TPTP Problem File: SLH0871^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : FOL_Seq_Calc2/0017_Countermodel/prob_00041_001557__12885122_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1557 ( 741 unt; 274 typ;   0 def)
%            Number of atoms       : 3327 (1555 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 9871 ( 443   ~;  62   |; 329   &;7881   @)
%                                         (   0 <=>;1156  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   6 avg)
%            Number of types       :   25 (  24 usr)
%            Number of type conns  :  642 ( 642   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  253 ( 250 usr;  20 con; 0-3 aty)
%            Number of variables   : 3447 ( 216   ^;2990   !; 241   ?;3447   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 08:44:41.186
%------------------------------------------------------------------------------
% Could-be-implicit typings (24)
thf(ty_n_t__List__Olist_It__List__Olist_It__Set__Oset_It__Nat__Onat_J_J_J,type,
    list_list_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_list_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_set_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__SeCaV__Otm_J_J,type,
    list_list_tm: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__SeCaV__Ofm_J_J,type,
    list_list_fm: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    list_list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__SeCaV__Otm_J_J,type,
    set_list_tm: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__SeCaV__Ofm_J_J,type,
    set_list_fm: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__SeCaV__Otm_J_J,type,
    set_set_tm: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__SeCaV__Ofm_J_J,type,
    set_set_fm: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__SeCaV__Otm_J,type,
    list_tm: $tType ).

thf(ty_n_t__List__Olist_It__SeCaV__Ofm_J,type,
    list_fm: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__SeCaV__Otm_J,type,
    set_tm: $tType ).

thf(ty_n_t__Set__Oset_It__SeCaV__Ofm_J,type,
    set_fm: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__SeCaV__Otm,type,
    tm: $tType ).

thf(ty_n_t__SeCaV__Ofm,type,
    fm: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (250)
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__SeCaV__Ofm_J,type,
    minus_minus_set_fm: set_fm > set_fm > set_fm ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__SeCaV__Otm_J,type,
    minus_minus_set_tm: set_tm > set_tm > set_tm ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Hintikka_Oterms,type,
    terms: set_fm > set_tm ).

thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
    if_list_nat: $o > list_nat > list_nat > list_nat ).

thf(sy_c_If_001t__List__Olist_It__SeCaV__Ofm_J,type,
    if_list_fm: $o > list_fm > list_fm > list_fm ).

thf(sy_c_If_001t__List__Olist_It__SeCaV__Otm_J,type,
    if_list_tm: $o > list_tm > list_tm > list_tm ).

thf(sy_c_If_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    if_list_set_nat: $o > list_set_nat > list_set_nat > list_set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
    sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__SeCaV__Ofm_J,type,
    sup_sup_set_fm: set_fm > set_fm > set_fm ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__SeCaV__Otm_J,type,
    sup_sup_set_tm: set_tm > set_tm > set_tm ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    sup_sup_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_List_OListMem_001t__Nat__Onat,type,
    listMem_nat: nat > list_nat > $o ).

thf(sy_c_List_OListMem_001t__SeCaV__Ofm,type,
    listMem_fm: fm > list_fm > $o ).

thf(sy_c_List_OListMem_001t__SeCaV__Otm,type,
    listMem_tm: tm > list_tm > $o ).

thf(sy_c_List_OListMem_001t__Set__Oset_It__Nat__Onat_J,type,
    listMem_set_nat: set_nat > list_set_nat > $o ).

thf(sy_c_List_Oappend_001t__List__Olist_It__Nat__Onat_J,type,
    append_list_nat: list_list_nat > list_list_nat > list_list_nat ).

thf(sy_c_List_Oappend_001t__List__Olist_It__SeCaV__Otm_J,type,
    append_list_tm: list_list_tm > list_list_tm > list_list_tm ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Oappend_001t__SeCaV__Ofm,type,
    append_fm: list_fm > list_fm > list_fm ).

thf(sy_c_List_Oappend_001t__SeCaV__Otm,type,
    append_tm: list_tm > list_tm > list_tm ).

thf(sy_c_List_Oappend_001t__Set__Oset_It__Nat__Onat_J,type,
    append_set_nat: list_set_nat > list_set_nat > list_set_nat ).

thf(sy_c_List_Obind_001t__Nat__Onat_001t__Nat__Onat,type,
    bind_nat_nat: list_nat > ( nat > list_nat ) > list_nat ).

thf(sy_c_List_Obind_001t__Nat__Onat_001t__SeCaV__Otm,type,
    bind_nat_tm: list_nat > ( nat > list_tm ) > list_tm ).

thf(sy_c_List_Obind_001t__SeCaV__Otm_001t__Nat__Onat,type,
    bind_tm_nat: list_tm > ( tm > list_nat ) > list_nat ).

thf(sy_c_List_Obind_001t__SeCaV__Otm_001t__SeCaV__Otm,type,
    bind_tm_tm: list_tm > ( tm > list_tm ) > list_tm ).

thf(sy_c_List_Obutlast_001t__Nat__Onat,type,
    butlast_nat: list_nat > list_nat ).

thf(sy_c_List_Obutlast_001t__SeCaV__Otm,type,
    butlast_tm: list_tm > list_tm ).

thf(sy_c_List_Ocan__select_001t__Nat__Onat,type,
    can_select_nat: ( nat > $o ) > set_nat > $o ).

thf(sy_c_List_Ocan__select_001t__SeCaV__Ofm,type,
    can_select_fm: ( fm > $o ) > set_fm > $o ).

thf(sy_c_List_Ocan__select_001t__SeCaV__Otm,type,
    can_select_tm: ( tm > $o ) > set_tm > $o ).

thf(sy_c_List_Ocan__select_001t__Set__Oset_It__Nat__Onat_J,type,
    can_select_set_nat: ( set_nat > $o ) > set_set_nat > $o ).

thf(sy_c_List_Oconcat_001t__Nat__Onat,type,
    concat_nat: list_list_nat > list_nat ).

thf(sy_c_List_Oconcat_001t__SeCaV__Otm,type,
    concat_tm: list_list_tm > list_tm ).

thf(sy_c_List_Ocoset_001t__Nat__Onat,type,
    coset_nat: list_nat > set_nat ).

thf(sy_c_List_Ocoset_001t__SeCaV__Ofm,type,
    coset_fm: list_fm > set_fm ).

thf(sy_c_List_Ocoset_001t__SeCaV__Otm,type,
    coset_tm: list_tm > set_tm ).

thf(sy_c_List_Ocoset_001t__Set__Oset_It__Nat__Onat_J,type,
    coset_set_nat: list_set_nat > set_set_nat ).

thf(sy_c_List_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Oinsert_001t__SeCaV__Ofm,type,
    insert_fm: fm > list_fm > list_fm ).

thf(sy_c_List_Oinsert_001t__SeCaV__Otm,type,
    insert_tm: tm > list_tm > list_tm ).

thf(sy_c_List_Oinsert_001t__Set__Oset_It__Nat__Onat_J,type,
    insert_set_nat: set_nat > list_set_nat > list_set_nat ).

thf(sy_c_List_Olast_001t__Nat__Onat,type,
    last_nat: list_nat > nat ).

thf(sy_c_List_Olast_001t__SeCaV__Otm,type,
    last_tm: list_tm > tm ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Nat__Onat_J,type,
    cons_list_nat: list_nat > list_list_nat > list_list_nat ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__SeCaV__Otm_J,type,
    cons_list_tm: list_tm > list_list_tm > list_list_tm ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__SeCaV__Ofm,type,
    cons_fm: fm > list_fm > list_fm ).

thf(sy_c_List_Olist_OCons_001t__SeCaV__Otm,type,
    cons_tm: tm > list_tm > list_tm ).

thf(sy_c_List_Olist_OCons_001t__Set__Oset_It__Nat__Onat_J,type,
    cons_set_nat: set_nat > list_set_nat > list_set_nat ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Nat__Onat_J,type,
    nil_list_nat: list_list_nat ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__SeCaV__Otm_J,type,
    nil_list_tm: list_list_tm ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001t__SeCaV__Ofm,type,
    nil_fm: list_fm ).

thf(sy_c_List_Olist_ONil_001t__SeCaV__Otm,type,
    nil_tm: list_tm ).

thf(sy_c_List_Olist_ONil_001t__Set__Oset_It__Nat__Onat_J,type,
    nil_set_nat: list_set_nat ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_It__Nat__Onat_J_001t__List__Olist_It__Nat__Onat_J,type,
    map_li7225945977422193158st_nat: ( list_nat > list_nat ) > list_list_nat > list_list_nat ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_It__SeCaV__Otm_J_001t__List__Olist_It__SeCaV__Otm_J,type,
    map_list_tm_list_tm: ( list_tm > list_tm ) > list_list_tm > list_list_tm ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
    map_nat_nat: ( nat > nat ) > list_nat > list_nat ).

thf(sy_c_List_Olist_Omap_001t__SeCaV__Otm_001t__List__Olist_It__SeCaV__Otm_J,type,
    map_tm_list_tm: ( tm > list_tm ) > list_tm > list_list_tm ).

thf(sy_c_List_Olist_Omap_001t__SeCaV__Otm_001t__Set__Oset_It__Nat__Onat_J,type,
    map_tm_set_nat: ( tm > set_nat ) > list_tm > list_set_nat ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Nat__Onat_J,type,
    set_list_nat2: list_list_nat > set_list_nat ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__SeCaV__Ofm_J,type,
    set_list_fm2: list_list_fm > set_list_fm ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__SeCaV__Otm_J,type,
    set_list_tm2: list_list_tm > set_list_tm ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_list_set_nat2: list_list_set_nat > set_list_set_nat ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__SeCaV__Ofm,type,
    set_fm2: list_fm > set_fm ).

thf(sy_c_List_Olist_Oset_001t__SeCaV__Otm,type,
    set_tm2: list_tm > set_tm ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist__ex1_001t__Nat__Onat,type,
    list_ex1_nat: ( nat > $o ) > list_nat > $o ).

thf(sy_c_List_Olist__ex1_001t__SeCaV__Ofm,type,
    list_ex1_fm: ( fm > $o ) > list_fm > $o ).

thf(sy_c_List_Olist__ex1_001t__SeCaV__Otm,type,
    list_ex1_tm: ( tm > $o ) > list_tm > $o ).

thf(sy_c_List_Olist__ex1_001t__Set__Oset_It__Nat__Onat_J,type,
    list_ex1_set_nat: ( set_nat > $o ) > list_set_nat > $o ).

thf(sy_c_List_Omap__tailrec__rev_001t__Nat__Onat_001t__Nat__Onat,type,
    map_ta7164188454487880599at_nat: ( nat > nat ) > list_nat > list_nat > list_nat ).

thf(sy_c_List_Omap__tailrec__rev_001t__Nat__Onat_001t__SeCaV__Otm,type,
    map_ta389968950240100318nat_tm: ( nat > tm ) > list_nat > list_tm > list_tm ).

thf(sy_c_List_Omap__tailrec__rev_001t__SeCaV__Otm_001t__Nat__Onat,type,
    map_ta7807370561492357248tm_nat: ( tm > nat ) > list_tm > list_nat > list_nat ).

thf(sy_c_List_Omap__tailrec__rev_001t__SeCaV__Otm_001t__SeCaV__Otm,type,
    map_ta4789309763159252277_tm_tm: ( tm > tm ) > list_tm > list_tm > list_tm ).

thf(sy_c_List_Omaps_001t__Nat__Onat_001t__Nat__Onat,type,
    maps_nat_nat: ( nat > list_nat ) > list_nat > list_nat ).

thf(sy_c_List_Omaps_001t__Nat__Onat_001t__SeCaV__Otm,type,
    maps_nat_tm: ( nat > list_tm ) > list_nat > list_tm ).

thf(sy_c_List_Omaps_001t__SeCaV__Otm_001t__Nat__Onat,type,
    maps_tm_nat: ( tm > list_nat ) > list_tm > list_nat ).

thf(sy_c_List_Omaps_001t__SeCaV__Otm_001t__SeCaV__Otm,type,
    maps_tm_tm: ( tm > list_tm ) > list_tm > list_tm ).

thf(sy_c_List_Omember_001t__Nat__Onat,type,
    member_nat: list_nat > nat > $o ).

thf(sy_c_List_Omember_001t__SeCaV__Ofm,type,
    member_fm: list_fm > fm > $o ).

thf(sy_c_List_Omember_001t__SeCaV__Otm,type,
    member_tm: list_tm > tm > $o ).

thf(sy_c_List_Omember_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: list_set_nat > set_nat > $o ).

thf(sy_c_List_On__lists_001t__Nat__Onat,type,
    n_lists_nat: nat > list_nat > list_list_nat ).

thf(sy_c_List_On__lists_001t__SeCaV__Otm,type,
    n_lists_tm: nat > list_tm > list_list_tm ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onths_001t__Nat__Onat,type,
    nths_nat: list_nat > set_nat > list_nat ).

thf(sy_c_List_Onths_001t__SeCaV__Ofm,type,
    nths_fm: list_fm > set_nat > list_fm ).

thf(sy_c_List_Onths_001t__SeCaV__Otm,type,
    nths_tm: list_tm > set_nat > list_tm ).

thf(sy_c_List_Onths_001t__Set__Oset_It__Nat__Onat_J,type,
    nths_set_nat: list_set_nat > set_nat > list_set_nat ).

thf(sy_c_List_Onull_001t__Nat__Onat,type,
    null_nat: list_nat > $o ).

thf(sy_c_List_Onull_001t__SeCaV__Ofm,type,
    null_fm: list_fm > $o ).

thf(sy_c_List_Onull_001t__SeCaV__Otm,type,
    null_tm: list_tm > $o ).

thf(sy_c_List_Onull_001t__Set__Oset_It__Nat__Onat_J,type,
    null_set_nat: list_set_nat > $o ).

thf(sy_c_List_Oproduct__lists_001t__Nat__Onat,type,
    product_lists_nat: list_list_nat > list_list_nat ).

thf(sy_c_List_Oproduct__lists_001t__SeCaV__Otm,type,
    product_lists_tm: list_list_tm > list_list_tm ).

thf(sy_c_List_Oremdups_001t__Nat__Onat,type,
    remdups_nat: list_nat > list_nat ).

thf(sy_c_List_Oremdups_001t__SeCaV__Otm,type,
    remdups_tm: list_tm > list_tm ).

thf(sy_c_List_OremoveAll_001t__Nat__Onat,type,
    removeAll_nat: nat > list_nat > list_nat ).

thf(sy_c_List_OremoveAll_001t__SeCaV__Ofm,type,
    removeAll_fm: fm > list_fm > list_fm ).

thf(sy_c_List_OremoveAll_001t__SeCaV__Otm,type,
    removeAll_tm: tm > list_tm > list_tm ).

thf(sy_c_List_OremoveAll_001t__Set__Oset_It__Nat__Onat_J,type,
    removeAll_set_nat: set_nat > list_set_nat > list_set_nat ).

thf(sy_c_List_Oreplicate_001t__List__Olist_It__Nat__Onat_J,type,
    replicate_list_nat: nat > list_nat > list_list_nat ).

thf(sy_c_List_Oreplicate_001t__List__Olist_It__SeCaV__Otm_J,type,
    replicate_list_tm: nat > list_tm > list_list_tm ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__SeCaV__Ofm,type,
    replicate_fm: nat > fm > list_fm ).

thf(sy_c_List_Oreplicate_001t__SeCaV__Otm,type,
    replicate_tm: nat > tm > list_tm ).

thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
    replicate_set_nat: nat > set_nat > list_set_nat ).

thf(sy_c_List_Orotate1_001t__Nat__Onat,type,
    rotate1_nat: list_nat > list_nat ).

thf(sy_c_List_Orotate1_001t__SeCaV__Ofm,type,
    rotate1_fm: list_fm > list_fm ).

thf(sy_c_List_Orotate1_001t__SeCaV__Otm,type,
    rotate1_tm: list_tm > list_tm ).

thf(sy_c_List_Orotate1_001t__Set__Oset_It__Nat__Onat_J,type,
    rotate1_set_nat: list_set_nat > list_set_nat ).

thf(sy_c_List_Osubseqs_001t__Nat__Onat,type,
    subseqs_nat: list_nat > list_list_nat ).

thf(sy_c_List_Osubseqs_001t__SeCaV__Ofm,type,
    subseqs_fm: list_fm > list_list_fm ).

thf(sy_c_List_Osubseqs_001t__SeCaV__Otm,type,
    subseqs_tm: list_tm > list_list_tm ).

thf(sy_c_List_Osubseqs_001t__Set__Oset_It__Nat__Onat_J,type,
    subseqs_set_nat: list_set_nat > list_list_set_nat ).

thf(sy_c_List_Ounion_001t__Nat__Onat,type,
    union_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Ounion_001t__SeCaV__Ofm,type,
    union_fm: list_fm > list_fm > list_fm ).

thf(sy_c_List_Ounion_001t__SeCaV__Otm,type,
    union_tm: list_tm > list_tm > list_tm ).

thf(sy_c_List_Ounion_001t__Set__Oset_It__Nat__Onat_J,type,
    union_set_nat: list_set_nat > list_set_nat > list_set_nat ).

thf(sy_c_List_Oupt,type,
    upt: nat > nat > list_nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__SeCaV__Otm,type,
    size_size_tm: tm > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__SeCaV__Ofm_M_Eo_J,type,
    bot_bot_fm_o: fm > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__SeCaV__Otm_M_Eo_J,type,
    bot_bot_tm_o: tm > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    bot_bot_set_nat_o: set_nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
    bot_bo4199563552545308370d_enat: extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__SeCaV__Ofm_J,type,
    bot_bot_set_fm: set_fm ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__SeCaV__Otm_J,type,
    bot_bot_set_tm: set_tm ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Extended____Nat__Oenat_J,type,
    ord_le2787558655864224659d_enat: ( $o > extended_enat ) > ( $o > extended_enat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Nat__Onat_J,type,
    ord_less_eq_o_nat: ( $o > nat ) > ( $o > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le7022414076629706543et_nat: ( $o > set_nat ) > ( $o > set_nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Set__Oset_It__SeCaV__Otm_J_J,type,
    ord_less_eq_o_set_tm: ( $o > set_tm ) > ( $o > set_tm ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__SeCaV__Ofm_J,type,
    ord_less_eq_set_fm: set_fm > set_fm > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__SeCaV__Otm_J,type,
    ord_less_eq_set_tm: set_tm > set_tm > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Extended____Nat__Oenat,type,
    order_2428742583041560895d_enat: ( extended_enat > $o ) > extended_enat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Set__Oset_It__Nat__Onat_J,type,
    order_5724808138429204845et_nat: ( set_nat > $o ) > set_nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Set__Oset_It__SeCaV__Otm_J,type,
    order_4248741476211579294set_tm: ( set_tm > $o ) > set_tm ).

thf(sy_c_ProverLemmas_Opreds,type,
    preds: fm > set_fm ).

thf(sy_c_Prover_OlistFunTm,type,
    listFunTm: tm > list_nat ).

thf(sy_c_Prover_OlistFunTms,type,
    listFunTms: list_tm > list_nat ).

thf(sy_c_Prover_OsubtermFm,type,
    subtermFm: fm > list_tm ).

thf(sy_c_Prover_OsubtermTm,type,
    subtermTm: tm > list_tm ).

thf(sy_c_SeCaV_Oext_001t__Nat__Onat,type,
    ext_nat: list_nat > list_nat > $o ).

thf(sy_c_SeCaV_Oext_001t__SeCaV__Ofm,type,
    ext_fm: list_fm > list_fm > $o ).

thf(sy_c_SeCaV_Oext_001t__SeCaV__Otm,type,
    ext_tm: list_tm > list_tm > $o ).

thf(sy_c_SeCaV_Oext_001t__Set__Oset_It__Nat__Onat_J,type,
    ext_set_nat: list_set_nat > list_set_nat > $o ).

thf(sy_c_SeCaV_Ofm_OPre,type,
    pre: nat > list_tm > fm ).

thf(sy_c_SeCaV_Oinc__list,type,
    inc_list: list_tm > list_tm ).

thf(sy_c_SeCaV_Oinc__term,type,
    inc_term: tm > tm ).

thf(sy_c_SeCaV_Oliftt,type,
    liftt: tm > tm ).

thf(sy_c_SeCaV_Oliftts,type,
    liftts: list_tm > list_tm ).

thf(sy_c_SeCaV_Omember_001t__Nat__Onat,type,
    member_nat2: nat > list_nat > $o ).

thf(sy_c_SeCaV_Omember_001t__SeCaV__Ofm,type,
    member_fm2: fm > list_fm > $o ).

thf(sy_c_SeCaV_Omember_001t__SeCaV__Otm,type,
    member_tm2: tm > list_tm > $o ).

thf(sy_c_SeCaV_Omember_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat2: set_nat > list_set_nat > $o ).

thf(sy_c_SeCaV_Onew,type,
    new: nat > fm > $o ).

thf(sy_c_SeCaV_Onew__list,type,
    new_list: nat > list_tm > $o ).

thf(sy_c_SeCaV_Onew__term,type,
    new_term: nat > tm > $o ).

thf(sy_c_SeCaV_Oparams,type,
    params: fm > set_nat ).

thf(sy_c_SeCaV_Oparams_H,type,
    params2: fm > set_nat ).

thf(sy_c_SeCaV_Oparams_H_H,type,
    params3: fm > set_nat ).

thf(sy_c_SeCaV_Oparamst,type,
    paramst: tm > set_nat ).

thf(sy_c_SeCaV_Oparamst_H,type,
    paramst2: tm > set_nat ).

thf(sy_c_SeCaV_Oparamst_H_H,type,
    paramst3: tm > set_nat ).

thf(sy_c_SeCaV_Oparamst_H_H__rel,type,
    paramst_rel: tm > tm > $o ).

thf(sy_c_SeCaV_Oparamsts,type,
    paramsts: list_tm > set_nat ).

thf(sy_c_SeCaV_Osub,type,
    sub: nat > tm > fm > fm ).

thf(sy_c_SeCaV_Osub__list,type,
    sub_list: nat > tm > list_tm > list_tm ).

thf(sy_c_SeCaV_Osub__term,type,
    sub_term: nat > tm > tm > tm ).

thf(sy_c_SeCaV_Osubstt,type,
    substt: tm > tm > nat > tm ).

thf(sy_c_SeCaV_Osubstts,type,
    substts: list_tm > tm > nat > list_tm ).

thf(sy_c_SeCaV_Otm_OFun,type,
    fun: nat > list_tm > tm ).

thf(sy_c_SeCaV_Otm_OVar,type,
    var: nat > tm ).

thf(sy_c_SeCaV_Otm_Osize__tm,type,
    size_tm: tm > nat ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__SeCaV__Ofm,type,
    collect_fm: ( fm > $o ) > set_fm ).

thf(sy_c_Set_OCollect_001t__SeCaV__Otm,type,
    collect_tm: ( tm > $o ) > set_tm ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_Oimage_001t__List__Olist_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_1775855109352712557et_nat: ( list_nat > set_nat ) > set_list_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__List__Olist_It__SeCaV__Ofm_J_001t__Set__Oset_It__SeCaV__Ofm_J,type,
    image_list_fm_set_fm: ( list_fm > set_fm ) > set_list_fm > set_set_fm ).

thf(sy_c_Set_Oimage_001t__List__Olist_It__SeCaV__Otm_J_001t__Set__Oset_It__SeCaV__Otm_J,type,
    image_list_tm_set_tm: ( list_tm > set_tm ) > set_list_tm > set_set_tm ).

thf(sy_c_Set_Oimage_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    image_8726355809080528601et_nat: ( list_set_nat > set_set_nat ) > set_list_set_nat > set_set_set_nat ).

thf(sy_c_Set_Oimage_001t__SeCaV__Otm_001t__Set__Oset_It__Nat__Onat_J,type,
    image_tm_set_nat: ( tm > set_nat ) > set_tm > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    image_set_nat_nat: ( set_nat > nat ) > set_set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__SeCaV__Ofm,type,
    image_set_nat_fm: ( set_nat > fm ) > set_set_nat > set_fm ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7916887816326733075et_nat: ( set_nat > set_nat ) > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat2: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__SeCaV__Ofm,type,
    insert_fm2: fm > set_fm > set_fm ).

thf(sy_c_Set_Oinsert_001t__SeCaV__Otm,type,
    insert_tm2: tm > set_tm > set_tm ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Nat__Onat_J,type,
    insert_set_nat2: set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Set_Ois__empty_001t__Nat__Onat,type,
    is_empty_nat: set_nat > $o ).

thf(sy_c_Set_Ois__empty_001t__SeCaV__Ofm,type,
    is_empty_fm: set_fm > $o ).

thf(sy_c_Set_Ois__empty_001t__SeCaV__Otm,type,
    is_empty_tm: set_tm > $o ).

thf(sy_c_Set_Ois__empty_001t__Set__Oset_It__Nat__Onat_J,type,
    is_empty_set_nat: set_set_nat > $o ).

thf(sy_c_Set_Ois__singleton_001t__Nat__Onat,type,
    is_singleton_nat: set_nat > $o ).

thf(sy_c_Set_Ois__singleton_001t__SeCaV__Ofm,type,
    is_singleton_fm: set_fm > $o ).

thf(sy_c_Set_Ois__singleton_001t__SeCaV__Otm,type,
    is_singleton_tm: set_tm > $o ).

thf(sy_c_Set_Ois__singleton_001t__Set__Oset_It__Nat__Onat_J,type,
    is_singleton_set_nat: set_set_nat > $o ).

thf(sy_c_Set_Oremove_001t__Nat__Onat,type,
    remove_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oremove_001t__SeCaV__Ofm,type,
    remove_fm: fm > set_fm > set_fm ).

thf(sy_c_Set_Oremove_001t__SeCaV__Otm,type,
    remove_tm: tm > set_tm > set_tm ).

thf(sy_c_Set_Oremove_001t__Set__Oset_It__Nat__Onat_J,type,
    remove_set_nat: set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Set_Othe__elem_001t__Nat__Onat,type,
    the_elem_nat: set_nat > nat ).

thf(sy_c_Set_Othe__elem_001t__SeCaV__Ofm,type,
    the_elem_fm: set_fm > fm ).

thf(sy_c_Set_Othe__elem_001t__SeCaV__Otm,type,
    the_elem_tm: set_tm > tm ).

thf(sy_c_Set_Othe__elem_001t__Set__Oset_It__Nat__Onat_J,type,
    the_elem_set_nat: set_set_nat > set_nat ).

thf(sy_c_Sublist_Oprefixes_001t__Nat__Onat,type,
    prefixes_nat: list_nat > list_list_nat ).

thf(sy_c_Sublist_Oprefixes_001t__SeCaV__Otm,type,
    prefixes_tm: list_tm > list_list_tm ).

thf(sy_c_Sublist_Osublists_001t__Nat__Onat,type,
    sublists_nat: list_nat > list_list_nat ).

thf(sy_c_Sublist_Osublists_001t__SeCaV__Otm,type,
    sublists_tm: list_tm > list_list_tm ).

thf(sy_c_Sublist_Osuffixes_001t__Nat__Onat,type,
    suffixes_nat: list_nat > list_list_nat ).

thf(sy_c_Sublist_Osuffixes_001t__SeCaV__Otm,type,
    suffixes_tm: list_tm > list_list_tm ).

thf(sy_c_Wellfounded_Oaccp_001t__SeCaV__Otm,type,
    accp_tm: ( tm > tm > $o ) > tm > $o ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__List__Olist_It__SeCaV__Otm_J,type,
    member_list_tm: list_tm > set_list_tm > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat3: nat > set_nat > $o ).

thf(sy_c_member_001t__SeCaV__Ofm,type,
    member_fm3: fm > set_fm > $o ).

thf(sy_c_member_001t__SeCaV__Otm,type,
    member_tm3: tm > set_tm > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat3: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__SeCaV__Ofm_J,type,
    member_set_fm: set_fm > set_set_fm > $o ).

thf(sy_c_member_001t__Set__Oset_It__SeCaV__Otm_J,type,
    member_set_tm: set_tm > set_set_tm > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    member_set_set_nat: set_set_nat > set_set_set_nat > $o ).

thf(sy_v_S,type,
    s: set_fm ).

thf(sy_v_n____,type,
    n: nat ).

thf(sy_v_ts____,type,
    ts: list_tm ).

% Relevant facts (1273)
thf(fact_0_Fun_Oprems,axiom,
    member_tm3 @ ( fun @ n @ ts ) @ ( terms @ s ) ).

% Fun.prems
thf(fact_1_Fun_Ohyps,axiom,
    ! [X2aa: tm] :
      ( ( member_tm3 @ X2aa @ ( set_tm2 @ ts ) )
     => ( ( member_tm3 @ X2aa @ ( terms @ s ) )
       => ( ord_less_eq_set_tm @ ( set_tm2 @ ( subtermTm @ X2aa ) ) @ ( terms @ s ) ) ) ) ).

% Fun.hyps
thf(fact_2_member,axiom,
    ( member_fm2
    = ( ^ [P: fm,Z: list_fm] : ( member_fm3 @ P @ ( set_fm2 @ Z ) ) ) ) ).

% member
thf(fact_3_member,axiom,
    ( member_tm2
    = ( ^ [P: tm,Z: list_tm] : ( member_tm3 @ P @ ( set_tm2 @ Z ) ) ) ) ).

% member
thf(fact_4_member,axiom,
    ( member_nat2
    = ( ^ [P: nat,Z: list_nat] : ( member_nat3 @ P @ ( set_nat2 @ Z ) ) ) ) ).

% member
thf(fact_5_member,axiom,
    ( member_set_nat2
    = ( ^ [P: set_nat,Z: list_set_nat] : ( member_set_nat3 @ P @ ( set_set_nat2 @ Z ) ) ) ) ).

% member
thf(fact_6_terms__ne,axiom,
    ! [S: set_fm] :
      ( ( terms @ S )
     != bot_bot_set_tm ) ).

% terms_ne
thf(fact_7_in__set__member,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
      = ( member_fm @ Xs @ X ) ) ).

% in_set_member
thf(fact_8_in__set__member,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
      = ( member_tm @ Xs @ X ) ) ).

% in_set_member
thf(fact_9_in__set__member,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
      = ( member_nat @ Xs @ X ) ) ).

% in_set_member
thf(fact_10_in__set__member,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
      = ( member_set_nat @ Xs @ X ) ) ).

% in_set_member
thf(fact_11_in__set__insert,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ( ( insert_fm @ X @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_12_in__set__insert,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ( ( insert_tm @ X @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_13_in__set__insert,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ( ( insert_nat @ X @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_14_in__set__insert,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ( ( insert_set_nat @ X @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_15_list__ex1__iff,axiom,
    ( list_ex1_fm
    = ( ^ [P2: fm > $o,Xs2: list_fm] :
        ? [X2: fm] :
          ( ( member_fm3 @ X2 @ ( set_fm2 @ Xs2 ) )
          & ( P2 @ X2 )
          & ! [Y: fm] :
              ( ( ( member_fm3 @ Y @ ( set_fm2 @ Xs2 ) )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% list_ex1_iff
thf(fact_16_list__ex1__iff,axiom,
    ( list_ex1_tm
    = ( ^ [P2: tm > $o,Xs2: list_tm] :
        ? [X2: tm] :
          ( ( member_tm3 @ X2 @ ( set_tm2 @ Xs2 ) )
          & ( P2 @ X2 )
          & ! [Y: tm] :
              ( ( ( member_tm3 @ Y @ ( set_tm2 @ Xs2 ) )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% list_ex1_iff
thf(fact_17_list__ex1__iff,axiom,
    ( list_ex1_nat
    = ( ^ [P2: nat > $o,Xs2: list_nat] :
        ? [X2: nat] :
          ( ( member_nat3 @ X2 @ ( set_nat2 @ Xs2 ) )
          & ( P2 @ X2 )
          & ! [Y: nat] :
              ( ( ( member_nat3 @ Y @ ( set_nat2 @ Xs2 ) )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% list_ex1_iff
thf(fact_18_list__ex1__iff,axiom,
    ( list_ex1_set_nat
    = ( ^ [P2: set_nat > $o,Xs2: list_set_nat] :
        ? [X2: set_nat] :
          ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Xs2 ) )
          & ( P2 @ X2 )
          & ! [Y: set_nat] :
              ( ( ( member_set_nat3 @ Y @ ( set_set_nat2 @ Xs2 ) )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% list_ex1_iff
thf(fact_19_subtermTm__refl,axiom,
    ! [T: tm] : ( member_tm3 @ T @ ( set_tm2 @ ( subtermTm @ T ) ) ) ).

% subtermTm_refl
thf(fact_20_ListMem__iff,axiom,
    ( listMem_tm
    = ( ^ [X2: tm,Xs2: list_tm] : ( member_tm3 @ X2 @ ( set_tm2 @ Xs2 ) ) ) ) ).

% ListMem_iff
thf(fact_21_ListMem__iff,axiom,
    ( listMem_nat
    = ( ^ [X2: nat,Xs2: list_nat] : ( member_nat3 @ X2 @ ( set_nat2 @ Xs2 ) ) ) ) ).

% ListMem_iff
thf(fact_22_ListMem__iff,axiom,
    ( listMem_set_nat
    = ( ^ [X2: set_nat,Xs2: list_set_nat] : ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Xs2 ) ) ) ) ).

% ListMem_iff
thf(fact_23_ListMem__iff,axiom,
    ( listMem_fm
    = ( ^ [X2: fm,Xs2: list_fm] : ( member_fm3 @ X2 @ ( set_fm2 @ Xs2 ) ) ) ) ).

% ListMem_iff
thf(fact_24_set__rotate1,axiom,
    ! [Xs: list_tm] :
      ( ( set_tm2 @ ( rotate1_tm @ Xs ) )
      = ( set_tm2 @ Xs ) ) ).

% set_rotate1
thf(fact_25_set__rotate1,axiom,
    ! [Xs: list_nat] :
      ( ( set_nat2 @ ( rotate1_nat @ Xs ) )
      = ( set_nat2 @ Xs ) ) ).

% set_rotate1
thf(fact_26_set__rotate1,axiom,
    ! [Xs: list_set_nat] :
      ( ( set_set_nat2 @ ( rotate1_set_nat @ Xs ) )
      = ( set_set_nat2 @ Xs ) ) ).

% set_rotate1
thf(fact_27_set__rotate1,axiom,
    ! [Xs: list_fm] :
      ( ( set_fm2 @ ( rotate1_fm @ Xs ) )
      = ( set_fm2 @ Xs ) ) ).

% set_rotate1
thf(fact_28_removeAll__id,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ~ ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ( ( removeAll_tm @ X @ Xs )
        = Xs ) ) ).

% removeAll_id
thf(fact_29_removeAll__id,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ~ ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ( ( removeAll_nat @ X @ Xs )
        = Xs ) ) ).

% removeAll_id
thf(fact_30_removeAll__id,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ( ( removeAll_set_nat @ X @ Xs )
        = Xs ) ) ).

% removeAll_id
thf(fact_31_removeAll__id,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ~ ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ( ( removeAll_fm @ X @ Xs )
        = Xs ) ) ).

% removeAll_id
thf(fact_32_tm_Oinject_I1_J,axiom,
    ! [X11: nat,X12: list_tm,Y11: nat,Y12: list_tm] :
      ( ( ( fun @ X11 @ X12 )
        = ( fun @ Y11 @ Y12 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 ) ) ) ).

% tm.inject(1)
thf(fact_33_subterm__Fun__refl,axiom,
    ! [Ts: list_tm,N: nat] : ( ord_less_eq_set_tm @ ( set_tm2 @ Ts ) @ ( set_tm2 @ ( subtermTm @ ( fun @ N @ Ts ) ) ) ) ).

% subterm_Fun_refl
thf(fact_34_subtermTm__le,axiom,
    ! [T: tm,S2: tm] :
      ( ( member_tm3 @ T @ ( set_tm2 @ ( subtermTm @ S2 ) ) )
     => ( ord_less_eq_set_tm @ ( set_tm2 @ ( subtermTm @ T ) ) @ ( set_tm2 @ ( subtermTm @ S2 ) ) ) ) ).

% subtermTm_le
thf(fact_35_subset__code_I1_J,axiom,
    ! [Xs: list_set_nat,B: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ B )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Xs ) )
           => ( member_set_nat3 @ X2 @ B ) ) ) ) ).

% subset_code(1)
thf(fact_36_subset__code_I1_J,axiom,
    ! [Xs: list_fm,B: set_fm] :
      ( ( ord_less_eq_set_fm @ ( set_fm2 @ Xs ) @ B )
      = ( ! [X2: fm] :
            ( ( member_fm3 @ X2 @ ( set_fm2 @ Xs ) )
           => ( member_fm3 @ X2 @ B ) ) ) ) ).

% subset_code(1)
thf(fact_37_subset__code_I1_J,axiom,
    ! [Xs: list_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ ( set_tm2 @ Xs ) @ B )
      = ( ! [X2: tm] :
            ( ( member_tm3 @ X2 @ ( set_tm2 @ Xs ) )
           => ( member_tm3 @ X2 @ B ) ) ) ) ).

% subset_code(1)
thf(fact_38_subset__code_I1_J,axiom,
    ! [Xs: list_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B )
      = ( ! [X2: nat] :
            ( ( member_nat3 @ X2 @ ( set_nat2 @ Xs ) )
           => ( member_nat3 @ X2 @ B ) ) ) ) ).

% subset_code(1)
thf(fact_39_subset__empty,axiom,
    ! [A: set_fm] :
      ( ( ord_less_eq_set_fm @ A @ bot_bot_set_fm )
      = ( A = bot_bot_set_fm ) ) ).

% subset_empty
thf(fact_40_subset__empty,axiom,
    ! [A: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ bot_bot_set_tm )
      = ( A = bot_bot_set_tm ) ) ).

% subset_empty
thf(fact_41_subset__empty,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_42_empty__subsetI,axiom,
    ! [A: set_fm] : ( ord_less_eq_set_fm @ bot_bot_set_fm @ A ) ).

% empty_subsetI
thf(fact_43_empty__subsetI,axiom,
    ! [A: set_tm] : ( ord_less_eq_set_tm @ bot_bot_set_tm @ A ) ).

% empty_subsetI
thf(fact_44_empty__subsetI,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% empty_subsetI
thf(fact_45_can__select__set__list__ex1,axiom,
    ! [P3: set_nat > $o,A: list_set_nat] :
      ( ( can_select_set_nat @ P3 @ ( set_set_nat2 @ A ) )
      = ( list_ex1_set_nat @ P3 @ A ) ) ).

% can_select_set_list_ex1
thf(fact_46_can__select__set__list__ex1,axiom,
    ! [P3: nat > $o,A: list_nat] :
      ( ( can_select_nat @ P3 @ ( set_nat2 @ A ) )
      = ( list_ex1_nat @ P3 @ A ) ) ).

% can_select_set_list_ex1
thf(fact_47_can__select__set__list__ex1,axiom,
    ! [P3: tm > $o,A: list_tm] :
      ( ( can_select_tm @ P3 @ ( set_tm2 @ A ) )
      = ( list_ex1_tm @ P3 @ A ) ) ).

% can_select_set_list_ex1
thf(fact_48_can__select__set__list__ex1,axiom,
    ! [P3: fm > $o,A: list_fm] :
      ( ( can_select_fm @ P3 @ ( set_fm2 @ A ) )
      = ( list_ex1_fm @ P3 @ A ) ) ).

% can_select_set_list_ex1
thf(fact_49_SeCaV_Oext,axiom,
    ( ext_set_nat
    = ( ^ [Y: list_set_nat,Z: list_set_nat] : ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Z ) @ ( set_set_nat2 @ Y ) ) ) ) ).

% SeCaV.ext
thf(fact_50_SeCaV_Oext,axiom,
    ( ext_fm
    = ( ^ [Y: list_fm,Z: list_fm] : ( ord_less_eq_set_fm @ ( set_fm2 @ Z ) @ ( set_fm2 @ Y ) ) ) ) ).

% SeCaV.ext
thf(fact_51_SeCaV_Oext,axiom,
    ( ext_tm
    = ( ^ [Y: list_tm,Z: list_tm] : ( ord_less_eq_set_tm @ ( set_tm2 @ Z ) @ ( set_tm2 @ Y ) ) ) ) ).

% SeCaV.ext
thf(fact_52_SeCaV_Oext,axiom,
    ( ext_nat
    = ( ^ [Y: list_nat,Z: list_nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ Z ) @ ( set_nat2 @ Y ) ) ) ) ).

% SeCaV.ext
thf(fact_53_subsetI,axiom,
    ! [A: set_fm,B: set_fm] :
      ( ! [X3: fm] :
          ( ( member_fm3 @ X3 @ A )
         => ( member_fm3 @ X3 @ B ) )
     => ( ord_less_eq_set_fm @ A @ B ) ) ).

% subsetI
thf(fact_54_subsetI,axiom,
    ! [A: set_set_nat,B: set_set_nat] :
      ( ! [X3: set_nat] :
          ( ( member_set_nat3 @ X3 @ A )
         => ( member_set_nat3 @ X3 @ B ) )
     => ( ord_le6893508408891458716et_nat @ A @ B ) ) ).

% subsetI
thf(fact_55_subsetI,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ! [X3: tm] :
          ( ( member_tm3 @ X3 @ A )
         => ( member_tm3 @ X3 @ B ) )
     => ( ord_less_eq_set_tm @ A @ B ) ) ).

% subsetI
thf(fact_56_subsetI,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat3 @ X3 @ A )
         => ( member_nat3 @ X3 @ B ) )
     => ( ord_less_eq_set_nat @ A @ B ) ) ).

% subsetI
thf(fact_57_subset__antisym,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( ord_less_eq_set_tm @ B @ A )
       => ( A = B ) ) ) ).

% subset_antisym
thf(fact_58_subset__antisym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ A )
       => ( A = B ) ) ) ).

% subset_antisym
thf(fact_59_empty__iff,axiom,
    ! [C: set_nat] :
      ~ ( member_set_nat3 @ C @ bot_bot_set_set_nat ) ).

% empty_iff
thf(fact_60_empty__iff,axiom,
    ! [C: tm] :
      ~ ( member_tm3 @ C @ bot_bot_set_tm ) ).

% empty_iff
thf(fact_61_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat3 @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_62_empty__iff,axiom,
    ! [C: fm] :
      ~ ( member_fm3 @ C @ bot_bot_set_fm ) ).

% empty_iff
thf(fact_63_all__not__in__conv,axiom,
    ! [A: set_set_nat] :
      ( ( ! [X2: set_nat] :
            ~ ( member_set_nat3 @ X2 @ A ) )
      = ( A = bot_bot_set_set_nat ) ) ).

% all_not_in_conv
thf(fact_64_all__not__in__conv,axiom,
    ! [A: set_tm] :
      ( ( ! [X2: tm] :
            ~ ( member_tm3 @ X2 @ A ) )
      = ( A = bot_bot_set_tm ) ) ).

