TPTP Problem File: SLH0817^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Prefix_Free_Code_Combinators/0000_Prefix_Free_Code_Combinators/prob_00469_015979__11939808_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1361 ( 900 unt; 86 typ; 0 def)
% Number of atoms : 2932 (1421 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 8440 ( 173 ~; 61 |; 94 &;7349 @)
% ( 0 <=>; 763 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Number of types : 10 ( 9 usr)
% Number of type conns : 168 ( 168 >; 0 *; 0 +; 0 <<)
% Number of symbols : 80 ( 77 usr; 15 con; 0-3 aty)
% Number of variables : 2624 ( 119 ^;2477 !; 28 ?;2624 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 09:58:37.601
%------------------------------------------------------------------------------
% Could-be-implicit typings (9)
thf(ty_n_t__Set__Oset_It__Extended____Real__Oereal_J,type,
set_Extended_ereal: $tType ).
thf(ty_n_t__Option__Ooption_It__List__Olist_I_Eo_J_J,type,
option_list_o: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Extended____Real__Oereal,type,
extended_ereal: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (77)
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
archim6058952711729229775r_real: real > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
bit_se1409905431419307370or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
bit_se1412395901928357646or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
bit_se6526347334894502574or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
bit_se6528837805403552850or_nat: nat > nat > nat ).
thf(sy_c_Extended__Real_Oereal_Oereal,type,
extended_ereal2: real > extended_ereal ).
thf(sy_c_Extended__Real_Oereal__of__enat,type,
extend916958517839893267f_enat: extended_enat > extended_ereal ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Extended____Real__Oereal,type,
abs_ab7465543570706387889_ereal: extended_ereal > extended_ereal ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
abs_abs_real: real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Real__Oereal,type,
one_on4623092294121504201_ereal: extended_ereal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Real__Oereal,type,
plus_p7876563987511257093_ereal: extended_ereal > extended_ereal > extended_ereal ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Real__Oereal,type,
times_7703590493115627913_ereal: extended_ereal > extended_ereal > extended_ereal ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Real__Oereal,type,
zero_z2744965634713055877_ereal: extended_ereal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
ring_1_of_int_int: int > int ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
semiri4216267220026989637d_enat: nat > extended_enat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Real__Oereal,type,
numera1204434989813589363_ereal: num > extended_ereal ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Real__Oereal,type,
ord_le1188267648640031866_ereal: extended_ereal > extended_ereal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Real__Oereal,type,
ord_le1083603963089353582_ereal: extended_ereal > extended_ereal > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Prefix__Free__Code__Combinators_OI_092_060_094sub_062e,type,
prefix_Free_Code_I_e: int > option_list_o ).
thf(sy_c_Prefix__Free__Code__Combinators_ON_092_060_094sub_062e,type,
prefix_Free_Code_N_e: nat > option_list_o ).
thf(sy_c_Prefix__Free__Code__Combinators_ONg_092_060_094sub_062e,type,
prefix1649127329469935890e_Ng_e: nat > option_list_o ).
thf(sy_c_Prefix__Free__Code__Combinators_Obit__count,type,
prefix3213528784805800034_count: option_list_o > extended_ereal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Real__Oereal,type,
divide8893690120176169980_ereal: extended_ereal > extended_ereal > extended_ereal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_member_001t__Extended____Real__Oereal,type,
member2350847679896131959_ereal: extended_ereal > set_Extended_ereal > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_n,type,
n: int ).
thf(sy_v_r,type,
r: int ).
% Relevant facts (1271)
thf(fact_0__092_060open_062real__of__int_A_092_060lfloor_062log_A2_A_092_060bar_062real__of__int_An_092_060bar_062_092_060rfloor_062_A_092_060le_062_Alog_A2_A_Ireal__of__int_Ar_A_L_A1_J_092_060close_062,axiom,
ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( ring_1_of_int_real @ r ) @ one_one_real ) ) ).
% \<open>real_of_int \<lfloor>log 2 \<bar>real_of_int n\<bar>\<rfloor> \<le> log 2 (real_of_int r + 1)\<close>
thf(fact_1__092_060open_062log_A2_A_092_060bar_062real__of__int_An_092_060bar_062_A_092_060le_062_Alog_A2_A_Ireal__of__int_Ar_A_L_A1_J_092_060close_062,axiom,
ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( ring_1_of_int_real @ r ) @ one_one_real ) ) ).
% \<open>log 2 \<bar>real_of_int n\<bar> \<le> log 2 (real_of_int r + 1)\<close>
thf(fact_2__092_060open_062real__of__int_A_092_060lfloor_062log_A2_A_092_060bar_062real__of__int_An_092_060bar_062_092_060rfloor_062_A_092_060le_062_Alog_A2_A_092_060bar_062real__of__int_An_092_060bar_062_092_060close_062,axiom,
ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) ).
% \<open>real_of_int \<lfloor>log 2 \<bar>real_of_int n\<bar>\<rfloor> \<le> log 2 \<bar>real_of_int n\<bar>\<close>
thf(fact_3_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_4_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_5_one__add__one,axiom,
( ( plus_p7876563987511257093_ereal @ one_on4623092294121504201_ereal @ one_on4623092294121504201_ereal )
= ( numera1204434989813589363_ereal @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_6_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_7_one__add__one,axiom,
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_8_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_9_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_10_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_11_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_12_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_13_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_14_numeral__plus__one,axiom,
! [N: num] :
( ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ N ) @ one_on4623092294121504201_ereal )
= ( numera1204434989813589363_ereal @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_15_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_16_numeral__plus__one,axiom,
! [N: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_17_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_18_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_19_one__plus__numeral,axiom,
! [N: num] :
( ( plus_p7876563987511257093_ereal @ one_on4623092294121504201_ereal @ ( numera1204434989813589363_ereal @ N ) )
= ( numera1204434989813589363_ereal @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_20_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_21_one__plus__numeral,axiom,
! [N: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_22_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_23_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_24_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_25_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_26_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_add
thf(fact_27_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_add
thf(fact_28_of__int__1,axiom,
( ( ring_1_of_int_real @ one_one_int )
= one_one_real ) ).
% of_int_1
thf(fact_29_of__int__1,axiom,
( ( ring_1_of_int_int @ one_one_int )
= one_one_int ) ).
% of_int_1
thf(fact_30_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_real @ Z )
= one_one_real )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_31_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_int @ Z )
= one_one_int )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_32_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_33_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_34_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_35_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_36_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_37_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_38_of__int__eq__iff,axiom,
! [W: int,Z: int] :
( ( ( ring_1_of_int_real @ W )
= ( ring_1_of_int_real @ Z ) )
= ( W = Z ) ) ).
% of_int_eq_iff
thf(fact_39_of__int__eq__iff,axiom,
! [W: int,Z: int] :
( ( ( ring_1_of_int_int @ W )
= ( ring_1_of_int_int @ Z ) )
= ( W = Z ) ) ).
% of_int_eq_iff
thf(fact_40_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_41_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_42_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_43_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_44_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_45_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_46_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_47_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_48_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_numeral
thf(fact_49_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_numeral
thf(fact_50_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( times_times_int @ W @ Z ) )
= ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_mult
thf(fact_51_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( times_times_int @ W @ Z ) )
= ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_mult
thf(fact_52_of__int__abs,axiom,
! [X: int] :
( ( ring_1_of_int_real @ ( abs_abs_int @ X ) )
= ( abs_abs_real @ ( ring_1_of_int_real @ X ) ) ) ).
% of_int_abs
thf(fact_53_of__int__abs,axiom,
! [X: int] :
( ( ring_1_of_int_int @ ( abs_abs_int @ X ) )
= ( abs_abs_int @ ( ring_1_of_int_int @ X ) ) ) ).
% of_int_abs
thf(fact_54_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_55_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_56_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_57_distrib__right__numeral,axiom,
! [A: extended_enat,B: extended_enat,V: num] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( numera1916890842035813515d_enat @ V ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ V ) ) @ ( times_7803423173614009249d_enat @ B @ ( numera1916890842035813515d_enat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_58_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_59_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_60_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_61_distrib__left__numeral,axiom,
! [V: num,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ B ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_62_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_63_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_64_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_65_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_66_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_67_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_68_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_69_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera1916890842035813515d_enat @ N )
= one_on7984719198319812577d_enat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_70_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_71_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_72_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_real @ Z )
= ( numeral_numeral_real @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_73_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_int @ Z )
= ( numeral_numeral_int @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_74_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_real @ K ) ) ).
% of_int_numeral
thf(fact_75_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ K ) ) ).
% of_int_numeral
thf(fact_76_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_77_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_78_add__numeral__left,axiom,
! [V: num,W: num,Z: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ V ) @ ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ W ) @ Z ) )
= ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_79_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_80_add__numeral__left,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_81_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_82_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_83_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ M ) @ ( numera1204434989813589363_ereal @ N ) )
= ( numera1204434989813589363_ereal @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_84_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_85_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_86_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_87_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_88_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_89_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_90_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_91_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_92_assms,axiom,
ord_less_eq_int @ ( abs_abs_int @ n ) @ r ).
% assms
thf(fact_93_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_94_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_95_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_96_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq_num @ X @ one )
= ( X = one ) ) ).
% le_num_One_iff
thf(fact_97_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_98_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_99_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_100_le__numeral__extra_I4_J,axiom,
ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ).
% le_numeral_extra(4)
thf(fact_101_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_102_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_103_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_104_mult__of__int__commute,axiom,
! [X: int,Y: real] :
( ( times_times_real @ ( ring_1_of_int_real @ X ) @ Y )
= ( times_times_real @ Y @ ( ring_1_of_int_real @ X ) ) ) ).
% mult_of_int_commute
thf(fact_105_mult__of__int__commute,axiom,
! [X: int,Y: int] :
( ( times_times_int @ ( ring_1_of_int_int @ X ) @ Y )
= ( times_times_int @ Y @ ( ring_1_of_int_int @ X ) ) ) ).
% mult_of_int_commute
thf(fact_106_one__le__numeral,axiom,
! [N: num] : ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).
% one_le_numeral
thf(fact_107_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_108_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_109_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_110_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_111_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_112_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p7876563987511257093_ereal @ one_on4623092294121504201_ereal @ ( numera1204434989813589363_ereal @ X ) )
= ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ X ) @ one_on4623092294121504201_ereal ) ) ).
% one_plus_numeral_commute
thf(fact_113_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_114_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat ) ) ).
% one_plus_numeral_commute
thf(fact_115_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_116_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_117_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_118_mult__numeral__1__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_119_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_120_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_121_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_122_mult__numeral__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_123_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_124_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_125_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_126_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_127_numeral__Bit0,axiom,
! [N: num] :
( ( numera1204434989813589363_ereal @ ( bit0 @ N ) )
= ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ N ) @ ( numera1204434989813589363_ereal @ N ) ) ) ).
% numeral_Bit0
thf(fact_128_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_129_numeral__Bit0,axiom,
! [N: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ ( numera1916890842035813515d_enat @ N ) ) ) ).
% numeral_Bit0
thf(fact_130_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_131_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_132_numeral__One,axiom,
( ( numera1204434989813589363_ereal @ one )
= one_on4623092294121504201_ereal ) ).
% numeral_One
thf(fact_133_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_134_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_135_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one )
=> ( ! [X22: num] :
( Y
!= ( bit0 @ X22 ) )
=> ~ ! [X3: num] :
( Y
!= ( bit1 @ X3 ) ) ) ) ).
% num.exhaust
thf(fact_136_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit1 @ N ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).
% numeral_Bit1
thf(fact_137_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).
% numeral_Bit1
thf(fact_138_numeral__Bit1,axiom,
! [N: num] :
( ( numera1204434989813589363_ereal @ ( bit1 @ N ) )
= ( plus_p7876563987511257093_ereal @ ( plus_p7876563987511257093_ereal @ ( numera1204434989813589363_ereal @ N ) @ ( numera1204434989813589363_ereal @ N ) ) @ one_on4623092294121504201_ereal ) ) ).
