TPTP Problem File: SLH0883^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Median_Method/0000_Median/prob_00190_006908__14707736_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1365 ( 758 unt;  93 typ;   0 def)
%            Number of atoms       : 3028 (1353 equ;   0 cnn)
%            Maximal formula atoms :   26 (   2 avg)
%            Number of connectives : 8580 ( 224   ~;  64   |; 163   &;7202   @)
%                                         (   0 <=>; 927  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   5 avg)
%            Number of types       :   11 (  10 usr)
%            Number of type conns  :  298 ( 298   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   86 (  83 usr;  11 con; 0-8 aty)
%            Number of variables   : 2776 ( 103   ^;2543   !; 130   ?;2776   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:44:09.260
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__Multiset__Omultiset_It__Nat__Onat_J,type,
    multiset_nat: $tType ).

thf(ty_n_t__Multiset__Omultiset_Itf__b_J,type,
    multiset_b: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

% Explicit typings (83)
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Cancellation_Oiterate__add_001t__Int__Oint,type,
    iterate_add_int: nat > int > int ).

thf(sy_c_Cancellation_Oiterate__add_001t__Nat__Onat,type,
    iterate_add_nat: nat > nat > nat ).

thf(sy_c_Cancellation_Oiterate__add_001t__Real__Oreal,type,
    iterate_add_real: nat > real > real ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
    minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
    zero_z7348594199698428585et_nat: multiset_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_Itf__b_J,type,
    zero_zero_multiset_b: multiset_b ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Harmonic__Numbers_Oharm_001t__Real__Oreal,type,
    harmonic_harm_real: nat > real ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_List_Oall__interval__nat,type,
    all_interval_nat: ( nat > $o ) > nat > nat > $o ).

thf(sy_c_Median_Osort__primitive_001t__Nat__Onat_001tf__b,type,
    sort_primitive_nat_b: nat > nat > ( nat > b ) > nat > b ).

thf(sy_c_Multiset_Oimage__mset_001t__Nat__Onat_001tf__b,type,
    image_mset_nat_b: ( nat > b ) > multiset_nat > multiset_b ).

thf(sy_c_Multiset_Omset__set_001t__Nat__Onat,type,
    mset_set_nat: set_nat > multiset_nat ).

thf(sy_c_Multiset_Oreplicate__mset_001t__Nat__Onat,type,
    replicate_mset_nat: nat > nat > multiset_nat ).

thf(sy_c_Multiset_Oreplicate__mset_001tf__b,type,
    replicate_mset_b: nat > b > multiset_b ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
    size_s5917832649809541300et_nat: multiset_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Multiset__Omultiset_Itf__b_J,type,
    size_size_multiset_b: multiset_b > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Real__Oreal,type,
    set_or66887138388493659n_real: real > real > set_real ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_fa,type,
    fa: nat > b ).

thf(sy_v_is__swap____,type,
    is_swap: ( ( nat > b ) > nat > b ) > $o ).

thf(sy_v_n,type,
    n: nat ).

thf(sy_v_x,type,
    x: ( nat > b ) > nat > b ).

% Relevant facts (1263)
thf(fact_0_zero__natural_Orsp,axiom,
    zero_zero_nat = zero_zero_nat ).

% zero_natural.rsp
thf(fact_1_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_2_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_3_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_4_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_5_arsinh__0,axiom,
    ( ( arsinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% arsinh_0
thf(fact_6_artanh__0,axiom,
    ( ( artanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% artanh_0
thf(fact_7_mask__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% mask_0
thf(fact_8_mask__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
    = zero_zero_int ) ).

% mask_0
thf(fact_9_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2002935070580805687sk_nat @ N )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_10_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2000444600071755411sk_int @ N )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_11_iterate__add__simps_I1_J,axiom,
    ! [A: nat] :
      ( ( iterate_add_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% iterate_add_simps(1)
thf(fact_12_iterate__add__simps_I1_J,axiom,
    ! [A: int] :
      ( ( iterate_add_int @ zero_zero_nat @ A )
      = zero_zero_int ) ).

% iterate_add_simps(1)
thf(fact_13_iterate__add__simps_I1_J,axiom,
    ! [A: real] :
      ( ( iterate_add_real @ zero_zero_nat @ A )
      = zero_zero_real ) ).

% iterate_add_simps(1)
thf(fact_14_harm__expand_I1_J,axiom,
    ( ( harmonic_harm_real @ zero_zero_nat )
    = zero_zero_real ) ).

% harm_expand(1)
thf(fact_15_is__swap__def,axiom,
    ( is_swap
    = ( ^ [Ts: ( nat > b ) > nat > b] :
        ? [I: nat] :
          ( ( ord_less_nat @ I @ n )
          & ? [J: nat] :
              ( ( ord_less_nat @ J @ n )
              & ( Ts
                = ( sort_primitive_nat_b @ I @ J ) ) ) ) ) ) ).

% is_swap_def
thf(fact_16_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_17_mask__nat__positive__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% mask_nat_positive_iff
thf(fact_18_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_19_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_20_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_21_iterate__add__empty,axiom,
    ! [N: nat] :
      ( ( iterate_add_real @ N @ zero_zero_real )
      = zero_zero_real ) ).

% iterate_add_empty
thf(fact_22_iterate__add__empty,axiom,
    ! [N: nat] :
      ( ( iterate_add_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% iterate_add_empty
thf(fact_23_iterate__add__empty,axiom,
    ! [N: nat] :
      ( ( iterate_add_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% iterate_add_empty
thf(fact_24_harm__pos__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( harmonic_harm_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% harm_pos_iff
thf(fact_25_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_26_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_27_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_28_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_29_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_30_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_31_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_32_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_33_harm__pos,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_real @ zero_zero_real @ ( harmonic_harm_real @ N ) ) ) ).

% harm_pos
thf(fact_34_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_35_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_36_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_37_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_38_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N2 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_39_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_40_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_41_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_42_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_43_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_44_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_45_all__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
           => ( P @ X2 ) ) ) ) ).

% all_nat_less_eq
thf(fact_46_ex__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X2: nat] :
            ( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
            & ( P @ X2 ) ) ) ) ).

% ex_nat_less_eq
thf(fact_47_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_48_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_49_image__mset__is__empty__iff,axiom,
    ! [F: nat > b,M4: multiset_nat] :
      ( ( ( image_mset_nat_b @ F @ M4 )
        = zero_zero_multiset_b )
      = ( M4 = zero_z7348594199698428585et_nat ) ) ).

% image_mset_is_empty_iff
thf(fact_50_image__mset__empty,axiom,
    ! [F: nat > b] :
      ( ( image_mset_nat_b @ F @ zero_z7348594199698428585et_nat )
      = zero_zero_multiset_b ) ).

% image_mset_empty
thf(fact_51_atLeastLessThan__eq__iff,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C2 @ D )
       => ( ( ( set_or4662586982721622107an_int @ A @ B )
            = ( set_or4662586982721622107an_int @ C2 @ D ) )
          = ( ( A = C2 )
            & ( B = D ) ) ) ) ) ).

% atLeastLessThan_eq_iff
thf(fact_52_atLeastLessThan__eq__iff,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C2 @ D )
       => ( ( ( set_or66887138388493659n_real @ A @ B )
            = ( set_or66887138388493659n_real @ C2 @ D ) )
          = ( ( A = C2 )
            & ( B = D ) ) ) ) ) ).

% atLeastLessThan_eq_iff
thf(fact_53_atLeastLessThan__eq__iff,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C2 @ D )
       => ( ( ( set_or4665077453230672383an_nat @ A @ B )
            = ( set_or4665077453230672383an_nat @ C2 @ D ) )
          = ( ( A = C2 )
            & ( B = D ) ) ) ) ) ).

% atLeastLessThan_eq_iff
thf(fact_54_Ico__eq__Ico,axiom,
    ! [L: int,H: int,L2: int,H2: int] :
      ( ( ( set_or4662586982721622107an_int @ L @ H )
        = ( set_or4662586982721622107an_int @ L2 @ H2 ) )
      = ( ( ( L = L2 )
          & ( H = H2 ) )
        | ( ~ ( ord_less_int @ L @ H )
          & ~ ( ord_less_int @ L2 @ H2 ) ) ) ) ).

% Ico_eq_Ico
thf(fact_55_Ico__eq__Ico,axiom,
    ! [L: real,H: real,L2: real,H2: real] :
      ( ( ( set_or66887138388493659n_real @ L @ H )
        = ( set_or66887138388493659n_real @ L2 @ H2 ) )
      = ( ( ( L = L2 )
          & ( H = H2 ) )
        | ( ~ ( ord_less_real @ L @ H )
          & ~ ( ord_less_real @ L2 @ H2 ) ) ) ) ).

% Ico_eq_Ico
thf(fact_56_Ico__eq__Ico,axiom,
    ! [L: nat,H: nat,L2: nat,H2: nat] :
      ( ( ( set_or4665077453230672383an_nat @ L @ H )
        = ( set_or4665077453230672383an_nat @ L2 @ H2 ) )
      = ( ( ( L = L2 )
          & ( H = H2 ) )
        | ( ~ ( ord_less_nat @ L @ H )
          & ~ ( ord_less_nat @ L2 @ H2 ) ) ) ) ).

% Ico_eq_Ico
thf(fact_57_atLeastLessThan__inj_I1_J,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( set_or4662586982721622107an_int @ A @ B )
        = ( set_or4662586982721622107an_int @ C2 @ D ) )
     => ( ( ord_less_int @ A @ B )
       => ( ( ord_less_int @ C2 @ D )
         => ( A = C2 ) ) ) ) ).

% atLeastLessThan_inj(1)
thf(fact_58_atLeastLessThan__inj_I1_J,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( set_or66887138388493659n_real @ A @ B )
        = ( set_or66887138388493659n_real @ C2 @ D ) )
     => ( ( ord_less_real @ A @ B )
       => ( ( ord_less_real @ C2 @ D )
         => ( A = C2 ) ) ) ) ).