% all_not_in_conv
thf(fact_65_all__not__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ! [X2: nat] :
            ~ ( member_nat3 @ X2 @ A ) )
      = ( A = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_66_all__not__in__conv,axiom,
    ! [A: set_fm] :
      ( ( ! [X2: fm] :
            ~ ( member_fm3 @ X2 @ A ) )
      = ( A = bot_bot_set_fm ) ) ).

% all_not_in_conv
thf(fact_67_Collect__empty__eq,axiom,
    ! [P3: tm > $o] :
      ( ( ( collect_tm @ P3 )
        = bot_bot_set_tm )
      = ( ! [X2: tm] :
            ~ ( P3 @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_68_Collect__empty__eq,axiom,
    ! [P3: nat > $o] :
      ( ( ( collect_nat @ P3 )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ~ ( P3 @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_69_Collect__empty__eq,axiom,
    ! [P3: fm > $o] :
      ( ( ( collect_fm @ P3 )
        = bot_bot_set_fm )
      = ( ! [X2: fm] :
            ~ ( P3 @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_70_empty__Collect__eq,axiom,
    ! [P3: tm > $o] :
      ( ( bot_bot_set_tm
        = ( collect_tm @ P3 ) )
      = ( ! [X2: tm] :
            ~ ( P3 @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_71_empty__Collect__eq,axiom,
    ! [P3: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P3 ) )
      = ( ! [X2: nat] :
            ~ ( P3 @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_72_empty__Collect__eq,axiom,
    ! [P3: fm > $o] :
      ( ( bot_bot_set_fm
        = ( collect_fm @ P3 ) )
      = ( ! [X2: fm] :
            ~ ( P3 @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_73_order__refl,axiom,
    ! [X: set_tm] : ( ord_less_eq_set_tm @ X @ X ) ).

% order_refl
thf(fact_74_order__refl,axiom,
    ! [X: set_nat] : ( ord_less_eq_set_nat @ X @ X ) ).

% order_refl
thf(fact_75_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_76_order__refl,axiom,
    ! [X: extended_enat] : ( ord_le2932123472753598470d_enat @ X @ X ) ).

% order_refl
thf(fact_77_dual__order_Orefl,axiom,
    ! [A2: set_tm] : ( ord_less_eq_set_tm @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_78_dual__order_Orefl,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_79_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_80_dual__order_Orefl,axiom,
    ! [A2: extended_enat] : ( ord_le2932123472753598470d_enat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_81_bot__set__def,axiom,
    ( bot_bot_set_tm
    = ( collect_tm @ bot_bot_tm_o ) ) ).

% bot_set_def
thf(fact_82_bot__set__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat @ bot_bot_nat_o ) ) ).

% bot_set_def
thf(fact_83_bot__set__def,axiom,
    ( bot_bot_set_fm
    = ( collect_fm @ bot_bot_fm_o ) ) ).

% bot_set_def
thf(fact_84_can__select__def,axiom,
    ( can_select_tm
    = ( ^ [P2: tm > $o,A3: set_tm] :
        ? [X2: tm] :
          ( ( member_tm3 @ X2 @ A3 )
          & ( P2 @ X2 )
          & ! [Y: tm] :
              ( ( ( member_tm3 @ Y @ A3 )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% can_select_def
thf(fact_85_can__select__def,axiom,
    ( can_select_nat
    = ( ^ [P2: nat > $o,A3: set_nat] :
        ? [X2: nat] :
          ( ( member_nat3 @ X2 @ A3 )
          & ( P2 @ X2 )
          & ! [Y: nat] :
              ( ( ( member_nat3 @ Y @ A3 )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% can_select_def
thf(fact_86_can__select__def,axiom,
    ( can_select_fm
    = ( ^ [P2: fm > $o,A3: set_fm] :
        ? [X2: fm] :
          ( ( member_fm3 @ X2 @ A3 )
          & ( P2 @ X2 )
          & ! [Y: fm] :
              ( ( ( member_fm3 @ Y @ A3 )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% can_select_def
thf(fact_87_can__select__def,axiom,
    ( can_select_set_nat
    = ( ^ [P2: set_nat > $o,A3: set_set_nat] :
        ? [X2: set_nat] :
          ( ( member_set_nat3 @ X2 @ A3 )
          & ( P2 @ X2 )
          & ! [Y: set_nat] :
              ( ( ( member_set_nat3 @ Y @ A3 )
                & ( P2 @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% can_select_def
thf(fact_88_order__antisym__conv,axiom,
    ! [Y2: set_tm,X: set_tm] :
      ( ( ord_less_eq_set_tm @ Y2 @ X )
     => ( ( ord_less_eq_set_tm @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_89_order__antisym__conv,axiom,
    ! [Y2: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ X )
     => ( ( ord_less_eq_set_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_90_order__antisym__conv,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_91_order__antisym__conv,axiom,
    ! [Y2: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
     => ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_92_linorder__le__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_93_linorder__le__cases,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ~ ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ord_le2932123472753598470d_enat @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_94_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_95_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_96_ord__le__eq__subst,axiom,
    ! [A2: extended_enat,B2: extended_enat,F: extended_enat > nat,C: nat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_97_ord__le__eq__subst,axiom,
    ! [A2: extended_enat,B2: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_98_ord__le__eq__subst,axiom,
    ! [A2: set_tm,B2: set_tm,F: set_tm > nat,C: nat] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_99_ord__le__eq__subst,axiom,
    ! [A2: set_tm,B2: set_tm,F: set_tm > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_100_ord__le__eq__subst,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_101_ord__le__eq__subst,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_102_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > set_tm,C: set_tm] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_tm @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_tm @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_103_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_104_ord__eq__le__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_105_ord__eq__le__subst,axiom,
    ! [A2: extended_enat,F: nat > extended_enat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_106_ord__eq__le__subst,axiom,
    ! [A2: nat,F: extended_enat > nat,B2: extended_enat,C: extended_enat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_107_ord__eq__le__subst,axiom,
    ! [A2: extended_enat,F: extended_enat > extended_enat,B2: extended_enat,C: extended_enat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_108_ord__eq__le__subst,axiom,
    ! [A2: nat,F: set_tm > nat,B2: set_tm,C: set_tm] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_tm @ B2 @ C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_109_ord__eq__le__subst,axiom,
    ! [A2: extended_enat,F: set_tm > extended_enat,B2: set_tm,C: set_tm] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_tm @ B2 @ C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_110_ord__eq__le__subst,axiom,
    ! [A2: nat,F: set_nat > nat,B2: set_nat,C: set_nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_111_ord__eq__le__subst,axiom,
    ! [A2: extended_enat,F: set_nat > extended_enat,B2: set_nat,C: set_nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_112_ord__eq__le__subst,axiom,
    ! [A2: set_tm,F: nat > set_tm,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_tm @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_tm @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_113_ord__eq__le__subst,axiom,
    ! [A2: set_nat,F: nat > set_nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_114_linorder__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_115_linorder__linear,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
      | ( ord_le2932123472753598470d_enat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_116_order__eq__refl,axiom,
    ! [X: set_tm,Y2: set_tm] :
      ( ( X = Y2 )
     => ( ord_less_eq_set_tm @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_117_order__eq__refl,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_set_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_118_order__eq__refl,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_119_order__eq__refl,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( X = Y2 )
     => ( ord_le2932123472753598470d_enat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_120_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_121_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_le2932123472753598470d_enat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_122_order__subst2,axiom,
    ! [A2: extended_enat,B2: extended_enat,F: extended_enat > nat,C: nat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_123_order__subst2,axiom,
    ! [A2: extended_enat,B2: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( ord_le2932123472753598470d_enat @ ( F @ B2 ) @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_124_order__subst2,axiom,
    ! [A2: set_tm,B2: set_tm,F: set_tm > nat,C: nat] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_125_order__subst2,axiom,
    ! [A2: set_tm,B2: set_tm,F: set_tm > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( ord_le2932123472753598470d_enat @ ( F @ B2 ) @ C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_126_order__subst2,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_127_order__subst2,axiom,
    ! [A2: set_nat,B2: set_nat,F: set_nat > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_le2932123472753598470d_enat @ ( F @ B2 ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_128_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > set_tm,C: set_tm] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_tm @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_tm @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_tm @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_129_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_130_order__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_131_order__subst1,axiom,
    ! [A2: nat,F: extended_enat > nat,B2: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_132_order__subst1,axiom,
    ! [A2: extended_enat,F: nat > extended_enat,B2: nat,C: nat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_133_order__subst1,axiom,
    ! [A2: extended_enat,F: extended_enat > extended_enat,B2: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_le2932123472753598470d_enat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2932123472753598470d_enat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_134_order__subst1,axiom,
    ! [A2: set_tm,F: nat > set_tm,B2: nat,C: nat] :
      ( ( ord_less_eq_set_tm @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_tm @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_tm @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_135_order__subst1,axiom,
    ! [A2: set_tm,F: extended_enat > set_tm,B2: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_set_tm @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_less_eq_set_tm @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_tm @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_136_order__subst1,axiom,
    ! [A2: set_nat,F: nat > set_nat,B2: nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_137_order__subst1,axiom,
    ! [A2: set_nat,F: extended_enat > set_nat,B2: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ! [X3: extended_enat,Y3: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_138_order__subst1,axiom,
    ! [A2: nat,F: set_tm > nat,B2: set_tm,C: set_tm] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_set_tm @ B2 @ C )
       => ( ! [X3: set_tm,Y3: set_tm] :
              ( ( ord_less_eq_set_tm @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_139_order__subst1,axiom,
    ! [A2: nat,F: set_nat > nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_140_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_tm,Z2: set_tm] : ( Y4 = Z2 ) )
    = ( ^ [A4: set_tm,B3: set_tm] :
          ( ( ord_less_eq_set_tm @ A4 @ B3 )
          & ( ord_less_eq_set_tm @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_141_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_nat,Z2: set_nat] : ( Y4 = Z2 ) )
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_142_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_143_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: extended_enat,Z2: extended_enat] : ( Y4 = Z2 ) )
    = ( ^ [A4: extended_enat,B3: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ A4 @ B3 )
          & ( ord_le2932123472753598470d_enat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_144_mem__Collect__eq,axiom,
    ! [A2: tm,P3: tm > $o] :
      ( ( member_tm3 @ A2 @ ( collect_tm @ P3 ) )
      = ( P3 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_145_mem__Collect__eq,axiom,
    ! [A2: nat,P3: nat > $o] :
      ( ( member_nat3 @ A2 @ ( collect_nat @ P3 ) )
      = ( P3 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_146_mem__Collect__eq,axiom,
    ! [A2: fm,P3: fm > $o] :
      ( ( member_fm3 @ A2 @ ( collect_fm @ P3 ) )
      = ( P3 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_147_mem__Collect__eq,axiom,
    ! [A2: set_nat,P3: set_nat > $o] :
      ( ( member_set_nat3 @ A2 @ ( collect_set_nat @ P3 ) )
      = ( P3 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_148_Collect__mem__eq,axiom,
    ! [A: set_tm] :
      ( ( collect_tm
        @ ^ [X2: tm] : ( member_tm3 @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_149_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat3 @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_150_Collect__mem__eq,axiom,
    ! [A: set_fm] :
      ( ( collect_fm
        @ ^ [X2: fm] : ( member_fm3 @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_151_Collect__mem__eq,axiom,
    ! [A: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X2: set_nat] : ( member_set_nat3 @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_152_antisym,axiom,
    ! [A2: set_tm,B2: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( ord_less_eq_set_tm @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_153_antisym,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_154_antisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_155_antisym,axiom,
    ! [A2: extended_enat,B2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_156_dual__order_Otrans,axiom,
    ! [B2: set_tm,A2: set_tm,C: set_tm] :
      ( ( ord_less_eq_set_tm @ B2 @ A2 )
     => ( ( ord_less_eq_set_tm @ C @ B2 )
       => ( ord_less_eq_set_tm @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_157_dual__order_Otrans,axiom,
    ! [B2: set_nat,A2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( ord_less_eq_set_nat @ C @ B2 )
       => ( ord_less_eq_set_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_158_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_159_dual__order_Otrans,axiom,
    ! [B2: extended_enat,A2: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
     => ( ( ord_le2932123472753598470d_enat @ C @ B2 )
       => ( ord_le2932123472753598470d_enat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_160_dual__order_Oantisym,axiom,
    ! [B2: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ B2 @ A2 )
     => ( ( ord_less_eq_set_tm @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_161_dual__order_Oantisym,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_162_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_163_dual__order_Oantisym,axiom,
    ! [B2: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
     => ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_164_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_tm,Z2: set_tm] : ( Y4 = Z2 ) )
    = ( ^ [A4: set_tm,B3: set_tm] :
          ( ( ord_less_eq_set_tm @ B3 @ A4 )
          & ( ord_less_eq_set_tm @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_165_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_nat,Z2: set_nat] : ( Y4 = Z2 ) )
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_166_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_167_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: extended_enat,Z2: extended_enat] : ( Y4 = Z2 ) )
    = ( ^ [A4: extended_enat,B3: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ B3 @ A4 )
          & ( ord_le2932123472753598470d_enat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_168_linorder__wlog,axiom,
    ! [P3: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
         => ( P3 @ A5 @ B4 ) )
     => ( ! [A5: nat,B4: nat] :
            ( ( P3 @ B4 @ A5 )
           => ( P3 @ A5 @ B4 ) )
       => ( P3 @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_169_linorder__wlog,axiom,
    ! [P3: extended_enat > extended_enat > $o,A2: extended_enat,B2: extended_enat] :
      ( ! [A5: extended_enat,B4: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ A5 @ B4 )
         => ( P3 @ A5 @ B4 ) )
     => ( ! [A5: extended_enat,B4: extended_enat] :
            ( ( P3 @ B4 @ A5 )
           => ( P3 @ A5 @ B4 ) )
       => ( P3 @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_170_order__trans,axiom,
    ! [X: set_tm,Y2: set_tm,Z3: set_tm] :
      ( ( ord_less_eq_set_tm @ X @ Y2 )
     => ( ( ord_less_eq_set_tm @ Y2 @ Z3 )
       => ( ord_less_eq_set_tm @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_171_order__trans,axiom,
    ! [X: set_nat,Y2: set_nat,Z3: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ord_less_eq_set_nat @ Y2 @ Z3 )
       => ( ord_less_eq_set_nat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_172_order__trans,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z3 )
       => ( ord_less_eq_nat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_173_order__trans,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ord_le2932123472753598470d_enat @ Y2 @ Z3 )
       => ( ord_le2932123472753598470d_enat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_174_order_Otrans,axiom,
    ! [A2: set_tm,B2: set_tm,C: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( ord_less_eq_set_tm @ B2 @ C )
       => ( ord_less_eq_set_tm @ A2 @ C ) ) ) ).

% order.trans
thf(fact_175_order_Otrans,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ord_less_eq_set_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_176_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_177_order_Otrans,axiom,
    ! [A2: extended_enat,B2: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ord_le2932123472753598470d_enat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_178_order__antisym,axiom,
    ! [X: set_tm,Y2: set_tm] :
      ( ( ord_less_eq_set_tm @ X @ Y2 )
     => ( ( ord_less_eq_set_tm @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_179_order__antisym,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ord_less_eq_set_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_180_order__antisym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_181_order__antisym,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_182_ord__le__eq__trans,axiom,
    ! [A2: set_tm,B2: set_tm,C: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_set_tm @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_183_ord__le__eq__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_set_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_184_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_185_ord__le__eq__trans,axiom,
    ! [A2: extended_enat,B2: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_le2932123472753598470d_enat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_186_ord__eq__le__trans,axiom,
    ! [A2: set_tm,B2: set_tm,C: set_tm] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_set_tm @ B2 @ C )
       => ( ord_less_eq_set_tm @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_187_ord__eq__le__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C: set_nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C )
       => ( ord_less_eq_set_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_188_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_189_ord__eq__le__trans,axiom,
    ! [A2: extended_enat,B2: extended_enat,C: extended_enat] :
      ( ( A2 = B2 )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ C )
       => ( ord_le2932123472753598470d_enat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_190_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_tm,Z2: set_tm] : ( Y4 = Z2 ) )
    = ( ^ [X2: set_tm,Y: set_tm] :
          ( ( ord_less_eq_set_tm @ X2 @ Y )
          & ( ord_less_eq_set_tm @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_191_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_nat,Z2: set_nat] : ( Y4 = Z2 ) )
    = ( ^ [X2: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y )
          & ( ord_less_eq_set_nat @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_192_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [X2: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y )
          & ( ord_less_eq_nat @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_193_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: extended_enat,Z2: extended_enat] : ( Y4 = Z2 ) )
    = ( ^ [X2: extended_enat,Y: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ X2 @ Y )
          & ( ord_le2932123472753598470d_enat @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_194_le__cases3,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z3 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z3 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z3 )
           => ~ ( ord_less_eq_nat @ Z3 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z3 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z3 )
               => ~ ( ord_less_eq_nat @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z3 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_195_le__cases3,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z3: extended_enat] :
      ( ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
       => ~ ( ord_le2932123472753598470d_enat @ Y2 @ Z3 ) )
     => ( ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
         => ~ ( ord_le2932123472753598470d_enat @ X @ Z3 ) )
       => ( ( ( ord_le2932123472753598470d_enat @ X @ Z3 )
           => ~ ( ord_le2932123472753598470d_enat @ Z3 @ Y2 ) )
         => ( ( ( ord_le2932123472753598470d_enat @ Z3 @ Y2 )
             => ~ ( ord_le2932123472753598470d_enat @ Y2 @ X ) )
           => ( ( ( ord_le2932123472753598470d_enat @ Y2 @ Z3 )
               => ~ ( ord_le2932123472753598470d_enat @ Z3 @ X ) )
             => ~ ( ( ord_le2932123472753598470d_enat @ Z3 @ X )
                 => ~ ( ord_le2932123472753598470d_enat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_196_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_197_nle__le,axiom,
    ! [A2: extended_enat,B2: extended_enat] :
      ( ( ~ ( ord_le2932123472753598470d_enat @ A2 @ B2 ) )
      = ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_198_ex__in__conv,axiom,
    ! [A: set_set_nat] :
      ( ( ? [X2: set_nat] : ( member_set_nat3 @ X2 @ A ) )
      = ( A != bot_bot_set_set_nat ) ) ).

% ex_in_conv
thf(fact_199_ex__in__conv,axiom,
    ! [A: set_tm] :
      ( ( ? [X2: tm] : ( member_tm3 @ X2 @ A ) )
      = ( A != bot_bot_set_tm ) ) ).

% ex_in_conv
thf(fact_200_ex__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ? [X2: nat] : ( member_nat3 @ X2 @ A ) )
      = ( A != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_201_ex__in__conv,axiom,
    ! [A: set_fm] :
      ( ( ? [X2: fm] : ( member_fm3 @ X2 @ A ) )
      = ( A != bot_bot_set_fm ) ) ).

% ex_in_conv
thf(fact_202_equals0I,axiom,
    ! [A: set_set_nat] :
      ( ! [Y3: set_nat] :
          ~ ( member_set_nat3 @ Y3 @ A )
     => ( A = bot_bot_set_set_nat ) ) ).

% equals0I
thf(fact_203_equals0I,axiom,
    ! [A: set_tm] :
      ( ! [Y3: tm] :
          ~ ( member_tm3 @ Y3 @ A )
     => ( A = bot_bot_set_tm ) ) ).

% equals0I
thf(fact_204_equals0I,axiom,
    ! [A: set_nat] :
      ( ! [Y3: nat] :
          ~ ( member_nat3 @ Y3 @ A )
     => ( A = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_205_equals0I,axiom,
    ! [A: set_fm] :
      ( ! [Y3: fm] :
          ~ ( member_fm3 @ Y3 @ A )
     => ( A = bot_bot_set_fm ) ) ).

% equals0I
thf(fact_206_equals0D,axiom,
    ! [A: set_set_nat,A2: set_nat] :
      ( ( A = bot_bot_set_set_nat )
     => ~ ( member_set_nat3 @ A2 @ A ) ) ).

% equals0D
thf(fact_207_equals0D,axiom,
    ! [A: set_tm,A2: tm] :
      ( ( A = bot_bot_set_tm )
     => ~ ( member_tm3 @ A2 @ A ) ) ).

% equals0D
thf(fact_208_equals0D,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( A = bot_bot_set_nat )
     => ~ ( member_nat3 @ A2 @ A ) ) ).

% equals0D
thf(fact_209_equals0D,axiom,
    ! [A: set_fm,A2: fm] :
      ( ( A = bot_bot_set_fm )
     => ~ ( member_fm3 @ A2 @ A ) ) ).

% equals0D
thf(fact_210_emptyE,axiom,
    ! [A2: set_nat] :
      ~ ( member_set_nat3 @ A2 @ bot_bot_set_set_nat ) ).

% emptyE
thf(fact_211_emptyE,axiom,
    ! [A2: tm] :
      ~ ( member_tm3 @ A2 @ bot_bot_set_tm ) ).

% emptyE
thf(fact_212_emptyE,axiom,
    ! [A2: nat] :
      ~ ( member_nat3 @ A2 @ bot_bot_set_nat ) ).

% emptyE
thf(fact_213_emptyE,axiom,
    ! [A2: fm] :
      ~ ( member_fm3 @ A2 @ bot_bot_set_fm ) ).

% emptyE
thf(fact_214_Collect__mono__iff,axiom,
    ! [P3: tm > $o,Q: tm > $o] :
      ( ( ord_less_eq_set_tm @ ( collect_tm @ P3 ) @ ( collect_tm @ Q ) )
      = ( ! [X2: tm] :
            ( ( P3 @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_215_Collect__mono__iff,axiom,
    ! [P3: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P3 ) @ ( collect_nat @ Q ) )
      = ( ! [X2: nat] :
            ( ( P3 @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_216_set__eq__subset,axiom,
    ( ( ^ [Y4: set_tm,Z2: set_tm] : ( Y4 = Z2 ) )
    = ( ^ [A3: set_tm,B5: set_tm] :
          ( ( ord_less_eq_set_tm @ A3 @ B5 )
          & ( ord_less_eq_set_tm @ B5 @ A3 ) ) ) ) ).

% set_eq_subset
thf(fact_217_set__eq__subset,axiom,
    ( ( ^ [Y4: set_nat,Z2: set_nat] : ( Y4 = Z2 ) )
    = ( ^ [A3: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B5 )
          & ( ord_less_eq_set_nat @ B5 @ A3 ) ) ) ) ).

% set_eq_subset
thf(fact_218_subset__trans,axiom,
    ! [A: set_tm,B: set_tm,C2: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( ord_less_eq_set_tm @ B @ C2 )
       => ( ord_less_eq_set_tm @ A @ C2 ) ) ) ).

% subset_trans
thf(fact_219_subset__trans,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C2 )
       => ( ord_less_eq_set_nat @ A @ C2 ) ) ) ).

% subset_trans
thf(fact_220_Collect__mono,axiom,
    ! [P3: tm > $o,Q: tm > $o] :
      ( ! [X3: tm] :
          ( ( P3 @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_tm @ ( collect_tm @ P3 ) @ ( collect_tm @ Q ) ) ) ).

% Collect_mono
thf(fact_221_Collect__mono,axiom,
    ! [P3: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P3 @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P3 ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_222_subset__refl,axiom,
    ! [A: set_tm] : ( ord_less_eq_set_tm @ A @ A ) ).

% subset_refl
thf(fact_223_subset__refl,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% subset_refl
thf(fact_224_subset__iff,axiom,
    ( ord_less_eq_set_fm
    = ( ^ [A3: set_fm,B5: set_fm] :
        ! [T2: fm] :
          ( ( member_fm3 @ T2 @ A3 )
         => ( member_fm3 @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_225_subset__iff,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A3: set_set_nat,B5: set_set_nat] :
        ! [T2: set_nat] :
          ( ( member_set_nat3 @ T2 @ A3 )
         => ( member_set_nat3 @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_226_subset__iff,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [A3: set_tm,B5: set_tm] :
        ! [T2: tm] :
          ( ( member_tm3 @ T2 @ A3 )
         => ( member_tm3 @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_227_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
        ! [T2: nat] :
          ( ( member_nat3 @ T2 @ A3 )
         => ( member_nat3 @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_228_equalityD2,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( A = B )
     => ( ord_less_eq_set_tm @ B @ A ) ) ).

% equalityD2
thf(fact_229_equalityD2,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( A = B )
     => ( ord_less_eq_set_nat @ B @ A ) ) ).

% equalityD2
thf(fact_230_equalityD1,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( A = B )
     => ( ord_less_eq_set_tm @ A @ B ) ) ).

% equalityD1
thf(fact_231_equalityD1,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( A = B )
     => ( ord_less_eq_set_nat @ A @ B ) ) ).

% equalityD1
thf(fact_232_subset__eq,axiom,
    ( ord_less_eq_set_fm
    = ( ^ [A3: set_fm,B5: set_fm] :
        ! [X2: fm] :
          ( ( member_fm3 @ X2 @ A3 )
         => ( member_fm3 @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_233_subset__eq,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A3: set_set_nat,B5: set_set_nat] :
        ! [X2: set_nat] :
          ( ( member_set_nat3 @ X2 @ A3 )
         => ( member_set_nat3 @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_234_subset__eq,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [A3: set_tm,B5: set_tm] :
        ! [X2: tm] :
          ( ( member_tm3 @ X2 @ A3 )
         => ( member_tm3 @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_235_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
        ! [X2: nat] :
          ( ( member_nat3 @ X2 @ A3 )
         => ( member_nat3 @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_236_equalityE,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( A = B )
     => ~ ( ( ord_less_eq_set_tm @ A @ B )
         => ~ ( ord_less_eq_set_tm @ B @ A ) ) ) ).

% equalityE
thf(fact_237_equalityE,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( A = B )
     => ~ ( ( ord_less_eq_set_nat @ A @ B )
         => ~ ( ord_less_eq_set_nat @ B @ A ) ) ) ).

% equalityE
thf(fact_238_subsetD,axiom,
    ! [A: set_fm,B: set_fm,C: fm] :
      ( ( ord_less_eq_set_fm @ A @ B )
     => ( ( member_fm3 @ C @ A )
       => ( member_fm3 @ C @ B ) ) ) ).

% subsetD
thf(fact_239_subsetD,axiom,
    ! [A: set_set_nat,B: set_set_nat,C: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A @ B )
     => ( ( member_set_nat3 @ C @ A )
       => ( member_set_nat3 @ C @ B ) ) ) ).

% subsetD
thf(fact_240_subsetD,axiom,
    ! [A: set_tm,B: set_tm,C: tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( member_tm3 @ C @ A )
       => ( member_tm3 @ C @ B ) ) ) ).

% subsetD
thf(fact_241_subsetD,axiom,
    ! [A: set_nat,B: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( member_nat3 @ C @ A )
       => ( member_nat3 @ C @ B ) ) ) ).

% subsetD
thf(fact_242_in__mono,axiom,
    ! [A: set_fm,B: set_fm,X: fm] :
      ( ( ord_less_eq_set_fm @ A @ B )
     => ( ( member_fm3 @ X @ A )
       => ( member_fm3 @ X @ B ) ) ) ).

% in_mono
thf(fact_243_in__mono,axiom,
    ! [A: set_set_nat,B: set_set_nat,X: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A @ B )
     => ( ( member_set_nat3 @ X @ A )
       => ( member_set_nat3 @ X @ B ) ) ) ).

% in_mono
thf(fact_244_in__mono,axiom,
    ! [A: set_tm,B: set_tm,X: tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( member_tm3 @ X @ A )
       => ( member_tm3 @ X @ B ) ) ) ).

% in_mono
thf(fact_245_in__mono,axiom,
    ! [A: set_nat,B: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( member_nat3 @ X @ A )
       => ( member_nat3 @ X @ B ) ) ) ).

% in_mono
thf(fact_246_bot_Oextremum__uniqueI,axiom,
    ! [A2: set_fm] :
      ( ( ord_less_eq_set_fm @ A2 @ bot_bot_set_fm )
     => ( A2 = bot_bot_set_fm ) ) ).

% bot.extremum_uniqueI
thf(fact_247_bot_Oextremum__uniqueI,axiom,
    ! [A2: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ bot_bot_set_tm )
     => ( A2 = bot_bot_set_tm ) ) ).

% bot.extremum_uniqueI
thf(fact_248_bot_Oextremum__uniqueI,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
     => ( A2 = bot_bot_set_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_249_bot_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
     => ( A2 = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_250_bot_Oextremum__uniqueI,axiom,
    ! [A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ bot_bo4199563552545308370d_enat )
     => ( A2 = bot_bo4199563552545308370d_enat ) ) ).

% bot.extremum_uniqueI
thf(fact_251_bot_Oextremum__unique,axiom,
    ! [A2: set_fm] :
      ( ( ord_less_eq_set_fm @ A2 @ bot_bot_set_fm )
      = ( A2 = bot_bot_set_fm ) ) ).

% bot.extremum_unique
thf(fact_252_bot_Oextremum__unique,axiom,
    ! [A2: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ bot_bot_set_tm )
      = ( A2 = bot_bot_set_tm ) ) ).

% bot.extremum_unique
thf(fact_253_bot_Oextremum__unique,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% bot.extremum_unique
thf(fact_254_bot_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
      = ( A2 = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_255_bot_Oextremum__unique,axiom,
    ! [A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ bot_bo4199563552545308370d_enat )
      = ( A2 = bot_bo4199563552545308370d_enat ) ) ).

% bot.extremum_unique
thf(fact_256_bot_Oextremum,axiom,
    ! [A2: set_fm] : ( ord_less_eq_set_fm @ bot_bot_set_fm @ A2 ) ).

% bot.extremum
thf(fact_257_bot_Oextremum,axiom,
    ! [A2: set_tm] : ( ord_less_eq_set_tm @ bot_bot_set_tm @ A2 ) ).

% bot.extremum
thf(fact_258_bot_Oextremum,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).

% bot.extremum
thf(fact_259_bot_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A2 ) ).

% bot.extremum
thf(fact_260_bot_Oextremum,axiom,
    ! [A2: extended_enat] : ( ord_le2932123472753598470d_enat @ bot_bo4199563552545308370d_enat @ A2 ) ).

% bot.extremum
thf(fact_261_subset__emptyI,axiom,
    ! [A: set_set_nat] :
      ( ! [X3: set_nat] :
          ~ ( member_set_nat3 @ X3 @ A )
     => ( ord_le6893508408891458716et_nat @ A @ bot_bot_set_set_nat ) ) ).

% subset_emptyI
thf(fact_262_subset__emptyI,axiom,
    ! [A: set_fm] :
      ( ! [X3: fm] :
          ~ ( member_fm3 @ X3 @ A )
     => ( ord_less_eq_set_fm @ A @ bot_bot_set_fm ) ) ).

% subset_emptyI
thf(fact_263_subset__emptyI,axiom,
    ! [A: set_tm] :
      ( ! [X3: tm] :
          ~ ( member_tm3 @ X3 @ A )
     => ( ord_less_eq_set_tm @ A @ bot_bot_set_tm ) ) ).

% subset_emptyI
thf(fact_264_subset__emptyI,axiom,
    ! [A: set_nat] :
      ( ! [X3: nat] :
          ~ ( member_nat3 @ X3 @ A )
     => ( ord_less_eq_set_nat @ A @ bot_bot_set_nat ) ) ).

% subset_emptyI
thf(fact_265_paramst__subtermTm_I1_J,axiom,
    ! [T: tm,X4: nat] :
      ( ( member_nat3 @ X4 @ ( paramst @ T ) )
     => ? [L: list_tm] : ( member_tm3 @ ( fun @ X4 @ L ) @ ( set_tm2 @ ( subtermTm @ T ) ) ) ) ).

% paramst_subtermTm(1)
thf(fact_266_Set_Ois__empty__def,axiom,
    ( is_empty_tm
    = ( ^ [A3: set_tm] : ( A3 = bot_bot_set_tm ) ) ) ).

% Set.is_empty_def
thf(fact_267_Set_Ois__empty__def,axiom,
    ( is_empty_nat
    = ( ^ [A3: set_nat] : ( A3 = bot_bot_set_nat ) ) ) ).

% Set.is_empty_def
thf(fact_268_Set_Ois__empty__def,axiom,
    ( is_empty_fm
    = ( ^ [A3: set_fm] : ( A3 = bot_bot_set_fm ) ) ) ).

% Set.is_empty_def
thf(fact_269_remove__code_I1_J,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( remove_tm @ X @ ( set_tm2 @ Xs ) )
      = ( set_tm2 @ ( removeAll_tm @ X @ Xs ) ) ) ).

% remove_code(1)
thf(fact_270_remove__code_I1_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( remove_nat @ X @ ( set_nat2 @ Xs ) )
      = ( set_nat2 @ ( removeAll_nat @ X @ Xs ) ) ) ).

% remove_code(1)
thf(fact_271_remove__code_I1_J,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( remove_set_nat @ X @ ( set_set_nat2 @ Xs ) )
      = ( set_set_nat2 @ ( removeAll_set_nat @ X @ Xs ) ) ) ).

% remove_code(1)
thf(fact_272_remove__code_I1_J,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( remove_fm @ X @ ( set_fm2 @ Xs ) )
      = ( set_fm2 @ ( removeAll_fm @ X @ Xs ) ) ) ).

% remove_code(1)
thf(fact_273_fun__arguments__subterm,axiom,
    ! [N: nat,Ts: list_tm,P4: fm] :
      ( ( member_tm3 @ ( fun @ N @ Ts ) @ ( set_tm2 @ ( subtermFm @ P4 ) ) )
     => ( ord_less_eq_set_tm @ ( set_tm2 @ Ts ) @ ( set_tm2 @ ( subtermFm @ P4 ) ) ) ) ).

% fun_arguments_subterm
thf(fact_274_paramsts__subset,axiom,
    ! [A: list_tm,B: list_tm] :
      ( ( ord_less_eq_set_tm @ ( set_tm2 @ A ) @ ( set_tm2 @ B ) )
     => ( ord_less_eq_set_nat @ ( paramsts @ A ) @ ( paramsts @ B ) ) ) ).

% paramsts_subset
thf(fact_275_Greatest__equality,axiom,
    ! [P3: set_tm > $o,X: set_tm] :
      ( ( P3 @ X )
     => ( ! [Y3: set_tm] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_set_tm @ Y3 @ X ) )
       => ( ( order_4248741476211579294set_tm @ P3 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_276_Greatest__equality,axiom,
    ! [P3: set_nat > $o,X: set_nat] :
      ( ( P3 @ X )
     => ( ! [Y3: set_nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_set_nat @ Y3 @ X ) )
       => ( ( order_5724808138429204845et_nat @ P3 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_277_Greatest__equality,axiom,
    ! [P3: extended_enat > $o,X: extended_enat] :
      ( ( P3 @ X )
     => ( ! [Y3: extended_enat] :
            ( ( P3 @ Y3 )
           => ( ord_le2932123472753598470d_enat @ Y3 @ X ) )
       => ( ( order_2428742583041560895d_enat @ P3 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_278_Greatest__equality,axiom,
    ! [P3: nat > $o,X: nat] :
      ( ( P3 @ X )
     => ( ! [Y3: nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ X ) )
       => ( ( order_Greatest_nat @ P3 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_279_GreatestI2__order,axiom,
    ! [P3: set_tm > $o,X: set_tm,Q: set_tm > $o] :
      ( ( P3 @ X )
     => ( ! [Y3: set_tm] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_set_tm @ Y3 @ X ) )
       => ( ! [X3: set_tm] :
              ( ( P3 @ X3 )
             => ( ! [Y5: set_tm] :
                    ( ( P3 @ Y5 )
                   => ( ord_less_eq_set_tm @ Y5 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_4248741476211579294set_tm @ P3 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_280_GreatestI2__order,axiom,
    ! [P3: set_nat > $o,X: set_nat,Q: set_nat > $o] :
      ( ( P3 @ X )
     => ( ! [Y3: set_nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_set_nat @ Y3 @ X ) )
       => ( ! [X3: set_nat] :
              ( ( P3 @ X3 )
             => ( ! [Y5: set_nat] :
                    ( ( P3 @ Y5 )
                   => ( ord_less_eq_set_nat @ Y5 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_5724808138429204845et_nat @ P3 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_281_GreatestI2__order,axiom,
    ! [P3: extended_enat > $o,X: extended_enat,Q: extended_enat > $o] :
      ( ( P3 @ X )
     => ( ! [Y3: extended_enat] :
            ( ( P3 @ Y3 )
           => ( ord_le2932123472753598470d_enat @ Y3 @ X ) )
       => ( ! [X3: extended_enat] :
              ( ( P3 @ X3 )
             => ( ! [Y5: extended_enat] :
                    ( ( P3 @ Y5 )
                   => ( ord_le2932123472753598470d_enat @ Y5 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_2428742583041560895d_enat @ P3 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_282_GreatestI2__order,axiom,
    ! [P3: nat > $o,X: nat,Q: nat > $o] :
      ( ( P3 @ X )
     => ( ! [Y3: nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ X ) )
       => ( ! [X3: nat] :
              ( ( P3 @ X3 )
             => ( ! [Y5: nat] :
                    ( ( P3 @ Y5 )
                   => ( ord_less_eq_nat @ Y5 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_nat @ P3 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_283_subset__code_I2_J,axiom,
    ! [A: set_set_nat,Ys: list_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A @ ( coset_set_nat @ Ys ) )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Ys ) )
           => ~ ( member_set_nat3 @ X2 @ A ) ) ) ) ).

% subset_code(2)
thf(fact_284_subset__code_I2_J,axiom,
    ! [A: set_fm,Ys: list_fm] :
      ( ( ord_less_eq_set_fm @ A @ ( coset_fm @ Ys ) )
      = ( ! [X2: fm] :
            ( ( member_fm3 @ X2 @ ( set_fm2 @ Ys ) )
           => ~ ( member_fm3 @ X2 @ A ) ) ) ) ).

% subset_code(2)
thf(fact_285_subset__code_I2_J,axiom,
    ! [A: set_tm,Ys: list_tm] :
      ( ( ord_less_eq_set_tm @ A @ ( coset_tm @ Ys ) )
      = ( ! [X2: tm] :
            ( ( member_tm3 @ X2 @ ( set_tm2 @ Ys ) )
           => ~ ( member_tm3 @ X2 @ A ) ) ) ) ).

% subset_code(2)
thf(fact_286_subset__code_I2_J,axiom,
    ! [A: set_nat,Ys: list_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( coset_nat @ Ys ) )
      = ( ! [X2: nat] :
            ( ( member_nat3 @ X2 @ ( set_nat2 @ Ys ) )
           => ~ ( member_nat3 @ X2 @ A ) ) ) ) ).

% subset_code(2)
thf(fact_287_Collect__empty__eq__bot,axiom,
    ! [P3: tm > $o] :
      ( ( ( collect_tm @ P3 )
        = bot_bot_set_tm )
      = ( P3 = bot_bot_tm_o ) ) ).

% Collect_empty_eq_bot
thf(fact_288_Collect__empty__eq__bot,axiom,
    ! [P3: nat > $o] :
      ( ( ( collect_nat @ P3 )
        = bot_bot_set_nat )
      = ( P3 = bot_bot_nat_o ) ) ).

% Collect_empty_eq_bot
thf(fact_289_Collect__empty__eq__bot,axiom,
    ! [P3: fm > $o] :
      ( ( ( collect_fm @ P3 )
        = bot_bot_set_fm )
      = ( P3 = bot_bot_fm_o ) ) ).

% Collect_empty_eq_bot
thf(fact_290_bot__empty__eq,axiom,
    ( bot_bot_set_nat_o
    = ( ^ [X2: set_nat] : ( member_set_nat3 @ X2 @ bot_bot_set_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_291_bot__empty__eq,axiom,
    ( bot_bot_tm_o
    = ( ^ [X2: tm] : ( member_tm3 @ X2 @ bot_bot_set_tm ) ) ) ).

% bot_empty_eq
thf(fact_292_bot__empty__eq,axiom,
    ( bot_bot_nat_o
    = ( ^ [X2: nat] : ( member_nat3 @ X2 @ bot_bot_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_293_bot__empty__eq,axiom,
    ( bot_bot_fm_o
    = ( ^ [X2: fm] : ( member_fm3 @ X2 @ bot_bot_set_fm ) ) ) ).

% bot_empty_eq
thf(fact_294_member__remove,axiom,
    ! [X: tm,Y2: tm,A: set_tm] :
      ( ( member_tm3 @ X @ ( remove_tm @ Y2 @ A ) )
      = ( ( member_tm3 @ X @ A )
        & ( X != Y2 ) ) ) ).

% member_remove
thf(fact_295_member__remove,axiom,
    ! [X: nat,Y2: nat,A: set_nat] :
      ( ( member_nat3 @ X @ ( remove_nat @ Y2 @ A ) )
      = ( ( member_nat3 @ X @ A )
        & ( X != Y2 ) ) ) ).

% member_remove
thf(fact_296_member__remove,axiom,
    ! [X: fm,Y2: fm,A: set_fm] :
      ( ( member_fm3 @ X @ ( remove_fm @ Y2 @ A ) )
      = ( ( member_fm3 @ X @ A )
        & ( X != Y2 ) ) ) ).

% member_remove
thf(fact_297_member__remove,axiom,
    ! [X: set_nat,Y2: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ X @ ( remove_set_nat @ Y2 @ A ) )
      = ( ( member_set_nat3 @ X @ A )
        & ( X != Y2 ) ) ) ).

% member_remove
thf(fact_298_remove__code_I2_J,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( remove_set_nat @ X @ ( coset_set_nat @ Xs ) )
      = ( coset_set_nat @ ( insert_set_nat @ X @ Xs ) ) ) ).

% remove_code(2)
thf(fact_299_remove__code_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( remove_nat @ X @ ( coset_nat @ Xs ) )
      = ( coset_nat @ ( insert_nat @ X @ Xs ) ) ) ).

% remove_code(2)
thf(fact_300_remove__code_I2_J,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( remove_tm @ X @ ( coset_tm @ Xs ) )
      = ( coset_tm @ ( insert_tm @ X @ Xs ) ) ) ).

% remove_code(2)
thf(fact_301_remove__code_I2_J,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( remove_fm @ X @ ( coset_fm @ Xs ) )
      = ( coset_fm @ ( insert_fm @ X @ Xs ) ) ) ).

% remove_code(2)
thf(fact_302_subtermFm__subset__params,axiom,
    ! [P4: fm,A: list_tm] :
      ( ( ord_less_eq_set_tm @ ( set_tm2 @ ( subtermFm @ P4 ) ) @ ( set_tm2 @ A ) )
     => ( ord_less_eq_set_nat @ ( params @ P4 ) @ ( paramsts @ A ) ) ) ).

% subtermFm_subset_params
thf(fact_303_s1_I1_J,axiom,
    ( new_term
    = ( ^ [C3: nat,T2: tm] :
          ~ ( member_nat3 @ C3 @ ( paramst @ T2 ) ) ) ) ).

% s1(1)
thf(fact_304_is__empty__set,axiom,
    ! [Xs: list_tm] :
      ( ( is_empty_tm @ ( set_tm2 @ Xs ) )
      = ( null_tm @ Xs ) ) ).