% numeral_Bit1
thf(fact_139_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit1 @ N ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).
% numeral_Bit1
thf(fact_140_numeral__Bit1,axiom,
! [N: num] :
( ( numera1916890842035813515d_enat @ ( bit1 @ N ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ ( numera1916890842035813515d_enat @ N ) ) @ one_on7984719198319812577d_enat ) ) ).
% numeral_Bit1
thf(fact_141_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_142_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_143_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_144_left__add__twice,axiom,
! [A: extended_enat,B: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ A @ B ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_145_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_146_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_147_mult__2__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2_right
thf(fact_148_mult__2__right,axiom,
! [Z: extended_enat] :
( ( times_7803423173614009249d_enat @ Z @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_149_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_150_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_151_mult__2,axiom,
! [Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2
thf(fact_152_mult__2,axiom,
! [Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ Z )
= ( plus_p3455044024723400733d_enat @ Z @ Z ) ) ).
% mult_2
thf(fact_153_one__le__floor,axiom,
! [X: real] :
( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ).
% one_le_floor
thf(fact_154_numeral__le__floor,axiom,
! [V: num,X: real] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X ) ) ).
% numeral_le_floor
thf(fact_155_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_156_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).
% semiring_norm(4)
thf(fact_157_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_158_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_159_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_160_ereal__less__eq_I6_J,axiom,
! [R: real] :
( ( ord_le1083603963089353582_ereal @ ( extended_ereal2 @ R ) @ one_on4623092294121504201_ereal )
= ( ord_less_eq_real @ R @ one_one_real ) ) ).
% ereal_less_eq(6)
thf(fact_161_ereal__less__eq_I7_J,axiom,
! [R: real] :
( ( ord_le1083603963089353582_ereal @ one_on4623092294121504201_ereal @ ( extended_ereal2 @ R ) )
= ( ord_less_eq_real @ one_one_real @ R ) ) ).
% ereal_less_eq(7)
thf(fact_162_semiring__norm_I70_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).
% semiring_norm(70)
thf(fact_163_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(72)
thf(fact_164_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_165_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_166_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_167_ereal_Oinject,axiom,
! [X1: real,Y1: real] :
( ( ( extended_ereal2 @ X1 )
= ( extended_ereal2 @ Y1 ) )
= ( X1 = Y1 ) ) ).
% ereal.inject
thf(fact_168_ereal__cong,axiom,
! [X: real,Y: real] :
( ( X = Y )
=> ( ( extended_ereal2 @ X )
= ( extended_ereal2 @ Y ) ) ) ).
% ereal_cong
thf(fact_169_abs__ereal__one,axiom,
( ( abs_ab7465543570706387889_ereal @ one_on4623092294121504201_ereal )
= one_on4623092294121504201_ereal ) ).
% abs_ereal_one
thf(fact_170_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_171_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_172_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_173_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_174_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_175_semiring__norm_I84_J,axiom,
! [N: num] :
( one
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_176_ereal__1__times,axiom,
! [X: extended_ereal] :
( ( times_7703590493115627913_ereal @ ( extended_ereal2 @ one_one_real ) @ X )
= X ) ).
% ereal_1_times
thf(fact_177_times__ereal__1,axiom,
! [X: extended_ereal] :
( ( times_7703590493115627913_ereal @ X @ ( extended_ereal2 @ one_one_real ) )
= X ) ).
% times_ereal_1
thf(fact_178_numeral__eq__ereal,axiom,
( numera1204434989813589363_ereal
= ( ^ [W2: num] : ( extended_ereal2 @ ( numeral_numeral_real @ W2 ) ) ) ) ).
% numeral_eq_ereal
thf(fact_179_floor__of__int,axiom,
! [Z: int] :
( ( archim6058952711729229775r_real @ ( ring_1_of_int_real @ Z ) )
= Z ) ).
% floor_of_int
thf(fact_180_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_181_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_182_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_183_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_184_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_185_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_186_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(73)
thf(fact_187_floor__numeral,axiom,
! [V: num] :
( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% floor_numeral
thf(fact_188_ereal__less__eq_I3_J,axiom,
! [R: real,P2: real] :
( ( ord_le1083603963089353582_ereal @ ( extended_ereal2 @ R ) @ ( extended_ereal2 @ P2 ) )
= ( ord_less_eq_real @ R @ P2 ) ) ).
% ereal_less_eq(3)
thf(fact_189_floor__one,axiom,
( ( archim6058952711729229775r_real @ one_one_real )
= one_one_int ) ).
% floor_one
thf(fact_190_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_191_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_192_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_193_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_194_semiring__norm_I15_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).
% semiring_norm(15)
thf(fact_195_semiring__norm_I14_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).
% semiring_norm(14)
thf(fact_196_ereal__eq__1_I2_J,axiom,
! [R: real] :
( ( one_on4623092294121504201_ereal
= ( extended_ereal2 @ R ) )
= ( R = one_one_real ) ) ).
% ereal_eq_1(2)
thf(fact_197_ereal__eq__1_I1_J,axiom,
! [R: real] :
( ( ( extended_ereal2 @ R )
= one_on4623092294121504201_ereal )
= ( R = one_one_real ) ) ).
% ereal_eq_1(1)
thf(fact_198_ereal__plus__1_I2_J,axiom,
! [R: real] :
( ( plus_p7876563987511257093_ereal @ ( extended_ereal2 @ R ) @ one_on4623092294121504201_ereal )
= ( extended_ereal2 @ ( plus_plus_real @ R @ one_one_real ) ) ) ).
% ereal_plus_1(2)
thf(fact_199_ereal__plus__1_I1_J,axiom,
! [R: real] :
( ( plus_p7876563987511257093_ereal @ one_on4623092294121504201_ereal @ ( extended_ereal2 @ R ) )
= ( extended_ereal2 @ ( plus_plus_real @ R @ one_one_real ) ) ) ).
% ereal_plus_1(1)
thf(fact_200_semiring__norm_I16_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_201_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_202_abs__zmult__eq__1,axiom,
! [M: int,N: int] :
( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
= one_one_int )
=> ( ( abs_abs_int @ M )
= one_one_int ) ) ).
% abs_zmult_eq_1
thf(fact_203_ereal__abs__add,axiom,
! [A: extended_ereal,B: extended_ereal] : ( ord_le1083603963089353582_ereal @ ( abs_ab7465543570706387889_ereal @ ( plus_p7876563987511257093_ereal @ A @ B ) ) @ ( plus_p7876563987511257093_ereal @ ( abs_ab7465543570706387889_ereal @ A ) @ ( abs_ab7465543570706387889_ereal @ B ) ) ) ).
% ereal_abs_add
thf(fact_204_ereal__le__distrib,axiom,
! [C: extended_ereal,A: extended_ereal,B: extended_ereal] : ( ord_le1083603963089353582_ereal @ ( times_7703590493115627913_ereal @ C @ ( plus_p7876563987511257093_ereal @ A @ B ) ) @ ( plus_p7876563987511257093_ereal @ ( times_7703590493115627913_ereal @ C @ A ) @ ( times_7703590493115627913_ereal @ C @ B ) ) ) ).
% ereal_le_distrib
thf(fact_205_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z2: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z2 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z2 ) ) ) ).
% int_distrib(2)
thf(fact_206_int__distrib_I1_J,axiom,
! [Z1: int,Z2: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z2 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z2 @ W ) ) ) ).
% int_distrib(1)
thf(fact_207_abs__ereal_Osimps_I1_J,axiom,
! [R: real] :
( ( abs_ab7465543570706387889_ereal @ ( extended_ereal2 @ R ) )
= ( extended_ereal2 @ ( abs_abs_real @ R ) ) ) ).
% abs_ereal.simps(1)
thf(fact_208_times__ereal_Osimps_I1_J,axiom,
! [R: real,P2: real] :
( ( times_7703590493115627913_ereal @ ( extended_ereal2 @ R ) @ ( extended_ereal2 @ P2 ) )
= ( extended_ereal2 @ ( times_times_real @ R @ P2 ) ) ) ).
% times_ereal.simps(1)
thf(fact_209_mult__2__ereal,axiom,
! [X: extended_ereal] :
( ( times_7703590493115627913_ereal @ ( extended_ereal2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
= ( plus_p7876563987511257093_ereal @ X @ X ) ) ).
% mult_2_ereal
thf(fact_210_ereal__complete__Inf,axiom,
! [S: set_Extended_ereal] :
? [X4: extended_ereal] :
( ! [Xa: extended_ereal] :
( ( member2350847679896131959_ereal @ Xa @ S )
=> ( ord_le1083603963089353582_ereal @ X4 @ Xa ) )
& ! [Z3: extended_ereal] :
( ! [Xa2: extended_ereal] :
( ( member2350847679896131959_ereal @ Xa2 @ S )
=> ( ord_le1083603963089353582_ereal @ Z3 @ Xa2 ) )
=> ( ord_le1083603963089353582_ereal @ Z3 @ X4 ) ) ) ).
% ereal_complete_Inf
thf(fact_211_ereal__complete__Sup,axiom,
! [S: set_Extended_ereal] :
? [X4: extended_ereal] :
( ! [Xa: extended_ereal] :
( ( member2350847679896131959_ereal @ Xa @ S )
=> ( ord_le1083603963089353582_ereal @ Xa @ X4 ) )
& ! [Z3: extended_ereal] :
( ! [Xa2: extended_ereal] :
( ( member2350847679896131959_ereal @ Xa2 @ S )
=> ( ord_le1083603963089353582_ereal @ Xa2 @ Z3 ) )
=> ( ord_le1083603963089353582_ereal @ X4 @ Z3 ) ) ) ).
% ereal_complete_Sup
thf(fact_212_int__bit__count,axiom,
! [N: int] :
( ( prefix3213528784805800034_count @ ( prefix_Free_Code_I_e @ N ) )
= ( extended_ereal2 @ ( ring_1_of_int_real @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( abs_abs_int @ N ) ) @ one_one_int ) ) ) ) ) @ one_one_int ) ) ) ) ).
% int_bit_count
thf(fact_213_ex__le__of__int,axiom,
! [X: real] :
? [Z4: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z4 ) ) ).
% ex_le_of_int
thf(fact_214_one__ereal__def,axiom,
( one_on4623092294121504201_ereal
= ( extended_ereal2 @ one_one_real ) ) ).
% one_ereal_def
thf(fact_215_plus__ereal_Osimps_I1_J,axiom,
! [R: real,P2: real] :
( ( plus_p7876563987511257093_ereal @ ( extended_ereal2 @ R ) @ ( extended_ereal2 @ P2 ) )
= ( extended_ereal2 @ ( plus_plus_real @ R @ P2 ) ) ) ).
% plus_ereal.simps(1)
thf(fact_216_ereal__le__real,axiom,
! [X: extended_ereal,Y: extended_ereal] :
( ! [Z4: real] :
( ( ord_le1083603963089353582_ereal @ X @ ( extended_ereal2 @ Z4 ) )
=> ( ord_le1083603963089353582_ereal @ Y @ ( extended_ereal2 @ Z4 ) ) )
=> ( ord_le1083603963089353582_ereal @ Y @ X ) ) ).
% ereal_le_real
thf(fact_217_of__int__floor__le,axiom,
! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X ) ).
% of_int_floor_le
thf(fact_218_floor__mono,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) ) ).
% floor_mono
thf(fact_219_ereal__le__le,axiom,
! [Y: real,A: extended_ereal,X: real] :
( ( ord_le1083603963089353582_ereal @ ( extended_ereal2 @ Y ) @ A )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ord_le1083603963089353582_ereal @ ( extended_ereal2 @ X ) @ A ) ) ) ).