% atLeastLessThan_inj(1)
thf(fact_59_atLeastLessThan__inj_I1_J,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ( set_or4665077453230672383an_nat @ A @ B )
        = ( set_or4665077453230672383an_nat @ C2 @ D ) )
     => ( ( ord_less_nat @ A @ B )
       => ( ( ord_less_nat @ C2 @ D )
         => ( A = C2 ) ) ) ) ).

% atLeastLessThan_inj(1)
thf(fact_60_atLeastLessThan__inj_I2_J,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( set_or4662586982721622107an_int @ A @ B )
        = ( set_or4662586982721622107an_int @ C2 @ D ) )
     => ( ( ord_less_int @ A @ B )
       => ( ( ord_less_int @ C2 @ D )
         => ( B = D ) ) ) ) ).

% atLeastLessThan_inj(2)
thf(fact_61_atLeastLessThan__inj_I2_J,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( set_or66887138388493659n_real @ A @ B )
        = ( set_or66887138388493659n_real @ C2 @ D ) )
     => ( ( ord_less_real @ A @ B )
       => ( ( ord_less_real @ C2 @ D )
         => ( B = D ) ) ) ) ).

% atLeastLessThan_inj(2)
thf(fact_62_atLeastLessThan__inj_I2_J,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ( set_or4665077453230672383an_nat @ A @ B )
        = ( set_or4665077453230672383an_nat @ C2 @ D ) )
     => ( ( ord_less_nat @ A @ B )
       => ( ( ord_less_nat @ C2 @ D )
         => ( B = D ) ) ) ) ).

% atLeastLessThan_inj(2)
thf(fact_63_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_64_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_65_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_66_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_67_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_68_size__neq__size__imp__neq,axiom,
    ! [X: char,Y: char] :
      ( ( ( size_size_char @ X )
       != ( size_size_char @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_69_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_70_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_71_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_72_char_Osize_I2_J,axiom,
    ! [X1: $o,X22: $o,X3: $o,X4: $o,X5: $o,X6: $o,X7: $o,X8: $o] :
      ( ( size_size_char @ ( char2 @ X1 @ X22 @ X3 @ X4 @ X5 @ X6 @ X7 @ X8 ) )
      = zero_zero_nat ) ).

% char.size(2)
thf(fact_73_char_Osize__gen,axiom,
    ! [X1: $o,X22: $o,X3: $o,X4: $o,X5: $o,X6: $o,X7: $o,X8: $o] :
      ( ( size_char @ ( char2 @ X1 @ X22 @ X3 @ X4 @ X5 @ X6 @ X7 @ X8 ) )
      = zero_zero_nat ) ).

% char.size_gen
thf(fact_74_all__interval__nat__def,axiom,
    ( all_interval_nat
    = ( ^ [P2: nat > $o,I: nat,J: nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ I @ J ) )
         => ( P2 @ X2 ) ) ) ) ).

% all_interval_nat_def
thf(fact_75_less__mask,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% less_mask
thf(fact_76_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_77_nat_Oinject,axiom,
    ! [X22: nat,Y2: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y2 ) )
      = ( X22 = Y2 ) ) ).

% nat.inject
thf(fact_78_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_79_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_80_size__image__mset,axiom,
    ! [F: nat > b,M4: multiset_nat] :
      ( ( size_size_multiset_b @ ( image_mset_nat_b @ F @ M4 ) )
      = ( size_s5917832649809541300et_nat @ M4 ) ) ).

% size_image_mset
thf(fact_81_char_Oinject,axiom,
    ! [X1: $o,X22: $o,X3: $o,X4: $o,X5: $o,X6: $o,X7: $o,X8: $o,Y1: $o,Y2: $o,Y3: $o,Y4: $o,Y5: $o,Y6: $o,Y7: $o,Y8: $o] :
      ( ( ( char2 @ X1 @ X22 @ X3 @ X4 @ X5 @ X6 @ X7 @ X8 )
        = ( char2 @ Y1 @ Y2 @ Y3 @ Y4 @ Y5 @ Y6 @ Y7 @ Y8 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y2 )
        & ( X3 = Y3 )
        & ( X4 = Y4 )
        & ( X5 = Y5 )
        & ( X6 = Y6 )
        & ( X7 = Y7 )
        & ( X8 = Y8 ) ) ) ).

% char.inject
thf(fact_82_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_83_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_84_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_85_image__replicate__mset,axiom,
    ! [F: nat > b,N: nat,A: nat] :
      ( ( image_mset_nat_b @ F @ ( replicate_mset_nat @ N @ A ) )
      = ( replicate_mset_b @ N @ ( F @ A ) ) ) ).

% image_replicate_mset
thf(fact_86_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_87_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_88_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_89_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_90_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_91_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_92_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_93_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_94_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_95_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_96_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_97_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_98_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_99_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_100_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_101_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_102_char_Oexhaust,axiom,
    ! [Y: char] :
      ~ ! [X12: $o,X23: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
          ( Y
         != ( char2 @ X12 @ X23 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) ) ).

% char.exhaust
thf(fact_103_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_104_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_105_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_106_image__mset__const__eq,axiom,
    ! [C2: b,M4: multiset_nat] :
      ( ( image_mset_nat_b
        @ ^ [A3: nat] : C2
        @ M4 )
      = ( replicate_mset_b @ ( size_s5917832649809541300et_nat @ M4 ) @ C2 ) ) ).

% image_mset_const_eq
thf(fact_107_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M5: nat] :
          ( N
          = ( suc @ M5 ) ) ) ).

% not0_implies_Suc
thf(fact_108_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_109_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_110_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_111_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_112_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X9: nat] : ( P @ X9 @ zero_zero_nat )
     => ( ! [Y9: nat] : ( P @ zero_zero_nat @ ( suc @ Y9 ) )
       => ( ! [X9: nat,Y9: nat] :
              ( ( P @ X9 @ Y9 )
             => ( P @ ( suc @ X9 ) @ ( suc @ Y9 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_113_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_114_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_115_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_116_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_117_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_118_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_119_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_120_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_121_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I2 @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_122_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_123_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_124_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_125_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
            & ( P @ I ) ) )
      = ( ( P @ N )
        | ? [I: nat] :
            ( ( ord_less_nat @ I @ N )
            & ( P @ I ) ) ) ) ).

% Ex_less_Suc
thf(fact_126_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_127_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_128_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
           => ( P @ I ) ) )
      = ( ( P @ N )
        & ! [I: nat] :
            ( ( ord_less_nat @ I @ N )
           => ( P @ I ) ) ) ) ).

% All_less_Suc
thf(fact_129_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M6: nat] :
            ( ( M
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_130_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_131_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_132_less__trans__Suc,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ( ord_less_nat @ J3 @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_133_less__Suc__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I2 @ J3 ) ) ) ) ).

% less_Suc_induct
thf(fact_134_strict__inc__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ! [I3: nat] :
            ( ( J3
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J3 )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_135_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_136_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_137_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_138_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_139_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_140_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_141_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_142_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_143_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_144_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_145_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_146_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_147_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_148_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_149_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_150_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_151_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
            & ( P @ I ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I: nat] :
            ( ( ord_less_nat @ I @ N )
            & ( P @ ( suc @ I ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_152_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_153_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
           => ( P @ I ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I: nat] :
            ( ( ord_less_nat @ I @ N )
           => ( P @ ( suc @ I ) ) ) ) ) ).

% All_less_Suc2
thf(fact_154_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M5: nat] :
          ( N
          = ( suc @ M5 ) ) ) ).

% gr0_implies_Suc
thf(fact_155_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J: nat] :
            ( ( M
              = ( suc @ J ) )
            & ( ord_less_nat @ J @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_156_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% of_nat_mask_eq
thf(fact_157_of__nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_nat_mask_eq
thf(fact_158_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_159_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_160_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N2: nat] :
            ( ~ ( P @ N2 )
            & ( P @ ( suc @ N2 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_161_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N2: nat] :
            ( X
           != ( suc @ N2 ) ) ) ).

% list_decode.cases
thf(fact_162_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% reals_Archimedean2
thf(fact_163_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_less_as_int
thf(fact_164_mask__Suc__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% mask_Suc_0
thf(fact_165_mask__Suc__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% mask_Suc_0
thf(fact_166_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_167_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_168_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_169_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_170_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_171_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_172_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_173_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_174_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_175_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_176_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_177_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_178_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_179_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_180_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_181_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_182_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_183_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_184_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_185_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_186_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_187_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_188_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).

% of_nat_power
thf(fact_189_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_190_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_191_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_192_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_193_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_194_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_195_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_196_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_197_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_198_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_199_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_200_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_201_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_202_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_203_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_204_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_205_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_206_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_207_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_208_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_209_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_210_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_211_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_212_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_213_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_214_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_215_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_216_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_217_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_218_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_219_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_220_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_221_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_222_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y10: nat,Z: nat] : ( Y10 = Z ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_223_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_224_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_225_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_226_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_227_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_228_not__mask__negative__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_229_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_230_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_231_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_232_zero__integer_Orsp,axiom,
    zero_zero_int = zero_zero_int ).

% zero_integer.rsp
thf(fact_233_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_234_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_235_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_236_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_237_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_238_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_239_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_240_power__gt1,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_241_power__gt1,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_242_power__gt1,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_243_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_244_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_245_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_246_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_247_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_248_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_249_power__Suc__less__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_250_power__Suc__less__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_251_power__Suc__less__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_252_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_253_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_254_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_255_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_256_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_257_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_258_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_259_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_260_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_261_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_262_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_263_zero__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_less_power
thf(fact_264_nat__power__less__imp__less,axiom,
    ! [I2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I2 )
     => ( ( ord_less_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_265_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_266_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ zero_zero_real @ N )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_267_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_268_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_269_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_270_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_271_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_272_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_273_iterate__add__1,axiom,
    ! [N: nat] :
      ( ( iterate_add_nat @ N @ one_one_nat )
      = ( semiri1316708129612266289at_nat @ N ) ) ).

% iterate_add_1
thf(fact_274_iterate__add__1,axiom,
    ! [N: nat] :
      ( ( iterate_add_int @ N @ one_one_int )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% iterate_add_1
thf(fact_275_iterate__add__1,axiom,
    ! [N: nat] :
      ( ( iterate_add_real @ N @ one_one_real )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% iterate_add_1
thf(fact_276_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_277_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_278_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_279_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_280_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_281_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_282_harm__expand_I2_J,axiom,
    ( ( harmonic_harm_real @ ( suc @ zero_zero_nat ) )
    = one_one_real ) ).

