TPTP Problem File: SLH0869^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : FOL_Seq_Calc2/0016_ProverLemmas/prob_00157_005880__12775294_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1403 ( 564 unt; 126 typ;   0 def)
%            Number of atoms       : 3668 (1161 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 10754 ( 350   ~; 116   |; 181   &;8454   @)
%                                         (   0 <=>;1653  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   21 (   6 avg)
%            Number of types       :   19 (  18 usr)
%            Number of type conns  :  615 ( 615   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  111 ( 108 usr;  10 con; 0-4 aty)
%            Number of variables   : 3479 ( 165   ^;3168   !; 146   ?;3479   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 08:44:25.418
%------------------------------------------------------------------------------
% Could-be-implicit typings (18)
thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J_J,type,
    stream5457498542113063425ist_fm: $tType ).

thf(ty_n_t__Stream__Ostream_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    stream4408948924543953275ist_fm: $tType ).

thf(ty_n_t__FSet__Ofset_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    fset_P8989946509869081563ist_fm: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    set_Pr5202636777678657877ist_fm: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    produc6018962875968178549ist_fm: $tType ).

thf(ty_n_t__Stream__Ostream_It__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J_J,type,
    stream4385846686851721995e_rule: $tType ).

thf(ty_n_t__Stream__Ostream_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    stream6724221391990029191at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J,type,
    produc7694839378271647877e_rule: $tType ).

thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_It__Prover__Orule_J_J,type,
    stream_stream_rule: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Stream__Ostream_It__Prover__Orule_J,type,
    stream_rule: $tType ).

thf(ty_n_t__Stream__Ostream_It__Nat__Onat_J,type,
    stream_nat: $tType ).

thf(ty_n_t__FSet__Ofset_It__Prover__Orule_J,type,
    fset_rule: $tType ).

thf(ty_n_t__Set__Oset_It__Prover__Orule_J,type,
    set_rule: $tType ).

thf(ty_n_t__Prover__Orule,type,
    rule: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (108)
thf(sy_c_Abstract__Completeness_OPersistentRuleSystem_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra3967921542344661089ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream_rule > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_Abstract__Completeness_OPersistentRuleSystem__axioms_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra9069655090277518462ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream_rule > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra3169863088381332713ist_fm: ( produc6018962875968178549ist_fm > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream4408948924543953275ist_fm > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_001t__Prover__Orule,type,
    abstra2695409591818887198m_rule: ( produc6018962875968178549ist_fm > rule > fset_rule > $o ) > stream4408948924543953275ist_fm > set_rule > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra5221733350967904376ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream_rule > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem_001t__Prover__Orule_001t__Prover__Orule,type,
    abstra6805424310982398927e_rule: ( rule > rule > fset_rule > $o ) > stream_rule > set_rule > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem_OminWait_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra570452456931927918ist_fm: ( produc6018962875968178549ist_fm > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream4408948924543953275ist_fm > produc6018962875968178549ist_fm > nat ).

thf(sy_c_Abstract__Completeness_ORuleSystem_OminWait_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_001t__Prover__Orule,type,
    abstra8660094705501476185m_rule: ( produc6018962875968178549ist_fm > rule > fset_rule > $o ) > stream4408948924543953275ist_fm > rule > nat ).

thf(sy_c_Abstract__Completeness_ORuleSystem_OminWait_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra1963046427795717555ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream_rule > produc6018962875968178549ist_fm > nat ).

thf(sy_c_Abstract__Completeness_ORuleSystem_OminWait_001t__Prover__Orule_001t__Prover__Orule,type,
    abstra538998172947062484e_rule: ( rule > rule > fset_rule > $o ) > stream_rule > rule > nat ).

thf(sy_c_Abstract__Completeness_ORuleSystem_Oper_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra5255361903751151037ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream_rule > set_Pr5202636777678657877ist_fm > rule > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem_Opos_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra2497064141961437305ist_fm: stream4408948924543953275ist_fm > produc6018962875968178549ist_fm > nat ).

thf(sy_c_Abstract__Completeness_ORuleSystem_Opos_001t__Prover__Orule,type,
    abstract_pos_rule: stream_rule > rule > nat ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Oenabled_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra1707737187183579335ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > rule > produc6018962875968178549ist_fm > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Oenabled_001t__Prover__Orule_001t__Prover__Orule,type,
    abstra7234149737463204544e_rule: ( rule > rule > fset_rule > $o ) > rule > rule > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Ofair_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra7670258426472572809ist_fm: stream4408948924543953275ist_fm > stream4408948924543953275ist_fm > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Ofair_001t__Prover__Orule,type,
    abstra3799686578551160190r_rule: stream_rule > stream_rule > $o ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Ofenum_001t__Prover__Orule,type,
    abstra745658567949189203m_rule: stream_rule > stream_rule ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Otrim_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra4373283166818909897ist_fm: ( produc6018962875968178549ist_fm > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream4408948924543953275ist_fm > produc6018962875968178549ist_fm > stream4408948924543953275ist_fm ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Otrim_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_001t__Prover__Orule,type,
    abstra5279912380856882750m_rule: ( produc6018962875968178549ist_fm > rule > fset_rule > $o ) > stream4408948924543953275ist_fm > rule > stream4408948924543953275ist_fm ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Otrim_001t__Prover__Orule_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    abstra7806236140005899928ist_fm: ( rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ) > stream_rule > produc6018962875968178549ist_fm > stream_rule ).

thf(sy_c_Abstract__Completeness_ORuleSystem__Defs_Otrim_001t__Prover__Orule_001t__Prover__Orule,type,
    abstra2680930950814381487e_rule: ( rule > rule > fset_rule > $o ) > stream_rule > rule > stream_rule ).

thf(sy_c_Abstract__Completeness_Ofair__uu_001t__Prover__Orule,type,
    abstra4598247580560492629u_rule: stream_rule > stream_rule > $o ).

thf(sy_c_Abstract__Completeness_Ofenum__uu_001t__Prover__Orule,type,
    abstra1582897422107675196u_rule: stream_rule > stream_rule ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Stream__Ostream_It__Prover__Orule_J,type,
    if_stream_rule: $o > stream_rule > stream_rule > stream_rule ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    ord_le9141428925376846849ist_fm: set_Pr5202636777678657877ist_fm > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    ord_le1771420097867575541ist_fm: set_Pr5202636777678657877ist_fm > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    top_to1730629564055774885ist_fm: set_Pr5202636777678657877ist_fm ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Prover__Orule_001t__Prover__Orule,type,
    produc5849431337705160893e_rule: rule > rule > produc7694839378271647877e_rule ).

thf(sy_c_Prover_Oeff,type,
    eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o ).

thf(sy_c_Prover_Orules,type,
    rules: stream_rule ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    collec5845330005437105888ist_fm: ( produc6018962875968178549ist_fm > $o ) > set_Pr5202636777678657877ist_fm ).

thf(sy_c_Set_OCollect_001t__Prover__Orule,type,
    collect_rule: ( rule > $o ) > set_rule ).

thf(sy_c_Stream_Osdrop_001t__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J,type,
    sdrop_9113879250048157294e_rule: nat > stream4385846686851721995e_rule > stream4385846686851721995e_rule ).

thf(sy_c_Stream_Osdrop_001t__Prover__Orule,type,
    sdrop_rule: nat > stream_rule > stream_rule ).

thf(sy_c_Stream_Osdrop__while_001t__Prover__Orule,type,
    sdrop_while_rule: ( rule > $o ) > stream_rule > stream_rule ).

thf(sy_c_Stream_Osinterleave_001t__Prover__Orule,type,
    sinterleave_rule: stream_rule > stream_rule > stream_rule ).

thf(sy_c_Stream_Osmap2_001t__Prover__Orule_001t__Prover__Orule_001t__Prover__Orule,type,
    smap2_rule_rule_rule: ( rule > rule > rule ) > stream_rule > stream_rule > stream_rule ).

thf(sy_c_Stream_Osmember_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    smembe2974859016285698739ist_fm: produc6018962875968178549ist_fm > stream4408948924543953275ist_fm > $o ).

thf(sy_c_Stream_Osmember_001t__Prover__Orule,type,
    smember_rule: rule > stream_rule > $o ).

thf(sy_c_Stream_Osmerge_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    smerge6880477169801031811ist_fm: stream5457498542113063425ist_fm > stream4408948924543953275ist_fm ).

thf(sy_c_Stream_Osmerge_001t__Prover__Orule,type,
    smerge_rule: stream_stream_rule > stream_rule ).

thf(sy_c_Stream_Osnth_001t__Nat__Onat,type,
    snth_nat: stream_nat > nat > nat ).

thf(sy_c_Stream_Osnth_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    snth_P7093566783922538521ist_fm: stream4408948924543953275ist_fm > nat > produc6018962875968178549ist_fm ).

thf(sy_c_Stream_Osnth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    snth_P9042041890044241317at_nat: stream6724221391990029191at_nat > nat > product_prod_nat_nat ).

thf(sy_c_Stream_Osnth_001t__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J,type,
    snth_P6178434775611311401e_rule: stream4385846686851721995e_rule > nat > produc7694839378271647877e_rule ).

thf(sy_c_Stream_Osnth_001t__Prover__Orule,type,
    snth_rule: stream_rule > nat > rule ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_It__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J_J,type,
    snth_s3026855241675268639ist_fm: stream5457498542113063425ist_fm > nat > stream4408948924543953275ist_fm ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_It__Prover__Orule_J,type,
    snth_stream_rule: stream_stream_rule > nat > stream_rule ).

thf(sy_c_Stream_Ostream_OSCons_001t__Nat__Onat,type,
    sCons_nat: nat > stream_nat > stream_nat ).

thf(sy_c_Stream_Ostream_OSCons_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    sCons_2518607988952603276ist_fm: produc6018962875968178549ist_fm > stream4408948924543953275ist_fm > stream4408948924543953275ist_fm ).

thf(sy_c_Stream_Ostream_OSCons_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    sCons_2147322719763279000at_nat: product_prod_nat_nat > stream6724221391990029191at_nat > stream6724221391990029191at_nat ).

thf(sy_c_Stream_Ostream_OSCons_001t__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J,type,
    sCons_5631646851396707868e_rule: produc7694839378271647877e_rule > stream4385846686851721995e_rule > stream4385846686851721995e_rule ).

thf(sy_c_Stream_Ostream_OSCons_001t__Prover__Orule,type,
    sCons_rule: rule > stream_rule > stream_rule ).

thf(sy_c_Stream_Ostream_Oshd_001t__Nat__Onat,type,
    shd_nat: stream_nat > nat ).

thf(sy_c_Stream_Ostream_Oshd_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    shd_Pr3211216682057661985ist_fm: stream4408948924543953275ist_fm > produc6018962875968178549ist_fm ).

thf(sy_c_Stream_Ostream_Oshd_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    shd_Pr4260400998323988397at_nat: stream6724221391990029191at_nat > product_prod_nat_nat ).

thf(sy_c_Stream_Ostream_Oshd_001t__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J,type,
    shd_Pr2264621979884435249e_rule: stream4385846686851721995e_rule > produc7694839378271647877e_rule ).

thf(sy_c_Stream_Ostream_Oshd_001t__Prover__Orule,type,
    shd_rule: stream_rule > rule ).

thf(sy_c_Stream_Ostream_Osset_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    sset_P5379989128061332361ist_fm: stream4408948924543953275ist_fm > set_Pr5202636777678657877ist_fm ).

thf(sy_c_Stream_Ostream_Osset_001t__Prover__Orule,type,
    sset_rule: stream_rule > set_rule ).

thf(sy_c_Stream_Ostream_Ostl_001t__Nat__Onat,type,
    stl_nat: stream_nat > stream_nat ).

thf(sy_c_Stream_Ostream_Ostl_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    stl_Pr1506262294867171877ist_fm: stream4408948924543953275ist_fm > stream4408948924543953275ist_fm ).

thf(sy_c_Stream_Ostream_Ostl_001t__Product____Type__Oprod_It__Prover__Orule_Mt__Prover__Orule_J,type,
    stl_Pr2595822214614905141e_rule: stream4385846686851721995e_rule > stream4385846686851721995e_rule ).

thf(sy_c_Stream_Ostream_Ostl_001t__Prover__Orule,type,
    stl_rule: stream_rule > stream_rule ).

thf(sy_c_Stream_Ostream__all_001t__Prover__Orule,type,
    stream_all_rule: ( rule > $o ) > stream_rule > $o ).

thf(sy_c_Stream_Oszip_001t__Nat__Onat_001t__Nat__Onat,type,
    szip_nat_nat: stream_nat > stream_nat > stream6724221391990029191at_nat ).

thf(sy_c_Stream_Oszip_001t__Prover__Orule_001t__Prover__Orule,type,
    szip_rule_rule: stream_rule > stream_rule > stream4385846686851721995e_rule ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_It__SeCaV__Otm_J_Mt__List__Olist_It__SeCaV__Ofm_J_J,type,
    member4699826688122452638ist_fm: produc6018962875968178549ist_fm > set_Pr5202636777678657877ist_fm > $o ).

thf(sy_c_member_001t__Prover__Orule,type,
    member_rule: rule > set_rule > $o ).

% Relevant facts (1265)
thf(fact_0_RuleSystem__Defs_Ofair_Ocong,axiom,
    abstra3799686578551160190r_rule = abstra3799686578551160190r_rule ).

% RuleSystem_Defs.fair.cong
thf(fact_1_fair__fenum,axiom,
    abstra3799686578551160190r_rule @ rules @ ( abstra745658567949189203m_rule @ rules ) ).

% fair_fenum
thf(fact_2_fair__uu__def,axiom,
    abstra4598247580560492629u_rule = abstra3799686578551160190r_rule ).

% fair_uu_def
thf(fact_3_sdrop__fair,axiom,
    ! [Rs: stream_rule,M: nat] :
      ( ( abstra3799686578551160190r_rule @ rules @ Rs )
     => ( abstra3799686578551160190r_rule @ rules @ ( sdrop_rule @ M @ Rs ) ) ) ).

% sdrop_fair
thf(fact_4_fair__stl,axiom,
    ! [Rs: stream_rule] :
      ( ( abstra3799686578551160190r_rule @ rules @ Rs )
     => ( abstra3799686578551160190r_rule @ rules @ ( stl_rule @ Rs ) ) ) ).

% fair_stl
thf(fact_5_i_Ofair__fenum,axiom,
    ! [Rules: stream_rule] : ( abstra3799686578551160190r_rule @ Rules @ ( abstra745658567949189203m_rule @ Rules ) ) ).

% i.fair_fenum
thf(fact_6_RuleSystem__Defs_Ofair__fenum,axiom,
    ! [Rules: stream_rule] : ( abstra3799686578551160190r_rule @ Rules @ ( abstra745658567949189203m_rule @ Rules ) ) ).

% RuleSystem_Defs.fair_fenum
thf(fact_7_i_Osdrop__fair,axiom,
    ! [Rules: stream_rule,Rs: stream_rule,M: nat] :
      ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
     => ( abstra3799686578551160190r_rule @ Rules @ ( sdrop_rule @ M @ Rs ) ) ) ).

% i.sdrop_fair
thf(fact_8_RuleSystem__Defs_Osdrop__fair,axiom,
    ! [Rules: stream_rule,Rs: stream_rule,M: nat] :
      ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
     => ( abstra3799686578551160190r_rule @ Rules @ ( sdrop_rule @ M @ Rs ) ) ) ).