% ereal_le_le
thf(fact_220_le__ereal__le,axiom,
! [A: extended_ereal,X: real,Y: real] :
( ( ord_le1083603963089353582_ereal @ A @ ( extended_ereal2 @ X ) )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ord_le1083603963089353582_ereal @ A @ ( extended_ereal2 @ Y ) ) ) ) ).
% le_ereal_le
thf(fact_221_le__floor__iff,axiom,
! [Z: int,X: real] :
( ( ord_less_eq_int @ Z @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X ) ) ).
% le_floor_iff
thf(fact_222_floor__add__int,axiom,
! [X: real,Z: int] :
( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ Z )
= ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z ) ) ) ) ).
% floor_add_int
thf(fact_223_int__add__floor,axiom,
! [Z: int,X: real] :
( ( plus_plus_int @ Z @ ( archim6058952711729229775r_real @ X ) )
= ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ X ) ) ) ).
% int_add_floor
thf(fact_224_le__floor__add,axiom,
! [X: real,Y: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y ) ) ) ).
% le_floor_add
thf(fact_225_one__add__floor,axiom,
! [X: real] :
( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
= ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).
% one_add_floor
thf(fact_226_real__of__int__floor__add__one__ge,axiom,
! [R: real] : ( ord_less_eq_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_ge
thf(fact_227_of__int__floor__cancel,axiom,
! [X: real] :
( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) )
= X )
= ( ? [N2: int] :
( X
= ( ring_1_of_int_real @ N2 ) ) ) ) ).
% of_int_floor_cancel
thf(fact_228_abs__1,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_1
thf(fact_229_abs__1,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_1
thf(fact_230_abs__add__abs,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_add_abs
thf(fact_231_abs__add__abs,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_add_abs
thf(fact_232_abs__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
= ( times_times_real @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_233_abs__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
= ( times_times_int @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_234_mult_Oright__neutral,axiom,
! [A: extended_ereal] :
( ( times_7703590493115627913_ereal @ A @ one_on4623092294121504201_ereal )
= A ) ).
% mult.right_neutral
thf(fact_235_mult_Oright__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.right_neutral
thf(fact_236_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_237_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_238_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_239_mult__1,axiom,
! [A: extended_ereal] :
( ( times_7703590493115627913_ereal @ one_on4623092294121504201_ereal @ A )
= A ) ).
% mult_1
thf(fact_240_mult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% mult_1
thf(fact_241_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_242_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_243_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_244_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_245_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_246_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_247_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_248_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_249_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_250_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8295874005876285629c_real @ one_one_real )
= ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_251_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5851722552734809277nc_int @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_252_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_253_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_254_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_255_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_256_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_257_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_258_abs__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_abs
thf(fact_259_abs__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_abs
thf(fact_260_abs__idempotent,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_idempotent
thf(fact_261_abs__idempotent,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_idempotent
thf(fact_262_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_263_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_264_ereal__abs__mult,axiom,
! [X: extended_ereal,Y: extended_ereal] :
( ( abs_ab7465543570706387889_ereal @ ( times_7703590493115627913_ereal @ X @ Y ) )
= ( times_7703590493115627913_ereal @ ( abs_ab7465543570706387889_ereal @ X ) @ ( abs_ab7465543570706387889_ereal @ Y ) ) ) ).
% ereal_abs_mult
thf(fact_265_mult_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ B @ ( times_7803423173614009249d_enat @ A @ C ) )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_266_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_267_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_268_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_269_mult_Ocommute,axiom,
( times_7803423173614009249d_enat
= ( ^ [A3: extended_enat,B2: extended_enat] : ( times_7803423173614009249d_enat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_270_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_271_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_272_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_273_mult_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_274_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_275_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_276_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_277_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_278_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_279_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_280_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_281_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_282_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_283_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_284_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_285_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_286_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_287_add_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_288_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_289_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_290_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_291_add_Oleft__commute,axiom,
! [B: extended_ereal,A: extended_ereal,C: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ B @ ( plus_p7876563987511257093_ereal @ A @ C ) )
= ( plus_p7876563987511257093_ereal @ A @ ( plus_p7876563987511257093_ereal @ B @ C ) ) ) ).
% add.left_commute
thf(fact_292_add_Ocommute,axiom,
( plus_p3455044024723400733d_enat
= ( ^ [A3: extended_enat,B2: extended_enat] : ( plus_p3455044024723400733d_enat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_293_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_294_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_295_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_296_add_Ocommute,axiom,
( plus_p7876563987511257093_ereal
= ( ^ [A3: extended_ereal,B2: extended_ereal] : ( plus_p7876563987511257093_ereal @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_297_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_298_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_299_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_300_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_301_add_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.assoc
thf(fact_302_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_303_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_304_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_305_add_Oassoc,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ ( plus_p7876563987511257093_ereal @ A @ B ) @ C )
= ( plus_p7876563987511257093_ereal @ A @ ( plus_p7876563987511257093_ereal @ B @ C ) ) ) ).
% add.assoc
thf(fact_306_group__cancel_Oadd2,axiom,
! [B3: extended_enat,K: extended_enat,B: extended_enat,A: extended_enat] :
( ( B3
= ( plus_p3455044024723400733d_enat @ K @ B ) )
=> ( ( plus_p3455044024723400733d_enat @ A @ B3 )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_307_group__cancel_Oadd2,axiom,
! [B3: real,K: real,B: real,A: real] :
( ( B3
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B3 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_308_group__cancel_Oadd2,axiom,
! [B3: nat,K: nat,B: nat,A: nat] :
( ( B3
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B3 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_309_group__cancel_Oadd2,axiom,
! [B3: int,K: int,B: int,A: int] :
( ( B3
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B3 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_310_group__cancel_Oadd2,axiom,
! [B3: extended_ereal,K: extended_ereal,B: extended_ereal,A: extended_ereal] :
( ( B3
= ( plus_p7876563987511257093_ereal @ K @ B ) )
=> ( ( plus_p7876563987511257093_ereal @ A @ B3 )
= ( plus_p7876563987511257093_ereal @ K @ ( plus_p7876563987511257093_ereal @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_311_group__cancel_Oadd1,axiom,
! [A2: extended_enat,K: extended_enat,A: extended_enat,B: extended_enat] :
( ( A2
= ( plus_p3455044024723400733d_enat @ K @ A ) )
=> ( ( plus_p3455044024723400733d_enat @ A2 @ B )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_312_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_313_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_314_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_315_group__cancel_Oadd1,axiom,
! [A2: extended_ereal,K: extended_ereal,A: extended_ereal,B: extended_ereal] :
( ( A2
= ( plus_p7876563987511257093_ereal @ K @ A ) )
=> ( ( plus_p7876563987511257093_ereal @ A2 @ B )
= ( plus_p7876563987511257093_ereal @ K @ ( plus_p7876563987511257093_ereal @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_316_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_p3455044024723400733d_enat @ I @ K )
= ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_317_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_318_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_319_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_320_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: extended_ereal,J: extended_ereal,K: extended_ereal,L: extended_ereal] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_p7876563987511257093_ereal @ I @ K )
= ( plus_p7876563987511257093_ereal @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_321_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_322_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_323_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_324_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_325_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ ( plus_p7876563987511257093_ereal @ A @ B ) @ C )
= ( plus_p7876563987511257093_ereal @ A @ ( plus_p7876563987511257093_ereal @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_326_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_327_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_328_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_329_one__reorient,axiom,
! [X: extended_ereal] :
( ( one_on4623092294121504201_ereal = X )
= ( X = one_on4623092294121504201_ereal ) ) ).
% one_reorient
thf(fact_330_one__reorient,axiom,
! [X: extended_enat] :
( ( one_on7984719198319812577d_enat = X )
= ( X = one_on7984719198319812577d_enat ) ) ).
% one_reorient
thf(fact_331_complete__real,axiom,
! [S: set_real] :
( ? [X5: real] : ( member_real @ X5 @ S )
=> ( ? [Z3: real] :
! [X4: real] :
( ( member_real @ X4 @ S )
=> ( ord_less_eq_real @ X4 @ Z3 ) )
=> ? [Y2: real] :
( ! [X5: real] :
( ( member_real @ X5 @ S )
=> ( ord_less_eq_real @ X5 @ Y2 ) )
& ! [Z3: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S )
=> ( ord_less_eq_real @ X4 @ Z3 ) )
=> ( ord_less_eq_real @ Y2 @ Z3 ) ) ) ) ) ).
% complete_real
thf(fact_332_dbl__inc__def,axiom,
( neg_nu8295874005876285629c_real
= ( ^ [X2: real] : ( plus_plus_real @ ( plus_plus_real @ X2 @ X2 ) @ one_one_real ) ) ) ).
% dbl_inc_def
thf(fact_333_dbl__inc__def,axiom,
( neg_nu5851722552734809277nc_int
= ( ^ [X2: int] : ( plus_plus_int @ ( plus_plus_int @ X2 @ X2 ) @ one_one_int ) ) ) ).
% dbl_inc_def
thf(fact_334_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_335_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_336_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_337_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_338_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_339_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_340_le__iff__add,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [A3: extended_enat,B2: extended_enat] :
? [C2: extended_enat] :
( B2
= ( plus_p3455044024723400733d_enat @ A3 @ C2 ) ) ) ) ).
% le_iff_add
thf(fact_341_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
? [C2: nat] :
( B2
= ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).
% le_iff_add
thf(fact_342_add__right__mono,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ord_le1083603963089353582_ereal @ ( plus_p7876563987511257093_ereal @ A @ C ) @ ( plus_p7876563987511257093_ereal @ B @ C ) ) ) ).
% add_right_mono
thf(fact_343_add__right__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_344_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_345_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_346_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_347_less__eqE,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ~ ! [C3: extended_enat] :
( B
!= ( plus_p3455044024723400733d_enat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_348_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_349_add__left__mono,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ord_le1083603963089353582_ereal @ ( plus_p7876563987511257093_ereal @ C @ A ) @ ( plus_p7876563987511257093_ereal @ C @ B ) ) ) ).
% add_left_mono
thf(fact_350_add__left__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ C @ A ) @ ( plus_p3455044024723400733d_enat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_351_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_352_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_353_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_354_add__mono,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal,D: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ( ord_le1083603963089353582_ereal @ C @ D )
=> ( ord_le1083603963089353582_ereal @ ( plus_p7876563987511257093_ereal @ A @ C ) @ ( plus_p7876563987511257093_ereal @ B @ D ) ) ) ) ).
% add_mono
thf(fact_355_add__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat,D: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ C @ D )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_356_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_357_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_358_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_359_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: extended_ereal,J: extended_ereal,K: extended_ereal,L: extended_ereal] :
( ( ( ord_le1083603963089353582_ereal @ I @ J )
& ( ord_le1083603963089353582_ereal @ K @ L ) )
=> ( ord_le1083603963089353582_ereal @ ( plus_p7876563987511257093_ereal @ I @ K ) @ ( plus_p7876563987511257093_ereal @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_360_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( ord_le2932123472753598470d_enat @ I @ J )
& ( ord_le2932123472753598470d_enat @ K @ L ) )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_361_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_362_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_363_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_364_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: extended_ereal,J: extended_ereal,K: extended_ereal,L: extended_ereal] :
( ( ( I = J )
& ( ord_le1083603963089353582_ereal @ K @ L ) )
=> ( ord_le1083603963089353582_ereal @ ( plus_p7876563987511257093_ereal @ I @ K ) @ ( plus_p7876563987511257093_ereal @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_365_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( I = J )
& ( ord_le2932123472753598470d_enat @ K @ L ) )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_366_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_367_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_368_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_369_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: extended_ereal,J: extended_ereal,K: extended_ereal,L: extended_ereal] :
( ( ( ord_le1083603963089353582_ereal @ I @ J )
& ( K = L ) )
=> ( ord_le1083603963089353582_ereal @ ( plus_p7876563987511257093_ereal @ I @ K ) @ ( plus_p7876563987511257093_ereal @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_370_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( ord_le2932123472753598470d_enat @ I @ J )
& ( K = L ) )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_371_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_372_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_373_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_374_combine__common__factor,axiom,
! [A: extended_enat,E: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ E ) @ ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ B @ E ) @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_375_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_376_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_377_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_378_distrib__right,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% distrib_right
thf(fact_379_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_380_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_381_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_382_distrib__left,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_7803423173614009249d_enat @ A @ C ) ) ) ).