% harm_expand(2)
thf(fact_283_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_284_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_285_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ one_one_int @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_286_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_287_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_288_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_289_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_290_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_291_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_292_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_293_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X9: real] :
            ( ( ord_less_real @ zero_zero_real @ X9 )
            & ( ( power_power_real @ X9 @ N )
              = A )
            & ! [Y11: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y11 )
                  & ( ( power_power_real @ Y11 @ N )
                    = A ) )
               => ( Y11 = X9 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_294_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R: real] :
            ( ( ord_less_real @ zero_zero_real @ R )
            & ( ( power_power_real @ R @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_295_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_296_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_297_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_298_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_299_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_300_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_301_ln__less__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_302_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_303_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_304_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_305_ln__inj__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ( ln_ln_real @ X )
            = ( ln_ln_real @ Y ) )
          = ( X = Y ) ) ) ) ).

% ln_inj_iff
thf(fact_306_one__integer_Orsp,axiom,
    one_one_int = one_one_int ).

% one_integer.rsp
thf(fact_307_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_308_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_309_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_310_ln__less__self,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_less_self
thf(fact_311_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_312_real__arch__pow__inv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_313_real__arch__pow,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N2: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ).

% real_arch_pow
thf(fact_314_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_315_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_316_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R: real] :
          ( ( ord_less_real @ zero_zero_real @ R )
          & ( ( power_power_real @ R @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_317_bgauge__existence__lemma,axiom,
    ! [S: set_real,Q: real > real > $o] :
      ( ( ! [X2: real] :
            ( ( member_real @ X2 @ S )
           => ? [D3: real] :
                ( ( ord_less_real @ zero_zero_real @ D3 )
                & ( Q @ D3 @ X2 ) ) ) )
      = ( ! [X2: real] :
          ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ( ( member_real @ X2 @ S )
             => ( Q @ D3 @ X2 ) ) ) ) ) ).

% bgauge_existence_lemma
thf(fact_318_one__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% one_less_nat_eq
thf(fact_319_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% neg_int_cases
thf(fact_320_power__strict__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_321_power__strict__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_322_power__strict__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_323_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_324_power__mono__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_325_power__mono__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_326_power__mono__iff,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_327_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_328_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_329_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_330_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_331_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_332_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_333_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_334_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_335_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_336_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_337_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_338_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_339_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_340_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_341_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_342_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_343_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_344_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_345_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_346_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_347_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_348_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_349_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_350_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_351_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_352_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_353_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_354_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_355_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_356_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_357_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_358_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_359_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_360_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_361_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_362_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_363_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_364_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_365_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_366_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_367_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_368_ivl__subset,axiom,
    ! [I2: int,J3: int,M: int,N: int] :
      ( ( ord_less_eq_set_int @ ( set_or4662586982721622107an_int @ I2 @ J3 ) @ ( set_or4662586982721622107an_int @ M @ N ) )
      = ( ( ord_less_eq_int @ J3 @ I2 )
        | ( ( ord_less_eq_int @ M @ I2 )
          & ( ord_less_eq_int @ J3 @ N ) ) ) ) ).

% ivl_subset
thf(fact_369_ivl__subset,axiom,
    ! [I2: real,J3: real,M: real,N: real] :
      ( ( ord_less_eq_set_real @ ( set_or66887138388493659n_real @ I2 @ J3 ) @ ( set_or66887138388493659n_real @ M @ N ) )
      = ( ( ord_less_eq_real @ J3 @ I2 )
        | ( ( ord_less_eq_real @ M @ I2 )
          & ( ord_less_eq_real @ J3 @ N ) ) ) ) ).

% ivl_subset
thf(fact_370_ivl__subset,axiom,
    ! [I2: nat,J3: nat,M: nat,N: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or4665077453230672383an_nat @ I2 @ J3 ) @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ J3 @ I2 )
        | ( ( ord_less_eq_nat @ M @ I2 )
          & ( ord_less_eq_nat @ J3 @ N ) ) ) ) ).

% ivl_subset
thf(fact_371_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_372_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_373_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_374_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_375_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_376_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_377_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_378_nat__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
      = N ) ).

% nat_int
thf(fact_379_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_380_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_381_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_382_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_383_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_384_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_385_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_386_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_387_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_388_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_389_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_390_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_391_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_392_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_393_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_394_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_395_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_396_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_397_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_398_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_399_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_400_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_401_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_402_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_403_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_404_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_405_atLeastLessThan__iff,axiom,
    ! [I2: int,L: int,U: int] :
      ( ( member_int @ I2 @ ( set_or4662586982721622107an_int @ L @ U ) )
      = ( ( ord_less_eq_int @ L @ I2 )
        & ( ord_less_int @ I2 @ U ) ) ) ).

% atLeastLessThan_iff
thf(fact_406_atLeastLessThan__iff,axiom,
    ! [I2: real,L: real,U: real] :
      ( ( member_real @ I2 @ ( set_or66887138388493659n_real @ L @ U ) )
      = ( ( ord_less_eq_real @ L @ I2 )
        & ( ord_less_real @ I2 @ U ) ) ) ).

% atLeastLessThan_iff
thf(fact_407_atLeastLessThan__iff,axiom,
    ! [I2: nat,L: nat,U: nat] :
      ( ( member_nat @ I2 @ ( set_or4665077453230672383an_nat @ L @ U ) )
      = ( ( ord_less_eq_nat @ L @ I2 )
        & ( ord_less_nat @ I2 @ U ) ) ) ).

% atLeastLessThan_iff
thf(fact_408_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_409_ln__le__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_410_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_411_nat__0__iff,axiom,
    ! [I2: int] :
      ( ( ( nat2 @ I2 )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I2 @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_412_nat__le__0,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ Z2 @ zero_zero_int )
     => ( ( nat2 @ Z2 )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_413_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_414_int__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = Z2 ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_415_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_416_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_417_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_418_power__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_419_power__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_420_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_421_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_422_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_423_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_424_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_425_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_426_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_427_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_428_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_429_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_430_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_431_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_432_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_433_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_434_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_435_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_436_zless__nat__conj,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
      = ( ( ord_less_int @ zero_zero_int @ Z2 )
        & ( ord_less_int @ W @ Z2 ) ) ) ).

% zless_nat_conj
thf(fact_437_nat__zminus__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
      = zero_zero_nat ) ).

% nat_zminus_int
thf(fact_438_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_439_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_440_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_441_zero__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% zero_less_nat_eq
thf(fact_442_le__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% le_nat_iff
thf(fact_443_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_444_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_445_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_446_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_447_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_448_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_449_eq__nat__nat__iff,axiom,
    ! [Z2: int,Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
       => ( ( ( nat2 @ Z2 )
            = ( nat2 @ Z3 ) )
          = ( Z2 = Z3 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_450_nat__le__eq__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z2 ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_eq_int @ W @ Z2 ) ) ) ).

% nat_le_eq_zle
thf(fact_451_all__nat,axiom,
    ( ( ^ [P3: nat > $o] :
        ! [X10: nat] : ( P3 @ X10 ) )
    = ( ^ [P2: nat > $o] :
        ! [X2: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X2 )
         => ( P2 @ ( nat2 @ X2 ) ) ) ) ) ).

% all_nat
thf(fact_452_ex__nat,axiom,
    ( ( ^ [P3: nat > $o] :
        ? [X10: nat] : ( P3 @ X10 ) )
    = ( ^ [P2: nat > $o] :
        ? [X2: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X2 )
          & ( P2 @ ( nat2 @ X2 ) ) ) ) ) ).

% ex_nat
thf(fact_453_diff__less__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C2 @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B @ C2 ) ) ) ) ).

% diff_less_mono
thf(fact_454_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_455_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_leq_as_int
thf(fact_456_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C2 @ D ) )
     => ( ( A = B )
        = ( C2 = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_457_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C2 @ D ) )
     => ( ( A = B )
        = ( C2 = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_458_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_459_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_460_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_461_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_462_diff__mono,axiom,
    ! [A: int,B: int,D: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C2 )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_463_diff__mono,axiom,
    ! [A: real,B: real,D: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C2 )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_464_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_465_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_466_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_467_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_468_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_469_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_470_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_471_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_472_diff__left__mono,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C2 @ A ) @ ( minus_minus_int @ C2 @ B ) ) ) ).

% diff_left_mono
thf(fact_473_diff__left__mono,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C2 @ A ) @ ( minus_minus_real @ C2 @ B ) ) ) ).

% diff_left_mono
thf(fact_474_diff__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ C2 ) ) ) ).

% diff_right_mono
thf(fact_475_diff__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B @ C2 ) ) ) ).

% diff_right_mono
thf(fact_476_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C2 @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C2 @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_477_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C2 @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C2 @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_478_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C2 ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C2 ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_479_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C2 ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C2 ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_480_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C2 ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C2 ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_481_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_482_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_483_diff__commute,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J3 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J3 ) ) ).

% diff_commute
thf(fact_484_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_485_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_486_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_487_le__diff__iff_H,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_488_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_489_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_490_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_491_harm__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_real @ ( harmonic_harm_real @ M ) @ ( harmonic_harm_real @ N ) ) ) ).

% harm_mono
thf(fact_492_atLeastLessThan__subset__iff,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_eq_set_int @ ( set_or4662586982721622107an_int @ A @ B ) @ ( set_or4662586982721622107an_int @ C2 @ D ) )
     => ( ( ord_less_eq_int @ B @ A )
        | ( ( ord_less_eq_int @ C2 @ A )
          & ( ord_less_eq_int @ B @ D ) ) ) ) ).

% atLeastLessThan_subset_iff
thf(fact_493_atLeastLessThan__subset__iff,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_eq_set_real @ ( set_or66887138388493659n_real @ A @ B ) @ ( set_or66887138388493659n_real @ C2 @ D ) )
     => ( ( ord_less_eq_real @ B @ A )
        | ( ( ord_less_eq_real @ C2 @ A )
          & ( ord_less_eq_real @ B @ D ) ) ) ) ).