% RuleSystem_Defs.sdrop_fair
thf(fact_9_i_Ofair__stl,axiom,
    ! [Rules: stream_rule,Rs: stream_rule] :
      ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
     => ( abstra3799686578551160190r_rule @ Rules @ ( stl_rule @ Rs ) ) ) ).

% i.fair_stl
thf(fact_10_RuleSystem__Defs_Ofair__stl,axiom,
    ! [Rules: stream_rule,Rs: stream_rule] :
      ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
     => ( abstra3799686578551160190r_rule @ Rules @ ( stl_rule @ Rs ) ) ) ).

% RuleSystem_Defs.fair_stl
thf(fact_11_rules__repeat,axiom,
    ! [M: nat,R: rule] :
    ? [N: nat] :
      ( ( ord_less_nat @ M @ N )
      & ( ( snth_rule @ rules @ N )
        = R ) ) ).

% rules_repeat
thf(fact_12_RuleSystem__Defs_Ofenum_Ocong,axiom,
    abstra745658567949189203m_rule = abstra745658567949189203m_rule ).

% RuleSystem_Defs.fenum.cong
thf(fact_13_rules__repeat__sdrop,axiom,
    ! [K: nat,R: rule] :
    ? [N: nat] :
      ( ( snth_rule @ ( sdrop_rule @ K @ rules ) @ N )
      = R ) ).

% rules_repeat_sdrop
thf(fact_14_fenum__uu__def,axiom,
    abstra1582897422107675196u_rule = abstra745658567949189203m_rule ).

% fenum_uu_def
thf(fact_15_sdrop__stl,axiom,
    ! [N2: nat,S: stream_rule] :
      ( ( sdrop_rule @ N2 @ ( stl_rule @ S ) )
      = ( stl_rule @ ( sdrop_rule @ N2 @ S ) ) ) ).

% sdrop_stl
thf(fact_16_nat__neq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( M != N2 )
      = ( ( ord_less_nat @ M @ N2 )
        | ( ord_less_nat @ N2 @ M ) ) ) ).

% nat_neq_iff
thf(fact_17_less__not__refl,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_not_refl
thf(fact_18_less__not__refl2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( M != N2 ) ) ).

% less_not_refl2
thf(fact_19_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_20_less__irrefl__nat,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_irrefl_nat
thf(fact_21_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N )
             => ( P @ M2 ) )
         => ( P @ N ) )
     => ( P @ N2 ) ) ).

% nat_less_induct
thf(fact_22_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N: nat] :
          ( ~ ( P @ N )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N )
              & ~ ( P @ M2 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_23_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_24_pinf_I1_J,axiom,
    ! [P: nat > $o,P2: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ Z @ X2 )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z2 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_25_pinf_I1_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z: int] :
        ! [X2: int] :
          ( ( ord_less_int @ Z @ X2 )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z2 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_26_pinf_I1_J,axiom,
    ! [P: real > $o,P2: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z: real] :
        ! [X2: real] :
          ( ( ord_less_real @ Z @ X2 )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z2 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_27_pinf_I2_J,axiom,
    ! [P: nat > $o,P2: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ Z @ X2 )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z2 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_28_pinf_I2_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z: int] :
        ! [X2: int] :
          ( ( ord_less_int @ Z @ X2 )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z2 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_29_pinf_I2_J,axiom,
    ! [P: real > $o,P2: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z: real] :
        ! [X2: real] :
          ( ( ord_less_real @ Z @ X2 )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z @ X2 )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z2 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_30_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_31_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_32_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_33_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_34_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_35_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_36_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ~ ( ord_less_nat @ X3 @ T ) ) ).

% pinf(5)
thf(fact_37_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z2 @ X3 )
     => ~ ( ord_less_int @ X3 @ T ) ) ).

% pinf(5)
thf(fact_38_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ~ ( ord_less_real @ X3 @ T ) ) ).

% pinf(5)
thf(fact_39_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( ord_less_nat @ T @ X3 ) ) ).

% pinf(7)
thf(fact_40_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z2 @ X3 )
     => ( ord_less_int @ T @ X3 ) ) ).

% pinf(7)
thf(fact_41_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ( ord_less_real @ T @ X3 ) ) ).

% pinf(7)
thf(fact_42_minf_I1_J,axiom,
    ! [P: nat > $o,P2: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ X2 @ Z )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z2 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_43_minf_I1_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z: int] :
        ! [X2: int] :
          ( ( ord_less_int @ X2 @ Z )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z2 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_44_minf_I1_J,axiom,
    ! [P: real > $o,P2: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z: real] :
        ! [X2: real] :
          ( ( ord_less_real @ X2 @ Z )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z2 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                & ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_45_minf_I2_J,axiom,
    ! [P: nat > $o,P2: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z: nat] :
        ! [X2: nat] :
          ( ( ord_less_nat @ X2 @ Z )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z2 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_46_minf_I2_J,axiom,
    ! [P: int > $o,P2: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z: int] :
        ! [X2: int] :
          ( ( ord_less_int @ X2 @ Z )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z2 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_47_minf_I2_J,axiom,
    ! [P: real > $o,P2: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z: real] :
        ! [X2: real] :
          ( ( ord_less_real @ X2 @ Z )
         => ( ( P @ X2 )
            = ( P2 @ X2 ) ) )
     => ( ? [Z: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z )
           => ( ( Q @ X2 )
              = ( Q2 @ X2 ) ) )
       => ? [Z2: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z2 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P2 @ X3 )
                | ( Q2 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_48_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_49_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_50_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_51_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_52_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_53_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z2 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_54_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( ord_less_nat @ X3 @ T ) ) ).

% minf(5)
thf(fact_55_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z2 )
     => ( ord_less_int @ X3 @ T ) ) ).

% minf(5)
thf(fact_56_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z2 )
     => ( ord_less_real @ X3 @ T ) ) ).

% minf(5)
thf(fact_57_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ~ ( ord_less_nat @ T @ X3 ) ) ).

% minf(7)
thf(fact_58_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z2 )
     => ~ ( ord_less_int @ T @ X3 ) ) ).

% minf(7)
thf(fact_59_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z2 )
     => ~ ( ord_less_real @ T @ X3 ) ) ).

% minf(7)
thf(fact_60_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_61_order__less__imp__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_62_order__less__imp__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_63_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_64_order__less__imp__not__eq2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_65_order__less__imp__not__eq2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_66_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_67_order__less__imp__not__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_68_order__less__imp__not__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_69_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_70_linorder__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
      | ( X = Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_71_linorder__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
      | ( X = Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_72_mem__Collect__eq,axiom,
    ! [A: rule,P: rule > $o] :
      ( ( member_rule @ A @ ( collect_rule @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_73_mem__Collect__eq,axiom,
    ! [A: produc6018962875968178549ist_fm,P: produc6018962875968178549ist_fm > $o] :
      ( ( member4699826688122452638ist_fm @ A @ ( collec5845330005437105888ist_fm @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_74_Collect__mem__eq,axiom,
    ! [A2: set_rule] :
      ( ( collect_rule
        @ ^ [X4: rule] : ( member_rule @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_75_Collect__mem__eq,axiom,
    ! [A2: set_Pr5202636777678657877ist_fm] :
      ( ( collec5845330005437105888ist_fm
        @ ^ [X4: produc6018962875968178549ist_fm] : ( member4699826688122452638ist_fm @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_76_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_77_order__less__imp__triv,axiom,
    ! [X: int,Y: int,P: $o] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_78_order__less__imp__triv,axiom,
    ! [X: real,Y: real,P: $o] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_79_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_80_order__less__not__sym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_81_order__less__not__sym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_82_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_83_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_84_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_85_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_86_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_87_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_88_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_89_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_90_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_91_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_92_order__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_93_order__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_94_order__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_95_order__less__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_96_order__less__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_97_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_98_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_99_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_100_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_101_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_102_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_103_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_104_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_105_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_106_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_107_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_108_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_109_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_110_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_111_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_112_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_113_ord__eq__less__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_114_ord__eq__less__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_115_ord__eq__less__subst,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_116_ord__eq__less__subst,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_117_ord__eq__less__subst,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_118_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_119_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_120_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_121_lt__ex,axiom,
    ! [X: int] :
    ? [Y2: int] : ( ord_less_int @ Y2 @ X ) ).

% lt_ex
thf(fact_122_lt__ex,axiom,
    ! [X: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X ) ).

% lt_ex
thf(fact_123_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_124_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_125_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_126_dense,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [Z2: real] :
          ( ( ord_less_real @ X @ Z2 )
          & ( ord_less_real @ Z2 @ Y ) ) ) ).

% dense
thf(fact_127_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_128_less__imp__neq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_129_less__imp__neq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_130_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_131_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_132_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_133_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_134_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_135_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_136_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_137_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_138_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_139_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X2: nat] :
          ( ! [Y3: nat] :
              ( ( ord_less_nat @ Y3 @ X2 )
             => ( P @ Y3 ) )
         => ( P @ X2 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_140_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_141_antisym__conv3,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_int @ Y @ X )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_142_antisym__conv3,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_real @ Y @ X )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_143_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_144_linorder__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_145_linorder__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_146_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_147_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_148_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_149_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_150_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_151_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_152_exists__least__iff,axiom,
    ( ( ^ [P3: nat > $o] :
        ? [X5: nat] : ( P3 @ X5 ) )
    = ( ^ [P4: nat > $o] :
        ? [N3: nat] :
          ( ( P4 @ N3 )
          & ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ~ ( P4 @ M3 ) ) ) ) ) ).

% exists_least_iff
thf(fact_153_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B2: nat] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_154_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int] : ( P @ A3 @ A3 )
       => ( ! [A3: int,B2: int] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_155_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: real] : ( P @ A3 @ A3 )
       => ( ! [A3: real,B2: real] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_156_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_157_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_158_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_159_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_160_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ( ord_less_int @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_161_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ( ord_less_real @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_162_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_163_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_164_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_165_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_166_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_167_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_168_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_169_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_170_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_171_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_172_linorder__neqE,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_173_linorder__neqE,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_174_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_175_order__less__asym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_asym
thf(fact_176_order__less__asym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_asym
thf(fact_177_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_178_linorder__neq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
      = ( ( ord_less_int @ X @ Y )
        | ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_179_linorder__neq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
      = ( ( ord_less_real @ X @ Y )
        | ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_180_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_181_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_182_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_183_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_184_order__less__trans,axiom,
    ! [X: int,Y: int,Z3: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_185_order__less__trans,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_186_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_187_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_188_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_189_linordered__field__no__lb,axiom,
    ! [X3: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X3 ) ).

% linordered_field_no_lb
thf(fact_190_linordered__field__no__ub,axiom,
    ! [X3: real] :
    ? [X_1: real] : ( ord_less_real @ X3 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_191_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_192_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_193_ex__gt__or__lt,axiom,
    ! [A: real] :
    ? [B2: real] :
      ( ( ord_less_real @ A @ B2 )
      | ( ord_less_real @ B2 @ A ) ) ).

% ex_gt_or_lt
thf(fact_194_sdrop__simps_I2_J,axiom,
    ! [N2: nat,S: stream_rule] :
      ( ( stl_rule @ ( sdrop_rule @ N2 @ S ) )
      = ( sdrop_rule @ ( suc @ N2 ) @ S ) ) ).

% sdrop_simps(2)
thf(fact_195_stream__all__def,axiom,
    ( stream_all_rule
    = ( ^ [P4: rule > $o,S2: stream_rule] :
        ! [P5: nat] : ( P4 @ ( snth_rule @ S2 @ P5 ) ) ) ) ).

% stream_all_def
thf(fact_196_sdrop__szip,axiom,
    ! [N2: nat,S1: stream_rule,S22: stream_rule] :
      ( ( sdrop_9113879250048157294e_rule @ N2 @ ( szip_rule_rule @ S1 @ S22 ) )
      = ( szip_rule_rule @ ( sdrop_rule @ N2 @ S1 ) @ ( sdrop_rule @ N2 @ S22 ) ) ) ).

% sdrop_szip
thf(fact_197_sset__fenum,axiom,
    ( ( sset_rule @ ( abstra745658567949189203m_rule @ rules ) )
    = ( sset_rule @ rules ) ) ).

% sset_fenum
thf(fact_198_sdrop__simps_I1_J,axiom,
    ! [N2: nat,S: stream_rule] :
      ( ( shd_rule @ ( sdrop_rule @ N2 @ S ) )
      = ( snth_rule @ S @ N2 ) ) ).

% sdrop_simps(1)
thf(fact_199_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_200_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_201_Suc__less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_less_eq
thf(fact_202_Suc__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).

% Suc_mono
thf(fact_203_lessI,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).

% lessI
thf(fact_204_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_205_n__not__Suc__n,axiom,
    ! [N2: nat] :
      ( N2
     != ( suc @ N2 ) ) ).

% n_not_Suc_n
thf(fact_206_shd__sset,axiom,
    ! [A: stream4408948924543953275ist_fm] : ( member4699826688122452638ist_fm @ ( shd_Pr3211216682057661985ist_fm @ A ) @ ( sset_P5379989128061332361ist_fm @ A ) ) ).

% shd_sset
thf(fact_207_shd__sset,axiom,
    ! [A: stream_rule] : ( member_rule @ ( shd_rule @ A ) @ ( sset_rule @ A ) ) ).

% shd_sset
thf(fact_208_sset__induct,axiom,
    ! [Y: produc6018962875968178549ist_fm,S: stream4408948924543953275ist_fm,P: produc6018962875968178549ist_fm > stream4408948924543953275ist_fm > $o] :
      ( ( member4699826688122452638ist_fm @ Y @ ( sset_P5379989128061332361ist_fm @ S ) )
     => ( ! [S3: stream4408948924543953275ist_fm] : ( P @ ( shd_Pr3211216682057661985ist_fm @ S3 ) @ S3 )
       => ( ! [S3: stream4408948924543953275ist_fm,Y2: produc6018962875968178549ist_fm] :
              ( ( member4699826688122452638ist_fm @ Y2 @ ( sset_P5379989128061332361ist_fm @ ( stl_Pr1506262294867171877ist_fm @ S3 ) ) )
             => ( ( P @ Y2 @ ( stl_Pr1506262294867171877ist_fm @ S3 ) )
               => ( P @ Y2 @ S3 ) ) )
         => ( P @ Y @ S ) ) ) ) ).

% sset_induct
thf(fact_209_sset__induct,axiom,
    ! [Y: rule,S: stream_rule,P: rule > stream_rule > $o] :
      ( ( member_rule @ Y @ ( sset_rule @ S ) )
     => ( ! [S3: stream_rule] : ( P @ ( shd_rule @ S3 ) @ S3 )
       => ( ! [S3: stream_rule,Y2: rule] :
              ( ( member_rule @ Y2 @ ( sset_rule @ ( stl_rule @ S3 ) ) )
             => ( ( P @ Y2 @ ( stl_rule @ S3 ) )
               => ( P @ Y2 @ S3 ) ) )
         => ( P @ Y @ S ) ) ) ) ).

% sset_induct
thf(fact_210_stl__sset,axiom,
    ! [X: produc6018962875968178549ist_fm,A: stream4408948924543953275ist_fm] :
      ( ( member4699826688122452638ist_fm @ X @ ( sset_P5379989128061332361ist_fm @ ( stl_Pr1506262294867171877ist_fm @ A ) ) )
     => ( member4699826688122452638ist_fm @ X @ ( sset_P5379989128061332361ist_fm @ A ) ) ) ).

% stl_sset
thf(fact_211_stl__sset,axiom,
    ! [X: rule,A: stream_rule] :
      ( ( member_rule @ X @ ( sset_rule @ ( stl_rule @ A ) ) )
     => ( member_rule @ X @ ( sset_rule @ A ) ) ) ).

