: char] :
      ( ( ( size_size_char @ X )
       != ( size_size_char @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_26_size__neq__size__imp__neq,axiom,
    ! [X: num,Y: num] :
      ( ( ( size_size_num @ X )
       != ( size_size_num @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_27_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_28_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_29_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_30_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_31_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_32_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_33_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_34_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_35_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_36_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_37_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_38_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_39_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N2: nat] :
            ( ~ ( P @ N2 )
            & ( P @ ( suc @ N2 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_40_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N2: nat] :
            ( X
           != ( suc @ N2 ) ) ) ).

% list_decode.cases
thf(fact_41_zero__pointwise__le__iff,axiom,
    ! [R: nat,X: list_nat] :
      ( ( pointwise_le @ ( replicate_nat @ R @ zero_zero_nat ) @ X )
      = ( ( size_size_list_nat @ X )
        = R ) ) ).

% zero_pointwise_le_iff
thf(fact_42_length__code,axiom,
    ( size_size_list_nat
    = ( gen_length_nat @ zero_zero_nat ) ) ).

% length_code
thf(fact_43_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_44_mask__Suc__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% mask_Suc_0
thf(fact_45_mask__Suc__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% mask_Suc_0
thf(fact_46_char_Osize__gen,axiom,
    ! [X1: $o,X2: $o,X32: $o,X4: $o,X5: $o,X6: $o,X7: $o,X8: $o] :
      ( ( size_char @ ( char2 @ X1 @ X2 @ X32 @ X4 @ X5 @ X6 @ X7 @ X8 ) )
      = zero_zero_nat ) ).

% char.size_gen
thf(fact_47_mem__Collect__eq,axiom,
    ! [A: list_nat,P: list_nat > $o] :
      ( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_48_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_49_Collect__mem__eq,axiom,
    ! [A2: set_list_nat] :
      ( ( collect_list_nat
        @ ^ [X9: list_nat] : ( member_list_nat @ X9 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_50_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X9: real] : ( member_real @ X9 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_51_replicate__empty,axiom,
    ! [N: nat,X: nat] :
      ( ( ( replicate_nat @ N @ X )
        = nil_nat )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_52_empty__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( nil_nat
        = ( replicate_nat @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_53_char_Oinject,axiom,
    ! [X1: $o,X2: $o,X32: $o,X4: $o,X5: $o,X6: $o,X7: $o,X8: $o,Y1: $o,Y2: $o,Y32: $o,Y4: $o,Y5: $o,Y6: $o,Y7: $o,Y8: $o] :
      ( ( ( char2 @ X1 @ X2 @ X32 @ X4 @ X5 @ X6 @ X7 @ X8 )
        = ( char2 @ Y1 @ Y2 @ Y32 @ Y4 @ Y5 @ Y6 @ Y7 @ Y8 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 )
        & ( X32 = Y32 )
        & ( X4 = Y4 )
        & ( X5 = Y5 )
        & ( X6 = Y6 )
        & ( X7 = Y7 )
        & ( X8 = Y8 ) ) ) ).

% char.inject
thf(fact_54_pointwise__le__refl,axiom,
    ! [X: list_nat] : ( pointwise_le @ X @ X ) ).

% pointwise_le_refl
thf(fact_55_pointwise__le__Nil2,axiom,
    ! [X: list_nat] :
      ( ( pointwise_le @ X @ nil_nat )
      = ( X = nil_nat ) ) ).

% pointwise_le_Nil2
thf(fact_56_pointwise__le__Nil,axiom,
    ! [X: list_nat] :
      ( ( pointwise_le @ nil_nat @ X )
      = ( X = nil_nat ) ) ).

% pointwise_le_Nil
thf(fact_57_length__0__conv,axiom,
    ! [Xs2: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = zero_zero_nat )
      = ( Xs2 = nil_nat ) ) ).

% length_0_conv
thf(fact_58_gen__length__code_I1_J,axiom,
    ! [N: nat] :
      ( ( gen_length_nat @ N @ nil_nat )
      = N ) ).

% gen_length_code(1)
thf(fact_59_char_Oexhaust,axiom,
    ! [Y: char] :
      ~ ! [X12: $o,X22: $o,X33: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
          ( Y
         != ( char2 @ X12 @ X22 @ X33 @ X42 @ X52 @ X62 @ X72 @ X82 ) ) ).

% char.exhaust
thf(fact_60_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_61_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_62_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_63_one__reorient,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( one_on2969667320475766781nnreal = X )
      = ( X = one_on2969667320475766781nnreal ) ) ).

% one_reorient
thf(fact_64_one__reorient,axiom,
    ! [X: extended_enat] :
      ( ( one_on7984719198319812577d_enat = X )
      = ( X = one_on7984719198319812577d_enat ) ) ).

% one_reorient
thf(fact_65_pointwise__le__antisym,axiom,
    ! [X: list_nat,Y: list_nat] :
      ( ( pointwise_le @ X @ Y )
     => ( ( pointwise_le @ Y @ X )
       => ( X = Y ) ) ) ).

% pointwise_le_antisym
thf(fact_66_pointwise__le__trans,axiom,
    ! [X: list_nat,Y: list_nat,Z: list_nat] :
      ( ( pointwise_le @ X @ Y )
     => ( ( pointwise_le @ Y @ Z )
       => ( pointwise_le @ X @ Z ) ) ) ).

% pointwise_le_trans
thf(fact_67_char_Osize_I2_J,axiom,
    ! [X1: $o,X2: $o,X32: $o,X4: $o,X5: $o,X6: $o,X7: $o,X8: $o] :
      ( ( size_size_char @ ( char2 @ X1 @ X2 @ X32 @ X4 @ X5 @ X6 @ X7 @ X8 ) )
      = zero_zero_nat ) ).

% char.size(2)
thf(fact_68_list_Osize_I3_J,axiom,
    ( ( size_size_list_nat @ nil_nat )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_69_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_70_replicate__0,axiom,
    ! [X: nat] :
      ( ( replicate_nat @ zero_zero_nat @ X )
      = nil_nat ) ).

% replicate_0
thf(fact_71_sum__list_ONil,axiom,
    ( ( groups4559388385066561235st_int @ nil_int )
    = zero_zero_int ) ).

% sum_list.Nil
thf(fact_72_sum__list_ONil,axiom,
    ( ( groups6723090944982001619t_real @ nil_real )
    = zero_zero_real ) ).

% sum_list.Nil
thf(fact_73_sum__list_ONil,axiom,
    ( ( groups5145338220374282879d_enat @ nil_Extended_enat )
    = zero_z5237406670263579293d_enat ) ).

% sum_list.Nil
thf(fact_74_sum__list_ONil,axiom,
    ( ( groups2217173247284669407nnreal @ nil_Ex5797981321109338546nnreal )
    = zero_z7100319975126383169nnreal ) ).

% sum_list.Nil
thf(fact_75_sum__list_ONil,axiom,
    ( ( groups4561878855575611511st_nat @ nil_nat )
    = zero_zero_nat ) ).

% sum_list.Nil
thf(fact_76_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_77_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_78_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_79_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_80_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_81_zero__neq__one,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_neq_one
thf(fact_82_zero__neq__one,axiom,
    zero_z7100319975126383169nnreal != one_on2969667320475766781nnreal ).

% zero_neq_one
thf(fact_83_list__ex1__simps_I1_J,axiom,
    ! [P: nat > $o] :
      ~ ( list_ex1_nat @ P @ nil_nat ) ).

% list_ex1_simps(1)
thf(fact_84_powr__zero__eq__one,axiom,
    ! [X: real] :
      ( ( ( X = zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = zero_zero_real ) )
      & ( ( X != zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = one_one_real ) ) ) ).

% powr_zero_eq_one
thf(fact_85_length__greater__0__conv,axiom,
    ! [Xs2: list_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs2 ) )
      = ( Xs2 != nil_nat ) ) ).

% length_greater_0_conv
thf(fact_86_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_87_signed__take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_88_member__rec_I2_J,axiom,
    ! [Y: nat] :
      ~ ( member_nat @ nil_nat @ Y ) ).

% member_rec(2)
thf(fact_89_not__gr__zero,axiom,
    ! [N: extend8495563244428889912nnreal] :
      ( ( ~ ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ N ) )
      = ( N = zero_z7100319975126383169nnreal ) ) ).

% not_gr_zero
thf(fact_90_not__gr__zero,axiom,
    ! [N: extended_enat] :
      ( ( ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% not_gr_zero
thf(fact_91_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_92_mask__nat__positive__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% mask_nat_positive_iff
thf(fact_93_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_94_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_95_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_96_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_97_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_98_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_99_powr__eq__0__iff,axiom,
    ! [W: real,Z: real] :
      ( ( ( powr_real @ W @ Z )
        = zero_zero_real )
      = ( W = zero_zero_real ) ) ).

% powr_eq_0_iff
thf(fact_100_powr__0,axiom,
    ! [Z: real] :
      ( ( powr_real @ zero_zero_real @ Z )
      = zero_zero_real ) ).

% powr_0
thf(fact_101_powr__one__eq__one,axiom,
    ! [A: real] :
      ( ( powr_real @ one_one_real @ A )
      = one_one_real ) ).

% powr_one_eq_one
thf(fact_102_signed__take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_103_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_104_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_105_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_106_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_107_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_108_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_109_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_110_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
              & ~ ( P @ M3 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_111_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
             => ( P @ M3 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_112_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_113_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_114_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_115_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_116_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_117_lift__Suc__mono__less,axiom,
    ! [F: nat > extended_enat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_le72135733267957522d_enat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_le72135733267957522d_enat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_118_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_119_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_num @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_120_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_121_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_122_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > extended_enat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_le72135733267957522d_enat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_le72135733267957522d_enat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_123_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_124_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_125_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_126_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_127_zero__less__iff__neq__zero,axiom,
    ! [N: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ N )
      = ( N != zero_z7100319975126383169nnreal ) ) ).

% zero_less_iff_neq_zero
thf(fact_128_zero__less__iff__neq__zero,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
      = ( N != zero_z5237406670263579293d_enat ) ) ).

% zero_less_iff_neq_zero
thf(fact_129_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_130_gr__implies__not__zero,axiom,
    ! [M: extend8495563244428889912nnreal,N: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ M @ N )
     => ( N != zero_z7100319975126383169nnreal ) ) ).

% gr_implies_not_zero
thf(fact_131_gr__implies__not__zero,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ M @ N )
     => ( N != zero_z5237406670263579293d_enat ) ) ).

% gr_implies_not_zero
thf(fact_132_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_133_not__less__zero,axiom,
    ! [N: extend8495563244428889912nnreal] :
      ~ ( ord_le7381754540660121996nnreal @ N @ zero_z7100319975126383169nnreal ) ).

% not_less_zero
thf(fact_134_not__less__zero,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).

% not_less_zero
thf(fact_135_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_136_gr__zeroI,axiom,
    ! [N: extend8495563244428889912nnreal] :
      ( ( N != zero_z7100319975126383169nnreal )
     => ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ N ) ) ).

% gr_zeroI
thf(fact_137_gr__zeroI,axiom,
    ! [N: extended_enat] :
      ( ( N != zero_z5237406670263579293d_enat )
     => ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ).

% gr_zeroI
thf(fact_138_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_139_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N2 )
                  & ~ ( P @ M3 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_140_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_141_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_142_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_143_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_144_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_145_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_146_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J: nat] :
              ( ( ord_less_nat @ I @ J )
             => ( K
               != ( suc @ J ) ) ) ) ) ).

% Nat.lessE
thf(fact_147_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_148_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J: nat] :
            ( ( ord_less_nat @ I @ J )
           => ( K
             != ( suc @ J ) ) ) ) ).

% Suc_lessE
thf(fact_149_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_150_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_151_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_152_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ N )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ I2 ) ) ) ) ).

% Ex_less_Suc
thf(fact_153_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_154_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_155_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ N )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ I2 ) ) ) ) ).

% All_less_Suc
thf(fact_156_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M4: nat] :
            ( ( M
              = ( suc @ M4 ) )
            & ( ord_less_nat @ N @ M4 ) ) ) ) ).

% Suc_less_eq2
thf(fact_157_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_158_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_159_less__trans__Suc,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ( ord_less_nat @ J2 @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_160_less__Suc__induct,axiom,
    ! [I: nat,J2: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( ord_less_nat @ J @ K2 )
               => ( ( P @ I3 @ J )
                 => ( ( P @ J @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I @ J2 ) ) ) ) ).

% less_Suc_induct
thf(fact_161_strict__inc__induct,axiom,
    ! [I: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ! [I3: nat] :
            ( ( J2
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_162_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_163_length__induct,axiom,
    ! [P: list_nat > $o,Xs2: list_nat] :
      ( ! [Xs: list_nat] :
          ( ! [Ys2: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_164_not__one__less__zero,axiom,
    ~ ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ zero_z7100319975126383169nnreal ) ).

% not_one_less_zero
thf(fact_165_not__one__less__zero,axiom,
    ~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) ).

% not_one_less_zero
thf(fact_166_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_167_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_168_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_169_zero__less__one,axiom,
    ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).

% zero_less_one
thf(fact_170_zero__less__one,axiom,
    ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).

% zero_less_one
thf(fact_171_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_172_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_173_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_174_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ ( suc @ I2 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_175_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M5: nat] :
            ( N
            = ( suc @ M5 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_176_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ ( suc @ I2 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_177_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% gr0_implies_Suc
thf(fact_178_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_179_less__mask,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% less_mask
thf(fact_180_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_181_less__numeral__extra_I1_J,axiom,
    ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).

% less_numeral_extra(1)
thf(fact_182_less__numeral__extra_I1_J,axiom,
    ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).

% less_numeral_extra(1)
thf(fact_183_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_184_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_185_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_186_sum__list__incr,axiom,
    ! [I: nat,X: list_nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ X ) )
     => ( ( groups4561878855575611511st_nat @ ( list_incr @ I @ X ) )
        = ( suc @ ( groups4561878855575611511st_nat @ X ) ) ) ) ).

% sum_list_incr
thf(fact_187_less__numeral__extra_I4_J,axiom,
    ~ ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ one_on2969667320475766781nnreal ) ).

% less_numeral_extra(4)
thf(fact_188_less__numeral__extra_I4_J,axiom,
    ~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ) ).

% less_numeral_extra(4)
thf(fact_189_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_190_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_191_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_192_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_193_less__numeral__extra_I3_J,axiom,
    ~ ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ zero_z7100319975126383169nnreal ) ).

% less_numeral_extra(3)
thf(fact_194_less__numeral__extra_I3_J,axiom,
    ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ zero_z5237406670263579293d_enat ) ).

% less_numeral_extra(3)
thf(fact_195_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_196_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_197_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_198_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_199_horner__sum__simps_I1_J,axiom,
    ! [F: nat > nat,A: nat] :
      ( ( groups7488368174851004413at_nat @ F @ A @ nil_nat )
      = zero_zero_nat ) ).

% horner_sum_simps(1)
thf(fact_200_horner__sum__simps_I1_J,axiom,
    ! [F: nat > int,A: int] :
      ( ( groups7485877704341954137at_int @ F @ A @ nil_nat )
      = zero_zero_int ) ).

% horner_sum_simps(1)
thf(fact_201_horner__sum__simps_I1_J,axiom,
    ! [F: nat > real,A: real] :
      ( ( groups3482786445295563865t_real @ F @ A @ nil_nat )
      = zero_zero_real ) ).

% horner_sum_simps(1)
thf(fact_202_horner__sum__simps_I1_J,axiom,
    ! [F: nat > extended_enat,A: extended_enat] :
      ( ( groups1549203402269857401d_enat @ F @ A @ nil_nat )
      = zero_z5237406670263579293d_enat ) ).