% is_empty_set
thf(fact_305_is__empty__set,axiom,
    ! [Xs: list_nat] :
      ( ( is_empty_nat @ ( set_nat2 @ Xs ) )
      = ( null_nat @ Xs ) ) ).

% is_empty_set
thf(fact_306_is__empty__set,axiom,
    ! [Xs: list_set_nat] :
      ( ( is_empty_set_nat @ ( set_set_nat2 @ Xs ) )
      = ( null_set_nat @ Xs ) ) ).

% is_empty_set
thf(fact_307_is__empty__set,axiom,
    ! [Xs: list_fm] :
      ( ( is_empty_fm @ ( set_fm2 @ Xs ) )
      = ( null_fm @ Xs ) ) ).

% is_empty_set
thf(fact_308_p1,axiom,
    paramst2 = paramst ).

% p1
thf(fact_309_s1_I2_J,axiom,
    ( new_list
    = ( ^ [C3: nat,L2: list_tm] :
          ~ ( member_nat3 @ C3 @ ( paramsts @ L2 ) ) ) ) ).

% s1(2)
thf(fact_310_paramst__liftt_I2_J,axiom,
    ! [Ts: list_tm] :
      ( ( paramsts @ ( liftts @ Ts ) )
      = ( paramsts @ Ts ) ) ).

% paramst_liftt(2)
thf(fact_311_params__subtermFm,axiom,
    ! [P4: fm,X4: nat] :
      ( ( member_nat3 @ X4 @ ( params @ P4 ) )
     => ? [L: list_tm] : ( member_tm3 @ ( fun @ X4 @ L ) @ ( set_tm2 @ ( subtermFm @ P4 ) ) ) ) ).

% params_subtermFm
thf(fact_312_paramst__liftt_I1_J,axiom,
    ! [T: tm] :
      ( ( paramst @ ( liftt @ T ) )
      = ( paramst @ T ) ) ).

% paramst_liftt(1)
thf(fact_313_listFunTm__paramst_I1_J,axiom,
    ! [T: tm] :
      ( ( set_nat2 @ ( listFunTm @ T ) )
      = ( paramst @ T ) ) ).

% listFunTm_paramst(1)
thf(fact_314_subterm__Pre__refl,axiom,
    ! [Ts: list_tm,N: nat] : ( ord_less_eq_set_tm @ ( set_tm2 @ Ts ) @ ( set_tm2 @ ( subtermFm @ ( pre @ N @ Ts ) ) ) ) ).

% subterm_Pre_refl
thf(fact_315_fm_Oinject_I1_J,axiom,
    ! [X11: nat,X12: list_tm,Y11: nat,Y12: list_tm] :
      ( ( ( pre @ X11 @ X12 )
        = ( pre @ Y11 @ Y12 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 ) ) ) ).

% fm.inject(1)
thf(fact_316_params_Osimps_I1_J,axiom,
    ! [B2: nat,Ts: list_tm] :
      ( ( params @ ( pre @ B2 @ Ts ) )
      = ( paramsts @ Ts ) ) ).

% params.simps(1)
thf(fact_317_liftt_Osimps_I2_J,axiom,
    ! [A2: nat,Ts: list_tm] :
      ( ( liftt @ ( fun @ A2 @ Ts ) )
      = ( fun @ A2 @ ( liftts @ Ts ) ) ) ).

% liftt.simps(2)
thf(fact_318_new__term_Osimps_I2_J,axiom,
    ! [C: nat,I: nat,L3: list_tm] :
      ( ( new_term @ C @ ( fun @ I @ L3 ) )
      = ( ( I != C )
        & ( ( I != C )
         => ( new_list @ C @ L3 ) ) ) ) ).

% new_term.simps(2)
thf(fact_319_s4_I2_J,axiom,
    inc_list = liftts ).

% s4(2)
thf(fact_320_listFunTm__paramst_I2_J,axiom,
    ! [Ts: list_tm] :
      ( ( set_nat2 @ ( listFunTms @ Ts ) )
      = ( paramsts @ Ts ) ) ).

% listFunTm_paramst(2)
thf(fact_321_s4_I1_J,axiom,
    inc_term = liftt ).

% s4(1)
thf(fact_322_new_Osimps_I1_J,axiom,
    ! [C: nat,I: nat,L3: list_tm] :
      ( ( new @ C @ ( pre @ I @ L3 ) )
      = ( new_list @ C @ L3 ) ) ).

% new.simps(1)
thf(fact_323_p1_H,axiom,
    paramst3 = paramst ).

% p1'
thf(fact_324_subset__code_I3_J,axiom,
    ~ ( ord_le6893508408891458716et_nat @ ( coset_set_nat @ nil_set_nat ) @ ( set_set_nat2 @ nil_set_nat ) ) ).

% subset_code(3)
thf(fact_325_subset__code_I3_J,axiom,
    ~ ( ord_less_eq_set_fm @ ( coset_fm @ nil_fm ) @ ( set_fm2 @ nil_fm ) ) ).

% subset_code(3)
thf(fact_326_subset__code_I3_J,axiom,
    ~ ( ord_less_eq_set_tm @ ( coset_tm @ nil_tm ) @ ( set_tm2 @ nil_tm ) ) ).

% subset_code(3)
thf(fact_327_subset__code_I3_J,axiom,
    ~ ( ord_less_eq_set_nat @ ( coset_nat @ nil_nat ) @ ( set_nat2 @ nil_nat ) ) ).

% subset_code(3)
thf(fact_328_subtermFm__preds,axiom,
    ! [T: tm,P4: fm] :
      ( ( member_tm3 @ T @ ( set_tm2 @ ( subtermFm @ P4 ) ) )
      = ( ? [X2: fm] :
            ( ( member_fm3 @ X2 @ ( preds @ P4 ) )
            & ( member_tm3 @ T @ ( set_tm2 @ ( subtermFm @ X2 ) ) ) ) ) ) ).

% subtermFm_preds
thf(fact_329_new__list_Osimps_I2_J,axiom,
    ! [C: nat,T: tm,L3: list_tm] :
      ( ( new_list @ C @ ( cons_tm @ T @ L3 ) )
      = ( ( ( new_term @ C @ T )
         => ( new_list @ C @ L3 ) )
        & ( new_term @ C @ T ) ) ) ).

% new_list.simps(2)
thf(fact_330_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_set_tm
    = ( ^ [X5: $o > set_tm,Y6: $o > set_tm] :
          ( ( ord_less_eq_set_tm @ ( X5 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_set_tm @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_331_le__rel__bool__arg__iff,axiom,
    ( ord_le7022414076629706543et_nat
    = ( ^ [X5: $o > set_nat,Y6: $o > set_nat] :
          ( ( ord_less_eq_set_nat @ ( X5 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_set_nat @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_332_le__rel__bool__arg__iff,axiom,
    ( ord_less_eq_o_nat
    = ( ^ [X5: $o > nat,Y6: $o > nat] :
          ( ( ord_less_eq_nat @ ( X5 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_less_eq_nat @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_333_le__rel__bool__arg__iff,axiom,
    ( ord_le2787558655864224659d_enat
    = ( ^ [X5: $o > extended_enat,Y6: $o > extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ ( X5 @ $false ) @ ( Y6 @ $false ) )
          & ( ord_le2932123472753598470d_enat @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).

% le_rel_bool_arg_iff
thf(fact_334_list_Oinject,axiom,
    ! [X21: tm,X22: list_tm,Y21: tm,Y22: list_tm] :
      ( ( ( cons_tm @ X21 @ X22 )
        = ( cons_tm @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_335_list_Oinject,axiom,
    ! [X21: nat,X22: list_nat,Y21: nat,Y22: list_nat] :
      ( ( ( cons_nat @ X21 @ X22 )
        = ( cons_nat @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_336_rotate1__is__Nil__conv,axiom,
    ! [Xs: list_tm] :
      ( ( ( rotate1_tm @ Xs )
        = nil_tm )
      = ( Xs = nil_tm ) ) ).

% rotate1_is_Nil_conv
thf(fact_337_rotate1__is__Nil__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ( rotate1_nat @ Xs )
        = nil_nat )
      = ( Xs = nil_nat ) ) ).

% rotate1_is_Nil_conv
thf(fact_338_bind__simps_I1_J,axiom,
    ! [F: tm > list_tm] :
      ( ( bind_tm_tm @ nil_tm @ F )
      = nil_tm ) ).

% bind_simps(1)
thf(fact_339_bind__simps_I1_J,axiom,
    ! [F: tm > list_nat] :
      ( ( bind_tm_nat @ nil_tm @ F )
      = nil_nat ) ).

% bind_simps(1)
thf(fact_340_bind__simps_I1_J,axiom,
    ! [F: nat > list_tm] :
      ( ( bind_nat_tm @ nil_nat @ F )
      = nil_tm ) ).

% bind_simps(1)
thf(fact_341_bind__simps_I1_J,axiom,
    ! [F: nat > list_nat] :
      ( ( bind_nat_nat @ nil_nat @ F )
      = nil_nat ) ).

% bind_simps(1)
thf(fact_342_s2,axiom,
    ( new
    = ( ^ [C3: nat,P: fm] :
          ~ ( member_nat3 @ C3 @ ( params @ P ) ) ) ) ).

% s2
thf(fact_343_list__ex1__simps_I1_J,axiom,
    ! [P3: set_nat > $o] :
      ~ ( list_ex1_set_nat @ P3 @ nil_set_nat ) ).

% list_ex1_simps(1)
thf(fact_344_list__ex1__simps_I1_J,axiom,
    ! [P3: nat > $o] :
      ~ ( list_ex1_nat @ P3 @ nil_nat ) ).

% list_ex1_simps(1)
thf(fact_345_list__ex1__simps_I1_J,axiom,
    ! [P3: tm > $o] :
      ~ ( list_ex1_tm @ P3 @ nil_tm ) ).

% list_ex1_simps(1)
thf(fact_346_list__ex1__simps_I1_J,axiom,
    ! [P3: fm > $o] :
      ~ ( list_ex1_fm @ P3 @ nil_fm ) ).

% list_ex1_simps(1)
thf(fact_347_set__empty,axiom,
    ! [Xs: list_set_nat] :
      ( ( ( set_set_nat2 @ Xs )
        = bot_bot_set_set_nat )
      = ( Xs = nil_set_nat ) ) ).

% set_empty
thf(fact_348_set__empty,axiom,
    ! [Xs: list_tm] :
      ( ( ( set_tm2 @ Xs )
        = bot_bot_set_tm )
      = ( Xs = nil_tm ) ) ).

% set_empty
thf(fact_349_set__empty,axiom,
    ! [Xs: list_nat] :
      ( ( ( set_nat2 @ Xs )
        = bot_bot_set_nat )
      = ( Xs = nil_nat ) ) ).

% set_empty
thf(fact_350_set__empty,axiom,
    ! [Xs: list_fm] :
      ( ( ( set_fm2 @ Xs )
        = bot_bot_set_fm )
      = ( Xs = nil_fm ) ) ).

% set_empty
thf(fact_351_set__empty2,axiom,
    ! [Xs: list_set_nat] :
      ( ( bot_bot_set_set_nat
        = ( set_set_nat2 @ Xs ) )
      = ( Xs = nil_set_nat ) ) ).

% set_empty2
thf(fact_352_set__empty2,axiom,
    ! [Xs: list_tm] :
      ( ( bot_bot_set_tm
        = ( set_tm2 @ Xs ) )
      = ( Xs = nil_tm ) ) ).

% set_empty2
thf(fact_353_set__empty2,axiom,
    ! [Xs: list_nat] :
      ( ( bot_bot_set_nat
        = ( set_nat2 @ Xs ) )
      = ( Xs = nil_nat ) ) ).

% set_empty2
thf(fact_354_set__empty2,axiom,
    ! [Xs: list_fm] :
      ( ( bot_bot_set_fm
        = ( set_fm2 @ Xs ) )
      = ( Xs = nil_fm ) ) ).

% set_empty2
thf(fact_355_insert__Nil,axiom,
    ! [X: set_nat] :
      ( ( insert_set_nat @ X @ nil_set_nat )
      = ( cons_set_nat @ X @ nil_set_nat ) ) ).

% insert_Nil
thf(fact_356_insert__Nil,axiom,
    ! [X: fm] :
      ( ( insert_fm @ X @ nil_fm )
      = ( cons_fm @ X @ nil_fm ) ) ).

% insert_Nil
thf(fact_357_insert__Nil,axiom,
    ! [X: tm] :
      ( ( insert_tm @ X @ nil_tm )
      = ( cons_tm @ X @ nil_tm ) ) ).

% insert_Nil
thf(fact_358_insert__Nil,axiom,
    ! [X: nat] :
      ( ( insert_nat @ X @ nil_nat )
      = ( cons_nat @ X @ nil_nat ) ) ).

% insert_Nil
thf(fact_359_not__in__set__insert,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ( ( insert_set_nat @ X @ Xs )
        = ( cons_set_nat @ X @ Xs ) ) ) ).

% not_in_set_insert
thf(fact_360_not__in__set__insert,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ~ ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ( ( insert_fm @ X @ Xs )
        = ( cons_fm @ X @ Xs ) ) ) ).

% not_in_set_insert
thf(fact_361_not__in__set__insert,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ~ ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ( ( insert_tm @ X @ Xs )
        = ( cons_tm @ X @ Xs ) ) ) ).

% not_in_set_insert
thf(fact_362_not__in__set__insert,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ~ ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ( ( insert_nat @ X @ Xs )
        = ( cons_nat @ X @ Xs ) ) ) ).

% not_in_set_insert
thf(fact_363_list__nonempty__induct,axiom,
    ! [Xs: list_tm,P3: list_tm > $o] :
      ( ( Xs != nil_tm )
     => ( ! [X3: tm] : ( P3 @ ( cons_tm @ X3 @ nil_tm ) )
       => ( ! [X3: tm,Xs3: list_tm] :
              ( ( Xs3 != nil_tm )
             => ( ( P3 @ Xs3 )
               => ( P3 @ ( cons_tm @ X3 @ Xs3 ) ) ) )
         => ( P3 @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_364_list__nonempty__induct,axiom,
    ! [Xs: list_nat,P3: list_nat > $o] :
      ( ( Xs != nil_nat )
     => ( ! [X3: nat] : ( P3 @ ( cons_nat @ X3 @ nil_nat ) )
       => ( ! [X3: nat,Xs3: list_nat] :
              ( ( Xs3 != nil_nat )
             => ( ( P3 @ Xs3 )
               => ( P3 @ ( cons_nat @ X3 @ Xs3 ) ) ) )
         => ( P3 @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_365_not__Cons__self2,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( cons_tm @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_366_not__Cons__self2,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( cons_nat @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_367_list__induct2_H,axiom,
    ! [P3: list_tm > list_tm > $o,Xs: list_tm,Ys: list_tm] :
      ( ( P3 @ nil_tm @ nil_tm )
     => ( ! [X3: tm,Xs3: list_tm] : ( P3 @ ( cons_tm @ X3 @ Xs3 ) @ nil_tm )
       => ( ! [Y3: tm,Ys2: list_tm] : ( P3 @ nil_tm @ ( cons_tm @ Y3 @ Ys2 ) )
         => ( ! [X3: tm,Xs3: list_tm,Y3: tm,Ys2: list_tm] :
                ( ( P3 @ Xs3 @ Ys2 )
               => ( P3 @ ( cons_tm @ X3 @ Xs3 ) @ ( cons_tm @ Y3 @ Ys2 ) ) )
           => ( P3 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_368_list__induct2_H,axiom,
    ! [P3: list_tm > list_nat > $o,Xs: list_tm,Ys: list_nat] :
      ( ( P3 @ nil_tm @ nil_nat )
     => ( ! [X3: tm,Xs3: list_tm] : ( P3 @ ( cons_tm @ X3 @ Xs3 ) @ nil_nat )
       => ( ! [Y3: nat,Ys2: list_nat] : ( P3 @ nil_tm @ ( cons_nat @ Y3 @ Ys2 ) )
         => ( ! [X3: tm,Xs3: list_tm,Y3: nat,Ys2: list_nat] :
                ( ( P3 @ Xs3 @ Ys2 )
               => ( P3 @ ( cons_tm @ X3 @ Xs3 ) @ ( cons_nat @ Y3 @ Ys2 ) ) )
           => ( P3 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_369_list__induct2_H,axiom,
    ! [P3: list_nat > list_tm > $o,Xs: list_nat,Ys: list_tm] :
      ( ( P3 @ nil_nat @ nil_tm )
     => ( ! [X3: nat,Xs3: list_nat] : ( P3 @ ( cons_nat @ X3 @ Xs3 ) @ nil_tm )
       => ( ! [Y3: tm,Ys2: list_tm] : ( P3 @ nil_nat @ ( cons_tm @ Y3 @ Ys2 ) )
         => ( ! [X3: nat,Xs3: list_nat,Y3: tm,Ys2: list_tm] :
                ( ( P3 @ Xs3 @ Ys2 )
               => ( P3 @ ( cons_nat @ X3 @ Xs3 ) @ ( cons_tm @ Y3 @ Ys2 ) ) )
           => ( P3 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_370_list__induct2_H,axiom,
    ! [P3: list_nat > list_nat > $o,Xs: list_nat,Ys: list_nat] :
      ( ( P3 @ nil_nat @ nil_nat )
     => ( ! [X3: nat,Xs3: list_nat] : ( P3 @ ( cons_nat @ X3 @ Xs3 ) @ nil_nat )
       => ( ! [Y3: nat,Ys2: list_nat] : ( P3 @ nil_nat @ ( cons_nat @ Y3 @ Ys2 ) )
         => ( ! [X3: nat,Xs3: list_nat,Y3: nat,Ys2: list_nat] :
                ( ( P3 @ Xs3 @ Ys2 )
               => ( P3 @ ( cons_nat @ X3 @ Xs3 ) @ ( cons_nat @ Y3 @ Ys2 ) ) )
           => ( P3 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_371_neq__Nil__conv,axiom,
    ! [Xs: list_tm] :
      ( ( Xs != nil_tm )
      = ( ? [Y: tm,Ys3: list_tm] :
            ( Xs
            = ( cons_tm @ Y @ Ys3 ) ) ) ) ).

% neq_Nil_conv
thf(fact_372_neq__Nil__conv,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
      = ( ? [Y: nat,Ys3: list_nat] :
            ( Xs
            = ( cons_nat @ Y @ Ys3 ) ) ) ) ).

% neq_Nil_conv
thf(fact_373_remdups__adj_Ocases,axiom,
    ! [X: list_tm] :
      ( ( X != nil_tm )
     => ( ! [X3: tm] :
            ( X
           != ( cons_tm @ X3 @ nil_tm ) )
       => ~ ! [X3: tm,Y3: tm,Xs3: list_tm] :
              ( X
             != ( cons_tm @ X3 @ ( cons_tm @ Y3 @ Xs3 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_374_remdups__adj_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ( ! [X3: nat] :
            ( X
           != ( cons_nat @ X3 @ nil_nat ) )
       => ~ ! [X3: nat,Y3: nat,Xs3: list_nat] :
              ( X
             != ( cons_nat @ X3 @ ( cons_nat @ Y3 @ Xs3 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_375_transpose_Ocases,axiom,
    ! [X: list_list_tm] :
      ( ( X != nil_list_tm )
     => ( ! [Xss: list_list_tm] :
            ( X
           != ( cons_list_tm @ nil_tm @ Xss ) )
       => ~ ! [X3: tm,Xs3: list_tm,Xss: list_list_tm] :
              ( X
             != ( cons_list_tm @ ( cons_tm @ X3 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_376_transpose_Ocases,axiom,
    ! [X: list_list_nat] :
      ( ( X != nil_list_nat )
     => ( ! [Xss: list_list_nat] :
            ( X
           != ( cons_list_nat @ nil_nat @ Xss ) )
       => ~ ! [X3: nat,Xs3: list_nat,Xss: list_list_nat] :
              ( X
             != ( cons_list_nat @ ( cons_nat @ X3 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_377_min__list_Ocases,axiom,
    ! [X: list_nat] :
      ( ! [X3: nat,Xs3: list_nat] :
          ( X
         != ( cons_nat @ X3 @ Xs3 ) )
     => ( X = nil_nat ) ) ).

% min_list.cases
thf(fact_378_list_Oexhaust,axiom,
    ! [Y2: list_tm] :
      ( ( Y2 != nil_tm )
     => ~ ! [X212: tm,X222: list_tm] :
            ( Y2
           != ( cons_tm @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_379_list_Oexhaust,axiom,
    ! [Y2: list_nat] :
      ( ( Y2 != nil_nat )
     => ~ ! [X212: nat,X222: list_nat] :
            ( Y2
           != ( cons_nat @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_380_list_OdiscI,axiom,
    ! [List: list_tm,X21: tm,X22: list_tm] :
      ( ( List
        = ( cons_tm @ X21 @ X22 ) )
     => ( List != nil_tm ) ) ).

% list.discI
thf(fact_381_list_OdiscI,axiom,
    ! [List: list_nat,X21: nat,X22: list_nat] :
      ( ( List
        = ( cons_nat @ X21 @ X22 ) )
     => ( List != nil_nat ) ) ).

% list.discI
thf(fact_382_inc__list_Osimps_I1_J,axiom,
    ( ( inc_list @ nil_tm )
    = nil_tm ) ).

% inc_list.simps(1)
thf(fact_383_inc__list_Osimps_I2_J,axiom,
    ! [T: tm,L3: list_tm] :
      ( ( inc_list @ ( cons_tm @ T @ L3 ) )
      = ( cons_tm @ ( inc_term @ T ) @ ( inc_list @ L3 ) ) ) ).

% inc_list.simps(2)
thf(fact_384_list_Odistinct_I1_J,axiom,
    ! [X21: tm,X22: list_tm] :
      ( nil_tm
     != ( cons_tm @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_385_list_Odistinct_I1_J,axiom,
    ! [X21: nat,X22: list_nat] :
      ( nil_nat
     != ( cons_nat @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_386_set__ConsD,axiom,
    ! [Y2: set_nat,X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ Y2 @ ( set_set_nat2 @ ( cons_set_nat @ X @ Xs ) ) )
     => ( ( Y2 = X )
        | ( member_set_nat3 @ Y2 @ ( set_set_nat2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_387_set__ConsD,axiom,
    ! [Y2: fm,X: fm,Xs: list_fm] :
      ( ( member_fm3 @ Y2 @ ( set_fm2 @ ( cons_fm @ X @ Xs ) ) )
     => ( ( Y2 = X )
        | ( member_fm3 @ Y2 @ ( set_fm2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_388_set__ConsD,axiom,
    ! [Y2: tm,X: tm,Xs: list_tm] :
      ( ( member_tm3 @ Y2 @ ( set_tm2 @ ( cons_tm @ X @ Xs ) ) )
     => ( ( Y2 = X )
        | ( member_tm3 @ Y2 @ ( set_tm2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_389_set__ConsD,axiom,
    ! [Y2: nat,X: nat,Xs: list_nat] :
      ( ( member_nat3 @ Y2 @ ( set_nat2 @ ( cons_nat @ X @ Xs ) ) )
     => ( ( Y2 = X )
        | ( member_nat3 @ Y2 @ ( set_nat2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_390_list_Oset__cases,axiom,
    ! [E: set_nat,A2: list_set_nat] :
      ( ( member_set_nat3 @ E @ ( set_set_nat2 @ A2 ) )
     => ( ! [Z22: list_set_nat] :
            ( A2
           != ( cons_set_nat @ E @ Z22 ) )
       => ~ ! [Z1: set_nat,Z22: list_set_nat] :
              ( ( A2
                = ( cons_set_nat @ Z1 @ Z22 ) )
             => ~ ( member_set_nat3 @ E @ ( set_set_nat2 @ Z22 ) ) ) ) ) ).

% list.set_cases
thf(fact_391_list_Oset__cases,axiom,
    ! [E: fm,A2: list_fm] :
      ( ( member_fm3 @ E @ ( set_fm2 @ A2 ) )
     => ( ! [Z22: list_fm] :
            ( A2
           != ( cons_fm @ E @ Z22 ) )
       => ~ ! [Z1: fm,Z22: list_fm] :
              ( ( A2
                = ( cons_fm @ Z1 @ Z22 ) )
             => ~ ( member_fm3 @ E @ ( set_fm2 @ Z22 ) ) ) ) ) ).

% list.set_cases
thf(fact_392_list_Oset__cases,axiom,
    ! [E: tm,A2: list_tm] :
      ( ( member_tm3 @ E @ ( set_tm2 @ A2 ) )
     => ( ! [Z22: list_tm] :
            ( A2
           != ( cons_tm @ E @ Z22 ) )
       => ~ ! [Z1: tm,Z22: list_tm] :
              ( ( A2
                = ( cons_tm @ Z1 @ Z22 ) )
             => ~ ( member_tm3 @ E @ ( set_tm2 @ Z22 ) ) ) ) ) ).

% list.set_cases
thf(fact_393_list_Oset__cases,axiom,
    ! [E: nat,A2: list_nat] :
      ( ( member_nat3 @ E @ ( set_nat2 @ A2 ) )
     => ( ! [Z22: list_nat] :
            ( A2
           != ( cons_nat @ E @ Z22 ) )
       => ~ ! [Z1: nat,Z22: list_nat] :
              ( ( A2
                = ( cons_nat @ Z1 @ Z22 ) )
             => ~ ( member_nat3 @ E @ ( set_nat2 @ Z22 ) ) ) ) ) ).

% list.set_cases
thf(fact_394_list_Oset__intros_I1_J,axiom,
    ! [X21: set_nat,X22: list_set_nat] : ( member_set_nat3 @ X21 @ ( set_set_nat2 @ ( cons_set_nat @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_395_list_Oset__intros_I1_J,axiom,
    ! [X21: fm,X22: list_fm] : ( member_fm3 @ X21 @ ( set_fm2 @ ( cons_fm @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_396_list_Oset__intros_I1_J,axiom,
    ! [X21: tm,X22: list_tm] : ( member_tm3 @ X21 @ ( set_tm2 @ ( cons_tm @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_397_list_Oset__intros_I1_J,axiom,
    ! [X21: nat,X22: list_nat] : ( member_nat3 @ X21 @ ( set_nat2 @ ( cons_nat @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_398_list_Oset__intros_I2_J,axiom,
    ! [Y2: set_nat,X22: list_set_nat,X21: set_nat] :
      ( ( member_set_nat3 @ Y2 @ ( set_set_nat2 @ X22 ) )
     => ( member_set_nat3 @ Y2 @ ( set_set_nat2 @ ( cons_set_nat @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_399_list_Oset__intros_I2_J,axiom,
    ! [Y2: fm,X22: list_fm,X21: fm] :
      ( ( member_fm3 @ Y2 @ ( set_fm2 @ X22 ) )
     => ( member_fm3 @ Y2 @ ( set_fm2 @ ( cons_fm @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_400_list_Oset__intros_I2_J,axiom,
    ! [Y2: tm,X22: list_tm,X21: tm] :
      ( ( member_tm3 @ Y2 @ ( set_tm2 @ X22 ) )
     => ( member_tm3 @ Y2 @ ( set_tm2 @ ( cons_tm @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_401_list_Oset__intros_I2_J,axiom,
    ! [Y2: nat,X22: list_nat,X21: nat] :
      ( ( member_nat3 @ Y2 @ ( set_nat2 @ X22 ) )
     => ( member_nat3 @ Y2 @ ( set_nat2 @ ( cons_nat @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_402_removeAll_Osimps_I2_J,axiom,
    ! [X: tm,Y2: tm,Xs: list_tm] :
      ( ( ( X = Y2 )
       => ( ( removeAll_tm @ X @ ( cons_tm @ Y2 @ Xs ) )
          = ( removeAll_tm @ X @ Xs ) ) )
      & ( ( X != Y2 )
       => ( ( removeAll_tm @ X @ ( cons_tm @ Y2 @ Xs ) )
          = ( cons_tm @ Y2 @ ( removeAll_tm @ X @ Xs ) ) ) ) ) ).

% removeAll.simps(2)
thf(fact_403_removeAll_Osimps_I2_J,axiom,
    ! [X: nat,Y2: nat,Xs: list_nat] :
      ( ( ( X = Y2 )
       => ( ( removeAll_nat @ X @ ( cons_nat @ Y2 @ Xs ) )
          = ( removeAll_nat @ X @ Xs ) ) )
      & ( ( X != Y2 )
       => ( ( removeAll_nat @ X @ ( cons_nat @ Y2 @ Xs ) )
          = ( cons_nat @ Y2 @ ( removeAll_nat @ X @ Xs ) ) ) ) ) ).

% removeAll.simps(2)
thf(fact_404_inc__term_Osimps_I2_J,axiom,
    ! [I: nat,L3: list_tm] :
      ( ( inc_term @ ( fun @ I @ L3 ) )
      = ( fun @ I @ ( inc_list @ L3 ) ) ) ).

% inc_term.simps(2)
thf(fact_405_removeAll_Osimps_I1_J,axiom,
    ! [X: tm] :
      ( ( removeAll_tm @ X @ nil_tm )
      = nil_tm ) ).

% removeAll.simps(1)
thf(fact_406_removeAll_Osimps_I1_J,axiom,
    ! [X: nat] :
      ( ( removeAll_nat @ X @ nil_nat )
      = nil_nat ) ).

% removeAll.simps(1)
thf(fact_407_rotate1_Osimps_I1_J,axiom,
    ( ( rotate1_tm @ nil_tm )
    = nil_tm ) ).

% rotate1.simps(1)
thf(fact_408_rotate1_Osimps_I1_J,axiom,
    ( ( rotate1_nat @ nil_nat )
    = nil_nat ) ).

% rotate1.simps(1)
thf(fact_409_paramsts_Osimps_I1_J,axiom,
    ( ( paramsts @ nil_tm )
    = bot_bot_set_nat ) ).

% paramsts.simps(1)
thf(fact_410_elem,axiom,
    ! [X: tm,Xs: list_tm] : ( listMem_tm @ X @ ( cons_tm @ X @ Xs ) ) ).

% elem
thf(fact_411_elem,axiom,
    ! [X: nat,Xs: list_nat] : ( listMem_nat @ X @ ( cons_nat @ X @ Xs ) ) ).

% elem
thf(fact_412_ListMem_Ocases,axiom,
    ! [A1: tm,A22: list_tm] :
      ( ( listMem_tm @ A1 @ A22 )
     => ( ! [Xs3: list_tm] :
            ( A22
           != ( cons_tm @ A1 @ Xs3 ) )
       => ~ ! [Xs3: list_tm] :
              ( ? [Y3: tm] :
                  ( A22
                  = ( cons_tm @ Y3 @ Xs3 ) )
             => ~ ( listMem_tm @ A1 @ Xs3 ) ) ) ) ).

% ListMem.cases
thf(fact_413_ListMem_Ocases,axiom,
    ! [A1: nat,A22: list_nat] :
      ( ( listMem_nat @ A1 @ A22 )
     => ( ! [Xs3: list_nat] :
            ( A22
           != ( cons_nat @ A1 @ Xs3 ) )
       => ~ ! [Xs3: list_nat] :
              ( ? [Y3: nat] :
                  ( A22
                  = ( cons_nat @ Y3 @ Xs3 ) )
             => ~ ( listMem_nat @ A1 @ Xs3 ) ) ) ) ).

% ListMem.cases
thf(fact_414_ListMem_Osimps,axiom,
    ( listMem_tm
    = ( ^ [A12: tm,A23: list_tm] :
          ( ? [X2: tm,Xs2: list_tm] :
              ( ( A12 = X2 )
              & ( A23
                = ( cons_tm @ X2 @ Xs2 ) ) )
          | ? [X2: tm,Xs2: list_tm,Y: tm] :
              ( ( A12 = X2 )
              & ( A23
                = ( cons_tm @ Y @ Xs2 ) )
              & ( listMem_tm @ X2 @ Xs2 ) ) ) ) ) ).

% ListMem.simps
thf(fact_415_ListMem_Osimps,axiom,
    ( listMem_nat
    = ( ^ [A12: nat,A23: list_nat] :
          ( ? [X2: nat,Xs2: list_nat] :
              ( ( A12 = X2 )
              & ( A23
                = ( cons_nat @ X2 @ Xs2 ) ) )
          | ? [X2: nat,Xs2: list_nat,Y: nat] :
              ( ( A12 = X2 )
              & ( A23
                = ( cons_nat @ Y @ Xs2 ) )
              & ( listMem_nat @ X2 @ Xs2 ) ) ) ) ) ).

% ListMem.simps
thf(fact_416_insert,axiom,
    ! [X: tm,Xs: list_tm,Y2: tm] :
      ( ( listMem_tm @ X @ Xs )
     => ( listMem_tm @ X @ ( cons_tm @ Y2 @ Xs ) ) ) ).

% insert
thf(fact_417_insert,axiom,
    ! [X: nat,Xs: list_nat,Y2: nat] :
      ( ( listMem_nat @ X @ Xs )
     => ( listMem_nat @ X @ ( cons_nat @ Y2 @ Xs ) ) ) ).

% insert
thf(fact_418_SeCaV_Omember_Osimps_I2_J,axiom,
    ! [P4: set_nat,Q2: set_nat,Z3: list_set_nat] :
      ( ( member_set_nat2 @ P4 @ ( cons_set_nat @ Q2 @ Z3 ) )
      = ( ( P4 != Q2 )
       => ( member_set_nat2 @ P4 @ Z3 ) ) ) ).

% SeCaV.member.simps(2)
thf(fact_419_SeCaV_Omember_Osimps_I2_J,axiom,
    ! [P4: fm,Q2: fm,Z3: list_fm] :
      ( ( member_fm2 @ P4 @ ( cons_fm @ Q2 @ Z3 ) )
      = ( ( P4 != Q2 )
       => ( member_fm2 @ P4 @ Z3 ) ) ) ).

% SeCaV.member.simps(2)
thf(fact_420_SeCaV_Omember_Osimps_I2_J,axiom,
    ! [P4: tm,Q2: tm,Z3: list_tm] :
      ( ( member_tm2 @ P4 @ ( cons_tm @ Q2 @ Z3 ) )
      = ( ( P4 != Q2 )
       => ( member_tm2 @ P4 @ Z3 ) ) ) ).

% SeCaV.member.simps(2)
thf(fact_421_SeCaV_Omember_Osimps_I2_J,axiom,
    ! [P4: nat,Q2: nat,Z3: list_nat] :
      ( ( member_nat2 @ P4 @ ( cons_nat @ Q2 @ Z3 ) )
      = ( ( P4 != Q2 )
       => ( member_nat2 @ P4 @ Z3 ) ) ) ).

% SeCaV.member.simps(2)
thf(fact_422_SeCaV_Omember_Osimps_I1_J,axiom,
    ! [P4: set_nat] :
      ~ ( member_set_nat2 @ P4 @ nil_set_nat ) ).

% SeCaV.member.simps(1)
thf(fact_423_SeCaV_Omember_Osimps_I1_J,axiom,
    ! [P4: fm] :
      ~ ( member_fm2 @ P4 @ nil_fm ) ).

% SeCaV.member.simps(1)
thf(fact_424_SeCaV_Omember_Osimps_I1_J,axiom,
    ! [P4: tm] :
      ~ ( member_tm2 @ P4 @ nil_tm ) ).

% SeCaV.member.simps(1)
thf(fact_425_SeCaV_Omember_Osimps_I1_J,axiom,
    ! [P4: nat] :
      ~ ( member_nat2 @ P4 @ nil_nat ) ).

% SeCaV.member.simps(1)
thf(fact_426_ext_Osimps_I1_J,axiom,
    ! [Y2: list_tm] : ( ext_tm @ Y2 @ nil_tm ) ).

% ext.simps(1)
thf(fact_427_ext_Osimps_I1_J,axiom,
    ! [Y2: list_nat] : ( ext_nat @ Y2 @ nil_nat ) ).

% ext.simps(1)
thf(fact_428_null__rec_I1_J,axiom,
    ! [X: tm,Xs: list_tm] :
      ~ ( null_tm @ ( cons_tm @ X @ Xs ) ) ).

% null_rec(1)
thf(fact_429_null__rec_I1_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ~ ( null_nat @ ( cons_nat @ X @ Xs ) ) ).

% null_rec(1)
thf(fact_430_liftts_Osimps_I1_J,axiom,
    ( ( liftts @ nil_tm )
    = nil_tm ) ).

% liftts.simps(1)
thf(fact_431_eq__Nil__null,axiom,
    ! [Xs: list_tm] :
      ( ( Xs = nil_tm )
      = ( null_tm @ Xs ) ) ).

% eq_Nil_null
thf(fact_432_eq__Nil__null,axiom,
    ! [Xs: list_nat] :
      ( ( Xs = nil_nat )
      = ( null_nat @ Xs ) ) ).

% eq_Nil_null
thf(fact_433_null__rec_I2_J,axiom,
    null_tm @ nil_tm ).

% null_rec(2)
thf(fact_434_null__rec_I2_J,axiom,
    null_nat @ nil_nat ).

% null_rec(2)
thf(fact_435_new__list_Osimps_I1_J,axiom,
    ! [C: nat] : ( new_list @ C @ nil_tm ) ).

% new_list.simps(1)
thf(fact_436_member__rec_I1_J,axiom,
    ! [X: set_nat,Xs: list_set_nat,Y2: set_nat] :
      ( ( member_set_nat @ ( cons_set_nat @ X @ Xs ) @ Y2 )
      = ( ( X = Y2 )
        | ( member_set_nat @ Xs @ Y2 ) ) ) ).

% member_rec(1)
thf(fact_437_member__rec_I1_J,axiom,
    ! [X: fm,Xs: list_fm,Y2: fm] :
      ( ( member_fm @ ( cons_fm @ X @ Xs ) @ Y2 )
      = ( ( X = Y2 )
        | ( member_fm @ Xs @ Y2 ) ) ) ).

% member_rec(1)
thf(fact_438_member__rec_I1_J,axiom,
    ! [X: tm,Xs: list_tm,Y2: tm] :
      ( ( member_tm @ ( cons_tm @ X @ Xs ) @ Y2 )
      = ( ( X = Y2 )
        | ( member_tm @ Xs @ Y2 ) ) ) ).

% member_rec(1)
thf(fact_439_member__rec_I1_J,axiom,
    ! [X: nat,Xs: list_nat,Y2: nat] :
      ( ( member_nat @ ( cons_nat @ X @ Xs ) @ Y2 )
      = ( ( X = Y2 )
        | ( member_nat @ Xs @ Y2 ) ) ) ).

% member_rec(1)
thf(fact_440_preds__shape,axiom,
    ! [Pre: fm,P4: fm] :
      ( ( member_fm3 @ Pre @ ( preds @ P4 ) )
     => ? [N2: nat,Ts2: list_tm] :
          ( Pre
          = ( pre @ N2 @ Ts2 ) ) ) ).

% preds_shape
thf(fact_441_member__rec_I2_J,axiom,
    ! [Y2: set_nat] :
      ~ ( member_set_nat @ nil_set_nat @ Y2 ) ).

% member_rec(2)
thf(fact_442_member__rec_I2_J,axiom,
    ! [Y2: fm] :
      ~ ( member_fm @ nil_fm @ Y2 ) ).

% member_rec(2)
thf(fact_443_member__rec_I2_J,axiom,
    ! [Y2: tm] :
      ~ ( member_tm @ nil_tm @ Y2 ) ).

% member_rec(2)
thf(fact_444_member__rec_I2_J,axiom,
    ! [Y2: nat] :
      ~ ( member_nat @ nil_nat @ Y2 ) ).

% member_rec(2)
thf(fact_445_set__subset__Cons,axiom,
    ! [Xs: list_set_nat,X: set_nat] : ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ ( set_set_nat2 @ ( cons_set_nat @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_446_set__subset__Cons,axiom,
    ! [Xs: list_fm,X: fm] : ( ord_less_eq_set_fm @ ( set_fm2 @ Xs ) @ ( set_fm2 @ ( cons_fm @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_447_set__subset__Cons,axiom,
    ! [Xs: list_tm,X: tm] : ( ord_less_eq_set_tm @ ( set_tm2 @ Xs ) @ ( set_tm2 @ ( cons_tm @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_448_set__subset__Cons,axiom,
    ! [Xs: list_nat,X: nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ ( set_nat2 @ ( cons_nat @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_449_empty__set,axiom,
    ( bot_bot_set_set_nat
    = ( set_set_nat2 @ nil_set_nat ) ) ).

% empty_set
thf(fact_450_empty__set,axiom,
    ( bot_bot_set_tm
    = ( set_tm2 @ nil_tm ) ) ).

% empty_set
thf(fact_451_empty__set,axiom,
    ( bot_bot_set_nat
    = ( set_nat2 @ nil_nat ) ) ).

% empty_set
thf(fact_452_empty__set,axiom,
    ( bot_bot_set_fm
    = ( set_fm2 @ nil_fm ) ) ).

% empty_set
thf(fact_453_List_Oinsert__def,axiom,
    ( insert_set_nat
    = ( ^ [X2: set_nat,Xs2: list_set_nat] : ( if_list_set_nat @ ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Xs2 ) ) @ Xs2 @ ( cons_set_nat @ X2 @ Xs2 ) ) ) ) ).

% List.insert_def
thf(fact_454_List_Oinsert__def,axiom,
    ( insert_fm
    = ( ^ [X2: fm,Xs2: list_fm] : ( if_list_fm @ ( member_fm3 @ X2 @ ( set_fm2 @ Xs2 ) ) @ Xs2 @ ( cons_fm @ X2 @ Xs2 ) ) ) ) ).

% List.insert_def
thf(fact_455_List_Oinsert__def,axiom,
    ( insert_tm
    = ( ^ [X2: tm,Xs2: list_tm] : ( if_list_tm @ ( member_tm3 @ X2 @ ( set_tm2 @ Xs2 ) ) @ Xs2 @ ( cons_tm @ X2 @ Xs2 ) ) ) ) ).

% List.insert_def
thf(fact_456_List_Oinsert__def,axiom,
    ( insert_nat
    = ( ^ [X2: nat,Xs2: list_nat] : ( if_list_nat @ ( member_nat3 @ X2 @ ( set_nat2 @ Xs2 ) ) @ Xs2 @ ( cons_nat @ X2 @ Xs2 ) ) ) ) ).

% List.insert_def
thf(fact_457_ext_Osimps_I2_J,axiom,
    ! [Y2: list_set_nat,P4: set_nat,Z3: list_set_nat] :
      ( ( ext_set_nat @ Y2 @ ( cons_set_nat @ P4 @ Z3 ) )
      = ( ( ( member_set_nat2 @ P4 @ Y2 )
         => ( ext_set_nat @ Y2 @ Z3 ) )
        & ( member_set_nat2 @ P4 @ Y2 ) ) ) ).