% stl_sset
thf(fact_212_stream_Ocoinduct__strong,axiom,
    ! [R2: stream_rule > stream_rule > $o,Stream: stream_rule,Stream2: stream_rule] :
      ( ( R2 @ Stream @ Stream2 )
     => ( ! [Stream3: stream_rule,Stream4: stream_rule] :
            ( ( R2 @ Stream3 @ Stream4 )
           => ( ( ( shd_rule @ Stream3 )
                = ( shd_rule @ Stream4 ) )
              & ( ( R2 @ ( stl_rule @ Stream3 ) @ ( stl_rule @ Stream4 ) )
                | ( ( stl_rule @ Stream3 )
                  = ( stl_rule @ Stream4 ) ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct_strong
thf(fact_213_stream_Ocoinduct,axiom,
    ! [R2: stream_rule > stream_rule > $o,Stream: stream_rule,Stream2: stream_rule] :
      ( ( R2 @ Stream @ Stream2 )
     => ( ! [Stream3: stream_rule,Stream4: stream_rule] :
            ( ( R2 @ Stream3 @ Stream4 )
           => ( ( ( shd_rule @ Stream3 )
                = ( shd_rule @ Stream4 ) )
              & ( R2 @ ( stl_rule @ Stream3 ) @ ( stl_rule @ Stream4 ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct
thf(fact_214_stream_Oexpand,axiom,
    ! [Stream: stream_rule,Stream2: stream_rule] :
      ( ( ( ( shd_rule @ Stream )
          = ( shd_rule @ Stream2 ) )
        & ( ( stl_rule @ Stream )
          = ( stl_rule @ Stream2 ) ) )
     => ( Stream = Stream2 ) ) ).

% stream.expand
thf(fact_215_snth__sset,axiom,
    ! [S: stream4408948924543953275ist_fm,N2: nat] : ( member4699826688122452638ist_fm @ ( snth_P7093566783922538521ist_fm @ S @ N2 ) @ ( sset_P5379989128061332361ist_fm @ S ) ) ).

% snth_sset
thf(fact_216_snth__sset,axiom,
    ! [S: stream_rule,N2: nat] : ( member_rule @ ( snth_rule @ S @ N2 ) @ ( sset_rule @ S ) ) ).

% snth_sset
thf(fact_217_not__less__less__Suc__eq,axiom,
    ! [N2: nat,M: nat] :
      ( ~ ( ord_less_nat @ N2 @ M )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
        = ( N2 = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_218_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] :
            ( ( J
              = ( suc @ I2 ) )
           => ( P @ I2 ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ( P @ ( suc @ I2 ) )
               => ( P @ I2 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_219_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
       => ( ! [I2: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I2 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I2 @ K2 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_220_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_221_Suc__less__SucD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_less_SucD
thf(fact_222_less__antisym,axiom,
    ! [N2: nat,M: nat] :
      ( ~ ( ord_less_nat @ N2 @ M )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
       => ( M = N2 ) ) ) ).

% less_antisym
thf(fact_223_Suc__less__eq2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ M )
      = ( ? [M4: nat] :
            ( ( M
              = ( suc @ M4 ) )
            & ( ord_less_nat @ N2 @ M4 ) ) ) ) ).

% Suc_less_eq2
thf(fact_224_All__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
           => ( P @ I3 ) ) )
      = ( ( P @ N2 )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
           => ( P @ I3 ) ) ) ) ).

% All_less_Suc
thf(fact_225_not__less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ~ ( ord_less_nat @ M @ N2 ) )
      = ( ord_less_nat @ N2 @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_226_less__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) ) ) ).

% less_Suc_eq
thf(fact_227_Ex__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
            & ( P @ I3 ) ) )
      = ( ( P @ N2 )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
            & ( P @ I3 ) ) ) ) ).

% Ex_less_Suc
thf(fact_228_less__SucI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).

% less_SucI
thf(fact_229_less__SucE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
     => ( ~ ( ord_less_nat @ M @ N2 )
       => ( M = N2 ) ) ) ).

% less_SucE
thf(fact_230_Suc__lessI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ( suc @ M )
         != N2 )
       => ( ord_less_nat @ ( suc @ M ) @ N2 ) ) ) ).

% Suc_lessI
thf(fact_231_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_232_Suc__lessD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_lessD
thf(fact_233_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_234_RuleSystem__Defs_Osset__fenum,axiom,
    ! [Rules: stream_rule] :
      ( ( sset_rule @ ( abstra745658567949189203m_rule @ Rules ) )
      = ( sset_rule @ Rules ) ) ).

% RuleSystem_Defs.sset_fenum
thf(fact_235_i_Osset__fenum,axiom,
    ! [Rules: stream_rule] :
      ( ( sset_rule @ ( abstra745658567949189203m_rule @ Rules ) )
      = ( sset_rule @ Rules ) ) ).

% i.sset_fenum
thf(fact_236_szip_Osimps_I2_J,axiom,
    ! [S1: stream_rule,S22: stream_rule] :
      ( ( stl_Pr2595822214614905141e_rule @ ( szip_rule_rule @ S1 @ S22 ) )
      = ( szip_rule_rule @ ( stl_rule @ S1 ) @ ( stl_rule @ S22 ) ) ) ).

% szip.simps(2)
thf(fact_237_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_238_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_int @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_239_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_real @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_240_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ord_less_nat @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_241_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ord_less_int @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_242_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ord_less_real @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_243_sdrop_Osimps_I2_J,axiom,
    ! [N2: nat,S: stream_rule] :
      ( ( sdrop_rule @ ( suc @ N2 ) @ S )
      = ( sdrop_rule @ N2 @ ( stl_rule @ S ) ) ) ).

% sdrop.simps(2)
thf(fact_244_snth_Osimps_I2_J,axiom,
    ! [S: stream_rule,N2: nat] :
      ( ( snth_rule @ S @ ( suc @ N2 ) )
      = ( snth_rule @ ( stl_rule @ S ) @ N2 ) ) ).

% snth.simps(2)
thf(fact_245_pos,axiom,
    ! [Rs: stream_rule,R: rule] :
      ( ( abstra3799686578551160190r_rule @ rules @ Rs )
     => ( ( member_rule @ R @ ( sset_rule @ rules ) )
       => ( ( shd_rule @ ( sdrop_rule @ ( abstract_pos_rule @ Rs @ R ) @ Rs ) )
          = R ) ) ) ).

% pos
thf(fact_246_snth__sset__smerge,axiom,
    ! [Ss: stream5457498542113063425ist_fm,N2: nat,M: nat] : ( member4699826688122452638ist_fm @ ( snth_P7093566783922538521ist_fm @ ( snth_s3026855241675268639ist_fm @ Ss @ N2 ) @ M ) @ ( sset_P5379989128061332361ist_fm @ ( smerge6880477169801031811ist_fm @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_247_snth__sset__smerge,axiom,
    ! [Ss: stream_stream_rule,N2: nat,M: nat] : ( member_rule @ ( snth_rule @ ( snth_stream_rule @ Ss @ N2 ) @ M ) @ ( sset_rule @ ( smerge_rule @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_248_Stream_Osmember__def,axiom,
    ( smembe2974859016285698739ist_fm
    = ( ^ [X4: produc6018962875968178549ist_fm,S2: stream4408948924543953275ist_fm] : ( member4699826688122452638ist_fm @ X4 @ ( sset_P5379989128061332361ist_fm @ S2 ) ) ) ) ).

% Stream.smember_def
thf(fact_249_Stream_Osmember__def,axiom,
    ( smember_rule
    = ( ^ [X4: rule,S2: stream_rule] : ( member_rule @ X4 @ ( sset_rule @ S2 ) ) ) ) ).

% Stream.smember_def
thf(fact_250_sdrop__while_Osimps,axiom,
    ( sdrop_while_rule
    = ( ^ [P4: rule > $o,S2: stream_rule] : ( if_stream_rule @ ( P4 @ ( shd_rule @ S2 ) ) @ ( sdrop_while_rule @ P4 @ ( stl_rule @ S2 ) ) @ S2 ) ) ) ).

% sdrop_while.simps
thf(fact_251_RuleSystem_Opos,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,Rs: stream_rule,R: rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
       => ( ( member_rule @ R @ ( sset_rule @ Rules ) )
         => ( ( shd_rule @ ( sdrop_rule @ ( abstract_pos_rule @ Rs @ R ) @ Rs ) )
            = R ) ) ) ) ).

% RuleSystem.pos
thf(fact_252_snth__szip,axiom,
    ! [S1: stream_rule,S22: stream_rule,N2: nat] :
      ( ( snth_P6178434775611311401e_rule @ ( szip_rule_rule @ S1 @ S22 ) @ N2 )
      = ( produc5849431337705160893e_rule @ ( snth_rule @ S1 @ N2 ) @ ( snth_rule @ S22 @ N2 ) ) ) ).

% snth_szip
thf(fact_253_snth__szip,axiom,
    ! [S1: stream_nat,S22: stream_nat,N2: nat] :
      ( ( snth_P9042041890044241317at_nat @ ( szip_nat_nat @ S1 @ S22 ) @ N2 )
      = ( product_Pair_nat_nat @ ( snth_nat @ S1 @ N2 ) @ ( snth_nat @ S22 @ N2 ) ) ) ).

% snth_szip
thf(fact_254_stream__all__iff,axiom,
    ( stream_all_rule
    = ( ^ [P4: rule > $o,S2: stream_rule] :
        ! [X4: rule] :
          ( ( member_rule @ X4 @ ( sset_rule @ S2 ) )
         => ( P4 @ X4 ) ) ) ) ).

% stream_all_iff
thf(fact_255_less__Suc0,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_256_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_257_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_258_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_259_zero__less__Suc,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).

% zero_less_Suc
thf(fact_260_not0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ? [M5: nat] :
          ( N2
          = ( suc @ M5 ) ) ) ).

% not0_implies_Suc
thf(fact_261_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_262_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_263_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_264_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N: nat] :
            ( ( P @ ( suc @ N ) )
           => ( P @ N ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_265_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N2: nat] :
      ( ! [X2: nat] : ( P @ X2 @ zero_zero_nat )
     => ( ! [Y2: nat] : ( P @ zero_zero_nat @ ( suc @ Y2 ) )
       => ( ! [X2: nat,Y2: nat] :
              ( ( P @ X2 @ Y2 )
             => ( P @ ( suc @ X2 ) @ ( suc @ Y2 ) ) )
         => ( P @ M @ N2 ) ) ) ) ).

% diff_induct
thf(fact_266_nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N: nat] :
            ( ( P @ N )
           => ( P @ ( suc @ N ) ) )
       => ( P @ N2 ) ) ) ).

% nat_induct
thf(fact_267_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_268_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_269_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_270_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_271_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_272_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_273_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_274_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_275_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_276_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_277_gr__implies__not0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_278_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( ~ ( P @ N )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_279_sdrop_Osimps_I1_J,axiom,
    ! [S: stream_rule] :
      ( ( sdrop_rule @ zero_zero_nat @ S )
      = S ) ).

% sdrop.simps(1)
thf(fact_280_RuleSystem_Oenabled__R,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,S: rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ? [X2: rule] :
            ( ( member_rule @ X2 @ ( sset_rule @ Rules ) )
            & ? [X_1: fset_rule] : ( Eff @ X2 @ S @ X_1 ) ) ) ) ).

% RuleSystem.enabled_R
thf(fact_281_RuleSystem_Oenabled__R,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ? [X2: rule] :
            ( ( member_rule @ X2 @ ( sset_rule @ Rules ) )
            & ? [X_1: fset_P8989946509869081563ist_fm] : ( Eff @ X2 @ S @ X_1 ) ) ) ) ).

% RuleSystem.enabled_R
thf(fact_282_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N2 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_283_gr0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ? [M5: nat] :
          ( N2
          = ( suc @ M5 ) ) ) ).

% gr0_implies_Suc
thf(fact_284_All__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
           => ( P @ I3 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
           => ( P @ ( suc @ I3 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_285_gr0__conv__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( ? [M3: nat] :
            ( N2
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_286_Ex__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
            & ( P @ I3 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
            & ( P @ ( suc @ I3 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_287_szip_Osimps_I1_J,axiom,
    ! [S1: stream_nat,S22: stream_nat] :
      ( ( shd_Pr4260400998323988397at_nat @ ( szip_nat_nat @ S1 @ S22 ) )
      = ( product_Pair_nat_nat @ ( shd_nat @ S1 ) @ ( shd_nat @ S22 ) ) ) ).

% szip.simps(1)
thf(fact_288_szip_Osimps_I1_J,axiom,
    ! [S1: stream_rule,S22: stream_rule] :
      ( ( shd_Pr2264621979884435249e_rule @ ( szip_rule_rule @ S1 @ S22 ) )
      = ( produc5849431337705160893e_rule @ ( shd_rule @ S1 ) @ ( shd_rule @ S22 ) ) ) ).

% szip.simps(1)
thf(fact_289_snth_Osimps_I1_J,axiom,
    ! [S: stream_rule] :
      ( ( snth_rule @ S @ zero_zero_nat )
      = ( shd_rule @ S ) ) ).

% snth.simps(1)
thf(fact_290_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_291_prod_Oinject,axiom,
    ! [X1: nat,X22: nat,Y1: nat,Y22: nat] :
      ( ( ( product_Pair_nat_nat @ X1 @ X22 )
        = ( product_Pair_nat_nat @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_292_old_Oprod_Oinject,axiom,
    ! [A: nat,B: nat,A4: nat,B3: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A4 @ B3 ) )
      = ( ( A = A4 )
        & ( B = B3 ) ) ) ).

% old.prod.inject
thf(fact_293_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N: nat] :
            ( X
           != ( suc @ N ) ) ) ).

% list_decode.cases
thf(fact_294_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N: nat] :
            ( ~ ( P @ N )
            & ( P @ ( suc @ N ) ) ) ) ) ).

% exists_least_lemma
thf(fact_295_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_296_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_297_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_298_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_299_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_300_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_301_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_302_Pair__inject,axiom,
    ! [A: nat,B: nat,A4: nat,B3: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A4 @ B3 ) )
     => ~ ( ( A = A4 )
         => ( B != B3 ) ) ) ).

% Pair_inject
thf(fact_303_prod__cases,axiom,
    ! [P: product_prod_nat_nat > $o,P6: product_prod_nat_nat] :
      ( ! [A3: nat,B2: nat] : ( P @ ( product_Pair_nat_nat @ A3 @ B2 ) )
     => ( P @ P6 ) ) ).

% prod_cases
thf(fact_304_surj__pair,axiom,
    ! [P6: product_prod_nat_nat] :
    ? [X2: nat,Y2: nat] :
      ( P6
      = ( product_Pair_nat_nat @ X2 @ Y2 ) ) ).

% surj_pair
thf(fact_305_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_nat_nat] :
      ~ ! [A3: nat,B2: nat] :
          ( Y
         != ( product_Pair_nat_nat @ A3 @ B2 ) ) ).

% old.prod.exhaust
thf(fact_306_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_307_gr__implies__not__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_308_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_309_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_310_RuleSystem_OminWait__ex,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,S: rule,Rs: stream_rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ? [N: nat] : ( abstra7234149737463204544e_rule @ Eff @ ( shd_rule @ ( sdrop_rule @ N @ Rs ) ) @ S ) ) ) ) ).

% RuleSystem.minWait_ex
thf(fact_311_RuleSystem_OminWait__ex,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ? [N: nat] : ( abstra1707737187183579335ist_fm @ Eff @ ( shd_rule @ ( sdrop_rule @ N @ Rs ) ) @ S ) ) ) ) ).