% horner_sum_simps(1)
thf(fact_203_horner__sum__simps_I1_J,axiom,
    ! [F: nat > extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( groups135001740595899237nnreal @ F @ A @ nil_nat )
      = zero_z7100319975126383169nnreal ) ).

% horner_sum_simps(1)
thf(fact_204_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( semiri4216267220026989637d_enat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_205_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_206_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_207_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_208_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( semiri6283507881447550617nnreal @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_209_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_210_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_211_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_212_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_213_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri6283507881447550617nnreal @ M )
        = ( semiri6283507881447550617nnreal @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_214_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_215_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_216_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_217_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_218_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_219_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_220_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_221_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_222_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_223_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_224_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_225_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_226_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_227_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_228_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_229_length__list__incr,axiom,
    ! [I: nat,X: list_nat] :
      ( ( size_size_list_nat @ ( list_incr @ I @ X ) )
      = ( size_size_list_nat @ X ) ) ).

% length_list_incr
thf(fact_230_list__incr__Nil,axiom,
    ! [I: nat] :
      ( ( list_incr @ I @ nil_nat )
      = nil_nat ) ).

% list_incr_Nil
thf(fact_231_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_232_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_233_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_234_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_235_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_236_of__nat__0,axiom,
    ( ( semiri4216267220026989637d_enat @ zero_zero_nat )
    = zero_z5237406670263579293d_enat ) ).

% of_nat_0
thf(fact_237_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_238_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_239_of__nat__0,axiom,
    ( ( semiri6283507881447550617nnreal @ zero_zero_nat )
    = zero_z7100319975126383169nnreal ) ).

% of_nat_0
thf(fact_240_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_241_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_z5237406670263579293d_enat
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_242_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_243_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_244_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_z7100319975126383169nnreal
        = ( semiri6283507881447550617nnreal @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_245_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_246_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri4216267220026989637d_enat @ M )
        = zero_z5237406670263579293d_enat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_247_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_248_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_249_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri6283507881447550617nnreal @ M )
        = zero_z7100319975126383169nnreal )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_250_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_251_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_252_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_253_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_254_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le7381754540660121996nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_255_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_256_of__nat__1,axiom,
    ( ( semiri4216267220026989637d_enat @ one_one_nat )
    = one_on7984719198319812577d_enat ) ).

% of_nat_1
thf(fact_257_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_258_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_259_of__nat__1,axiom,
    ( ( semiri6283507881447550617nnreal @ one_one_nat )
    = one_on2969667320475766781nnreal ) ).

% of_nat_1
thf(fact_260_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_261_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_on7984719198319812577d_enat
        = ( semiri4216267220026989637d_enat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_262_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_263_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_264_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_on2969667320475766781nnreal
        = ( semiri6283507881447550617nnreal @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_265_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_266_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri4216267220026989637d_enat @ N )
        = one_on7984719198319812577d_enat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_267_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_268_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_269_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri6283507881447550617nnreal @ N )
        = one_on2969667320475766781nnreal )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_270_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_271_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_272_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_273_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C2 @ D ) )
     => ( ( A = B )
        = ( C2 = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_274_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C2 @ D ) )
     => ( ( A = B )
        = ( C2 = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_275_diff__right__commute,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C2 ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C2 ) ) ).

% diff_right_commute
thf(fact_276_diff__right__commute,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C2 ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C2 ) ) ).

% diff_right_commute
thf(fact_277_diff__right__commute,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C2 ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C2 ) ) ).

% diff_right_commute
thf(fact_278_diff__commute,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J2 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J2 ) ) ).

% diff_commute
thf(fact_279_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% reals_Archimedean2
thf(fact_280_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y9: real,Z2: real] : ( Y9 = Z2 ) )
    = ( ^ [A3: real,B2: real] :
          ( ( minus_minus_real @ A3 @ B2 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_281_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y9: int,Z2: int] : ( Y9 = Z2 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( minus_minus_int @ A3 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_282_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C2 )
       => ( ord_less_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_283_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C2 )
       => ( ord_less_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_284_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C2 @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C2 @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_285_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C2 @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C2 @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_286_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C2 @ A ) @ ( minus_minus_real @ C2 @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_287_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C2 @ A ) @ ( minus_minus_int @ C2 @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_288_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B @ C2 ) ) ) ).

% diff_strict_right_mono
thf(fact_289_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ C2 ) ) ) ).

% diff_strict_right_mono
thf(fact_290_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_291_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_292_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_293_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_294_less__imp__diff__less,axiom,
    ! [J2: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J2 @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J2 @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_295_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% of_nat_mask_eq
thf(fact_296_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_nat_mask_eq
thf(fact_297_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat ) ).

% of_nat_less_0_iff
thf(fact_298_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_299_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_300_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_301_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_le7381754540660121996nnreal @ ( semiri6283507881447550617nnreal @ M ) @ zero_z7100319975126383169nnreal ) ).

% of_nat_less_0_iff
thf(fact_302_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_303_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri4216267220026989637d_enat @ ( suc @ N ) )
     != zero_z5237406670263579293d_enat ) ).

% of_nat_neq_0
thf(fact_304_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_305_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_306_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri6283507881447550617nnreal @ ( suc @ N ) )
     != zero_z7100319975126383169nnreal ) ).

% of_nat_neq_0
thf(fact_307_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_308_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_309_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_310_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_311_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_le7381754540660121996nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_312_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_313_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_314_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_315_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_316_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le7381754540660121996nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_317_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_318_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_319_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_320_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_321_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_322_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_323_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_324_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_325_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ one_one_int @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_326_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_327_list__incr__nth__diff,axiom,
    ! [I: nat,X: list_nat,J2: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ X ) )
     => ( ( ( I = J2 )
         => ( ( minus_minus_nat @ ( nth_nat @ ( list_incr @ J2 @ X ) @ I ) @ ( nth_nat @ X @ I ) )
            = one_one_nat ) )
        & ( ( I != J2 )
         => ( ( minus_minus_nat @ ( nth_nat @ ( list_incr @ J2 @ X ) @ I ) @ ( nth_nat @ X @ I ) )
            = zero_zero_nat ) ) ) ) ).

% list_incr_nth_diff
thf(fact_328_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_329_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_330_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_331_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_332_last__list__update,axiom,
    ! [Xs2: list_nat,K: nat,X: nat] :
      ( ( Xs2 != nil_nat )
     => ( ( ( K
            = ( minus_minus_nat @ ( size_size_list_nat @ Xs2 ) @ one_one_nat ) )
         => ( ( last_nat @ ( list_update_nat @ Xs2 @ K @ X ) )
            = X ) )
        & ( ( K
           != ( minus_minus_nat @ ( size_size_list_nat @ Xs2 ) @ one_one_nat ) )
         => ( ( last_nat @ ( list_update_nat @ Xs2 @ K @ X ) )
            = ( last_nat @ Xs2 ) ) ) ) ) ).

% last_list_update
thf(fact_333_Cons__replicate__eq,axiom,
    ! [X: int,Xs2: list_int,N: nat,Y: int] :
      ( ( ( cons_int @ X @ Xs2 )
        = ( replicate_int @ N @ Y ) )
      = ( ( X = Y )
        & ( ord_less_nat @ zero_zero_nat @ N )
        & ( Xs2
          = ( replicate_int @ ( minus_minus_nat @ N @ one_one_nat ) @ X ) ) ) ) ).

% Cons_replicate_eq
thf(fact_334_Cons__replicate__eq,axiom,
    ! [X: nat,Xs2: list_nat,N: nat,Y: nat] :
      ( ( ( cons_nat @ X @ Xs2 )
        = ( replicate_nat @ N @ Y ) )
      = ( ( X = Y )
        & ( ord_less_nat @ zero_zero_nat @ N )
        & ( Xs2
          = ( replicate_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ X ) ) ) ) ).

% Cons_replicate_eq
thf(fact_335_list__incr__def,axiom,
    ( list_incr
    = ( ^ [I2: nat,X9: list_nat] : ( list_update_nat @ X9 @ I2 @ ( suc @ ( nth_nat @ X9 @ I2 ) ) ) ) ) ).

% list_incr_def
thf(fact_336_list_Oinject,axiom,
    ! [X21: nat,X222: list_nat,Y21: nat,Y22: list_nat] :
      ( ( ( cons_nat @ X21 @ X222 )
        = ( cons_nat @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y22 ) ) ) ).

% list.inject
thf(fact_337_list_Oinject,axiom,
    ! [X21: int,X222: list_int,Y21: int,Y22: list_int] :
      ( ( ( cons_int @ X21 @ X222 )
        = ( cons_int @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y22 ) ) ) ).

% list.inject
thf(fact_338_minus__Nil,axiom,
    ! [Xs2: list_nat] :
      ( ( minus_minus_list_nat @ nil_nat @ Xs2 )
      = nil_nat ) ).

% minus_Nil
thf(fact_339_list__update__overwrite,axiom,
    ! [Xs2: list_nat,I: nat,X: nat,Y: nat] :
      ( ( list_update_nat @ ( list_update_nat @ Xs2 @ I @ X ) @ I @ Y )
      = ( list_update_nat @ Xs2 @ I @ Y ) ) ).

% list_update_overwrite
thf(fact_340_list__update__nonempty,axiom,
    ! [Xs2: list_nat,K: nat,X: nat] :
      ( ( ( list_update_nat @ Xs2 @ K @ X )
        = nil_nat )
      = ( Xs2 = nil_nat ) ) ).

% list_update_nonempty
thf(fact_341_length__list__update,axiom,
    ! [Xs2: list_nat,I: nat,X: nat] :
      ( ( size_size_list_nat @ ( list_update_nat @ Xs2 @ I @ X ) )
      = ( size_size_list_nat @ Xs2 ) ) ).

% length_list_update
thf(fact_342_nth__list__update__neq,axiom,
    ! [I: nat,J2: nat,Xs2: list_nat,X: nat] :
      ( ( I != J2 )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X ) @ J2 )
        = ( nth_nat @ Xs2 @ J2 ) ) ) ).

% nth_list_update_neq
thf(fact_343_list__update__id,axiom,
    ! [Xs2: list_nat,I: nat] :
      ( ( list_update_nat @ Xs2 @ I @ ( nth_nat @ Xs2 @ I ) )
      = Xs2 ) ).

% list_update_id
thf(fact_344_list__incr__Cons,axiom,
    ! [I: nat,K: nat,Ks: list_nat] :
      ( ( list_incr @ ( suc @ I ) @ ( cons_nat @ K @ Ks ) )
      = ( cons_nat @ K @ ( list_incr @ I @ Ks ) ) ) ).

% list_incr_Cons
thf(fact_345_nth__Cons__0,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ zero_zero_nat )
      = X ) ).

% nth_Cons_0
thf(fact_346_nth__Cons__0,axiom,
    ! [X: int,Xs2: list_int] :
      ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ zero_zero_nat )
      = X ) ).

% nth_Cons_0
thf(fact_347_nth__Cons__Suc,axiom,
    ! [X: nat,Xs2: list_nat,N: nat] :
      ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ ( suc @ N ) )
      = ( nth_nat @ Xs2 @ N ) ) ).

% nth_Cons_Suc
thf(fact_348_nth__Cons__Suc,axiom,
    ! [X: int,Xs2: list_int,N: nat] :
      ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ ( suc @ N ) )
      = ( nth_int @ Xs2 @ N ) ) ).

% nth_Cons_Suc
thf(fact_349_nth__replicate,axiom,
    ! [I: nat,N: nat,X: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_nat @ ( replicate_nat @ N @ X ) @ I )
        = X ) ) ).

% nth_replicate
thf(fact_350_nth__minus__list,axiom,
    ! [I: nat,Xs2: list_Extended_enat,Ys: list_Extended_enat] :
      ( ( ord_less_nat @ I @ ( size_s3941691890525107288d_enat @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_s3941691890525107288d_enat @ Ys ) )
       => ( ( nth_Extended_enat @ ( minus_388785356899630291d_enat @ Xs2 @ Ys ) @ I )
          = ( minus_3235023915231533773d_enat @ ( nth_Extended_enat @ Xs2 @ I ) @ ( nth_Extended_enat @ Ys @ I ) ) ) ) ) ).

% nth_minus_list
thf(fact_351_nth__minus__list,axiom,
    ! [I: nat,Xs2: list_real,Ys: list_real] :
      ( ( ord_less_nat @ I @ ( size_size_list_real @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_real @ Ys ) )
       => ( ( nth_real @ ( minus_9191544370096132885t_real @ Xs2 @ Ys ) @ I )
          = ( minus_minus_real @ ( nth_real @ Xs2 @ I ) @ ( nth_real @ Ys @ I ) ) ) ) ) ).

% nth_minus_list
thf(fact_352_nth__minus__list,axiom,
    ! [I: nat,Xs2: list_list_nat,Ys: list_list_nat] :
      ( ( ord_less_nat @ I @ ( size_s3023201423986296836st_nat @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_s3023201423986296836st_nat @ Ys ) )
       => ( ( nth_list_nat @ ( minus_3911745200923244873st_nat @ Xs2 @ Ys ) @ I )
          = ( minus_minus_list_nat @ ( nth_list_nat @ Xs2 @ I ) @ ( nth_list_nat @ Ys @ I ) ) ) ) ) ).

% nth_minus_list
thf(fact_353_nth__minus__list,axiom,
    ! [I: nat,Xs2: list_int,Ys: list_int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_int @ Ys ) )
       => ( ( nth_int @ ( minus_minus_list_int @ Xs2 @ Ys ) @ I )
          = ( minus_minus_int @ ( nth_int @ Xs2 @ I ) @ ( nth_int @ Ys @ I ) ) ) ) ) ).

% nth_minus_list
thf(fact_354_nth__minus__list,axiom,
    ! [I: nat,Xs2: list_nat,Ys: list_nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ys ) )
       => ( ( nth_nat @ ( minus_minus_list_nat @ Xs2 @ Ys ) @ I )
          = ( minus_minus_nat @ ( nth_nat @ Xs2 @ I ) @ ( nth_nat @ Ys @ I ) ) ) ) ) ).

% nth_minus_list
thf(fact_355_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_nat,X: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X ) @ I )
        = X ) ) ).

% nth_list_update_eq
thf(fact_356_nth__Cons__pos,axiom,
    ! [N: nat,X: nat,Xs2: list_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ N )
        = ( nth_nat @ Xs2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% nth_Cons_pos
thf(fact_357_nth__Cons__pos,axiom,
    ! [N: nat,X: int,Xs2: list_int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ N )
        = ( nth_int @ Xs2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% nth_Cons_pos
thf(fact_358_int__less__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_less_induct
thf(fact_359_not__mask__negative__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_360_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_361_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_362_int__diff__cases,axiom,
    ! [Z: int] :
      ~ ! [M2: nat,N2: nat] :
          ( Z
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_diff_cases
thf(fact_363_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_364_list__update__swap,axiom,
    ! [I: nat,I4: nat,Xs2: list_nat,X: nat,X10: nat] :
      ( ( I != I4 )
     => ( ( list_update_nat @ ( list_update_nat @ Xs2 @ I @ X ) @ I4 @ X10 )
        = ( list_update_nat @ ( list_update_nat @ Xs2 @ I4 @ X10 ) @ I @ X ) ) ) ).

% list_update_swap
thf(fact_365_not__Cons__self2,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( cons_nat @ X @ Xs2 )
     != Xs2 ) ).