% distrib_left
thf(fact_383_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_384_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_385_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_386_comm__semiring__class_Odistrib,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_387_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_388_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_389_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_390_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_391_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_392_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_393_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_394_mult_Ocomm__neutral,axiom,
! [A: extended_ereal] :
( ( times_7703590493115627913_ereal @ A @ one_on4623092294121504201_ereal )
= A ) ).
% mult.comm_neutral
thf(fact_395_mult_Ocomm__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.comm_neutral
thf(fact_396_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_397_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_398_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_399_comm__monoid__mult__class_Omult__1,axiom,
! [A: extended_ereal] :
( ( times_7703590493115627913_ereal @ one_on4623092294121504201_ereal @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_400_comm__monoid__mult__class_Omult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_401_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_402_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_403_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_404_abs__ge__self,axiom,
! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).
% abs_ge_self
thf(fact_405_abs__ge__self,axiom,
! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).
% abs_ge_self
thf(fact_406_abs__le__D1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% abs_le_D1
thf(fact_407_abs__le__D1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% abs_le_D1
thf(fact_408_abs__mult,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_mult
thf(fact_409_abs__mult,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_mult
thf(fact_410_abs__one,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_one
thf(fact_411_abs__one,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_one
thf(fact_412_abs__triangle__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_413_abs__triangle__ineq,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_414_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_415_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_416_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_417_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_418_estimate__by__abs,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C )
=> ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ ( abs_abs_real @ B ) ) ) ) ).
% estimate_by_abs
thf(fact_419_estimate__by__abs,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C )
=> ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ ( abs_abs_int @ B ) ) ) ) ).
% estimate_by_abs
thf(fact_420_abs__le__mult,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( times_times_real @ A @ B ) ) @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_le_mult
thf(fact_421_abs__le__mult,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( times_times_int @ A @ B ) ) @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_le_mult
thf(fact_422_exp__golomb__bit__count__exact,axiom,
! [N: nat] :
( ( prefix3213528784805800034_count @ ( prefix_Free_Code_N_e @ N ) )
= ( extended_ereal2 @ ( ring_1_of_int_real @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) @ one_one_int ) ) ) ) ).
% exp_golomb_bit_count_exact
thf(fact_423_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_424_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_425_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_426_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% abs_of_nat
thf(fact_427_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% abs_of_nat
thf(fact_428_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% of_int_of_nat_eq
thf(fact_429_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% of_int_of_nat_eq
thf(fact_430_floor__of__nat,axiom,
! [N: nat] :
( ( archim6058952711729229775r_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% floor_of_nat
thf(fact_431_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_432_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_433_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_434_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_435_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ N ) ) ).
% of_nat_numeral
thf(fact_436_of__nat__numeral,axiom,
! [N: num] :
( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N ) )
= ( numera1916890842035813515d_enat @ N ) ) ).
% of_nat_numeral
thf(fact_437_of__nat__numeral,axiom,
! [N: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% of_nat_numeral
thf(fact_438_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% of_nat_numeral
thf(fact_439_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri4216267220026989637d_enat @ ( plus_plus_nat @ M @ N ) )
= ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).
% of_nat_add
thf(fact_440_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_441_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_442_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_443_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri4216267220026989637d_enat @ ( times_times_nat @ M @ N ) )
= ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).
% of_nat_mult
thf(fact_444_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_445_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_446_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_447_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_448_of__nat__1,axiom,
( ( semiri4216267220026989637d_enat @ one_one_nat )
= one_on7984719198319812577d_enat ) ).
% of_nat_1
thf(fact_449_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_450_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_451_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_452_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_on7984719198319812577d_enat
= ( semiri4216267220026989637d_enat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_453_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_454_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_455_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_456_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri4216267220026989637d_enat @ N )
= one_on7984719198319812577d_enat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_457_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_458_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_459_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_460_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_461_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_462_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ I ) @ ( semiri4216267220026989637d_enat @ J ) ) ) ).
% of_nat_mono
thf(fact_463_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_464_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_465_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_466_mult__of__nat__commute,axiom,
! [X: nat,Y: extended_enat] :
( ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ X ) @ Y )
= ( times_7803423173614009249d_enat @ Y @ ( semiri4216267220026989637d_enat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_467_mult__of__nat__commute,axiom,
! [X: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_468_mult__of__nat__commute,axiom,
! [X: nat,Y: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
= ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_469_mult__of__nat__commute,axiom,
! [X: nat,Y: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
= ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_470_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_471_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_472_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_473_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_474_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_475_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_476_real__arch__simple,axiom,
! [X: real] :
? [N3: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).
% real_arch_simple
thf(fact_477_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_478_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X2: int] : ( plus_plus_int @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_479_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_480_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_481_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_482_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_483_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_484_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_485_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_486_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_487_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_488_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_489_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
? [K2: nat] :
( N2
= ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_490_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_491_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_492_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_493_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_494_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_495_exp__golomb__bit__count,axiom,
! [N: nat] : ( ord_le1083603963089353582_ereal @ ( prefix3213528784805800034_count @ ( prefix_Free_Code_N_e @ N ) ) @ ( extended_ereal2 @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) @ one_one_real ) ) ) ).
% exp_golomb_bit_count
thf(fact_496_exp__golomb__bit__count__est,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ord_le1083603963089353582_ereal @ ( prefix3213528784805800034_count @ ( prefix_Free_Code_N_e @ N ) ) @ ( extended_ereal2 @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) ) ) @ one_one_real ) ) ) ) ).
% exp_golomb_bit_count_est
thf(fact_497_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_498_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_499_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_500_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_501_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_502_N_092_060_094sub_062e__def,axiom,
( prefix_Free_Code_N_e
= ( ^ [X2: nat] : ( prefix1649127329469935890e_Ng_e @ ( plus_plus_nat @ X2 @ one_one_nat ) ) ) ) ).
% N\<^sub>e_def
thf(fact_503_verit__eq__simplify_I9_J,axiom,
! [X32: num,Y32: num] :
( ( ( bit1 @ X32 )
= ( bit1 @ Y32 ) )
= ( X32 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_504_verit__eq__simplify_I8_J,axiom,
! [X23: num,Y22: num] :
( ( ( bit0 @ X23 )
= ( bit0 @ Y22 ) )
= ( X23 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_505_xor__numerals_I6_J,axiom,
! [X: num,Y: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).
% xor_numerals(6)
thf(fact_506_xor__numerals_I6_J,axiom,
! [X: num,Y: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).
% xor_numerals(6)
thf(fact_507_xor__numerals_I4_J,axiom,
! [X: num,Y: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).
% xor_numerals(4)
thf(fact_508_xor__numerals_I4_J,axiom,
! [X: num,Y: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).
% xor_numerals(4)
thf(fact_509_order__refl,axiom,
! [X: extended_enat] : ( ord_le2932123472753598470d_enat @ X @ X ) ).
% order_refl
thf(fact_510_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_511_order__refl,axiom,
! [X: num] : ( ord_less_eq_num @ X @ X ) ).
% order_refl
thf(fact_512_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_513_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_514_dual__order_Orefl,axiom,
! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).
% dual_order.refl
thf(fact_515_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_516_dual__order_Orefl,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% dual_order.refl
thf(fact_517_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_518_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_519_bit_Oxor__left__self,axiom,
! [X: int,Y: int] :
( ( bit_se6526347334894502574or_int @ X @ ( bit_se6526347334894502574or_int @ X @ Y ) )
= Y ) ).
% bit.xor_left_self
thf(fact_520_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_521_xor__numerals_I3_J,axiom,
! [X: num,Y: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).
% xor_numerals(3)
thf(fact_522_xor__numerals_I3_J,axiom,
! [X: num,Y: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).
% xor_numerals(3)
thf(fact_523_xor__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).
% xor_numerals(1)
thf(fact_524_xor__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= ( numeral_numeral_int @ ( bit1 @ Y ) ) ) ).
% xor_numerals(1)
thf(fact_525_xor__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit0 @ Y ) ) ) ).
% xor_numerals(2)
thf(fact_526_xor__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( numeral_numeral_int @ ( bit0 @ Y ) ) ) ).
% xor_numerals(2)
thf(fact_527_xor__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% xor_numerals(5)
thf(fact_528_xor__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).
% xor_numerals(5)
thf(fact_529_xor__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).
% xor_numerals(8)
thf(fact_530_xor__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ X ) ) ) ).
% xor_numerals(8)
thf(fact_531_xor__numerals_I7_J,axiom,
! [X: num,Y: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).
% xor_numerals(7)
thf(fact_532_xor__numerals_I7_J,axiom,
! [X: num,Y: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).
% xor_numerals(7)
thf(fact_533_of__int__xor__eq,axiom,
! [K: int,L: int] :
( ( ring_1_of_int_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
= ( bit_se6526347334894502574or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).
% of_int_xor_eq
thf(fact_534_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_535_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_536_xor_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( bit_se6526347334894502574or_int @ B @ ( bit_se6526347334894502574or_int @ A @ C ) )
= ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).
% xor.left_commute
thf(fact_537_of__nat__xor__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se6528837805403552850or_nat @ M @ N ) )
= ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_xor_eq
thf(fact_538_xor_Ocommute,axiom,
( bit_se6526347334894502574or_int
= ( ^ [A3: int,B2: int] : ( bit_se6526347334894502574or_int @ B2 @ A3 ) ) ) ).
% xor.commute
thf(fact_539_xor_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( bit_se6526347334894502574or_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ C )
= ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).
% xor.assoc
thf(fact_540_nat__int__comparison_I1_J,axiom,
( ( ^ [Y4: nat,Z5: nat] : ( Y4 = Z5 ) )
= ( ^ [A3: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_541_int__ops_I3_J,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% int_ops(3)
thf(fact_542_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_543_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_544_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_545_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_546_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_547_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_548_zadd__int__left,axiom,
! [M: nat,N: nat,Z: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).
% zadd_int_left
thf(fact_549_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W2: int,Z6: int] :
? [N2: nat] :
( Z6
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_550_order__antisym__conv,axiom,
! [Y: extended_enat,X: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Y @ X )
=> ( ( ord_le2932123472753598470d_enat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_551_order__antisym__conv,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ( ( ord_less_eq_real @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_552_order__antisym__conv,axiom,
! [Y: num,X: num] :
( ( ord_less_eq_num @ Y @ X )
=> ( ( ord_less_eq_num @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_553_order__antisym__conv,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_554_order__antisym__conv,axiom,
! [Y: int,X: int] :
( ( ord_less_eq_int @ Y @ X )
=> ( ( ord_less_eq_int @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_555_linorder__le__cases,axiom,
! [X: extended_enat,Y: extended_enat] :
( ~ ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_556_linorder__le__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_557_linorder__le__cases,axiom,
! [X: num,Y: num] :
( ~ ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_num @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_558_linorder__le__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_559_linorder__le__cases,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_eq_int @ X @ Y )
=> ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_560_ord__le__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_561_ord__le__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > real,C: real] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_562_ord__le__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > num,C: num] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_563_ord__le__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > nat,C: nat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_564_ord__le__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > int,C: int] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_565_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_566_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_567_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_568_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_569_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_570_ord__eq__le__subst,axiom,
! [A: extended_enat,F: extended_enat > extended_enat,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_571_ord__eq__le__subst,axiom,
! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_572_ord__eq__le__subst,axiom,
! [A: num,F: extended_enat > num,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_573_ord__eq__le__subst,axiom,
! [A: nat,F: extended_enat > nat,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_574_ord__eq__le__subst,axiom,
! [A: int,F: extended_enat > int,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_575_ord__eq__le__subst,axiom,
! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_576_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_577_ord__eq__le__subst,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_578_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_579_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_580_linorder__linear,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
| ( ord_le2932123472753598470d_enat @ Y @ X ) ) ).