% atLeastLessThan_subset_iff
thf(fact_494_atLeastLessThan__subset__iff,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or4665077453230672383an_nat @ A @ B ) @ ( set_or4665077453230672383an_nat @ C2 @ D ) )
     => ( ( ord_less_eq_nat @ B @ A )
        | ( ( ord_less_eq_nat @ C2 @ A )
          & ( ord_less_eq_nat @ B @ D ) ) ) ) ).

% atLeastLessThan_subset_iff
thf(fact_495_of__nat__mono,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I2 ) @ ( semiri1316708129612266289at_nat @ J3 ) ) ) ).

% of_nat_mono
thf(fact_496_of__nat__mono,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J3 ) ) ) ).

% of_nat_mono
thf(fact_497_of__nat__mono,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I2 ) @ ( semiri5074537144036343181t_real @ J3 ) ) ) ).

% of_nat_mono
thf(fact_498_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_499_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_500_lift__Suc__antimono__le,axiom,
    ! [F: nat > real,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_501_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_502_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_503_lift__Suc__mono__le,axiom,
    ! [F: nat > real,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_504_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_505_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_506_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_507_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_508_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_509_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_510_nat__mono,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).

% nat_mono
thf(fact_511_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_512_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_513_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_514_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_515_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% of_nat_diff
thf(fact_516_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% of_nat_diff
thf(fact_517_nat__le__iff,axiom,
    ! [X: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_518_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_519_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_520_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_521_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_522_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_523_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_524_nat__0__le,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
        = Z2 ) ) ).

% nat_0_le
thf(fact_525_int__eq__iff,axiom,
    ! [M: nat,Z2: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z2 )
      = ( ( M
          = ( nat2 @ Z2 ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ) ).

% int_eq_iff
thf(fact_526_power__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_527_power__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_528_power__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_529_nat__power__eq,axiom,
    ! [Z2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( nat2 @ ( power_power_int @ Z2 @ N ) )
        = ( power_power_nat @ ( nat2 @ Z2 ) @ N ) ) ) ).

% nat_power_eq
thf(fact_530_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_531_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_532_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% nonpos_int_cases
thf(fact_533_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y10: int,Z: int] : ( Y10 = Z ) )
    = ( ^ [A3: int,B2: int] :
          ( ( minus_minus_int @ A3 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_534_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y10: real,Z: real] : ( Y10 = Z ) )
    = ( ^ [A3: real,B2: real] :
          ( ( minus_minus_real @ A3 @ B2 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_535_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_536_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_537_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_538_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_539_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_540_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_541_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ C2 ) ) ) ).

% diff_strict_right_mono
thf(fact_542_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B @ C2 ) ) ) ).

% diff_strict_right_mono
thf(fact_543_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C2 @ A ) @ ( minus_minus_int @ C2 @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_544_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C2 @ A ) @ ( minus_minus_real @ C2 @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_545_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C2 @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C2 @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_546_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C2 @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C2 @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_547_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C2 )
       => ( ord_less_int @ ( minus_minus_int @ A @ C2 ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_548_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C2 )
       => ( ord_less_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_549_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_550_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_551_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_552_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_553_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_554_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_555_verit__comp__simplify1_I3_J,axiom,
    ! [B3: nat,A4: nat] :
      ( ( ~ ( ord_less_eq_nat @ B3 @ A4 ) )
      = ( ord_less_nat @ A4 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_556_verit__comp__simplify1_I3_J,axiom,
    ! [B3: int,A4: int] :
      ( ( ~ ( ord_less_eq_int @ B3 @ A4 ) )
      = ( ord_less_int @ A4 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_557_verit__comp__simplify1_I3_J,axiom,
    ! [B3: real,A4: real] :
      ( ( ~ ( ord_less_eq_real @ B3 @ A4 ) )
      = ( ord_less_real @ A4 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_558_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_559_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_560_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_561_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_562_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_563_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I2: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_564_less__imp__diff__less,axiom,
    ! [J3: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J3 @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J3 @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_565_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_566_real__arch__simple,axiom,
    ! [X: real] :
    ? [N2: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% real_arch_simple
thf(fact_567_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_568_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_569_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_570_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_571_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_572_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_573_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_574_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_575_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_576_Suc__le__D,axiom,
    ! [N: nat,M7: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M7 )
     => ? [M5: nat] :
          ( M7
          = ( suc @ M5 ) ) ) ).

% Suc_le_D
thf(fact_577_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_578_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_579_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_580_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_581_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_582_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X9: nat] : ( R2 @ X9 @ X9 )
       => ( ! [X9: nat,Y9: nat,Z4: nat] :
              ( ( R2 @ X9 @ Y9 )
             => ( ( R2 @ Y9 @ Z4 )
               => ( R2 @ X9 @ Z4 ) ) )
         => ( ! [N2: nat] : ( R2 @ N2 @ ( suc @ N2 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_583_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y12: real] :
          ( ( ord_less_real @ X2 @ Y12 )
          | ( X2 = Y12 ) ) ) ) ).

% less_eq_real_def
thf(fact_584_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J3: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J3 )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J3 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_585_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_586_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_587_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N5: nat] :
          ( ( ord_less_nat @ M3 @ N5 )
          | ( M3 = N5 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_588_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_589_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N5: nat] :
          ( ( ord_less_eq_nat @ M3 @ N5 )
          & ( M3 != N5 ) ) ) ) ).

% nat_less_le
thf(fact_590_int__cases2,axiom,
    ! [Z2: int] :
      ( ! [N2: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% int_cases2
thf(fact_591_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_592_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_593_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_594_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_595_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_596_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_597_nat__less__eq__zless,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W @ Z2 ) ) ) ).

% nat_less_eq_zless
thf(fact_598_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_599_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_600_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_601_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_602_less__eq__mask,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).

% less_eq_mask
thf(fact_603_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_604_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_605_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_606_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_607_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_608_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_609_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_610_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_611_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_612_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_613_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_614_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_615_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_616_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_617_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_618_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_619_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_620_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_621_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_622_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_623_zero__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_624_zero__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_power
thf(fact_625_zero__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_power
thf(fact_626_power__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_627_power__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_628_power__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono
thf(fact_629_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_630_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_631_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_632_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_633_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_634_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_635_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_636_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_637_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_638_int__of__nat__induct,axiom,
    ! [P: int > $o,Z2: int] :
      ( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
       => ( P @ Z2 ) ) ) ).

% int_of_nat_induct
thf(fact_639_int__cases,axiom,
    ! [Z2: int] :
      ( ! [N2: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% int_cases
thf(fact_640_ln__bound,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_bound
thf(fact_641_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_642_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_643_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_644_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_645_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N5: nat] : ( ord_less_eq_nat @ ( suc @ N5 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_646_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_647_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_648_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_649_inc__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( P @ J3 )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
             => ( ( ord_less_nat @ N2 @ J3 )
               => ( ( P @ ( suc @ N2 ) )
                 => ( P @ N2 ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% inc_induct
thf(fact_650_dec__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( P @ I2 )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
             => ( ( ord_less_nat @ N2 @ J3 )
               => ( ( P @ N2 )
                 => ( P @ ( suc @ N2 ) ) ) ) )
         => ( P @ J3 ) ) ) ) ).

% dec_induct
thf(fact_651_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_652_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_653_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_654_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_655_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_656_harm__nonneg,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( harmonic_harm_real @ N ) ) ).

% harm_nonneg
thf(fact_657_mask__nonnegative__int,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).

% mask_nonnegative_int
thf(fact_658_nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% nat_mask_eq
thf(fact_659_nat__mono__iff,axiom,
    ! [Z2: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W @ Z2 ) ) ) ).

% nat_mono_iff
thf(fact_660_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z2: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z2 ) ) ).

% zless_nat_eq_int_zless
thf(fact_661_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_662_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_663_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_664_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_665_power__less__imp__less__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_666_power__less__imp__less__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_667_power__less__imp__less__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_668_power__le__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_669_power__le__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_670_power__le__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_671_power__le__imp__le__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_672_power__le__imp__le__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_673_power__le__imp__le__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_674_power__inject__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_675_power__inject__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_676_power__inject__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N ) )
        = ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_677_diff__Suc__less,axiom,
    ! [N: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_678_int__cases4,axiom,
    ! [M: int] :
      ( ! [N2: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% int_cases4
thf(fact_679_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_680_power__le__one__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
        = ( ( N = zero_zero_nat )
          | ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).

% power_le_one_iff
thf(fact_681_nat__one__le__power,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I2 )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I2 @ N ) ) ) ).

% nat_one_le_power
thf(fact_682_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_683_split__nat,axiom,
    ! [P: nat > $o,I2: int] :
      ( ( P @ ( nat2 @ I2 ) )
      = ( ! [N5: nat] :
            ( ( I2
              = ( semiri1314217659103216013at_int @ N5 ) )
           => ( P @ N5 ) )
        & ( ( ord_less_int @ I2 @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_684_power__Suc__le__self,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_685_power__Suc__le__self,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_686_power__Suc__le__self,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_687_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N )
              = ( power_power_nat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_688_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N )
              = ( power_power_int @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_689_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N )
              = ( power_power_real @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_690_power__eq__imp__eq__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N )
        = ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_691_power__eq__imp__eq__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ N )
        = ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_692_power__eq__imp__eq__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ N )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_693_self__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_694_self__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_695_self__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_696_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_697_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_698_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
       => ~ ! [N2: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% int_cases3
thf(fact_699_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_700_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N2: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% negD
thf(fact_701_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q2: nat > $o] :
      ( ! [X9: nat > real] :
          ( ( P @ X9 )
         => ( P @ ( F @ X9 ) ) )
     => ( ! [X9: nat > real] :
            ( ( P @ X9 )
           => ! [I3: nat] :
                ( ( Q2 @ I3 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X9 @ I3 ) )
                  & ( ord_less_eq_real @ ( X9 @ I3 ) @ one_one_real ) ) ) )
       => ? [L3: ( nat > real ) > nat > nat] :
            ( ! [X11: nat > real,I4: nat] : ( ord_less_eq_nat @ ( L3 @ X11 @ I4 ) @ one_one_nat )
            & ! [X11: nat > real,I4: nat] :
                ( ( ( P @ X11 )
                  & ( Q2 @ I4 )
                  & ( ( X11 @ I4 )
                    = zero_zero_real ) )
               => ( ( L3 @ X11 @ I4 )
                  = zero_zero_nat ) )
            & ! [X11: nat > real,I4: nat] :
                ( ( ( P @ X11 )
                  & ( Q2 @ I4 )
                  & ( ( X11 @ I4 )
                    = one_one_real ) )
               => ( ( L3 @ X11 @ I4 )
                  = one_one_nat ) )
            & ! [X11: nat > real,I4: nat] :
                ( ( ( P @ X11 )
                  & ( Q2 @ I4 )
                  & ( ( L3 @ X11 @ I4 )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X11 @ I4 ) @ ( F @ X11 @ I4 ) ) )
            & ! [X11: nat > real,I4: nat] :
                ( ( ( P @ X11 )
                  & ( Q2 @ I4 )
                  & ( ( L3 @ X11 @ I4 )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F @ X11 @ I4 ) @ ( X11 @ I4 ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_702_ge__iff__diff__ge__0,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A3: int] : ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A3 @ B2 ) ) ) ) ).