% not_Cons_self2
thf(fact_366_not__Cons__self2,axiom,
    ! [X: int,Xs2: list_int] :
      ( ( cons_int @ X @ Xs2 )
     != Xs2 ) ).

% not_Cons_self2
thf(fact_367_zero__integer_Orsp,axiom,
    zero_zero_int = zero_zero_int ).

% zero_integer.rsp
thf(fact_368_transpose_Ocases,axiom,
    ! [X: list_list_nat] :
      ( ( X != nil_list_nat )
     => ( ! [Xss: list_list_nat] :
            ( X
           != ( cons_list_nat @ nil_nat @ Xss ) )
       => ~ ! [X3: nat,Xs: list_nat,Xss: list_list_nat] :
              ( X
             != ( cons_list_nat @ ( cons_nat @ X3 @ Xs ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_369_transpose_Ocases,axiom,
    ! [X: list_list_int] :
      ( ( X != nil_list_int )
     => ( ! [Xss: list_list_int] :
            ( X
           != ( cons_list_int @ nil_int @ Xss ) )
       => ~ ! [X3: int,Xs: list_int,Xss: list_list_int] :
              ( X
             != ( cons_list_int @ ( cons_int @ X3 @ Xs ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_370_list__update__code_I3_J,axiom,
    ! [X: int,Xs2: list_int,I: nat,Y: int] :
      ( ( list_update_int @ ( cons_int @ X @ Xs2 ) @ ( suc @ I ) @ Y )
      = ( cons_int @ X @ ( list_update_int @ Xs2 @ I @ Y ) ) ) ).

% list_update_code(3)
thf(fact_371_list__update__code_I3_J,axiom,
    ! [X: nat,Xs2: list_nat,I: nat,Y: nat] :
      ( ( list_update_nat @ ( cons_nat @ X @ Xs2 ) @ ( suc @ I ) @ Y )
      = ( cons_nat @ X @ ( list_update_nat @ Xs2 @ I @ Y ) ) ) ).

% list_update_code(3)
thf(fact_372_list__update__code_I2_J,axiom,
    ! [X: int,Xs2: list_int,Y: int] :
      ( ( list_update_int @ ( cons_int @ X @ Xs2 ) @ zero_zero_nat @ Y )
      = ( cons_int @ Y @ Xs2 ) ) ).

% list_update_code(2)
thf(fact_373_list__update__code_I2_J,axiom,
    ! [X: nat,Xs2: list_nat,Y: nat] :
      ( ( list_update_nat @ ( cons_nat @ X @ Xs2 ) @ zero_zero_nat @ Y )
      = ( cons_nat @ Y @ Xs2 ) ) ).

% list_update_code(2)
thf(fact_374_nth__list__update,axiom,
    ! [I: nat,Xs2: list_nat,J2: nat,X: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( I = J2 )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X ) @ J2 )
            = X ) )
        & ( ( I != J2 )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X ) @ J2 )
            = ( nth_nat @ Xs2 @ J2 ) ) ) ) ) ).

% nth_list_update
thf(fact_375_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_nat,X: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( list_update_nat @ Xs2 @ I @ X )
          = Xs2 )
        = ( ( nth_nat @ Xs2 @ I )
          = X ) ) ) ).

% list_update_same_conv
thf(fact_376_minus__Cons,axiom,
    ! [Y: extended_enat,Ys: list_Extended_enat,X: extended_enat,Xs2: list_Extended_enat] :
      ( ( minus_388785356899630291d_enat @ ( cons_Extended_enat @ Y @ Ys ) @ ( cons_Extended_enat @ X @ Xs2 ) )
      = ( cons_Extended_enat @ ( minus_3235023915231533773d_enat @ Y @ X ) @ ( minus_388785356899630291d_enat @ Ys @ Xs2 ) ) ) ).

% minus_Cons
thf(fact_377_minus__Cons,axiom,
    ! [Y: real,Ys: list_real,X: real,Xs2: list_real] :
      ( ( minus_9191544370096132885t_real @ ( cons_real @ Y @ Ys ) @ ( cons_real @ X @ Xs2 ) )
      = ( cons_real @ ( minus_minus_real @ Y @ X ) @ ( minus_9191544370096132885t_real @ Ys @ Xs2 ) ) ) ).

% minus_Cons
thf(fact_378_minus__Cons,axiom,
    ! [Y: list_nat,Ys: list_list_nat,X: list_nat,Xs2: list_list_nat] :
      ( ( minus_3911745200923244873st_nat @ ( cons_list_nat @ Y @ Ys ) @ ( cons_list_nat @ X @ Xs2 ) )
      = ( cons_list_nat @ ( minus_minus_list_nat @ Y @ X ) @ ( minus_3911745200923244873st_nat @ Ys @ Xs2 ) ) ) ).

% minus_Cons
thf(fact_379_minus__Cons,axiom,
    ! [Y: int,Ys: list_int,X: int,Xs2: list_int] :
      ( ( minus_minus_list_int @ ( cons_int @ Y @ Ys ) @ ( cons_int @ X @ Xs2 ) )
      = ( cons_int @ ( minus_minus_int @ Y @ X ) @ ( minus_minus_list_int @ Ys @ Xs2 ) ) ) ).

% minus_Cons
thf(fact_380_minus__Cons,axiom,
    ! [Y: nat,Ys: list_nat,X: nat,Xs2: list_nat] :
      ( ( minus_minus_list_nat @ ( cons_nat @ Y @ Ys ) @ ( cons_nat @ X @ Xs2 ) )
      = ( cons_nat @ ( minus_minus_nat @ Y @ X ) @ ( minus_minus_list_nat @ Ys @ Xs2 ) ) ) ).

% minus_Cons
thf(fact_381_list__nonempty__induct,axiom,
    ! [Xs2: list_nat,P: list_nat > $o] :
      ( ( Xs2 != nil_nat )
     => ( ! [X3: nat] : ( P @ ( cons_nat @ X3 @ nil_nat ) )
       => ( ! [X3: nat,Xs: list_nat] :
              ( ( Xs != nil_nat )
             => ( ( P @ Xs )
               => ( P @ ( cons_nat @ X3 @ Xs ) ) ) )
         => ( P @ Xs2 ) ) ) ) ).

% list_nonempty_induct
thf(fact_382_list__nonempty__induct,axiom,
    ! [Xs2: list_int,P: list_int > $o] :
      ( ( Xs2 != nil_int )
     => ( ! [X3: int] : ( P @ ( cons_int @ X3 @ nil_int ) )
       => ( ! [X3: int,Xs: list_int] :
              ( ( Xs != nil_int )
             => ( ( P @ Xs )
               => ( P @ ( cons_int @ X3 @ Xs ) ) ) )
         => ( P @ Xs2 ) ) ) ) ).

% list_nonempty_induct
thf(fact_383_list__induct2_H,axiom,
    ! [P: list_nat > list_nat > $o,Xs2: list_nat,Ys: list_nat] :
      ( ( P @ nil_nat @ nil_nat )
     => ( ! [X3: nat,Xs: list_nat] : ( P @ ( cons_nat @ X3 @ Xs ) @ nil_nat )
       => ( ! [Y3: nat,Ys3: list_nat] : ( P @ nil_nat @ ( cons_nat @ Y3 @ Ys3 ) )
         => ( ! [X3: nat,Xs: list_nat,Y3: nat,Ys3: list_nat] :
                ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) ) )
           => ( P @ Xs2 @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_384_list__induct2_H,axiom,
    ! [P: list_nat > list_int > $o,Xs2: list_nat,Ys: list_int] :
      ( ( P @ nil_nat @ nil_int )
     => ( ! [X3: nat,Xs: list_nat] : ( P @ ( cons_nat @ X3 @ Xs ) @ nil_int )
       => ( ! [Y3: int,Ys3: list_int] : ( P @ nil_nat @ ( cons_int @ Y3 @ Ys3 ) )
         => ( ! [X3: nat,Xs: list_nat,Y3: int,Ys3: list_int] :
                ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) ) )
           => ( P @ Xs2 @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_385_list__induct2_H,axiom,
    ! [P: list_int > list_nat > $o,Xs2: list_int,Ys: list_nat] :
      ( ( P @ nil_int @ nil_nat )
     => ( ! [X3: int,Xs: list_int] : ( P @ ( cons_int @ X3 @ Xs ) @ nil_nat )
       => ( ! [Y3: nat,Ys3: list_nat] : ( P @ nil_int @ ( cons_nat @ Y3 @ Ys3 ) )
         => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat] :
                ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) ) )
           => ( P @ Xs2 @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_386_list__induct2_H,axiom,
    ! [P: list_int > list_int > $o,Xs2: list_int,Ys: list_int] :
      ( ( P @ nil_int @ nil_int )
     => ( ! [X3: int,Xs: list_int] : ( P @ ( cons_int @ X3 @ Xs ) @ nil_int )
       => ( ! [Y3: int,Ys3: list_int] : ( P @ nil_int @ ( cons_int @ Y3 @ Ys3 ) )
         => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int] :
                ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) ) )
           => ( P @ Xs2 @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_387_neq__Nil__conv,axiom,
    ! [Xs2: list_nat] :
      ( ( Xs2 != nil_nat )
      = ( ? [Y10: nat,Ys4: list_nat] :
            ( Xs2
            = ( cons_nat @ Y10 @ Ys4 ) ) ) ) ).

% neq_Nil_conv
thf(fact_388_neq__Nil__conv,axiom,
    ! [Xs2: list_int] :
      ( ( Xs2 != nil_int )
      = ( ? [Y10: int,Ys4: list_int] :
            ( Xs2
            = ( cons_int @ Y10 @ Ys4 ) ) ) ) ).

% neq_Nil_conv
thf(fact_389_remdups__adj_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ( ! [X3: nat] :
            ( X
           != ( cons_nat @ X3 @ nil_nat ) )
       => ~ ! [X3: nat,Y3: nat,Xs: list_nat] :
              ( X
             != ( cons_nat @ X3 @ ( cons_nat @ Y3 @ Xs ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_390_remdups__adj_Ocases,axiom,
    ! [X: list_int] :
      ( ( X != nil_int )
     => ( ! [X3: int] :
            ( X
           != ( cons_int @ X3 @ nil_int ) )
       => ~ ! [X3: int,Y3: int,Xs: list_int] :
              ( X
             != ( cons_int @ X3 @ ( cons_int @ Y3 @ Xs ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_391_min__list_Ocases,axiom,
    ! [X: list_nat] :
      ( ! [X3: nat,Xs: list_nat] :
          ( X
         != ( cons_nat @ X3 @ Xs ) )
     => ( X = nil_nat ) ) ).

% min_list.cases
thf(fact_392_min__list_Ocases,axiom,
    ! [X: list_int] :
      ( ! [X3: int,Xs: list_int] :
          ( X
         != ( cons_int @ X3 @ Xs ) )
     => ( X = nil_int ) ) ).

% min_list.cases
thf(fact_393_list_Oexhaust,axiom,
    ! [Y: list_nat] :
      ( ( Y != nil_nat )
     => ~ ! [X212: nat,X223: list_nat] :
            ( Y
           != ( cons_nat @ X212 @ X223 ) ) ) ).

% list.exhaust
thf(fact_394_list_Oexhaust,axiom,
    ! [Y: list_int] :
      ( ( Y != nil_int )
     => ~ ! [X212: int,X223: list_int] :
            ( Y
           != ( cons_int @ X212 @ X223 ) ) ) ).

% list.exhaust
thf(fact_395_list_OdiscI,axiom,
    ! [List: list_nat,X21: nat,X222: list_nat] :
      ( ( List
        = ( cons_nat @ X21 @ X222 ) )
     => ( List != nil_nat ) ) ).

% list.discI
thf(fact_396_list_OdiscI,axiom,
    ! [List: list_int,X21: int,X222: list_int] :
      ( ( List
        = ( cons_int @ X21 @ X222 ) )
     => ( List != nil_int ) ) ).

% list.discI
thf(fact_397_list_Odistinct_I1_J,axiom,
    ! [X21: nat,X222: list_nat] :
      ( nil_nat
     != ( cons_nat @ X21 @ X222 ) ) ).

% list.distinct(1)
thf(fact_398_list_Odistinct_I1_J,axiom,
    ! [X21: int,X222: list_int] :
      ( nil_int
     != ( cons_int @ X21 @ X222 ) ) ).

% list.distinct(1)
thf(fact_399_list__update_Osimps_I1_J,axiom,
    ! [I: nat,V: nat] :
      ( ( list_update_nat @ nil_nat @ I @ V )
      = nil_nat ) ).

% list_update.simps(1)
thf(fact_400_list__update__code_I1_J,axiom,
    ! [I: nat,Y: nat] :
      ( ( list_update_nat @ nil_nat @ I @ Y )
      = nil_nat ) ).

% list_update_code(1)
thf(fact_401_list__encode_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ~ ! [X3: nat,Xs: list_nat] :
            ( X
           != ( cons_nat @ X3 @ Xs ) ) ) ).

% list_encode.cases
thf(fact_402_pairwise__minus__cancel,axiom,
    ! [Z: list_nat,X: list_nat,Y: list_nat] :
      ( ( pointwise_le @ Z @ X )
     => ( ( pointwise_le @ Z @ Y )
       => ( ( ( minus_minus_list_nat @ X @ Z )
            = ( minus_minus_list_nat @ Y @ Z ) )
         => ( X = Y ) ) ) ) ).

% pairwise_minus_cancel
thf(fact_403_nth__Cons_H,axiom,
    ! [N: nat,X: nat,Xs2: list_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ N )
          = X ) )
      & ( ( N != zero_zero_nat )
       => ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ N )
          = ( nth_nat @ Xs2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% nth_Cons'
thf(fact_404_nth__Cons_H,axiom,
    ! [N: nat,X: int,Xs2: list_int] :
      ( ( ( N = zero_zero_nat )
       => ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ N )
          = X ) )
      & ( ( N != zero_zero_nat )
       => ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ N )
          = ( nth_int @ Xs2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% nth_Cons'
thf(fact_405_member__rec_I1_J,axiom,
    ! [X: nat,Xs2: list_nat,Y: nat] :
      ( ( member_nat @ ( cons_nat @ X @ Xs2 ) @ Y )
      = ( ( X = Y )
        | ( member_nat @ Xs2 @ Y ) ) ) ).

% member_rec(1)
thf(fact_406_member__rec_I1_J,axiom,
    ! [X: int,Xs2: list_int,Y: int] :
      ( ( member_int @ ( cons_int @ X @ Xs2 ) @ Y )
      = ( ( X = Y )
        | ( member_int @ Xs2 @ Y ) ) ) ).

% member_rec(1)
thf(fact_407_nth__non__equal__first__eq,axiom,
    ! [X: nat,Y: nat,Xs2: list_nat,N: nat] :
      ( ( X != Y )
     => ( ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ N )
          = Y )
        = ( ( ( nth_nat @ Xs2 @ ( minus_minus_nat @ N @ one_one_nat ) )
            = Y )
          & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ) ).

% nth_non_equal_first_eq
thf(fact_408_nth__non__equal__first__eq,axiom,
    ! [X: int,Y: int,Xs2: list_int,N: nat] :
      ( ( X != Y )
     => ( ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ N )
          = Y )
        = ( ( ( nth_int @ Xs2 @ ( minus_minus_nat @ N @ one_one_nat ) )
            = Y )
          & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ) ).