% linorder_linear
thf(fact_581_linorder__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
| ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_linear
thf(fact_582_linorder__linear,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
| ( ord_less_eq_num @ Y @ X ) ) ).
% linorder_linear
thf(fact_583_linorder__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_linear
thf(fact_584_linorder__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
| ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_linear
thf(fact_585_verit__la__disequality,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A = B )
| ~ ( ord_le2932123472753598470d_enat @ A @ B )
| ~ ( ord_le2932123472753598470d_enat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_586_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_587_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_588_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_589_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_590_order__eq__refl,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( X = Y )
=> ( ord_le2932123472753598470d_enat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_591_order__eq__refl,axiom,
! [X: real,Y: real] :
( ( X = Y )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% order_eq_refl
thf(fact_592_order__eq__refl,axiom,
! [X: num,Y: num] :
( ( X = Y )
=> ( ord_less_eq_num @ X @ Y ) ) ).
% order_eq_refl
thf(fact_593_order__eq__refl,axiom,
! [X: nat,Y: nat] :
( ( X = Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_594_order__eq__refl,axiom,
! [X: int,Y: int] :
( ( X = Y )
=> ( ord_less_eq_int @ X @ Y ) ) ).
% order_eq_refl
thf(fact_595_order__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_596_order__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > real,C: real] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_597_order__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > num,C: num] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_598_order__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > nat,C: nat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_599_order__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > int,C: int] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_600_order__subst2,axiom,
! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_601_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_602_order__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_603_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_604_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_605_order__subst1,axiom,
! [A: extended_enat,F: extended_enat > extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_606_order__subst1,axiom,
! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_607_order__subst1,axiom,
! [A: extended_enat,F: num > extended_enat,B: num,C: num] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_608_order__subst1,axiom,
! [A: extended_enat,F: nat > extended_enat,B: nat,C: nat] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_609_order__subst1,axiom,
! [A: extended_enat,F: int > extended_enat,B: int,C: int] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_eq_int @ X4 @ Y2 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_610_order__subst1,axiom,
! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_611_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y2: real] :
( ( ord_less_eq_real @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_612_order__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y2: num] :
( ( ord_less_eq_num @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_613_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_614_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y2: int] :
( ( ord_less_eq_int @ X4 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_615_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: extended_enat,Z5: extended_enat] : ( Y4 = Z5 ) )
= ( ^ [A3: extended_enat,B2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A3 @ B2 )
& ( ord_le2932123472753598470d_enat @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_616_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z5: real] : ( Y4 = Z5 ) )
= ( ^ [A3: real,B2: real] :
( ( ord_less_eq_real @ A3 @ B2 )
& ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_617_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z5: num] : ( Y4 = Z5 ) )
= ( ^ [A3: num,B2: num] :
( ( ord_less_eq_num @ A3 @ B2 )
& ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_618_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z5: nat] : ( Y4 = Z5 ) )
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
& ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_619_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z5: int] : ( Y4 = Z5 ) )
= ( ^ [A3: int,B2: int] :
( ( ord_less_eq_int @ A3 @ B2 )
& ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_620_antisym,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_621_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_622_antisym,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_623_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_624_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_625_dual__order_Otrans,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_le2932123472753598470d_enat @ C @ B )
=> ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_626_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_627_dual__order_Otrans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_628_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_629_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_630_dual__order_Oantisym,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_631_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_632_dual__order_Oantisym,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_633_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_634_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_635_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: extended_enat,Z5: extended_enat] : ( Y4 = Z5 ) )
= ( ^ [A3: extended_enat,B2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B2 @ A3 )
& ( ord_le2932123472753598470d_enat @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_636_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: real,Z5: real] : ( Y4 = Z5 ) )
= ( ^ [A3: real,B2: real] :
( ( ord_less_eq_real @ B2 @ A3 )
& ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_637_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: num,Z5: num] : ( Y4 = Z5 ) )
= ( ^ [A3: num,B2: num] :
( ( ord_less_eq_num @ B2 @ A3 )
& ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_638_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z5: nat] : ( Y4 = Z5 ) )
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ B2 @ A3 )
& ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_639_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: int,Z5: int] : ( Y4 = Z5 ) )
= ( ^ [A3: int,B2: int] :
( ( ord_less_eq_int @ B2 @ A3 )
& ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_640_linorder__wlog,axiom,
! [P: extended_enat > extended_enat > $o,A: extended_enat,B: extended_enat] :
( ! [A4: extended_enat,B4: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: extended_enat,B4: extended_enat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_641_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B4: real] :
( ( ord_less_eq_real @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: real,B4: real] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_642_linorder__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B4: num] :
( ( ord_less_eq_num @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: num,B4: num] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_643_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_644_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_eq_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_645_order__trans,axiom,
! [X: extended_enat,Y: extended_enat,Z: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ( ord_le2932123472753598470d_enat @ Y @ Z )
=> ( ord_le2932123472753598470d_enat @ X @ Z ) ) ) ).
% order_trans
thf(fact_646_order__trans,axiom,
! [X: real,Y: real,Z: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ Z )
=> ( ord_less_eq_real @ X @ Z ) ) ) ).
% order_trans
thf(fact_647_order__trans,axiom,
! [X: num,Y: num,Z: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ord_less_eq_num @ Y @ Z )
=> ( ord_less_eq_num @ X @ Z ) ) ) ).
% order_trans
thf(fact_648_order__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z )
=> ( ord_less_eq_nat @ X @ Z ) ) ) ).
% order_trans
thf(fact_649_order__trans,axiom,
! [X: int,Y: int,Z: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ Z )
=> ( ord_less_eq_int @ X @ Z ) ) ) ).
% order_trans
thf(fact_650_order_Otrans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).
% order.trans
thf(fact_651_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_652_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_653_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_654_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_655_order__antisym,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ( ord_le2932123472753598470d_enat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_656_order__antisym,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_657_order__antisym,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ord_less_eq_num @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_658_order__antisym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_659_order__antisym,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_660_ord__le__eq__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( B = C )
=> ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_661_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_662_ord__le__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_663_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_664_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_665_ord__eq__le__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( A = B )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_666_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_667_ord__eq__le__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_668_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_669_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_670_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: extended_enat,Z5: extended_enat] : ( Y4 = Z5 ) )
= ( ^ [X2: extended_enat,Y5: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X2 @ Y5 )
& ( ord_le2932123472753598470d_enat @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_671_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z5: real] : ( Y4 = Z5 ) )
= ( ^ [X2: real,Y5: real] :
( ( ord_less_eq_real @ X2 @ Y5 )
& ( ord_less_eq_real @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_672_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z5: num] : ( Y4 = Z5 ) )
= ( ^ [X2: num,Y5: num] :
( ( ord_less_eq_num @ X2 @ Y5 )
& ( ord_less_eq_num @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_673_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z5: nat] : ( Y4 = Z5 ) )
= ( ^ [X2: nat,Y5: nat] :
( ( ord_less_eq_nat @ X2 @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_674_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z5: int] : ( Y4 = Z5 ) )
= ( ^ [X2: int,Y5: int] :
( ( ord_less_eq_int @ X2 @ Y5 )
& ( ord_less_eq_int @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_675_le__cases3,axiom,
! [X: extended_enat,Y: extended_enat,Z: extended_enat] :
( ( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ~ ( ord_le2932123472753598470d_enat @ Y @ Z ) )
=> ( ( ( ord_le2932123472753598470d_enat @ Y @ X )
=> ~ ( ord_le2932123472753598470d_enat @ X @ Z ) )
=> ( ( ( ord_le2932123472753598470d_enat @ X @ Z )
=> ~ ( ord_le2932123472753598470d_enat @ Z @ Y ) )
=> ( ( ( ord_le2932123472753598470d_enat @ Z @ Y )
=> ~ ( ord_le2932123472753598470d_enat @ Y @ X ) )
=> ( ( ( ord_le2932123472753598470d_enat @ Y @ Z )
=> ~ ( ord_le2932123472753598470d_enat @ Z @ X ) )
=> ~ ( ( ord_le2932123472753598470d_enat @ Z @ X )
=> ~ ( ord_le2932123472753598470d_enat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_676_le__cases3,axiom,
! [X: real,Y: real,Z: real] :
( ( ( ord_less_eq_real @ X @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z ) )
=> ( ( ( ord_less_eq_real @ Y @ X )
=> ~ ( ord_less_eq_real @ X @ Z ) )
=> ( ( ( ord_less_eq_real @ X @ Z )
=> ~ ( ord_less_eq_real @ Z @ Y ) )
=> ( ( ( ord_less_eq_real @ Z @ Y )
=> ~ ( ord_less_eq_real @ Y @ X ) )
=> ( ( ( ord_less_eq_real @ Y @ Z )
=> ~ ( ord_less_eq_real @ Z @ X ) )
=> ~ ( ( ord_less_eq_real @ Z @ X )
=> ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_677_le__cases3,axiom,
! [X: num,Y: num,Z: num] :
( ( ( ord_less_eq_num @ X @ Y )
=> ~ ( ord_less_eq_num @ Y @ Z ) )
=> ( ( ( ord_less_eq_num @ Y @ X )
=> ~ ( ord_less_eq_num @ X @ Z ) )
=> ( ( ( ord_less_eq_num @ X @ Z )
=> ~ ( ord_less_eq_num @ Z @ Y ) )
=> ( ( ( ord_less_eq_num @ Z @ Y )
=> ~ ( ord_less_eq_num @ Y @ X ) )
=> ( ( ( ord_less_eq_num @ Y @ Z )
=> ~ ( ord_less_eq_num @ Z @ X ) )
=> ~ ( ( ord_less_eq_num @ Z @ X )
=> ~ ( ord_less_eq_num @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_678_le__cases3,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ( ord_less_eq_nat @ X @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z ) )
=> ( ( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_eq_nat @ X @ Z ) )
=> ( ( ( ord_less_eq_nat @ X @ Z )
=> ~ ( ord_less_eq_nat @ Z @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z )
=> ~ ( ord_less_eq_nat @ Z @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z @ X )
=> ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_679_le__cases3,axiom,
! [X: int,Y: int,Z: int] :
( ( ( ord_less_eq_int @ X @ Y )
=> ~ ( ord_less_eq_int @ Y @ Z ) )
=> ( ( ( ord_less_eq_int @ Y @ X )
=> ~ ( ord_less_eq_int @ X @ Z ) )
=> ( ( ( ord_less_eq_int @ X @ Z )
=> ~ ( ord_less_eq_int @ Z @ Y ) )
=> ( ( ( ord_less_eq_int @ Z @ Y )
=> ~ ( ord_less_eq_int @ Y @ X ) )
=> ( ( ( ord_less_eq_int @ Y @ Z )
=> ~ ( ord_less_eq_int @ Z @ X ) )
=> ~ ( ( ord_less_eq_int @ Z @ X )
=> ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_680_nle__le,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ~ ( ord_le2932123472753598470d_enat @ A @ B ) )
= ( ( ord_le2932123472753598470d_enat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_681_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_682_nle__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_eq_num @ A @ B ) )
= ( ( ord_less_eq_num @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_683_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_684_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_685_verit__comp__simplify1_I2_J,axiom,
! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_686_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_687_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_688_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_689_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_690_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_691_verit__eq__simplify_I10_J,axiom,
! [X23: num] :
( one
!= ( bit0 @ X23 ) ) ).
% verit_eq_simplify(10)
thf(fact_692_verit__eq__simplify_I14_J,axiom,
! [X23: num,X32: num] :
( ( bit0 @ X23 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_693_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_694_numeral__le__ereal__of__enat__iff,axiom,
! [M: num,N: extended_enat] :
( ( ord_le1083603963089353582_ereal @ ( numera1204434989813589363_ereal @ M ) @ ( extend916958517839893267f_enat @ N ) )
= ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ N ) ) ).