% ge_iff_diff_ge_0
thf(fact_703_ge__iff__diff__ge__0,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A3: real] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A3 @ B2 ) ) ) ) ).

% ge_iff_diff_ge_0
thf(fact_704_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_705_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_706_real__of__nat__ge__one__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ one_one_nat @ N ) ) ).

% real_of_nat_ge_one_iff
thf(fact_707_ivl__diff,axiom,
    ! [I2: int,N: int,M: int] :
      ( ( ord_less_eq_int @ I2 @ N )
     => ( ( minus_minus_set_int @ ( set_or4662586982721622107an_int @ I2 @ M ) @ ( set_or4662586982721622107an_int @ I2 @ N ) )
        = ( set_or4662586982721622107an_int @ N @ M ) ) ) ).

% ivl_diff
thf(fact_708_ivl__diff,axiom,
    ! [I2: real,N: real,M: real] :
      ( ( ord_less_eq_real @ I2 @ N )
     => ( ( minus_minus_set_real @ ( set_or66887138388493659n_real @ I2 @ M ) @ ( set_or66887138388493659n_real @ I2 @ N ) )
        = ( set_or66887138388493659n_real @ N @ M ) ) ) ).

% ivl_diff
thf(fact_709_ivl__diff,axiom,
    ! [I2: nat,N: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_set_nat @ ( set_or4665077453230672383an_nat @ I2 @ M ) @ ( set_or4665077453230672383an_nat @ I2 @ N ) )
        = ( set_or4665077453230672383an_nat @ N @ M ) ) ) ).

% ivl_diff
thf(fact_710_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_711_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_712_zle__diff1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z2 @ one_one_int ) )
      = ( ord_less_int @ W @ Z2 ) ) ).

% zle_diff1_eq
thf(fact_713_real__eq__0__iff__le__ge__0,axiom,
    ! [X: real] :
      ( ( X = zero_zero_real )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).

% real_eq_0_iff_le_ge_0
thf(fact_714_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_715_le__trans,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ord_less_eq_nat @ J3 @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_716_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_717_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_718_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_719_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y9: nat] :
            ( ( P @ Y9 )
           => ( ord_less_eq_nat @ Y9 @ B ) )
       => ? [X9: nat] :
            ( ( P @ X9 )
            & ! [Y11: nat] :
                ( ( P @ Y11 )
               => ( ord_less_eq_nat @ Y11 @ X9 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_720_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X11: real] : ( member_real @ X11 @ S2 )
     => ( ? [Z5: real] :
          ! [X9: real] :
            ( ( member_real @ X9 @ S2 )
           => ( ord_less_eq_real @ X9 @ Z5 ) )
       => ? [Y9: real] :
            ( ! [X11: real] :
                ( ( member_real @ X11 @ S2 )
               => ( ord_less_eq_real @ X11 @ Y9 ) )
            & ! [Z5: real] :
                ( ! [X9: real] :
                    ( ( member_real @ X9 @ S2 )
                   => ( ord_less_eq_real @ X9 @ Z5 ) )
               => ( ord_less_eq_real @ Y9 @ Z5 ) ) ) ) ) ).

% complete_real
thf(fact_721_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M4: nat] :
      ( ( P @ X )
     => ( ! [X9: nat] :
            ( ( P @ X9 )
           => ( ord_less_eq_nat @ X9 @ M4 ) )
       => ~ ! [M5: nat] :
              ( ( P @ M5 )
             => ~ ! [X11: nat] :
                    ( ( P @ X11 )
                   => ( ord_less_eq_nat @ X11 @ M5 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_722_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_723_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_724_int__le__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I2 @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_le_induct
thf(fact_725_int__diff__cases,axiom,
    ! [Z2: int] :
      ~ ! [M5: nat,N2: nat] :
          ( Z2
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_diff_cases
thf(fact_726_ln__one__minus__pos__upper__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_727_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_728_int__less__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I2 @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_less_induct
thf(fact_729_euler__mascheroni__sequence__decreasing,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( harmonic_harm_real @ N ) @ ( ln_ln_real @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( minus_minus_real @ ( harmonic_harm_real @ M ) @ ( ln_ln_real @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ).

% euler_mascheroni_sequence_decreasing
thf(fact_730_nat__diff__distrib,axiom,
    ! [Z3: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ Z3 @ Z2 )
       => ( ( nat2 @ ( minus_minus_int @ Z2 @ Z3 ) )
          = ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z3 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_731_nat__diff__distrib_H,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( minus_minus_int @ X @ Y ) )
          = ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_732_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_733_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_734_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_735_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_736_euler__mascheroni__sequence__nonneg,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( harmonic_harm_real @ N ) @ ( ln_ln_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% euler_mascheroni_sequence_nonneg
thf(fact_737_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_738_diff__nat__eq__if,axiom,
    ! [Z3: int,Z2: int] :
      ( ( ( ord_less_int @ Z3 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z3 ) )
          = ( nat2 @ Z2 ) ) )
      & ( ~ ( ord_less_int @ Z3 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z3 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z2 @ Z3 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z2 @ Z3 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_739_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_740_seq__mono__lemma,axiom,
    ! [M: nat,D: nat > real,E2: nat > real] :
      ( ! [N2: nat] :
          ( ( ord_less_eq_nat @ M @ N2 )
         => ( ord_less_real @ ( D @ N2 ) @ ( E2 @ N2 ) ) )
     => ( ! [N2: nat] :
            ( ( ord_less_eq_nat @ M @ N2 )
           => ( ord_less_eq_real @ ( E2 @ N2 ) @ ( E2 @ M ) ) )
       => ! [N6: nat] :
            ( ( ord_less_eq_nat @ M @ N6 )
           => ( ord_less_real @ ( D @ N6 ) @ ( E2 @ M ) ) ) ) ) ).

% seq_mono_lemma
thf(fact_741_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A5: real,B4: real,C3: real] :
            ( ( P @ A5 @ B4 )
           => ( ( P @ B4 @ C3 )
             => ( ( ord_less_eq_real @ A5 @ B4 )
               => ( ( ord_less_eq_real @ B4 @ C3 )
                 => ( P @ A5 @ C3 ) ) ) ) )
       => ( ! [X9: real] :
              ( ( ord_less_eq_real @ A @ X9 )
             => ( ( ord_less_eq_real @ X9 @ B )
               => ? [D4: real] :
                    ( ( ord_less_real @ zero_zero_real @ D4 )
                    & ! [A5: real,B4: real] :
                        ( ( ( ord_less_eq_real @ A5 @ X9 )
                          & ( ord_less_eq_real @ X9 @ B4 )
                          & ( ord_less_real @ ( minus_minus_real @ B4 @ A5 ) @ D4 ) )
                       => ( P @ A5 @ B4 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_742_arsinh__minus__real,axiom,
    ! [X: real] :
      ( ( arsinh_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( arsinh_real @ X ) ) ) ).

% arsinh_minus_real
thf(fact_743_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z5: nat] :
        ! [X9: nat] :
          ( ( ord_less_nat @ Z5 @ X9 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: nat] :
          ! [X9: nat] :
            ( ( ord_less_nat @ Z5 @ X9 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: nat] :
          ! [X11: nat] :
            ( ( ord_less_nat @ Z4 @ X11 )
           => ( ( ( P @ X11 )
                & ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                & ( Q3 @ X11 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_744_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z5: int] :
        ! [X9: int] :
          ( ( ord_less_int @ Z5 @ X9 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: int] :
          ! [X9: int] :
            ( ( ord_less_int @ Z5 @ X9 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: int] :
          ! [X11: int] :
            ( ( ord_less_int @ Z4 @ X11 )
           => ( ( ( P @ X11 )
                & ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                & ( Q3 @ X11 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_745_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z5: real] :
        ! [X9: real] :
          ( ( ord_less_real @ Z5 @ X9 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: real] :
          ! [X9: real] :
            ( ( ord_less_real @ Z5 @ X9 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: real] :
          ! [X11: real] :
            ( ( ord_less_real @ Z4 @ X11 )
           => ( ( ( P @ X11 )
                & ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                & ( Q3 @ X11 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_746_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z5: nat] :
        ! [X9: nat] :
          ( ( ord_less_nat @ Z5 @ X9 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: nat] :
          ! [X9: nat] :
            ( ( ord_less_nat @ Z5 @ X9 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: nat] :
          ! [X11: nat] :
            ( ( ord_less_nat @ Z4 @ X11 )
           => ( ( ( P @ X11 )
                | ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                | ( Q3 @ X11 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_747_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z5: int] :
        ! [X9: int] :
          ( ( ord_less_int @ Z5 @ X9 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: int] :
          ! [X9: int] :
            ( ( ord_less_int @ Z5 @ X9 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: int] :
          ! [X11: int] :
            ( ( ord_less_int @ Z4 @ X11 )
           => ( ( ( P @ X11 )
                | ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                | ( Q3 @ X11 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_748_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z5: real] :
        ! [X9: real] :
          ( ( ord_less_real @ Z5 @ X9 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: real] :
          ! [X9: real] :
            ( ( ord_less_real @ Z5 @ X9 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: real] :
          ! [X11: real] :
            ( ( ord_less_real @ Z4 @ X11 )
           => ( ( ( P @ X11 )
                | ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                | ( Q3 @ X11 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_749_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ Z4 @ X11 )
     => ( X11 != T ) ) ).