% RuleSystem.minWait_ex
thf(fact_312_RuleSystem_Otrim__in__R,axiom,
    ! [Eff: produc6018962875968178549ist_fm > rule > fset_rule > $o,Rules: stream4408948924543953275ist_fm,S4: set_rule,S: rule,Rs: stream4408948924543953275ist_fm] :
      ( ( abstra2695409591818887198m_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ( ( abstra7670258426472572809ist_fm @ Rules @ Rs )
         => ( member4699826688122452638ist_fm @ ( shd_Pr3211216682057661985ist_fm @ ( abstra5279912380856882750m_rule @ Eff @ Rs @ S ) ) @ ( sset_P5379989128061332361ist_fm @ Rules ) ) ) ) ) ).

% RuleSystem.trim_in_R
thf(fact_313_RuleSystem_Otrim__in__R,axiom,
    ! [Eff: produc6018962875968178549ist_fm > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream4408948924543953275ist_fm,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm,Rs: stream4408948924543953275ist_fm] :
      ( ( abstra3169863088381332713ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ( ( abstra7670258426472572809ist_fm @ Rules @ Rs )
         => ( member4699826688122452638ist_fm @ ( shd_Pr3211216682057661985ist_fm @ ( abstra4373283166818909897ist_fm @ Eff @ Rs @ S ) ) @ ( sset_P5379989128061332361ist_fm @ Rules ) ) ) ) ) ).

% RuleSystem.trim_in_R
thf(fact_314_RuleSystem_Otrim__in__R,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,S: rule,Rs: stream_rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( member_rule @ ( shd_rule @ ( abstra2680930950814381487e_rule @ Eff @ Rs @ S ) ) @ ( sset_rule @ Rules ) ) ) ) ) ).

% RuleSystem.trim_in_R
thf(fact_315_RuleSystem_Otrim__in__R,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( member_rule @ ( shd_rule @ ( abstra7806236140005899928ist_fm @ Eff @ Rs @ S ) ) @ ( sset_rule @ Rules ) ) ) ) ) ).

% RuleSystem.trim_in_R
thf(fact_316_RuleSystem_Opos__least,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,N2: nat,Rs: stream_rule,R: rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( ( shd_rule @ ( sdrop_rule @ N2 @ Rs ) )
          = R )
       => ( ord_less_eq_nat @ ( abstract_pos_rule @ Rs @ R ) @ N2 ) ) ) ).

% RuleSystem.pos_least
thf(fact_317_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_318_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_319_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_320_szip_Ocode,axiom,
    ( szip_nat_nat
    = ( ^ [S12: stream_nat,S23: stream_nat] : ( sCons_2147322719763279000at_nat @ ( product_Pair_nat_nat @ ( shd_nat @ S12 ) @ ( shd_nat @ S23 ) ) @ ( szip_nat_nat @ ( stl_nat @ S12 ) @ ( stl_nat @ S23 ) ) ) ) ) ).

% szip.code
thf(fact_321_szip_Ocode,axiom,
    ( szip_rule_rule
    = ( ^ [S12: stream_rule,S23: stream_rule] : ( sCons_5631646851396707868e_rule @ ( produc5849431337705160893e_rule @ ( shd_rule @ S12 ) @ ( shd_rule @ S23 ) ) @ ( szip_rule_rule @ ( stl_rule @ S12 ) @ ( stl_rule @ S23 ) ) ) ) ) ).

% szip.code
thf(fact_322_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_323_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_324_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_325_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_326_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_327_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_328_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_329_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_330_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_331_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_332_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_333_Suc__le__mono,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N2 @ M ) ) ).

% Suc_le_mono
thf(fact_334_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_335_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_336_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_337_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_338_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_339_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_340_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_341_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_342_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_343_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_344_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_345_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_346_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_347_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_348_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_349_stream_Ocollapse,axiom,
    ! [Stream: stream_rule] :
      ( ( sCons_rule @ ( shd_rule @ Stream ) @ ( stl_rule @ Stream ) )
      = Stream ) ).

% stream.collapse
thf(fact_350_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_351_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_352_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_353_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_354_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_355_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_356_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_357_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_358_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_359_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_360_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_361_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_362_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_363_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_364_lift__Suc__mono__le,axiom,
    ! [F: nat > real,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_365_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_366_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_367_lift__Suc__antimono__le,axiom,
    ! [F: nat > real,N2: nat,N4: nat] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_real @ ( F @ N4 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_368_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ? [X2: nat] :
            ( ( P @ X2 )
            & ! [Y3: nat] :
                ( ( P @ Y3 )
               => ( ord_less_eq_nat @ Y3 @ X2 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_369_nat__le__linear,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
      | ( ord_less_eq_nat @ N2 @ M ) ) ).

% nat_le_linear
thf(fact_370_le__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% le_antisym
thf(fact_371_eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( M = N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% eq_imp_le
thf(fact_372_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_373_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_374_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_375_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_376_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_377_RuleSystem__Defs_Oenabled_Ocong,axiom,
    abstra1707737187183579335ist_fm = abstra1707737187183579335ist_fm ).

% RuleSystem_Defs.enabled.cong
thf(fact_378_RuleSystem__Defs_Oenabled__def,axiom,
    ( abstra1707737187183579335ist_fm
    = ( ^ [Eff2: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,R3: rule,S2: produc6018962875968178549ist_fm] :
        ? [X6: fset_P8989946509869081563ist_fm] : ( Eff2 @ R3 @ S2 @ X6 ) ) ) ).

% RuleSystem_Defs.enabled_def
thf(fact_379_RuleSystem__Defs_Otrim_Ocong,axiom,
    abstra7806236140005899928ist_fm = abstra7806236140005899928ist_fm ).

% RuleSystem_Defs.trim.cong
thf(fact_380_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_381_order__antisym__conv,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_382_order__antisym__conv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_383_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_384_linorder__le__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_385_linorder__le__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_386_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_387_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_388_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_389_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_390_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_391_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_392_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_393_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_394_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_395_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_396_ord__eq__le__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_397_ord__eq__le__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_398_ord__eq__le__subst,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_399_ord__eq__le__subst,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_400_ord__eq__le__subst,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_401_ord__eq__le__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_402_ord__eq__le__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_403_ord__eq__le__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_404_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_405_linorder__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_linear
thf(fact_406_linorder__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_linear
thf(fact_407_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_408_order__eq__refl,axiom,
    ! [X: int,Y: int] :
      ( ( X = Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_eq_refl
thf(fact_409_order__eq__refl,axiom,
    ! [X: real,Y: real] :
      ( ( X = Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_eq_refl
thf(fact_410_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_411_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_412_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_413_order__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_414_order__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_415_order__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_416_order__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_417_order__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_418_order__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_419_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_420_order__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_421_order__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_422_order__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_423_order__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_424_order__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_425_order__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_426_order__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_427_order__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_428_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A5 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_429_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [A5: int,B4: int] :
          ( ( ord_less_eq_int @ A5 @ B4 )
          & ( ord_less_eq_int @ B4 @ A5 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_430_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: real,Z4: real] : ( Y4 = Z4 ) )
    = ( ^ [A5: real,B4: real] :
          ( ( ord_less_eq_real @ A5 @ B4 )
          & ( ord_less_eq_real @ B4 @ A5 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_431_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_432_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_433_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_434_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_435_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_436_dual__order_Otrans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_437_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_438_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_439_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_440_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A5 )
          & ( ord_less_eq_nat @ A5 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_441_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [A5: int,B4: int] :
          ( ( ord_less_eq_int @ B4 @ A5 )
          & ( ord_less_eq_int @ A5 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_442_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: real,Z4: real] : ( Y4 = Z4 ) )
    = ( ^ [A5: real,B4: real] :
          ( ( ord_less_eq_real @ B4 @ A5 )
          & ( ord_less_eq_real @ A5 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_443_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat,B2: nat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_444_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int,B2: int] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_445_linorder__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: real,B2: real] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_446_order__trans,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z3 )
       => ( ord_less_eq_nat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_447_order__trans,axiom,
    ! [X: int,Y: int,Z3: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z3 )
       => ( ord_less_eq_int @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_448_order__trans,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z3 )
       => ( ord_less_eq_real @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_449_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_450_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_451_order_Otrans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% order.trans
thf(fact_452_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_453_order__antisym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_454_order__antisym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_455_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_456_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_457_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_458_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_459_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_460_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_461_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_462_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_eq_int @ X4 @ Y5 )
          & ( ord_less_eq_int @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_463_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: real,Z4: real] : ( Y4 = Z4 ) )
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_464_le__cases3,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z3 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z3 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z3 )
           => ~ ( ord_less_eq_nat @ Z3 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z3 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z3 )
               => ~ ( ord_less_eq_nat @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z3 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_465_le__cases3,axiom,
    ! [X: int,Y: int,Z3: int] :
      ( ( ( ord_less_eq_int @ X @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z3 ) )
     => ( ( ( ord_less_eq_int @ Y @ X )
         => ~ ( ord_less_eq_int @ X @ Z3 ) )
       => ( ( ( ord_less_eq_int @ X @ Z3 )
           => ~ ( ord_less_eq_int @ Z3 @ Y ) )
         => ( ( ( ord_less_eq_int @ Z3 @ Y )
             => ~ ( ord_less_eq_int @ Y @ X ) )
           => ( ( ( ord_less_eq_int @ Y @ Z3 )
               => ~ ( ord_less_eq_int @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_int @ Z3 @ X )
                 => ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_466_le__cases3,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( ( ord_less_eq_real @ X @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z3 ) )
     => ( ( ( ord_less_eq_real @ Y @ X )
         => ~ ( ord_less_eq_real @ X @ Z3 ) )
       => ( ( ( ord_less_eq_real @ X @ Z3 )
           => ~ ( ord_less_eq_real @ Z3 @ Y ) )
         => ( ( ( ord_less_eq_real @ Z3 @ Y )
             => ~ ( ord_less_eq_real @ Y @ X ) )
           => ( ( ( ord_less_eq_real @ Y @ Z3 )
               => ~ ( ord_less_eq_real @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_real @ Z3 @ X )
                 => ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_467_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_468_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_469_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_470_szip__unfold,axiom,
    ! [A: nat,S1: stream_nat,B: nat,S22: stream_nat] :
      ( ( szip_nat_nat @ ( sCons_nat @ A @ S1 ) @ ( sCons_nat @ B @ S22 ) )
      = ( sCons_2147322719763279000at_nat @ ( product_Pair_nat_nat @ A @ B ) @ ( szip_nat_nat @ S1 @ S22 ) ) ) ).

% szip_unfold
thf(fact_471_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ).

% reals_Archimedean2
thf(fact_472_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_473_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A5: nat,B4: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_474_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_475_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_476_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_477_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_478_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_479_leD,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ~ ( ord_less_int @ X @ Y ) ) ).

% leD
thf(fact_480_leD,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ~ ( ord_less_real @ X @ Y ) ) ).

% leD
thf(fact_481_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_482_leI,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% leI
thf(fact_483_leI,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% leI
thf(fact_484_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_485_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_486_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_487_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_488_antisym__conv1,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_489_antisym__conv1,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_490_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_491_antisym__conv2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_492_antisym__conv2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_493_dense__ge,axiom,
    ! [Z3: real,Y: real] :
      ( ! [X2: real] :
          ( ( ord_less_real @ Z3 @ X2 )
         => ( ord_less_eq_real @ Y @ X2 ) )
     => ( ord_less_eq_real @ Y @ Z3 ) ) ).

% dense_ge
thf(fact_494_dense__le,axiom,
    ! [Y: real,Z3: real] :
      ( ! [X2: real] :
          ( ( ord_less_real @ X2 @ Y )
         => ( ord_less_eq_real @ X2 @ Z3 ) )
     => ( ord_less_eq_real @ Y @ Z3 ) ) ).

% dense_le
thf(fact_495_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ~ ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_496_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_eq_int @ X4 @ Y5 )
          & ~ ( ord_less_eq_int @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_497_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ~ ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_498_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_499_not__le__imp__less,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y @ X )
     => ( ord_less_int @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_500_not__le__imp__less,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y @ X )
     => ( ord_less_real @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_501_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A5: nat,B4: nat] :
          ( ( ord_less_nat @ A5 @ B4 )
          | ( A5 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_502_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A5: int,B4: int] :
          ( ( ord_less_int @ A5 @ B4 )
          | ( A5 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_503_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A5: real,B4: real] :
          ( ( ord_less_real @ A5 @ B4 )
          | ( A5 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_504_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
          & ( A5 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_505_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A5: int,B4: int] :
          ( ( ord_less_eq_int @ A5 @ B4 )
          & ( A5 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_506_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A5: real,B4: real] :
          ( ( ord_less_eq_real @ A5 @ B4 )
          & ( A5 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_507_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_508_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_509_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_510_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_511_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_512_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_513_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
          & ~ ( ord_less_eq_nat @ B4 @ A5 ) ) ) ) ).

% order.strict_iff_not
thf(fact_514_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A5: int,B4: int] :
          ( ( ord_less_eq_int @ A5 @ B4 )
          & ~ ( ord_less_eq_int @ B4 @ A5 ) ) ) ) ).

% order.strict_iff_not
thf(fact_515_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A5: real,B4: real] :
          ( ( ord_less_eq_real @ A5 @ B4 )
          & ~ ( ord_less_eq_real @ B4 @ A5 ) ) ) ) ).

% order.strict_iff_not
thf(fact_516_dense__ge__bounded,axiom,
    ! [Z3: real,X: real,Y: real] :
      ( ( ord_less_real @ Z3 @ X )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z3 @ W )
           => ( ( ord_less_real @ W @ X )
             => ( ord_less_eq_real @ Y @ W ) ) )
       => ( ord_less_eq_real @ Y @ Z3 ) ) ) ).

% dense_ge_bounded
thf(fact_517_dense__le__bounded,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ! [W: real] :
            ( ( ord_less_real @ X @ W )
           => ( ( ord_less_real @ W @ Y )
             => ( ord_less_eq_real @ W @ Z3 ) ) )
       => ( ord_less_eq_real @ Y @ Z3 ) ) ) ).

% dense_le_bounded
thf(fact_518_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A5: nat] :
          ( ( ord_less_nat @ B4 @ A5 )
          | ( A5 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_519_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B4: int,A5: int] :
          ( ( ord_less_int @ B4 @ A5 )
          | ( A5 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_520_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B4: real,A5: real] :
          ( ( ord_less_real @ B4 @ A5 )
          | ( A5 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_521_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A5: nat] :
          ( ( ord_less_eq_nat @ B4 @ A5 )
          & ( A5 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_522_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A5: int] :
          ( ( ord_less_eq_int @ B4 @ A5 )
          & ( A5 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_523_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A5: real] :
          ( ( ord_less_eq_real @ B4 @ A5 )
          & ( A5 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_524_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_525_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_526_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_527_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_528_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_529_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_530_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A5: nat] :
          ( ( ord_less_eq_nat @ B4 @ A5 )
          & ~ ( ord_less_eq_nat @ A5 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_531_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A5: int] :
          ( ( ord_less_eq_int @ B4 @ A5 )
          & ~ ( ord_less_eq_int @ A5 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_532_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A5: real] :
          ( ( ord_less_eq_real @ B4 @ A5 )
          & ~ ( ord_less_eq_real @ A5 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_533_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_534_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_535_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_536_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_537_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_538_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_539_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_nat @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_540_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_int @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_541_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_real @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_542_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_543_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_eq_int @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_544_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_545_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_546_linorder__not__le,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y ) )
      = ( ord_less_int @ Y @ X ) ) ).