% numeral_le_ereal_of_enat_iff
thf(fact_695_int__bit__count__1,axiom,
! [N: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ N ) )
=> ( ( prefix3213528784805800034_count @ ( prefix_Free_Code_I_e @ N ) )
= ( extended_ereal2 @ ( ring_1_of_int_real @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( abs_abs_int @ N ) ) ) ) ) @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ) ) ) ).
% int_bit_count_1
thf(fact_696_floor__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).
% floor_log2_div2
thf(fact_697_or__numerals_I4_J,axiom,
! [X: num,Y: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).
% or_numerals(4)
thf(fact_698_or__numerals_I4_J,axiom,
! [X: num,Y: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).
% or_numerals(4)
thf(fact_699_or__numerals_I6_J,axiom,
! [X: num,Y: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).
% or_numerals(6)
thf(fact_700_or__numerals_I6_J,axiom,
! [X: num,Y: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).
% or_numerals(6)
thf(fact_701_or__numerals_I7_J,axiom,
! [X: num,Y: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ) ).
% or_numerals(7)
thf(fact_702_or__numerals_I7_J,axiom,
! [X: num,Y: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ) ).
% or_numerals(7)
thf(fact_703_floor__le__one,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
= ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% floor_le_one
thf(fact_704_True,axiom,
ord_less_int @ zero_zero_int @ ( abs_abs_int @ n ) ).
% True
thf(fact_705_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_706_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_707_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_708_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_709_or_Oidem,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ A @ A )
= A ) ).
% or.idem
thf(fact_710_or_Oleft__idem,axiom,
! [A: int,B: int] :
( ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ A @ B ) )
= ( bit_se1409905431419307370or_int @ A @ B ) ) ).
% or.left_idem
thf(fact_711_or_Oright__idem,axiom,
! [A: int,B: int] :
( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ B )
= ( bit_se1409905431419307370or_int @ A @ B ) ) ).
% or.right_idem
thf(fact_712_ereal__of__enat__less__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le1188267648640031866_ereal @ ( extend916958517839893267f_enat @ M ) @ ( extend916958517839893267f_enat @ N ) )
= ( ord_le72135733267957522d_enat @ M @ N ) ) ).
% ereal_of_enat_less_iff
thf(fact_713_le__zero__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% le_zero_eq
thf(fact_714_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_715_not__gr__zero,axiom,
! [N: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% not_gr_zero
thf(fact_716_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_717_mult__zero__left,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ zero_z5237406670263579293d_enat @ A )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_left
thf(fact_718_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_719_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_720_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_721_mult__zero__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ zero_z5237406670263579293d_enat )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_right
thf(fact_722_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_723_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_724_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_725_mult__eq__0__iff,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
= zero_z5237406670263579293d_enat )
= ( ( A = zero_z5237406670263579293d_enat )
| ( B = zero_z5237406670263579293d_enat ) ) ) ).
% mult_eq_0_iff
thf(fact_726_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_727_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_728_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_729_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_730_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_731_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_732_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_733_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_734_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_735_lattice__ab__group__add__class_Odouble__zero,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% lattice_ab_group_add_class.double_zero
thf(fact_736_lattice__ab__group__add__class_Odouble__zero,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% lattice_ab_group_add_class.double_zero
thf(fact_737_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_738_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_739_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_740_add_Oright__neutral,axiom,
! [A: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ A @ zero_z2744965634713055877_ereal )
= A ) ).
% add.right_neutral
thf(fact_741_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_742_add_Oright__neutral,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
= A ) ).
% add.right_neutral
thf(fact_743_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_744_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_745_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_746_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_747_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_748_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_749_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_750_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_751_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_752_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_753_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_754_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_755_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_756_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_757_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_758_add__eq__0__iff__both__eq__0,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ X @ Y )
= zero_z5237406670263579293d_enat )
= ( ( X = zero_z5237406670263579293d_enat )
& ( Y = zero_z5237406670263579293d_enat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_759_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_760_zero__eq__add__iff__both__eq__0,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( zero_z5237406670263579293d_enat
= ( plus_p3455044024723400733d_enat @ X @ Y ) )
= ( ( X = zero_z5237406670263579293d_enat )
& ( Y = zero_z5237406670263579293d_enat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_761_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_762_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_763_add__0,axiom,
! [A: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ zero_z2744965634713055877_ereal @ A )
= A ) ).
% add_0
thf(fact_764_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_765_add__0,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
= A ) ).
% add_0
thf(fact_766_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_767_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_768_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_769_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_770_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_771_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_772_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_773_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_774_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_775_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_776_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_777_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_778_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_779_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_780_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_781_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_782_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_783_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_784_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_785_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_786_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_787_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_788_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri4216267220026989637d_enat @ M )
= zero_z5237406670263579293d_enat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_789_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_790_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_791_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_792_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_z5237406670263579293d_enat
= ( semiri4216267220026989637d_enat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_793_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_794_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_795_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_796_of__nat__0,axiom,
( ( semiri4216267220026989637d_enat @ zero_zero_nat )
= zero_z5237406670263579293d_enat ) ).
% of_nat_0
thf(fact_797_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_798_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_799_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_800_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_801_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_802_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_803_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_804_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_805_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_806_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_807_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_808_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_809_abs__zero,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_zero
thf(fact_810_abs__zero,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_zero
thf(fact_811_abs__eq__0,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0
thf(fact_812_abs__eq__0,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0
thf(fact_813_abs__0__eq,axiom,
! [A: int] :
( ( zero_zero_int
= ( abs_abs_int @ A ) )
= ( A = zero_zero_int ) ) ).
% abs_0_eq
thf(fact_814_abs__0__eq,axiom,
! [A: real] :
( ( zero_zero_real
= ( abs_abs_real @ A ) )
= ( A = zero_zero_real ) ) ).
% abs_0_eq
thf(fact_815_abs__0,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_0
thf(fact_816_abs__0,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_0
thf(fact_817_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_818_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_819_or_Oleft__neutral,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ zero_zero_nat @ A )
= A ) ).
% or.left_neutral
thf(fact_820_or_Oleft__neutral,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ zero_zero_int @ A )
= A ) ).
% or.left_neutral
thf(fact_821_or_Oright__neutral,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ A @ zero_zero_nat )
= A ) ).
% or.right_neutral
thf(fact_822_or_Oright__neutral,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ A @ zero_zero_int )
= A ) ).
% or.right_neutral
thf(fact_823_or__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% or_nonnegative_int_iff
thf(fact_824_or__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
| ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% or_negative_int_iff
thf(fact_825_bit_Oxor__self,axiom,
! [X: int] :
( ( bit_se6526347334894502574or_int @ X @ X )
= zero_zero_int ) ).
% bit.xor_self
thf(fact_826_xor__self__eq,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ A @ A )
= zero_zero_nat ) ).
% xor_self_eq
thf(fact_827_xor__self__eq,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ A @ A )
= zero_zero_int ) ).
% xor_self_eq
thf(fact_828_xor_Oleft__neutral,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ zero_zero_nat @ A )
= A ) ).
% xor.left_neutral
thf(fact_829_xor_Oleft__neutral,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ zero_zero_int @ A )
= A ) ).
% xor.left_neutral
thf(fact_830_xor_Oright__neutral,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ A @ zero_zero_nat )
= A ) ).
% xor.right_neutral
thf(fact_831_xor_Oright__neutral,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ A @ zero_zero_int )
= A ) ).
% xor.right_neutral
thf(fact_832_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_833_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_834_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_835_lattice__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% lattice_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_836_lattice__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% lattice_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_837_lattice__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% lattice_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_838_lattice__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% lattice_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_839_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_840_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_841_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_842_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_843_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_844_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_845_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_846_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_847_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_848_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_849_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_850_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_851_linordered__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% linordered_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_852_linordered__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% linordered_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_853_linordered__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% linordered_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_854_linordered__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% linordered_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_855_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_856_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_857_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_858_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_859_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_860_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_861_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_862_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_863_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_864_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_865_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_866_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_867_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_868_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_869_linordered__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% linordered_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_870_linordered__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% linordered_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_871_lattice__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% lattice_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_872_lattice__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% lattice_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_873_double__add__less__zero__iff__single__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_less_zero
thf(fact_874_double__add__less__zero__iff__single__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_less_zero
thf(fact_875_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_876_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_877_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_878_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_879_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_880_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_881_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_882_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_883_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_884_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_885_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_886_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_887_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_888_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_889_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_890_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_891_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_892_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_893_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_894_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_895_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_896_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( semiri4216267220026989637d_enat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_897_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_898_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_899_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_900_abs__of__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_901_abs__of__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_902_abs__le__self__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% abs_le_self_iff
thf(fact_903_abs__le__self__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% abs_le_self_iff
thf(fact_904_abs__le__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_le_zero_iff
thf(fact_905_abs__le__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_le_zero_iff
thf(fact_906_zero__less__abs__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
= ( A != zero_zero_real ) ) ).
% zero_less_abs_iff
thf(fact_907_zero__less__abs__iff,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
= ( A != zero_zero_int ) ) ).
% zero_less_abs_iff
thf(fact_908_of__int__0,axiom,
( ( ring_1_of_int_real @ zero_zero_int )
= zero_zero_real ) ).
% of_int_0
thf(fact_909_of__int__0,axiom,
( ( ring_1_of_int_int @ zero_zero_int )
= zero_zero_int ) ).
% of_int_0
thf(fact_910_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_real
= ( ring_1_of_int_real @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_911_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_int
= ( ring_1_of_int_int @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_912_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_real @ Z )
= zero_zero_real )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_913_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_int @ Z )
= zero_zero_int )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_914_of__int__less__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ W @ Z ) ) ).
% of_int_less_iff
thf(fact_915_of__int__less__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ W @ Z ) ) ).
% of_int_less_iff
thf(fact_916_floor__zero,axiom,
( ( archim6058952711729229775r_real @ zero_zero_real )
= zero_zero_int ) ).
% floor_zero
thf(fact_917_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
= ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_918_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_919_ereal__less_I3_J,axiom,
! [R: real] :
( ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ R ) @ one_on4623092294121504201_ereal )
= ( ord_less_real @ R @ one_one_real ) ) ).
% ereal_less(3)
thf(fact_920_ereal__less_I4_J,axiom,
! [R: real] :
( ( ord_le1188267648640031866_ereal @ one_on4623092294121504201_ereal @ ( extended_ereal2 @ R ) )
= ( ord_less_real @ one_one_real @ R ) ) ).
% ereal_less(4)
thf(fact_921_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(79)
thf(fact_922_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(74)
thf(fact_923_xor__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
= ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% xor_nonnegative_int_iff
thf(fact_924_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
!= ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% xor_negative_int_iff
thf(fact_925_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_926_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_927_ereal__of__enat__le__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le1083603963089353582_ereal @ ( extend916958517839893267f_enat @ M ) @ ( extend916958517839893267f_enat @ N ) )
= ( ord_le2932123472753598470d_enat @ M @ N ) ) ).
% ereal_of_enat_le_iff
thf(fact_928_divide__le__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_929_le__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_930_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_931_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_932_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_933_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_934_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_935_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_936_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_937_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_938_or__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_numerals(8)
thf(fact_939_or__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).
% or_numerals(8)
thf(fact_940_or__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).
% or_numerals(2)
thf(fact_941_or__numerals_I2_J,axiom,
! [Y: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y ) ) )
= ( numeral_numeral_int @ ( bit1 @ Y ) ) ) ).
% or_numerals(2)
thf(fact_942_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_943_zabs__less__one__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
= ( Z = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_944_numeral__less__ereal__of__enat__iff,axiom,
! [M: num,N: extended_enat] :
( ( ord_le1188267648640031866_ereal @ ( numera1204434989813589363_ereal @ M ) @ ( extend916958517839893267f_enat @ N ) )
= ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ N ) ) ).