% nth_non_equal_first_eq
thf(fact_409_nth__equalityI,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
           => ( ( nth_nat @ Xs2 @ I3 )
              = ( nth_nat @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_410_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ K )
           => ? [X11: nat] : ( P @ I2 @ X11 ) ) )
      = ( ? [Xs3: list_nat] :
            ( ( ( size_size_list_nat @ Xs3 )
              = K )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K )
               => ( P @ I2 @ ( nth_nat @ Xs3 @ I2 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_411_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y9: list_nat,Z2: list_nat] : ( Y9 = Z2 ) )
    = ( ^ [Xs3: list_nat,Ys4: list_nat] :
          ( ( ( size_size_list_nat @ Xs3 )
            = ( size_size_list_nat @ Ys4 ) )
          & ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs3 ) )
             => ( ( nth_nat @ Xs3 @ I2 )
                = ( nth_nat @ Ys4 @ I2 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_412_Suc__length__conv,axiom,
    ! [N: nat,Xs2: list_int] :
      ( ( ( suc @ N )
        = ( size_size_list_int @ Xs2 ) )
      = ( ? [Y10: int,Ys4: list_int] :
            ( ( Xs2
              = ( cons_int @ Y10 @ Ys4 ) )
            & ( ( size_size_list_int @ Ys4 )
              = N ) ) ) ) ).

% Suc_length_conv
thf(fact_413_Suc__length__conv,axiom,
    ! [N: nat,Xs2: list_nat] :
      ( ( ( suc @ N )
        = ( size_size_list_nat @ Xs2 ) )
      = ( ? [Y10: nat,Ys4: list_nat] :
            ( ( Xs2
              = ( cons_nat @ Y10 @ Ys4 ) )
            & ( ( size_size_list_nat @ Ys4 )
              = N ) ) ) ) ).

% Suc_length_conv
thf(fact_414_length__Suc__conv,axiom,
    ! [Xs2: list_int,N: nat] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( suc @ N ) )
      = ( ? [Y10: int,Ys4: list_int] :
            ( ( Xs2
              = ( cons_int @ Y10 @ Ys4 ) )
            & ( ( size_size_list_int @ Ys4 )
              = N ) ) ) ) ).

% length_Suc_conv
thf(fact_415_length__Suc__conv,axiom,
    ! [Xs2: list_nat,N: nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( suc @ N ) )
      = ( ? [Y10: nat,Ys4: list_nat] :
            ( ( Xs2
              = ( cons_nat @ Y10 @ Ys4 ) )
            & ( ( size_size_list_nat @ Ys4 )
              = N ) ) ) ) ).

% length_Suc_conv
thf(fact_416_list__induct2,axiom,
    ! [Xs2: list_int,Ys: list_int,P: list_int > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( P @ nil_int @ nil_int )
       => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int] :
              ( ( ( size_size_list_int @ Xs )
                = ( size_size_list_int @ Ys3 ) )
             => ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) ) ) )
         => ( P @ Xs2 @ Ys ) ) ) ) ).

% list_induct2
thf(fact_417_list__induct2,axiom,
    ! [Xs2: list_int,Ys: list_nat,P: list_int > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( P @ nil_int @ nil_nat )
       => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat] :
              ( ( ( size_size_list_int @ Xs )
                = ( size_size_list_nat @ Ys3 ) )
             => ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) ) ) )
         => ( P @ Xs2 @ Ys ) ) ) ) ).

% list_induct2
thf(fact_418_list__induct2,axiom,
    ! [Xs2: list_nat,Ys: list_int,P: list_nat > list_int > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( P @ nil_nat @ nil_int )
       => ( ! [X3: nat,Xs: list_nat,Y3: int,Ys3: list_int] :
              ( ( ( size_size_list_nat @ Xs )
                = ( size_size_list_int @ Ys3 ) )
             => ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) ) ) )
         => ( P @ Xs2 @ Ys ) ) ) ) ).

% list_induct2
thf(fact_419_list__induct2,axiom,
    ! [Xs2: list_nat,Ys: list_nat,P: list_nat > list_nat > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( P @ nil_nat @ nil_nat )
       => ( ! [X3: nat,Xs: list_nat,Y3: nat,Ys3: list_nat] :
              ( ( ( size_size_list_nat @ Xs )
                = ( size_size_list_nat @ Ys3 ) )
             => ( ( P @ Xs @ Ys3 )
               => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) ) ) )
         => ( P @ Xs2 @ Ys ) ) ) ) ).

% list_induct2
thf(fact_420_list__induct3,axiom,
    ! [Xs2: list_int,Ys: list_int,Zs: list_int,P: list_int > list_int > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( P @ nil_int @ nil_int @ nil_int )
         => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int,Z3: int,Zs2: list_int] :
                ( ( ( size_size_list_int @ Xs )
                  = ( size_size_list_int @ Ys3 ) )
               => ( ( ( size_size_list_int @ Ys3 )
                    = ( size_size_list_int @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_421_list__induct3,axiom,
    ! [Xs2: list_int,Ys: list_int,Zs: list_nat,P: list_int > list_int > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( P @ nil_int @ nil_int @ nil_nat )
         => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int,Z3: nat,Zs2: list_nat] :
                ( ( ( size_size_list_int @ Xs )
                  = ( size_size_list_int @ Ys3 ) )
               => ( ( ( size_size_list_int @ Ys3 )
                    = ( size_size_list_nat @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_422_list__induct3,axiom,
    ! [Xs2: list_int,Ys: list_nat,Zs: list_int,P: list_int > list_nat > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( P @ nil_int @ nil_nat @ nil_int )
         => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat,Z3: int,Zs2: list_int] :
                ( ( ( size_size_list_int @ Xs )
                  = ( size_size_list_nat @ Ys3 ) )
               => ( ( ( size_size_list_nat @ Ys3 )
                    = ( size_size_list_int @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_423_list__induct3,axiom,
    ! [Xs2: list_int,Ys: list_nat,Zs: list_nat,P: list_int > list_nat > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( P @ nil_int @ nil_nat @ nil_nat )
         => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat,Z3: nat,Zs2: list_nat] :
                ( ( ( size_size_list_int @ Xs )
                  = ( size_size_list_nat @ Ys3 ) )
               => ( ( ( size_size_list_nat @ Ys3 )
                    = ( size_size_list_nat @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_424_list__induct3,axiom,
    ! [Xs2: list_nat,Ys: list_int,Zs: list_int,P: list_nat > list_int > list_int > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( P @ nil_nat @ nil_int @ nil_int )
         => ( ! [X3: nat,Xs: list_nat,Y3: int,Ys3: list_int,Z3: int,Zs2: list_int] :
                ( ( ( size_size_list_nat @ Xs )
                  = ( size_size_list_int @ Ys3 ) )
               => ( ( ( size_size_list_int @ Ys3 )
                    = ( size_size_list_int @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_425_list__induct3,axiom,
    ! [Xs2: list_nat,Ys: list_int,Zs: list_nat,P: list_nat > list_int > list_nat > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( P @ nil_nat @ nil_int @ nil_nat )
         => ( ! [X3: nat,Xs: list_nat,Y3: int,Ys3: list_int,Z3: nat,Zs2: list_nat] :
                ( ( ( size_size_list_nat @ Xs )
                  = ( size_size_list_int @ Ys3 ) )
               => ( ( ( size_size_list_int @ Ys3 )
                    = ( size_size_list_nat @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_426_list__induct3,axiom,
    ! [Xs2: list_nat,Ys: list_nat,Zs: list_int,P: list_nat > list_nat > list_int > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( P @ nil_nat @ nil_nat @ nil_int )
         => ( ! [X3: nat,Xs: list_nat,Y3: nat,Ys3: list_nat,Z3: int,Zs2: list_int] :
                ( ( ( size_size_list_nat @ Xs )
                  = ( size_size_list_nat @ Ys3 ) )
               => ( ( ( size_size_list_nat @ Ys3 )
                    = ( size_size_list_int @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_427_list__induct3,axiom,
    ! [Xs2: list_nat,Ys: list_nat,Zs: list_nat,P: list_nat > list_nat > list_nat > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( P @ nil_nat @ nil_nat @ nil_nat )
         => ( ! [X3: nat,Xs: list_nat,Y3: nat,Ys3: list_nat,Z3: nat,Zs2: list_nat] :
                ( ( ( size_size_list_nat @ Xs )
                  = ( size_size_list_nat @ Ys3 ) )
               => ( ( ( size_size_list_nat @ Ys3 )
                    = ( size_size_list_nat @ Zs2 ) )
                 => ( ( P @ Xs @ Ys3 @ Zs2 )
                   => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) ) ) ) )
           => ( P @ Xs2 @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_428_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_int,Zs: list_int,Ws: list_int,P: list_int > list_int > list_int > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( ( size_size_list_int @ Zs )
            = ( size_size_list_int @ Ws ) )
         => ( ( P @ nil_int @ nil_int @ nil_int @ nil_int )
           => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int,Z3: int,Zs2: list_int,W2: int,Ws2: list_int] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_int @ Ys3 ) )
                 => ( ( ( size_size_list_int @ Ys3 )
                      = ( size_size_list_int @ Zs2 ) )
                   => ( ( ( size_size_list_int @ Zs2 )
                        = ( size_size_list_int @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) @ ( cons_int @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_429_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_int,Zs: list_int,Ws: list_nat,P: list_int > list_int > list_int > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( ( size_size_list_int @ Zs )
            = ( size_size_list_nat @ Ws ) )
         => ( ( P @ nil_int @ nil_int @ nil_int @ nil_nat )
           => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int,Z3: int,Zs2: list_int,W2: nat,Ws2: list_nat] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_int @ Ys3 ) )
                 => ( ( ( size_size_list_int @ Ys3 )
                      = ( size_size_list_int @ Zs2 ) )
                   => ( ( ( size_size_list_int @ Zs2 )
                        = ( size_size_list_nat @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) @ ( cons_nat @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_430_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_int,Zs: list_nat,Ws: list_int,P: list_int > list_int > list_nat > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( ( size_size_list_nat @ Zs )
            = ( size_size_list_int @ Ws ) )
         => ( ( P @ nil_int @ nil_int @ nil_nat @ nil_int )
           => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int,Z3: nat,Zs2: list_nat,W2: int,Ws2: list_int] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_int @ Ys3 ) )
                 => ( ( ( size_size_list_int @ Ys3 )
                      = ( size_size_list_nat @ Zs2 ) )
                   => ( ( ( size_size_list_nat @ Zs2 )
                        = ( size_size_list_int @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) @ ( cons_int @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_431_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_int,Zs: list_nat,Ws: list_nat,P: list_int > list_int > list_nat > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( ( size_size_list_nat @ Zs )
            = ( size_size_list_nat @ Ws ) )
         => ( ( P @ nil_int @ nil_int @ nil_nat @ nil_nat )
           => ( ! [X3: int,Xs: list_int,Y3: int,Ys3: list_int,Z3: nat,Zs2: list_nat,W2: nat,Ws2: list_nat] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_int @ Ys3 ) )
                 => ( ( ( size_size_list_int @ Ys3 )
                      = ( size_size_list_nat @ Zs2 ) )
                   => ( ( ( size_size_list_nat @ Zs2 )
                        = ( size_size_list_nat @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) @ ( cons_nat @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_432_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_nat,Zs: list_int,Ws: list_int,P: list_int > list_nat > list_int > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( ( size_size_list_int @ Zs )
            = ( size_size_list_int @ Ws ) )
         => ( ( P @ nil_int @ nil_nat @ nil_int @ nil_int )
           => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat,Z3: int,Zs2: list_int,W2: int,Ws2: list_int] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_nat @ Ys3 ) )
                 => ( ( ( size_size_list_nat @ Ys3 )
                      = ( size_size_list_int @ Zs2 ) )
                   => ( ( ( size_size_list_int @ Zs2 )
                        = ( size_size_list_int @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) @ ( cons_int @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_433_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_nat,Zs: list_int,Ws: list_nat,P: list_int > list_nat > list_int > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( ( size_size_list_int @ Zs )
            = ( size_size_list_nat @ Ws ) )
         => ( ( P @ nil_int @ nil_nat @ nil_int @ nil_nat )
           => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat,Z3: int,Zs2: list_int,W2: nat,Ws2: list_nat] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_nat @ Ys3 ) )
                 => ( ( ( size_size_list_nat @ Ys3 )
                      = ( size_size_list_int @ Zs2 ) )
                   => ( ( ( size_size_list_int @ Zs2 )
                        = ( size_size_list_nat @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) @ ( cons_nat @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_434_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_nat,Zs: list_nat,Ws: list_int,P: list_int > list_nat > list_nat > list_int > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( ( size_size_list_nat @ Zs )
            = ( size_size_list_int @ Ws ) )
         => ( ( P @ nil_int @ nil_nat @ nil_nat @ nil_int )
           => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat,Z3: nat,Zs2: list_nat,W2: int,Ws2: list_int] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_nat @ Ys3 ) )
                 => ( ( ( size_size_list_nat @ Ys3 )
                      = ( size_size_list_nat @ Zs2 ) )
                   => ( ( ( size_size_list_nat @ Zs2 )
                        = ( size_size_list_int @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) @ ( cons_int @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_435_list__induct4,axiom,
    ! [Xs2: list_int,Ys: list_nat,Zs: list_nat,Ws: list_nat,P: list_int > list_nat > list_nat > list_nat > $o] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( ( size_size_list_nat @ Ys )
          = ( size_size_list_nat @ Zs ) )
       => ( ( ( size_size_list_nat @ Zs )
            = ( size_size_list_nat @ Ws ) )
         => ( ( P @ nil_int @ nil_nat @ nil_nat @ nil_nat )
           => ( ! [X3: int,Xs: list_int,Y3: nat,Ys3: list_nat,Z3: nat,Zs2: list_nat,W2: nat,Ws2: list_nat] :
                  ( ( ( size_size_list_int @ Xs )
                    = ( size_size_list_nat @ Ys3 ) )
                 => ( ( ( size_size_list_nat @ Ys3 )
                      = ( size_size_list_nat @ Zs2 ) )
                   => ( ( ( size_size_list_nat @ Zs2 )
                        = ( size_size_list_nat @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_int @ X3 @ Xs ) @ ( cons_nat @ Y3 @ Ys3 ) @ ( cons_nat @ Z3 @ Zs2 ) @ ( cons_nat @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_436_list__induct4,axiom,
    ! [Xs2: list_nat,Ys: list_int,Zs: list_int,Ws: list_int,P: list_nat > list_int > list_int > list_int > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( ( size_size_list_int @ Zs )
            = ( size_size_list_int @ Ws ) )
         => ( ( P @ nil_nat @ nil_int @ nil_int @ nil_int )
           => ( ! [X3: nat,Xs: list_nat,Y3: int,Ys3: list_int,Z3: int,Zs2: list_int,W2: int,Ws2: list_int] :
                  ( ( ( size_size_list_nat @ Xs )
                    = ( size_size_list_int @ Ys3 ) )
                 => ( ( ( size_size_list_int @ Ys3 )
                      = ( size_size_list_int @ Zs2 ) )
                   => ( ( ( size_size_list_int @ Zs2 )
                        = ( size_size_list_int @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) @ ( cons_int @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_437_list__induct4,axiom,
    ! [Xs2: list_nat,Ys: list_int,Zs: list_int,Ws: list_nat,P: list_nat > list_int > list_int > list_nat > $o] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( ( size_size_list_int @ Ys )
          = ( size_size_list_int @ Zs ) )
       => ( ( ( size_size_list_int @ Zs )
            = ( size_size_list_nat @ Ws ) )
         => ( ( P @ nil_nat @ nil_int @ nil_int @ nil_nat )
           => ( ! [X3: nat,Xs: list_nat,Y3: int,Ys3: list_int,Z3: int,Zs2: list_int,W2: nat,Ws2: list_nat] :
                  ( ( ( size_size_list_nat @ Xs )
                    = ( size_size_list_int @ Ys3 ) )
                 => ( ( ( size_size_list_int @ Ys3 )
                      = ( size_size_list_int @ Zs2 ) )
                   => ( ( ( size_size_list_int @ Zs2 )
                        = ( size_size_list_nat @ Ws2 ) )
                     => ( ( P @ Xs @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_nat @ X3 @ Xs ) @ ( cons_int @ Y3 @ Ys3 ) @ ( cons_int @ Z3 @ Zs2 ) @ ( cons_nat @ W2 @ Ws2 ) ) ) ) ) )
             => ( P @ Xs2 @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_438_replicate__Suc,axiom,
    ! [N: nat,X: int] :
      ( ( replicate_int @ ( suc @ N ) @ X )
      = ( cons_int @ X @ ( replicate_int @ N @ X ) ) ) ).