% linorder_not_le
thf(fact_547_linorder__not__le,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y ) )
      = ( ord_less_real @ Y @ X ) ) ).

% linorder_not_le
thf(fact_548_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_549_linorder__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_not_less
thf(fact_550_linorder__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_not_less
thf(fact_551_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_552_order__less__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_553_order__less__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_554_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_555_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_556_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_557_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_558_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_559_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_560_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_561_order__le__less__trans,axiom,
    ! [X: int,Y: int,Z3: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_562_order__le__less__trans,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_563_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_564_order__less__le__trans,axiom,
    ! [X: int,Y: int,Z3: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_565_order__less__le__trans,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_566_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_567_order__le__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_568_order__le__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_569_order__le__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_570_order__le__less__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_571_order__le__less__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_572_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_573_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_574_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_575_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_576_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_577_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_578_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_579_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_580_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_581_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_582_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_583_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_584_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_585_order__less__le__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_586_order__less__le__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_587_order__less__le__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_588_order__less__le__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_589_order__less__le__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_eq_int @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_590_order__less__le__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_591_order__less__le__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_592_order__less__le__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_eq_real @ X2 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_593_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_594_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_595_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_596_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_597_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_598_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_int @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_599_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X2: nat,Y2: nat] :
              ( ( ord_less_nat @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_600_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X2: int,Y2: int] :
              ( ( ord_less_int @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_601_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X2: real,Y2: real] :
              ( ( ord_less_real @ X2 @ Y2 )
             => ( ord_less_real @ ( F @ X2 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_602_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_603_linorder__le__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_604_linorder__le__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_605_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_606_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_607_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_608_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ~ ( ord_less_eq_nat @ T @ X3 ) ) ).

% minf(8)
thf(fact_609_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z2 )
     => ~ ( ord_less_eq_int @ T @ X3 ) ) ).

% minf(8)
thf(fact_610_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z2 )
     => ~ ( ord_less_eq_real @ T @ X3 ) ) ).

% minf(8)
thf(fact_611_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z2 )
     => ( ord_less_eq_nat @ X3 @ T ) ) ).

% minf(6)
thf(fact_612_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z2 )
     => ( ord_less_eq_int @ X3 @ T ) ) ).

% minf(6)
thf(fact_613_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z2 )
     => ( ord_less_eq_real @ X3 @ T ) ) ).

% minf(6)
thf(fact_614_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ( ord_less_eq_nat @ T @ X3 ) ) ).

% pinf(8)
thf(fact_615_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z2 @ X3 )
     => ( ord_less_eq_int @ T @ X3 ) ) ).

% pinf(8)
thf(fact_616_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ( ord_less_eq_real @ T @ X3 ) ) ).

% pinf(8)
thf(fact_617_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z2 @ X3 )
     => ~ ( ord_less_eq_nat @ X3 @ T ) ) ).

% pinf(6)
thf(fact_618_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z2: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z2 @ X3 )
     => ~ ( ord_less_eq_int @ X3 @ T ) ) ).

% pinf(6)
thf(fact_619_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z2: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ~ ( ord_less_eq_real @ X3 @ T ) ) ).

% pinf(6)
thf(fact_620_verit__comp__simplify1_I3_J,axiom,
    ! [B3: nat,A4: nat] :
      ( ( ~ ( ord_less_eq_nat @ B3 @ A4 ) )
      = ( ord_less_nat @ A4 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_621_verit__comp__simplify1_I3_J,axiom,
    ! [B3: int,A4: int] :
      ( ( ~ ( ord_less_eq_int @ B3 @ A4 ) )
      = ( ord_less_int @ A4 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_622_verit__comp__simplify1_I3_J,axiom,
    ! [B3: real,A4: real] :
      ( ( ~ ( ord_less_eq_real @ B3 @ A4 ) )
      = ( ord_less_real @ A4 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_623_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X3: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X3 )
                    & ( ord_less_nat @ X3 @ C2 ) )
                 => ( P @ X3 ) )
              & ! [D: nat] :
                  ( ! [X2: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X2 )
                        & ( ord_less_nat @ X2 @ D ) )
                     => ( P @ X2 ) )
                 => ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_624_complete__interval,axiom,
    ! [A: int,B: int,P: int > $o] :
      ( ( ord_less_int @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A @ C2 )
              & ( ord_less_eq_int @ C2 @ B )
              & ! [X3: int] :
                  ( ( ( ord_less_eq_int @ A @ X3 )
                    & ( ord_less_int @ X3 @ C2 ) )
                 => ( P @ X3 ) )
              & ! [D: int] :
                  ( ! [X2: int] :
                      ( ( ( ord_less_eq_int @ A @ X2 )
                        & ( ord_less_int @ X2 @ D ) )
                     => ( P @ X2 ) )
                 => ( ord_less_eq_int @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_625_complete__interval,axiom,
    ! [A: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: real] :
              ( ( ord_less_eq_real @ A @ C2 )
              & ( ord_less_eq_real @ C2 @ B )
              & ! [X3: real] :
                  ( ( ( ord_less_eq_real @ A @ X3 )
                    & ( ord_less_real @ X3 @ C2 ) )
                 => ( P @ X3 ) )
              & ! [D: real] :
                  ( ! [X2: real] :
                      ( ( ( ord_less_eq_real @ A @ X2 )
                        & ( ord_less_real @ X2 @ D ) )
                     => ( P @ X2 ) )
                 => ( ord_less_eq_real @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_626_stream_Osel_I2_J,axiom,
    ! [X1: rule,X22: stream_rule] :
      ( ( stl_rule @ ( sCons_rule @ X1 @ X22 ) )
      = X22 ) ).

% stream.sel(2)
thf(fact_627_stream_Osel_I1_J,axiom,
    ! [X1: rule,X22: stream_rule] :
      ( ( shd_rule @ ( sCons_rule @ X1 @ X22 ) )
      = X1 ) ).

% stream.sel(1)
thf(fact_628_stream_Oset__induct,axiom,
    ! [X: produc6018962875968178549ist_fm,A: stream4408948924543953275ist_fm,P: produc6018962875968178549ist_fm > stream4408948924543953275ist_fm > $o] :
      ( ( member4699826688122452638ist_fm @ X @ ( sset_P5379989128061332361ist_fm @ A ) )
     => ( ! [Z1: produc6018962875968178549ist_fm,Z22: stream4408948924543953275ist_fm] : ( P @ Z1 @ ( sCons_2518607988952603276ist_fm @ Z1 @ Z22 ) )
       => ( ! [Z1: produc6018962875968178549ist_fm,Z22: stream4408948924543953275ist_fm,Xa: produc6018962875968178549ist_fm] :
              ( ( member4699826688122452638ist_fm @ Xa @ ( sset_P5379989128061332361ist_fm @ Z22 ) )
             => ( ( P @ Xa @ Z22 )
               => ( P @ Xa @ ( sCons_2518607988952603276ist_fm @ Z1 @ Z22 ) ) ) )
         => ( P @ X @ A ) ) ) ) ).

% stream.set_induct
thf(fact_629_stream_Oset__induct,axiom,
    ! [X: rule,A: stream_rule,P: rule > stream_rule > $o] :
      ( ( member_rule @ X @ ( sset_rule @ A ) )
     => ( ! [Z1: rule,Z22: stream_rule] : ( P @ Z1 @ ( sCons_rule @ Z1 @ Z22 ) )
       => ( ! [Z1: rule,Z22: stream_rule,Xa: rule] :
              ( ( member_rule @ Xa @ ( sset_rule @ Z22 ) )
             => ( ( P @ Xa @ Z22 )
               => ( P @ Xa @ ( sCons_rule @ Z1 @ Z22 ) ) ) )
         => ( P @ X @ A ) ) ) ) ).

% stream.set_induct
thf(fact_630_stream_Oset__cases,axiom,
    ! [E2: produc6018962875968178549ist_fm,A: stream4408948924543953275ist_fm] :
      ( ( member4699826688122452638ist_fm @ E2 @ ( sset_P5379989128061332361ist_fm @ A ) )
     => ( ! [Z22: stream4408948924543953275ist_fm] :
            ( A
           != ( sCons_2518607988952603276ist_fm @ E2 @ Z22 ) )
       => ~ ! [Z1: produc6018962875968178549ist_fm,Z22: stream4408948924543953275ist_fm] :
              ( ( A
                = ( sCons_2518607988952603276ist_fm @ Z1 @ Z22 ) )
             => ~ ( member4699826688122452638ist_fm @ E2 @ ( sset_P5379989128061332361ist_fm @ Z22 ) ) ) ) ) ).

% stream.set_cases
thf(fact_631_stream_Oset__cases,axiom,
    ! [E2: rule,A: stream_rule] :
      ( ( member_rule @ E2 @ ( sset_rule @ A ) )
     => ( ! [Z22: stream_rule] :
            ( A
           != ( sCons_rule @ E2 @ Z22 ) )
       => ~ ! [Z1: rule,Z22: stream_rule] :
              ( ( A
                = ( sCons_rule @ Z1 @ Z22 ) )
             => ~ ( member_rule @ E2 @ ( sset_rule @ Z22 ) ) ) ) ) ).

% stream.set_cases
thf(fact_632_stream_Oset__intros_I1_J,axiom,
    ! [X1: produc6018962875968178549ist_fm,X22: stream4408948924543953275ist_fm] : ( member4699826688122452638ist_fm @ X1 @ ( sset_P5379989128061332361ist_fm @ ( sCons_2518607988952603276ist_fm @ X1 @ X22 ) ) ) ).

% stream.set_intros(1)
thf(fact_633_stream_Oset__intros_I1_J,axiom,
    ! [X1: rule,X22: stream_rule] : ( member_rule @ X1 @ ( sset_rule @ ( sCons_rule @ X1 @ X22 ) ) ) ).

% stream.set_intros(1)
thf(fact_634_stream_Oset__intros_I2_J,axiom,
    ! [Y: produc6018962875968178549ist_fm,X22: stream4408948924543953275ist_fm,X1: produc6018962875968178549ist_fm] :
      ( ( member4699826688122452638ist_fm @ Y @ ( sset_P5379989128061332361ist_fm @ X22 ) )
     => ( member4699826688122452638ist_fm @ Y @ ( sset_P5379989128061332361ist_fm @ ( sCons_2518607988952603276ist_fm @ X1 @ X22 ) ) ) ) ).

% stream.set_intros(2)
thf(fact_635_stream_Oset__intros_I2_J,axiom,
    ! [Y: rule,X22: stream_rule,X1: rule] :
      ( ( member_rule @ Y @ ( sset_rule @ X22 ) )
     => ( member_rule @ Y @ ( sset_rule @ ( sCons_rule @ X1 @ X22 ) ) ) ) ).

% stream.set_intros(2)
thf(fact_636_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_637_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_638_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_639_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_640_transitive__stepwise__le,axiom,
    ! [M: nat,N2: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ! [X2: nat] : ( R2 @ X2 @ X2 )
       => ( ! [X2: nat,Y2: nat,Z2: nat] :
              ( ( R2 @ X2 @ Y2 )
             => ( ( R2 @ Y2 @ Z2 )
               => ( R2 @ X2 @ Z2 ) ) )
         => ( ! [N: nat] : ( R2 @ N @ ( suc @ N ) )
           => ( R2 @ M @ N2 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_641_nat__induct__at__least,axiom,
    ! [M: nat,N2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( P @ M )
       => ( ! [N: nat] :
              ( ( ord_less_eq_nat @ M @ N )
             => ( ( P @ N )
               => ( P @ ( suc @ N ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_at_least
thf(fact_642_full__nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
             => ( P @ M2 ) )
         => ( P @ N ) )
     => ( P @ N2 ) ) ).

% full_nat_induct
thf(fact_643_not__less__eq__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N2 ) )
      = ( ord_less_eq_nat @ ( suc @ N2 ) @ M ) ) ).

% not_less_eq_eq
thf(fact_644_Suc__n__not__le__n,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).

% Suc_n_not_le_n
thf(fact_645_le__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
      = ( ( ord_less_eq_nat @ M @ N2 )
        | ( M
          = ( suc @ N2 ) ) ) ) ).

% le_Suc_eq
thf(fact_646_Suc__le__D,axiom,
    ! [N2: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ M6 )
     => ? [M5: nat] :
          ( M6
          = ( suc @ M5 ) ) ) ).

% Suc_le_D
thf(fact_647_le__SucI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ ( suc @ N2 ) ) ) ).

% le_SucI
thf(fact_648_le__SucE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( M
          = ( suc @ N2 ) ) ) ) ).

% le_SucE
thf(fact_649_Suc__leD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% Suc_leD
thf(fact_650_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M3 @ N3 )
          & ( M3 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_651_less__imp__le__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_imp_le_nat
thf(fact_652_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
          | ( M3 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_653_less__or__eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_654_le__neq__implies__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( M != N2 )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_655_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_656_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_657_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_658_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_659_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N2 ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_660_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_661_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N2 ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_662_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_663_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_664_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_665_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_666_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_667_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_668_RuleSystem_Otrim__enabled,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,S: rule,Rs: stream_rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( abstra7234149737463204544e_rule @ Eff @ ( shd_rule @ ( abstra2680930950814381487e_rule @ Eff @ Rs @ S ) ) @ S ) ) ) ) ).

% RuleSystem.trim_enabled
thf(fact_669_RuleSystem_Otrim__enabled,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( abstra1707737187183579335ist_fm @ Eff @ ( shd_rule @ ( abstra7806236140005899928ist_fm @ Eff @ Rs @ S ) ) @ S ) ) ) ) ).

% RuleSystem.trim_enabled
thf(fact_670_snth__Stream,axiom,
    ! [X: rule,S: stream_rule,I: nat] :
      ( ( snth_rule @ ( sCons_rule @ X @ S ) @ ( suc @ I ) )
      = ( snth_rule @ S @ I ) ) ).

% snth_Stream
thf(fact_671_stream_Oexhaust__sel,axiom,
    ! [Stream: stream_rule] :
      ( Stream
      = ( sCons_rule @ ( shd_rule @ Stream ) @ ( stl_rule @ Stream ) ) ) ).

% stream.exhaust_sel
thf(fact_672_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N2 )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_673_le__imp__less__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).

% le_imp_less_Suc
thf(fact_674_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_675_less__Suc__eq__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_Suc_eq_le
thf(fact_676_le__less__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
        = ( N2 = M ) ) ) ).

% le_less_Suc_eq
thf(fact_677_Suc__le__lessD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_le_lessD
thf(fact_678_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N: nat] :
              ( ( ord_less_eq_nat @ I @ N )
             => ( ( ord_less_nat @ N @ J )
               => ( ( P @ ( suc @ N ) )
                 => ( P @ N ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_679_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N: nat] :
              ( ( ord_less_eq_nat @ I @ N )
             => ( ( ord_less_nat @ N @ J )
               => ( ( P @ N )
                 => ( P @ ( suc @ N ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_680_Suc__le__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_le_eq
thf(fact_681_Suc__leI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_leI
thf(fact_682_RuleSystem_Otrim__fair,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,S: rule,Rs: stream_rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( abstra3799686578551160190r_rule @ Rules @ ( abstra2680930950814381487e_rule @ Eff @ Rs @ S ) ) ) ) ) ).

% RuleSystem.trim_fair
thf(fact_683_RuleSystem_Otrim__fair,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( abstra3799686578551160190r_rule @ Rules @ ( abstra7806236140005899928ist_fm @ Eff @ Rs @ S ) ) ) ) ) ).