% ext.simps(2)
thf(fact_458_ext_Osimps_I2_J,axiom,
    ! [Y2: list_fm,P4: fm,Z3: list_fm] :
      ( ( ext_fm @ Y2 @ ( cons_fm @ P4 @ Z3 ) )
      = ( ( ( member_fm2 @ P4 @ Y2 )
         => ( ext_fm @ Y2 @ Z3 ) )
        & ( member_fm2 @ P4 @ Y2 ) ) ) ).

% ext.simps(2)
thf(fact_459_ext_Osimps_I2_J,axiom,
    ! [Y2: list_tm,P4: tm,Z3: list_tm] :
      ( ( ext_tm @ Y2 @ ( cons_tm @ P4 @ Z3 ) )
      = ( ( ( member_tm2 @ P4 @ Y2 )
         => ( ext_tm @ Y2 @ Z3 ) )
        & ( member_tm2 @ P4 @ Y2 ) ) ) ).

% ext.simps(2)
thf(fact_460_ext_Osimps_I2_J,axiom,
    ! [Y2: list_nat,P4: nat,Z3: list_nat] :
      ( ( ext_nat @ Y2 @ ( cons_nat @ P4 @ Z3 ) )
      = ( ( ( member_nat2 @ P4 @ Y2 )
         => ( ext_nat @ Y2 @ Z3 ) )
        & ( member_nat2 @ P4 @ Y2 ) ) ) ).

% ext.simps(2)
thf(fact_461_liftts_Osimps_I2_J,axiom,
    ! [T: tm,Ts: list_tm] :
      ( ( liftts @ ( cons_tm @ T @ Ts ) )
      = ( cons_tm @ ( liftt @ T ) @ ( liftts @ Ts ) ) ) ).

% liftts.simps(2)
thf(fact_462_sub__term__const__transfer_I1_J,axiom,
    ! [M: nat,A2: nat,T: tm,S2: tm] :
      ( ( ( sub_term @ M @ ( fun @ A2 @ nil_tm ) @ T )
       != ( sub_term @ M @ S2 @ T ) )
     => ( member_tm3 @ ( fun @ A2 @ nil_tm ) @ ( set_tm2 @ ( subtermTm @ ( sub_term @ M @ ( fun @ A2 @ nil_tm ) @ T ) ) ) ) ) ).

% sub_term_const_transfer(1)
thf(fact_463_terms__cases,axiom,
    ! [T: tm,S: set_fm] :
      ( ( member_tm3 @ T @ ( terms @ S ) )
     => ( ( T
          = ( fun @ zero_zero_nat @ nil_tm ) )
        | ? [X3: fm] :
            ( ( member_fm3 @ X3 @ S )
            & ( member_tm3 @ T @ ( set_tm2 @ ( subtermFm @ X3 ) ) ) ) ) ) ).

% terms_cases
thf(fact_464_listFunTms_Osimps_I1_J,axiom,
    ( ( listFunTms @ nil_tm )
    = nil_nat ) ).

% listFunTms.simps(1)
thf(fact_465_the__elem__set,axiom,
    ! [X: set_nat] :
      ( ( the_elem_set_nat @ ( set_set_nat2 @ ( cons_set_nat @ X @ nil_set_nat ) ) )
      = X ) ).

% the_elem_set
thf(fact_466_the__elem__set,axiom,
    ! [X: fm] :
      ( ( the_elem_fm @ ( set_fm2 @ ( cons_fm @ X @ nil_fm ) ) )
      = X ) ).

% the_elem_set
thf(fact_467_the__elem__set,axiom,
    ! [X: tm] :
      ( ( the_elem_tm @ ( set_tm2 @ ( cons_tm @ X @ nil_tm ) ) )
      = X ) ).

% the_elem_set
thf(fact_468_the__elem__set,axiom,
    ! [X: nat] :
      ( ( the_elem_nat @ ( set_nat2 @ ( cons_nat @ X @ nil_nat ) ) )
      = X ) ).

% the_elem_set
thf(fact_469_paramsts_Osimps_I2_J,axiom,
    ! [T: tm,Ts: list_tm] :
      ( ( paramsts @ ( cons_tm @ T @ Ts ) )
      = ( sup_sup_set_nat @ ( paramst @ T ) @ ( paramsts @ Ts ) ) ) ).

% paramsts.simps(2)
thf(fact_470_map__tailrec__rev_Oelims,axiom,
    ! [X: tm > tm,Xa: list_tm,Xb: list_tm,Y2: list_tm] :
      ( ( ( map_ta4789309763159252277_tm_tm @ X @ Xa @ Xb )
        = Y2 )
     => ( ( ( Xa = nil_tm )
         => ( Y2 != Xb ) )
       => ~ ! [A5: tm,As: list_tm] :
              ( ( Xa
                = ( cons_tm @ A5 @ As ) )
             => ( Y2
               != ( map_ta4789309763159252277_tm_tm @ X @ As @ ( cons_tm @ ( X @ A5 ) @ Xb ) ) ) ) ) ) ).

% map_tailrec_rev.elims
thf(fact_471_map__tailrec__rev_Oelims,axiom,
    ! [X: tm > nat,Xa: list_tm,Xb: list_nat,Y2: list_nat] :
      ( ( ( map_ta7807370561492357248tm_nat @ X @ Xa @ Xb )
        = Y2 )
     => ( ( ( Xa = nil_tm )
         => ( Y2 != Xb ) )
       => ~ ! [A5: tm,As: list_tm] :
              ( ( Xa
                = ( cons_tm @ A5 @ As ) )
             => ( Y2
               != ( map_ta7807370561492357248tm_nat @ X @ As @ ( cons_nat @ ( X @ A5 ) @ Xb ) ) ) ) ) ) ).

% map_tailrec_rev.elims
thf(fact_472_map__tailrec__rev_Oelims,axiom,
    ! [X: nat > tm,Xa: list_nat,Xb: list_tm,Y2: list_tm] :
      ( ( ( map_ta389968950240100318nat_tm @ X @ Xa @ Xb )
        = Y2 )
     => ( ( ( Xa = nil_nat )
         => ( Y2 != Xb ) )
       => ~ ! [A5: nat,As: list_nat] :
              ( ( Xa
                = ( cons_nat @ A5 @ As ) )
             => ( Y2
               != ( map_ta389968950240100318nat_tm @ X @ As @ ( cons_tm @ ( X @ A5 ) @ Xb ) ) ) ) ) ) ).

% map_tailrec_rev.elims
thf(fact_473_map__tailrec__rev_Oelims,axiom,
    ! [X: nat > nat,Xa: list_nat,Xb: list_nat,Y2: list_nat] :
      ( ( ( map_ta7164188454487880599at_nat @ X @ Xa @ Xb )
        = Y2 )
     => ( ( ( Xa = nil_nat )
         => ( Y2 != Xb ) )
       => ~ ! [A5: nat,As: list_nat] :
              ( ( Xa
                = ( cons_nat @ A5 @ As ) )
             => ( Y2
               != ( map_ta7164188454487880599at_nat @ X @ As @ ( cons_nat @ ( X @ A5 ) @ Xb ) ) ) ) ) ) ).

% map_tailrec_rev.elims
thf(fact_474_UnCI,axiom,
    ! [C: tm,B: set_tm,A: set_tm] :
      ( ( ~ ( member_tm3 @ C @ B )
       => ( member_tm3 @ C @ A ) )
     => ( member_tm3 @ C @ ( sup_sup_set_tm @ A @ B ) ) ) ).

% UnCI
thf(fact_475_UnCI,axiom,
    ! [C: fm,B: set_fm,A: set_fm] :
      ( ( ~ ( member_fm3 @ C @ B )
       => ( member_fm3 @ C @ A ) )
     => ( member_fm3 @ C @ ( sup_sup_set_fm @ A @ B ) ) ) ).

% UnCI
thf(fact_476_UnCI,axiom,
    ! [C: set_nat,B: set_set_nat,A: set_set_nat] :
      ( ( ~ ( member_set_nat3 @ C @ B )
       => ( member_set_nat3 @ C @ A ) )
     => ( member_set_nat3 @ C @ ( sup_sup_set_set_nat @ A @ B ) ) ) ).

% UnCI
thf(fact_477_UnCI,axiom,
    ! [C: nat,B: set_nat,A: set_nat] :
      ( ( ~ ( member_nat3 @ C @ B )
       => ( member_nat3 @ C @ A ) )
     => ( member_nat3 @ C @ ( sup_sup_set_nat @ A @ B ) ) ) ).

% UnCI
thf(fact_478_Un__iff,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ ( sup_sup_set_tm @ A @ B ) )
      = ( ( member_tm3 @ C @ A )
        | ( member_tm3 @ C @ B ) ) ) ).

% Un_iff
thf(fact_479_Un__iff,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ ( sup_sup_set_fm @ A @ B ) )
      = ( ( member_fm3 @ C @ A )
        | ( member_fm3 @ C @ B ) ) ) ).

% Un_iff
thf(fact_480_Un__iff,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ ( sup_sup_set_set_nat @ A @ B ) )
      = ( ( member_set_nat3 @ C @ A )
        | ( member_set_nat3 @ C @ B ) ) ) ).

% Un_iff
thf(fact_481_Un__iff,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ ( sup_sup_set_nat @ A @ B ) )
      = ( ( member_nat3 @ C @ A )
        | ( member_nat3 @ C @ B ) ) ) ).

% Un_iff
thf(fact_482_Un__empty,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( ( sup_sup_set_tm @ A @ B )
        = bot_bot_set_tm )
      = ( ( A = bot_bot_set_tm )
        & ( B = bot_bot_set_tm ) ) ) ).

% Un_empty
thf(fact_483_Un__empty,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ( sup_sup_set_nat @ A @ B )
        = bot_bot_set_nat )
      = ( ( A = bot_bot_set_nat )
        & ( B = bot_bot_set_nat ) ) ) ).

% Un_empty
thf(fact_484_Un__empty,axiom,
    ! [A: set_fm,B: set_fm] :
      ( ( ( sup_sup_set_fm @ A @ B )
        = bot_bot_set_fm )
      = ( ( A = bot_bot_set_fm )
        & ( B = bot_bot_set_fm ) ) ) ).

% Un_empty
thf(fact_485_Un__subset__iff,axiom,
    ! [A: set_tm,B: set_tm,C2: set_tm] :
      ( ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ A @ B ) @ C2 )
      = ( ( ord_less_eq_set_tm @ A @ C2 )
        & ( ord_less_eq_set_tm @ B @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_486_Un__subset__iff,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A @ B ) @ C2 )
      = ( ( ord_less_eq_set_nat @ A @ C2 )
        & ( ord_less_eq_set_nat @ B @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_487_UnE,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ ( sup_sup_set_tm @ A @ B ) )
     => ( ~ ( member_tm3 @ C @ A )
       => ( member_tm3 @ C @ B ) ) ) ).

% UnE
thf(fact_488_UnE,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ ( sup_sup_set_fm @ A @ B ) )
     => ( ~ ( member_fm3 @ C @ A )
       => ( member_fm3 @ C @ B ) ) ) ).

% UnE
thf(fact_489_UnE,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ ( sup_sup_set_set_nat @ A @ B ) )
     => ( ~ ( member_set_nat3 @ C @ A )
       => ( member_set_nat3 @ C @ B ) ) ) ).

% UnE
thf(fact_490_UnE,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ ( sup_sup_set_nat @ A @ B ) )
     => ( ~ ( member_nat3 @ C @ A )
       => ( member_nat3 @ C @ B ) ) ) ).

% UnE
thf(fact_491_UnI1,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ A )
     => ( member_tm3 @ C @ ( sup_sup_set_tm @ A @ B ) ) ) ).

% UnI1
thf(fact_492_UnI1,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ A )
     => ( member_fm3 @ C @ ( sup_sup_set_fm @ A @ B ) ) ) ).

% UnI1
thf(fact_493_UnI1,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ A )
     => ( member_set_nat3 @ C @ ( sup_sup_set_set_nat @ A @ B ) ) ) ).

% UnI1
thf(fact_494_UnI1,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ A )
     => ( member_nat3 @ C @ ( sup_sup_set_nat @ A @ B ) ) ) ).

% UnI1
thf(fact_495_UnI2,axiom,
    ! [C: tm,B: set_tm,A: set_tm] :
      ( ( member_tm3 @ C @ B )
     => ( member_tm3 @ C @ ( sup_sup_set_tm @ A @ B ) ) ) ).

% UnI2
thf(fact_496_UnI2,axiom,
    ! [C: fm,B: set_fm,A: set_fm] :
      ( ( member_fm3 @ C @ B )
     => ( member_fm3 @ C @ ( sup_sup_set_fm @ A @ B ) ) ) ).

% UnI2
thf(fact_497_UnI2,axiom,
    ! [C: set_nat,B: set_set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ C @ B )
     => ( member_set_nat3 @ C @ ( sup_sup_set_set_nat @ A @ B ) ) ) ).

% UnI2
thf(fact_498_UnI2,axiom,
    ! [C: nat,B: set_nat,A: set_nat] :
      ( ( member_nat3 @ C @ B )
     => ( member_nat3 @ C @ ( sup_sup_set_nat @ A @ B ) ) ) ).

% UnI2
thf(fact_499_bex__Un,axiom,
    ! [A: set_nat,B: set_nat,P3: nat > $o] :
      ( ( ? [X2: nat] :
            ( ( member_nat3 @ X2 @ ( sup_sup_set_nat @ A @ B ) )
            & ( P3 @ X2 ) ) )
      = ( ? [X2: nat] :
            ( ( member_nat3 @ X2 @ A )
            & ( P3 @ X2 ) )
        | ? [X2: nat] :
            ( ( member_nat3 @ X2 @ B )
            & ( P3 @ X2 ) ) ) ) ).

% bex_Un
thf(fact_500_ball__Un,axiom,
    ! [A: set_nat,B: set_nat,P3: nat > $o] :
      ( ( ! [X2: nat] :
            ( ( member_nat3 @ X2 @ ( sup_sup_set_nat @ A @ B ) )
           => ( P3 @ X2 ) ) )
      = ( ! [X2: nat] :
            ( ( member_nat3 @ X2 @ A )
           => ( P3 @ X2 ) )
        & ! [X2: nat] :
            ( ( member_nat3 @ X2 @ B )
           => ( P3 @ X2 ) ) ) ) ).

% ball_Un
thf(fact_501_Un__assoc,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( sup_sup_set_nat @ ( sup_sup_set_nat @ A @ B ) @ C2 )
      = ( sup_sup_set_nat @ A @ ( sup_sup_set_nat @ B @ C2 ) ) ) ).

% Un_assoc
thf(fact_502_Un__absorb,axiom,
    ! [A: set_nat] :
      ( ( sup_sup_set_nat @ A @ A )
      = A ) ).

% Un_absorb
thf(fact_503_Un__commute,axiom,
    ( sup_sup_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] : ( sup_sup_set_nat @ B5 @ A3 ) ) ) ).

% Un_commute
thf(fact_504_Un__left__absorb,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( sup_sup_set_nat @ A @ ( sup_sup_set_nat @ A @ B ) )
      = ( sup_sup_set_nat @ A @ B ) ) ).

% Un_left_absorb
thf(fact_505_Un__left__commute,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( sup_sup_set_nat @ A @ ( sup_sup_set_nat @ B @ C2 ) )
      = ( sup_sup_set_nat @ B @ ( sup_sup_set_nat @ A @ C2 ) ) ) ).

% Un_left_commute
thf(fact_506_Un__empty__right,axiom,
    ! [A: set_tm] :
      ( ( sup_sup_set_tm @ A @ bot_bot_set_tm )
      = A ) ).

% Un_empty_right
thf(fact_507_Un__empty__right,axiom,
    ! [A: set_nat] :
      ( ( sup_sup_set_nat @ A @ bot_bot_set_nat )
      = A ) ).

% Un_empty_right
thf(fact_508_Un__empty__right,axiom,
    ! [A: set_fm] :
      ( ( sup_sup_set_fm @ A @ bot_bot_set_fm )
      = A ) ).

% Un_empty_right
thf(fact_509_Un__empty__left,axiom,
    ! [B: set_tm] :
      ( ( sup_sup_set_tm @ bot_bot_set_tm @ B )
      = B ) ).

% Un_empty_left
thf(fact_510_Un__empty__left,axiom,
    ! [B: set_nat] :
      ( ( sup_sup_set_nat @ bot_bot_set_nat @ B )
      = B ) ).

% Un_empty_left
thf(fact_511_Un__empty__left,axiom,
    ! [B: set_fm] :
      ( ( sup_sup_set_fm @ bot_bot_set_fm @ B )
      = B ) ).

% Un_empty_left
thf(fact_512_subset__Un__eq,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [A3: set_tm,B5: set_tm] :
          ( ( sup_sup_set_tm @ A3 @ B5 )
          = B5 ) ) ) ).

% subset_Un_eq
thf(fact_513_subset__Un__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
          ( ( sup_sup_set_nat @ A3 @ B5 )
          = B5 ) ) ) ).

% subset_Un_eq
thf(fact_514_subset__UnE,axiom,
    ! [C2: set_tm,A: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ C2 @ ( sup_sup_set_tm @ A @ B ) )
     => ~ ! [A6: set_tm] :
            ( ( ord_less_eq_set_tm @ A6 @ A )
           => ! [B6: set_tm] :
                ( ( ord_less_eq_set_tm @ B6 @ B )
               => ( C2
                 != ( sup_sup_set_tm @ A6 @ B6 ) ) ) ) ) ).

% subset_UnE
thf(fact_515_subset__UnE,axiom,
    ! [C2: set_nat,A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ C2 @ ( sup_sup_set_nat @ A @ B ) )
     => ~ ! [A6: set_nat] :
            ( ( ord_less_eq_set_nat @ A6 @ A )
           => ! [B6: set_nat] :
                ( ( ord_less_eq_set_nat @ B6 @ B )
               => ( C2
                 != ( sup_sup_set_nat @ A6 @ B6 ) ) ) ) ) ).

% subset_UnE
thf(fact_516_Un__absorb2,axiom,
    ! [B: set_tm,A: set_tm] :
      ( ( ord_less_eq_set_tm @ B @ A )
     => ( ( sup_sup_set_tm @ A @ B )
        = A ) ) ).

% Un_absorb2
thf(fact_517_Un__absorb2,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( sup_sup_set_nat @ A @ B )
        = A ) ) ).

% Un_absorb2
thf(fact_518_Un__absorb1,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( sup_sup_set_tm @ A @ B )
        = B ) ) ).

% Un_absorb1
thf(fact_519_Un__absorb1,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( sup_sup_set_nat @ A @ B )
        = B ) ) ).

% Un_absorb1
thf(fact_520_Un__upper2,axiom,
    ! [B: set_tm,A: set_tm] : ( ord_less_eq_set_tm @ B @ ( sup_sup_set_tm @ A @ B ) ) ).

% Un_upper2
thf(fact_521_Un__upper2,axiom,
    ! [B: set_nat,A: set_nat] : ( ord_less_eq_set_nat @ B @ ( sup_sup_set_nat @ A @ B ) ) ).

% Un_upper2
thf(fact_522_Un__upper1,axiom,
    ! [A: set_tm,B: set_tm] : ( ord_less_eq_set_tm @ A @ ( sup_sup_set_tm @ A @ B ) ) ).

% Un_upper1
thf(fact_523_Un__upper1,axiom,
    ! [A: set_nat,B: set_nat] : ( ord_less_eq_set_nat @ A @ ( sup_sup_set_nat @ A @ B ) ) ).

% Un_upper1
thf(fact_524_Un__least,axiom,
    ! [A: set_tm,C2: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ C2 )
     => ( ( ord_less_eq_set_tm @ B @ C2 )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ A @ B ) @ C2 ) ) ) ).

% Un_least
thf(fact_525_Un__least,axiom,
    ! [A: set_nat,C2: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ C2 )
     => ( ( ord_less_eq_set_nat @ B @ C2 )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A @ B ) @ C2 ) ) ) ).

% Un_least
thf(fact_526_Un__mono,axiom,
    ! [A: set_tm,C2: set_tm,B: set_tm,D: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ C2 )
     => ( ( ord_less_eq_set_tm @ B @ D )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ A @ B ) @ ( sup_sup_set_tm @ C2 @ D ) ) ) ) ).

% Un_mono
thf(fact_527_Un__mono,axiom,
    ! [A: set_nat,C2: set_nat,B: set_nat,D: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ C2 )
     => ( ( ord_less_eq_set_nat @ B @ D )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A @ B ) @ ( sup_sup_set_nat @ C2 @ D ) ) ) ) ).

% Un_mono
thf(fact_528_paramst__sub__term_I1_J,axiom,
    ! [M: nat,S2: tm,T: tm] : ( ord_less_eq_set_nat @ ( paramst @ ( sub_term @ M @ S2 @ T ) ) @ ( sup_sup_set_nat @ ( paramst @ S2 ) @ ( paramst @ T ) ) ) ).

% paramst_sub_term(1)
thf(fact_529_map__tailrec__rev_Osimps_I2_J,axiom,
    ! [F: tm > tm,A2: tm,As2: list_tm,Bs: list_tm] :
      ( ( map_ta4789309763159252277_tm_tm @ F @ ( cons_tm @ A2 @ As2 ) @ Bs )
      = ( map_ta4789309763159252277_tm_tm @ F @ As2 @ ( cons_tm @ ( F @ A2 ) @ Bs ) ) ) ).

% map_tailrec_rev.simps(2)
thf(fact_530_map__tailrec__rev_Osimps_I2_J,axiom,
    ! [F: tm > nat,A2: tm,As2: list_tm,Bs: list_nat] :
      ( ( map_ta7807370561492357248tm_nat @ F @ ( cons_tm @ A2 @ As2 ) @ Bs )
      = ( map_ta7807370561492357248tm_nat @ F @ As2 @ ( cons_nat @ ( F @ A2 ) @ Bs ) ) ) ).

% map_tailrec_rev.simps(2)
thf(fact_531_map__tailrec__rev_Osimps_I2_J,axiom,
    ! [F: nat > tm,A2: nat,As2: list_nat,Bs: list_tm] :
      ( ( map_ta389968950240100318nat_tm @ F @ ( cons_nat @ A2 @ As2 ) @ Bs )
      = ( map_ta389968950240100318nat_tm @ F @ As2 @ ( cons_tm @ ( F @ A2 ) @ Bs ) ) ) ).

% map_tailrec_rev.simps(2)
thf(fact_532_map__tailrec__rev_Osimps_I2_J,axiom,
    ! [F: nat > nat,A2: nat,As2: list_nat,Bs: list_nat] :
      ( ( map_ta7164188454487880599at_nat @ F @ ( cons_nat @ A2 @ As2 ) @ Bs )
      = ( map_ta7164188454487880599at_nat @ F @ As2 @ ( cons_nat @ ( F @ A2 ) @ Bs ) ) ) ).

% map_tailrec_rev.simps(2)
thf(fact_533_listFunTm_Osimps_I1_J,axiom,
    ! [N: nat,Ts: list_tm] :
      ( ( listFunTm @ ( fun @ N @ Ts ) )
      = ( cons_nat @ N @ ( listFunTms @ Ts ) ) ) ).

% listFunTm.simps(1)
thf(fact_534_sup__bot_Oright__neutral,axiom,
    ! [A2: set_tm] :
      ( ( sup_sup_set_tm @ A2 @ bot_bot_set_tm )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_535_sup__bot_Oright__neutral,axiom,
    ! [A2: set_nat] :
      ( ( sup_sup_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_536_sup__bot_Oright__neutral,axiom,
    ! [A2: set_fm] :
      ( ( sup_sup_set_fm @ A2 @ bot_bot_set_fm )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_537_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_tm,B2: set_tm] :
      ( ( bot_bot_set_tm
        = ( sup_sup_set_tm @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_tm )
        & ( B2 = bot_bot_set_tm ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_538_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( bot_bot_set_nat
        = ( sup_sup_set_nat @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_nat )
        & ( B2 = bot_bot_set_nat ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_539_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_fm,B2: set_fm] :
      ( ( bot_bot_set_fm
        = ( sup_sup_set_fm @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_fm )
        & ( B2 = bot_bot_set_fm ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_540_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_tm] :
      ( ( sup_sup_set_tm @ bot_bot_set_tm @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_541_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_nat] :
      ( ( sup_sup_set_nat @ bot_bot_set_nat @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_542_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_fm] :
      ( ( sup_sup_set_fm @ bot_bot_set_fm @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_543_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_tm,B2: set_tm] :
      ( ( ( sup_sup_set_tm @ A2 @ B2 )
        = bot_bot_set_tm )
      = ( ( A2 = bot_bot_set_tm )
        & ( B2 = bot_bot_set_tm ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_544_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ( sup_sup_set_nat @ A2 @ B2 )
        = bot_bot_set_nat )
      = ( ( A2 = bot_bot_set_nat )
        & ( B2 = bot_bot_set_nat ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_545_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_fm,B2: set_fm] :
      ( ( ( sup_sup_set_fm @ A2 @ B2 )
        = bot_bot_set_fm )
      = ( ( A2 = bot_bot_set_fm )
        & ( B2 = bot_bot_set_fm ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_546_sup__eq__bot__iff,axiom,
    ! [X: set_tm,Y2: set_tm] :
      ( ( ( sup_sup_set_tm @ X @ Y2 )
        = bot_bot_set_tm )
      = ( ( X = bot_bot_set_tm )
        & ( Y2 = bot_bot_set_tm ) ) ) ).

% sup_eq_bot_iff
thf(fact_547_sup__eq__bot__iff,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ( sup_sup_set_nat @ X @ Y2 )
        = bot_bot_set_nat )
      = ( ( X = bot_bot_set_nat )
        & ( Y2 = bot_bot_set_nat ) ) ) ).

% sup_eq_bot_iff
thf(fact_548_sup__eq__bot__iff,axiom,
    ! [X: set_fm,Y2: set_fm] :
      ( ( ( sup_sup_set_fm @ X @ Y2 )
        = bot_bot_set_fm )
      = ( ( X = bot_bot_set_fm )
        & ( Y2 = bot_bot_set_fm ) ) ) ).

% sup_eq_bot_iff
thf(fact_549_bot__eq__sup__iff,axiom,
    ! [X: set_tm,Y2: set_tm] :
      ( ( bot_bot_set_tm
        = ( sup_sup_set_tm @ X @ Y2 ) )
      = ( ( X = bot_bot_set_tm )
        & ( Y2 = bot_bot_set_tm ) ) ) ).

% bot_eq_sup_iff
thf(fact_550_bot__eq__sup__iff,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( bot_bot_set_nat
        = ( sup_sup_set_nat @ X @ Y2 ) )
      = ( ( X = bot_bot_set_nat )
        & ( Y2 = bot_bot_set_nat ) ) ) ).

% bot_eq_sup_iff
thf(fact_551_bot__eq__sup__iff,axiom,
    ! [X: set_fm,Y2: set_fm] :
      ( ( bot_bot_set_fm
        = ( sup_sup_set_fm @ X @ Y2 ) )
      = ( ( X = bot_bot_set_fm )
        & ( Y2 = bot_bot_set_fm ) ) ) ).

% bot_eq_sup_iff
thf(fact_552_sup__bot__right,axiom,
    ! [X: set_tm] :
      ( ( sup_sup_set_tm @ X @ bot_bot_set_tm )
      = X ) ).

% sup_bot_right
thf(fact_553_sup__bot__right,axiom,
    ! [X: set_nat] :
      ( ( sup_sup_set_nat @ X @ bot_bot_set_nat )
      = X ) ).

% sup_bot_right
thf(fact_554_sup__bot__right,axiom,
    ! [X: set_fm] :
      ( ( sup_sup_set_fm @ X @ bot_bot_set_fm )
      = X ) ).

% sup_bot_right
thf(fact_555_sup__bot__left,axiom,
    ! [X: set_tm] :
      ( ( sup_sup_set_tm @ bot_bot_set_tm @ X )
      = X ) ).

% sup_bot_left
thf(fact_556_sup__bot__left,axiom,
    ! [X: set_nat] :
      ( ( sup_sup_set_nat @ bot_bot_set_nat @ X )
      = X ) ).

% sup_bot_left
thf(fact_557_sup__bot__left,axiom,
    ! [X: set_fm] :
      ( ( sup_sup_set_fm @ bot_bot_set_fm @ X )
      = X ) ).

% sup_bot_left
thf(fact_558_le__sup__iff,axiom,
    ! [X: set_tm,Y2: set_tm,Z3: set_tm] :
      ( ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ X @ Y2 ) @ Z3 )
      = ( ( ord_less_eq_set_tm @ X @ Z3 )
        & ( ord_less_eq_set_tm @ Y2 @ Z3 ) ) ) ).

% le_sup_iff
thf(fact_559_le__sup__iff,axiom,
    ! [X: set_nat,Y2: set_nat,Z3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ X @ Y2 ) @ Z3 )
      = ( ( ord_less_eq_set_nat @ X @ Z3 )
        & ( ord_less_eq_set_nat @ Y2 @ Z3 ) ) ) ).

% le_sup_iff
thf(fact_560_le__sup__iff,axiom,
    ! [X: nat,Y2: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y2 ) @ Z3 )
      = ( ( ord_less_eq_nat @ X @ Z3 )
        & ( ord_less_eq_nat @ Y2 @ Z3 ) ) ) ).

% le_sup_iff
thf(fact_561_le__sup__iff,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ X @ Y2 ) @ Z3 )
      = ( ( ord_le2932123472753598470d_enat @ X @ Z3 )
        & ( ord_le2932123472753598470d_enat @ Y2 @ Z3 ) ) ) ).

% le_sup_iff
thf(fact_562_sup_Obounded__iff,axiom,
    ! [B2: set_tm,C: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ B2 @ C ) @ A2 )
      = ( ( ord_less_eq_set_tm @ B2 @ A2 )
        & ( ord_less_eq_set_tm @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_563_sup_Obounded__iff,axiom,
    ! [B2: set_nat,C: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ B2 @ C ) @ A2 )
      = ( ( ord_less_eq_set_nat @ B2 @ A2 )
        & ( ord_less_eq_set_nat @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_564_sup_Obounded__iff,axiom,
    ! [B2: nat,C: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_565_sup_Obounded__iff,axiom,
    ! [B2: extended_enat,C: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ B2 @ C ) @ A2 )
      = ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
        & ( ord_le2932123472753598470d_enat @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_566_inf__sup__ord_I4_J,axiom,
    ! [Y2: set_tm,X: set_tm] : ( ord_less_eq_set_tm @ Y2 @ ( sup_sup_set_tm @ X @ Y2 ) ) ).

% inf_sup_ord(4)
thf(fact_567_inf__sup__ord_I4_J,axiom,
    ! [Y2: set_nat,X: set_nat] : ( ord_less_eq_set_nat @ Y2 @ ( sup_sup_set_nat @ X @ Y2 ) ) ).

% inf_sup_ord(4)
thf(fact_568_inf__sup__ord_I4_J,axiom,
    ! [Y2: nat,X: nat] : ( ord_less_eq_nat @ Y2 @ ( sup_sup_nat @ X @ Y2 ) ) ).

% inf_sup_ord(4)
thf(fact_569_inf__sup__ord_I4_J,axiom,
    ! [Y2: extended_enat,X: extended_enat] : ( ord_le2932123472753598470d_enat @ Y2 @ ( sup_su3973961784419623482d_enat @ X @ Y2 ) ) ).

% inf_sup_ord(4)
thf(fact_570_inf__sup__ord_I3_J,axiom,
    ! [X: set_tm,Y2: set_tm] : ( ord_less_eq_set_tm @ X @ ( sup_sup_set_tm @ X @ Y2 ) ) ).

% inf_sup_ord(3)
thf(fact_571_inf__sup__ord_I3_J,axiom,
    ! [X: set_nat,Y2: set_nat] : ( ord_less_eq_set_nat @ X @ ( sup_sup_set_nat @ X @ Y2 ) ) ).

% inf_sup_ord(3)
thf(fact_572_inf__sup__ord_I3_J,axiom,
    ! [X: nat,Y2: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y2 ) ) ).

% inf_sup_ord(3)
thf(fact_573_inf__sup__ord_I3_J,axiom,
    ! [X: extended_enat,Y2: extended_enat] : ( ord_le2932123472753598470d_enat @ X @ ( sup_su3973961784419623482d_enat @ X @ Y2 ) ) ).

% inf_sup_ord(3)
thf(fact_574_le__supE,axiom,
    ! [A2: set_tm,B2: set_tm,X: set_tm] :
      ( ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_set_tm @ A2 @ X )
         => ~ ( ord_less_eq_set_tm @ B2 @ X ) ) ) ).

% le_supE
thf(fact_575_le__supE,axiom,
    ! [A2: set_nat,B2: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_set_nat @ A2 @ X )
         => ~ ( ord_less_eq_set_nat @ B2 @ X ) ) ) ).

% le_supE
thf(fact_576_le__supE,axiom,
    ! [A2: nat,B2: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_nat @ A2 @ X )
         => ~ ( ord_less_eq_nat @ B2 @ X ) ) ) ).

% le_supE
thf(fact_577_le__supE,axiom,
    ! [A2: extended_enat,B2: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) @ X )
     => ~ ( ( ord_le2932123472753598470d_enat @ A2 @ X )
         => ~ ( ord_le2932123472753598470d_enat @ B2 @ X ) ) ) ).

% le_supE
thf(fact_578_le__supI,axiom,
    ! [A2: set_tm,X: set_tm,B2: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ X )
     => ( ( ord_less_eq_set_tm @ B2 @ X )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_579_le__supI,axiom,
    ! [A2: set_nat,X: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ X )
     => ( ( ord_less_eq_set_nat @ B2 @ X )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_580_le__supI,axiom,
    ! [A2: nat,X: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ X )
     => ( ( ord_less_eq_nat @ B2 @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_581_le__supI,axiom,
    ! [A2: extended_enat,X: extended_enat,B2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ X )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ X )
       => ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_582_sup__ge1,axiom,
    ! [X: set_tm,Y2: set_tm] : ( ord_less_eq_set_tm @ X @ ( sup_sup_set_tm @ X @ Y2 ) ) ).

% sup_ge1
thf(fact_583_sup__ge1,axiom,
    ! [X: set_nat,Y2: set_nat] : ( ord_less_eq_set_nat @ X @ ( sup_sup_set_nat @ X @ Y2 ) ) ).

% sup_ge1
thf(fact_584_sup__ge1,axiom,
    ! [X: nat,Y2: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y2 ) ) ).

% sup_ge1
thf(fact_585_sup__ge1,axiom,
    ! [X: extended_enat,Y2: extended_enat] : ( ord_le2932123472753598470d_enat @ X @ ( sup_su3973961784419623482d_enat @ X @ Y2 ) ) ).

% sup_ge1
thf(fact_586_sup__ge2,axiom,
    ! [Y2: set_tm,X: set_tm] : ( ord_less_eq_set_tm @ Y2 @ ( sup_sup_set_tm @ X @ Y2 ) ) ).

% sup_ge2
thf(fact_587_sup__ge2,axiom,
    ! [Y2: set_nat,X: set_nat] : ( ord_less_eq_set_nat @ Y2 @ ( sup_sup_set_nat @ X @ Y2 ) ) ).

% sup_ge2
thf(fact_588_sup__ge2,axiom,
    ! [Y2: nat,X: nat] : ( ord_less_eq_nat @ Y2 @ ( sup_sup_nat @ X @ Y2 ) ) ).

% sup_ge2
thf(fact_589_sup__ge2,axiom,
    ! [Y2: extended_enat,X: extended_enat] : ( ord_le2932123472753598470d_enat @ Y2 @ ( sup_su3973961784419623482d_enat @ X @ Y2 ) ) ).

% sup_ge2
thf(fact_590_le__supI1,axiom,
    ! [X: set_tm,A2: set_tm,B2: set_tm] :
      ( ( ord_less_eq_set_tm @ X @ A2 )
     => ( ord_less_eq_set_tm @ X @ ( sup_sup_set_tm @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_591_le__supI1,axiom,
    ! [X: set_nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ A2 )
     => ( ord_less_eq_set_nat @ X @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_592_le__supI1,axiom,
    ! [X: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ X @ A2 )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_593_le__supI1,axiom,
    ! [X: extended_enat,A2: extended_enat,B2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ A2 )
     => ( ord_le2932123472753598470d_enat @ X @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_594_le__supI2,axiom,
    ! [X: set_tm,B2: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ X @ B2 )
     => ( ord_less_eq_set_tm @ X @ ( sup_sup_set_tm @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_595_le__supI2,axiom,
    ! [X: set_nat,B2: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ B2 )
     => ( ord_less_eq_set_nat @ X @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_596_le__supI2,axiom,
    ! [X: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ X @ B2 )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_597_le__supI2,axiom,
    ! [X: extended_enat,B2: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ B2 )
     => ( ord_le2932123472753598470d_enat @ X @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_598_sup_Omono,axiom,
    ! [C: set_tm,A2: set_tm,D2: set_tm,B2: set_tm] :
      ( ( ord_less_eq_set_tm @ C @ A2 )
     => ( ( ord_less_eq_set_tm @ D2 @ B2 )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ C @ D2 ) @ ( sup_sup_set_tm @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_599_sup_Omono,axiom,
    ! [C: set_nat,A2: set_nat,D2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ C @ A2 )
     => ( ( ord_less_eq_set_nat @ D2 @ B2 )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ C @ D2 ) @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_600_sup_Omono,axiom,
    ! [C: nat,A2: nat,D2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C @ A2 )
     => ( ( ord_less_eq_nat @ D2 @ B2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C @ D2 ) @ ( sup_sup_nat @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_601_sup_Omono,axiom,
    ! [C: extended_enat,A2: extended_enat,D2: extended_enat,B2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A2 )
     => ( ( ord_le2932123472753598470d_enat @ D2 @ B2 )
       => ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ C @ D2 ) @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_602_sup__mono,axiom,
    ! [A2: set_tm,C: set_tm,B2: set_tm,D2: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ C )
     => ( ( ord_less_eq_set_tm @ B2 @ D2 )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ A2 @ B2 ) @ ( sup_sup_set_tm @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_603_sup__mono,axiom,
    ! [A2: set_nat,C: set_nat,B2: set_nat,D2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ C )
     => ( ( ord_less_eq_set_nat @ B2 @ D2 )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A2 @ B2 ) @ ( sup_sup_set_nat @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_604_sup__mono,axiom,
    ! [A2: nat,C: nat,B2: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B2 @ D2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ ( sup_sup_nat @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_605_sup__mono,axiom,
    ! [A2: extended_enat,C: extended_enat,B2: extended_enat,D2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ C )
     => ( ( ord_le2932123472753598470d_enat @ B2 @ D2 )
       => ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) @ ( sup_su3973961784419623482d_enat @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_606_sup__least,axiom,
    ! [Y2: set_tm,X: set_tm,Z3: set_tm] :
      ( ( ord_less_eq_set_tm @ Y2 @ X )
     => ( ( ord_less_eq_set_tm @ Z3 @ X )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ Y2 @ Z3 ) @ X ) ) ) ).

% sup_least
thf(fact_607_sup__least,axiom,
    ! [Y2: set_nat,X: set_nat,Z3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ X )
     => ( ( ord_less_eq_set_nat @ Z3 @ X )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ Y2 @ Z3 ) @ X ) ) ) ).

% sup_least
thf(fact_608_sup__least,axiom,
    ! [Y2: nat,X: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ( ( ord_less_eq_nat @ Z3 @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y2 @ Z3 ) @ X ) ) ) ).

% sup_least
thf(fact_609_sup__least,axiom,
    ! [Y2: extended_enat,X: extended_enat,Z3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
     => ( ( ord_le2932123472753598470d_enat @ Z3 @ X )
       => ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ Y2 @ Z3 ) @ X ) ) ) ).

% sup_least
thf(fact_610_le__iff__sup,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [X2: set_tm,Y: set_tm] :
          ( ( sup_sup_set_tm @ X2 @ Y )
          = Y ) ) ) ).

% le_iff_sup
thf(fact_611_le__iff__sup,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [X2: set_nat,Y: set_nat] :
          ( ( sup_sup_set_nat @ X2 @ Y )
          = Y ) ) ) ).

% le_iff_sup
thf(fact_612_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y: nat] :
          ( ( sup_sup_nat @ X2 @ Y )
          = Y ) ) ) ).

% le_iff_sup
thf(fact_613_le__iff__sup,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [X2: extended_enat,Y: extended_enat] :
          ( ( sup_su3973961784419623482d_enat @ X2 @ Y )
          = Y ) ) ) ).

% le_iff_sup
thf(fact_614_sup_OorderE,axiom,
    ! [B2: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ B2 @ A2 )
     => ( A2
        = ( sup_sup_set_tm @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_615_sup_OorderE,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( A2
        = ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_616_sup_OorderE,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( A2
        = ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_617_sup_OorderE,axiom,
    ! [B2: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
     => ( A2
        = ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_618_sup_OorderI,axiom,
    ! [A2: set_tm,B2: set_tm] :
      ( ( A2
        = ( sup_sup_set_tm @ A2 @ B2 ) )
     => ( ord_less_eq_set_tm @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_619_sup_OorderI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2
        = ( sup_sup_set_nat @ A2 @ B2 ) )
     => ( ord_less_eq_set_nat @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_620_sup_OorderI,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( sup_sup_nat @ A2 @ B2 ) )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_621_sup_OorderI,axiom,
    ! [A2: extended_enat,B2: extended_enat] :
      ( ( A2
        = ( sup_su3973961784419623482d_enat @ A2 @ B2 ) )
     => ( ord_le2932123472753598470d_enat @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_622_sup__unique,axiom,
    ! [F: set_tm > set_tm > set_tm,X: set_tm,Y2: set_tm] :
      ( ! [X3: set_tm,Y3: set_tm] : ( ord_less_eq_set_tm @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: set_tm,Y3: set_tm] : ( ord_less_eq_set_tm @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: set_tm,Y3: set_tm,Z4: set_tm] :
              ( ( ord_less_eq_set_tm @ Y3 @ X3 )
             => ( ( ord_less_eq_set_tm @ Z4 @ X3 )
               => ( ord_less_eq_set_tm @ ( F @ Y3 @ Z4 ) @ X3 ) ) )
         => ( ( sup_sup_set_tm @ X @ Y2 )
            = ( F @ X @ Y2 ) ) ) ) ) ).

% sup_unique
thf(fact_623_sup__unique,axiom,
    ! [F: set_nat > set_nat > set_nat,X: set_nat,Y2: set_nat] :
      ( ! [X3: set_nat,Y3: set_nat] : ( ord_less_eq_set_nat @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: set_nat,Y3: set_nat] : ( ord_less_eq_set_nat @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: set_nat,Y3: set_nat,Z4: set_nat] :
              ( ( ord_less_eq_set_nat @ Y3 @ X3 )
             => ( ( ord_less_eq_set_nat @ Z4 @ X3 )
               => ( ord_less_eq_set_nat @ ( F @ Y3 @ Z4 ) @ X3 ) ) )
         => ( ( sup_sup_set_nat @ X @ Y2 )
            = ( F @ X @ Y2 ) ) ) ) ) ).