% replicate_Suc
thf(fact_439_replicate__Suc,axiom,
    ! [N: nat,X: nat] :
      ( ( replicate_nat @ ( suc @ N ) @ X )
      = ( cons_nat @ X @ ( replicate_nat @ N @ X ) ) ) ).

% replicate_Suc
thf(fact_440_last_Osimps,axiom,
    ! [Xs2: list_nat,X: nat] :
      ( ( ( Xs2 = nil_nat )
       => ( ( last_nat @ ( cons_nat @ X @ Xs2 ) )
          = X ) )
      & ( ( Xs2 != nil_nat )
       => ( ( last_nat @ ( cons_nat @ X @ Xs2 ) )
          = ( last_nat @ Xs2 ) ) ) ) ).

% last.simps
thf(fact_441_last_Osimps,axiom,
    ! [Xs2: list_int,X: int] :
      ( ( ( Xs2 = nil_int )
       => ( ( last_int @ ( cons_int @ X @ Xs2 ) )
          = X ) )
      & ( ( Xs2 != nil_int )
       => ( ( last_int @ ( cons_int @ X @ Xs2 ) )
          = ( last_int @ Xs2 ) ) ) ) ).

% last.simps
thf(fact_442_last__ConsL,axiom,
    ! [Xs2: list_nat,X: nat] :
      ( ( Xs2 = nil_nat )
     => ( ( last_nat @ ( cons_nat @ X @ Xs2 ) )
        = X ) ) ).

% last_ConsL
thf(fact_443_last__ConsL,axiom,
    ! [Xs2: list_int,X: int] :
      ( ( Xs2 = nil_int )
     => ( ( last_int @ ( cons_int @ X @ Xs2 ) )
        = X ) ) ).

% last_ConsL
thf(fact_444_last__ConsR,axiom,
    ! [Xs2: list_nat,X: nat] :
      ( ( Xs2 != nil_nat )
     => ( ( last_nat @ ( cons_nat @ X @ Xs2 ) )
        = ( last_nat @ Xs2 ) ) ) ).

% last_ConsR
thf(fact_445_last__ConsR,axiom,
    ! [Xs2: list_int,X: int] :
      ( ( Xs2 != nil_int )
     => ( ( last_int @ ( cons_int @ X @ Xs2 ) )
        = ( last_int @ Xs2 ) ) ) ).

% last_ConsR
thf(fact_446_gen__length__code_I2_J,axiom,
    ! [N: nat,X: nat,Xs2: list_nat] :
      ( ( gen_length_nat @ N @ ( cons_nat @ X @ Xs2 ) )
      = ( gen_length_nat @ ( suc @ N ) @ Xs2 ) ) ).

% gen_length_code(2)
thf(fact_447_gen__length__code_I2_J,axiom,
    ! [N: nat,X: int,Xs2: list_int] :
      ( ( gen_length_int @ N @ ( cons_int @ X @ Xs2 ) )
      = ( gen_length_int @ ( suc @ N ) @ Xs2 ) ) ).

% gen_length_code(2)
thf(fact_448_sum__list__minus,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( pointwise_le @ Xs2 @ Ys )
     => ( ( groups4561878855575611511st_nat @ ( minus_minus_list_nat @ Ys @ Xs2 ) )
        = ( minus_minus_nat @ ( groups4561878855575611511st_nat @ Ys ) @ ( groups4561878855575611511st_nat @ Xs2 ) ) ) ) ).

% sum_list_minus
thf(fact_449_last__conv__nth,axiom,
    ! [Xs2: list_nat] :
      ( ( Xs2 != nil_nat )
     => ( ( last_nat @ Xs2 )
        = ( nth_nat @ Xs2 @ ( minus_minus_nat @ ( size_size_list_nat @ Xs2 ) @ one_one_nat ) ) ) ) ).

% last_conv_nth
thf(fact_450_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_451_Cons__less__Cons,axiom,
    ! [A: extended_enat,X: list_Extended_enat,B: extended_enat,Y: list_Extended_enat] :
      ( ( ord_le4445849522347344536d_enat @ ( cons_Extended_enat @ A @ X ) @ ( cons_Extended_enat @ B @ Y ) )
      = ( ( ord_less_nat @ ( size_s3941691890525107288d_enat @ X ) @ ( size_s3941691890525107288d_enat @ Y ) )
        | ( ( ( size_s3941691890525107288d_enat @ X )
            = ( size_s3941691890525107288d_enat @ Y ) )
          & ( ( ord_le72135733267957522d_enat @ A @ B )
            | ( ( A = B )
              & ( ord_le4445849522347344536d_enat @ X @ Y ) ) ) ) ) ) ).

% Cons_less_Cons
thf(fact_452_Cons__less__Cons,axiom,
    ! [A: real,X: list_real,B: real,Y: list_real] :
      ( ( ord_less_list_real @ ( cons_real @ A @ X ) @ ( cons_real @ B @ Y ) )
      = ( ( ord_less_nat @ ( size_size_list_real @ X ) @ ( size_size_list_real @ Y ) )
        | ( ( ( size_size_list_real @ X )
            = ( size_size_list_real @ Y ) )
          & ( ( ord_less_real @ A @ B )
            | ( ( A = B )
              & ( ord_less_list_real @ X @ Y ) ) ) ) ) ) ).

% Cons_less_Cons
thf(fact_453_Cons__less__Cons,axiom,
    ! [A: num,X: list_num,B: num,Y: list_num] :
      ( ( ord_less_list_num @ ( cons_num @ A @ X ) @ ( cons_num @ B @ Y ) )
      = ( ( ord_less_nat @ ( size_size_list_num @ X ) @ ( size_size_list_num @ Y ) )
        | ( ( ( size_size_list_num @ X )
            = ( size_size_list_num @ Y ) )
          & ( ( ord_less_num @ A @ B )
            | ( ( A = B )
              & ( ord_less_list_num @ X @ Y ) ) ) ) ) ) ).

% Cons_less_Cons
thf(fact_454_Cons__less__Cons,axiom,
    ! [A: nat,X: list_nat,B: nat,Y: list_nat] :
      ( ( ord_less_list_nat @ ( cons_nat @ A @ X ) @ ( cons_nat @ B @ Y ) )
      = ( ( ord_less_nat @ ( size_size_list_nat @ X ) @ ( size_size_list_nat @ Y ) )
        | ( ( ( size_size_list_nat @ X )
            = ( size_size_list_nat @ Y ) )
          & ( ( ord_less_nat @ A @ B )
            | ( ( A = B )
              & ( ord_less_list_nat @ X @ Y ) ) ) ) ) ) ).

% Cons_less_Cons
thf(fact_455_Cons__less__Cons,axiom,
    ! [A: int,X: list_int,B: int,Y: list_int] :
      ( ( ord_less_list_int @ ( cons_int @ A @ X ) @ ( cons_int @ B @ Y ) )
      = ( ( ord_less_nat @ ( size_size_list_int @ X ) @ ( size_size_list_int @ Y ) )
        | ( ( ( size_size_list_int @ X )
            = ( size_size_list_int @ Y ) )
          & ( ( ord_less_int @ A @ B )
            | ( ( A = B )
              & ( ord_less_list_int @ X @ Y ) ) ) ) ) ) ).

% Cons_less_Cons
thf(fact_456_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_457_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_458_length__Cons,axiom,
    ! [X: int,Xs2: list_int] :
      ( ( size_size_list_int @ ( cons_int @ X @ Xs2 ) )
      = ( suc @ ( size_size_list_int @ Xs2 ) ) ) ).

% length_Cons
thf(fact_459_length__Cons,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( size_size_list_nat @ ( cons_nat @ X @ Xs2 ) )
      = ( suc @ ( size_size_list_nat @ Xs2 ) ) ) ).

% length_Cons
thf(fact_460_pointwise__less__iff2,axiom,
    ( pointwise_less
    = ( ^ [X9: list_nat,Y10: list_nat] :
          ( ( pointwise_le @ X9 @ Y10 )
          & ? [K3: nat] :
              ( ( ord_less_nat @ K3 @ ( size_size_list_nat @ X9 ) )
              & ( ord_less_nat @ ( nth_nat @ X9 @ K3 ) @ ( nth_nat @ Y10 @ K3 ) ) ) ) ) ) ).

% pointwise_less_iff2
thf(fact_461_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_462_signed__take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% signed_take_bit_diff
thf(fact_463_pointwise__le__iff__less__equal,axiom,
    ( pointwise_le
    = ( ^ [X9: list_nat,Y10: list_nat] :
          ( ( pointwise_less @ X9 @ Y10 )
          | ( X9 = Y10 ) ) ) ) ).

% pointwise_le_iff_less_equal
thf(fact_464_pointwise__less__def,axiom,
    ( pointwise_less
    = ( ^ [X9: list_nat,Y10: list_nat] :
          ( ( pointwise_le @ X9 @ Y10 )
          & ( X9 != Y10 ) ) ) ) ).

% pointwise_less_def
thf(fact_465_pointwise__less__Nil2,axiom,
    ! [X: list_nat] :
      ~ ( pointwise_less @ X @ nil_nat ) ).

% pointwise_less_Nil2
thf(fact_466_pointwise__less__Nil,axiom,
    ! [X: list_nat] :
      ~ ( pointwise_less @ nil_nat @ X ) ).

% pointwise_less_Nil
thf(fact_467_verit__comp__simplify1_I1_J,axiom,
    ! [A: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_468_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_469_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_470_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_471_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_472_not__less__Nil,axiom,
    ! [X: list_nat] :
      ~ ( ord_less_list_nat @ X @ nil_nat ) ).

% not_less_Nil
thf(fact_473_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y9: nat,Z2: nat] : ( Y9 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_474_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_475_Nil__less__Cons,axiom,
    ! [A: nat,X: list_nat] : ( ord_less_list_nat @ nil_nat @ ( cons_nat @ A @ X ) ) ).

% Nil_less_Cons
thf(fact_476_Nil__less__Cons,axiom,
    ! [A: int,X: list_int] : ( ord_less_list_int @ nil_int @ ( cons_int @ A @ X ) ) ).

% Nil_less_Cons
thf(fact_477_n__lists__Nil,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( n_lists_nat @ N @ nil_nat )
          = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( n_lists_nat @ N @ nil_nat )
          = nil_list_nat ) ) ) ).

% n_lists_Nil
thf(fact_478_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I2: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I2 ) @ Js @ ( upto_aux @ I2 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_479_n__lists_Osimps_I1_J,axiom,
    ! [Xs2: list_nat] :
      ( ( n_lists_nat @ zero_zero_nat @ Xs2 )
      = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% n_lists.simps(1)
thf(fact_480_sum__list__update,axiom,
    ! [K: nat,Xs2: list_nat,X: nat] :
      ( ( ord_less_nat @ K @ ( size_size_list_nat @ Xs2 ) )
     => ( ( groups4561878855575611511st_nat @ ( list_update_nat @ Xs2 @ K @ X ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( groups4561878855575611511st_nat @ Xs2 ) @ X ) @ ( nth_nat @ Xs2 @ K ) ) ) ) ).

% sum_list_update
thf(fact_481_product__lists_Osimps_I1_J,axiom,
    ( ( product_lists_nat @ nil_list_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% product_lists.simps(1)
thf(fact_482_add__right__cancel,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_483_add__right__cancel,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_484_add__right__cancel,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_485_add__left__cancel,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_486_add__left__cancel,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_487_add__left__cancel,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_488_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_489_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_490_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_491_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_492_plus__Nil,axiom,
    ! [Xs2: list_nat] :
      ( ( plus_plus_list_nat @ nil_nat @ Xs2 )
      = nil_nat ) ).

% plus_Nil
thf(fact_493_diff__diff__left,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J2 ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% diff_diff_left
thf(fact_494_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_495_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_496_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_497_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_498_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_499_add__0,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
      = A ) ).

% add_0
thf(fact_500_add__0,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ zero_z7100319975126383169nnreal @ A )
      = A ) ).

% add_0
thf(fact_501_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_502_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( zero_z5237406670263579293d_enat
        = ( plus_p3455044024723400733d_enat @ X @ Y ) )
      = ( ( X = zero_z5237406670263579293d_enat )
        & ( Y = zero_z5237406670263579293d_enat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_503_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( zero_z7100319975126383169nnreal
        = ( plus_p1859984266308609217nnreal @ X @ Y ) )
      = ( ( X = zero_z7100319975126383169nnreal )
        & ( Y = zero_z7100319975126383169nnreal ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_504_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_505_add__eq__0__iff__both__eq__0,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ X @ Y )
        = zero_z5237406670263579293d_enat )
      = ( ( X = zero_z5237406670263579293d_enat )
        & ( Y = zero_z5237406670263579293d_enat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_506_add__eq__0__iff__both__eq__0,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( ( plus_p1859984266308609217nnreal @ X @ Y )
        = zero_z7100319975126383169nnreal )
      = ( ( X = zero_z7100319975126383169nnreal )
        & ( Y = zero_z7100319975126383169nnreal ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_507_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_508_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_509_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_510_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_511_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_512_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_513_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_514_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_515_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_516_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_517_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_518_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_519_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_520_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_521_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_522_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_523_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_524_add_Oright__neutral,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
      = A ) ).

% add.right_neutral
thf(fact_525_add_Oright__neutral,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ A @ zero_z7100319975126383169nnreal )
      = A ) ).

% add.right_neutral
thf(fact_526_add__less__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_527_add__less__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_528_add__less__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_529_add__less__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_530_add__less__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_531_add__less__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_532_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_533_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_534_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_535_add__diff__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_536_add__diff__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_537_add__diff__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_538_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_539_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_540_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_541_add__diff__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_542_add__diff__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_543_add__diff__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_544_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_545_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_546_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_547_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_548_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_549_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_550_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_551_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri6283507881447550617nnreal @ ( plus_plus_nat @ M @ N ) )
      = ( plus_p1859984266308609217nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) ) ) ).

% of_nat_add
thf(fact_552_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_553_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_554_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_555_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_556_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_557_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_558_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_559_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_560_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_561_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_562_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_563_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_564_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_565_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_566_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_567_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_568_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_569_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_570_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_571_sum__list_OCons,axiom,
    ! [X: real,Xs2: list_real] :
      ( ( groups6723090944982001619t_real @ ( cons_real @ X @ Xs2 ) )
      = ( plus_plus_real @ X @ ( groups6723090944982001619t_real @ Xs2 ) ) ) ).

% sum_list.Cons
thf(fact_572_sum__list_OCons,axiom,
    ! [X: int,Xs2: list_int] :
      ( ( groups4559388385066561235st_int @ ( cons_int @ X @ Xs2 ) )
      = ( plus_plus_int @ X @ ( groups4559388385066561235st_int @ Xs2 ) ) ) ).