% RuleSystem.trim_fair
thf(fact_684_ex__least__nat__less,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N2 )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_685_pos__least,axiom,
    ! [N2: nat,Rs: stream_rule,R: rule] :
      ( ( ( shd_rule @ ( sdrop_rule @ N2 @ Rs ) )
        = R )
     => ( ord_less_eq_nat @ ( abstract_pos_rule @ Rs @ R ) @ N2 ) ) ).

% pos_least
thf(fact_686_RuleSystem_OminWait__le__pos,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,Rs: stream_rule,R: rule,S: produc6018962875968178549ist_fm] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
       => ( ( member_rule @ R @ ( sset_rule @ Rules ) )
         => ( ( abstra1707737187183579335ist_fm @ Eff @ R @ S )
           => ( ord_less_eq_nat @ ( abstra1963046427795717555ist_fm @ Eff @ Rs @ S ) @ ( abstract_pos_rule @ Rs @ R ) ) ) ) ) ) ).

% RuleSystem.minWait_le_pos
thf(fact_687_RuleSystem_OminWait__least,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,N2: nat,Rs: stream_rule,S: produc6018962875968178549ist_fm] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( abstra1707737187183579335ist_fm @ Eff @ ( shd_rule @ ( sdrop_rule @ N2 @ Rs ) ) @ S )
       => ( ord_less_eq_nat @ ( abstra1963046427795717555ist_fm @ Eff @ Rs @ S ) @ N2 ) ) ) ).

% RuleSystem.minWait_least
thf(fact_688_RuleSystem_Otrim__alt,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,S: rule,Rs: stream_rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( member_rule @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( ( abstra2680930950814381487e_rule @ Eff @ Rs @ S )
            = ( sdrop_rule @ ( abstra538998172947062484e_rule @ Eff @ Rs @ S ) @ Rs ) ) ) ) ) ).

% RuleSystem.trim_alt
thf(fact_689_RuleSystem_Otrim__alt,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( member4699826688122452638ist_fm @ S @ S4 )
       => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
         => ( ( abstra7806236140005899928ist_fm @ Eff @ Rs @ S )
            = ( sdrop_rule @ ( abstra1963046427795717555ist_fm @ Eff @ Rs @ S ) @ Rs ) ) ) ) ) ).

% RuleSystem.trim_alt
thf(fact_690_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N2 @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N2 )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_691_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% pos_int_cases
thf(fact_692_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N )
          & ( K
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_693_sinterleave_Ocode,axiom,
    ( sinterleave_rule
    = ( ^ [S12: stream_rule,S23: stream_rule] : ( sCons_rule @ ( shd_rule @ S12 ) @ ( sinterleave_rule @ S23 @ ( stl_rule @ S12 ) ) ) ) ) ).

% sinterleave.code
thf(fact_694_conj__le__cong,axiom,
    ! [X: int,X7: int,P: $o,P2: $o] :
      ( ( X = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P2 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
            & P2 ) ) ) ) ).

% conj_le_cong
thf(fact_695_imp__le__cong,axiom,
    ! [X: int,X7: int,P: $o,P2: $o] :
      ( ( X = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P2 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
           => P2 ) ) ) ) ).

% imp_le_cong
thf(fact_696_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_697_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N ) ) ) ).

% nonneg_int_cases
thf(fact_698_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N ) ) ) ).

% zero_le_imp_eq_int
thf(fact_699_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_700_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y4: nat,Z4: nat] : ( Y4 = Z4 ) )
    = ( ^ [A5: nat,B4: nat] :
          ( ( semiri1314217659103216013at_int @ A5 )
          = ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_701_RuleSystem_OminWait_Ocong,axiom,
    abstra1963046427795717555ist_fm = abstra1963046427795717555ist_fm ).

% RuleSystem.minWait.cong
thf(fact_702_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_703_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A5: nat,B4: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A5 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_704_sinterleave_Osimps_I2_J,axiom,
    ! [S1: stream_rule,S22: stream_rule] :
      ( ( stl_rule @ ( sinterleave_rule @ S1 @ S22 ) )
      = ( sinterleave_rule @ S22 @ ( stl_rule @ S1 ) ) ) ).

% sinterleave.simps(2)
thf(fact_705_sinterleave_Osimps_I1_J,axiom,
    ! [S1: stream_rule,S22: stream_rule] :
      ( ( shd_rule @ ( sinterleave_rule @ S1 @ S22 ) )
      = ( shd_rule @ S1 ) ) ).

% sinterleave.simps(1)
thf(fact_706_RuleSystem_Ostake__pos__minWait,axiom,
    ! [Eff: produc6018962875968178549ist_fm > rule > fset_rule > $o,Rules: stream4408948924543953275ist_fm,S4: set_rule,Rs: stream4408948924543953275ist_fm,S: rule,R: produc6018962875968178549ist_fm] :
      ( ( abstra2695409591818887198m_rule @ Eff @ Rules @ S4 )
     => ( ( abstra7670258426472572809ist_fm @ Rules @ Rs )
       => ( ( ord_less_nat @ ( abstra8660094705501476185m_rule @ Eff @ Rs @ S ) @ ( abstra2497064141961437305ist_fm @ Rs @ R ) )
         => ( ( member4699826688122452638ist_fm @ R @ ( sset_P5379989128061332361ist_fm @ Rules ) )
           => ( ( member_rule @ S @ S4 )
             => ( ( abstra2497064141961437305ist_fm @ ( stl_Pr1506262294867171877ist_fm @ ( abstra5279912380856882750m_rule @ Eff @ Rs @ S ) ) @ R )
                = ( minus_minus_nat @ ( abstra2497064141961437305ist_fm @ Rs @ R ) @ ( suc @ ( abstra8660094705501476185m_rule @ Eff @ Rs @ S ) ) ) ) ) ) ) ) ) ).

% RuleSystem.stake_pos_minWait
thf(fact_707_RuleSystem_Ostake__pos__minWait,axiom,
    ! [Eff: produc6018962875968178549ist_fm > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream4408948924543953275ist_fm,S4: set_Pr5202636777678657877ist_fm,Rs: stream4408948924543953275ist_fm,S: produc6018962875968178549ist_fm,R: produc6018962875968178549ist_fm] :
      ( ( abstra3169863088381332713ist_fm @ Eff @ Rules @ S4 )
     => ( ( abstra7670258426472572809ist_fm @ Rules @ Rs )
       => ( ( ord_less_nat @ ( abstra570452456931927918ist_fm @ Eff @ Rs @ S ) @ ( abstra2497064141961437305ist_fm @ Rs @ R ) )
         => ( ( member4699826688122452638ist_fm @ R @ ( sset_P5379989128061332361ist_fm @ Rules ) )
           => ( ( member4699826688122452638ist_fm @ S @ S4 )
             => ( ( abstra2497064141961437305ist_fm @ ( stl_Pr1506262294867171877ist_fm @ ( abstra4373283166818909897ist_fm @ Eff @ Rs @ S ) ) @ R )
                = ( minus_minus_nat @ ( abstra2497064141961437305ist_fm @ Rs @ R ) @ ( suc @ ( abstra570452456931927918ist_fm @ Eff @ Rs @ S ) ) ) ) ) ) ) ) ) ).

% RuleSystem.stake_pos_minWait
thf(fact_708_RuleSystem_Ostake__pos__minWait,axiom,
    ! [Eff: rule > rule > fset_rule > $o,Rules: stream_rule,S4: set_rule,Rs: stream_rule,S: rule,R: rule] :
      ( ( abstra6805424310982398927e_rule @ Eff @ Rules @ S4 )
     => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
       => ( ( ord_less_nat @ ( abstra538998172947062484e_rule @ Eff @ Rs @ S ) @ ( abstract_pos_rule @ Rs @ R ) )
         => ( ( member_rule @ R @ ( sset_rule @ Rules ) )
           => ( ( member_rule @ S @ S4 )
             => ( ( abstract_pos_rule @ ( stl_rule @ ( abstra2680930950814381487e_rule @ Eff @ Rs @ S ) ) @ R )
                = ( minus_minus_nat @ ( abstract_pos_rule @ Rs @ R ) @ ( suc @ ( abstra538998172947062484e_rule @ Eff @ Rs @ S ) ) ) ) ) ) ) ) ) ).

% RuleSystem.stake_pos_minWait
thf(fact_709_RuleSystem_Ostake__pos__minWait,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,Rs: stream_rule,S: produc6018962875968178549ist_fm,R: rule] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( abstra3799686578551160190r_rule @ Rules @ Rs )
       => ( ( ord_less_nat @ ( abstra1963046427795717555ist_fm @ Eff @ Rs @ S ) @ ( abstract_pos_rule @ Rs @ R ) )
         => ( ( member_rule @ R @ ( sset_rule @ Rules ) )
           => ( ( member4699826688122452638ist_fm @ S @ S4 )
             => ( ( abstract_pos_rule @ ( stl_rule @ ( abstra7806236140005899928ist_fm @ Eff @ Rs @ S ) ) @ R )
                = ( minus_minus_nat @ ( abstract_pos_rule @ Rs @ R ) @ ( suc @ ( abstra1963046427795717555ist_fm @ Eff @ Rs @ S ) ) ) ) ) ) ) ) ) ).

% RuleSystem.stake_pos_minWait
thf(fact_710_minWait__le__pos,axiom,
    ! [Rs: stream_rule,R: rule,S: produc6018962875968178549ist_fm] :
      ( ( abstra3799686578551160190r_rule @ rules @ Rs )
     => ( ( member_rule @ R @ ( sset_rule @ rules ) )
       => ( ( abstra1707737187183579335ist_fm @ eff @ R @ S )
         => ( ord_less_eq_nat @ ( abstra1963046427795717555ist_fm @ eff @ Rs @ S ) @ ( abstract_pos_rule @ Rs @ R ) ) ) ) ) ).

% minWait_le_pos
thf(fact_711_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% neg_int_cases
thf(fact_712_ex__inverse__of__nat__less,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_713_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_714_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_715_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_716_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_717_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_718_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_719_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_720_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_721_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_722_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_723_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_724_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_725_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_726_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_727_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_728_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_729_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_730_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_731_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_732_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_733_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_734_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_735_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_736_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_737_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_738_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_739_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_740_inverse__nonzero__iff__nonzero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_741_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_742_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_743_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_744_Suc__diff__diff,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N2 ) @ K ) ) ).

% Suc_diff_diff
thf(fact_745_diff__Suc__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_Suc_Suc
thf(fact_746_inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
      = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).

% inverse_minus_eq
thf(fact_747_diff__diff__cancel,axiom,
    ! [I: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_748_sdrop__smap2,axiom,
    ! [N2: nat,F: rule > rule > rule,S1: stream_rule,S22: stream_rule] :
      ( ( sdrop_rule @ N2 @ ( smap2_rule_rule_rule @ F @ S1 @ S22 ) )
      = ( smap2_rule_rule_rule @ F @ ( sdrop_rule @ N2 @ S1 ) @ ( sdrop_rule @ N2 @ S22 ) ) ) ).

% sdrop_smap2
thf(fact_749_snth__smap2,axiom,
    ! [F: rule > rule > rule,S1: stream_rule,S22: stream_rule,N2: nat] :
      ( ( snth_rule @ ( smap2_rule_rule_rule @ F @ S1 @ S22 ) @ N2 )
      = ( F @ ( snth_rule @ S1 @ N2 ) @ ( snth_rule @ S22 @ N2 ) ) ) ).

% snth_smap2
thf(fact_750_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_751_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_752_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_753_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_754_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_755_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_756_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_757_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_758_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_759_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_760_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_761_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_762_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_763_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_764_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_765_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_766_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_767_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_768_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_769_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_770_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_771_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_772_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_773_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_774_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_775_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_776_inverse__less__iff__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_777_inverse__less__iff__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_778_inverse__negative__iff__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_779_inverse__positive__iff__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_780_zero__less__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% zero_less_diff
thf(fact_781_diff__is__0__eq_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_782_diff__is__0__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% diff_is_0_eq
thf(fact_783_negative__eq__positive,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N2 = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_784_inverse__le__iff__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_785_inverse__le__iff__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_786_Suc__pred,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% Suc_pred
thf(fact_787_negative__zless,axiom,
    ! [N2: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_788_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_789_nonzero__inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
        = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_790_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_791_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_792_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_793_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_794_inverse__zero__imp__zero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
     => ( A = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_795_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( ( A != zero_zero_real )
       => ( ( B != zero_zero_real )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_796_nonzero__inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_797_nonzero__imp__inverse__nonzero,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_798_real__arch__inverse,axiom,
    ! [E2: real] :
      ( ( ord_less_real @ zero_zero_real @ E2 )
      = ( ? [N3: nat] :
            ( ( N3 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E2 ) ) ) ) ).

% real_arch_inverse
thf(fact_799_forall__pos__mono,axiom,
    ! [P: real > $o,E2: real] :
      ( ! [D3: real,E: real] :
          ( ( ord_less_real @ D3 @ E )
         => ( ( P @ D3 )
           => ( P @ E ) ) )
     => ( ! [N: nat] :
            ( ( N != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( P @ E2 ) ) ) ) ).

% forall_pos_mono
thf(fact_800_forall__pos__mono__1,axiom,
    ! [P: real > $o,E2: real] :
      ( ! [D3: real,E: real] :
          ( ( ord_less_real @ D3 @ E )
         => ( ( P @ D3 )
           => ( P @ E ) ) )
     => ( ! [N: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( P @ E2 ) ) ) ) ).

% forall_pos_mono_1
thf(fact_801_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_802_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_803_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_804_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_805_enabled__def,axiom,
    ! [R: rule,S: produc6018962875968178549ist_fm] :
      ( ( abstra1707737187183579335ist_fm @ eff @ R @ S )
      = ( ? [X6: fset_P8989946509869081563ist_fm] : ( eff @ R @ S @ X6 ) ) ) ).

% enabled_def
thf(fact_806_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: int,Z4: int] : ( Y4 = Z4 ) )
    = ( ^ [A5: int,B4: int] :
          ( ( minus_minus_int @ A5 @ B4 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_807_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: real,Z4: real] : ( Y4 = Z4 ) )
    = ( ^ [A5: real,B4: real] :
          ( ( minus_minus_real @ A5 @ B4 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_808_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_809_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_810_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_811_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_812_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D4: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D4 ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D4 ) ) ) ).

% diff_eq_diff_less
thf(fact_813_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D4: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D4 ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D4 ) ) ) ).

% diff_eq_diff_less
thf(fact_814_diff__strict__mono,axiom,
    ! [A: int,B: int,D4: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D4 @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D4 ) ) ) ) ).

% diff_strict_mono
thf(fact_815_diff__strict__mono,axiom,
    ! [A: real,B: real,D4: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D4 @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D4 ) ) ) ) ).

% diff_strict_mono
thf(fact_816_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_817_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_818_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_819_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_820_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_821_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_822_diffs0__imp__equal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M )
          = zero_zero_nat )
       => ( M = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_823_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_824_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N: nat] :
            ( ( P @ ( suc @ N ) )
           => ( P @ N ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_825_diff__less__mono2,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_826_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_827_diff__le__mono2,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_828_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_829_diff__le__self,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ).

% diff_le_self
thf(fact_830_diff__le__mono,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).

% diff_le_mono
thf(fact_831_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_832_le__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_833_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_834_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_835_smap2_Osimps_I2_J,axiom,
    ! [F: rule > rule > rule,S1: stream_rule,S22: stream_rule] :
      ( ( stl_rule @ ( smap2_rule_rule_rule @ F @ S1 @ S22 ) )
      = ( smap2_rule_rule_rule @ F @ ( stl_rule @ S1 ) @ ( stl_rule @ S22 ) ) ) ).