% sup_unique
thf(fact_624_sup__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y2: nat] :
      ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: nat,Y3: nat,Z4: nat] :
              ( ( ord_less_eq_nat @ Y3 @ X3 )
             => ( ( ord_less_eq_nat @ Z4 @ X3 )
               => ( ord_less_eq_nat @ ( F @ Y3 @ Z4 ) @ X3 ) ) )
         => ( ( sup_sup_nat @ X @ Y2 )
            = ( F @ X @ Y2 ) ) ) ) ) ).

% sup_unique
thf(fact_625_sup__unique,axiom,
    ! [F: extended_enat > extended_enat > extended_enat,X: extended_enat,Y2: extended_enat] :
      ( ! [X3: extended_enat,Y3: extended_enat] : ( ord_le2932123472753598470d_enat @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: extended_enat,Y3: extended_enat] : ( ord_le2932123472753598470d_enat @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: extended_enat,Y3: extended_enat,Z4: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ Y3 @ X3 )
             => ( ( ord_le2932123472753598470d_enat @ Z4 @ X3 )
               => ( ord_le2932123472753598470d_enat @ ( F @ Y3 @ Z4 ) @ X3 ) ) )
         => ( ( sup_su3973961784419623482d_enat @ X @ Y2 )
            = ( F @ X @ Y2 ) ) ) ) ) ).

% sup_unique
thf(fact_626_sup_Oabsorb1,axiom,
    ! [B2: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ B2 @ A2 )
     => ( ( sup_sup_set_tm @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_627_sup_Oabsorb1,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( sup_sup_set_nat @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_628_sup_Oabsorb1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_629_sup_Oabsorb1,axiom,
    ! [B2: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
     => ( ( sup_su3973961784419623482d_enat @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_630_sup_Oabsorb2,axiom,
    ! [A2: set_tm,B2: set_tm] :
      ( ( ord_less_eq_set_tm @ A2 @ B2 )
     => ( ( sup_sup_set_tm @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_631_sup_Oabsorb2,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( sup_sup_set_nat @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_632_sup_Oabsorb2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_633_sup_Oabsorb2,axiom,
    ! [A2: extended_enat,B2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A2 @ B2 )
     => ( ( sup_su3973961784419623482d_enat @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_634_sup__absorb1,axiom,
    ! [Y2: set_tm,X: set_tm] :
      ( ( ord_less_eq_set_tm @ Y2 @ X )
     => ( ( sup_sup_set_tm @ X @ Y2 )
        = X ) ) ).

% sup_absorb1
thf(fact_635_sup__absorb1,axiom,
    ! [Y2: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ X )
     => ( ( sup_sup_set_nat @ X @ Y2 )
        = X ) ) ).

% sup_absorb1
thf(fact_636_sup__absorb1,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ( ( sup_sup_nat @ X @ Y2 )
        = X ) ) ).

% sup_absorb1
thf(fact_637_sup__absorb1,axiom,
    ! [Y2: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
     => ( ( sup_su3973961784419623482d_enat @ X @ Y2 )
        = X ) ) ).

% sup_absorb1
thf(fact_638_sup__absorb2,axiom,
    ! [X: set_tm,Y2: set_tm] :
      ( ( ord_less_eq_set_tm @ X @ Y2 )
     => ( ( sup_sup_set_tm @ X @ Y2 )
        = Y2 ) ) ).

% sup_absorb2
thf(fact_639_sup__absorb2,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( sup_sup_set_nat @ X @ Y2 )
        = Y2 ) ) ).

% sup_absorb2
thf(fact_640_sup__absorb2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( sup_sup_nat @ X @ Y2 )
        = Y2 ) ) ).

% sup_absorb2
thf(fact_641_sup__absorb2,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( sup_su3973961784419623482d_enat @ X @ Y2 )
        = Y2 ) ) ).

% sup_absorb2
thf(fact_642_sup_OboundedE,axiom,
    ! [B2: set_tm,C: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ B2 @ C ) @ A2 )
     => ~ ( ( ord_less_eq_set_tm @ B2 @ A2 )
         => ~ ( ord_less_eq_set_tm @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_643_sup_OboundedE,axiom,
    ! [B2: set_nat,C: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ B2 @ C ) @ A2 )
     => ~ ( ( ord_less_eq_set_nat @ B2 @ A2 )
         => ~ ( ord_less_eq_set_nat @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_644_sup_OboundedE,axiom,
    ! [B2: nat,C: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 )
     => ~ ( ( ord_less_eq_nat @ B2 @ A2 )
         => ~ ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_645_sup_OboundedE,axiom,
    ! [B2: extended_enat,C: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ B2 @ C ) @ A2 )
     => ~ ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
         => ~ ( ord_le2932123472753598470d_enat @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_646_sup_OboundedI,axiom,
    ! [B2: set_tm,A2: set_tm,C: set_tm] :
      ( ( ord_less_eq_set_tm @ B2 @ A2 )
     => ( ( ord_less_eq_set_tm @ C @ A2 )
       => ( ord_less_eq_set_tm @ ( sup_sup_set_tm @ B2 @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_647_sup_OboundedI,axiom,
    ! [B2: set_nat,A2: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ A2 )
     => ( ( ord_less_eq_set_nat @ C @ A2 )
       => ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ B2 @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_648_sup_OboundedI,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_649_sup_OboundedI,axiom,
    ! [B2: extended_enat,A2: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B2 @ A2 )
     => ( ( ord_le2932123472753598470d_enat @ C @ A2 )
       => ( ord_le2932123472753598470d_enat @ ( sup_su3973961784419623482d_enat @ B2 @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_650_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [B3: set_tm,A4: set_tm] :
          ( A4
          = ( sup_sup_set_tm @ A4 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_651_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( A4
          = ( sup_sup_set_nat @ A4 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_652_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( A4
          = ( sup_sup_nat @ A4 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_653_sup_Oorder__iff,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B3: extended_enat,A4: extended_enat] :
          ( A4
          = ( sup_su3973961784419623482d_enat @ A4 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_654_sup_Ocobounded1,axiom,
    ! [A2: set_tm,B2: set_tm] : ( ord_less_eq_set_tm @ A2 @ ( sup_sup_set_tm @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_655_sup_Ocobounded1,axiom,
    ! [A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ A2 @ ( sup_sup_set_nat @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_656_sup_Ocobounded1,axiom,
    ! [A2: nat,B2: nat] : ( ord_less_eq_nat @ A2 @ ( sup_sup_nat @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_657_sup_Ocobounded1,axiom,
    ! [A2: extended_enat,B2: extended_enat] : ( ord_le2932123472753598470d_enat @ A2 @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_658_sup_Ocobounded2,axiom,
    ! [B2: set_tm,A2: set_tm] : ( ord_less_eq_set_tm @ B2 @ ( sup_sup_set_tm @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_659_sup_Ocobounded2,axiom,
    ! [B2: set_nat,A2: set_nat] : ( ord_less_eq_set_nat @ B2 @ ( sup_sup_set_nat @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_660_sup_Ocobounded2,axiom,
    ! [B2: nat,A2: nat] : ( ord_less_eq_nat @ B2 @ ( sup_sup_nat @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_661_sup_Ocobounded2,axiom,
    ! [B2: extended_enat,A2: extended_enat] : ( ord_le2932123472753598470d_enat @ B2 @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_662_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [B3: set_tm,A4: set_tm] :
          ( ( sup_sup_set_tm @ A4 @ B3 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_663_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( sup_sup_set_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_664_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( sup_sup_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_665_sup_Oabsorb__iff1,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B3: extended_enat,A4: extended_enat] :
          ( ( sup_su3973961784419623482d_enat @ A4 @ B3 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_666_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_tm
    = ( ^ [A4: set_tm,B3: set_tm] :
          ( ( sup_sup_set_tm @ A4 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_667_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( sup_sup_set_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_668_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( sup_sup_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_669_sup_Oabsorb__iff2,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A4: extended_enat,B3: extended_enat] :
          ( ( sup_su3973961784419623482d_enat @ A4 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_670_sup_OcoboundedI1,axiom,
    ! [C: set_tm,A2: set_tm,B2: set_tm] :
      ( ( ord_less_eq_set_tm @ C @ A2 )
     => ( ord_less_eq_set_tm @ C @ ( sup_sup_set_tm @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_671_sup_OcoboundedI1,axiom,
    ! [C: set_nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ C @ A2 )
     => ( ord_less_eq_set_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_672_sup_OcoboundedI1,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C @ A2 )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_673_sup_OcoboundedI1,axiom,
    ! [C: extended_enat,A2: extended_enat,B2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A2 )
     => ( ord_le2932123472753598470d_enat @ C @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_674_sup_OcoboundedI2,axiom,
    ! [C: set_tm,B2: set_tm,A2: set_tm] :
      ( ( ord_less_eq_set_tm @ C @ B2 )
     => ( ord_less_eq_set_tm @ C @ ( sup_sup_set_tm @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_675_sup_OcoboundedI2,axiom,
    ! [C: set_nat,B2: set_nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ C @ B2 )
     => ( ord_less_eq_set_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_676_sup_OcoboundedI2,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ C @ B2 )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_677_sup_OcoboundedI2,axiom,
    ! [C: extended_enat,B2: extended_enat,A2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ B2 )
     => ( ord_le2932123472753598470d_enat @ C @ ( sup_su3973961784419623482d_enat @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_678_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_679_le__zero__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% le_zero_eq
thf(fact_680_set__union,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( set_tm2 @ ( union_tm @ Xs @ Ys ) )
      = ( sup_sup_set_tm @ ( set_tm2 @ Xs ) @ ( set_tm2 @ Ys ) ) ) ).

% set_union
thf(fact_681_set__union,axiom,
    ! [Xs: list_set_nat,Ys: list_set_nat] :
      ( ( set_set_nat2 @ ( union_set_nat @ Xs @ Ys ) )
      = ( sup_sup_set_set_nat @ ( set_set_nat2 @ Xs ) @ ( set_set_nat2 @ Ys ) ) ) ).

% set_union
thf(fact_682_set__union,axiom,
    ! [Xs: list_fm,Ys: list_fm] :
      ( ( set_fm2 @ ( union_fm @ Xs @ Ys ) )
      = ( sup_sup_set_fm @ ( set_fm2 @ Xs ) @ ( set_fm2 @ Ys ) ) ) ).

% set_union
thf(fact_683_set__union,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( set_nat2 @ ( union_nat @ Xs @ Ys ) )
      = ( sup_sup_set_nat @ ( set_nat2 @ Xs ) @ ( set_nat2 @ Ys ) ) ) ).

% set_union
thf(fact_684_n__lists__Nil,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( n_lists_tm @ N @ nil_tm )
          = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( n_lists_tm @ N @ nil_tm )
          = nil_list_tm ) ) ) ).

% n_lists_Nil
thf(fact_685_n__lists__Nil,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( n_lists_nat @ N @ nil_nat )
          = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( n_lists_nat @ N @ nil_nat )
          = nil_list_nat ) ) ) ).

% n_lists_Nil
thf(fact_686_paramst__sub__term_I2_J,axiom,
    ! [M: nat,S2: tm,L3: list_tm] : ( ord_less_eq_set_nat @ ( paramsts @ ( sub_list @ M @ S2 @ L3 ) ) @ ( sup_sup_set_nat @ ( paramst @ S2 ) @ ( paramsts @ L3 ) ) ) ).

% paramst_sub_term(2)
thf(fact_687_list__encode_Ocases,axiom,
    ! [X: list_nat] :
      ( ( X != nil_nat )
     => ~ ! [X3: nat,Xs3: list_nat] :
            ( X
           != ( cons_nat @ X3 @ Xs3 ) ) ) ).

% list_encode.cases
thf(fact_688_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_689_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_690_Nat_Oex__has__greatest__nat,axiom,
    ! [P3: nat > $o,K: nat,B2: nat] :
      ( ( P3 @ K )
     => ( ! [Y3: nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B2 ) )
       => ? [X3: nat] :
            ( ( P3 @ X3 )
            & ! [Y5: nat] :
                ( ( P3 @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_691_GreatestI__ex__nat,axiom,
    ! [P3: nat > $o,B2: nat] :
      ( ? [X_1: nat] : ( P3 @ X_1 )
     => ( ! [Y3: nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B2 ) )
       => ( P3 @ ( order_Greatest_nat @ P3 ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_692_Greatest__le__nat,axiom,
    ! [P3: nat > $o,K: nat,B2: nat] :
      ( ( P3 @ K )
     => ( ! [Y3: nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B2 ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P3 ) ) ) ) ).

% Greatest_le_nat
thf(fact_693_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_694_GreatestI__nat,axiom,
    ! [P3: nat > $o,K: nat,B2: nat] :
      ( ( P3 @ K )
     => ( ! [Y3: nat] :
            ( ( P3 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B2 ) )
       => ( P3 @ ( order_Greatest_nat @ P3 ) ) ) ) ).

% GreatestI_nat
thf(fact_695_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_696_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_697_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_698_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_699_sub__list_Osimps_I1_J,axiom,
    ! [V: nat,S2: tm] :
      ( ( sub_list @ V @ S2 @ nil_tm )
      = nil_tm ) ).

% sub_list.simps(1)
thf(fact_700_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_701_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_702_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_703_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_704_sub__term_Osimps_I2_J,axiom,
    ! [V: nat,S2: tm,I: nat,L3: list_tm] :
      ( ( sub_term @ V @ S2 @ ( fun @ I @ L3 ) )
      = ( fun @ I @ ( sub_list @ V @ S2 @ L3 ) ) ) ).

% sub_term.simps(2)
thf(fact_705_sub__list_Osimps_I2_J,axiom,
    ! [V: nat,S2: tm,T: tm,L3: list_tm] :
      ( ( sub_list @ V @ S2 @ ( cons_tm @ T @ L3 ) )
      = ( cons_tm @ ( sub_term @ V @ S2 @ T ) @ ( sub_list @ V @ S2 @ L3 ) ) ) ).

% sub_list.simps(2)
thf(fact_706_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_707_zero__le,axiom,
    ! [X: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ X ) ).

% zero_le
thf(fact_708_n__lists_Osimps_I1_J,axiom,
    ! [Xs: list_tm] :
      ( ( n_lists_tm @ zero_zero_nat @ Xs )
      = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) ).

% n_lists.simps(1)
thf(fact_709_n__lists_Osimps_I1_J,axiom,
    ! [Xs: list_nat] :
      ( ( n_lists_nat @ zero_zero_nat @ Xs )
      = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% n_lists.simps(1)
thf(fact_710_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_tm] :
      ( ( sup_sup_set_tm @ X @ bot_bot_set_tm )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_711_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_nat] :
      ( ( sup_sup_set_nat @ X @ bot_bot_set_nat )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_712_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_fm] :
      ( ( sup_sup_set_fm @ X @ bot_bot_set_fm )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_713_s5_I1_J,axiom,
    ( sub_term
    = ( ^ [V2: nat,S3: tm,T2: tm] : ( substt @ T2 @ S3 @ V2 ) ) ) ).

% s5(1)
thf(fact_714_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_715_le__numeral__extra_I3_J,axiom,
    ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ zero_z5237406670263579293d_enat ).

% le_numeral_extra(3)
thf(fact_716_sublists_Osimps_I1_J,axiom,
    ( ( sublists_tm @ nil_tm )
    = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) ).

% sublists.simps(1)
thf(fact_717_sublists_Osimps_I1_J,axiom,
    ( ( sublists_nat @ nil_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% sublists.simps(1)
thf(fact_718_paramst_Osimps_I2_J,axiom,
    ! [A2: nat,Ts: list_tm] :
      ( ( paramst @ ( fun @ A2 @ Ts ) )
      = ( sup_sup_set_nat @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) @ ( paramsts @ Ts ) ) ) ).

% paramst.simps(2)
thf(fact_719_product__lists_Osimps_I1_J,axiom,
    ( ( product_lists_tm @ nil_list_tm )
    = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) ).

% product_lists.simps(1)
thf(fact_720_product__lists_Osimps_I1_J,axiom,
    ( ( product_lists_nat @ nil_list_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% product_lists.simps(1)
thf(fact_721_params__sub,axiom,
    ! [M: nat,T: tm,P4: fm] : ( ord_less_eq_set_nat @ ( params @ ( sub @ M @ T @ P4 ) ) @ ( sup_sup_set_nat @ ( paramst @ T ) @ ( params @ P4 ) ) ) ).

% params_sub
thf(fact_722_insert__absorb2,axiom,
    ! [X: nat,A: set_nat] :
      ( ( insert_nat2 @ X @ ( insert_nat2 @ X @ A ) )
      = ( insert_nat2 @ X @ A ) ) ).

% insert_absorb2
thf(fact_723_insert__absorb2,axiom,
    ! [X: fm,A: set_fm] :
      ( ( insert_fm2 @ X @ ( insert_fm2 @ X @ A ) )
      = ( insert_fm2 @ X @ A ) ) ).

% insert_absorb2
thf(fact_724_insert__iff,axiom,
    ! [A2: tm,B2: tm,A: set_tm] :
      ( ( member_tm3 @ A2 @ ( insert_tm2 @ B2 @ A ) )
      = ( ( A2 = B2 )
        | ( member_tm3 @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_725_insert__iff,axiom,
    ! [A2: nat,B2: nat,A: set_nat] :
      ( ( member_nat3 @ A2 @ ( insert_nat2 @ B2 @ A ) )
      = ( ( A2 = B2 )
        | ( member_nat3 @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_726_insert__iff,axiom,
    ! [A2: fm,B2: fm,A: set_fm] :
      ( ( member_fm3 @ A2 @ ( insert_fm2 @ B2 @ A ) )
      = ( ( A2 = B2 )
        | ( member_fm3 @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_727_insert__iff,axiom,
    ! [A2: set_nat,B2: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ A2 @ ( insert_set_nat2 @ B2 @ A ) )
      = ( ( A2 = B2 )
        | ( member_set_nat3 @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_728_insertCI,axiom,
    ! [A2: tm,B: set_tm,B2: tm] :
      ( ( ~ ( member_tm3 @ A2 @ B )
       => ( A2 = B2 ) )
     => ( member_tm3 @ A2 @ ( insert_tm2 @ B2 @ B ) ) ) ).

% insertCI
thf(fact_729_insertCI,axiom,
    ! [A2: nat,B: set_nat,B2: nat] :
      ( ( ~ ( member_nat3 @ A2 @ B )
       => ( A2 = B2 ) )
     => ( member_nat3 @ A2 @ ( insert_nat2 @ B2 @ B ) ) ) ).

% insertCI
thf(fact_730_insertCI,axiom,
    ! [A2: fm,B: set_fm,B2: fm] :
      ( ( ~ ( member_fm3 @ A2 @ B )
       => ( A2 = B2 ) )
     => ( member_fm3 @ A2 @ ( insert_fm2 @ B2 @ B ) ) ) ).

% insertCI
thf(fact_731_insertCI,axiom,
    ! [A2: set_nat,B: set_set_nat,B2: set_nat] :
      ( ( ~ ( member_set_nat3 @ A2 @ B )
       => ( A2 = B2 ) )
     => ( member_set_nat3 @ A2 @ ( insert_set_nat2 @ B2 @ B ) ) ) ).

% insertCI
thf(fact_732_singletonI,axiom,
    ! [A2: set_nat] : ( member_set_nat3 @ A2 @ ( insert_set_nat2 @ A2 @ bot_bot_set_set_nat ) ) ).

% singletonI
thf(fact_733_singletonI,axiom,
    ! [A2: tm] : ( member_tm3 @ A2 @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) ) ).

% singletonI
thf(fact_734_singletonI,axiom,
    ! [A2: nat] : ( member_nat3 @ A2 @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_735_singletonI,axiom,
    ! [A2: fm] : ( member_fm3 @ A2 @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) ) ).

% singletonI
thf(fact_736_insert__subset,axiom,
    ! [X: fm,A: set_fm,B: set_fm] :
      ( ( ord_less_eq_set_fm @ ( insert_fm2 @ X @ A ) @ B )
      = ( ( member_fm3 @ X @ B )
        & ( ord_less_eq_set_fm @ A @ B ) ) ) ).

% insert_subset
thf(fact_737_insert__subset,axiom,
    ! [X: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( insert_set_nat2 @ X @ A ) @ B )
      = ( ( member_set_nat3 @ X @ B )
        & ( ord_le6893508408891458716et_nat @ A @ B ) ) ) ).

% insert_subset
thf(fact_738_insert__subset,axiom,
    ! [X: tm,A: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ ( insert_tm2 @ X @ A ) @ B )
      = ( ( member_tm3 @ X @ B )
        & ( ord_less_eq_set_tm @ A @ B ) ) ) ).

% insert_subset
thf(fact_739_insert__subset,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat2 @ X @ A ) @ B )
      = ( ( member_nat3 @ X @ B )
        & ( ord_less_eq_set_nat @ A @ B ) ) ) ).

% insert_subset
thf(fact_740_Un__insert__right,axiom,
    ! [A: set_fm,A2: fm,B: set_fm] :
      ( ( sup_sup_set_fm @ A @ ( insert_fm2 @ A2 @ B ) )
      = ( insert_fm2 @ A2 @ ( sup_sup_set_fm @ A @ B ) ) ) ).

% Un_insert_right
thf(fact_741_Un__insert__right,axiom,
    ! [A: set_nat,A2: nat,B: set_nat] :
      ( ( sup_sup_set_nat @ A @ ( insert_nat2 @ A2 @ B ) )
      = ( insert_nat2 @ A2 @ ( sup_sup_set_nat @ A @ B ) ) ) ).

% Un_insert_right
thf(fact_742_Un__insert__left,axiom,
    ! [A2: fm,B: set_fm,C2: set_fm] :
      ( ( sup_sup_set_fm @ ( insert_fm2 @ A2 @ B ) @ C2 )
      = ( insert_fm2 @ A2 @ ( sup_sup_set_fm @ B @ C2 ) ) ) ).

% Un_insert_left
thf(fact_743_Un__insert__left,axiom,
    ! [A2: nat,B: set_nat,C2: set_nat] :
      ( ( sup_sup_set_nat @ ( insert_nat2 @ A2 @ B ) @ C2 )
      = ( insert_nat2 @ A2 @ ( sup_sup_set_nat @ B @ C2 ) ) ) ).

% Un_insert_left
thf(fact_744_singleton__insert__inj__eq,axiom,
    ! [B2: fm,A2: fm,A: set_fm] :
      ( ( ( insert_fm2 @ B2 @ bot_bot_set_fm )
        = ( insert_fm2 @ A2 @ A ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ B2 @ bot_bot_set_fm ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_745_singleton__insert__inj__eq,axiom,
    ! [B2: tm,A2: tm,A: set_tm] :
      ( ( ( insert_tm2 @ B2 @ bot_bot_set_tm )
        = ( insert_tm2 @ A2 @ A ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ B2 @ bot_bot_set_tm ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_746_singleton__insert__inj__eq,axiom,
    ! [B2: nat,A2: nat,A: set_nat] :
      ( ( ( insert_nat2 @ B2 @ bot_bot_set_nat )
        = ( insert_nat2 @ A2 @ A ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ B2 @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_747_singleton__insert__inj__eq_H,axiom,
    ! [A2: fm,A: set_fm,B2: fm] :
      ( ( ( insert_fm2 @ A2 @ A )
        = ( insert_fm2 @ B2 @ bot_bot_set_fm ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ B2 @ bot_bot_set_fm ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_748_singleton__insert__inj__eq_H,axiom,
    ! [A2: tm,A: set_tm,B2: tm] :
      ( ( ( insert_tm2 @ A2 @ A )
        = ( insert_tm2 @ B2 @ bot_bot_set_tm ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ B2 @ bot_bot_set_tm ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_749_singleton__insert__inj__eq_H,axiom,
    ! [A2: nat,A: set_nat,B2: nat] :
      ( ( ( insert_nat2 @ A2 @ A )
        = ( insert_nat2 @ B2 @ bot_bot_set_nat ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ B2 @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_750_list_Osimps_I15_J,axiom,
    ! [X21: set_nat,X22: list_set_nat] :
      ( ( set_set_nat2 @ ( cons_set_nat @ X21 @ X22 ) )
      = ( insert_set_nat2 @ X21 @ ( set_set_nat2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_751_list_Osimps_I15_J,axiom,
    ! [X21: fm,X22: list_fm] :
      ( ( set_fm2 @ ( cons_fm @ X21 @ X22 ) )
      = ( insert_fm2 @ X21 @ ( set_fm2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_752_list_Osimps_I15_J,axiom,
    ! [X21: tm,X22: list_tm] :
      ( ( set_tm2 @ ( cons_tm @ X21 @ X22 ) )
      = ( insert_tm2 @ X21 @ ( set_tm2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_753_list_Osimps_I15_J,axiom,
    ! [X21: nat,X22: list_nat] :
      ( ( set_nat2 @ ( cons_nat @ X21 @ X22 ) )
      = ( insert_nat2 @ X21 @ ( set_nat2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_754_List_Oset__insert,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( set_tm2 @ ( insert_tm @ X @ Xs ) )
      = ( insert_tm2 @ X @ ( set_tm2 @ Xs ) ) ) ).

% List.set_insert
thf(fact_755_List_Oset__insert,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( set_nat2 @ ( insert_nat @ X @ Xs ) )
      = ( insert_nat2 @ X @ ( set_nat2 @ Xs ) ) ) ).

% List.set_insert
thf(fact_756_List_Oset__insert,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( set_set_nat2 @ ( insert_set_nat @ X @ Xs ) )
      = ( insert_set_nat2 @ X @ ( set_set_nat2 @ Xs ) ) ) ).

% List.set_insert
thf(fact_757_List_Oset__insert,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( set_fm2 @ ( insert_fm @ X @ Xs ) )
      = ( insert_fm2 @ X @ ( set_fm2 @ Xs ) ) ) ).

% List.set_insert
thf(fact_758_the__elem__eq,axiom,
    ! [X: tm] :
      ( ( the_elem_tm @ ( insert_tm2 @ X @ bot_bot_set_tm ) )
      = X ) ).

% the_elem_eq
thf(fact_759_the__elem__eq,axiom,
    ! [X: nat] :
      ( ( the_elem_nat @ ( insert_nat2 @ X @ bot_bot_set_nat ) )
      = X ) ).

% the_elem_eq
thf(fact_760_the__elem__eq,axiom,
    ! [X: fm] :
      ( ( the_elem_fm @ ( insert_fm2 @ X @ bot_bot_set_fm ) )
      = X ) ).

% the_elem_eq
thf(fact_761_mk__disjoint__insert,axiom,
    ! [A2: tm,A: set_tm] :
      ( ( member_tm3 @ A2 @ A )
     => ? [B7: set_tm] :
          ( ( A
            = ( insert_tm2 @ A2 @ B7 ) )
          & ~ ( member_tm3 @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_762_mk__disjoint__insert,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat3 @ A2 @ A )
     => ? [B7: set_nat] :
          ( ( A
            = ( insert_nat2 @ A2 @ B7 ) )
          & ~ ( member_nat3 @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_763_mk__disjoint__insert,axiom,
    ! [A2: fm,A: set_fm] :
      ( ( member_fm3 @ A2 @ A )
     => ? [B7: set_fm] :
          ( ( A
            = ( insert_fm2 @ A2 @ B7 ) )
          & ~ ( member_fm3 @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_764_mk__disjoint__insert,axiom,
    ! [A2: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ A2 @ A )
     => ? [B7: set_set_nat] :
          ( ( A
            = ( insert_set_nat2 @ A2 @ B7 ) )
          & ~ ( member_set_nat3 @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_765_insert__commute,axiom,
    ! [X: nat,Y2: nat,A: set_nat] :
      ( ( insert_nat2 @ X @ ( insert_nat2 @ Y2 @ A ) )
      = ( insert_nat2 @ Y2 @ ( insert_nat2 @ X @ A ) ) ) ).

% insert_commute
thf(fact_766_insert__commute,axiom,
    ! [X: fm,Y2: fm,A: set_fm] :
      ( ( insert_fm2 @ X @ ( insert_fm2 @ Y2 @ A ) )
      = ( insert_fm2 @ Y2 @ ( insert_fm2 @ X @ A ) ) ) ).

% insert_commute
thf(fact_767_insert__eq__iff,axiom,
    ! [A2: tm,A: set_tm,B2: tm,B: set_tm] :
      ( ~ ( member_tm3 @ A2 @ A )
     => ( ~ ( member_tm3 @ B2 @ B )
       => ( ( ( insert_tm2 @ A2 @ A )
            = ( insert_tm2 @ B2 @ B ) )
          = ( ( ( A2 = B2 )
             => ( A = B ) )
            & ( ( A2 != B2 )
             => ? [C4: set_tm] :
                  ( ( A
                    = ( insert_tm2 @ B2 @ C4 ) )
                  & ~ ( member_tm3 @ B2 @ C4 )
                  & ( B
                    = ( insert_tm2 @ A2 @ C4 ) )
                  & ~ ( member_tm3 @ A2 @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_768_insert__eq__iff,axiom,
    ! [A2: nat,A: set_nat,B2: nat,B: set_nat] :
      ( ~ ( member_nat3 @ A2 @ A )
     => ( ~ ( member_nat3 @ B2 @ B )
       => ( ( ( insert_nat2 @ A2 @ A )
            = ( insert_nat2 @ B2 @ B ) )
          = ( ( ( A2 = B2 )
             => ( A = B ) )
            & ( ( A2 != B2 )
             => ? [C4: set_nat] :
                  ( ( A
                    = ( insert_nat2 @ B2 @ C4 ) )
                  & ~ ( member_nat3 @ B2 @ C4 )
                  & ( B
                    = ( insert_nat2 @ A2 @ C4 ) )
                  & ~ ( member_nat3 @ A2 @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_769_insert__eq__iff,axiom,
    ! [A2: fm,A: set_fm,B2: fm,B: set_fm] :
      ( ~ ( member_fm3 @ A2 @ A )
     => ( ~ ( member_fm3 @ B2 @ B )
       => ( ( ( insert_fm2 @ A2 @ A )
            = ( insert_fm2 @ B2 @ B ) )
          = ( ( ( A2 = B2 )
             => ( A = B ) )
            & ( ( A2 != B2 )
             => ? [C4: set_fm] :
                  ( ( A
                    = ( insert_fm2 @ B2 @ C4 ) )
                  & ~ ( member_fm3 @ B2 @ C4 )
                  & ( B
                    = ( insert_fm2 @ A2 @ C4 ) )
                  & ~ ( member_fm3 @ A2 @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_770_insert__eq__iff,axiom,
    ! [A2: set_nat,A: set_set_nat,B2: set_nat,B: set_set_nat] :
      ( ~ ( member_set_nat3 @ A2 @ A )
     => ( ~ ( member_set_nat3 @ B2 @ B )
       => ( ( ( insert_set_nat2 @ A2 @ A )
            = ( insert_set_nat2 @ B2 @ B ) )
          = ( ( ( A2 = B2 )
             => ( A = B ) )
            & ( ( A2 != B2 )
             => ? [C4: set_set_nat] :
                  ( ( A
                    = ( insert_set_nat2 @ B2 @ C4 ) )
                  & ~ ( member_set_nat3 @ B2 @ C4 )
                  & ( B
                    = ( insert_set_nat2 @ A2 @ C4 ) )
                  & ~ ( member_set_nat3 @ A2 @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_771_insert__absorb,axiom,
    ! [A2: tm,A: set_tm] :
      ( ( member_tm3 @ A2 @ A )
     => ( ( insert_tm2 @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_772_insert__absorb,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat3 @ A2 @ A )
     => ( ( insert_nat2 @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_773_insert__absorb,axiom,
    ! [A2: fm,A: set_fm] :
      ( ( member_fm3 @ A2 @ A )
     => ( ( insert_fm2 @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_774_insert__absorb,axiom,
    ! [A2: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ A2 @ A )
     => ( ( insert_set_nat2 @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_775_insert__ident,axiom,
    ! [X: tm,A: set_tm,B: set_tm] :
      ( ~ ( member_tm3 @ X @ A )
     => ( ~ ( member_tm3 @ X @ B )
       => ( ( ( insert_tm2 @ X @ A )
            = ( insert_tm2 @ X @ B ) )
          = ( A = B ) ) ) ) ).

% insert_ident
thf(fact_776_insert__ident,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ~ ( member_nat3 @ X @ A )
     => ( ~ ( member_nat3 @ X @ B )
       => ( ( ( insert_nat2 @ X @ A )
            = ( insert_nat2 @ X @ B ) )
          = ( A = B ) ) ) ) ).

% insert_ident
thf(fact_777_insert__ident,axiom,
    ! [X: fm,A: set_fm,B: set_fm] :
      ( ~ ( member_fm3 @ X @ A )
     => ( ~ ( member_fm3 @ X @ B )
       => ( ( ( insert_fm2 @ X @ A )
            = ( insert_fm2 @ X @ B ) )
          = ( A = B ) ) ) ) ).

% insert_ident
thf(fact_778_insert__ident,axiom,
    ! [X: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ~ ( member_set_nat3 @ X @ A )
     => ( ~ ( member_set_nat3 @ X @ B )
       => ( ( ( insert_set_nat2 @ X @ A )
            = ( insert_set_nat2 @ X @ B ) )
          = ( A = B ) ) ) ) ).

% insert_ident
thf(fact_779_Set_Oset__insert,axiom,
    ! [X: tm,A: set_tm] :
      ( ( member_tm3 @ X @ A )
     => ~ ! [B7: set_tm] :
            ( ( A
              = ( insert_tm2 @ X @ B7 ) )
           => ( member_tm3 @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_780_Set_Oset__insert,axiom,
    ! [X: nat,A: set_nat] :
      ( ( member_nat3 @ X @ A )
     => ~ ! [B7: set_nat] :
            ( ( A
              = ( insert_nat2 @ X @ B7 ) )
           => ( member_nat3 @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_781_Set_Oset__insert,axiom,
    ! [X: fm,A: set_fm] :
      ( ( member_fm3 @ X @ A )
     => ~ ! [B7: set_fm] :
            ( ( A
              = ( insert_fm2 @ X @ B7 ) )
           => ( member_fm3 @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_782_Set_Oset__insert,axiom,
    ! [X: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ X @ A )
     => ~ ! [B7: set_set_nat] :
            ( ( A
              = ( insert_set_nat2 @ X @ B7 ) )
           => ( member_set_nat3 @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_783_insertI2,axiom,
    ! [A2: tm,B: set_tm,B2: tm] :
      ( ( member_tm3 @ A2 @ B )
     => ( member_tm3 @ A2 @ ( insert_tm2 @ B2 @ B ) ) ) ).

% insertI2
thf(fact_784_insertI2,axiom,
    ! [A2: nat,B: set_nat,B2: nat] :
      ( ( member_nat3 @ A2 @ B )
     => ( member_nat3 @ A2 @ ( insert_nat2 @ B2 @ B ) ) ) ).

% insertI2
thf(fact_785_insertI2,axiom,
    ! [A2: fm,B: set_fm,B2: fm] :
      ( ( member_fm3 @ A2 @ B )
     => ( member_fm3 @ A2 @ ( insert_fm2 @ B2 @ B ) ) ) ).

% insertI2
thf(fact_786_insertI2,axiom,
    ! [A2: set_nat,B: set_set_nat,B2: set_nat] :
      ( ( member_set_nat3 @ A2 @ B )
     => ( member_set_nat3 @ A2 @ ( insert_set_nat2 @ B2 @ B ) ) ) ).

% insertI2
thf(fact_787_insertI1,axiom,
    ! [A2: tm,B: set_tm] : ( member_tm3 @ A2 @ ( insert_tm2 @ A2 @ B ) ) ).

% insertI1
thf(fact_788_insertI1,axiom,
    ! [A2: nat,B: set_nat] : ( member_nat3 @ A2 @ ( insert_nat2 @ A2 @ B ) ) ).

% insertI1
thf(fact_789_insertI1,axiom,
    ! [A2: fm,B: set_fm] : ( member_fm3 @ A2 @ ( insert_fm2 @ A2 @ B ) ) ).

% insertI1
thf(fact_790_insertI1,axiom,
    ! [A2: set_nat,B: set_set_nat] : ( member_set_nat3 @ A2 @ ( insert_set_nat2 @ A2 @ B ) ) ).

% insertI1
thf(fact_791_insertE,axiom,
    ! [A2: tm,B2: tm,A: set_tm] :
      ( ( member_tm3 @ A2 @ ( insert_tm2 @ B2 @ A ) )
     => ( ( A2 != B2 )
       => ( member_tm3 @ A2 @ A ) ) ) ).

% insertE
thf(fact_792_insertE,axiom,
    ! [A2: nat,B2: nat,A: set_nat] :
      ( ( member_nat3 @ A2 @ ( insert_nat2 @ B2 @ A ) )
     => ( ( A2 != B2 )
       => ( member_nat3 @ A2 @ A ) ) ) ).

% insertE
thf(fact_793_insertE,axiom,
    ! [A2: fm,B2: fm,A: set_fm] :
      ( ( member_fm3 @ A2 @ ( insert_fm2 @ B2 @ A ) )
     => ( ( A2 != B2 )
       => ( member_fm3 @ A2 @ A ) ) ) ).

% insertE
thf(fact_794_insertE,axiom,
    ! [A2: set_nat,B2: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ A2 @ ( insert_set_nat2 @ B2 @ A ) )
     => ( ( A2 != B2 )
       => ( member_set_nat3 @ A2 @ A ) ) ) ).

% insertE
thf(fact_795_singletonD,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( member_set_nat3 @ B2 @ ( insert_set_nat2 @ A2 @ bot_bot_set_set_nat ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_796_singletonD,axiom,
    ! [B2: tm,A2: tm] :
      ( ( member_tm3 @ B2 @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_797_singletonD,axiom,
    ! [B2: nat,A2: nat] :
      ( ( member_nat3 @ B2 @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_798_singletonD,axiom,
    ! [B2: fm,A2: fm] :
      ( ( member_fm3 @ B2 @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_799_singleton__iff,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( member_set_nat3 @ B2 @ ( insert_set_nat2 @ A2 @ bot_bot_set_set_nat ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_800_singleton__iff,axiom,
    ! [B2: tm,A2: tm] :
      ( ( member_tm3 @ B2 @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_801_singleton__iff,axiom,
    ! [B2: nat,A2: nat] :
      ( ( member_nat3 @ B2 @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_802_singleton__iff,axiom,
    ! [B2: fm,A2: fm] :
      ( ( member_fm3 @ B2 @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_803_doubleton__eq__iff,axiom,
    ! [A2: tm,B2: tm,C: tm,D2: tm] :
      ( ( ( insert_tm2 @ A2 @ ( insert_tm2 @ B2 @ bot_bot_set_tm ) )
        = ( insert_tm2 @ C @ ( insert_tm2 @ D2 @ bot_bot_set_tm ) ) )
      = ( ( ( A2 = C )
          & ( B2 = D2 ) )
        | ( ( A2 = D2 )
          & ( B2 = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_804_doubleton__eq__iff,axiom,
    ! [A2: nat,B2: nat,C: nat,D2: nat] :
      ( ( ( insert_nat2 @ A2 @ ( insert_nat2 @ B2 @ bot_bot_set_nat ) )
        = ( insert_nat2 @ C @ ( insert_nat2 @ D2 @ bot_bot_set_nat ) ) )
      = ( ( ( A2 = C )
          & ( B2 = D2 ) )
        | ( ( A2 = D2 )
          & ( B2 = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_805_doubleton__eq__iff,axiom,
    ! [A2: fm,B2: fm,C: fm,D2: fm] :
      ( ( ( insert_fm2 @ A2 @ ( insert_fm2 @ B2 @ bot_bot_set_fm ) )
        = ( insert_fm2 @ C @ ( insert_fm2 @ D2 @ bot_bot_set_fm ) ) )
      = ( ( ( A2 = C )
          & ( B2 = D2 ) )
        | ( ( A2 = D2 )
          & ( B2 = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_806_insert__not__empty,axiom,
    ! [A2: tm,A: set_tm] :
      ( ( insert_tm2 @ A2 @ A )
     != bot_bot_set_tm ) ).

% insert_not_empty
thf(fact_807_insert__not__empty,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( insert_nat2 @ A2 @ A )
     != bot_bot_set_nat ) ).

% insert_not_empty
thf(fact_808_insert__not__empty,axiom,
    ! [A2: fm,A: set_fm] :
      ( ( insert_fm2 @ A2 @ A )
     != bot_bot_set_fm ) ).

% insert_not_empty
thf(fact_809_singleton__inject,axiom,
    ! [A2: tm,B2: tm] :
      ( ( ( insert_tm2 @ A2 @ bot_bot_set_tm )
        = ( insert_tm2 @ B2 @ bot_bot_set_tm ) )
     => ( A2 = B2 ) ) ).

% singleton_inject
thf(fact_810_singleton__inject,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( insert_nat2 @ A2 @ bot_bot_set_nat )
        = ( insert_nat2 @ B2 @ bot_bot_set_nat ) )
     => ( A2 = B2 ) ) ).

% singleton_inject
thf(fact_811_singleton__inject,axiom,
    ! [A2: fm,B2: fm] :
      ( ( ( insert_fm2 @ A2 @ bot_bot_set_fm )
        = ( insert_fm2 @ B2 @ bot_bot_set_fm ) )
     => ( A2 = B2 ) ) ).

% singleton_inject
thf(fact_812_insert__subsetI,axiom,
    ! [X: fm,A: set_fm,X6: set_fm] :
      ( ( member_fm3 @ X @ A )
     => ( ( ord_less_eq_set_fm @ X6 @ A )
       => ( ord_less_eq_set_fm @ ( insert_fm2 @ X @ X6 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_813_insert__subsetI,axiom,
    ! [X: set_nat,A: set_set_nat,X6: set_set_nat] :
      ( ( member_set_nat3 @ X @ A )
     => ( ( ord_le6893508408891458716et_nat @ X6 @ A )
       => ( ord_le6893508408891458716et_nat @ ( insert_set_nat2 @ X @ X6 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_814_insert__subsetI,axiom,
    ! [X: tm,A: set_tm,X6: set_tm] :
      ( ( member_tm3 @ X @ A )
     => ( ( ord_less_eq_set_tm @ X6 @ A )
       => ( ord_less_eq_set_tm @ ( insert_tm2 @ X @ X6 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_815_insert__subsetI,axiom,
    ! [X: nat,A: set_nat,X6: set_nat] :
      ( ( member_nat3 @ X @ A )
     => ( ( ord_less_eq_set_nat @ X6 @ A )
       => ( ord_less_eq_set_nat @ ( insert_nat2 @ X @ X6 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_816_insert__mono,axiom,
    ! [C2: set_fm,D: set_fm,A2: fm] :
      ( ( ord_less_eq_set_fm @ C2 @ D )
     => ( ord_less_eq_set_fm @ ( insert_fm2 @ A2 @ C2 ) @ ( insert_fm2 @ A2 @ D ) ) ) ).