% sum_list.Cons
thf(fact_573_sum__list_OCons,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( groups4561878855575611511st_nat @ ( cons_nat @ X @ Xs2 ) )
      = ( plus_plus_nat @ X @ ( groups4561878855575611511st_nat @ Xs2 ) ) ) ).

% sum_list.Cons
thf(fact_574_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri4216267220026989637d_enat @ ( suc @ M ) )
      = ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( semiri4216267220026989637d_enat @ M ) ) ) ).

% of_nat_Suc
thf(fact_575_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_576_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_577_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_578_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri6283507881447550617nnreal @ ( suc @ M ) )
      = ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( semiri6283507881447550617nnreal @ M ) ) ) ).

% of_nat_Suc
thf(fact_579_nth__plus__list,axiom,
    ! [I: nat,Xs2: list_real,Ys: list_real] :
      ( ( ord_less_nat @ I @ ( size_size_list_real @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_real @ Ys ) )
       => ( ( nth_real @ ( plus_plus_list_real @ Xs2 @ Ys ) @ I )
          = ( plus_plus_real @ ( nth_real @ Xs2 @ I ) @ ( nth_real @ Ys @ I ) ) ) ) ) ).

% nth_plus_list
thf(fact_580_nth__plus__list,axiom,
    ! [I: nat,Xs2: list_list_nat,Ys: list_list_nat] :
      ( ( ord_less_nat @ I @ ( size_s3023201423986296836st_nat @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_s3023201423986296836st_nat @ Ys ) )
       => ( ( nth_list_nat @ ( plus_p2116291331692525561st_nat @ Xs2 @ Ys ) @ I )
          = ( plus_plus_list_nat @ ( nth_list_nat @ Xs2 @ I ) @ ( nth_list_nat @ Ys @ I ) ) ) ) ) ).

% nth_plus_list
thf(fact_581_nth__plus__list,axiom,
    ! [I: nat,Xs2: list_num,Ys: list_num] :
      ( ( ord_less_nat @ I @ ( size_size_list_num @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_num @ Ys ) )
       => ( ( nth_num @ ( plus_plus_list_num @ Xs2 @ Ys ) @ I )
          = ( plus_plus_num @ ( nth_num @ Xs2 @ I ) @ ( nth_num @ Ys @ I ) ) ) ) ) ).

% nth_plus_list
thf(fact_582_nth__plus__list,axiom,
    ! [I: nat,Xs2: list_int,Ys: list_int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_int @ Ys ) )
       => ( ( nth_int @ ( plus_plus_list_int @ Xs2 @ Ys ) @ I )
          = ( plus_plus_int @ ( nth_int @ Xs2 @ I ) @ ( nth_int @ Ys @ I ) ) ) ) ) ).

% nth_plus_list
thf(fact_583_nth__plus__list,axiom,
    ! [I: nat,Xs2: list_nat,Ys: list_nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ys ) )
       => ( ( nth_nat @ ( plus_plus_list_nat @ Xs2 @ Ys ) @ I )
          = ( plus_plus_nat @ ( nth_nat @ Xs2 @ I ) @ ( nth_nat @ Ys @ I ) ) ) ) ) ).

% nth_plus_list
thf(fact_584_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_585_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_586_plus__Cons,axiom,
    ! [Y: real,Ys: list_real,X: real,Xs2: list_real] :
      ( ( plus_plus_list_real @ ( cons_real @ Y @ Ys ) @ ( cons_real @ X @ Xs2 ) )
      = ( cons_real @ ( plus_plus_real @ Y @ X ) @ ( plus_plus_list_real @ Ys @ Xs2 ) ) ) ).

% plus_Cons
thf(fact_587_plus__Cons,axiom,
    ! [Y: list_nat,Ys: list_list_nat,X: list_nat,Xs2: list_list_nat] :
      ( ( plus_p2116291331692525561st_nat @ ( cons_list_nat @ Y @ Ys ) @ ( cons_list_nat @ X @ Xs2 ) )
      = ( cons_list_nat @ ( plus_plus_list_nat @ Y @ X ) @ ( plus_p2116291331692525561st_nat @ Ys @ Xs2 ) ) ) ).

% plus_Cons
thf(fact_588_plus__Cons,axiom,
    ! [Y: num,Ys: list_num,X: num,Xs2: list_num] :
      ( ( plus_plus_list_num @ ( cons_num @ Y @ Ys ) @ ( cons_num @ X @ Xs2 ) )
      = ( cons_num @ ( plus_plus_num @ Y @ X ) @ ( plus_plus_list_num @ Ys @ Xs2 ) ) ) ).

% plus_Cons
thf(fact_589_plus__Cons,axiom,
    ! [Y: int,Ys: list_int,X: int,Xs2: list_int] :
      ( ( plus_plus_list_int @ ( cons_int @ Y @ Ys ) @ ( cons_int @ X @ Xs2 ) )
      = ( cons_int @ ( plus_plus_int @ Y @ X ) @ ( plus_plus_list_int @ Ys @ Xs2 ) ) ) ).

% plus_Cons
thf(fact_590_plus__Cons,axiom,
    ! [Y: nat,Ys: list_nat,X: nat,Xs2: list_nat] :
      ( ( plus_plus_list_nat @ ( cons_nat @ Y @ Ys ) @ ( cons_nat @ X @ Xs2 ) )
      = ( cons_nat @ ( plus_plus_nat @ Y @ X ) @ ( plus_plus_list_nat @ Ys @ Xs2 ) ) ) ).

% plus_Cons
thf(fact_591_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% is_num_normalize(1)
thf(fact_592_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% is_num_normalize(1)
thf(fact_593_add__right__imp__eq,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_594_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_595_add__right__imp__eq,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_596_add__left__imp__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_597_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_598_add__left__imp__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_599_add_Oleft__commute,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C2 ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_600_add_Oleft__commute,axiom,
    ! [B: list_nat,A: list_nat,C2: list_nat] :
      ( ( plus_plus_list_nat @ B @ ( plus_plus_list_nat @ A @ C2 ) )
      = ( plus_plus_list_nat @ A @ ( plus_plus_list_nat @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_601_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C2 ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_602_add_Oleft__commute,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C2 ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_603_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_604_add_Ocommute,axiom,
    ( plus_plus_list_nat
    = ( ^ [A3: list_nat,B2: list_nat] : ( plus_plus_list_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_605_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_606_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_607_add_Oright__cancel,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add.right_cancel
thf(fact_608_add_Oright__cancel,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add.right_cancel
thf(fact_609_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add.left_cancel
thf(fact_610_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add.left_cancel
thf(fact_611_add_Oassoc,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_612_add_Oassoc,axiom,
    ! [A: list_nat,B: list_nat,C2: list_nat] :
      ( ( plus_plus_list_nat @ ( plus_plus_list_nat @ A @ B ) @ C2 )
      = ( plus_plus_list_nat @ A @ ( plus_plus_list_nat @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_613_add_Oassoc,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_614_add_Oassoc,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_615_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_616_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_617_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_618_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_619_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_620_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_621_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J2: real,K: real,L: real] :
      ( ( ( I = J2 )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_622_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I = J2 )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_623_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J2: int,K: int,L: int] :
      ( ( ( I = J2 )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_624_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_625_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: list_nat,B: list_nat,C2: list_nat] :
      ( ( plus_plus_list_nat @ ( plus_plus_list_nat @ A @ B ) @ C2 )
      = ( plus_plus_list_nat @ A @ ( plus_plus_list_nat @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_626_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_627_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_628_signed__take__bit__add,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).

% signed_take_bit_add
thf(fact_629_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_630_sum__list__plus,axiom,
    ! [Xs2: list_real,Ys: list_real] :
      ( ( ( size_size_list_real @ Xs2 )
        = ( size_size_list_real @ Ys ) )
     => ( ( groups6723090944982001619t_real @ ( plus_plus_list_real @ Xs2 @ Ys ) )
        = ( plus_plus_real @ ( groups6723090944982001619t_real @ Xs2 ) @ ( groups6723090944982001619t_real @ Ys ) ) ) ) ).

% sum_list_plus
thf(fact_631_sum__list__plus,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ( groups4559388385066561235st_int @ ( plus_plus_list_int @ Xs2 @ Ys ) )
        = ( plus_plus_int @ ( groups4559388385066561235st_int @ Xs2 ) @ ( groups4559388385066561235st_int @ Ys ) ) ) ) ).

% sum_list_plus
thf(fact_632_sum__list__plus,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ( groups4561878855575611511st_nat @ ( plus_plus_list_nat @ Xs2 @ Ys ) )
        = ( plus_plus_nat @ ( groups4561878855575611511st_nat @ Xs2 ) @ ( groups4561878855575611511st_nat @ Ys ) ) ) ) ).

% sum_list_plus
thf(fact_633_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_634_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_635_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_636_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_637_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_638_add_Ocomm__neutral,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
      = A ) ).

% add.comm_neutral
thf(fact_639_add_Ocomm__neutral,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ A @ zero_z7100319975126383169nnreal )
      = A ) ).

% add.comm_neutral
thf(fact_640_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_641_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_642_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_643_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_644_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ zero_z7100319975126383169nnreal @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_645_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_646_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_647_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_648_add__less__imp__less__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_649_add__less__imp__less__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_650_add__less__imp__less__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_651_add__less__imp__less__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_652_add__less__imp__less__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_653_add__less__imp__less__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_654_add__strict__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_655_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_656_add__strict__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_657_add__strict__left__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_658_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_659_add__strict__left__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_660_add__strict__mono,axiom,
    ! [A: extended_enat,B: extended_enat,C2: extended_enat,D: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ C2 @ D )
       => ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ C2 ) @ ( plus_p3455044024723400733d_enat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_661_add__strict__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C2 @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_662_add__strict__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C2 @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_663_add__strict__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C2 @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_664_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J2: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J2 )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_665_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_666_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J2: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J2 )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_667_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J2: real,K: real,L: real] :
      ( ( ( I = J2 )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_668_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I = J2 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_669_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J2: int,K: int,L: int] :
      ( ( ( I = J2 )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_670_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J2: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J2 )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_671_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_672_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J2: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J2 )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_673_add__diff__add,axiom,
    ! [A: real,C2: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C2 @ D ) ) ) ).

% add_diff_add
thf(fact_674_add__diff__add,axiom,
    ! [A: int,C2: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C2 @ D ) ) ) ).

% add_diff_add
thf(fact_675_diff__diff__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C2 )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% diff_diff_eq
thf(fact_676_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C2 )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% diff_diff_eq
thf(fact_677_diff__diff__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C2 )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% diff_diff_eq
thf(fact_678_add__implies__diff,axiom,
    ! [C2: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C2 @ B )
        = A )
     => ( C2
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_679_add__implies__diff,axiom,
    ! [C2: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C2 @ B )
        = A )
     => ( C2
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_680_add__implies__diff,axiom,
    ! [C2: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C2 @ B )
        = A )
     => ( C2
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_681_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C2 ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C2 ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_682_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C2 ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C2 ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_683_diff__add__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C2 )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ B ) ) ).

% diff_add_eq
thf(fact_684_diff__add__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C2 )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ).

% diff_add_eq
thf(fact_685_diff__diff__eq2,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C2 ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ B ) ) ).

% diff_diff_eq2
thf(fact_686_diff__diff__eq2,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C2 ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ).

% diff_diff_eq2
thf(fact_687_add__diff__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C2 ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C2 ) ) ).

% add_diff_eq
thf(fact_688_add__diff__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C2 ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C2 ) ) ).

% add_diff_eq
thf(fact_689_eq__diff__eq,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C2 @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C2 ) ) ).

% eq_diff_eq
thf(fact_690_eq__diff__eq,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C2 @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C2 ) ) ).

% eq_diff_eq
thf(fact_691_diff__eq__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C2 )
      = ( A
        = ( plus_plus_real @ C2 @ B ) ) ) ).

% diff_eq_eq
thf(fact_692_diff__eq__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C2 )
      = ( A
        = ( plus_plus_int @ C2 @ B ) ) ) ).

% diff_eq_eq
thf(fact_693_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_694_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_695_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_696_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_697_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_698_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_699_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_700_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_701_trans__less__add2,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_less_add2
thf(fact_702_trans__less__add1,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_less_add1
thf(fact_703_add__less__mono1,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% add_less_mono1
thf(fact_704_not__add__less2,axiom,
    ! [J2: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J2 @ I ) @ I ) ).

% not_add_less2
thf(fact_705_not__add__less1,axiom,
    ! [I: nat,J2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J2 ) @ I ) ).

% not_add_less1
thf(fact_706_add__less__mono,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_less_mono
thf(fact_707_add__lessD1,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J2 ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_708_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_709_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_710_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_711_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_712_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_713_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_714_add__less__zeroD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_715_add__less__zeroD,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_716_add__neg__neg,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ A @ zero_z7100319975126383169nnreal )
     => ( ( ord_le7381754540660121996nnreal @ B @ zero_z7100319975126383169nnreal )
       => ( ord_le7381754540660121996nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ zero_z7100319975126383169nnreal ) ) ) ).

% add_neg_neg
thf(fact_717_add__neg__neg,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ zero_z5237406670263579293d_enat )
     => ( ( ord_le72135733267957522d_enat @ B @ zero_z5237406670263579293d_enat )
       => ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ zero_z5237406670263579293d_enat ) ) ) ).

% add_neg_neg
thf(fact_718_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_719_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_720_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_721_add__pos__pos,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ A )
     => ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ B )
       => ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_722_add__pos__pos,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ A )
     => ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ B )
       => ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_723_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_724_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_725_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_726_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ A @ B )
     => ~ ! [C3: extend8495563244428889912nnreal] :
            ( ( B
              = ( plus_p1859984266308609217nnreal @ A @ C3 ) )
           => ( C3 = zero_z7100319975126383169nnreal ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_727_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ~ ! [C3: extended_enat] :
            ( ( B
              = ( plus_p3455044024723400733d_enat @ A @ C3 ) )
           => ( C3 = zero_z5237406670263579293d_enat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_728_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_729_pos__add__strict,axiom,
    ! [A: extended_enat,B: extended_enat,C2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ A )
     => ( ( ord_le72135733267957522d_enat @ B @ C2 )
       => ( ord_le72135733267957522d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_730_pos__add__strict,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C2 )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_731_pos__add__strict,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_732_pos__add__strict,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C2 )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_733_add__mono1,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ A @ B )
     => ( ord_le7381754540660121996nnreal @ ( plus_p1859984266308609217nnreal @ A @ one_on2969667320475766781nnreal ) @ ( plus_p1859984266308609217nnreal @ B @ one_on2969667320475766781nnreal ) ) ) ).

% add_mono1
thf(fact_734_add__mono1,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ one_on7984719198319812577d_enat ) @ ( plus_p3455044024723400733d_enat @ B @ one_on7984719198319812577d_enat ) ) ) ).

% add_mono1
thf(fact_735_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_736_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_737_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_738_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_739_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_740_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_741_diff__less__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C2 )
      = ( ord_less_real @ A @ ( plus_plus_real @ C2 @ B ) ) ) ).

% diff_less_eq
thf(fact_742_diff__less__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C2 )
      = ( ord_less_int @ A @ ( plus_plus_int @ C2 @ B ) ) ) ).

% diff_less_eq
thf(fact_743_less__diff__eq,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C2 @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C2 ) ) ).

% less_diff_eq
thf(fact_744_less__diff__eq,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C2 @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C2 ) ) ).