% smap2.simps(2)
thf(fact_836_smap2_Osimps_I1_J,axiom,
    ! [F: rule > rule > rule,S1: stream_rule,S22: stream_rule] :
      ( ( shd_rule @ ( smap2_rule_rule_rule @ F @ S1 @ S22 ) )
      = ( F @ ( shd_rule @ S1 ) @ ( shd_rule @ S22 ) ) ) ).

% smap2.simps(1)
thf(fact_837_positive__imp__inverse__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_838_negative__imp__inverse__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_839_inverse__positive__imp__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_840_inverse__negative__imp__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_841_less__imp__inverse__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_842_inverse__less__imp__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_843_less__imp__inverse__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_844_inverse__less__imp__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_845_smap2__alt,axiom,
    ! [F: rule > rule > rule,S1: stream_rule,S22: stream_rule,S: stream_rule] :
      ( ( ( smap2_rule_rule_rule @ F @ S1 @ S22 )
        = S )
      = ( ! [N3: nat] :
            ( ( F @ ( snth_rule @ S1 @ N3 ) @ ( snth_rule @ S22 @ N3 ) )
            = ( snth_rule @ S @ N3 ) ) ) ) ).

% smap2_alt
thf(fact_846_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A5: int,B4: int] : ( ord_less_eq_int @ ( minus_minus_int @ A5 @ B4 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_847_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A5: real,B4: real] : ( ord_less_eq_real @ ( minus_minus_real @ A5 @ B4 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_848_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A5: int,B4: int] : ( ord_less_int @ ( minus_minus_int @ A5 @ B4 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_849_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A5: real,B4: real] : ( ord_less_real @ ( minus_minus_real @ A5 @ B4 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_850_diff__less,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ) ) ).

% diff_less
thf(fact_851_diff__less__Suc,axiom,
    ! [M: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_852_Suc__diff__Suc,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N2 ) ) )
        = ( minus_minus_nat @ M @ N2 ) ) ) ).

% Suc_diff_Suc
thf(fact_853_Suc__diff__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
        = ( suc @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Suc_diff_le
thf(fact_854_less__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_nat @ M @ N2 ) ) ) ) ).

% less_diff_iff
thf(fact_855_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_856_int__zle__neg,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N2 = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_857_int__cases,axiom,
    ! [Z3: int] :
      ( ! [N: nat] :
          ( Z3
         != ( semiri1314217659103216013at_int @ N ) )
     => ~ ! [N: nat] :
            ( Z3
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ).

% int_cases
thf(fact_858_int__of__nat__induct,axiom,
    ! [P: int > $o,Z3: int] :
      ( ! [N: nat] : ( P @ ( semiri1314217659103216013at_int @ N ) )
     => ( ! [N: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) )
       => ( P @ Z3 ) ) ) ).

% int_of_nat_induct
thf(fact_859_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% nonpos_int_cases
thf(fact_860_negative__zle__0,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_861_le__imp__inverse__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_862_inverse__le__imp__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_863_le__imp__inverse__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_864_inverse__le__imp__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_865_diff__Suc__less,axiom,
    ! [N2: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).

% diff_Suc_less
thf(fact_866_int__cases4,axiom,
    ! [M: int] :
      ( ! [N: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N ) )
     => ~ ! [N: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% int_cases4
thf(fact_867_not__zle__0__negative,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ).

% not_zle_0_negative
thf(fact_868_minWait__least,axiom,
    ! [N2: nat,Rs: stream_rule,S: produc6018962875968178549ist_fm] :
      ( ( abstra1707737187183579335ist_fm @ eff @ ( shd_rule @ ( sdrop_rule @ N2 @ Rs ) ) @ S )
     => ( ord_less_eq_nat @ ( abstra1963046427795717555ist_fm @ eff @ Rs @ S ) @ N2 ) ) ).

% minWait_least
thf(fact_869_reals__Archimedean,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ X ) ) ).

% reals_Archimedean
thf(fact_870_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N ) )
       => ~ ! [N: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ) ).

% int_cases3
thf(fact_871_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ).

% negD
thf(fact_872_negative__zless__0,axiom,
    ! [N2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_873_stake__pos__minWait,axiom,
    ! [Rs: stream_rule,S: produc6018962875968178549ist_fm,R: rule] :
      ( ( abstra3799686578551160190r_rule @ rules @ Rs )
     => ( ( ord_less_nat @ ( abstra1963046427795717555ist_fm @ eff @ Rs @ S ) @ ( abstract_pos_rule @ Rs @ R ) )
       => ( ( member_rule @ R @ ( sset_rule @ rules ) )
         => ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
           => ( ( abstract_pos_rule @ ( stl_rule @ ( abstra7806236140005899928ist_fm @ eff @ Rs @ S ) ) @ R )
              = ( minus_minus_nat @ ( abstract_pos_rule @ Rs @ R ) @ ( suc @ ( abstra1963046427795717555ist_fm @ eff @ Rs @ S ) ) ) ) ) ) ) ) ).

% stake_pos_minWait
thf(fact_874_minWait__ex,axiom,
    ! [S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
     => ( ( abstra3799686578551160190r_rule @ rules @ Rs )
       => ? [N: nat] : ( abstra1707737187183579335ist_fm @ eff @ ( shd_rule @ ( sdrop_rule @ N @ Rs ) ) @ S ) ) ) ).

% minWait_ex
thf(fact_875_trim__alt,axiom,
    ! [S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
     => ( ( abstra3799686578551160190r_rule @ rules @ Rs )
       => ( ( abstra7806236140005899928ist_fm @ eff @ Rs @ S )
          = ( sdrop_rule @ ( abstra1963046427795717555ist_fm @ eff @ Rs @ S ) @ Rs ) ) ) ) ).

% trim_alt
thf(fact_876_top__greatest,axiom,
    ! [A: set_Pr5202636777678657877ist_fm] : ( ord_le1771420097867575541ist_fm @ A @ top_to1730629564055774885ist_fm ) ).

% top_greatest
thf(fact_877_top_Oextremum__unique,axiom,
    ! [A: set_Pr5202636777678657877ist_fm] :
      ( ( ord_le1771420097867575541ist_fm @ top_to1730629564055774885ist_fm @ A )
      = ( A = top_to1730629564055774885ist_fm ) ) ).

% top.extremum_unique
thf(fact_878_top_Oextremum__uniqueI,axiom,
    ! [A: set_Pr5202636777678657877ist_fm] :
      ( ( ord_le1771420097867575541ist_fm @ top_to1730629564055774885ist_fm @ A )
     => ( A = top_to1730629564055774885ist_fm ) ) ).

% top.extremum_uniqueI
thf(fact_879_top_Onot__eq__extremum,axiom,
    ! [A: set_Pr5202636777678657877ist_fm] :
      ( ( A != top_to1730629564055774885ist_fm )
      = ( ord_le9141428925376846849ist_fm @ A @ top_to1730629564055774885ist_fm ) ) ).

% top.not_eq_extremum
thf(fact_880_top_Oextremum__strict,axiom,
    ! [A: set_Pr5202636777678657877ist_fm] :
      ~ ( ord_le9141428925376846849ist_fm @ top_to1730629564055774885ist_fm @ A ) ).

% top.extremum_strict
thf(fact_881_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_882_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_883_RuleSystem__axioms,axiom,
    abstra5221733350967904376ist_fm @ eff @ rules @ top_to1730629564055774885ist_fm ).

% RuleSystem_axioms
thf(fact_884_enabled__R,axiom,
    ! [S: produc6018962875968178549ist_fm] :
      ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
     => ? [X2: rule] :
          ( ( member_rule @ X2 @ ( sset_rule @ rules ) )
          & ? [X_1: fset_P8989946509869081563ist_fm] : ( eff @ X2 @ S @ X_1 ) ) ) ).

% enabled_R
thf(fact_885_trim__fair,axiom,
    ! [S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
     => ( ( abstra3799686578551160190r_rule @ rules @ Rs )
       => ( abstra3799686578551160190r_rule @ rules @ ( abstra7806236140005899928ist_fm @ eff @ Rs @ S ) ) ) ) ).

% trim_fair
thf(fact_886_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_887_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_888_trim__in__R,axiom,
    ! [S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
     => ( ( abstra3799686578551160190r_rule @ rules @ Rs )
       => ( member_rule @ ( shd_rule @ ( abstra7806236140005899928ist_fm @ eff @ Rs @ S ) ) @ ( sset_rule @ rules ) ) ) ) ).

% trim_in_R
thf(fact_889_trim__enabled,axiom,
    ! [S: produc6018962875968178549ist_fm,Rs: stream_rule] :
      ( ( member4699826688122452638ist_fm @ S @ top_to1730629564055774885ist_fm )
     => ( ( abstra3799686578551160190r_rule @ rules @ Rs )
       => ( abstra1707737187183579335ist_fm @ eff @ ( shd_rule @ ( abstra7806236140005899928ist_fm @ eff @ Rs @ S ) ) @ S ) ) ) ).

% trim_enabled
thf(fact_890_all__rules__persistent,axiom,
    ! [R4: rule] :
      ( ( member_rule @ R4 @ ( sset_rule @ rules ) )
     => ( abstra5255361903751151037ist_fm @ eff @ rules @ top_to1730629564055774885ist_fm @ R4 ) ) ).

% all_rules_persistent
thf(fact_891_per,axiom,
    ! [R: rule] :
      ( ( member_rule @ R @ ( sset_rule @ rules ) )
     => ( abstra5255361903751151037ist_fm @ eff @ rules @ top_to1730629564055774885ist_fm @ R ) ) ).

% per
thf(fact_892_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A3: real,B2: real,C2: real] :
            ( ( P @ A3 @ B2 )
           => ( ( P @ B2 @ C2 )
             => ( ( ord_less_eq_real @ A3 @ B2 )
               => ( ( ord_less_eq_real @ B2 @ C2 )
                 => ( P @ A3 @ C2 ) ) ) ) )
       => ( ! [X2: real] :
              ( ( ord_less_eq_real @ A @ X2 )
             => ( ( ord_less_eq_real @ X2 @ B )
               => ? [D: real] :
                    ( ( ord_less_real @ zero_zero_real @ D )
                    & ! [A3: real,B2: real] :
                        ( ( ( ord_less_eq_real @ A3 @ X2 )
                          & ( ord_less_eq_real @ X2 @ B2 )
                          & ( ord_less_real @ ( minus_minus_real @ B2 @ A3 ) @ D ) )
                       => ( P @ A3 @ B2 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_893_PersistentRuleSystem__axioms,axiom,
    abstra3967921542344661089ist_fm @ eff @ rules @ top_to1730629564055774885ist_fm ).

% PersistentRuleSystem_axioms
thf(fact_894_RuleSystem_Oper_Ocong,axiom,
    abstra5255361903751151037ist_fm = abstra5255361903751151037ist_fm ).

% RuleSystem.per.cong
thf(fact_895_PersistentRuleSystem_Oper,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm,R: rule] :
      ( ( abstra3967921542344661089ist_fm @ Eff @ Rules @ S4 )
     => ( ( member_rule @ R @ ( sset_rule @ Rules ) )
       => ( abstra5255361903751151037ist_fm @ Eff @ Rules @ S4 @ R ) ) ) ).

% PersistentRuleSystem.per
thf(fact_896_PersistentRuleSystem_Oaxioms_I1_J,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm] :
      ( ( abstra3967921542344661089ist_fm @ Eff @ Rules @ S4 )
     => ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 ) ) ).

% PersistentRuleSystem.axioms(1)
thf(fact_897_PersistentRuleSystem_Ointro,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm] :
      ( ( abstra5221733350967904376ist_fm @ Eff @ Rules @ S4 )
     => ( ( abstra9069655090277518462ist_fm @ Eff @ Rules @ S4 )
       => ( abstra3967921542344661089ist_fm @ Eff @ Rules @ S4 ) ) ) ).

% PersistentRuleSystem.intro
thf(fact_898_PersistentRuleSystem__def,axiom,
    ( abstra3967921542344661089ist_fm
    = ( ^ [Eff2: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules2: stream_rule,S5: set_Pr5202636777678657877ist_fm] :
          ( ( abstra5221733350967904376ist_fm @ Eff2 @ Rules2 @ S5 )
          & ( abstra9069655090277518462ist_fm @ Eff2 @ Rules2 @ S5 ) ) ) ) ).

% PersistentRuleSystem_def
thf(fact_899_PersistentRuleSystem__axioms_Ointro,axiom,
    ! [Rules: stream_rule,Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,S4: set_Pr5202636777678657877ist_fm] :
      ( ! [R5: rule] :
          ( ( member_rule @ R5 @ ( sset_rule @ Rules ) )
         => ( abstra5255361903751151037ist_fm @ Eff @ Rules @ S4 @ R5 ) )
     => ( abstra9069655090277518462ist_fm @ Eff @ Rules @ S4 ) ) ).

% PersistentRuleSystem_axioms.intro
thf(fact_900_PersistentRuleSystem__axioms__def,axiom,
    ( abstra9069655090277518462ist_fm
    = ( ^ [Eff2: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules2: stream_rule,S5: set_Pr5202636777678657877ist_fm] :
        ! [R3: rule] :
          ( ( member_rule @ R3 @ ( sset_rule @ Rules2 ) )
         => ( abstra5255361903751151037ist_fm @ Eff2 @ Rules2 @ S5 @ R3 ) ) ) ) ).

% PersistentRuleSystem_axioms_def
thf(fact_901_PersistentRuleSystem_Oaxioms_I2_J,axiom,
    ! [Eff: rule > produc6018962875968178549ist_fm > fset_P8989946509869081563ist_fm > $o,Rules: stream_rule,S4: set_Pr5202636777678657877ist_fm] :
      ( ( abstra3967921542344661089ist_fm @ Eff @ Rules @ S4 )
     => ( abstra9069655090277518462ist_fm @ Eff @ Rules @ S4 ) ) ).

% PersistentRuleSystem.axioms(2)
thf(fact_902_prod__decode__aux_Oelims,axiom,
    ! [X: nat,Xa2: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa2 )
        = Y )
     => ( ( ( ord_less_eq_nat @ Xa2 @ X )
         => ( Y
            = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa2 @ X )
         => ( Y
            = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_903_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K3: nat,M3: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M3 @ K3 ) @ ( product_Pair_nat_nat @ M3 @ ( minus_minus_nat @ K3 @ M3 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus_nat @ M3 @ ( suc @ K3 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_904_Suc__diff__1,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
        = N2 ) ) ).

% Suc_diff_1
thf(fact_905_real__archimedian__rdiv__eq__0,axiom,
    ! [X: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M5: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M5 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M5 ) @ X ) @ C ) )
         => ( X = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_906_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_907_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_908_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_909_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_910_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_911_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_912_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_913_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_914_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_915_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_916_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_917_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_918_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_919_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_920_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_921_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_922_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_923_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_924_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_925_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_926_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_927_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_mult
thf(fact_928_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_mult
thf(fact_929_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% of_nat_mult
thf(fact_930_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_931_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_932_inverse__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( inverse_inverse_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_933_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_934_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_935_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_936_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_937_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_938_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_939_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_940_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_941_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_942_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_943_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_944_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_945_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_946_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_947_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_948_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_949_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N2 )
        = one_one_nat )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_950_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ N2 )
        = one_one_int )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_951_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ N2 )
        = one_one_real )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_952_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_953_diff__Suc__1,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
      = N2 ) ).

% diff_Suc_1
thf(fact_954_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_955_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_956_left__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% left_inverse
thf(fact_957_right__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
        = one_one_real ) ) ).