% insert_mono
thf(fact_817_insert__mono,axiom,
    ! [C2: set_tm,D: set_tm,A2: tm] :
      ( ( ord_less_eq_set_tm @ C2 @ D )
     => ( ord_less_eq_set_tm @ ( insert_tm2 @ A2 @ C2 ) @ ( insert_tm2 @ A2 @ D ) ) ) ).

% insert_mono
thf(fact_818_insert__mono,axiom,
    ! [C2: set_nat,D: set_nat,A2: nat] :
      ( ( ord_less_eq_set_nat @ C2 @ D )
     => ( ord_less_eq_set_nat @ ( insert_nat2 @ A2 @ C2 ) @ ( insert_nat2 @ A2 @ D ) ) ) ).

% insert_mono
thf(fact_819_subset__insert,axiom,
    ! [X: fm,A: set_fm,B: set_fm] :
      ( ~ ( member_fm3 @ X @ A )
     => ( ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ X @ B ) )
        = ( ord_less_eq_set_fm @ A @ B ) ) ) ).

% subset_insert
thf(fact_820_subset__insert,axiom,
    ! [X: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ~ ( member_set_nat3 @ X @ A )
     => ( ( ord_le6893508408891458716et_nat @ A @ ( insert_set_nat2 @ X @ B ) )
        = ( ord_le6893508408891458716et_nat @ A @ B ) ) ) ).

% subset_insert
thf(fact_821_subset__insert,axiom,
    ! [X: tm,A: set_tm,B: set_tm] :
      ( ~ ( member_tm3 @ X @ A )
     => ( ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ X @ B ) )
        = ( ord_less_eq_set_tm @ A @ B ) ) ) ).

% subset_insert
thf(fact_822_subset__insert,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ~ ( member_nat3 @ X @ A )
     => ( ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X @ B ) )
        = ( ord_less_eq_set_nat @ A @ B ) ) ) ).

% subset_insert
thf(fact_823_subset__insertI,axiom,
    ! [B: set_fm,A2: fm] : ( ord_less_eq_set_fm @ B @ ( insert_fm2 @ A2 @ B ) ) ).

% subset_insertI
thf(fact_824_subset__insertI,axiom,
    ! [B: set_tm,A2: tm] : ( ord_less_eq_set_tm @ B @ ( insert_tm2 @ A2 @ B ) ) ).

% subset_insertI
thf(fact_825_subset__insertI,axiom,
    ! [B: set_nat,A2: nat] : ( ord_less_eq_set_nat @ B @ ( insert_nat2 @ A2 @ B ) ) ).

% subset_insertI
thf(fact_826_subset__insertI2,axiom,
    ! [A: set_fm,B: set_fm,B2: fm] :
      ( ( ord_less_eq_set_fm @ A @ B )
     => ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ B2 @ B ) ) ) ).

% subset_insertI2
thf(fact_827_subset__insertI2,axiom,
    ! [A: set_tm,B: set_tm,B2: tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ B2 @ B ) ) ) ).

% subset_insertI2
thf(fact_828_subset__insertI2,axiom,
    ! [A: set_nat,B: set_nat,B2: nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ B2 @ B ) ) ) ).

% subset_insertI2
thf(fact_829_subset__singletonD,axiom,
    ! [A: set_fm,X: fm] :
      ( ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ X @ bot_bot_set_fm ) )
     => ( ( A = bot_bot_set_fm )
        | ( A
          = ( insert_fm2 @ X @ bot_bot_set_fm ) ) ) ) ).

% subset_singletonD
thf(fact_830_subset__singletonD,axiom,
    ! [A: set_tm,X: tm] :
      ( ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ X @ bot_bot_set_tm ) )
     => ( ( A = bot_bot_set_tm )
        | ( A
          = ( insert_tm2 @ X @ bot_bot_set_tm ) ) ) ) ).

% subset_singletonD
thf(fact_831_subset__singletonD,axiom,
    ! [A: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X @ bot_bot_set_nat ) )
     => ( ( A = bot_bot_set_nat )
        | ( A
          = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ) ).

% subset_singletonD
thf(fact_832_subset__singleton__iff,axiom,
    ! [X6: set_fm,A2: fm] :
      ( ( ord_less_eq_set_fm @ X6 @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) )
      = ( ( X6 = bot_bot_set_fm )
        | ( X6
          = ( insert_fm2 @ A2 @ bot_bot_set_fm ) ) ) ) ).

% subset_singleton_iff
thf(fact_833_subset__singleton__iff,axiom,
    ! [X6: set_tm,A2: tm] :
      ( ( ord_less_eq_set_tm @ X6 @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) )
      = ( ( X6 = bot_bot_set_tm )
        | ( X6
          = ( insert_tm2 @ A2 @ bot_bot_set_tm ) ) ) ) ).

% subset_singleton_iff
thf(fact_834_subset__singleton__iff,axiom,
    ! [X6: set_nat,A2: nat] :
      ( ( ord_less_eq_set_nat @ X6 @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) )
      = ( ( X6 = bot_bot_set_nat )
        | ( X6
          = ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ) ) ).

% subset_singleton_iff
thf(fact_835_insert__is__Un,axiom,
    ( insert_tm2
    = ( ^ [A4: tm] : ( sup_sup_set_tm @ ( insert_tm2 @ A4 @ bot_bot_set_tm ) ) ) ) ).

% insert_is_Un
thf(fact_836_insert__is__Un,axiom,
    ( insert_nat2
    = ( ^ [A4: nat] : ( sup_sup_set_nat @ ( insert_nat2 @ A4 @ bot_bot_set_nat ) ) ) ) ).

% insert_is_Un
thf(fact_837_insert__is__Un,axiom,
    ( insert_fm2
    = ( ^ [A4: fm] : ( sup_sup_set_fm @ ( insert_fm2 @ A4 @ bot_bot_set_fm ) ) ) ) ).

% insert_is_Un
thf(fact_838_Un__singleton__iff,axiom,
    ! [A: set_tm,B: set_tm,X: tm] :
      ( ( ( sup_sup_set_tm @ A @ B )
        = ( insert_tm2 @ X @ bot_bot_set_tm ) )
      = ( ( ( A = bot_bot_set_tm )
          & ( B
            = ( insert_tm2 @ X @ bot_bot_set_tm ) ) )
        | ( ( A
            = ( insert_tm2 @ X @ bot_bot_set_tm ) )
          & ( B = bot_bot_set_tm ) )
        | ( ( A
            = ( insert_tm2 @ X @ bot_bot_set_tm ) )
          & ( B
            = ( insert_tm2 @ X @ bot_bot_set_tm ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_839_Un__singleton__iff,axiom,
    ! [A: set_nat,B: set_nat,X: nat] :
      ( ( ( sup_sup_set_nat @ A @ B )
        = ( insert_nat2 @ X @ bot_bot_set_nat ) )
      = ( ( ( A = bot_bot_set_nat )
          & ( B
            = ( insert_nat2 @ X @ bot_bot_set_nat ) ) )
        | ( ( A
            = ( insert_nat2 @ X @ bot_bot_set_nat ) )
          & ( B = bot_bot_set_nat ) )
        | ( ( A
            = ( insert_nat2 @ X @ bot_bot_set_nat ) )
          & ( B
            = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_840_Un__singleton__iff,axiom,
    ! [A: set_fm,B: set_fm,X: fm] :
      ( ( ( sup_sup_set_fm @ A @ B )
        = ( insert_fm2 @ X @ bot_bot_set_fm ) )
      = ( ( ( A = bot_bot_set_fm )
          & ( B
            = ( insert_fm2 @ X @ bot_bot_set_fm ) ) )
        | ( ( A
            = ( insert_fm2 @ X @ bot_bot_set_fm ) )
          & ( B = bot_bot_set_fm ) )
        | ( ( A
            = ( insert_fm2 @ X @ bot_bot_set_fm ) )
          & ( B
            = ( insert_fm2 @ X @ bot_bot_set_fm ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_841_singleton__Un__iff,axiom,
    ! [X: tm,A: set_tm,B: set_tm] :
      ( ( ( insert_tm2 @ X @ bot_bot_set_tm )
        = ( sup_sup_set_tm @ A @ B ) )
      = ( ( ( A = bot_bot_set_tm )
          & ( B
            = ( insert_tm2 @ X @ bot_bot_set_tm ) ) )
        | ( ( A
            = ( insert_tm2 @ X @ bot_bot_set_tm ) )
          & ( B = bot_bot_set_tm ) )
        | ( ( A
            = ( insert_tm2 @ X @ bot_bot_set_tm ) )
          & ( B
            = ( insert_tm2 @ X @ bot_bot_set_tm ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_842_singleton__Un__iff,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ( ( insert_nat2 @ X @ bot_bot_set_nat )
        = ( sup_sup_set_nat @ A @ B ) )
      = ( ( ( A = bot_bot_set_nat )
          & ( B
            = ( insert_nat2 @ X @ bot_bot_set_nat ) ) )
        | ( ( A
            = ( insert_nat2 @ X @ bot_bot_set_nat ) )
          & ( B = bot_bot_set_nat ) )
        | ( ( A
            = ( insert_nat2 @ X @ bot_bot_set_nat ) )
          & ( B
            = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_843_singleton__Un__iff,axiom,
    ! [X: fm,A: set_fm,B: set_fm] :
      ( ( ( insert_fm2 @ X @ bot_bot_set_fm )
        = ( sup_sup_set_fm @ A @ B ) )
      = ( ( ( A = bot_bot_set_fm )
          & ( B
            = ( insert_fm2 @ X @ bot_bot_set_fm ) ) )
        | ( ( A
            = ( insert_fm2 @ X @ bot_bot_set_fm ) )
          & ( B = bot_bot_set_fm ) )
        | ( ( A
            = ( insert_fm2 @ X @ bot_bot_set_fm ) )
          & ( B
            = ( insert_fm2 @ X @ bot_bot_set_fm ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_844_insert__code_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( insert_nat2 @ X @ ( coset_nat @ Xs ) )
      = ( coset_nat @ ( removeAll_nat @ X @ Xs ) ) ) ).

% insert_code(2)
thf(fact_845_insert__code_I2_J,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( insert_fm2 @ X @ ( coset_fm @ Xs ) )
      = ( coset_fm @ ( removeAll_fm @ X @ Xs ) ) ) ).

% insert_code(2)
thf(fact_846_sub_Osimps_I1_J,axiom,
    ! [V: nat,S2: tm,I: nat,L3: list_tm] :
      ( ( sub @ V @ S2 @ ( pre @ I @ L3 ) )
      = ( pre @ I @ ( sub_list @ V @ S2 @ L3 ) ) ) ).

% sub.simps(1)
thf(fact_847_sub__const__transfer,axiom,
    ! [M: nat,A2: nat,P4: fm,T: tm] :
      ( ( ( sub @ M @ ( fun @ A2 @ nil_tm ) @ P4 )
       != ( sub @ M @ T @ P4 ) )
     => ( member_tm3 @ ( fun @ A2 @ nil_tm ) @ ( set_tm2 @ ( subtermFm @ ( sub @ M @ ( fun @ A2 @ nil_tm ) @ P4 ) ) ) ) ) ).

% sub_const_transfer
thf(fact_848_is__singleton__the__elem,axiom,
    ( is_singleton_tm
    = ( ^ [A3: set_tm] :
          ( A3
          = ( insert_tm2 @ ( the_elem_tm @ A3 ) @ bot_bot_set_tm ) ) ) ) ).

% is_singleton_the_elem
thf(fact_849_is__singleton__the__elem,axiom,
    ( is_singleton_nat
    = ( ^ [A3: set_nat] :
          ( A3
          = ( insert_nat2 @ ( the_elem_nat @ A3 ) @ bot_bot_set_nat ) ) ) ) ).

% is_singleton_the_elem
thf(fact_850_is__singleton__the__elem,axiom,
    ( is_singleton_fm
    = ( ^ [A3: set_fm] :
          ( A3
          = ( insert_fm2 @ ( the_elem_fm @ A3 ) @ bot_bot_set_fm ) ) ) ) ).

% is_singleton_the_elem
thf(fact_851_is__singletonI,axiom,
    ! [X: tm] : ( is_singleton_tm @ ( insert_tm2 @ X @ bot_bot_set_tm ) ) ).

% is_singletonI
thf(fact_852_is__singletonI,axiom,
    ! [X: nat] : ( is_singleton_nat @ ( insert_nat2 @ X @ bot_bot_set_nat ) ) ).

% is_singletonI
thf(fact_853_is__singletonI,axiom,
    ! [X: fm] : ( is_singleton_fm @ ( insert_fm2 @ X @ bot_bot_set_fm ) ) ).

% is_singletonI
thf(fact_854_substts_Osimps_I2_J,axiom,
    ! [T: tm,Ts: list_tm,S2: tm,K: nat] :
      ( ( substts @ ( cons_tm @ T @ Ts ) @ S2 @ K )
      = ( cons_tm @ ( substt @ T @ S2 @ K ) @ ( substts @ Ts @ S2 @ K ) ) ) ).

% substts.simps(2)
thf(fact_855_substt_Osimps_I2_J,axiom,
    ! [A2: nat,Ts: list_tm,S2: tm,K: nat] :
      ( ( substt @ ( fun @ A2 @ Ts ) @ S2 @ K )
      = ( fun @ A2 @ ( substts @ Ts @ S2 @ K ) ) ) ).

% substt.simps(2)
thf(fact_856_set__removeAll,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( set_set_nat2 @ ( removeAll_set_nat @ X @ Xs ) )
      = ( minus_2163939370556025621et_nat @ ( set_set_nat2 @ Xs ) @ ( insert_set_nat2 @ X @ bot_bot_set_set_nat ) ) ) ).

% set_removeAll
thf(fact_857_set__removeAll,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( set_tm2 @ ( removeAll_tm @ X @ Xs ) )
      = ( minus_minus_set_tm @ ( set_tm2 @ Xs ) @ ( insert_tm2 @ X @ bot_bot_set_tm ) ) ) ).

% set_removeAll
thf(fact_858_set__removeAll,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( set_nat2 @ ( removeAll_nat @ X @ Xs ) )
      = ( minus_minus_set_nat @ ( set_nat2 @ Xs ) @ ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ).

% set_removeAll
thf(fact_859_set__removeAll,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( set_fm2 @ ( removeAll_fm @ X @ Xs ) )
      = ( minus_minus_set_fm @ ( set_fm2 @ Xs ) @ ( insert_fm2 @ X @ bot_bot_set_fm ) ) ) ).

% set_removeAll
thf(fact_860_s5_I2_J,axiom,
    ( sub_list
    = ( ^ [V2: nat,S3: tm,L2: list_tm] : ( substts @ L2 @ S3 @ V2 ) ) ) ).

% s5(2)
thf(fact_861_DiffI,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ A )
     => ( ~ ( member_tm3 @ C @ B )
       => ( member_tm3 @ C @ ( minus_minus_set_tm @ A @ B ) ) ) ) ).

% DiffI
thf(fact_862_DiffI,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ A )
     => ( ~ ( member_nat3 @ C @ B )
       => ( member_nat3 @ C @ ( minus_minus_set_nat @ A @ B ) ) ) ) ).

% DiffI
thf(fact_863_DiffI,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ A )
     => ( ~ ( member_fm3 @ C @ B )
       => ( member_fm3 @ C @ ( minus_minus_set_fm @ A @ B ) ) ) ) ).

% DiffI
thf(fact_864_DiffI,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ A )
     => ( ~ ( member_set_nat3 @ C @ B )
       => ( member_set_nat3 @ C @ ( minus_2163939370556025621et_nat @ A @ B ) ) ) ) ).

% DiffI
thf(fact_865_Diff__iff,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ ( minus_minus_set_tm @ A @ B ) )
      = ( ( member_tm3 @ C @ A )
        & ~ ( member_tm3 @ C @ B ) ) ) ).

% Diff_iff
thf(fact_866_Diff__iff,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ ( minus_minus_set_nat @ A @ B ) )
      = ( ( member_nat3 @ C @ A )
        & ~ ( member_nat3 @ C @ B ) ) ) ).

% Diff_iff
thf(fact_867_Diff__iff,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ ( minus_minus_set_fm @ A @ B ) )
      = ( ( member_fm3 @ C @ A )
        & ~ ( member_fm3 @ C @ B ) ) ) ).

% Diff_iff
thf(fact_868_Diff__iff,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ ( minus_2163939370556025621et_nat @ A @ B ) )
      = ( ( member_set_nat3 @ C @ A )
        & ~ ( member_set_nat3 @ C @ B ) ) ) ).

% Diff_iff
thf(fact_869_Diff__cancel,axiom,
    ! [A: set_tm] :
      ( ( minus_minus_set_tm @ A @ A )
      = bot_bot_set_tm ) ).

% Diff_cancel
thf(fact_870_Diff__cancel,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ A )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_871_Diff__cancel,axiom,
    ! [A: set_fm] :
      ( ( minus_minus_set_fm @ A @ A )
      = bot_bot_set_fm ) ).

% Diff_cancel
thf(fact_872_empty__Diff,axiom,
    ! [A: set_tm] :
      ( ( minus_minus_set_tm @ bot_bot_set_tm @ A )
      = bot_bot_set_tm ) ).

% empty_Diff
thf(fact_873_empty__Diff,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_874_empty__Diff,axiom,
    ! [A: set_fm] :
      ( ( minus_minus_set_fm @ bot_bot_set_fm @ A )
      = bot_bot_set_fm ) ).

% empty_Diff
thf(fact_875_Diff__empty,axiom,
    ! [A: set_tm] :
      ( ( minus_minus_set_tm @ A @ bot_bot_set_tm )
      = A ) ).

% Diff_empty
thf(fact_876_Diff__empty,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ bot_bot_set_nat )
      = A ) ).

% Diff_empty
thf(fact_877_Diff__empty,axiom,
    ! [A: set_fm] :
      ( ( minus_minus_set_fm @ A @ bot_bot_set_fm )
      = A ) ).

% Diff_empty
thf(fact_878_Diff__insert0,axiom,
    ! [X: tm,A: set_tm,B: set_tm] :
      ( ~ ( member_tm3 @ X @ A )
     => ( ( minus_minus_set_tm @ A @ ( insert_tm2 @ X @ B ) )
        = ( minus_minus_set_tm @ A @ B ) ) ) ).

% Diff_insert0
thf(fact_879_Diff__insert0,axiom,
    ! [X: nat,A: set_nat,B: set_nat] :
      ( ~ ( member_nat3 @ X @ A )
     => ( ( minus_minus_set_nat @ A @ ( insert_nat2 @ X @ B ) )
        = ( minus_minus_set_nat @ A @ B ) ) ) ).

% Diff_insert0
thf(fact_880_Diff__insert0,axiom,
    ! [X: fm,A: set_fm,B: set_fm] :
      ( ~ ( member_fm3 @ X @ A )
     => ( ( minus_minus_set_fm @ A @ ( insert_fm2 @ X @ B ) )
        = ( minus_minus_set_fm @ A @ B ) ) ) ).

% Diff_insert0
thf(fact_881_Diff__insert0,axiom,
    ! [X: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ~ ( member_set_nat3 @ X @ A )
     => ( ( minus_2163939370556025621et_nat @ A @ ( insert_set_nat2 @ X @ B ) )
        = ( minus_2163939370556025621et_nat @ A @ B ) ) ) ).

% Diff_insert0
thf(fact_882_insert__Diff1,axiom,
    ! [X: tm,B: set_tm,A: set_tm] :
      ( ( member_tm3 @ X @ B )
     => ( ( minus_minus_set_tm @ ( insert_tm2 @ X @ A ) @ B )
        = ( minus_minus_set_tm @ A @ B ) ) ) ).

% insert_Diff1
thf(fact_883_insert__Diff1,axiom,
    ! [X: nat,B: set_nat,A: set_nat] :
      ( ( member_nat3 @ X @ B )
     => ( ( minus_minus_set_nat @ ( insert_nat2 @ X @ A ) @ B )
        = ( minus_minus_set_nat @ A @ B ) ) ) ).

% insert_Diff1
thf(fact_884_insert__Diff1,axiom,
    ! [X: fm,B: set_fm,A: set_fm] :
      ( ( member_fm3 @ X @ B )
     => ( ( minus_minus_set_fm @ ( insert_fm2 @ X @ A ) @ B )
        = ( minus_minus_set_fm @ A @ B ) ) ) ).

% insert_Diff1
thf(fact_885_insert__Diff1,axiom,
    ! [X: set_nat,B: set_set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ X @ B )
     => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat2 @ X @ A ) @ B )
        = ( minus_2163939370556025621et_nat @ A @ B ) ) ) ).

% insert_Diff1
thf(fact_886_Un__Diff__cancel,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( sup_sup_set_nat @ A @ ( minus_minus_set_nat @ B @ A ) )
      = ( sup_sup_set_nat @ A @ B ) ) ).

% Un_Diff_cancel
thf(fact_887_Un__Diff__cancel2,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( sup_sup_set_nat @ ( minus_minus_set_nat @ B @ A ) @ A )
      = ( sup_sup_set_nat @ B @ A ) ) ).

% Un_Diff_cancel2
thf(fact_888_Diff__eq__empty__iff,axiom,
    ! [A: set_fm,B: set_fm] :
      ( ( ( minus_minus_set_fm @ A @ B )
        = bot_bot_set_fm )
      = ( ord_less_eq_set_fm @ A @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_889_Diff__eq__empty__iff,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( ( minus_minus_set_tm @ A @ B )
        = bot_bot_set_tm )
      = ( ord_less_eq_set_tm @ A @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_890_Diff__eq__empty__iff,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ( minus_minus_set_nat @ A @ B )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_891_insert__Diff__single,axiom,
    ! [A2: tm,A: set_tm] :
      ( ( insert_tm2 @ A2 @ ( minus_minus_set_tm @ A @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) ) )
      = ( insert_tm2 @ A2 @ A ) ) ).

% insert_Diff_single
thf(fact_892_insert__Diff__single,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( insert_nat2 @ A2 @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) )
      = ( insert_nat2 @ A2 @ A ) ) ).

% insert_Diff_single
thf(fact_893_insert__Diff__single,axiom,
    ! [A2: fm,A: set_fm] :
      ( ( insert_fm2 @ A2 @ ( minus_minus_set_fm @ A @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) ) )
      = ( insert_fm2 @ A2 @ A ) ) ).

% insert_Diff_single
thf(fact_894_DiffE,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ ( minus_minus_set_tm @ A @ B ) )
     => ~ ( ( member_tm3 @ C @ A )
         => ( member_tm3 @ C @ B ) ) ) ).

% DiffE
thf(fact_895_DiffE,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ ( minus_minus_set_nat @ A @ B ) )
     => ~ ( ( member_nat3 @ C @ A )
         => ( member_nat3 @ C @ B ) ) ) ).

% DiffE
thf(fact_896_DiffE,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ ( minus_minus_set_fm @ A @ B ) )
     => ~ ( ( member_fm3 @ C @ A )
         => ( member_fm3 @ C @ B ) ) ) ).

% DiffE
thf(fact_897_DiffE,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ ( minus_2163939370556025621et_nat @ A @ B ) )
     => ~ ( ( member_set_nat3 @ C @ A )
         => ( member_set_nat3 @ C @ B ) ) ) ).

% DiffE
thf(fact_898_DiffD1,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ ( minus_minus_set_tm @ A @ B ) )
     => ( member_tm3 @ C @ A ) ) ).

% DiffD1
thf(fact_899_DiffD1,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ ( minus_minus_set_nat @ A @ B ) )
     => ( member_nat3 @ C @ A ) ) ).

% DiffD1
thf(fact_900_DiffD1,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ ( minus_minus_set_fm @ A @ B ) )
     => ( member_fm3 @ C @ A ) ) ).

% DiffD1
thf(fact_901_DiffD1,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ ( minus_2163939370556025621et_nat @ A @ B ) )
     => ( member_set_nat3 @ C @ A ) ) ).

% DiffD1
thf(fact_902_DiffD2,axiom,
    ! [C: tm,A: set_tm,B: set_tm] :
      ( ( member_tm3 @ C @ ( minus_minus_set_tm @ A @ B ) )
     => ~ ( member_tm3 @ C @ B ) ) ).

% DiffD2
thf(fact_903_DiffD2,axiom,
    ! [C: nat,A: set_nat,B: set_nat] :
      ( ( member_nat3 @ C @ ( minus_minus_set_nat @ A @ B ) )
     => ~ ( member_nat3 @ C @ B ) ) ).

% DiffD2
thf(fact_904_DiffD2,axiom,
    ! [C: fm,A: set_fm,B: set_fm] :
      ( ( member_fm3 @ C @ ( minus_minus_set_fm @ A @ B ) )
     => ~ ( member_fm3 @ C @ B ) ) ).

% DiffD2
thf(fact_905_DiffD2,axiom,
    ! [C: set_nat,A: set_set_nat,B: set_set_nat] :
      ( ( member_set_nat3 @ C @ ( minus_2163939370556025621et_nat @ A @ B ) )
     => ~ ( member_set_nat3 @ C @ B ) ) ).

% DiffD2
thf(fact_906_double__diff,axiom,
    ! [A: set_tm,B: set_tm,C2: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( ord_less_eq_set_tm @ B @ C2 )
       => ( ( minus_minus_set_tm @ B @ ( minus_minus_set_tm @ C2 @ A ) )
          = A ) ) ) ).

% double_diff
thf(fact_907_double__diff,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C2 )
       => ( ( minus_minus_set_nat @ B @ ( minus_minus_set_nat @ C2 @ A ) )
          = A ) ) ) ).

% double_diff
thf(fact_908_Diff__subset,axiom,
    ! [A: set_tm,B: set_tm] : ( ord_less_eq_set_tm @ ( minus_minus_set_tm @ A @ B ) @ A ) ).

% Diff_subset
thf(fact_909_Diff__subset,axiom,
    ! [A: set_nat,B: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ B ) @ A ) ).

% Diff_subset
thf(fact_910_Diff__mono,axiom,
    ! [A: set_tm,C2: set_tm,D: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ C2 )
     => ( ( ord_less_eq_set_tm @ D @ B )
       => ( ord_less_eq_set_tm @ ( minus_minus_set_tm @ A @ B ) @ ( minus_minus_set_tm @ C2 @ D ) ) ) ) ).

% Diff_mono
thf(fact_911_Diff__mono,axiom,
    ! [A: set_nat,C2: set_nat,D: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ C2 )
     => ( ( ord_less_eq_set_nat @ D @ B )
       => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ B ) @ ( minus_minus_set_nat @ C2 @ D ) ) ) ) ).

% Diff_mono
thf(fact_912_insert__Diff__if,axiom,
    ! [X: tm,B: set_tm,A: set_tm] :
      ( ( ( member_tm3 @ X @ B )
       => ( ( minus_minus_set_tm @ ( insert_tm2 @ X @ A ) @ B )
          = ( minus_minus_set_tm @ A @ B ) ) )
      & ( ~ ( member_tm3 @ X @ B )
       => ( ( minus_minus_set_tm @ ( insert_tm2 @ X @ A ) @ B )
          = ( insert_tm2 @ X @ ( minus_minus_set_tm @ A @ B ) ) ) ) ) ).

% insert_Diff_if
thf(fact_913_insert__Diff__if,axiom,
    ! [X: nat,B: set_nat,A: set_nat] :
      ( ( ( member_nat3 @ X @ B )
       => ( ( minus_minus_set_nat @ ( insert_nat2 @ X @ A ) @ B )
          = ( minus_minus_set_nat @ A @ B ) ) )
      & ( ~ ( member_nat3 @ X @ B )
       => ( ( minus_minus_set_nat @ ( insert_nat2 @ X @ A ) @ B )
          = ( insert_nat2 @ X @ ( minus_minus_set_nat @ A @ B ) ) ) ) ) ).

% insert_Diff_if
thf(fact_914_insert__Diff__if,axiom,
    ! [X: fm,B: set_fm,A: set_fm] :
      ( ( ( member_fm3 @ X @ B )
       => ( ( minus_minus_set_fm @ ( insert_fm2 @ X @ A ) @ B )
          = ( minus_minus_set_fm @ A @ B ) ) )
      & ( ~ ( member_fm3 @ X @ B )
       => ( ( minus_minus_set_fm @ ( insert_fm2 @ X @ A ) @ B )
          = ( insert_fm2 @ X @ ( minus_minus_set_fm @ A @ B ) ) ) ) ) ).

% insert_Diff_if
thf(fact_915_insert__Diff__if,axiom,
    ! [X: set_nat,B: set_set_nat,A: set_set_nat] :
      ( ( ( member_set_nat3 @ X @ B )
       => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat2 @ X @ A ) @ B )
          = ( minus_2163939370556025621et_nat @ A @ B ) ) )
      & ( ~ ( member_set_nat3 @ X @ B )
       => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat2 @ X @ A ) @ B )
          = ( insert_set_nat2 @ X @ ( minus_2163939370556025621et_nat @ A @ B ) ) ) ) ) ).

% insert_Diff_if
thf(fact_916_Un__Diff,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( minus_minus_set_nat @ ( sup_sup_set_nat @ A @ B ) @ C2 )
      = ( sup_sup_set_nat @ ( minus_minus_set_nat @ A @ C2 ) @ ( minus_minus_set_nat @ B @ C2 ) ) ) ).

% Un_Diff
thf(fact_917_diff__shunt__var,axiom,
    ! [X: set_fm,Y2: set_fm] :
      ( ( ( minus_minus_set_fm @ X @ Y2 )
        = bot_bot_set_fm )
      = ( ord_less_eq_set_fm @ X @ Y2 ) ) ).

% diff_shunt_var
thf(fact_918_diff__shunt__var,axiom,
    ! [X: set_tm,Y2: set_tm] :
      ( ( ( minus_minus_set_tm @ X @ Y2 )
        = bot_bot_set_tm )
      = ( ord_less_eq_set_tm @ X @ Y2 ) ) ).

% diff_shunt_var
thf(fact_919_diff__shunt__var,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ( minus_minus_set_nat @ X @ Y2 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ X @ Y2 ) ) ).

% diff_shunt_var
thf(fact_920_Diff__insert,axiom,
    ! [A: set_tm,A2: tm,B: set_tm] :
      ( ( minus_minus_set_tm @ A @ ( insert_tm2 @ A2 @ B ) )
      = ( minus_minus_set_tm @ ( minus_minus_set_tm @ A @ B ) @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) ) ) ).

% Diff_insert
thf(fact_921_Diff__insert,axiom,
    ! [A: set_nat,A2: nat,B: set_nat] :
      ( ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ B ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A @ B ) @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) ) ).

% Diff_insert
thf(fact_922_Diff__insert,axiom,
    ! [A: set_fm,A2: fm,B: set_fm] :
      ( ( minus_minus_set_fm @ A @ ( insert_fm2 @ A2 @ B ) )
      = ( minus_minus_set_fm @ ( minus_minus_set_fm @ A @ B ) @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) ) ) ).

% Diff_insert
thf(fact_923_insert__Diff,axiom,
    ! [A2: set_nat,A: set_set_nat] :
      ( ( member_set_nat3 @ A2 @ A )
     => ( ( insert_set_nat2 @ A2 @ ( minus_2163939370556025621et_nat @ A @ ( insert_set_nat2 @ A2 @ bot_bot_set_set_nat ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_924_insert__Diff,axiom,
    ! [A2: tm,A: set_tm] :
      ( ( member_tm3 @ A2 @ A )
     => ( ( insert_tm2 @ A2 @ ( minus_minus_set_tm @ A @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_925_insert__Diff,axiom,
    ! [A2: nat,A: set_nat] :
      ( ( member_nat3 @ A2 @ A )
     => ( ( insert_nat2 @ A2 @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_926_insert__Diff,axiom,
    ! [A2: fm,A: set_fm] :
      ( ( member_fm3 @ A2 @ A )
     => ( ( insert_fm2 @ A2 @ ( minus_minus_set_fm @ A @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_927_Diff__insert2,axiom,
    ! [A: set_tm,A2: tm,B: set_tm] :
      ( ( minus_minus_set_tm @ A @ ( insert_tm2 @ A2 @ B ) )
      = ( minus_minus_set_tm @ ( minus_minus_set_tm @ A @ ( insert_tm2 @ A2 @ bot_bot_set_tm ) ) @ B ) ) ).

% Diff_insert2
thf(fact_928_Diff__insert2,axiom,
    ! [A: set_nat,A2: nat,B: set_nat] :
      ( ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ B ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) ) @ B ) ) ).

% Diff_insert2
thf(fact_929_Diff__insert2,axiom,
    ! [A: set_fm,A2: fm,B: set_fm] :
      ( ( minus_minus_set_fm @ A @ ( insert_fm2 @ A2 @ B ) )
      = ( minus_minus_set_fm @ ( minus_minus_set_fm @ A @ ( insert_fm2 @ A2 @ bot_bot_set_fm ) ) @ B ) ) ).

% Diff_insert2
thf(fact_930_Diff__insert__absorb,axiom,
    ! [X: set_nat,A: set_set_nat] :
      ( ~ ( member_set_nat3 @ X @ A )
     => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat2 @ X @ A ) @ ( insert_set_nat2 @ X @ bot_bot_set_set_nat ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_931_Diff__insert__absorb,axiom,
    ! [X: tm,A: set_tm] :
      ( ~ ( member_tm3 @ X @ A )
     => ( ( minus_minus_set_tm @ ( insert_tm2 @ X @ A ) @ ( insert_tm2 @ X @ bot_bot_set_tm ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_932_Diff__insert__absorb,axiom,
    ! [X: nat,A: set_nat] :
      ( ~ ( member_nat3 @ X @ A )
     => ( ( minus_minus_set_nat @ ( insert_nat2 @ X @ A ) @ ( insert_nat2 @ X @ bot_bot_set_nat ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_933_Diff__insert__absorb,axiom,
    ! [X: fm,A: set_fm] :
      ( ~ ( member_fm3 @ X @ A )
     => ( ( minus_minus_set_fm @ ( insert_fm2 @ X @ A ) @ ( insert_fm2 @ X @ bot_bot_set_fm ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_934_subset__Diff__insert,axiom,
    ! [A: set_fm,B: set_fm,X: fm,C2: set_fm] :
      ( ( ord_less_eq_set_fm @ A @ ( minus_minus_set_fm @ B @ ( insert_fm2 @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_fm @ A @ ( minus_minus_set_fm @ B @ C2 ) )
        & ~ ( member_fm3 @ X @ A ) ) ) ).

% subset_Diff_insert
thf(fact_935_subset__Diff__insert,axiom,
    ! [A: set_set_nat,B: set_set_nat,X: set_nat,C2: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A @ ( minus_2163939370556025621et_nat @ B @ ( insert_set_nat2 @ X @ C2 ) ) )
      = ( ( ord_le6893508408891458716et_nat @ A @ ( minus_2163939370556025621et_nat @ B @ C2 ) )
        & ~ ( member_set_nat3 @ X @ A ) ) ) ).

% subset_Diff_insert
thf(fact_936_subset__Diff__insert,axiom,
    ! [A: set_tm,B: set_tm,X: tm,C2: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ ( minus_minus_set_tm @ B @ ( insert_tm2 @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_tm @ A @ ( minus_minus_set_tm @ B @ C2 ) )
        & ~ ( member_tm3 @ X @ A ) ) ) ).

% subset_Diff_insert
thf(fact_937_subset__Diff__insert,axiom,
    ! [A: set_nat,B: set_nat,X: nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( minus_minus_set_nat @ B @ ( insert_nat2 @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_nat @ A @ ( minus_minus_set_nat @ B @ C2 ) )
        & ~ ( member_nat3 @ X @ A ) ) ) ).

% subset_Diff_insert
thf(fact_938_Diff__partition,axiom,
    ! [A: set_tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ B )
     => ( ( sup_sup_set_tm @ A @ ( minus_minus_set_tm @ B @ A ) )
        = B ) ) ).

% Diff_partition
thf(fact_939_Diff__partition,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( sup_sup_set_nat @ A @ ( minus_minus_set_nat @ B @ A ) )
        = B ) ) ).

% Diff_partition
thf(fact_940_Diff__subset__conv,axiom,
    ! [A: set_tm,B: set_tm,C2: set_tm] :
      ( ( ord_less_eq_set_tm @ ( minus_minus_set_tm @ A @ B ) @ C2 )
      = ( ord_less_eq_set_tm @ A @ ( sup_sup_set_tm @ B @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_941_Diff__subset__conv,axiom,
    ! [A: set_nat,B: set_nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ B ) @ C2 )
      = ( ord_less_eq_set_nat @ A @ ( sup_sup_set_nat @ B @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_942_preds_Osimps_I1_J,axiom,
    ! [N: nat,Ts: list_tm] :
      ( ( preds @ ( pre @ N @ Ts ) )
      = ( insert_fm2 @ ( pre @ N @ Ts ) @ bot_bot_set_fm ) ) ).

% preds.simps(1)
thf(fact_943_is__singletonI_H,axiom,
    ! [A: set_set_nat] :
      ( ( A != bot_bot_set_set_nat )
     => ( ! [X3: set_nat,Y3: set_nat] :
            ( ( member_set_nat3 @ X3 @ A )
           => ( ( member_set_nat3 @ Y3 @ A )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_set_nat @ A ) ) ) ).

% is_singletonI'
thf(fact_944_is__singletonI_H,axiom,
    ! [A: set_tm] :
      ( ( A != bot_bot_set_tm )
     => ( ! [X3: tm,Y3: tm] :
            ( ( member_tm3 @ X3 @ A )
           => ( ( member_tm3 @ Y3 @ A )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_tm @ A ) ) ) ).

% is_singletonI'
thf(fact_945_is__singletonI_H,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
     => ( ! [X3: nat,Y3: nat] :
            ( ( member_nat3 @ X3 @ A )
           => ( ( member_nat3 @ Y3 @ A )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_nat @ A ) ) ) ).

% is_singletonI'
thf(fact_946_is__singletonI_H,axiom,
    ! [A: set_fm] :
      ( ( A != bot_bot_set_fm )
     => ( ! [X3: fm,Y3: fm] :
            ( ( member_fm3 @ X3 @ A )
           => ( ( member_fm3 @ Y3 @ A )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_fm @ A ) ) ) ).

% is_singletonI'
thf(fact_947_substts_Osimps_I1_J,axiom,
    ! [S2: tm,K: nat] :
      ( ( substts @ nil_tm @ S2 @ K )
      = nil_tm ) ).

% substts.simps(1)
thf(fact_948_Diff__single__insert,axiom,
    ! [A: set_fm,X: fm,B: set_fm] :
      ( ( ord_less_eq_set_fm @ ( minus_minus_set_fm @ A @ ( insert_fm2 @ X @ bot_bot_set_fm ) ) @ B )
     => ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ X @ B ) ) ) ).

% Diff_single_insert
thf(fact_949_Diff__single__insert,axiom,
    ! [A: set_tm,X: tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ ( minus_minus_set_tm @ A @ ( insert_tm2 @ X @ bot_bot_set_tm ) ) @ B )
     => ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ X @ B ) ) ) ).

% Diff_single_insert
thf(fact_950_Diff__single__insert,axiom,
    ! [A: set_nat,X: nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X @ bot_bot_set_nat ) ) @ B )
     => ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X @ B ) ) ) ).

% Diff_single_insert
thf(fact_951_subset__insert__iff,axiom,
    ! [A: set_set_nat,X: set_nat,B: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A @ ( insert_set_nat2 @ X @ B ) )
      = ( ( ( member_set_nat3 @ X @ A )
         => ( ord_le6893508408891458716et_nat @ ( minus_2163939370556025621et_nat @ A @ ( insert_set_nat2 @ X @ bot_bot_set_set_nat ) ) @ B ) )
        & ( ~ ( member_set_nat3 @ X @ A )
         => ( ord_le6893508408891458716et_nat @ A @ B ) ) ) ) ).

% subset_insert_iff
thf(fact_952_subset__insert__iff,axiom,
    ! [A: set_fm,X: fm,B: set_fm] :
      ( ( ord_less_eq_set_fm @ A @ ( insert_fm2 @ X @ B ) )
      = ( ( ( member_fm3 @ X @ A )
         => ( ord_less_eq_set_fm @ ( minus_minus_set_fm @ A @ ( insert_fm2 @ X @ bot_bot_set_fm ) ) @ B ) )
        & ( ~ ( member_fm3 @ X @ A )
         => ( ord_less_eq_set_fm @ A @ B ) ) ) ) ).

% subset_insert_iff
thf(fact_953_subset__insert__iff,axiom,
    ! [A: set_tm,X: tm,B: set_tm] :
      ( ( ord_less_eq_set_tm @ A @ ( insert_tm2 @ X @ B ) )
      = ( ( ( member_tm3 @ X @ A )
         => ( ord_less_eq_set_tm @ ( minus_minus_set_tm @ A @ ( insert_tm2 @ X @ bot_bot_set_tm ) ) @ B ) )
        & ( ~ ( member_tm3 @ X @ A )
         => ( ord_less_eq_set_tm @ A @ B ) ) ) ) ).

% subset_insert_iff
thf(fact_954_subset__insert__iff,axiom,
    ! [A: set_nat,X: nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( insert_nat2 @ X @ B ) )
      = ( ( ( member_nat3 @ X @ A )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A @ ( insert_nat2 @ X @ bot_bot_set_nat ) ) @ B ) )
        & ( ~ ( member_nat3 @ X @ A )
         => ( ord_less_eq_set_nat @ A @ B ) ) ) ) ).

% subset_insert_iff
thf(fact_955_remove__def,axiom,
    ( remove_tm
    = ( ^ [X2: tm,A3: set_tm] : ( minus_minus_set_tm @ A3 @ ( insert_tm2 @ X2 @ bot_bot_set_tm ) ) ) ) ).

% remove_def
thf(fact_956_remove__def,axiom,
    ( remove_nat
    = ( ^ [X2: nat,A3: set_nat] : ( minus_minus_set_nat @ A3 @ ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) ) ).

% remove_def
thf(fact_957_remove__def,axiom,
    ( remove_fm
    = ( ^ [X2: fm,A3: set_fm] : ( minus_minus_set_fm @ A3 @ ( insert_fm2 @ X2 @ bot_bot_set_fm ) ) ) ) ).

% remove_def
thf(fact_958_is__singleton__def,axiom,
    ( is_singleton_tm
    = ( ^ [A3: set_tm] :
        ? [X2: tm] :
          ( A3
          = ( insert_tm2 @ X2 @ bot_bot_set_tm ) ) ) ) ).

% is_singleton_def
thf(fact_959_is__singleton__def,axiom,
    ( is_singleton_nat
    = ( ^ [A3: set_nat] :
        ? [X2: nat] :
          ( A3
          = ( insert_nat2 @ X2 @ bot_bot_set_nat ) ) ) ) ).

% is_singleton_def
thf(fact_960_is__singleton__def,axiom,
    ( is_singleton_fm
    = ( ^ [A3: set_fm] :
        ? [X2: fm] :
          ( A3
          = ( insert_fm2 @ X2 @ bot_bot_set_fm ) ) ) ) ).

% is_singleton_def
thf(fact_961_is__singletonE,axiom,
    ! [A: set_tm] :
      ( ( is_singleton_tm @ A )
     => ~ ! [X3: tm] :
            ( A
           != ( insert_tm2 @ X3 @ bot_bot_set_tm ) ) ) ).