% less_diff_eq
thf(fact_745_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_746_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_747_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_748_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_749_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_750_less__imp__add__positive,axiom,
    ! [I: nat,J2: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J2 ) ) ) ).

% less_imp_add_positive
thf(fact_751_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q ) ) ) ) ).

% less_natE
thf(fact_752_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_753_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_754_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( suc @ ( plus_plus_nat @ M5 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_755_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_756_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_757_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_758_less__diff__conv,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J2 ) ) ).

% less_diff_conv
thf(fact_759_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_760_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_761_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_762_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_763_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_764_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_765_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X9: real] : ( plus_plus_real @ ( plus_plus_real @ X9 @ X9 ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_766_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X9: int] : ( plus_plus_int @ ( plus_plus_int @ X9 @ X9 ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_767_gen__length__def,axiom,
    ( gen_length_nat
    = ( ^ [N4: nat,Xs3: list_nat] : ( plus_plus_nat @ N4 @ ( size_size_list_nat @ Xs3 ) ) ) ) ).

% gen_length_def
thf(fact_768_zero__less__two,axiom,
    ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ one_on2969667320475766781nnreal ) ).

% zero_less_two
thf(fact_769_zero__less__two,axiom,
    ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ) ).

% zero_less_two
thf(fact_770_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_771_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_772_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_773_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D3: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D3 ) )
                & ~ ( P @ D3 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_774_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D3: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D3 ) )
           => ( P @ D3 ) ) ) ) ).

% nat_diff_split
thf(fact_775_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_776_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_777_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W3: int,Z4: int] :
        ? [N4: nat] :
          ( Z4
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_778_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_779_list_Osize_I4_J,axiom,
    ! [X21: int,X222: list_int] :
      ( ( size_size_list_int @ ( cons_int @ X21 @ X222 ) )
      = ( plus_plus_nat @ ( size_size_list_int @ X222 ) @ ( suc @ zero_zero_nat ) ) ) ).

% list.size(4)
thf(fact_780_list_Osize_I4_J,axiom,
    ! [X21: nat,X222: list_nat] :
      ( ( size_size_list_nat @ ( cons_nat @ X21 @ X222 ) )
      = ( plus_plus_nat @ ( size_size_list_nat @ X222 ) @ ( suc @ zero_zero_nat ) ) ) ).

% list.size(4)
thf(fact_781_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N4 ) ) ) ) ) ).

% add_eq_if
thf(fact_782_pth__d,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ X @ zero_zero_real )
      = X ) ).

% pth_d
thf(fact_783_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_784_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_785_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_786_eq__add__iff,axiom,
    ! [X: int,Y: int] :
      ( ( X
        = ( plus_plus_int @ X @ Y ) )
      = ( Y = zero_zero_int ) ) ).

% eq_add_iff
thf(fact_787_eq__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( X
        = ( plus_plus_real @ X @ Y ) )
      = ( Y = zero_zero_real ) ) ).

% eq_add_iff
thf(fact_788_pth__7_I1_J,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ zero_zero_real @ X )
      = X ) ).

% pth_7(1)
thf(fact_789_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P @ A4 @ B4 )
          = ( P @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ A4 @ B4 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_790_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X9: real] : ( minus_minus_real @ ( plus_plus_real @ X9 @ X9 ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_791_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X9: int] : ( minus_minus_int @ ( plus_plus_int @ X9 @ X9 ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_792_length__sum__set__Suc,axiom,
    ! [K: nat,Ks: list_nat,R: nat,N: nat] :
      ( ( member_list_nat @ ( cons_nat @ K @ Ks ) @ ( length_sum_set @ ( suc @ R ) @ N ) )
      = ( ? [M5: nat] :
            ( ( member_list_nat @ Ks @ ( length_sum_set @ R @ M5 ) )
            & ( N
              = ( plus_plus_nat @ M5 @ K ) ) ) ) ) ).

% length_sum_set_Suc
thf(fact_793_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_794_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_795_one__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% one_less_nat_eq
thf(fact_796_subseqs_Osimps_I1_J,axiom,
    ( ( subseqs_nat @ nil_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% subseqs.simps(1)
thf(fact_797_nth__Cons__numeral,axiom,
    ! [X: nat,Xs2: list_nat,V: num] :
      ( ( nth_nat @ ( cons_nat @ X @ Xs2 ) @ ( numeral_numeral_nat @ V ) )
      = ( nth_nat @ Xs2 @ ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat ) ) ) ).

% nth_Cons_numeral
thf(fact_798_nth__Cons__numeral,axiom,
    ! [X: int,Xs2: list_int,V: num] :
      ( ( nth_int @ ( cons_int @ X @ Xs2 ) @ ( numeral_numeral_nat @ V ) )
      = ( nth_int @ Xs2 @ ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat ) ) ) ).

% nth_Cons_numeral
thf(fact_799_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% neg_int_cases
thf(fact_800_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_801_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_802_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_803_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera4658534427948366547nnreal @ M )
        = ( numera4658534427948366547nnreal @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_804_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera1916890842035813515d_enat @ M )
        = ( numera1916890842035813515d_enat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_805_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_806_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_807_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_808_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_809_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_810_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_811_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_812_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le7381754540660121996nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_813_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_814_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_815_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_816_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_817_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_818_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_819_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_820_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_821_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_822_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_823_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_824_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_825_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_826_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_827_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_828_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_829_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N ) )
      = ( numera4658534427948366547nnreal @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_830_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_831_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_832_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_833_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_834_add__numeral__left,axiom,
    ! [V: num,W: num,Z: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ W ) @ Z ) )
      = ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_835_add__numeral__left,axiom,
    ! [V: num,W: num,Z: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
      = ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_836_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_837_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_838_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_839_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_840_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_841_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_842_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_843_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_844_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_845_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_846_nat__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
      = N ) ).

% nat_int
thf(fact_847_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_848_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_849_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_850_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_851_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_852_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_853_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_854_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_855_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_856_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_857_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_858_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_859_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_860_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_861_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_862_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_863_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_864_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_865_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_866_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_867_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_868_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_869_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_870_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_871_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_872_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_873_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_874_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_875_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ N ) ) ).

% of_nat_numeral
thf(fact_876_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N ) )
      = ( numera1916890842035813515d_enat @ N ) ) ).

% of_nat_numeral
thf(fact_877_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% of_nat_numeral
thf(fact_878_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% of_nat_numeral
thf(fact_879_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ N ) )
      = ( numera4658534427948366547nnreal @ N ) ) ).

% of_nat_numeral
thf(fact_880_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_881_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_882_signed__take__bit__numeral__of__1,axiom,
    ! [K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_883_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_884_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_885_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_886_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_887_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_888_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_889_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_890_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_891_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_892_zless__nat__conj,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
      = ( ( ord_less_int @ zero_zero_int @ Z )
        & ( ord_less_int @ W @ Z ) ) ) ).

% zless_nat_conj
thf(fact_893_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_894_nat__zminus__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
      = zero_zero_nat ) ).

% nat_zminus_int
thf(fact_895_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_896_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_897_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_898_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_899_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_900_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_901_zero__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% zero_less_nat_eq
thf(fact_902_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_903_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_904_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_905_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_906_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_907_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_908_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_909_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_910_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_911_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_912_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_913_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_914_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_915_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_916_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_917_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_918_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_919_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_920_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_921_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_922_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_923_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_924_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_925_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_926_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_927_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_928_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_929_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ N )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_930_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_931_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_932_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_933_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_934_int__cases2,axiom,
    ! [Z: int] :
      ( ! [N2: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% int_cases2
thf(fact_935_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_936_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_937_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_938_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_939_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_940_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_941_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_942_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_943_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_944_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_945_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_946_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_947_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_948_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_949_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_950_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_951_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_952_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_953_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_954_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_955_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_956_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N ) ) ).

% zero_neq_numeral
thf(fact_957_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_z7100319975126383169nnreal
     != ( numera4658534427948366547nnreal @ N ) ) ).

% zero_neq_numeral
thf(fact_958_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_z5237406670263579293d_enat
     != ( numera1916890842035813515d_enat @ N ) ) ).

% zero_neq_numeral
thf(fact_959_signed__take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% signed_take_bit_minus
thf(fact_960_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_961_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_962_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_963_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_964_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_965_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_966_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_967_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_968_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_969_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_970_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_971_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_972_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_973_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_less_numeral
thf(fact_974_zero__less__numeral,axiom,
    ! [N: num] : ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( numera4658534427948366547nnreal @ N ) ) ).

% zero_less_numeral
thf(fact_975_zero__less__numeral,axiom,
    ! [N: num] : ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).

% zero_less_numeral
thf(fact_976_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_977_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_978_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_979_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_le7381754540660121996nnreal @ ( numera4658534427948366547nnreal @ N ) @ zero_z7100319975126383169nnreal ) ).

% not_numeral_less_zero
thf(fact_980_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ zero_z5237406670263579293d_enat ) ).

% not_numeral_less_zero
thf(fact_981_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_982_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_983_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_984_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_985_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_986_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_987_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_988_pth__2,axiom,
    ( minus_minus_real
    = ( ^ [X9: real,Y10: real] : ( plus_plus_real @ X9 @ ( uminus_uminus_real @ Y10 ) ) ) ) ).

% pth_2
thf(fact_989_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_990_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_991_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_992_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_993_group__cancel_Osub2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_994_group__cancel_Osub2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( minus_minus_real @ A @ B3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_995_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_996_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_997_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_998_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_le7381754540660121996nnreal @ ( numera4658534427948366547nnreal @ N ) @ one_on2969667320475766781nnreal ) ).

% not_numeral_less_one
thf(fact_999_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat ) ).

% not_numeral_less_one
thf(fact_1000_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_1001_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_1002_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_1003_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ X ) )
      = ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ X ) @ one_on2969667320475766781nnreal ) ) ).

% one_plus_numeral_commute
thf(fact_1004_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
      = ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat ) ) ).

% one_plus_numeral_commute
thf(fact_1005_int__of__nat__induct,axiom,
    ! [P: int > $o,Z: int] :
      ( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
       => ( P @ Z ) ) ) ).

% int_of_nat_induct
thf(fact_1006_int__cases,axiom,
    ! [Z: int] :
      ( ! [N2: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% int_cases
thf(fact_1007_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_1008_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_1009_nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% nat_mask_eq
thf(fact_1010_nat__mono__iff,axiom,
    ! [Z: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_mono_iff
thf(fact_1011_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_1012_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).

% zless_nat_eq_int_zless
thf(fact_1013_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_1014_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_1015_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_1016_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_1017_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_1018_int__cases4,axiom,
    ! [M: int] :
      ( ! [N2: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% int_cases4
thf(fact_1019_split__nat,axiom,
    ! [P: nat > $o,I: int] :
      ( ( P @ ( nat2 @ I ) )
      = ( ! [N4: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N4 ) )
           => ( P @ N4 ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_1020_Suc__as__int,axiom,
    ( suc
    = ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_1021_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
       => ~ ! [N2: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% int_cases3
thf(fact_1022_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N2: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% negD
thf(fact_1023_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_1024_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_1025_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_1026_real__of__nat__less__numeral__iff,axiom,
    ! [N: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_1027_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_1028_nat__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_numeral
thf(fact_1029_nat__neg__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = zero_zero_nat ) ).

% nat_neg_numeral
thf(fact_1030_diff__nat__numeral,axiom,
    ! [V: num,V2: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V2 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V2 ) ) ) ) ).

% diff_nat_numeral
thf(fact_1031_numeral__eq__of__nat,axiom,
    ( numera4658534427948366547nnreal
    = ( ^ [A3: num] : ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ A3 ) ) ) ) ).

% numeral_eq_of_nat
thf(fact_1032_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_1033_enat__ord__number_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(2)
thf(fact_1034_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_1035_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_1036_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_1037_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_1038_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_1039_powr__eq__one__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X )
          = one_one_real )
        = ( X = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_1040_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_1041_powr__less__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_1042_ln__less__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_1043_powr__gt__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( powr_real @ X @ A ) )
      = ( X != zero_zero_real ) ) ).

% powr_gt_zero
thf(fact_1044_ln__inj__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ( ln_ln_real @ X )
            = ( ln_ln_real @ Y ) )
          = ( X = Y ) ) ) ) ).

% ln_inj_iff
thf(fact_1045_i0__less,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
      = ( N != zero_z5237406670263579293d_enat ) ) ).

% i0_less
thf(fact_1046_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1047_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1048_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_on2969667320475766781nnreal
        = ( numera4658534427948366547nnreal @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1049_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_on7984719198319812577d_enat
        = ( numera1916890842035813515d_enat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1050_one__less__numeral,axiom,
    ! [N: num] :
      ( ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral
thf(fact_1051_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_1052_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_1053_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1054_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_1055_powr__inj,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X )
            = ( powr_real @ A @ Y ) )
          = ( X = Y ) ) ) ) ).

% powr_inj
thf(fact_1056_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_1057_gr__one__powr,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y ) ) ) ) ).

% gr_one_powr
thf(fact_1058_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_1059_powr__less__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_less_mono
thf(fact_1060_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_1061_powr__less__cancel,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_1062_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_1063_enat__less__induct,axiom,
    ! [P: extended_enat > $o,N: extended_enat] :
      ( ! [N2: extended_enat] :
          ( ! [M3: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M3 @ N2 )
             => ( P @ M3 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% enat_less_induct
thf(fact_1064_powr__less__mono2__neg,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y )
         => ( ord_less_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_less_mono2_neg
thf(fact_1065_powr__non__neg,axiom,
    ! [A: real,X: real] :
      ~ ( ord_less_real @ ( powr_real @ A @ X ) @ zero_zero_real ) ).

% powr_non_neg
thf(fact_1066_ln__less__self,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_less_self
thf(fact_1067_not__iless0,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).

% not_iless0
thf(fact_1068_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_1069_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_1070_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_1071_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_1072_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_1073_arsinh__minus__real,axiom,
    ! [X: real] :
      ( ( arsinh_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( arsinh_real @ X ) ) ) ).

% arsinh_minus_real
thf(fact_1074_idiff__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
      = N ) ).

% idiff_0_right
thf(fact_1075_idiff__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_1076_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_1077_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_1078_ennreal__zero__less__one,axiom,
    ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).

% ennreal_zero_less_one
thf(fact_1079_diff__gr0__ennreal,axiom,
    ! [B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ B @ A )
     => ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) ) ) ).

% diff_gr0_ennreal
thf(fact_1080_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_1081_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X9: real,Y10: real] : ( plus_plus_real @ X9 @ ( uminus_uminus_real @ Y10 ) ) ) ) ).

% minus_real_def
thf(fact_1082_eq__diff__eq_H,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( X
        = ( minus_minus_real @ Y @ Z ) )
      = ( Y
        = ( plus_plus_real @ X @ Z ) ) ) ).

% eq_diff_eq'
thf(fact_1083_ennreal__minus__zero,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ A @ zero_z7100319975126383169nnreal )
      = A ) ).

% ennreal_minus_zero
thf(fact_1084_zero__minus__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ zero_z7100319975126383169nnreal @ A )
      = zero_z7100319975126383169nnreal ) ).

% zero_minus_ennreal
thf(fact_1085_diff__diff__commute__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) @ C2 )
      = ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ A @ C2 ) @ B ) ) ).

% diff_diff_commute_ennreal
thf(fact_1086_diff__add__eq__diff__diff__swap__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,Z: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ X @ ( plus_p1859984266308609217nnreal @ Y @ Z ) )
      = ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ X @ Y ) @ Z ) ) ).