% pinf(3)
thf(fact_750_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ Z4 @ X11 )
     => ( X11 != T ) ) ).

% pinf(3)
thf(fact_751_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ Z4 @ X11 )
     => ( X11 != T ) ) ).

% pinf(3)
thf(fact_752_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ Z4 @ X11 )
     => ( X11 != T ) ) ).

% pinf(4)
thf(fact_753_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ Z4 @ X11 )
     => ( X11 != T ) ) ).

% pinf(4)
thf(fact_754_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ Z4 @ X11 )
     => ( X11 != T ) ) ).

% pinf(4)
thf(fact_755_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ Z4 @ X11 )
     => ~ ( ord_less_nat @ X11 @ T ) ) ).

% pinf(5)
thf(fact_756_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ Z4 @ X11 )
     => ~ ( ord_less_int @ X11 @ T ) ) ).

% pinf(5)
thf(fact_757_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ Z4 @ X11 )
     => ~ ( ord_less_real @ X11 @ T ) ) ).

% pinf(5)
thf(fact_758_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ Z4 @ X11 )
     => ( ord_less_nat @ T @ X11 ) ) ).

% pinf(7)
thf(fact_759_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ Z4 @ X11 )
     => ( ord_less_int @ T @ X11 ) ) ).

% pinf(7)
thf(fact_760_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ Z4 @ X11 )
     => ( ord_less_real @ T @ X11 ) ) ).

% pinf(7)
thf(fact_761_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z5: nat] :
        ! [X9: nat] :
          ( ( ord_less_nat @ X9 @ Z5 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: nat] :
          ! [X9: nat] :
            ( ( ord_less_nat @ X9 @ Z5 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: nat] :
          ! [X11: nat] :
            ( ( ord_less_nat @ X11 @ Z4 )
           => ( ( ( P @ X11 )
                & ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                & ( Q3 @ X11 ) ) ) ) ) ) ).

% minf(1)
thf(fact_762_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z5: int] :
        ! [X9: int] :
          ( ( ord_less_int @ X9 @ Z5 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: int] :
          ! [X9: int] :
            ( ( ord_less_int @ X9 @ Z5 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: int] :
          ! [X11: int] :
            ( ( ord_less_int @ X11 @ Z4 )
           => ( ( ( P @ X11 )
                & ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                & ( Q3 @ X11 ) ) ) ) ) ) ).

% minf(1)
thf(fact_763_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z5: real] :
        ! [X9: real] :
          ( ( ord_less_real @ X9 @ Z5 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: real] :
          ! [X9: real] :
            ( ( ord_less_real @ X9 @ Z5 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: real] :
          ! [X11: real] :
            ( ( ord_less_real @ X11 @ Z4 )
           => ( ( ( P @ X11 )
                & ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                & ( Q3 @ X11 ) ) ) ) ) ) ).

% minf(1)
thf(fact_764_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z5: nat] :
        ! [X9: nat] :
          ( ( ord_less_nat @ X9 @ Z5 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: nat] :
          ! [X9: nat] :
            ( ( ord_less_nat @ X9 @ Z5 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: nat] :
          ! [X11: nat] :
            ( ( ord_less_nat @ X11 @ Z4 )
           => ( ( ( P @ X11 )
                | ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                | ( Q3 @ X11 ) ) ) ) ) ) ).

% minf(2)
thf(fact_765_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z5: int] :
        ! [X9: int] :
          ( ( ord_less_int @ X9 @ Z5 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: int] :
          ! [X9: int] :
            ( ( ord_less_int @ X9 @ Z5 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: int] :
          ! [X11: int] :
            ( ( ord_less_int @ X11 @ Z4 )
           => ( ( ( P @ X11 )
                | ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                | ( Q3 @ X11 ) ) ) ) ) ) ).

% minf(2)
thf(fact_766_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z5: real] :
        ! [X9: real] :
          ( ( ord_less_real @ X9 @ Z5 )
         => ( ( P @ X9 )
            = ( P4 @ X9 ) ) )
     => ( ? [Z5: real] :
          ! [X9: real] :
            ( ( ord_less_real @ X9 @ Z5 )
           => ( ( Q2 @ X9 )
              = ( Q3 @ X9 ) ) )
       => ? [Z4: real] :
          ! [X11: real] :
            ( ( ord_less_real @ X11 @ Z4 )
           => ( ( ( P @ X11 )
                | ( Q2 @ X11 ) )
              = ( ( P4 @ X11 )
                | ( Q3 @ X11 ) ) ) ) ) ) ).

% minf(2)
thf(fact_767_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ X11 @ Z4 )
     => ( X11 != T ) ) ).

% minf(3)
thf(fact_768_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ X11 @ Z4 )
     => ( X11 != T ) ) ).

% minf(3)
thf(fact_769_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ X11 @ Z4 )
     => ( X11 != T ) ) ).

% minf(3)
thf(fact_770_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ X11 @ Z4 )
     => ( X11 != T ) ) ).

% minf(4)
thf(fact_771_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ X11 @ Z4 )
     => ( X11 != T ) ) ).

% minf(4)
thf(fact_772_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ X11 @ Z4 )
     => ( X11 != T ) ) ).

% minf(4)
thf(fact_773_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ X11 @ Z4 )
     => ( ord_less_nat @ X11 @ T ) ) ).

% minf(5)
thf(fact_774_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ X11 @ Z4 )
     => ( ord_less_int @ X11 @ T ) ) ).

% minf(5)
thf(fact_775_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ X11 @ Z4 )
     => ( ord_less_real @ X11 @ T ) ) ).

% minf(5)
thf(fact_776_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ X11 @ Z4 )
     => ~ ( ord_less_nat @ T @ X11 ) ) ).

% minf(7)
thf(fact_777_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ X11 @ Z4 )
     => ~ ( ord_less_int @ T @ X11 ) ) ).

% minf(7)
thf(fact_778_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ X11 @ Z4 )
     => ~ ( ord_less_real @ T @ X11 ) ) ).

% minf(7)
thf(fact_779_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ Z4 @ X11 )
     => ~ ( ord_less_eq_nat @ X11 @ T ) ) ).

% pinf(6)
thf(fact_780_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ Z4 @ X11 )
     => ~ ( ord_less_eq_int @ X11 @ T ) ) ).

% pinf(6)
thf(fact_781_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ Z4 @ X11 )
     => ~ ( ord_less_eq_real @ X11 @ T ) ) ).

% pinf(6)
thf(fact_782_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ Z4 @ X11 )
     => ( ord_less_eq_nat @ T @ X11 ) ) ).

% pinf(8)
thf(fact_783_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ Z4 @ X11 )
     => ( ord_less_eq_int @ T @ X11 ) ) ).

% pinf(8)
thf(fact_784_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ Z4 @ X11 )
     => ( ord_less_eq_real @ T @ X11 ) ) ).

% pinf(8)
thf(fact_785_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ X11 @ Z4 )
     => ( ord_less_eq_nat @ X11 @ T ) ) ).

% minf(6)
thf(fact_786_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ X11 @ Z4 )
     => ( ord_less_eq_int @ X11 @ T ) ) ).

% minf(6)
thf(fact_787_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ X11 @ Z4 )
     => ( ord_less_eq_real @ X11 @ T ) ) ).

% minf(6)
thf(fact_788_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X11: nat] :
      ( ( ord_less_nat @ X11 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X11 ) ) ).

% minf(8)
thf(fact_789_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X11: int] :
      ( ( ord_less_int @ X11 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X11 ) ) ).

% minf(8)
thf(fact_790_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X11: real] :
      ( ( ord_less_real @ X11 @ Z4 )
     => ~ ( ord_less_eq_real @ T @ X11 ) ) ).

% minf(8)
thf(fact_791_conj__le__cong,axiom,
    ! [X: int,X13: int,P: $o,P4: $o] :
      ( ( X = X13 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X13 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X13 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_792_imp__le__cong,axiom,
    ! [X: int,X13: int,P: $o,P4: $o] :
      ( ( X = X13 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X13 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X13 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_793_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_794_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_795_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_796_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_797_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_798_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_799_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_800_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_801_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_802_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_803_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_804_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_805_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_806_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_807_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_808_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_809_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_810_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_811_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_812_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_813_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_814_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% abs_of_nat
thf(fact_815_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_816_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_817_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_818_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_819_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_820_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_821_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_822_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_823_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_824_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_825_abs__power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_826_abs__power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_827_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_828_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_829_zabs__less__one__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z2 ) @ one_one_int )
      = ( Z2 = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_830_zero__less__power__abs__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
      = ( ( A != zero_zero_int )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_831_zero__less__power__abs__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
      = ( ( A != zero_zero_real )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_832_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_833_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_834_abs__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( abs_abs_int @ X )
        = ( abs_abs_int @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_835_abs__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( abs_abs_real @ X )
        = ( abs_abs_real @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_836_psubsetD,axiom,
    ! [A2: set_real,B5: set_real,C2: real] :
      ( ( ord_less_set_real @ A2 @ B5 )
     => ( ( member_real @ C2 @ A2 )
       => ( member_real @ C2 @ B5 ) ) ) ).

% psubsetD
thf(fact_837_less__set__def,axiom,
    ( ord_less_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( ord_less_real_o
          @ ^ [X2: real] : ( member_real @ X2 @ A6 )
          @ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_838_power__abs,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% power_abs
thf(fact_839_power__abs,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% power_abs
thf(fact_840_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_841_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_842_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_843_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_844_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_845_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_846_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_847_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_848_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_849_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_850_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_851_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_852_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_853_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_854_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_855_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_856_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_857_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_858_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_859_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_860_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_861_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_862_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_863_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_864_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_865_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_866_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_867_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_868_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_869_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_870_dense__eq0__I,axiom,
    ! [X: real] :
      ( ! [E: real] :
          ( ( ord_less_real @ zero_zero_real @ E )
         => ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E ) )
     => ( X = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_871_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_872_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_873_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_874_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_875_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_876_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_877_zero__le__power__abs,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_878_zero__le__power__abs,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_879_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_880_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_881_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_882_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_883_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_884_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_885_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I: int] : ( if_int @ ( ord_less_int @ I @ zero_zero_int ) @ ( uminus_uminus_int @ I ) @ I ) ) ) ).