% numeral_less_ereal_of_enat_iff
thf(fact_945_or__numerals_I3_J,axiom,
! [X: num,Y: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y ) ) ) ) ).
% or_numerals(3)
thf(fact_946_or__numerals_I3_J,axiom,
! [X: num,Y: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y ) ) ) ) ).
% or_numerals(3)
thf(fact_947_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_948_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_949_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_950_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_951_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_952_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_953_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_954_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_955_or__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_numerals(5)
thf(fact_956_or__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).
% or_numerals(5)
thf(fact_957_or__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).
% or_numerals(1)
thf(fact_958_or__numerals_I1_J,axiom,
! [Y: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y ) ) )
= ( numeral_numeral_int @ ( bit1 @ Y ) ) ) ).
% or_numerals(1)
thf(fact_959_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_960_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_961_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_962_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_963_zero__le__floor,axiom,
! [X: real] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% zero_le_floor
thf(fact_964_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_965_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_966_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_967_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_968_floor__less__zero,axiom,
! [X: real] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% floor_less_zero
thf(fact_969_zero__less__floor,axiom,
! [X: real] :
( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ).
% zero_less_floor
thf(fact_970_floor__le__zero,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
= ( ord_less_real @ X @ one_one_real ) ) ).
% floor_le_zero
thf(fact_971_floor__less__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_real @ X @ ( numeral_numeral_real @ V ) ) ) ).
% floor_less_numeral
thf(fact_972_floor__less__one,axiom,
! [X: real] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
= ( ord_less_real @ X @ one_one_real ) ) ).
% floor_less_one
thf(fact_973_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_974_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_975_numeral__less__floor,axiom,
! [V: num,X: real] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).
% numeral_less_floor
thf(fact_976_floor__le__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_real @ X @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).
% floor_le_numeral
thf(fact_977_one__less__floor,axiom,
! [X: real] :
( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ).
% one_less_floor
thf(fact_978_OR__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X @ Y ) ) ) ) ).
% OR_lower
thf(fact_979_or__greater__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L ) ) ) ).
% or_greater_eq
thf(fact_980_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_981_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_982_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_983_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_984_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_985_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_986_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_987_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_988_of__nat__or__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se1412395901928357646or_nat @ M @ N ) )
= ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_or_eq
thf(fact_989_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat ) ).
% of_nat_less_0_iff
thf(fact_990_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_991_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_992_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_993_xor__int__code_I1_J,axiom,
! [J: int] :
( ( bit_se6526347334894502574or_int @ zero_zero_int @ J )
= J ) ).
% xor_int_code(1)
thf(fact_994_xor__int__code_I2_J,axiom,
! [I: int] :
( ( bit_se6526347334894502574or_int @ I @ zero_zero_int )
= I ) ).
% xor_int_code(2)
thf(fact_995_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_996_verit__comp__simplify1_I1_J,axiom,
! [A: extended_enat] :
~ ( ord_le72135733267957522d_enat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_997_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_998_verit__comp__simplify1_I1_J,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_999_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1000_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1001_lt__ex,axiom,
! [X: real] :
? [Y2: real] : ( ord_less_real @ Y2 @ X ) ).
% lt_ex
thf(fact_1002_lt__ex,axiom,
! [X: int] :
? [Y2: int] : ( ord_less_int @ Y2 @ X ) ).
% lt_ex
thf(fact_1003_gt__ex,axiom,
! [X: real] :
? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).
% gt_ex
thf(fact_1004_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_1005_gt__ex,axiom,
! [X: int] :
? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).
% gt_ex
thf(fact_1006_dense,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ? [Z4: real] :
( ( ord_less_real @ X @ Z4 )
& ( ord_less_real @ Z4 @ Y ) ) ) ).
% dense
thf(fact_1007_less__imp__neq,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1008_less__imp__neq,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1009_less__imp__neq,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1010_less__imp__neq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1011_less__imp__neq,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1012_order_Oasym,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ~ ( ord_le72135733267957522d_enat @ B @ A ) ) ).
% order.asym
thf(fact_1013_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_1014_order_Oasym,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order.asym
thf(fact_1015_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_1016_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_1017_ord__eq__less__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( A = B )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1018_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1019_ord__eq__less__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1020_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1021_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1022_ord__less__eq__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( B = C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1023_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1024_ord__less__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1025_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1026_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1027_less__induct,axiom,
! [P: extended_enat > $o,A: extended_enat] :
( ! [X4: extended_enat] :
( ! [Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ Y3 @ X4 )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_1028_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X4: nat] :
( ! [Y3: nat] :
( ( ord_less_nat @ Y3 @ X4 )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_1029_antisym__conv3,axiom,
! [Y: extended_enat,X: extended_enat] :
( ~ ( ord_le72135733267957522d_enat @ Y @ X )
=> ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1030_antisym__conv3,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_real @ Y @ X )
=> ( ( ~ ( ord_less_real @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1031_antisym__conv3,axiom,
! [Y: num,X: num] :
( ~ ( ord_less_num @ Y @ X )
=> ( ( ~ ( ord_less_num @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1032_antisym__conv3,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_nat @ Y @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1033_antisym__conv3,axiom,
! [Y: int,X: int] :
( ~ ( ord_less_int @ Y @ X )
=> ( ( ~ ( ord_less_int @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1034_linorder__cases,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_1035_less__ereal_Osimps_I1_J,axiom,
! [X: real,Y: real] :
( ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ X ) @ ( extended_ereal2 @ Y ) )
= ( ord_less_real @ X @ Y ) ) ).
% less_ereal.simps(1)
thf(fact_1036_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1037_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1038_or__int__code_I2_J,axiom,
! [I: int] :
( ( bit_se1409905431419307370or_int @ I @ zero_zero_int )
= I ) ).
% or_int_code(2)
thf(fact_1039_or__int__code_I1_J,axiom,
! [J: int] :
( ( bit_se1409905431419307370or_int @ zero_zero_int @ J )
= J ) ).
% or_int_code(1)
thf(fact_1040_ereal__le__less,axiom,
! [Y: real,A: extended_ereal,X: real] :
( ( ord_le1083603963089353582_ereal @ ( extended_ereal2 @ Y ) @ A )
=> ( ( ord_less_real @ X @ Y )
=> ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ X ) @ A ) ) ) ).
% ereal_le_less
thf(fact_1041_le__ereal__less,axiom,
! [A: extended_ereal,X: real,Y: real] :
( ( ord_le1083603963089353582_ereal @ A @ ( extended_ereal2 @ X ) )
=> ( ( ord_less_real @ X @ Y )
=> ( ord_le1188267648640031866_ereal @ A @ ( extended_ereal2 @ Y ) ) ) ) ).
% le_ereal_less
thf(fact_1042_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ Z )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% int_one_le_iff_zero_less
thf(fact_1043_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1044_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1045_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y5: real] :
( ( ord_less_real @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_1046_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
& ( M2 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_1047_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_1048_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_1049_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_1050_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_1051_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_1052_ereal__dense2,axiom,
! [X: extended_ereal,Y: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ X @ Y )
=> ? [Z4: real] :
( ( ord_le1188267648640031866_ereal @ X @ ( extended_ereal2 @ Z4 ) )
& ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ Z4 ) @ Y ) ) ) ).
% ereal_dense2
thf(fact_1053_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1054_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1055_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1056_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1057_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1058_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1059_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1060_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1061_less__eq__ereal__def,axiom,
( ord_le1083603963089353582_ereal
= ( ^ [X2: extended_ereal,Y5: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% less_eq_ereal_def
thf(fact_1062_ereal__add__strict__mono2,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal,D: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ A @ B )
=> ( ( ord_le1188267648640031866_ereal @ C @ D )
=> ( ord_le1188267648640031866_ereal @ ( plus_p7876563987511257093_ereal @ A @ C ) @ ( plus_p7876563987511257093_ereal @ B @ D ) ) ) ) ).
% ereal_add_strict_mono2
thf(fact_1063_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_1064_XOR__lower,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X @ Y ) ) ) ) ).
% XOR_lower
thf(fact_1065_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1066_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1067_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_1068_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_1069_ereal__of__enat__mult,axiom,
! [M: extended_enat,N: extended_enat] :
( ( extend916958517839893267f_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( times_7703590493115627913_ereal @ ( extend916958517839893267f_enat @ M ) @ ( extend916958517839893267f_enat @ N ) ) ) ).
% ereal_of_enat_mult
thf(fact_1070_ereal__of__enat__add,axiom,
! [M: extended_enat,N: extended_enat] :
( ( extend916958517839893267f_enat @ ( plus_p3455044024723400733d_enat @ M @ N ) )
= ( plus_p7876563987511257093_ereal @ ( extend916958517839893267f_enat @ M ) @ ( extend916958517839893267f_enat @ N ) ) ) ).
% ereal_of_enat_add
thf(fact_1071_le__imp__0__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).
% le_imp_0_less
thf(fact_1072_ereal__less__le,axiom,
! [Y: real,A: extended_ereal,X: real] :
( ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ Y ) @ A )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ X ) @ A ) ) ) ).
% ereal_less_le
thf(fact_1073_less__ereal__le,axiom,
! [A: extended_ereal,X: real,Y: real] :
( ( ord_le1188267648640031866_ereal @ A @ ( extended_ereal2 @ X ) )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ord_le1188267648640031866_ereal @ A @ ( extended_ereal2 @ Y ) ) ) ) ).
% less_ereal_le
thf(fact_1074_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M3: nat,N3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ( ord_less_nat @ ( F @ M3 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1075_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1076_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_1077_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1078_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% nonneg_int_cases
thf(fact_1079_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1080_add1__zle__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
= ( ord_less_int @ W @ Z ) ) ).
% add1_zle_eq
thf(fact_1081_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ Z )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).
% zless_imp_add1_zle
thf(fact_1082_int__less__real__le,axiom,
( ord_less_int
= ( ^ [N2: int,M2: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) @ ( ring_1_of_int_real @ M2 ) ) ) ) ).
% int_less_real_le
thf(fact_1083_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N2: nat,M2: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ).
% nat_less_real_le
thf(fact_1084_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N2: nat,M2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M2 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_1085_int__le__real__less,axiom,
( ord_less_eq_int
= ( ^ [N2: int,M2: int] : ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M2 ) @ one_one_real ) ) ) ) ).
% int_le_real_less
thf(fact_1086_floor__eq,axiom,
! [N: int,X: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= N ) ) ) ).
% floor_eq
thf(fact_1087_real__of__int__floor__add__one__gt,axiom,
! [R: real] : ( ord_less_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_1088_floor__eq2,axiom,
! [N: int,X: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= N ) ) ) ).
% floor_eq2
thf(fact_1089_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_1090_ereal__eq__0_I2_J,axiom,
! [R: real] :
( ( zero_z2744965634713055877_ereal
= ( extended_ereal2 @ R ) )
= ( R = zero_zero_real ) ) ).
% ereal_eq_0(2)
thf(fact_1091_ereal__eq__0_I1_J,axiom,
! [R: real] :
( ( ( extended_ereal2 @ R )
= zero_z2744965634713055877_ereal )
= ( R = zero_zero_real ) ) ).
% ereal_eq_0(1)
thf(fact_1092_ereal__times__divide__eq__left,axiom,
! [B: extended_ereal,C: extended_ereal,A: extended_ereal] :
( ( times_7703590493115627913_ereal @ ( divide8893690120176169980_ereal @ B @ C ) @ A )
= ( divide8893690120176169980_ereal @ ( times_7703590493115627913_ereal @ B @ A ) @ C ) ) ).
% ereal_times_divide_eq_left
thf(fact_1093_ereal__zero__times,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ( times_7703590493115627913_ereal @ A @ B )
= zero_z2744965634713055877_ereal )
= ( ( A = zero_z2744965634713055877_ereal )
| ( B = zero_z2744965634713055877_ereal ) ) ) ).