% is_singletonE
thf(fact_962_is__singletonE,axiom,
    ! [A: set_nat] :
      ( ( is_singleton_nat @ A )
     => ~ ! [X3: nat] :
            ( A
           != ( insert_nat2 @ X3 @ bot_bot_set_nat ) ) ) ).

% is_singletonE
thf(fact_963_is__singletonE,axiom,
    ! [A: set_fm] :
      ( ( is_singleton_fm @ A )
     => ~ ! [X3: fm] :
            ( A
           != ( insert_fm2 @ X3 @ bot_bot_set_fm ) ) ) ).

% is_singletonE
thf(fact_964_subseqs_Osimps_I1_J,axiom,
    ( ( subseqs_tm @ nil_tm )
    = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) ).

% subseqs.simps(1)
thf(fact_965_subseqs_Osimps_I1_J,axiom,
    ( ( subseqs_nat @ nil_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% subseqs.simps(1)
thf(fact_966_set__replicate,axiom,
    ! [N: nat,X: set_nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_set_nat2 @ ( replicate_set_nat @ N @ X ) )
        = ( insert_set_nat2 @ X @ bot_bot_set_set_nat ) ) ) ).

% set_replicate
thf(fact_967_set__replicate,axiom,
    ! [N: nat,X: tm] :
      ( ( N != zero_zero_nat )
     => ( ( set_tm2 @ ( replicate_tm @ N @ X ) )
        = ( insert_tm2 @ X @ bot_bot_set_tm ) ) ) ).

% set_replicate
thf(fact_968_set__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_nat2 @ ( replicate_nat @ N @ X ) )
        = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ).

% set_replicate
thf(fact_969_set__replicate,axiom,
    ! [N: nat,X: fm] :
      ( ( N != zero_zero_nat )
     => ( ( set_fm2 @ ( replicate_fm @ N @ X ) )
        = ( insert_fm2 @ X @ bot_bot_set_fm ) ) ) ).

% set_replicate
thf(fact_970_nths__singleton,axiom,
    ! [A: set_nat,X: tm] :
      ( ( ( member_nat3 @ zero_zero_nat @ A )
       => ( ( nths_tm @ ( cons_tm @ X @ nil_tm ) @ A )
          = ( cons_tm @ X @ nil_tm ) ) )
      & ( ~ ( member_nat3 @ zero_zero_nat @ A )
       => ( ( nths_tm @ ( cons_tm @ X @ nil_tm ) @ A )
          = nil_tm ) ) ) ).

% nths_singleton
thf(fact_971_nths__singleton,axiom,
    ! [A: set_nat,X: nat] :
      ( ( ( member_nat3 @ zero_zero_nat @ A )
       => ( ( nths_nat @ ( cons_nat @ X @ nil_nat ) @ A )
          = ( cons_nat @ X @ nil_nat ) ) )
      & ( ~ ( member_nat3 @ zero_zero_nat @ A )
       => ( ( nths_nat @ ( cons_nat @ X @ nil_nat ) @ A )
          = nil_nat ) ) ) ).

% nths_singleton
thf(fact_972_subtermTm_Osimps_I2_J,axiom,
    ! [N: nat] :
      ( ( subtermTm @ ( var @ N ) )
      = ( cons_tm @ ( var @ N ) @ nil_tm ) ) ).

% subtermTm.simps(2)
thf(fact_973_listFunTms_Osimps_I2_J,axiom,
    ! [T: tm,Ts: list_tm] :
      ( ( listFunTms @ ( cons_tm @ T @ Ts ) )
      = ( append_nat @ ( listFunTm @ T ) @ ( listFunTms @ Ts ) ) ) ).

% listFunTms.simps(2)
thf(fact_974_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_975_same__append__eq,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_976_append__same__eq,axiom,
    ! [Ys: list_nat,Xs: list_nat,Zs: list_nat] :
      ( ( ( append_nat @ Ys @ Xs )
        = ( append_nat @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_977_append__assoc,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( append_nat @ ( append_nat @ Xs @ Ys ) @ Zs )
      = ( append_nat @ Xs @ ( append_nat @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_978_append_Oassoc,axiom,
    ! [A2: list_nat,B2: list_nat,C: list_nat] :
      ( ( append_nat @ ( append_nat @ A2 @ B2 ) @ C )
      = ( append_nat @ A2 @ ( append_nat @ B2 @ C ) ) ) ).

% append.assoc
thf(fact_979_tm_Oinject_I2_J,axiom,
    ! [X23: nat,Y23: nat] :
      ( ( ( var @ X23 )
        = ( var @ Y23 ) )
      = ( X23 = Y23 ) ) ).

% tm.inject(2)
thf(fact_980_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_981_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_982_append__is__Nil__conv,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( ( append_tm @ Xs @ Ys )
        = nil_tm )
      = ( ( Xs = nil_tm )
        & ( Ys = nil_tm ) ) ) ).

% append_is_Nil_conv
thf(fact_983_append__is__Nil__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = nil_nat )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% append_is_Nil_conv
thf(fact_984_Nil__is__append__conv,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( nil_tm
        = ( append_tm @ Xs @ Ys ) )
      = ( ( Xs = nil_tm )
        & ( Ys = nil_tm ) ) ) ).

% Nil_is_append_conv
thf(fact_985_Nil__is__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( nil_nat
        = ( append_nat @ Xs @ Ys ) )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% Nil_is_append_conv
thf(fact_986_self__append__conv2,axiom,
    ! [Y2: list_tm,Xs: list_tm] :
      ( ( Y2
        = ( append_tm @ Xs @ Y2 ) )
      = ( Xs = nil_tm ) ) ).

% self_append_conv2
thf(fact_987_self__append__conv2,axiom,
    ! [Y2: list_nat,Xs: list_nat] :
      ( ( Y2
        = ( append_nat @ Xs @ Y2 ) )
      = ( Xs = nil_nat ) ) ).

% self_append_conv2
thf(fact_988_append__self__conv2,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( ( append_tm @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_tm ) ) ).

% append_self_conv2
thf(fact_989_append__self__conv2,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_nat ) ) ).

% append_self_conv2
thf(fact_990_self__append__conv,axiom,
    ! [Y2: list_tm,Ys: list_tm] :
      ( ( Y2
        = ( append_tm @ Y2 @ Ys ) )
      = ( Ys = nil_tm ) ) ).

% self_append_conv
thf(fact_991_self__append__conv,axiom,
    ! [Y2: list_nat,Ys: list_nat] :
      ( ( Y2
        = ( append_nat @ Y2 @ Ys ) )
      = ( Ys = nil_nat ) ) ).

% self_append_conv
thf(fact_992_append__self__conv,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( ( append_tm @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_tm ) ) ).

% append_self_conv
thf(fact_993_append__self__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_nat ) ) ).

% append_self_conv
thf(fact_994_append__Nil2,axiom,
    ! [Xs: list_tm] :
      ( ( append_tm @ Xs @ nil_tm )
      = Xs ) ).

% append_Nil2
thf(fact_995_append__Nil2,axiom,
    ! [Xs: list_nat] :
      ( ( append_nat @ Xs @ nil_nat )
      = Xs ) ).

% append_Nil2
thf(fact_996_append_Oright__neutral,axiom,
    ! [A2: list_tm] :
      ( ( append_tm @ A2 @ nil_tm )
      = A2 ) ).

% append.right_neutral
thf(fact_997_append_Oright__neutral,axiom,
    ! [A2: list_nat] :
      ( ( append_nat @ A2 @ nil_nat )
      = A2 ) ).

% append.right_neutral
thf(fact_998_nths__nil,axiom,
    ! [A: set_nat] :
      ( ( nths_tm @ nil_tm @ A )
      = nil_tm ) ).

% nths_nil
thf(fact_999_nths__nil,axiom,
    ! [A: set_nat] :
      ( ( nths_nat @ nil_nat @ A )
      = nil_nat ) ).

% nths_nil
thf(fact_1000_removeAll__append,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat] :
      ( ( removeAll_nat @ X @ ( append_nat @ Xs @ Ys ) )
      = ( append_nat @ ( removeAll_nat @ X @ Xs ) @ ( removeAll_nat @ X @ Ys ) ) ) ).

% removeAll_append
thf(fact_1001_append1__eq__conv,axiom,
    ! [Xs: list_tm,X: tm,Ys: list_tm,Y2: tm] :
      ( ( ( append_tm @ Xs @ ( cons_tm @ X @ nil_tm ) )
        = ( append_tm @ Ys @ ( cons_tm @ Y2 @ nil_tm ) ) )
      = ( ( Xs = Ys )
        & ( X = Y2 ) ) ) ).

% append1_eq_conv
thf(fact_1002_append1__eq__conv,axiom,
    ! [Xs: list_nat,X: nat,Ys: list_nat,Y2: nat] :
      ( ( ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) )
        = ( append_nat @ Ys @ ( cons_nat @ Y2 @ nil_nat ) ) )
      = ( ( Xs = Ys )
        & ( X = Y2 ) ) ) ).

% append1_eq_conv
thf(fact_1003_set__append,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( set_tm2 @ ( append_tm @ Xs @ Ys ) )
      = ( sup_sup_set_tm @ ( set_tm2 @ Xs ) @ ( set_tm2 @ Ys ) ) ) ).

% set_append
thf(fact_1004_set__append,axiom,
    ! [Xs: list_set_nat,Ys: list_set_nat] :
      ( ( set_set_nat2 @ ( append_set_nat @ Xs @ Ys ) )
      = ( sup_sup_set_set_nat @ ( set_set_nat2 @ Xs ) @ ( set_set_nat2 @ Ys ) ) ) ).

% set_append
thf(fact_1005_set__append,axiom,
    ! [Xs: list_fm,Ys: list_fm] :
      ( ( set_fm2 @ ( append_fm @ Xs @ Ys ) )
      = ( sup_sup_set_fm @ ( set_fm2 @ Xs ) @ ( set_fm2 @ Ys ) ) ) ).

% set_append
thf(fact_1006_set__append,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( set_nat2 @ ( append_nat @ Xs @ Ys ) )
      = ( sup_sup_set_nat @ ( set_nat2 @ Xs ) @ ( set_nat2 @ Ys ) ) ) ).

% set_append
thf(fact_1007_replicate__empty,axiom,
    ! [N: nat,X: tm] :
      ( ( ( replicate_tm @ N @ X )
        = nil_tm )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_1008_replicate__empty,axiom,
    ! [N: nat,X: nat] :
      ( ( ( replicate_nat @ N @ X )
        = nil_nat )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_1009_empty__replicate,axiom,
    ! [N: nat,X: tm] :
      ( ( nil_tm
        = ( replicate_tm @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_1010_empty__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( nil_nat
        = ( replicate_nat @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_1011_in__set__replicate,axiom,
    ! [X: tm,N: nat,Y2: tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ ( replicate_tm @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1012_in__set__replicate,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ ( replicate_nat @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1013_in__set__replicate,axiom,
    ! [X: set_nat,N: nat,Y2: set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ ( replicate_set_nat @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1014_in__set__replicate,axiom,
    ! [X: fm,N: nat,Y2: fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ ( replicate_fm @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1015_Bex__set__replicate,axiom,
    ! [N: nat,A2: tm,P3: tm > $o] :
      ( ( ? [X2: tm] :
            ( ( member_tm3 @ X2 @ ( set_tm2 @ ( replicate_tm @ N @ A2 ) ) )
            & ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1016_Bex__set__replicate,axiom,
    ! [N: nat,A2: nat,P3: nat > $o] :
      ( ( ? [X2: nat] :
            ( ( member_nat3 @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ A2 ) ) )
            & ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1017_Bex__set__replicate,axiom,
    ! [N: nat,A2: set_nat,P3: set_nat > $o] :
      ( ( ? [X2: set_nat] :
            ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ ( replicate_set_nat @ N @ A2 ) ) )
            & ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1018_Bex__set__replicate,axiom,
    ! [N: nat,A2: fm,P3: fm > $o] :
      ( ( ? [X2: fm] :
            ( ( member_fm3 @ X2 @ ( set_fm2 @ ( replicate_fm @ N @ A2 ) ) )
            & ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1019_Ball__set__replicate,axiom,
    ! [N: nat,A2: tm,P3: tm > $o] :
      ( ( ! [X2: tm] :
            ( ( member_tm3 @ X2 @ ( set_tm2 @ ( replicate_tm @ N @ A2 ) ) )
           => ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1020_Ball__set__replicate,axiom,
    ! [N: nat,A2: nat,P3: nat > $o] :
      ( ( ! [X2: nat] :
            ( ( member_nat3 @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ A2 ) ) )
           => ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1021_Ball__set__replicate,axiom,
    ! [N: nat,A2: set_nat,P3: set_nat > $o] :
      ( ( ! [X2: set_nat] :
            ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ ( replicate_set_nat @ N @ A2 ) ) )
           => ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1022_Ball__set__replicate,axiom,
    ! [N: nat,A2: fm,P3: fm > $o] :
      ( ( ! [X2: fm] :
            ( ( member_fm3 @ X2 @ ( set_fm2 @ ( replicate_fm @ N @ A2 ) ) )
           => ( P3 @ X2 ) ) )
      = ( ( P3 @ A2 )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1023_nths__empty,axiom,
    ! [Xs: list_tm] :
      ( ( nths_tm @ Xs @ bot_bot_set_nat )
      = nil_tm ) ).

% nths_empty
thf(fact_1024_nths__empty,axiom,
    ! [Xs: list_nat] :
      ( ( nths_nat @ Xs @ bot_bot_set_nat )
      = nil_nat ) ).

% nths_empty
thf(fact_1025_bind__simps_I2_J,axiom,
    ! [X: tm,Xs: list_tm,F: tm > list_nat] :
      ( ( bind_tm_nat @ ( cons_tm @ X @ Xs ) @ F )
      = ( append_nat @ ( F @ X ) @ ( bind_tm_nat @ Xs @ F ) ) ) ).

% bind_simps(2)
thf(fact_1026_bind__simps_I2_J,axiom,
    ! [X: nat,Xs: list_nat,F: nat > list_nat] :
      ( ( bind_nat_nat @ ( cons_nat @ X @ Xs ) @ F )
      = ( append_nat @ ( F @ X ) @ ( bind_nat_nat @ Xs @ F ) ) ) ).

% bind_simps(2)
thf(fact_1027_replicate__append__same,axiom,
    ! [I: nat,X: tm] :
      ( ( append_tm @ ( replicate_tm @ I @ X ) @ ( cons_tm @ X @ nil_tm ) )
      = ( cons_tm @ X @ ( replicate_tm @ I @ X ) ) ) ).

% replicate_append_same
thf(fact_1028_replicate__append__same,axiom,
    ! [I: nat,X: nat] :
      ( ( append_nat @ ( replicate_nat @ I @ X ) @ ( cons_nat @ X @ nil_nat ) )
      = ( cons_nat @ X @ ( replicate_nat @ I @ X ) ) ) ).

% replicate_append_same
thf(fact_1029_append__replicate__commute,axiom,
    ! [N: nat,X: nat,K: nat] :
      ( ( append_nat @ ( replicate_nat @ N @ X ) @ ( replicate_nat @ K @ X ) )
      = ( append_nat @ ( replicate_nat @ K @ X ) @ ( replicate_nat @ N @ X ) ) ) ).

% append_replicate_commute
thf(fact_1030_append__eq__append__conv2,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat,Ts: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Zs @ Ts ) )
      = ( ? [Us: list_nat] :
            ( ( ( Xs
                = ( append_nat @ Zs @ Us ) )
              & ( ( append_nat @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_nat @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_nat @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_1031_append__eq__appendI,axiom,
    ! [Xs: list_nat,Xs1: list_nat,Zs: list_nat,Ys: list_nat,Us2: list_nat] :
      ( ( ( append_nat @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_nat @ Xs1 @ Us2 ) )
       => ( ( append_nat @ Xs @ Ys )
          = ( append_nat @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_1032_replicate__app__Cons__same,axiom,
    ! [N: nat,X: tm,Xs: list_tm] :
      ( ( append_tm @ ( replicate_tm @ N @ X ) @ ( cons_tm @ X @ Xs ) )
      = ( cons_tm @ X @ ( append_tm @ ( replicate_tm @ N @ X ) @ Xs ) ) ) ).

% replicate_app_Cons_same
thf(fact_1033_replicate__app__Cons__same,axiom,
    ! [N: nat,X: nat,Xs: list_nat] :
      ( ( append_nat @ ( replicate_nat @ N @ X ) @ ( cons_nat @ X @ Xs ) )
      = ( cons_nat @ X @ ( append_nat @ ( replicate_nat @ N @ X ) @ Xs ) ) ) ).

% replicate_app_Cons_same
thf(fact_1034_Cons__eq__appendI,axiom,
    ! [X: tm,Xs1: list_tm,Ys: list_tm,Xs: list_tm,Zs: list_tm] :
      ( ( ( cons_tm @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_tm @ Xs1 @ Zs ) )
       => ( ( cons_tm @ X @ Xs )
          = ( append_tm @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_1035_Cons__eq__appendI,axiom,
    ! [X: nat,Xs1: list_nat,Ys: list_nat,Xs: list_nat,Zs: list_nat] :
      ( ( ( cons_nat @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_nat @ Xs1 @ Zs ) )
       => ( ( cons_nat @ X @ Xs )
          = ( append_nat @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_1036_append__Cons,axiom,
    ! [X: tm,Xs: list_tm,Ys: list_tm] :
      ( ( append_tm @ ( cons_tm @ X @ Xs ) @ Ys )
      = ( cons_tm @ X @ ( append_tm @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_1037_append__Cons,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat] :
      ( ( append_nat @ ( cons_nat @ X @ Xs ) @ Ys )
      = ( cons_nat @ X @ ( append_nat @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_1038_eq__Nil__appendI,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_tm @ nil_tm @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_1039_eq__Nil__appendI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_nat @ nil_nat @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_1040_append_Oleft__neutral,axiom,
    ! [A2: list_tm] :
      ( ( append_tm @ nil_tm @ A2 )
      = A2 ) ).

% append.left_neutral
thf(fact_1041_append_Oleft__neutral,axiom,
    ! [A2: list_nat] :
      ( ( append_nat @ nil_nat @ A2 )
      = A2 ) ).

% append.left_neutral
thf(fact_1042_append__Nil,axiom,
    ! [Ys: list_tm] :
      ( ( append_tm @ nil_tm @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_1043_append__Nil,axiom,
    ! [Ys: list_nat] :
      ( ( append_nat @ nil_nat @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_1044_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1045_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1046_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1047_diff__le__mono,axiom,
    ! [M: nat,N: nat,L3: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L3 ) @ ( minus_minus_nat @ N @ L3 ) ) ) ).

% diff_le_mono
thf(fact_1048_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_1049_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B2 ) )
          = ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_1050_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L3: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L3 @ N ) @ ( minus_minus_nat @ L3 @ M ) ) ) ).

% diff_le_mono2
thf(fact_1051_notin__set__nthsI,axiom,
    ! [X: tm,Xs: list_tm,I2: set_nat] :
      ( ~ ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ~ ( member_tm3 @ X @ ( set_tm2 @ ( nths_tm @ Xs @ I2 ) ) ) ) ).

% notin_set_nthsI
thf(fact_1052_notin__set__nthsI,axiom,
    ! [X: nat,Xs: list_nat,I2: set_nat] :
      ( ~ ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ~ ( member_nat3 @ X @ ( set_nat2 @ ( nths_nat @ Xs @ I2 ) ) ) ) ).

% notin_set_nthsI
thf(fact_1053_notin__set__nthsI,axiom,
    ! [X: set_nat,Xs: list_set_nat,I2: set_nat] :
      ( ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ ( nths_set_nat @ Xs @ I2 ) ) ) ) ).

% notin_set_nthsI
thf(fact_1054_notin__set__nthsI,axiom,
    ! [X: fm,Xs: list_fm,I2: set_nat] :
      ( ~ ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ~ ( member_fm3 @ X @ ( set_fm2 @ ( nths_fm @ Xs @ I2 ) ) ) ) ).

% notin_set_nthsI
thf(fact_1055_in__set__nthsD,axiom,
    ! [X: tm,Xs: list_tm,I2: set_nat] :
      ( ( member_tm3 @ X @ ( set_tm2 @ ( nths_tm @ Xs @ I2 ) ) )
     => ( member_tm3 @ X @ ( set_tm2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_1056_in__set__nthsD,axiom,
    ! [X: nat,Xs: list_nat,I2: set_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ ( nths_nat @ Xs @ I2 ) ) )
     => ( member_nat3 @ X @ ( set_nat2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_1057_in__set__nthsD,axiom,
    ! [X: set_nat,Xs: list_set_nat,I2: set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ ( nths_set_nat @ Xs @ I2 ) ) )
     => ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_1058_in__set__nthsD,axiom,
    ! [X: fm,Xs: list_fm,I2: set_nat] :
      ( ( member_fm3 @ X @ ( set_fm2 @ ( nths_fm @ Xs @ I2 ) ) )
     => ( member_fm3 @ X @ ( set_fm2 @ Xs ) ) ) ).

% in_set_nthsD
thf(fact_1059_tm_Odistinct_I1_J,axiom,
    ! [X11: nat,X12: list_tm,X23: nat] :
      ( ( fun @ X11 @ X12 )
     != ( var @ X23 ) ) ).

% tm.distinct(1)
thf(fact_1060_tm_Oexhaust,axiom,
    ! [Y2: tm] :
      ( ! [X112: nat,X122: list_tm] :
          ( Y2
         != ( fun @ X112 @ X122 ) )
     => ~ ! [X24: nat] :
            ( Y2
           != ( var @ X24 ) ) ) ).

% tm.exhaust
thf(fact_1061_paramst_H_H_Ocases,axiom,
    ! [X: tm] :
      ( ! [N2: nat] :
          ( X
         != ( var @ N2 ) )
     => ~ ! [A5: nat,Ts2: list_tm] :
            ( X
           != ( fun @ A5 @ Ts2 ) ) ) ).

% paramst''.cases
thf(fact_1062_Cons__in__subseqsD,axiom,
    ! [Y2: tm,Ys: list_tm,Xs: list_tm] :
      ( ( member_list_tm @ ( cons_tm @ Y2 @ Ys ) @ ( set_list_tm2 @ ( subseqs_tm @ Xs ) ) )
     => ( member_list_tm @ Ys @ ( set_list_tm2 @ ( subseqs_tm @ Xs ) ) ) ) ).

% Cons_in_subseqsD
thf(fact_1063_Cons__in__subseqsD,axiom,
    ! [Y2: nat,Ys: list_nat,Xs: list_nat] :
      ( ( member_list_nat @ ( cons_nat @ Y2 @ Ys ) @ ( set_list_nat2 @ ( subseqs_nat @ Xs ) ) )
     => ( member_list_nat @ Ys @ ( set_list_nat2 @ ( subseqs_nat @ Xs ) ) ) ) ).

% Cons_in_subseqsD
thf(fact_1064_rev__nonempty__induct,axiom,
    ! [Xs: list_tm,P3: list_tm > $o] :
      ( ( Xs != nil_tm )
     => ( ! [X3: tm] : ( P3 @ ( cons_tm @ X3 @ nil_tm ) )
       => ( ! [X3: tm,Xs3: list_tm] :
              ( ( Xs3 != nil_tm )
             => ( ( P3 @ Xs3 )
               => ( P3 @ ( append_tm @ Xs3 @ ( cons_tm @ X3 @ nil_tm ) ) ) ) )
         => ( P3 @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_1065_rev__nonempty__induct,axiom,
    ! [Xs: list_nat,P3: list_nat > $o] :
      ( ( Xs != nil_nat )
     => ( ! [X3: nat] : ( P3 @ ( cons_nat @ X3 @ nil_nat ) )
       => ( ! [X3: nat,Xs3: list_nat] :
              ( ( Xs3 != nil_nat )
             => ( ( P3 @ Xs3 )
               => ( P3 @ ( append_nat @ Xs3 @ ( cons_nat @ X3 @ nil_nat ) ) ) ) )
         => ( P3 @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_1066_append__eq__Cons__conv,axiom,
    ! [Ys: list_tm,Zs: list_tm,X: tm,Xs: list_tm] :
      ( ( ( append_tm @ Ys @ Zs )
        = ( cons_tm @ X @ Xs ) )
      = ( ( ( Ys = nil_tm )
          & ( Zs
            = ( cons_tm @ X @ Xs ) ) )
        | ? [Ys4: list_tm] :
            ( ( Ys
              = ( cons_tm @ X @ Ys4 ) )
            & ( ( append_tm @ Ys4 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_1067_append__eq__Cons__conv,axiom,
    ! [Ys: list_nat,Zs: list_nat,X: nat,Xs: list_nat] :
      ( ( ( append_nat @ Ys @ Zs )
        = ( cons_nat @ X @ Xs ) )
      = ( ( ( Ys = nil_nat )
          & ( Zs
            = ( cons_nat @ X @ Xs ) ) )
        | ? [Ys4: list_nat] :
            ( ( Ys
              = ( cons_nat @ X @ Ys4 ) )
            & ( ( append_nat @ Ys4 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_1068_Cons__eq__append__conv,axiom,
    ! [X: tm,Xs: list_tm,Ys: list_tm,Zs: list_tm] :
      ( ( ( cons_tm @ X @ Xs )
        = ( append_tm @ Ys @ Zs ) )
      = ( ( ( Ys = nil_tm )
          & ( ( cons_tm @ X @ Xs )
            = Zs ) )
        | ? [Ys4: list_tm] :
            ( ( ( cons_tm @ X @ Ys4 )
              = Ys )
            & ( Xs
              = ( append_tm @ Ys4 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_1069_Cons__eq__append__conv,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( cons_nat @ X @ Xs )
        = ( append_nat @ Ys @ Zs ) )
      = ( ( ( Ys = nil_nat )
          & ( ( cons_nat @ X @ Xs )
            = Zs ) )
        | ? [Ys4: list_nat] :
            ( ( ( cons_nat @ X @ Ys4 )
              = Ys )
            & ( Xs
              = ( append_nat @ Ys4 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_1070_rev__exhaust,axiom,
    ! [Xs: list_tm] :
      ( ( Xs != nil_tm )
     => ~ ! [Ys2: list_tm,Y3: tm] :
            ( Xs
           != ( append_tm @ Ys2 @ ( cons_tm @ Y3 @ nil_tm ) ) ) ) ).

% rev_exhaust
thf(fact_1071_rev__exhaust,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
     => ~ ! [Ys2: list_nat,Y3: nat] :
            ( Xs
           != ( append_nat @ Ys2 @ ( cons_nat @ Y3 @ nil_nat ) ) ) ) ).

% rev_exhaust
thf(fact_1072_rev__induct,axiom,
    ! [P3: list_tm > $o,Xs: list_tm] :
      ( ( P3 @ nil_tm )
     => ( ! [X3: tm,Xs3: list_tm] :
            ( ( P3 @ Xs3 )
           => ( P3 @ ( append_tm @ Xs3 @ ( cons_tm @ X3 @ nil_tm ) ) ) )
       => ( P3 @ Xs ) ) ) ).

% rev_induct
thf(fact_1073_rev__induct,axiom,
    ! [P3: list_nat > $o,Xs: list_nat] :
      ( ( P3 @ nil_nat )
     => ( ! [X3: nat,Xs3: list_nat] :
            ( ( P3 @ Xs3 )
           => ( P3 @ ( append_nat @ Xs3 @ ( cons_nat @ X3 @ nil_nat ) ) ) )
       => ( P3 @ Xs ) ) ) ).

% rev_induct
thf(fact_1074_replicate__0,axiom,
    ! [X: tm] :
      ( ( replicate_tm @ zero_zero_nat @ X )
      = nil_tm ) ).

% replicate_0
thf(fact_1075_replicate__0,axiom,
    ! [X: nat] :
      ( ( replicate_nat @ zero_zero_nat @ X )
      = nil_nat ) ).

% replicate_0
thf(fact_1076_split__list,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ? [Ys2: list_set_nat,Zs2: list_set_nat] :
          ( Xs
          = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X @ Zs2 ) ) ) ) ).

% split_list
thf(fact_1077_split__list,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ? [Ys2: list_fm,Zs2: list_fm] :
          ( Xs
          = ( append_fm @ Ys2 @ ( cons_fm @ X @ Zs2 ) ) ) ) ).

% split_list
thf(fact_1078_split__list,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ? [Ys2: list_tm,Zs2: list_tm] :
          ( Xs
          = ( append_tm @ Ys2 @ ( cons_tm @ X @ Zs2 ) ) ) ) ).

% split_list
thf(fact_1079_split__list,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ? [Ys2: list_nat,Zs2: list_nat] :
          ( Xs
          = ( append_nat @ Ys2 @ ( cons_nat @ X @ Zs2 ) ) ) ) ).

% split_list
thf(fact_1080_split__list__last,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ? [Ys2: list_set_nat,Zs2: list_set_nat] :
          ( ( Xs
            = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X @ Zs2 ) ) )
          & ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Zs2 ) ) ) ) ).

% split_list_last
thf(fact_1081_split__list__last,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ? [Ys2: list_fm,Zs2: list_fm] :
          ( ( Xs
            = ( append_fm @ Ys2 @ ( cons_fm @ X @ Zs2 ) ) )
          & ~ ( member_fm3 @ X @ ( set_fm2 @ Zs2 ) ) ) ) ).

% split_list_last
thf(fact_1082_split__list__last,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ? [Ys2: list_tm,Zs2: list_tm] :
          ( ( Xs
            = ( append_tm @ Ys2 @ ( cons_tm @ X @ Zs2 ) ) )
          & ~ ( member_tm3 @ X @ ( set_tm2 @ Zs2 ) ) ) ) ).

% split_list_last
thf(fact_1083_split__list__last,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ? [Ys2: list_nat,Zs2: list_nat] :
          ( ( Xs
            = ( append_nat @ Ys2 @ ( cons_nat @ X @ Zs2 ) ) )
          & ~ ( member_nat3 @ X @ ( set_nat2 @ Zs2 ) ) ) ) ).

% split_list_last
thf(fact_1084_split__list__prop,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ? [X4: set_nat] :
          ( ( member_set_nat3 @ X4 @ ( set_set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_set_nat,X3: set_nat] :
          ( ? [Zs2: list_set_nat] :
              ( Xs
              = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 ) ) ) ).

% split_list_prop
thf(fact_1085_split__list__prop,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ? [X4: fm] :
          ( ( member_fm3 @ X4 @ ( set_fm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_fm,X3: fm] :
          ( ? [Zs2: list_fm] :
              ( Xs
              = ( append_fm @ Ys2 @ ( cons_fm @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 ) ) ) ).

% split_list_prop
thf(fact_1086_split__list__prop,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ? [X4: tm] :
          ( ( member_tm3 @ X4 @ ( set_tm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_tm,X3: tm] :
          ( ? [Zs2: list_tm] :
              ( Xs
              = ( append_tm @ Ys2 @ ( cons_tm @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 ) ) ) ).

% split_list_prop
thf(fact_1087_split__list__prop,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat3 @ X4 @ ( set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_nat,X3: nat] :
          ( ? [Zs2: list_nat] :
              ( Xs
              = ( append_nat @ Ys2 @ ( cons_nat @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 ) ) ) ).

% split_list_prop
thf(fact_1088_split__list__first,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ? [Ys2: list_set_nat,Zs2: list_set_nat] :
          ( ( Xs
            = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X @ Zs2 ) ) )
          & ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_1089_split__list__first,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ? [Ys2: list_fm,Zs2: list_fm] :
          ( ( Xs
            = ( append_fm @ Ys2 @ ( cons_fm @ X @ Zs2 ) ) )
          & ~ ( member_fm3 @ X @ ( set_fm2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_1090_split__list__first,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ? [Ys2: list_tm,Zs2: list_tm] :
          ( ( Xs
            = ( append_tm @ Ys2 @ ( cons_tm @ X @ Zs2 ) ) )
          & ~ ( member_tm3 @ X @ ( set_tm2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_1091_split__list__first,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ? [Ys2: list_nat,Zs2: list_nat] :
          ( ( Xs
            = ( append_nat @ Ys2 @ ( cons_nat @ X @ Zs2 ) ) )
          & ~ ( member_nat3 @ X @ ( set_nat2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_1092_split__list__propE,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ? [X4: set_nat] :
          ( ( member_set_nat3 @ X4 @ ( set_set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_set_nat,X3: set_nat] :
            ( ? [Zs2: list_set_nat] :
                ( Xs
                = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X3 @ Zs2 ) ) )
           => ~ ( P3 @ X3 ) ) ) ).

% split_list_propE
thf(fact_1093_split__list__propE,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ? [X4: fm] :
          ( ( member_fm3 @ X4 @ ( set_fm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_fm,X3: fm] :
            ( ? [Zs2: list_fm] :
                ( Xs
                = ( append_fm @ Ys2 @ ( cons_fm @ X3 @ Zs2 ) ) )
           => ~ ( P3 @ X3 ) ) ) ).

% split_list_propE
thf(fact_1094_split__list__propE,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ? [X4: tm] :
          ( ( member_tm3 @ X4 @ ( set_tm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_tm,X3: tm] :
            ( ? [Zs2: list_tm] :
                ( Xs
                = ( append_tm @ Ys2 @ ( cons_tm @ X3 @ Zs2 ) ) )
           => ~ ( P3 @ X3 ) ) ) ).

% split_list_propE
thf(fact_1095_split__list__propE,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat3 @ X4 @ ( set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_nat,X3: nat] :
            ( ? [Zs2: list_nat] :
                ( Xs
                = ( append_nat @ Ys2 @ ( cons_nat @ X3 @ Zs2 ) ) )
           => ~ ( P3 @ X3 ) ) ) ).

% split_list_propE
thf(fact_1096_append__Cons__eq__iff,axiom,
    ! [X: set_nat,Xs: list_set_nat,Ys: list_set_nat,Xs4: list_set_nat,Ys5: list_set_nat] :
      ( ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
     => ( ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Ys ) )
       => ( ( ( append_set_nat @ Xs @ ( cons_set_nat @ X @ Ys ) )
            = ( append_set_nat @ Xs4 @ ( cons_set_nat @ X @ Ys5 ) ) )
          = ( ( Xs = Xs4 )
            & ( Ys = Ys5 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_1097_append__Cons__eq__iff,axiom,
    ! [X: fm,Xs: list_fm,Ys: list_fm,Xs4: list_fm,Ys5: list_fm] :
      ( ~ ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
     => ( ~ ( member_fm3 @ X @ ( set_fm2 @ Ys ) )
       => ( ( ( append_fm @ Xs @ ( cons_fm @ X @ Ys ) )
            = ( append_fm @ Xs4 @ ( cons_fm @ X @ Ys5 ) ) )
          = ( ( Xs = Xs4 )
            & ( Ys = Ys5 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_1098_append__Cons__eq__iff,axiom,
    ! [X: tm,Xs: list_tm,Ys: list_tm,Xs4: list_tm,Ys5: list_tm] :
      ( ~ ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
     => ( ~ ( member_tm3 @ X @ ( set_tm2 @ Ys ) )
       => ( ( ( append_tm @ Xs @ ( cons_tm @ X @ Ys ) )
            = ( append_tm @ Xs4 @ ( cons_tm @ X @ Ys5 ) ) )
          = ( ( Xs = Xs4 )
            & ( Ys = Ys5 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_1099_append__Cons__eq__iff,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat,Xs4: list_nat,Ys5: list_nat] :
      ( ~ ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
     => ( ~ ( member_nat3 @ X @ ( set_nat2 @ Ys ) )
       => ( ( ( append_nat @ Xs @ ( cons_nat @ X @ Ys ) )
            = ( append_nat @ Xs4 @ ( cons_nat @ X @ Ys5 ) ) )
          = ( ( Xs = Xs4 )
            & ( Ys = Ys5 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_1100_in__set__conv__decomp,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
      = ( ? [Ys3: list_set_nat,Zs3: list_set_nat] :
            ( Xs
            = ( append_set_nat @ Ys3 @ ( cons_set_nat @ X @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_1101_in__set__conv__decomp,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
      = ( ? [Ys3: list_fm,Zs3: list_fm] :
            ( Xs
            = ( append_fm @ Ys3 @ ( cons_fm @ X @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_1102_in__set__conv__decomp,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
      = ( ? [Ys3: list_tm,Zs3: list_tm] :
            ( Xs
            = ( append_tm @ Ys3 @ ( cons_tm @ X @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_1103_in__set__conv__decomp,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
      = ( ? [Ys3: list_nat,Zs3: list_nat] :
            ( Xs
            = ( append_nat @ Ys3 @ ( cons_nat @ X @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_1104_split__list__last__prop,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ? [X4: set_nat] :
          ( ( member_set_nat3 @ X4 @ ( set_set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_set_nat,X3: set_nat,Zs2: list_set_nat] :
          ( ( Xs
            = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: set_nat] :
              ( ( member_set_nat3 @ Xa2 @ ( set_set_nat2 @ Zs2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_last_prop
thf(fact_1105_split__list__last__prop,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ? [X4: fm] :
          ( ( member_fm3 @ X4 @ ( set_fm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_fm,X3: fm,Zs2: list_fm] :
          ( ( Xs
            = ( append_fm @ Ys2 @ ( cons_fm @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: fm] :
              ( ( member_fm3 @ Xa2 @ ( set_fm2 @ Zs2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_last_prop
thf(fact_1106_split__list__last__prop,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ? [X4: tm] :
          ( ( member_tm3 @ X4 @ ( set_tm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_tm,X3: tm,Zs2: list_tm] :
          ( ( Xs
            = ( append_tm @ Ys2 @ ( cons_tm @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: tm] :
              ( ( member_tm3 @ Xa2 @ ( set_tm2 @ Zs2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_last_prop
thf(fact_1107_split__list__last__prop,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat3 @ X4 @ ( set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_nat,X3: nat,Zs2: list_nat] :
          ( ( Xs
            = ( append_nat @ Ys2 @ ( cons_nat @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: nat] :
              ( ( member_nat3 @ Xa2 @ ( set_nat2 @ Zs2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_last_prop
thf(fact_1108_split__list__first__prop,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ? [X4: set_nat] :
          ( ( member_set_nat3 @ X4 @ ( set_set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_set_nat,X3: set_nat] :
          ( ? [Zs2: list_set_nat] :
              ( Xs
              = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: set_nat] :
              ( ( member_set_nat3 @ Xa2 @ ( set_set_nat2 @ Ys2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_first_prop
thf(fact_1109_split__list__first__prop,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ? [X4: fm] :
          ( ( member_fm3 @ X4 @ ( set_fm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_fm,X3: fm] :
          ( ? [Zs2: list_fm] :
              ( Xs
              = ( append_fm @ Ys2 @ ( cons_fm @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: fm] :
              ( ( member_fm3 @ Xa2 @ ( set_fm2 @ Ys2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_first_prop
thf(fact_1110_split__list__first__prop,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ? [X4: tm] :
          ( ( member_tm3 @ X4 @ ( set_tm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_tm,X3: tm] :
          ( ? [Zs2: list_tm] :
              ( Xs
              = ( append_tm @ Ys2 @ ( cons_tm @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: tm] :
              ( ( member_tm3 @ Xa2 @ ( set_tm2 @ Ys2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_first_prop
thf(fact_1111_split__list__first__prop,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat3 @ X4 @ ( set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ? [Ys2: list_nat,X3: nat] :
          ( ? [Zs2: list_nat] :
              ( Xs
              = ( append_nat @ Ys2 @ ( cons_nat @ X3 @ Zs2 ) ) )
          & ( P3 @ X3 )
          & ! [Xa2: nat] :
              ( ( member_nat3 @ Xa2 @ ( set_nat2 @ Ys2 ) )
             => ~ ( P3 @ Xa2 ) ) ) ) ).

% split_list_first_prop
thf(fact_1112_split__list__last__propE,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ? [X4: set_nat] :
          ( ( member_set_nat3 @ X4 @ ( set_set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_set_nat,X3: set_nat,Zs2: list_set_nat] :
            ( ( Xs
              = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: set_nat] :
                    ( ( member_set_nat3 @ Xa2 @ ( set_set_nat2 @ Zs2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_last_propE
thf(fact_1113_split__list__last__propE,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ? [X4: fm] :
          ( ( member_fm3 @ X4 @ ( set_fm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_fm,X3: fm,Zs2: list_fm] :
            ( ( Xs
              = ( append_fm @ Ys2 @ ( cons_fm @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: fm] :
                    ( ( member_fm3 @ Xa2 @ ( set_fm2 @ Zs2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_last_propE
thf(fact_1114_split__list__last__propE,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ? [X4: tm] :
          ( ( member_tm3 @ X4 @ ( set_tm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_tm,X3: tm,Zs2: list_tm] :
            ( ( Xs
              = ( append_tm @ Ys2 @ ( cons_tm @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: tm] :
                    ( ( member_tm3 @ Xa2 @ ( set_tm2 @ Zs2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_last_propE
thf(fact_1115_split__list__last__propE,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat3 @ X4 @ ( set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_nat,X3: nat,Zs2: list_nat] :
            ( ( Xs
              = ( append_nat @ Ys2 @ ( cons_nat @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: nat] :
                    ( ( member_nat3 @ Xa2 @ ( set_nat2 @ Zs2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_last_propE
thf(fact_1116_split__list__first__propE,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ? [X4: set_nat] :
          ( ( member_set_nat3 @ X4 @ ( set_set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_set_nat,X3: set_nat] :
            ( ? [Zs2: list_set_nat] :
                ( Xs
                = ( append_set_nat @ Ys2 @ ( cons_set_nat @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: set_nat] :
                    ( ( member_set_nat3 @ Xa2 @ ( set_set_nat2 @ Ys2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_first_propE
thf(fact_1117_split__list__first__propE,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ? [X4: fm] :
          ( ( member_fm3 @ X4 @ ( set_fm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_fm,X3: fm] :
            ( ? [Zs2: list_fm] :
                ( Xs
                = ( append_fm @ Ys2 @ ( cons_fm @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: fm] :
                    ( ( member_fm3 @ Xa2 @ ( set_fm2 @ Ys2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_first_propE
thf(fact_1118_split__list__first__propE,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ? [X4: tm] :
          ( ( member_tm3 @ X4 @ ( set_tm2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_tm,X3: tm] :
            ( ? [Zs2: list_tm] :
                ( Xs
                = ( append_tm @ Ys2 @ ( cons_tm @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: tm] :
                    ( ( member_tm3 @ Xa2 @ ( set_tm2 @ Ys2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_first_propE
thf(fact_1119_split__list__first__propE,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat3 @ X4 @ ( set_nat2 @ Xs ) )
          & ( P3 @ X4 ) )
     => ~ ! [Ys2: list_nat,X3: nat] :
            ( ? [Zs2: list_nat] :
                ( Xs
                = ( append_nat @ Ys2 @ ( cons_nat @ X3 @ Zs2 ) ) )
           => ( ( P3 @ X3 )
             => ~ ! [Xa2: nat] :
                    ( ( member_nat3 @ Xa2 @ ( set_nat2 @ Ys2 ) )
                   => ~ ( P3 @ Xa2 ) ) ) ) ) ).