% right_inverse
thf(fact_958_less__1__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N2 )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_959_less__1__mult,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N2 )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_960_less__1__mult,axiom,
    ! [M: real,N2: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N2 )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_961_field__class_Ofield__inverse,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
        = one_one_real ) ) ).

% field_class.field_inverse
thf(fact_962_square__eq__1__iff,axiom,
    ! [X: int] :
      ( ( ( times_times_int @ X @ X )
        = one_one_int )
      = ( ( X = one_one_int )
        | ( X
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_963_square__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( times_times_real @ X @ X )
        = one_one_real )
      = ( ( X = one_one_real )
        | ( X
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% square_eq_1_iff
thf(fact_964_inverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = one_one_real )
     => ( ( inverse_inverse_real @ A )
        = B ) ) ).

% inverse_unique
thf(fact_965_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_966_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_967_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_968_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_969_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_970_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_971_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_972_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_973_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_974_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_975_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_976_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_977_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_978_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_979_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_980_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_981_square__eq__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ A )
        = ( times_times_real @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% square_eq_iff
thf(fact_982_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_983_minus__mult__commute,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_mult_commute
thf(fact_984_mult__of__nat__commute,axiom,
    ! [X: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_985_mult__of__nat__commute,axiom,
    ! [X: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_986_mult__of__nat__commute,axiom,
    ! [X: nat,Y: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
      = ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_987_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_988_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_989_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_990_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_991_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_992_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_993_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y: real,X: real] :
      ( ( ( times_times_real @ Y @ X )
        = ( times_times_real @ X @ Y ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y ) @ X )
        = ( times_times_real @ X @ ( inverse_inverse_real @ Y ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_994_prod__decode__aux_Ocases,axiom,
    ! [X: product_prod_nat_nat] :
      ~ ! [K2: nat,M5: nat] :
          ( X
         != ( product_Pair_nat_nat @ K2 @ M5 ) ) ).

% prod_decode_aux.cases
thf(fact_995_field__le__mult__one__interval,axiom,
    ! [X: real,Y: real] :
      ( ! [Z2: real] :
          ( ( ord_less_real @ zero_zero_real @ Z2 )
         => ( ( ord_less_real @ Z2 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ Y ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_996_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_997_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_998_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_999_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_1000_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_1001_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_1002_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_1003_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_1004_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_1005_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_1006_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_1007_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_1008_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_1009_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_1010_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1011_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1012_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1013_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1014_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1015_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1016_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1017_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1018_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_1019_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_1020_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_1021_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_1022_inf__period_I1_J,axiom,
    ! [P: real > $o,D5: real,Q: real > $o] :
      ( ! [X2: real,K2: real] :
          ( ( P @ X2 )
          = ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D5 ) ) ) )
     => ( ! [X2: real,K2: real] :
            ( ( Q @ X2 )
            = ( Q @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D5 ) ) ) )
       => ! [X3: real,K4: real] :
            ( ( ( P @ X3 )
              & ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D5 ) ) )
              & ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_1023_inf__period_I1_J,axiom,
    ! [P: int > $o,D5: int,Q: int > $o] :
      ( ! [X2: int,K2: int] :
          ( ( P @ X2 )
          = ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D5 ) ) ) )
     => ( ! [X2: int,K2: int] :
            ( ( Q @ X2 )
            = ( Q @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D5 ) ) ) )
       => ! [X3: int,K4: int] :
            ( ( ( P @ X3 )
              & ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D5 ) ) )
              & ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_1024_inf__period_I2_J,axiom,
    ! [P: real > $o,D5: real,Q: real > $o] :
      ( ! [X2: real,K2: real] :
          ( ( P @ X2 )
          = ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D5 ) ) ) )
     => ( ! [X2: real,K2: real] :
            ( ( Q @ X2 )
            = ( Q @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D5 ) ) ) )
       => ! [X3: real,K4: real] :
            ( ( ( P @ X3 )
              | ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D5 ) ) )
              | ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1025_inf__period_I2_J,axiom,
    ! [P: int > $o,D5: int,Q: int > $o] :
      ( ! [X2: int,K2: int] :
          ( ( P @ X2 )
          = ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D5 ) ) ) )
     => ( ! [X2: int,K2: int] :
            ( ( Q @ X2 )
            = ( Q @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D5 ) ) ) )
       => ! [X3: int,K4: int] :
            ( ( ( P @ X3 )
              | ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D5 ) ) )
              | ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1026_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_1027_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_1028_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_1029_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_1030_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_1031_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_1032_mult__right__le__one__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_1033_mult__right__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_1034_mult__left__le__one__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_1035_mult__left__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_1036_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1037_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1038_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1039_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1040_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1041_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1042_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1043_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1044_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1045_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1046_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1047_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1048_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1049_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1050_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1051_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1052_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1053_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_1054_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_1055_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_1056_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1057_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_1058_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1059_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1060_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1061_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1062_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1063_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1064_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1065_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1066_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1067_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1068_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1069_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1070_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1071_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_1072_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_1073_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_1074_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D4: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D4 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D4 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1075_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D4: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D4 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D4 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1076_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D4: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D4 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1077_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D4: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D4 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D4 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1078_mult__mono,axiom,
    ! [A: int,B: int,C: int,D4: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D4 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D4 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1079_mult__mono,axiom,
    ! [A: real,B: real,C: real,D4: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D4 ) ) ) ) ) ) ).

% mult_mono
thf(fact_1080_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1081_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1082_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1083_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1084_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1085_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1086_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1087_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1088_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1089_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1090_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1091_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1092_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1093_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1094_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1095_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1096_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1097_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1098_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1099_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1100_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1101_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1102_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1103_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1104_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1105_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1106_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1107_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1108_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1109_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1110_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y3: real] :
        ? [N: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) ) ).

% reals_Archimedean3
thf(fact_1111_nat__induct__non__zero,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( P @ one_one_nat )
       => ( ! [N: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N )
             => ( ( P @ N )
               => ( P @ ( suc @ N ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1112_Suc__pred_H,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( N2
        = ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1113_Suc__diff__eq__diff__pred,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1114_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_1115_mult__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1116_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1117_mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1118_mult__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N2 @ K ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1119_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1120_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1121_mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1122_one__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1123_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% mult_less_cancel2
thf(fact_1124_nat__0__less__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1125_one__le__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) ) ).

% one_le_mult_iff
thf(fact_1126_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% mult_le_cancel2
thf(fact_1127_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N2 )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N2 = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_1128_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_1129_mult__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1130_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( M = N2 ) ) ).

% Suc_mult_cancel1
thf(fact_1131_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_1132_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_1133_nat__mult__1__right,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ N2 @ one_one_nat )
      = N2 ) ).

% nat_mult_1_right
thf(fact_1134_nat__mult__1,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ one_one_nat @ N2 )
      = N2 ) ).

% nat_mult_1
thf(fact_1135_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% diff_mult_distrib2
thf(fact_1136_diff__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% diff_mult_distrib
thf(fact_1137_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_1138_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_1139_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1140_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1141_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1142_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1143_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1144_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_mult_less_cancel1
thf(fact_1145_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% Suc_mult_le_cancel1
thf(fact_1146_mult__eq__self__implies__10,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( times_times_nat @ M @ N2 ) )
     => ( ( N2 = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1147_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_1148_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_1149_n__less__n__mult__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N2 @ ( times_times_nat @ N2 @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_1150_n__less__m__mult__n,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% n_less_m_mult_n
thf(fact_1151_one__less__mult,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% one_less_mult
thf(fact_1152_minusinfinity,axiom,
    ! [D4: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ! [X2: int,K2: int] :
            ( ( P1 @ X2 )
            = ( P1 @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D4 ) ) ) )
       => ( ? [Z: int] :
            ! [X2: int] :
              ( ( ord_less_int @ X2 @ Z )
             => ( ( P @ X2 )
                = ( P1 @ X2 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_1153_plusinfinity,axiom,
    ! [D4: int,P2: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ! [X2: int,K2: int] :
            ( ( P2 @ X2 )
            = ( P2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D4 ) ) ) )
       => ( ? [Z: int] :
            ! [X2: int] :
              ( ( ord_less_int @ Z @ X2 )
             => ( ( P @ X2 )
                = ( P2 @ X2 ) ) )
         => ( ? [X_12: int] : ( P2 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_1154_int__one__le__iff__zero__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z3 )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% int_one_le_iff_zero_less
thf(fact_1155_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_1156_decr__mult__lemma,axiom,
    ! [D4: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ! [X2: int] :
            ( ( P @ X2 )
           => ( P @ ( minus_minus_int @ X2 @ D4 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X3: int] :
              ( ( P @ X3 )
             => ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_1157_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1158_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1159_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1160_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( M = N2 ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1161_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N2 ) )
        = ( M = N2 ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_1162_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel1
thf(fact_1163_nat__ivt__aux,axiom,
    ! [N2: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N2 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
              & ( ( F @ I2 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_1164_zabs__less__one__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z3 ) @ one_one_int )
      = ( Z3 = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_1165_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I3: int] : ( if_int @ ( ord_less_int @ I3 @ zero_zero_int ) @ ( uminus_uminus_int @ I3 ) @ I3 ) ) ) ).

% zabs_def
thf(fact_1166_nat__intermed__int__val,axiom,
    ! [M: nat,N2: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ( ord_less_eq_nat @ M @ I2 )
            & ( ord_less_nat @ I2 @ N2 ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
           => ? [I2: nat] :
                ( ( ord_less_eq_nat @ M @ I2 )
                & ( ord_less_eq_nat @ I2 @ N2 )
                & ( ( F @ I2 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_1167_nat0__intermed__int__val,axiom,
    ! [N2: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N2 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
              & ( ( F @ I2 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_1168_decr__lemma,axiom,
    ! [D4: int,X: int,Z3: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z3 ) ) @ one_one_int ) @ D4 ) ) @ Z3 ) ) ).

% decr_lemma
thf(fact_1169_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1170_add__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N2 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1171_add__Suc__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N2 ) )
      = ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% add_Suc_right
thf(fact_1172_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_less
thf(fact_1173_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_le
thf(fact_1174_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1175_add__gr__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% add_gr_0
thf(fact_1176_mult__Suc__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ M @ ( suc @ N2 ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N2 ) ) ) ).

% mult_Suc_right
thf(fact_1177_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1178_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1179_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1180_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1181_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1182_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A5: real] : ( if_real @ ( ord_less_real @ A5 @ zero_zero_real ) @ ( uminus_uminus_real @ A5 ) @ A5 ) ) ) ).

% abs_real_def
thf(fact_1183_odd__nonzero,axiom,
    ! [Z3: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1184_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% add_mult_distrib2
thf(fact_1185_add__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N2 ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% add_mult_distrib
thf(fact_1186_one__is__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N2 ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1187_add__is__1,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1188_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1189_less__imp__Suc__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ? [K2: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1190_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M3 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1191_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_1192_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_1193_less__natE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ~ ! [Q3: nat] :
            ( N2
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_1194_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M5: nat,N: nat] :
          ( ( ord_less_nat @ M5 @ N )
         => ( ord_less_nat @ ( F @ M5 ) @ ( F @ N ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1195_diff__add__0,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1196_mult__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N2 )
      = ( plus_plus_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ).

% mult_Suc
thf(fact_1197_add__diff__inverse__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ~ ( ord_less_nat @ M @ N2 )
     => ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M @ N2 ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1198_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1199_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1200_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1201_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1202_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1203_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1204_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1205_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1206_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1207_add__leE,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ~ ( ( ord_less_eq_nat @ M @ N2 )
         => ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).

% add_leE
thf(fact_1208_le__add1,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) ) ).

% le_add1
thf(fact_1209_le__add2,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ).

% le_add2
thf(fact_1210_add__leD1,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% add_leD1
thf(fact_1211_add__leD2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ K @ N2 ) ) ).

% add_leD2
thf(fact_1212_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N: nat] :
          ( L
          = ( plus_plus_nat @ K @ N ) ) ) ).

% le_Suc_ex
thf(fact_1213_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_1214_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_1215_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_1216_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_1217_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( plus_plus_nat @ M3 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1218_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% Nat.diff_cancel
thf(fact_1219_diff__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_cancel2
thf(fact_1220_diff__add__inverse,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M ) @ N2 )
      = M ) ).

% diff_add_inverse
thf(fact_1221_diff__add__inverse2,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ N2 )
      = M ) ).

% diff_add_inverse2
thf(fact_1222_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1223_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1224_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_1225_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_1226_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_1227_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_1228_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_1229_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_1230_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_1231_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% less_add_eq_less
thf(fact_1232_add__Suc__shift,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N2 )
      = ( plus_plus_nat @ M @ ( suc @ N2 ) ) ) ).

% add_Suc_shift
thf(fact_1233_add__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N2 )
      = ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% add_Suc
thf(fact_1234_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1235_add__eq__self__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = M )
     => ( N2 = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1236_plus__nat_Oadd__0,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% plus_nat.add_0
thf(fact_1237_int__plus,axiom,
    ! [N2: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_1238_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1239_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D6: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D6 ) )
           => ( P @ D6 ) ) ) ) ).

% nat_diff_split
thf(fact_1240_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D6: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D6 ) )
                & ~ ( P @ D6 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1241_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1242_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1243_int__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1244_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z5: int] :
        ? [N3: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1245_odd__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 ) @ zero_zero_int )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1246_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_1247_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1248_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_less_add_iff1
thf(fact_1249_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% mult_eq_if
thf(fact_1250_le__imp__0__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z3 ) ) ) ).

% le_imp_0_less
thf(fact_1251_incr__mult__lemma,axiom,
    ! [D4: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ! [X2: int] :
            ( ( P @ X2 )
           => ( P @ ( plus_plus_int @ X2 @ D4 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X3: int] :
              ( ( P @ X3 )
             => ( P @ ( plus_plus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_1252_incr__lemma,axiom,
    ! [D4: int,Z3: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ord_less_int @ Z3 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z3 ) ) @ one_one_int ) @ D4 ) ) ) ) ).

% incr_lemma
thf(fact_1253_lemma__interval,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [Y3: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y3 ) ) @ D3 )
               => ( ( ord_less_eq_real @ A @ Y3 )
                  & ( ord_less_eq_real @ Y3 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_1254_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_1255_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1256_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_1257_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_1258_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1259_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_1260_lemma__interval__lt,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ! [Y3: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y3 ) ) @ D3 )
               => ( ( ord_less_real @ A @ Y3 )
                  & ( ord_less_real @ Y3 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_1261_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( P @ A3 @ B2 )
          = ( P @ B2 @ A3 ) )
     => ( ! [A3: nat] : ( P @ A3 @ zero_zero_nat )
       => ( ! [A3: nat,B2: nat] :
              ( ( P @ A3 @ B2 )
             => ( P @ A3 @ ( plus_plus_nat @ A3 @ B2 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_1262_triangle__Suc,axiom,
    ! [N2: nat] :
      ( ( nat_triangle @ ( suc @ N2 ) )
      = ( plus_plus_nat @ ( nat_triangle @ N2 ) @ ( suc @ N2 ) ) ) ).

% triangle_Suc
thf(fact_1263_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_1264_linear__plus__1__le__power,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N2 ) ) ) ).

% linear_plus_1_le_power

% Helper facts (11)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Stream__Ostream_It__Prover__Orule_J_T,axiom,
    ! [X: stream_rule,Y: stream_rule] :
      ( ( if_stream_rule @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Stream__Ostream_It__Prover__Orule_J_T,axiom,
    ! [X: stream_rule,Y: stream_rule] :
      ( ( if_stream_rule @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    abstra3799686578551160190r_rule @ rules @ rules ).

%------------------------------------------------------------------------------