% diff_add_eq_diff_diff_swap_ennreal
thf(fact_1087_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1088_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1089_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1090_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1091_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1092_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1093_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1094_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J2 ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1095_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1096_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J2 ) ) ) ).

% Nat.diff_diff_right
thf(fact_1097_powr__nonneg__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_1098_nat__ceiling__le__eq,axiom,
    ! [X: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
      = ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_1099_add__diff__eq__iff__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( ( plus_p1859984266308609217nnreal @ X @ ( minus_8429688780609304081nnreal @ Y @ X ) )
        = Y )
      = ( ord_le3935885782089961368nnreal @ X @ Y ) ) ).

% add_diff_eq_iff_ennreal
thf(fact_1100_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J2 @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J2 ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1101_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J2 @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J2 ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1102_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_1103_ln__le__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_1104_powr__one__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ( powr_real @ X @ one_one_real )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% powr_one_gt_zero_iff
thf(fact_1105_powr__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ one_one_real )
        = X ) ) ).

% powr_one
thf(fact_1106_powr__le__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_1107_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_1108_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_1109_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_1110_nat__le__0,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ Z )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_1111_nat__0__iff,axiom,
    ! [I: int] :
      ( ( ( nat2 @ I )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_1112_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_1113_int__nat__eq,axiom,
    ! [Z: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = Z ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_1114_zle__diff1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W @ Z ) ) ).

% zle_diff1_eq
thf(fact_1115_le__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% le_nat_iff
thf(fact_1116_nat__le__eq__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_eq_int @ W @ Z ) ) ) ).

% nat_le_eq_zle
thf(fact_1117_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_1118_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_1119_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1120_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1121_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1122_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1123_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_1124_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1125_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1126_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1127_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_1128_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_1129_le__diff__iff_H,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_1130_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_1131_ennreal__diff__le__mono__left,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B )
     => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ C2 ) @ B ) ) ).

% ennreal_diff_le_mono_left
thf(fact_1132_diff__le__self__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) @ A ) ).

% diff_le_self_ennreal
thf(fact_1133_ennreal__mono__minus,axiom,
    ! [C2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ C2 @ B )
     => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) @ ( minus_8429688780609304081nnreal @ A @ C2 ) ) ) ).

% ennreal_mono_minus
thf(fact_1134_ennreal__minus__mono,axiom,
    ! [A: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal,D: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ C2 )
     => ( ( ord_le3935885782089961368nnreal @ D @ B )
       => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) @ ( minus_8429688780609304081nnreal @ C2 @ D ) ) ) ) ).

% ennreal_minus_mono
thf(fact_1135_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1136_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_1137_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_1138_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_1139_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1140_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_1141_add__le__mono,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_le_mono
thf(fact_1142_add__le__mono1,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% add_le_mono1
thf(fact_1143_trans__le__add1,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_le_add1
thf(fact_1144_trans__le__add2,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_le_add2
thf(fact_1145_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( plus_plus_nat @ M5 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1146_diff__diff__ennreal_H,axiom,
    ! [Z: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y )
     => ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y @ Z ) @ X )
       => ( ( minus_8429688780609304081nnreal @ X @ ( minus_8429688780609304081nnreal @ Y @ Z ) )
          = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Z ) @ Y ) ) ) ) ).

% diff_diff_ennreal'
thf(fact_1147_add__diff__eq__ennreal,axiom,
    ! [Z: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y )
     => ( ( plus_p1859984266308609217nnreal @ X @ ( minus_8429688780609304081nnreal @ Y @ Z ) )
        = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Y ) @ Z ) ) ) ).

% add_diff_eq_ennreal
thf(fact_1148_add__diff__le__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ C2 ) @ ( plus_p1859984266308609217nnreal @ A @ ( minus_8429688780609304081nnreal @ B @ C2 ) ) ) ).

% add_diff_le_ennreal
thf(fact_1149_add__diff__self__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( ord_le3935885782089961368nnreal @ A @ B )
       => ( ( plus_p1859984266308609217nnreal @ A @ ( minus_8429688780609304081nnreal @ B @ A ) )
          = B ) )
      & ( ~ ( ord_le3935885782089961368nnreal @ A @ B )
       => ( ( plus_p1859984266308609217nnreal @ A @ ( minus_8429688780609304081nnreal @ B @ A ) )
          = A ) ) ) ).

% add_diff_self_ennreal
thf(fact_1150_diff__add__self__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( ord_le3935885782089961368nnreal @ A @ B )
       => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B @ A ) @ A )
          = B ) )
      & ( ~ ( ord_le3935885782089961368nnreal @ A @ B )
       => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B @ A ) @ A )
          = A ) ) ) ).

% diff_add_self_ennreal
thf(fact_1151_ennreal__ineq__diff__add,axiom,
    ! [B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ B @ A )
     => ( A
        = ( plus_p1859984266308609217nnreal @ B @ ( minus_8429688780609304081nnreal @ A @ B ) ) ) ) ).

% ennreal_ineq_diff_add
thf(fact_1152_ennreal__diff__add__assoc,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B )
     => ( ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ C2 @ B ) @ A )
        = ( plus_p1859984266308609217nnreal @ C2 @ ( minus_8429688780609304081nnreal @ B @ A ) ) ) ) ).

% ennreal_diff_add_assoc
thf(fact_1153_diff__add__assoc2__ennreal,axiom,
    ! [B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ B @ A )
     => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) @ C2 )
        = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ A @ C2 ) @ B ) ) ) ).

% diff_add_assoc2_ennreal
thf(fact_1154_diff__add__cancel__ennreal,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ B )
     => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B @ A ) @ A )
        = B ) ) ).

% diff_add_cancel_ennreal
thf(fact_1155_add__diff__inverse__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ X @ Y )
     => ( ( plus_p1859984266308609217nnreal @ X @ ( minus_8429688780609304081nnreal @ Y @ X ) )
        = Y ) ) ).

% add_diff_inverse_ennreal
thf(fact_1156_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_1157_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_1158_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_1159_nat__le__iff,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_1160_nat__mono,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).

% nat_mono
thf(fact_1161_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z3: nat] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z3 )
               => ( R2 @ X3 @ Z3 ) ) )
         => ( ! [N2: nat] : ( R2 @ N2 @ ( suc @ N2 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1162_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1163_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
             => ( P @ M3 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_1164_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1165_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1166_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1167_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M2: nat] :
          ( M6
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_1168_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1169_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1170_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1171_less__eq__mask,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).

% less_eq_mask
thf(fact_1172_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X9: real,Y10: real] :
          ( ( ord_less_real @ X9 @ Y10 )
          | ( X9 = Y10 ) ) ) ) ).

% less_eq_real_def
thf(fact_1173_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J2: nat] :
      ( ! [I3: nat,J: nat] :
          ( ( ord_less_nat @ I3 @ J )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J ) ) )
     => ( ( ord_less_eq_nat @ I @ J2 )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J2 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1174_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1175_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1176_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N4: nat] :
          ( ( ord_less_nat @ M5 @ N4 )
          | ( M5 = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1177_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1178_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M5 @ N4 )
          & ( M5 != N4 ) ) ) ) ).

% nat_less_le
thf(fact_1179_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K2 )
               => ~ ( P @ I5 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1180_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1181_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1182_dec__induct,axiom,
    ! [I: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( P @ I )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J2 )
               => ( ( P @ N2 )
                 => ( P @ ( suc @ N2 ) ) ) ) )
         => ( P @ J2 ) ) ) ) ).

% dec_induct
thf(fact_1183_inc__induct,axiom,
    ! [I: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( P @ J2 )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J2 )
               => ( ( P @ ( suc @ N2 ) )
                 => ( P @ N2 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1184_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1185_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1186_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1187_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1188_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1189_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
         => ( ord_less_nat @ ( F @ M2 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1190_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1191_diff__less__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C2 @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B @ C2 ) ) ) ) ).

% diff_less_mono
thf(fact_1192_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1193_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_1194_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_1195_real__eq__0__iff__le__ge__0,axiom,
    ! [X: real] :
      ( ( X = zero_zero_real )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).

% real_eq_0_iff_le_ge_0
thf(fact_1196_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1197_le__diff__conv,axiom,
    ! [J2: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J2 @ K ) @ I )
      = ( ord_less_eq_nat @ J2 @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1198_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J2 ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1199_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J2 ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J2 @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1200_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1201_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ( minus_minus_nat @ J2 @ I )
          = K )
        = ( J2
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1202_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z4: int] :
        ? [N4: nat] :
          ( Z4
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1203_ex__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X13: nat] : ( P2 @ X13 ) )
    = ( ^ [P3: nat > $o] :
        ? [X9: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X9 )
          & ( P3 @ ( nat2 @ X9 ) ) ) ) ) ).

% ex_nat
thf(fact_1204_all__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ! [X13: nat] : ( P2 @ X13 ) )
    = ( ^ [P3: nat > $o] :
        ! [X9: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X9 )
         => ( P3 @ ( nat2 @ X9 ) ) ) ) ) ).

% all_nat
thf(fact_1205_eq__nat__nat__iff,axiom,
    ! [Z: int,Z5: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
       => ( ( ( nat2 @ Z )
            = ( nat2 @ Z5 ) )
          = ( Z = Z5 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_1206_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct
thf(fact_1207_powr__ge__pzero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y ) ) ).

% powr_ge_pzero
thf(fact_1208_powr__mono2,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_1209_real__nat__ceiling__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_1210_powr__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X )
       => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_mono
thf(fact_1211_diff__diff__ennreal_H_H,axiom,
    ! [Z: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y )
     => ( ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y @ Z ) @ X )
         => ( ( minus_8429688780609304081nnreal @ X @ ( minus_8429688780609304081nnreal @ Y @ Z ) )
            = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Z ) @ Y ) ) )
        & ( ~ ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y @ Z ) @ X )
         => ( ( minus_8429688780609304081nnreal @ X @ ( minus_8429688780609304081nnreal @ Y @ Z ) )
            = zero_z7100319975126383169nnreal ) ) ) ) ).

% diff_diff_ennreal''
thf(fact_1212_ennreal__le__minus__iff,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A @ ( minus_8429688780609304081nnreal @ B @ C2 ) )
      = ( ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A @ C2 ) @ B )
        | ( ( A = zero_z7100319975126383169nnreal )
          & ( ord_le3935885782089961368nnreal @ B @ C2 ) ) ) ) ).

% ennreal_le_minus_iff
thf(fact_1213_ennreal__minus__eq__0,axiom,
    ! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A @ B )
        = zero_z7100319975126383169nnreal )
     => ( ord_le3935885782089961368nnreal @ A @ B ) ) ).

% ennreal_minus_eq_0
thf(fact_1214_mask__nonnegative__int,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).

% mask_nonnegative_int
thf(fact_1215_pointwise__le__plus,axiom,
    ! [Xs2: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( pointwise_le @ Xs2 @ Ys )
     => ( ( ord_less_eq_nat @ ( size_size_list_nat @ Ys ) @ ( size_size_list_nat @ Zs ) )
       => ( pointwise_le @ Xs2 @ ( plus_plus_list_nat @ Ys @ Zs ) ) ) ) ).

% pointwise_le_plus
thf(fact_1216_pointwise__le__imp___092_060sigma_062,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( pointwise_le @ Xs2 @ Ys )
     => ( ord_less_eq_nat @ ( groups4561878855575611511st_nat @ Xs2 ) @ ( groups4561878855575611511st_nat @ Ys ) ) ) ).

% pointwise_le_imp_\<sigma>
thf(fact_1217_add__diff__assoc__enat,axiom,
    ! [Z: extended_enat,Y: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ Y )
     => ( ( plus_p3455044024723400733d_enat @ X @ ( minus_3235023915231533773d_enat @ Y @ Z ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ Z ) ) ) ).

% add_diff_assoc_enat
thf(fact_1218_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I5: nat] :
                ( ( ord_less_eq_nat @ I5 @ K2 )
               => ~ ( P @ I5 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1219_less__diff__conv2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J2 @ K ) @ I )
        = ( ord_less_nat @ J2 @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1220_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_1221_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_1222_add1__zle__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
      = ( ord_less_int @ W @ Z ) ) ).

% add1_zle_eq
thf(fact_1223_zless__imp__add1__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_1224_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% nonpos_int_cases
thf(fact_1225_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_1226_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1227_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_1228_powr__less__mono2,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y )
         => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_1229_powr__mono2_H,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y )
         => ( ord_less_eq_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_1230_int__eq__iff,axiom,
    ! [M: nat,Z: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z )
      = ( ( M
          = ( nat2 @ Z ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).

% int_eq_iff
thf(fact_1231_nat__0__le,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
        = Z ) ) ).

% nat_0_le
thf(fact_1232_ln__bound,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_bound
thf(fact_1233_ge__one__powr__ge__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_1234_powr__mono__both,axiom,
    ! [A: real,B: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ( ord_less_eq_real @ X @ Y )
           => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_1235_powr__le1,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_1236_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_1237_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_1238_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_1239_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N4: nat,M5: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M5 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_1240_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_1241_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_1242_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_1243_nat__add__distrib,axiom,
    ! [Z: int,Z5: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
       => ( ( nat2 @ ( plus_plus_int @ Z @ Z5 ) )
          = ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_1244_nat__less__eq__zless,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_less_eq_zless
thf(fact_1245_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat,M5: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N4 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M5 ) ) ) ) ).

% nat_less_real_le
thf(fact_1246_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_1247_nat__diff__distrib,axiom,
    ! [Z5: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
     => ( ( ord_less_eq_int @ Z5 @ Z )
       => ( ( nat2 @ ( minus_minus_int @ Z @ Z5 ) )
          = ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_1248_nat__diff__distrib_H,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( minus_minus_int @ X @ Y ) )
          = ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_1249_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_1250_pointwise__le__iff__nth,axiom,
    ( pointwise_le
    = ( ^ [X9: list_nat,Y10: list_nat] :
          ( ( ( size_size_list_nat @ X9 )
            = ( size_size_list_nat @ Y10 ) )
          & ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ X9 ) )
             => ( ord_less_eq_nat @ ( nth_nat @ X9 @ I2 ) @ ( nth_nat @ Y10 @ I2 ) ) ) ) ) ) ).

% pointwise_le_iff_nth
thf(fact_1251_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( suc @ ( nat2 @ Z ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_1252_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_1253_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_1254_ln__add__one__self__le__self2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self2
thf(fact_1255_ln__one__minus__pos__upper__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_1256_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_1257_real__of__nat__ge__one__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ one_one_nat @ N ) ) ).

% real_of_nat_ge_one_iff
thf(fact_1258_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X14: real] : ( member_real @ X14 @ S2 )
     => ( ? [Z6: real] :
          ! [X3: real] :
            ( ( member_real @ X3 @ S2 )
           => ( ord_less_eq_real @ X3 @ Z6 ) )
       => ? [Y3: real] :
            ( ! [X14: real] :
                ( ( member_real @ X14 @ S2 )
               => ( ord_less_eq_real @ X14 @ Y3 ) )
            & ! [Z6: real] :
                ( ! [X3: real] :
                    ( ( member_real @ X3 @ S2 )
                   => ( ord_less_eq_real @ X3 @ Z6 ) )
               => ( ord_less_eq_real @ Y3 @ Z6 ) ) ) ) ) ).

% complete_real
thf(fact_1259_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y11: nat] :
                ( ( P @ Y11 )
               => ( ord_less_eq_nat @ Y11 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_1260_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_1261_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_1262_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_1263_le__trans,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_1264_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl

% Helper facts (5)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( x
   != ( replicate_nat @ r @ zero_zero_nat ) ) ).

%------------------------------------------------------------------------------