% zabs_def
thf(fact_886_psubset__imp__ex__mem,axiom,
    ! [A2: set_real,B5: set_real] :
      ( ( ord_less_set_real @ A2 @ B5 )
     => ? [B4: real] : ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_887_Collect__subset,axiom,
    ! [A2: set_real,P: real > $o] :
      ( ord_less_eq_set_real
      @ ( collect_real
        @ ^ [X2: real] :
            ( ( member_real @ X2 @ A2 )
            & ( P @ X2 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_888_less__eq__set__def,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( ord_less_eq_real_o
          @ ^ [X2: real] : ( member_real @ X2 @ A6 )
          @ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_889_minus__set__def,axiom,
    ( minus_minus_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( collect_real
          @ ( minus_minus_real_o
            @ ^ [X2: real] : ( member_real @ X2 @ A6 )
            @ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_890_set__diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( collect_real
          @ ^ [X2: real] :
              ( ( member_real @ X2 @ A6 )
              & ~ ( member_real @ X2 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_891_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_892_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N )
                & ( ( F @ I3 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_893_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_894_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_895_leD,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ~ ( ord_less_int @ X @ Y ) ) ).

% leD
thf(fact_896_leD,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ~ ( ord_less_real @ X @ Y ) ) ).

% leD
thf(fact_897_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_898_leI,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% leI
thf(fact_899_leI,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% leI
thf(fact_900_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_901_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_902_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_903_add__left__cancel,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_904_add__left__cancel,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_905_add__left__cancel,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_906_add__right__cancel,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_907_add__right__cancel,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_908_add__right__cancel,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_909_abs__harm,axiom,
    ! [N: nat] :
      ( ( abs_abs_real @ ( harmonic_harm_real @ N ) )
      = ( harmonic_harm_real @ N ) ) ).

% abs_harm
thf(fact_910_add__le__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_911_add__le__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_912_add__le__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_913_add__le__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_914_add__le__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_915_add__le__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_916_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_917_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_918_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_919_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_920_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_921_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_922_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_923_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_924_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_925_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_926_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_927_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_928_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_929_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_930_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_931_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_932_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_933_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_934_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_935_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_936_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_937_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_938_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_939_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_940_add__less__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_941_add__less__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_942_add__less__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_943_add__less__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_944_add__less__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_945_add__less__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_946_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_947_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_948_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_949_add__diff__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_950_add__diff__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_951_add__diff__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_952_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_953_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_954_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_955_add__diff__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_956_add__diff__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_957_add__diff__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_958_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_959_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_960_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_961_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_962_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_963_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_964_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_965_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_966_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_967_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_968_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_969_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_970_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_971_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_972_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_973_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_974_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_975_diff__diff__left,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J3 ) @ K )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J3 @ K ) ) ) ).

% diff_diff_left
thf(fact_976_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_977_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_978_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_979_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_980_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_981_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_982_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_983_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_984_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_985_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_986_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_987_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_988_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_989_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_990_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_991_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_992_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_993_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_994_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_995_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_996_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_997_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_998_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_999_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1000_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_1001_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_1002_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_1003_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_1004_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_1005_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_1006_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_1007_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_1008_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1009_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1010_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1011_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1012_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1013_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1014_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_1015_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_1016_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_1017_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_1018_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_1019_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_1020_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_1021_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_1022_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_1023_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_1024_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_1025_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_1026_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1027_artanh__minus__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X ) )
        = ( uminus_uminus_real @ ( artanh_real @ X ) ) ) ) ).

% artanh_minus_real
thf(fact_1028_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J3 ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1029_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J3 @ I2 ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1030_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ J3 ) ) ) ).

% Nat.diff_diff_right
thf(fact_1031_iterate__add__simps_I2_J,axiom,
    ! [N: nat,A: real] :
      ( ( iterate_add_real @ ( suc @ N ) @ A )
      = ( plus_plus_real @ A @ ( iterate_add_real @ N @ A ) ) ) ).

% iterate_add_simps(2)
thf(fact_1032_iterate__add__simps_I2_J,axiom,
    ! [N: nat,A: int] :
      ( ( iterate_add_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ A @ ( iterate_add_int @ N @ A ) ) ) ).

% iterate_add_simps(2)
thf(fact_1033_iterate__add__simps_I2_J,axiom,
    ! [N: nat,A: nat] :
      ( ( iterate_add_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ A @ ( iterate_add_nat @ N @ A ) ) ) ).

% iterate_add_simps(2)
thf(fact_1034_iterate__add__distrib,axiom,
    ! [M: nat,N: nat,A: real] :
      ( ( iterate_add_real @ ( plus_plus_nat @ M @ N ) @ A )
      = ( plus_plus_real @ ( iterate_add_real @ M @ A ) @ ( iterate_add_real @ N @ A ) ) ) ).

% iterate_add_distrib
thf(fact_1035_iterate__add__distrib,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( iterate_add_int @ ( plus_plus_nat @ M @ N ) @ A )
      = ( plus_plus_int @ ( iterate_add_int @ M @ A ) @ ( iterate_add_int @ N @ A ) ) ) ).

% iterate_add_distrib
thf(fact_1036_iterate__add__distrib,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( iterate_add_nat @ ( plus_plus_nat @ M @ N ) @ A )
      = ( plus_plus_nat @ ( iterate_add_nat @ M @ A ) @ ( iterate_add_nat @ N @ A ) ) ) ).

% iterate_add_distrib
thf(fact_1037_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_1038_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_1039_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_1040_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_1041_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_1042_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_1043_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_1044_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J3 @ K ) ) @ I2 )
        = ( minus_minus_nat @ ( suc @ J3 ) @ ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1045_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J3 @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ ( suc @ J3 ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1046_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_1047_trans__less__add2,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J3 ) ) ) ).

% trans_less_add2
thf(fact_1048_trans__less__add1,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J3 @ M ) ) ) ).

% trans_less_add1
thf(fact_1049_add__less__mono1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ K ) ) ) ).

% add_less_mono1
thf(fact_1050_not__add__less2,axiom,
    ! [J3: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J3 @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_1051_not__add__less1,axiom,
    ! [I2: nat,J3: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J3 ) @ I2 ) ).

% not_add_less1
thf(fact_1052_add__less__mono,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ) ).

% add_less_mono
thf(fact_1053_add__lessD1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J3 ) @ K )
     => ( ord_less_nat @ I2 @ K ) ) ).

% add_lessD1
thf(fact_1054_add__less__imp__less__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1055_add__less__imp__less__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1056_add__less__imp__less__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1057_add__less__imp__less__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1058_add__less__imp__less__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1059_add__less__imp__less__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1060_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_1061_add__strict__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_1062_add__strict__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_1063_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1064_add__strict__left__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1065_add__strict__left__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1066_add__strict__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C2 @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1067_add__strict__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C2 @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1068_add__strict__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C2 @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1069_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J3 )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1070_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J3 )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1071_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J3 )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1072_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( I2 = J3 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1073_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( I2 = J3 )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1074_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( I2 = J3 )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1075_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J3 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1076_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J3 )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1077_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( ord_less_real @ I2 @ J3 )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1078_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1079_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_1080_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_1081_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_1082_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1083_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_1084_add__le__mono,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ) ).

% add_le_mono
thf(fact_1085_add__le__mono1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ K ) ) ) ).

% add_le_mono1
thf(fact_1086_trans__le__add1,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J3 @ M ) ) ) ).

% trans_le_add1
thf(fact_1087_trans__le__add2,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J3 ) ) ) ).

% trans_le_add2
thf(fact_1088_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N5: nat] :
        ? [K3: nat] :
          ( N5
          = ( plus_plus_nat @ M3 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1089_pth__d,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ X @ zero_zero_real )
      = X ) ).

% pth_d
thf(fact_1090_pth__7_I1_J,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ zero_zero_real @ X )
      = X ) ).

% pth_7(1)
thf(fact_1091_add__le__imp__le__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1092_add__le__imp__le__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1093_add__le__imp__le__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1094_add__le__imp__le__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1095_add__le__imp__le__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1096_add__le__imp__le__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1097_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
        ? [C: nat] :
          ( B2
          = ( plus_plus_nat @ A3 @ C ) ) ) ) ).

% le_iff_add
thf(fact_1098_add__right__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add_right_mono
thf(fact_1099_add__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add_right_mono
thf(fact_1100_add__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add_right_mono
thf(fact_1101_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_1102_add__left__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).

% add_left_mono
thf(fact_1103_add__left__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).

% add_left_mono
thf(fact_1104_add__left__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) ) ) ).