% split_list_first_propE
thf(fact_1120_in__set__conv__decomp__last,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
      = ( ? [Ys3: list_set_nat,Zs3: list_set_nat] :
            ( ( Xs
              = ( append_set_nat @ Ys3 @ ( cons_set_nat @ X @ Zs3 ) ) )
            & ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_1121_in__set__conv__decomp__last,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
      = ( ? [Ys3: list_fm,Zs3: list_fm] :
            ( ( Xs
              = ( append_fm @ Ys3 @ ( cons_fm @ X @ Zs3 ) ) )
            & ~ ( member_fm3 @ X @ ( set_fm2 @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_1122_in__set__conv__decomp__last,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
      = ( ? [Ys3: list_tm,Zs3: list_tm] :
            ( ( Xs
              = ( append_tm @ Ys3 @ ( cons_tm @ X @ Zs3 ) ) )
            & ~ ( member_tm3 @ X @ ( set_tm2 @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_1123_in__set__conv__decomp__last,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
      = ( ? [Ys3: list_nat,Zs3: list_nat] :
            ( ( Xs
              = ( append_nat @ Ys3 @ ( cons_nat @ X @ Zs3 ) ) )
            & ~ ( member_nat3 @ X @ ( set_nat2 @ Zs3 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_1124_in__set__conv__decomp__first,axiom,
    ! [X: set_nat,Xs: list_set_nat] :
      ( ( member_set_nat3 @ X @ ( set_set_nat2 @ Xs ) )
      = ( ? [Ys3: list_set_nat,Zs3: list_set_nat] :
            ( ( Xs
              = ( append_set_nat @ Ys3 @ ( cons_set_nat @ X @ Zs3 ) ) )
            & ~ ( member_set_nat3 @ X @ ( set_set_nat2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_1125_in__set__conv__decomp__first,axiom,
    ! [X: fm,Xs: list_fm] :
      ( ( member_fm3 @ X @ ( set_fm2 @ Xs ) )
      = ( ? [Ys3: list_fm,Zs3: list_fm] :
            ( ( Xs
              = ( append_fm @ Ys3 @ ( cons_fm @ X @ Zs3 ) ) )
            & ~ ( member_fm3 @ X @ ( set_fm2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_1126_in__set__conv__decomp__first,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( member_tm3 @ X @ ( set_tm2 @ Xs ) )
      = ( ? [Ys3: list_tm,Zs3: list_tm] :
            ( ( Xs
              = ( append_tm @ Ys3 @ ( cons_tm @ X @ Zs3 ) ) )
            & ~ ( member_tm3 @ X @ ( set_tm2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_1127_in__set__conv__decomp__first,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat3 @ X @ ( set_nat2 @ Xs ) )
      = ( ? [Ys3: list_nat,Zs3: list_nat] :
            ( ( Xs
              = ( append_nat @ Ys3 @ ( cons_nat @ X @ Zs3 ) ) )
            & ~ ( member_nat3 @ X @ ( set_nat2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_1128_split__list__last__prop__iff,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ( ? [X2: set_nat] :
            ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_set_nat,X2: set_nat,Zs3: list_set_nat] :
            ( ( Xs
              = ( append_set_nat @ Ys3 @ ( cons_set_nat @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: set_nat] :
                ( ( member_set_nat3 @ Y @ ( set_set_nat2 @ Zs3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_1129_split__list__last__prop__iff,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ( ? [X2: fm] :
            ( ( member_fm3 @ X2 @ ( set_fm2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_fm,X2: fm,Zs3: list_fm] :
            ( ( Xs
              = ( append_fm @ Ys3 @ ( cons_fm @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: fm] :
                ( ( member_fm3 @ Y @ ( set_fm2 @ Zs3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_1130_split__list__last__prop__iff,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ( ? [X2: tm] :
            ( ( member_tm3 @ X2 @ ( set_tm2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_tm,X2: tm,Zs3: list_tm] :
            ( ( Xs
              = ( append_tm @ Ys3 @ ( cons_tm @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: tm] :
                ( ( member_tm3 @ Y @ ( set_tm2 @ Zs3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_1131_split__list__last__prop__iff,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ( ? [X2: nat] :
            ( ( member_nat3 @ X2 @ ( set_nat2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_nat,X2: nat,Zs3: list_nat] :
            ( ( Xs
              = ( append_nat @ Ys3 @ ( cons_nat @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: nat] :
                ( ( member_nat3 @ Y @ ( set_nat2 @ Zs3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_1132_split__list__first__prop__iff,axiom,
    ! [Xs: list_set_nat,P3: set_nat > $o] :
      ( ( ? [X2: set_nat] :
            ( ( member_set_nat3 @ X2 @ ( set_set_nat2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_set_nat,X2: set_nat] :
            ( ? [Zs3: list_set_nat] :
                ( Xs
                = ( append_set_nat @ Ys3 @ ( cons_set_nat @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: set_nat] :
                ( ( member_set_nat3 @ Y @ ( set_set_nat2 @ Ys3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_1133_split__list__first__prop__iff,axiom,
    ! [Xs: list_fm,P3: fm > $o] :
      ( ( ? [X2: fm] :
            ( ( member_fm3 @ X2 @ ( set_fm2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_fm,X2: fm] :
            ( ? [Zs3: list_fm] :
                ( Xs
                = ( append_fm @ Ys3 @ ( cons_fm @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: fm] :
                ( ( member_fm3 @ Y @ ( set_fm2 @ Ys3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_1134_split__list__first__prop__iff,axiom,
    ! [Xs: list_tm,P3: tm > $o] :
      ( ( ? [X2: tm] :
            ( ( member_tm3 @ X2 @ ( set_tm2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_tm,X2: tm] :
            ( ? [Zs3: list_tm] :
                ( Xs
                = ( append_tm @ Ys3 @ ( cons_tm @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: tm] :
                ( ( member_tm3 @ Y @ ( set_tm2 @ Ys3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_1135_split__list__first__prop__iff,axiom,
    ! [Xs: list_nat,P3: nat > $o] :
      ( ( ? [X2: nat] :
            ( ( member_nat3 @ X2 @ ( set_nat2 @ Xs ) )
            & ( P3 @ X2 ) ) )
      = ( ? [Ys3: list_nat,X2: nat] :
            ( ? [Zs3: list_nat] :
                ( Xs
                = ( append_nat @ Ys3 @ ( cons_nat @ X2 @ Zs3 ) ) )
            & ( P3 @ X2 )
            & ! [Y: nat] :
                ( ( member_nat3 @ Y @ ( set_nat2 @ Ys3 ) )
               => ~ ( P3 @ Y ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_1136_new__term_Osimps_I1_J,axiom,
    ! [C: nat,N: nat] : ( new_term @ C @ ( var @ N ) ) ).

% new_term.simps(1)
thf(fact_1137_set__nths__subset,axiom,
    ! [Xs: list_set_nat,I2: set_nat] : ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ ( nths_set_nat @ Xs @ I2 ) ) @ ( set_set_nat2 @ Xs ) ) ).

% set_nths_subset
thf(fact_1138_set__nths__subset,axiom,
    ! [Xs: list_fm,I2: set_nat] : ( ord_less_eq_set_fm @ ( set_fm2 @ ( nths_fm @ Xs @ I2 ) ) @ ( set_fm2 @ Xs ) ) ).

% set_nths_subset
thf(fact_1139_set__nths__subset,axiom,
    ! [Xs: list_tm,I2: set_nat] : ( ord_less_eq_set_tm @ ( set_tm2 @ ( nths_tm @ Xs @ I2 ) ) @ ( set_tm2 @ Xs ) ) ).

% set_nths_subset
thf(fact_1140_set__nths__subset,axiom,
    ! [Xs: list_nat,I2: set_nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ ( nths_nat @ Xs @ I2 ) ) @ ( set_nat2 @ Xs ) ) ).

% set_nths_subset
thf(fact_1141_paramst_Osimps_I1_J,axiom,
    ! [N: nat] :
      ( ( paramst @ ( var @ N ) )
      = bot_bot_set_nat ) ).

% paramst.simps(1)
thf(fact_1142_paramst_H_H_Osimps_I1_J,axiom,
    ! [N: nat] :
      ( ( paramst3 @ ( var @ N ) )
      = bot_bot_set_nat ) ).

% paramst''.simps(1)
thf(fact_1143_rotate1_Osimps_I2_J,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( rotate1_tm @ ( cons_tm @ X @ Xs ) )
      = ( append_tm @ Xs @ ( cons_tm @ X @ nil_tm ) ) ) ).

% rotate1.simps(2)
thf(fact_1144_rotate1_Osimps_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( rotate1_nat @ ( cons_nat @ X @ Xs ) )
      = ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) ) ).

% rotate1.simps(2)
thf(fact_1145_paramst_H_Osimps_I1_J,axiom,
    ! [N: nat] :
      ( ( paramst2 @ ( var @ N ) )
      = bot_bot_set_nat ) ).

% paramst'.simps(1)
thf(fact_1146_listFunTm_Osimps_I2_J,axiom,
    ! [N: nat] :
      ( ( listFunTm @ ( var @ N ) )
      = nil_nat ) ).

% listFunTm.simps(2)
thf(fact_1147_set__replicate__conv__if,axiom,
    ! [N: nat,X: set_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_set_nat2 @ ( replicate_set_nat @ N @ X ) )
          = bot_bot_set_set_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_set_nat2 @ ( replicate_set_nat @ N @ X ) )
          = ( insert_set_nat2 @ X @ bot_bot_set_set_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_1148_set__replicate__conv__if,axiom,
    ! [N: nat,X: tm] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_tm2 @ ( replicate_tm @ N @ X ) )
          = bot_bot_set_tm ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_tm2 @ ( replicate_tm @ N @ X ) )
          = ( insert_tm2 @ X @ bot_bot_set_tm ) ) ) ) ).

% set_replicate_conv_if
thf(fact_1149_set__replicate__conv__if,axiom,
    ! [N: nat,X: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X ) )
          = bot_bot_set_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X ) )
          = ( insert_nat2 @ X @ bot_bot_set_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_1150_set__replicate__conv__if,axiom,
    ! [N: nat,X: fm] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_fm2 @ ( replicate_fm @ N @ X ) )
          = bot_bot_set_fm ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_fm2 @ ( replicate_fm @ N @ X ) )
          = ( insert_fm2 @ X @ bot_bot_set_fm ) ) ) ) ).

% set_replicate_conv_if
thf(fact_1151_prefixes__snoc,axiom,
    ! [Xs: list_tm,X: tm] :
      ( ( prefixes_tm @ ( append_tm @ Xs @ ( cons_tm @ X @ nil_tm ) ) )
      = ( append_list_tm @ ( prefixes_tm @ Xs ) @ ( cons_list_tm @ ( append_tm @ Xs @ ( cons_tm @ X @ nil_tm ) ) @ nil_list_tm ) ) ) ).

% prefixes_snoc
thf(fact_1152_prefixes__snoc,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( prefixes_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) )
      = ( append_list_nat @ ( prefixes_nat @ Xs ) @ ( cons_list_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) @ nil_list_nat ) ) ) ).

% prefixes_snoc
thf(fact_1153_tm_Osize__gen_I2_J,axiom,
    ! [X23: nat] :
      ( ( size_tm @ ( var @ X23 ) )
      = zero_zero_nat ) ).

% tm.size_gen(2)
thf(fact_1154_prefixes__eq__snoc,axiom,
    ! [Ys: list_tm,Xs: list_list_tm,X: list_tm] :
      ( ( ( prefixes_tm @ Ys )
        = ( append_list_tm @ Xs @ ( cons_list_tm @ X @ nil_list_tm ) ) )
      = ( ( ( ( Ys = nil_tm )
            & ( Xs = nil_list_tm ) )
          | ? [Z: tm,Zs3: list_tm] :
              ( ( Ys
                = ( append_tm @ Zs3 @ ( cons_tm @ Z @ nil_tm ) ) )
              & ( Xs
                = ( prefixes_tm @ Zs3 ) ) ) )
        & ( X = Ys ) ) ) ).

% prefixes_eq_snoc
thf(fact_1155_prefixes__eq__snoc,axiom,
    ! [Ys: list_nat,Xs: list_list_nat,X: list_nat] :
      ( ( ( prefixes_nat @ Ys )
        = ( append_list_nat @ Xs @ ( cons_list_nat @ X @ nil_list_nat ) ) )
      = ( ( ( ( Ys = nil_nat )
            & ( Xs = nil_list_nat ) )
          | ? [Z: nat,Zs3: list_nat] :
              ( ( Ys
                = ( append_nat @ Zs3 @ ( cons_nat @ Z @ nil_nat ) ) )
              & ( Xs
                = ( prefixes_nat @ Zs3 ) ) ) )
        & ( X = Ys ) ) ) ).

% prefixes_eq_snoc
thf(fact_1156_tm_Osize_I4_J,axiom,
    ! [X23: nat] :
      ( ( size_size_tm @ ( var @ X23 ) )
      = zero_zero_nat ) ).

% tm.size(4)
thf(fact_1157_maps__simps_I1_J,axiom,
    ! [F: tm > list_nat,X: tm,Xs: list_tm] :
      ( ( maps_tm_nat @ F @ ( cons_tm @ X @ Xs ) )
      = ( append_nat @ ( F @ X ) @ ( maps_tm_nat @ F @ Xs ) ) ) ).

% maps_simps(1)
thf(fact_1158_maps__simps_I1_J,axiom,
    ! [F: nat > list_nat,X: nat,Xs: list_nat] :
      ( ( maps_nat_nat @ F @ ( cons_nat @ X @ Xs ) )
      = ( append_nat @ ( F @ X ) @ ( maps_nat_nat @ F @ Xs ) ) ) ).

% maps_simps(1)
thf(fact_1159_maps__simps_I2_J,axiom,
    ! [F: tm > list_tm] :
      ( ( maps_tm_tm @ F @ nil_tm )
      = nil_tm ) ).

% maps_simps(2)
thf(fact_1160_maps__simps_I2_J,axiom,
    ! [F: tm > list_nat] :
      ( ( maps_tm_nat @ F @ nil_tm )
      = nil_nat ) ).

% maps_simps(2)
thf(fact_1161_maps__simps_I2_J,axiom,
    ! [F: nat > list_tm] :
      ( ( maps_nat_tm @ F @ nil_nat )
      = nil_tm ) ).

% maps_simps(2)
thf(fact_1162_maps__simps_I2_J,axiom,
    ! [F: nat > list_nat] :
      ( ( maps_nat_nat @ F @ nil_nat )
      = nil_nat ) ).

% maps_simps(2)
thf(fact_1163_prefixes_Osimps_I1_J,axiom,
    ( ( prefixes_tm @ nil_tm )
    = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) ).

% prefixes.simps(1)
thf(fact_1164_prefixes_Osimps_I1_J,axiom,
    ( ( prefixes_nat @ nil_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% prefixes.simps(1)
thf(fact_1165_suffixes__eq__snoc,axiom,
    ! [Ys: list_tm,Xs: list_list_tm,X: list_tm] :
      ( ( ( suffixes_tm @ Ys )
        = ( append_list_tm @ Xs @ ( cons_list_tm @ X @ nil_list_tm ) ) )
      = ( ( ( ( Ys = nil_tm )
            & ( Xs = nil_list_tm ) )
          | ? [Z: tm,Zs3: list_tm] :
              ( ( Ys
                = ( cons_tm @ Z @ Zs3 ) )
              & ( Xs
                = ( suffixes_tm @ Zs3 ) ) ) )
        & ( X = Ys ) ) ) ).

% suffixes_eq_snoc
thf(fact_1166_suffixes__eq__snoc,axiom,
    ! [Ys: list_nat,Xs: list_list_nat,X: list_nat] :
      ( ( ( suffixes_nat @ Ys )
        = ( append_list_nat @ Xs @ ( cons_list_nat @ X @ nil_list_nat ) ) )
      = ( ( ( ( Ys = nil_nat )
            & ( Xs = nil_list_nat ) )
          | ? [Z: nat,Zs3: list_nat] :
              ( ( Ys
                = ( cons_nat @ Z @ Zs3 ) )
              & ( Xs
                = ( suffixes_nat @ Zs3 ) ) ) )
        & ( X = Ys ) ) ) ).

% suffixes_eq_snoc
thf(fact_1167_concat__eq__append__conv,axiom,
    ! [Xss2: list_list_tm,Ys: list_tm,Zs: list_tm] :
      ( ( ( concat_tm @ Xss2 )
        = ( append_tm @ Ys @ Zs ) )
      = ( ( ( Xss2 = nil_list_tm )
         => ( ( Ys = nil_tm )
            & ( Zs = nil_tm ) ) )
        & ( ( Xss2 != nil_list_tm )
         => ? [Xss1: list_list_tm,Xs2: list_tm,Xs5: list_tm,Xss22: list_list_tm] :
              ( ( Xss2
                = ( append_list_tm @ Xss1 @ ( cons_list_tm @ ( append_tm @ Xs2 @ Xs5 ) @ Xss22 ) ) )
              & ( Ys
                = ( append_tm @ ( concat_tm @ Xss1 ) @ Xs2 ) )
              & ( Zs
                = ( append_tm @ Xs5 @ ( concat_tm @ Xss22 ) ) ) ) ) ) ) ).

% concat_eq_append_conv
thf(fact_1168_concat__eq__append__conv,axiom,
    ! [Xss2: list_list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( concat_nat @ Xss2 )
        = ( append_nat @ Ys @ Zs ) )
      = ( ( ( Xss2 = nil_list_nat )
         => ( ( Ys = nil_nat )
            & ( Zs = nil_nat ) ) )
        & ( ( Xss2 != nil_list_nat )
         => ? [Xss1: list_list_nat,Xs2: list_nat,Xs5: list_nat,Xss22: list_list_nat] :
              ( ( Xss2
                = ( append_list_nat @ Xss1 @ ( cons_list_nat @ ( append_nat @ Xs2 @ Xs5 ) @ Xss22 ) ) )
              & ( Ys
                = ( append_nat @ ( concat_nat @ Xss1 ) @ Xs2 ) )
              & ( Zs
                = ( append_nat @ Xs5 @ ( concat_nat @ Xss22 ) ) ) ) ) ) ) ).

% concat_eq_append_conv
thf(fact_1169_suffixes_Osimps_I2_J,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( suffixes_tm @ ( cons_tm @ X @ Xs ) )
      = ( append_list_tm @ ( suffixes_tm @ Xs ) @ ( cons_list_tm @ ( cons_tm @ X @ Xs ) @ nil_list_tm ) ) ) ).

% suffixes.simps(2)
thf(fact_1170_suffixes_Osimps_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( suffixes_nat @ ( cons_nat @ X @ Xs ) )
      = ( append_list_nat @ ( suffixes_nat @ Xs ) @ ( cons_list_nat @ ( cons_nat @ X @ Xs ) @ nil_list_nat ) ) ) ).

% suffixes.simps(2)
thf(fact_1171_concat__eq__appendD,axiom,
    ! [Xss2: list_list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( concat_nat @ Xss2 )
        = ( append_nat @ Ys @ Zs ) )
     => ( ( Xss2 != nil_list_nat )
       => ? [Xss12: list_list_nat,Xs3: list_nat,Xs6: list_nat,Xss23: list_list_nat] :
            ( ( Xss2
              = ( append_list_nat @ Xss12 @ ( cons_list_nat @ ( append_nat @ Xs3 @ Xs6 ) @ Xss23 ) ) )
            & ( Ys
              = ( append_nat @ ( concat_nat @ Xss12 ) @ Xs3 ) )
            & ( Zs
              = ( append_nat @ Xs6 @ ( concat_nat @ Xss23 ) ) ) ) ) ) ).

% concat_eq_appendD
thf(fact_1172_concat__eq__appendD,axiom,
    ! [Xss2: list_list_tm,Ys: list_tm,Zs: list_tm] :
      ( ( ( concat_tm @ Xss2 )
        = ( append_tm @ Ys @ Zs ) )
     => ( ( Xss2 != nil_list_tm )
       => ? [Xss12: list_list_tm,Xs3: list_tm,Xs6: list_tm,Xss23: list_list_tm] :
            ( ( Xss2
              = ( append_list_tm @ Xss12 @ ( cons_list_tm @ ( append_tm @ Xs3 @ Xs6 ) @ Xss23 ) ) )
            & ( Ys
              = ( append_tm @ ( concat_tm @ Xss12 ) @ Xs3 ) )
            & ( Zs
              = ( append_tm @ Xs6 @ ( concat_tm @ Xss23 ) ) ) ) ) ) ).

% concat_eq_appendD
thf(fact_1173_concat__replicate__trivial,axiom,
    ! [I: nat] :
      ( ( concat_tm @ ( replicate_list_tm @ I @ nil_tm ) )
      = nil_tm ) ).

% concat_replicate_trivial
thf(fact_1174_concat__replicate__trivial,axiom,
    ! [I: nat] :
      ( ( concat_nat @ ( replicate_list_nat @ I @ nil_nat ) )
      = nil_nat ) ).

% concat_replicate_trivial
thf(fact_1175_Nil__eq__concat__conv,axiom,
    ! [Xss2: list_list_tm] :
      ( ( nil_tm
        = ( concat_tm @ Xss2 ) )
      = ( ! [X2: list_tm] :
            ( ( member_list_tm @ X2 @ ( set_list_tm2 @ Xss2 ) )
           => ( X2 = nil_tm ) ) ) ) ).

% Nil_eq_concat_conv
thf(fact_1176_Nil__eq__concat__conv,axiom,
    ! [Xss2: list_list_nat] :
      ( ( nil_nat
        = ( concat_nat @ Xss2 ) )
      = ( ! [X2: list_nat] :
            ( ( member_list_nat @ X2 @ ( set_list_nat2 @ Xss2 ) )
           => ( X2 = nil_nat ) ) ) ) ).

% Nil_eq_concat_conv
thf(fact_1177_concat__eq__Nil__conv,axiom,
    ! [Xss2: list_list_tm] :
      ( ( ( concat_tm @ Xss2 )
        = nil_tm )
      = ( ! [X2: list_tm] :
            ( ( member_list_tm @ X2 @ ( set_list_tm2 @ Xss2 ) )
           => ( X2 = nil_tm ) ) ) ) ).

% concat_eq_Nil_conv
thf(fact_1178_concat__eq__Nil__conv,axiom,
    ! [Xss2: list_list_nat] :
      ( ( ( concat_nat @ Xss2 )
        = nil_nat )
      = ( ! [X2: list_nat] :
            ( ( member_list_nat @ X2 @ ( set_list_nat2 @ Xss2 ) )
           => ( X2 = nil_nat ) ) ) ) ).

% concat_eq_Nil_conv
thf(fact_1179_concat__append,axiom,
    ! [Xs: list_list_nat,Ys: list_list_nat] :
      ( ( concat_nat @ ( append_list_nat @ Xs @ Ys ) )
      = ( append_nat @ ( concat_nat @ Xs ) @ ( concat_nat @ Ys ) ) ) ).

% concat_append
thf(fact_1180_concat__append,axiom,
    ! [Xs: list_list_tm,Ys: list_list_tm] :
      ( ( concat_tm @ ( append_list_tm @ Xs @ Ys ) )
      = ( append_tm @ ( concat_tm @ Xs ) @ ( concat_tm @ Ys ) ) ) ).

% concat_append
thf(fact_1181_comm__append__are__replicate,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Ys @ Xs ) )
     => ? [M2: nat,N2: nat,Zs2: list_nat] :
          ( ( ( concat_nat @ ( replicate_list_nat @ M2 @ Zs2 ) )
            = Xs )
          & ( ( concat_nat @ ( replicate_list_nat @ N2 @ Zs2 ) )
            = Ys ) ) ) ).

% comm_append_are_replicate
thf(fact_1182_comm__append__are__replicate,axiom,
    ! [Xs: list_tm,Ys: list_tm] :
      ( ( ( append_tm @ Xs @ Ys )
        = ( append_tm @ Ys @ Xs ) )
     => ? [M2: nat,N2: nat,Zs2: list_tm] :
          ( ( ( concat_tm @ ( replicate_list_tm @ M2 @ Zs2 ) )
            = Xs )
          & ( ( concat_tm @ ( replicate_list_tm @ N2 @ Zs2 ) )
            = Ys ) ) ) ).

% comm_append_are_replicate
thf(fact_1183_concat_Osimps_I1_J,axiom,
    ( ( concat_tm @ nil_list_tm )
    = nil_tm ) ).

% concat.simps(1)
thf(fact_1184_concat_Osimps_I1_J,axiom,
    ( ( concat_nat @ nil_list_nat )
    = nil_nat ) ).

% concat.simps(1)
thf(fact_1185_concat_Osimps_I2_J,axiom,
    ! [X: list_nat,Xs: list_list_nat] :
      ( ( concat_nat @ ( cons_list_nat @ X @ Xs ) )
      = ( append_nat @ X @ ( concat_nat @ Xs ) ) ) ).

% concat.simps(2)
thf(fact_1186_concat_Osimps_I2_J,axiom,
    ! [X: list_tm,Xs: list_list_tm] :
      ( ( concat_tm @ ( cons_list_tm @ X @ Xs ) )
      = ( append_tm @ X @ ( concat_tm @ Xs ) ) ) ).

% concat.simps(2)
thf(fact_1187_suffixes_Osimps_I1_J,axiom,
    ( ( suffixes_tm @ nil_tm )
    = ( cons_list_tm @ nil_tm @ nil_list_tm ) ) ).

% suffixes.simps(1)
thf(fact_1188_suffixes_Osimps_I1_J,axiom,
    ( ( suffixes_nat @ nil_nat )
    = ( cons_list_nat @ nil_nat @ nil_list_nat ) ) ).

% suffixes.simps(1)
thf(fact_1189_sublists_Osimps_I2_J,axiom,
    ! [X: tm,Xs: list_tm] :
      ( ( sublists_tm @ ( cons_tm @ X @ Xs ) )
      = ( append_list_tm @ ( sublists_tm @ Xs ) @ ( map_list_tm_list_tm @ ( cons_tm @ X ) @ ( prefixes_tm @ Xs ) ) ) ) ).

% sublists.simps(2)
thf(fact_1190_sublists_Osimps_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( sublists_nat @ ( cons_nat @ X @ Xs ) )
      = ( append_list_nat @ ( sublists_nat @ Xs ) @ ( map_li7225945977422193158st_nat @ ( cons_nat @ X ) @ ( prefixes_nat @ Xs ) ) ) ) ).

% sublists.simps(2)
thf(fact_1191_butlast__snoc,axiom,
    ! [Xs: list_tm,X: tm] :
      ( ( butlast_tm @ ( append_tm @ Xs @ ( cons_tm @ X @ nil_tm ) ) )
      = Xs ) ).

% butlast_snoc
thf(fact_1192_butlast__snoc,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( butlast_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) )
      = Xs ) ).

% butlast_snoc
thf(fact_1193_subset__subseqs,axiom,
    ! [X6: set_set_nat,Xs: list_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ X6 @ ( set_set_nat2 @ Xs ) )
     => ( member_set_set_nat @ X6 @ ( image_8726355809080528601et_nat @ set_set_nat2 @ ( set_list_set_nat2 @ ( subseqs_set_nat @ Xs ) ) ) ) ) ).

% subset_subseqs
thf(fact_1194_subset__subseqs,axiom,
    ! [X6: set_fm,Xs: list_fm] :
      ( ( ord_less_eq_set_fm @ X6 @ ( set_fm2 @ Xs ) )
     => ( member_set_fm @ X6 @ ( image_list_fm_set_fm @ set_fm2 @ ( set_list_fm2 @ ( subseqs_fm @ Xs ) ) ) ) ) ).

% subset_subseqs
thf(fact_1195_subset__subseqs,axiom,
    ! [X6: set_tm,Xs: list_tm] :
      ( ( ord_less_eq_set_tm @ X6 @ ( set_tm2 @ Xs ) )
     => ( member_set_tm @ X6 @ ( image_list_tm_set_tm @ set_tm2 @ ( set_list_tm2 @ ( subseqs_tm @ Xs ) ) ) ) ) ).

% subset_subseqs
thf(fact_1196_subset__subseqs,axiom,
    ! [X6: set_nat,Xs: list_nat] :
      ( ( ord_less_eq_set_nat @ X6 @ ( set_nat2 @ Xs ) )
     => ( member_set_nat3 @ X6 @ ( image_1775855109352712557et_nat @ set_nat2 @ ( set_list_nat2 @ ( subseqs_nat @ Xs ) ) ) ) ) ).

% subset_subseqs
thf(fact_1197_last__snoc,axiom,
    ! [Xs: list_tm,X: tm] :
      ( ( last_tm @ ( append_tm @ Xs @ ( cons_tm @ X @ nil_tm ) ) )
      = X ) ).

% last_snoc
thf(fact_1198_last__snoc,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ( last_nat @ ( append_nat @ Xs @ ( cons_nat @ X @ nil_nat ) ) )
      = X ) ).

% last_snoc
thf(fact_1199_image__eqI,axiom,
    ! [B2: nat,F: set_nat > nat,X: set_nat,A: set_set_nat] :
      ( ( B2
        = ( F @ X ) )
     => ( ( member_set_nat3 @ X @ A )
       => ( member_nat3 @ B2 @ ( image_set_nat_nat @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_1200_image__eqI,axiom,
    ! [B2: fm,F: set_nat > fm,X: set_nat,A: set_set_nat] :
      ( ( B2
        = ( F @ X ) )
     => ( ( member_set_nat3 @ X @ A )
       => ( member_fm3 @ B2 @ ( image_set_nat_fm @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_1201_image__eqI,axiom,
    ! [B2: set_nat,F: set_nat > set_nat,X: set_nat,A: set_set_nat] :
      ( ( B2
        = ( F @ X ) )
     => ( ( member_set_nat3 @ X @ A )
       => ( member_set_nat3 @ B2 @ ( image_7916887816326733075et_nat @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_1202_subtermFm_Osimps_I1_J,axiom,
    ! [Uu: nat,Ts: list_tm] :
      ( ( subtermFm @ ( pre @ Uu @ Ts ) )
      = ( concat_tm @ ( map_tm_list_tm @ subtermTm @ Ts ) ) ) ).

% subtermFm.simps(1)
thf(fact_1203_paramst_H_H_Oelims,axiom,
    ! [X: tm,Y2: set_nat] :
      ( ( ( paramst3 @ X )
        = Y2 )
     => ( ( ? [N2: nat] :
              ( X
              = ( var @ N2 ) )
         => ( Y2 != bot_bot_set_nat ) )
       => ~ ! [A5: nat,Ts2: list_tm] :
              ( ( X
                = ( fun @ A5 @ Ts2 ) )
             => ( Y2
               != ( sup_sup_set_nat @ ( insert_nat2 @ A5 @ bot_bot_set_nat ) @ ( comple7399068483239264473et_nat @ ( image_tm_set_nat @ paramst3 @ ( set_tm2 @ Ts2 ) ) ) ) ) ) ) ) ).

% paramst''.elims
thf(fact_1204_paramst_H_H_Osimps_I2_J,axiom,
    ! [A2: nat,Ts: list_tm] :
      ( ( paramst3 @ ( fun @ A2 @ Ts ) )
      = ( sup_sup_set_nat @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) @ ( comple7399068483239264473et_nat @ ( image_tm_set_nat @ paramst3 @ ( set_tm2 @ Ts ) ) ) ) ) ).

% paramst''.simps(2)
thf(fact_1205_p0,axiom,
    ( paramsts
    = ( ^ [Ts3: list_tm] : ( comple7399068483239264473et_nat @ ( set_set_nat2 @ ( map_tm_set_nat @ paramst @ Ts3 ) ) ) ) ) ).

% p0
thf(fact_1206_paramst_H_Osimps_I2_J,axiom,
    ! [A2: nat,Ts: list_tm] :
      ( ( paramst2 @ ( fun @ A2 @ Ts ) )
      = ( sup_sup_set_nat @ ( insert_nat2 @ A2 @ bot_bot_set_nat ) @ ( comple7399068483239264473et_nat @ ( set_set_nat2 @ ( map_tm_set_nat @ paramst2 @ Ts ) ) ) ) ) ).

% paramst'.simps(2)
thf(fact_1207_params_H_Osimps_I1_J,axiom,
    ! [B2: nat,Ts: list_tm] :
      ( ( params2 @ ( pre @ B2 @ Ts ) )
      = ( comple7399068483239264473et_nat @ ( set_set_nat2 @ ( map_tm_set_nat @ paramst2 @ Ts ) ) ) ) ).

% params'.simps(1)
thf(fact_1208_p2,axiom,
    params2 = params ).

% p2
thf(fact_1209_paramst_H_H_Opelims,axiom,
    ! [X: tm,Y2: set_nat] :
      ( ( ( paramst3 @ X )
        = Y2 )
     => ( ( accp_tm @ paramst_rel @ X )
       => ( ! [N2: nat] :
              ( ( X
                = ( var @ N2 ) )
             => ( ( Y2 = bot_bot_set_nat )
               => ~ ( accp_tm @ paramst_rel @ ( var @ N2 ) ) ) )
         => ~ ! [A5: nat,Ts2: list_tm] :
                ( ( X
                  = ( fun @ A5 @ Ts2 ) )
               => ( ( Y2
                    = ( sup_sup_set_nat @ ( insert_nat2 @ A5 @ bot_bot_set_nat ) @ ( comple7399068483239264473et_nat @ ( image_tm_set_nat @ paramst3 @ ( set_tm2 @ Ts2 ) ) ) ) )
                 => ~ ( accp_tm @ paramst_rel @ ( fun @ A5 @ Ts2 ) ) ) ) ) ) ) ).

% paramst''.pelims
thf(fact_1210_subtermTm_Osimps_I1_J,axiom,
    ! [N: nat,Ts: list_tm] :
      ( ( subtermTm @ ( fun @ N @ Ts ) )
      = ( cons_tm @ ( fun @ N @ Ts ) @ ( remdups_tm @ ( concat_tm @ ( map_tm_list_tm @ subtermTm @ Ts ) ) ) ) ) ).

% subtermTm.simps(1)
thf(fact_1211_params_H_H_Osimps_I1_J,axiom,
    ! [B2: nat,Ts: list_tm] :
      ( ( params3 @ ( pre @ B2 @ Ts ) )
      = ( comple7399068483239264473et_nat @ ( image_tm_set_nat @ paramst3 @ ( set_tm2 @ Ts ) ) ) ) ).

% params''.simps(1)
thf(fact_1212_p2_H,axiom,
    params3 = params ).

% p2'
thf(fact_1213_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1214_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z4: nat] :
              ( ( R @ X3 @ Y3 )
             => ( ( R @ Y3 @ Z4 )
               => ( R @ X3 @ Z4 ) ) )
         => ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1215_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P3 @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P3 @ N2 )
               => ( P3 @ ( suc @ N2 ) ) ) )
         => ( P3 @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1216_full__nat__induct,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
             => ( P3 @ M3 ) )
         => ( P3 @ N2 ) )
     => ( P3 @ N ) ) ).

% full_nat_induct
thf(fact_1217_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1218_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1219_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1220_Suc__le__D,axiom,
    ! [N: nat,M4: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
     => ? [M2: nat] :
          ( M4
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_1221_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1222_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1223_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1224_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1225_liftt_Osimps_I1_J,axiom,
    ! [I: nat] :
      ( ( liftt @ ( var @ I ) )
      = ( var @ ( suc @ I ) ) ) ).

% liftt.simps(1)
thf(fact_1226_upt__Suc,axiom,
    ! [I: nat,J: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
      & ( ~ ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = nil_nat ) ) ) ).

% upt_Suc
thf(fact_1227_upt__Suc__append,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( suc @ J ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).

% upt_Suc_append
thf(fact_1228_remdups__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( remdups_nat @ ( upt @ M @ N ) )
      = ( upt @ M @ N ) ) ).

% remdups_upt
thf(fact_1229_upt__conv__Nil,axiom,
    ! [J: nat,I: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( upt @ I @ J )
        = nil_nat ) ) ).

% upt_conv_Nil
thf(fact_1230_upt__eq__Nil__conv,axiom,
    ! [I: nat,J: nat] :
      ( ( ( upt @ I @ J )
        = nil_nat )
      = ( ( J = zero_zero_nat )
        | ( ord_less_eq_nat @ J @ I ) ) ) ).

% upt_eq_Nil_conv
thf(fact_1231_upt__conv__Cons__Cons,axiom,
    ! [M: nat,N: nat,Ns: list_nat,Q2: nat] :
      ( ( ( cons_nat @ M @ ( cons_nat @ N @ Ns ) )
        = ( upt @ M @ Q2 ) )
      = ( ( cons_nat @ N @ Ns )
        = ( upt @ ( suc @ M ) @ Q2 ) ) ) ).

% upt_conv_Cons_Cons
thf(fact_1232_upt__0,axiom,
    ! [I: nat] :
      ( ( upt @ I @ zero_zero_nat )
      = nil_nat ) ).

% upt_0
thf(fact_1233_map__Suc__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( map_nat_nat @ suc @ ( upt @ M @ N ) )
      = ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% map_Suc_upt
thf(fact_1234_upt__rec,axiom,
    ( upt
    = ( ^ [I3: nat,J2: nat] : ( if_list_nat @ ( ord_less_nat @ I3 @ J2 ) @ ( cons_nat @ I3 @ ( upt @ ( suc @ I3 ) @ J2 ) ) @ nil_nat ) ) ) ).

% upt_rec
thf(fact_1235_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M5 @ N3 )
          & ( M5 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_1236_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1237_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N3: nat] :
          ( ( ord_less_nat @ M5 @ N3 )
          | ( M5 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1238_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1239_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1240_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I4: nat,J3: nat] :
          ( ( ord_less_nat @ I4 @ J3 )
         => ( ord_less_nat @ ( F @ I4 ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1241_diff__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_nat @ ( minus_minus_nat @ A2 @ C ) @ ( minus_minus_nat @ B2 @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1242_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1243_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1244_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1245_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1246_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1247_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1248_inc__induct,axiom,
    ! [I: nat,J: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P3 @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P3 @ ( suc @ N2 ) )
                 => ( P3 @ N2 ) ) ) )
         => ( P3 @ I ) ) ) ) ).

% inc_induct
thf(fact_1249_dec__induct,axiom,
    ! [I: nat,J: nat,P3: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P3 @ I )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P3 @ N2 )
                 => ( P3 @ ( suc @ N2 ) ) ) ) )
         => ( P3 @ J ) ) ) ) ).

% dec_induct
thf(fact_1250_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1251_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1252_ex__least__nat__le,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ N )
     => ( ~ ( P3 @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K2 )
               => ~ ( P3 @ I5 ) )
            & ( P3 @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1253_ex__least__nat__less,axiom,
    ! [P3: nat > $o,N: nat] :
      ( ( P3 @ N )
     => ( ~ ( P3 @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I5: nat] :
                ( ( ord_less_eq_nat @ I5 @ K2 )
               => ~ ( P3 @ I5 ) )
            & ( P3 @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1254_upt__conv__Cons,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( upt @ I @ J )
        = ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).

% upt_conv_Cons
thf(fact_1255_upt__rec__numeral,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) ) ) ) )
      & ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = nil_nat ) ) ) ).

% upt_rec_numeral
thf(fact_1256_nat__descend__induct,axiom,
    ! [N: nat,P3: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P3 @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I5: nat] :
                  ( ( ord_less_nat @ K2 @ I5 )
                 => ( P3 @ I5 ) )
             => ( P3 @ K2 ) ) )
       => ( P3 @ M ) ) ) ).

% nat_descend_induct
thf(fact_1257_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_1258_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_1259_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_1260_last__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( last_nat @ ( upt @ I @ J ) )
        = ( minus_minus_nat @ J @ one_one_nat ) ) ) ).

% last_upt
thf(fact_1261_sub__term_Osimps_I1_J,axiom,
    ! [N: nat,V: nat,S2: tm] :
      ( ( ( ord_less_nat @ N @ V )
       => ( ( sub_term @ V @ S2 @ ( var @ N ) )
          = ( var @ N ) ) )
      & ( ~ ( ord_less_nat @ N @ V )
       => ( ( ( N = V )
           => ( ( sub_term @ V @ S2 @ ( var @ N ) )
              = S2 ) )
          & ( ( N != V )
           => ( ( sub_term @ V @ S2 @ ( var @ N ) )
              = ( var @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% sub_term.simps(1)
thf(fact_1262_substt_Osimps_I1_J,axiom,
    ! [K: nat,I: nat,S2: tm] :
      ( ( ( ord_less_nat @ K @ I )
       => ( ( substt @ ( var @ I ) @ S2 @ K )
          = ( var @ ( minus_minus_nat @ I @ one_one_nat ) ) ) )
      & ( ~ ( ord_less_nat @ K @ I )
       => ( ( ( I = K )
           => ( ( substt @ ( var @ I ) @ S2 @ K )
              = S2 ) )
          & ( ( I != K )
           => ( ( substt @ ( var @ I ) @ S2 @ K )
              = ( var @ I ) ) ) ) ) ) ).

% substt.simps(1)
thf(fact_1263_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1264_length__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( size_size_list_nat @ ( upt @ I @ J ) )
      = ( minus_minus_nat @ J @ I ) ) ).

% length_upt
thf(fact_1265_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1266_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1267_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1268_nth__upt,axiom,
    ! [I: nat,K: nat,J: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J )
     => ( ( nth_nat @ ( upt @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ K ) ) ) ).

% nth_upt
thf(fact_1269_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1270_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1271_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
         => ( ord_less_nat @ ( F @ M2 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1272_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE

% Helper facts (9)
thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X: list_nat,Y2: list_nat] :
      ( ( if_list_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X: list_nat,Y2: list_nat] :
      ( ( if_list_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__SeCaV__Ofm_J_T,axiom,
    ! [X: list_fm,Y2: list_fm] :
      ( ( if_list_fm @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__SeCaV__Ofm_J_T,axiom,
    ! [X: list_fm,Y2: list_fm] :
      ( ( if_list_fm @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__SeCaV__Otm_J_T,axiom,
    ! [X: list_tm,Y2: list_tm] :
      ( ( if_list_tm @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__SeCaV__Otm_J_T,axiom,
    ! [X: list_tm,Y2: list_tm] :
      ( ( if_list_tm @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_3_1_If_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J_T,axiom,
    ! [P3: $o] :
      ( ( P3 = $true )
      | ( P3 = $false ) ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J_T,axiom,
    ! [X: list_set_nat,Y2: list_set_nat] :
      ( ( if_list_set_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J_T,axiom,
    ! [X: list_set_nat,Y2: list_set_nat] :
      ( ( if_list_set_nat @ $true @ X @ Y2 )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ! [X3: tm] :
      ( ( member_tm3 @ X3 @ ( set_tm2 @ ts ) )
     => ( member_tm3 @ X3 @ ( terms @ s ) ) ) ).

%------------------------------------------------------------------------------