% add_left_mono
thf(fact_1105_add__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C2 @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1106_add__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C2 @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1107_add__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C2 @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1108_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J3 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1109_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J3 )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1110_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J3 )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1111_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( I2 = J3 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1112_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( I2 = J3 )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1113_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( I2 = J3 )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1114_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J3 )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1115_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J3 )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1116_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I2 @ J3 )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1117_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1118_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_1119_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_1120_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_1121_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_1122_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1123_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1124_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1125_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_1126_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_1127_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_1128_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1129_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1130_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1131_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1132_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1133_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1134_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1135_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1136_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J3: nat,K: nat,L: nat] :
      ( ( ( I2 = J3 )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I2 @ K )
        = ( plus_plus_nat @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1137_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: real,J3: real,K: real,L: real] :
      ( ( ( I2 = J3 )
        & ( K = L ) )
     => ( ( plus_plus_real @ I2 @ K )
        = ( plus_plus_real @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1138_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: int,J3: int,K: int,L: int] :
      ( ( ( I2 = J3 )
        & ( K = L ) )
     => ( ( plus_plus_int @ I2 @ K )
        = ( plus_plus_int @ J3 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1139_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1140_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1141_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1142_group__cancel_Oadd2,axiom,
    ! [B5: nat,K: nat,B: nat,A: nat] :
      ( ( B5
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B5 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1143_group__cancel_Oadd2,axiom,
    ! [B5: real,K: real,B: real,A: real] :
      ( ( B5
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B5 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1144_group__cancel_Oadd2,axiom,
    ! [B5: int,K: int,B: int,A: int] :
      ( ( B5
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B5 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1145_add_Oassoc,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_1146_add_Oassoc,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_1147_add_Oassoc,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_1148_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add.left_cancel
thf(fact_1149_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add.left_cancel
thf(fact_1150_add_Oright__cancel,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add.right_cancel
thf(fact_1151_add_Oright__cancel,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add.right_cancel
thf(fact_1152_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1153_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1154_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1155_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C2 ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_1156_add_Oleft__commute,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C2 ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_1157_add_Oleft__commute,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C2 ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_1158_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_1159_add__left__imp__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_1160_add__left__imp__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_1161_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_1162_add__right__imp__eq,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_1163_add__right__imp__eq,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_1164_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% is_num_normalize(1)
thf(fact_1165_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% is_num_normalize(1)
thf(fact_1166_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_1167_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_1168_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_1169_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_1170_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_1171_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_1172_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_1173_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_1174_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_1175_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_1176_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1177_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1178_diff__eq__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C2 )
      = ( A
        = ( plus_plus_int @ C2 @ B ) ) ) ).

% diff_eq_eq
thf(fact_1179_diff__eq__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C2 )
      = ( A
        = ( plus_plus_real @ C2 @ B ) ) ) ).

% diff_eq_eq
thf(fact_1180_eq__diff__eq,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C2 @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C2 ) ) ).

% eq_diff_eq
thf(fact_1181_eq__diff__eq,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C2 @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C2 ) ) ).

% eq_diff_eq
thf(fact_1182_add__diff__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C2 ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C2 ) ) ).

% add_diff_eq
thf(fact_1183_add__diff__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C2 ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C2 ) ) ).

% add_diff_eq
thf(fact_1184_diff__diff__eq2,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C2 ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1185_diff__diff__eq2,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C2 ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1186_diff__add__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C2 )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ).

% diff_add_eq
thf(fact_1187_diff__add__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C2 )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C2 ) @ B ) ) ).

% diff_add_eq
thf(fact_1188_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C2 ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C2 ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1189_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C2 ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C2 ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1190_add__implies__diff,axiom,
    ! [C2: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C2 @ B )
        = A )
     => ( C2
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1191_add__implies__diff,axiom,
    ! [C2: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C2 @ B )
        = A )
     => ( C2
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1192_add__implies__diff,axiom,
    ! [C2: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C2 @ B )
        = A )
     => ( C2
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1193_diff__diff__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C2 )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% diff_diff_eq
thf(fact_1194_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1195_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1196_less__imp__add__positive,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I2 @ K2 )
            = J3 ) ) ) ).

% less_imp_add_positive
thf(fact_1197_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1198_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N5: nat] :
        ? [K3: nat] :
          ( N5
          = ( suc @ ( plus_plus_nat @ M3 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1199_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_1200_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_1201_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q4: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).

% less_natE
thf(fact_1202_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M5: nat,N2: nat] :
          ( ( ord_less_nat @ M5 @ N2 )
         => ( ord_less_nat @ ( F @ M5 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1203_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1204_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N5: nat] : ( plus_plus_nat @ N5 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1205_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1206_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1207_le__diff__conv,axiom,
    ! [J3: nat,K: nat,I2: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 )
      = ( ord_less_eq_nat @ J3 @ ( plus_plus_nat @ I2 @ K ) ) ) ).

% le_diff_conv
thf(fact_1208_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ J3 ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1209_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J3 ) @ K )
        = ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1210_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J3 @ I2 ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1211_Nat_Ole__imp__diff__is__add,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ( minus_minus_nat @ J3 @ I2 )
          = K )
        = ( J3
          = ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1212_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1213_less__diff__conv,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J3 ) ) ).

% less_diff_conv
thf(fact_1214_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_real_def
thf(fact_1215_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D3: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D3 ) )
                & ~ ( P @ D3 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1216_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D3: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D3 ) )
           => ( P @ D3 ) ) ) ) ).

% nat_diff_split
thf(fact_1217_less__diff__conv2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 )
        = ( ord_less_nat @ J3 @ ( plus_plus_nat @ I2 @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1218_kuhn__lemma,axiom,
    ! [P5: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ P5 )
     => ( ! [X9: nat > nat] :
            ( ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ N )
               => ( ord_less_eq_nat @ ( X9 @ I4 ) @ P5 ) )
           => ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ N )
               => ( ( ( Label @ X9 @ I3 )
                    = zero_zero_nat )
                  | ( ( Label @ X9 @ I3 )
                    = one_one_nat ) ) ) )
       => ( ! [X9: nat > nat] :
              ( ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ N )
                 => ( ord_less_eq_nat @ ( X9 @ I4 ) @ P5 ) )
             => ! [I3: nat] :
                  ( ( ord_less_nat @ I3 @ N )
                 => ( ( ( X9 @ I3 )
                      = zero_zero_nat )
                   => ( ( Label @ X9 @ I3 )
                      = zero_zero_nat ) ) ) )
         => ( ! [X9: nat > nat] :
                ( ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ N )
                   => ( ord_less_eq_nat @ ( X9 @ I4 ) @ P5 ) )
               => ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ N )
                   => ( ( ( X9 @ I3 )
                        = P5 )
                     => ( ( Label @ X9 @ I3 )
                        = one_one_nat ) ) ) )
           => ~ ! [Q4: nat > nat] :
                  ( ! [I4: nat] :
                      ( ( ord_less_nat @ I4 @ N )
                     => ( ord_less_nat @ ( Q4 @ I4 ) @ P5 ) )
                 => ~ ! [I4: nat] :
                        ( ( ord_less_nat @ I4 @ N )
                       => ? [R: nat > nat] :
                            ( ! [J4: nat] :
                                ( ( ord_less_nat @ J4 @ N )
                               => ( ( ord_less_eq_nat @ ( Q4 @ J4 ) @ ( R @ J4 ) )
                                  & ( ord_less_eq_nat @ ( R @ J4 ) @ ( plus_plus_nat @ ( Q4 @ J4 ) @ one_one_nat ) ) ) )
                            & ? [S3: nat > nat] :
                                ( ! [J4: nat] :
                                    ( ( ord_less_nat @ J4 @ N )
                                   => ( ( ord_less_eq_nat @ ( Q4 @ J4 ) @ ( S3 @ J4 ) )
                                      & ( ord_less_eq_nat @ ( S3 @ J4 ) @ ( plus_plus_nat @ ( Q4 @ J4 ) @ one_one_nat ) ) ) )
                                & ( ( Label @ R @ I4 )
                                 != ( Label @ S3 @ I4 ) ) ) ) ) ) ) ) ) ) ).

% kuhn_lemma
thf(fact_1219_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N5: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N5 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N5 ) ) ) ) ) ).

% add_eq_if
thf(fact_1220_lemma__interval,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D5: real] :
            ( ( ord_less_real @ zero_zero_real @ D5 )
            & ! [Y11: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y11 ) ) @ D5 )
               => ( ( ord_less_eq_real @ A @ Y11 )
                  & ( ord_less_eq_real @ Y11 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_1221_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_1222_zle__add1__eq__le,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_1223_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1224_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1225_odd__nonzero,axiom,
    ! [Z2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1226_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z2: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).

% zadd_int_left
thf(fact_1227_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_1228_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1229_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X2: real,Y12: real] : ( plus_plus_real @ X2 @ ( uminus_uminus_real @ Y12 ) ) ) ) ).

% minus_real_def
thf(fact_1230_int__ge__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I2 )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_ge_induct
thf(fact_1231_int__gr__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_int @ K @ I2 )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_gr_induct
thf(fact_1232_zless__add1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z2 )
        | ( W = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_1233_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z6: int] :
        ? [N5: nat] :
          ( Z6
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N5 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1234_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1235_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_1236_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1237_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_1238_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1239_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1240_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z6: int] :
        ? [N5: nat] :
          ( Z6
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N5 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1241_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1242_zless__imp__add1__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_1243_add1__zle__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W @ Z2 ) ) ).

% add1_zle_eq
thf(fact_1244_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_1245_int__induct,axiom,
    ! [P: int > $o,K: int,I2: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_induct
thf(fact_1246_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_1247_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N5: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N5 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_1248_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N5: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N5 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_1249_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_1250_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_1251_nat__add__distrib,axiom,
    ! [Z2: int,Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
       => ( ( nat2 @ ( plus_plus_int @ Z2 @ Z3 ) )
          = ( plus_plus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z3 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_1252_Suc__as__int,axiom,
    ( suc
    = ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_1253_nat__abs__triangle__ineq,axiom,
    ! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_1254_ln__add__one__self__le__self2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self2
thf(fact_1255_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( suc @ ( nat2 @ Z2 ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_1256_ln__le__harm,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) @ ( harmonic_harm_real @ N ) ) ).

% ln_le_harm
thf(fact_1257_lemma__interval__lt,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D5: real] :
            ( ( ord_less_real @ zero_zero_real @ D5 )
            & ! [Y11: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y11 ) ) @ D5 )
               => ( ( ord_less_real @ A @ Y11 )
                  & ( ord_less_real @ Y11 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_1258_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( P @ A5 @ B4 )
          = ( P @ B4 @ A5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B4: nat] :
              ( ( P @ A5 @ B4 )
             => ( P @ A5 @ ( plus_plus_nat @ A5 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_1259_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_1260_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_1261_decr__lemma,axiom,
    ! [D: int,X: int,Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) @ Z2 ) ) ).

% decr_lemma
thf(fact_1262_incr__lemma,axiom,
    ! [D: int,Z2: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z2 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

% Conjectures (2)
thf(conj_0,hypothesis,
    is_swap @ x ).

thf(conj_1,conjecture,
    ( ( image_mset_nat_b @ ( x @ fa ) @ ( mset_set_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) )
    = ( image_mset_nat_b @ fa @ ( mset_set_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ) ).

%------------------------------------------------------------------------------