% ereal_zero_times
thf(fact_1094_ereal__zero__mult,axiom,
! [A: extended_ereal] :
( ( times_7703590493115627913_ereal @ zero_z2744965634713055877_ereal @ A )
= zero_z2744965634713055877_ereal ) ).
% ereal_zero_mult
thf(fact_1095_ereal__mult__zero,axiom,
! [A: extended_ereal] :
( ( times_7703590493115627913_ereal @ A @ zero_z2744965634713055877_ereal )
= zero_z2744965634713055877_ereal ) ).
% ereal_mult_zero
thf(fact_1096_abs__ereal__zero,axiom,
( ( abs_ab7465543570706387889_ereal @ zero_z2744965634713055877_ereal )
= zero_z2744965634713055877_ereal ) ).
% abs_ereal_zero
thf(fact_1097_ereal__divide__one,axiom,
! [X: extended_ereal] :
( ( divide8893690120176169980_ereal @ X @ one_on4623092294121504201_ereal )
= X ) ).
% ereal_divide_one
thf(fact_1098_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_1099_ereal__of__enat__zero,axiom,
( ( extend916958517839893267f_enat @ zero_z5237406670263579293d_enat )
= zero_z2744965634713055877_ereal ) ).
% ereal_of_enat_zero
thf(fact_1100_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_1101_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_1102_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_1103_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_1104_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_1105_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1106_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1107_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_1108_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_1109_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_1110_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_1111_ereal__0__plus,axiom,
! [X: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ ( extended_ereal2 @ zero_zero_real ) @ X )
= X ) ).
% ereal_0_plus
thf(fact_1112_plus__ereal__0,axiom,
! [X: extended_ereal] :
( ( plus_p7876563987511257093_ereal @ X @ ( extended_ereal2 @ zero_zero_real ) )
= X ) ).
% plus_ereal_0
thf(fact_1113_log__one,axiom,
! [A: real] :
( ( log @ A @ one_one_real )
= zero_zero_real ) ).
% log_one
thf(fact_1114_abs__ereal__ge0,axiom,
! [X: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ X )
=> ( ( abs_ab7465543570706387889_ereal @ X )
= X ) ) ).
% abs_ereal_ge0
thf(fact_1115_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1116_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_1117_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_1118_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1119_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_1120_ereal__less__eq_I4_J,axiom,
! [R: real] :
( ( ord_le1083603963089353582_ereal @ ( extended_ereal2 @ R ) @ zero_z2744965634713055877_ereal )
= ( ord_less_eq_real @ R @ zero_zero_real ) ) ).
% ereal_less_eq(4)
thf(fact_1121_ereal__less__eq_I5_J,axiom,
! [R: real] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( extended_ereal2 @ R ) )
= ( ord_less_eq_real @ zero_zero_real @ R ) ) ).
% ereal_less_eq(5)
thf(fact_1122_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_1123_ereal__less_I2_J,axiom,
! [R: real] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ ( extended_ereal2 @ R ) )
= ( ord_less_real @ zero_zero_real @ R ) ) ).
% ereal_less(2)
thf(fact_1124_ereal__less_I1_J,axiom,
! [R: real] :
( ( ord_le1188267648640031866_ereal @ ( extended_ereal2 @ R ) @ zero_z2744965634713055877_ereal )
= ( ord_less_real @ R @ zero_zero_real ) ) ).
% ereal_less(1)
thf(fact_1125_log__eq__one,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ A )
= one_one_real ) ) ) ).
% log_eq_one
thf(fact_1126_log__less__cancel__iff,axiom,
! [A: real,X: real,Y: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( log @ A @ X ) @ ( log @ A @ Y ) )
= ( ord_less_real @ X @ Y ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_1127_log__less__one__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ A @ X ) @ one_one_real )
= ( ord_less_real @ X @ A ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_1128_one__less__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ ( log @ A @ X ) )
= ( ord_less_real @ A @ X ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_1129_log__less__zero__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ A @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_1130_zero__less__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X ) )
= ( ord_less_real @ one_one_real @ X ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_1131_ereal__of__enat__ge__zero__cancel__iff,axiom,
! [N: extended_enat] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( extend916958517839893267f_enat @ N ) )
= ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ) ).
% ereal_of_enat_ge_zero_cancel_iff
thf(fact_1132_ereal__of__enat__gt__zero__cancel__iff,axiom,
! [N: extended_enat] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ ( extend916958517839893267f_enat @ N ) )
= ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ).
% ereal_of_enat_gt_zero_cancel_iff
thf(fact_1133_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_1134_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_1135_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_1136_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_1137_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_1138_log__le__cancel__iff,axiom,
! [A: real,X: real,Y: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ ( log @ A @ Y ) )
= ( ord_less_eq_real @ X @ Y ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_1139_log__le__one__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ A ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_1140_one__le__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X ) )
= ( ord_less_eq_real @ A @ X ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_1141_log__le__zero__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_1142_zero__le__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_1143_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_1144_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_1145_floor__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_divide_eq_div_numeral
thf(fact_1146_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_1147_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_1148_floor__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).
% floor_one_divide_eq_div_numeral
thf(fact_1149_zero__le__divide__ereal,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( divide8893690120176169980_ereal @ A @ B ) ) ) ) ).
% zero_le_divide_ereal
thf(fact_1150_ereal__divide__right__mono,axiom,
! [X: extended_ereal,Y: extended_ereal,Z: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ X @ Y )
=> ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ Z )
=> ( ord_le1083603963089353582_ereal @ ( divide8893690120176169980_ereal @ X @ Z ) @ ( divide8893690120176169980_ereal @ Y @ Z ) ) ) ) ).
% ereal_divide_right_mono
thf(fact_1151_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_1152_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N3: extended_enat] :
( ! [M4: extended_enat] :
( ( ord_le72135733267957522d_enat @ M4 @ N3 )
=> ( P @ M4 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_1153_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_7803423173614009249d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
| ( N = zero_z5237406670263579293d_enat ) ) ) ).
% imult_is_0
thf(fact_1154_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_1155_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
& ( N = zero_z5237406670263579293d_enat ) ) ) ).
% iadd_is_0
thf(fact_1156_zero__ereal__def,axiom,
( zero_z2744965634713055877_ereal
= ( extended_ereal2 @ zero_zero_real ) ) ).
% zero_ereal_def
thf(fact_1157_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_1158_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_1159_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_1160_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_1161_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_1162_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_1163_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_1164_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_1165_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less_nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_1166_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_1167_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_1168_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M4: nat] :
( ( ord_less_nat @ M4 @ N3 )
=> ( P @ M4 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_1169_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N3 )
& ~ ( P @ M4 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_1170_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N3 )
& ~ ( P @ M4 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_1171_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_1172_real__of__int__div4,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).
% real_of_int_div4
thf(fact_1173_ereal__divide__left__mono,axiom,
! [Y: extended_ereal,X: extended_ereal,Z: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ Y @ X )
=> ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ Z )
=> ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ ( times_7703590493115627913_ereal @ X @ Y ) )
=> ( ord_le1083603963089353582_ereal @ ( divide8893690120176169980_ereal @ Z @ X ) @ ( divide8893690120176169980_ereal @ Z @ Y ) ) ) ) ) ).
% ereal_divide_left_mono
thf(fact_1174_log__base__change,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ B @ X )
= ( divide_divide_real @ ( log @ A @ X ) @ ( log @ A @ B ) ) ) ) ) ).
% log_base_change
thf(fact_1175_ereal__times__divide__eq,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( times_7703590493115627913_ereal @ A @ ( divide8893690120176169980_ereal @ B @ C ) )
= ( divide8893690120176169980_ereal @ ( times_7703590493115627913_ereal @ A @ B ) @ C ) ) ).
% ereal_times_divide_eq
thf(fact_1176_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_1177_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_1178_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_1179_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_1180_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K3 )
=> ~ ( P @ I3 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_1181_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1182_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1183_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1184_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1185_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_1186_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_1187_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_1188_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_1189_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_1190_ereal__right__mult__cong,axiom,
! [C: extended_ereal,D: extended_ereal,A: extended_ereal,B: extended_ereal] :
( ( C = D )
=> ( ( ( D != zero_z2744965634713055877_ereal )
=> ( A = B ) )
=> ( ( times_7703590493115627913_ereal @ C @ A )
= ( times_7703590493115627913_ereal @ D @ B ) ) ) ) ).
% ereal_right_mult_cong
thf(fact_1191_ereal__left__mult__cong,axiom,
! [C: extended_ereal,D: extended_ereal,A: extended_ereal,B: extended_ereal] :
( ( C = D )
=> ( ( ( D != zero_z2744965634713055877_ereal )
=> ( A = B ) )
=> ( ( times_7703590493115627913_ereal @ A @ C )
= ( times_7703590493115627913_ereal @ B @ D ) ) ) ) ).
% ereal_left_mult_cong
thf(fact_1192_ereal__mult__less__0__iff,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ ( times_7703590493115627913_ereal @ A @ B ) @ zero_z2744965634713055877_ereal )
= ( ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ A )
& ( ord_le1188267648640031866_ereal @ B @ zero_z2744965634713055877_ereal ) )
| ( ( ord_le1188267648640031866_ereal @ A @ zero_z2744965634713055877_ereal )
& ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ B ) ) ) ) ).
% ereal_mult_less_0_iff
thf(fact_1193_ereal__zero__less__0__iff,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ ( times_7703590493115627913_ereal @ A @ B ) )
= ( ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ A )
& ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ B ) )
| ( ( ord_le1188267648640031866_ereal @ A @ zero_z2744965634713055877_ereal )
& ( ord_le1188267648640031866_ereal @ B @ zero_z2744965634713055877_ereal ) ) ) ) ).
% ereal_zero_less_0_iff
thf(fact_1194_ereal__mult__mono__strict,axiom,
! [B: extended_ereal,C: extended_ereal,A: extended_ereal,D: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ C )
=> ( ( ord_le1188267648640031866_ereal @ A @ B )
=> ( ( ord_le1188267648640031866_ereal @ C @ D )
=> ( ord_le1188267648640031866_ereal @ ( times_7703590493115627913_ereal @ A @ C ) @ ( times_7703590493115627913_ereal @ B @ D ) ) ) ) ) ) ).
% ereal_mult_mono_strict
thf(fact_1195_ereal__mult__mono__strict_H,axiom,
! [A: extended_ereal,C: extended_ereal,B: extended_ereal,D: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ C )
=> ( ( ord_le1188267648640031866_ereal @ A @ B )
=> ( ( ord_le1188267648640031866_ereal @ C @ D )
=> ( ord_le1188267648640031866_ereal @ ( times_7703590493115627913_ereal @ A @ C ) @ ( times_7703590493115627913_ereal @ B @ D ) ) ) ) ) ) ).
% ereal_mult_mono_strict'
thf(fact_1196_zdiv__int,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% zdiv_int
thf(fact_1197_ereal__0__less__1,axiom,
ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ one_on4623092294121504201_ereal ).
% ereal_0_less_1
thf(fact_1198_ereal__one__not__less__zero__ereal,axiom,
~ ( ord_le1188267648640031866_ereal @ one_on4623092294121504201_ereal @ zero_z2744965634713055877_ereal ) ).
% ereal_one_not_less_zero_ereal
thf(fact_1199_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_1200_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_1201_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ N @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_1202_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_1203_div__less__iff__less__mult,axiom,
! [Q: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_1204_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_1205_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_1206_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M3: nat] :
( ( ord_less_nat @ zero_zero_nat @ M3 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M3 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_1207_floor__divide__real__eq__div,axiom,
! [B: int,A: real] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
= ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).
% floor_divide_real_eq_div
thf(fact_1208_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_1209_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_1210_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_1211_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
= ( ord_less_eq_int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_1212_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_1213_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_1214_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
= ( ( K = zero_zero_int )
| ( L = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_1215_zdiv__mono2__neg,axiom,
! [A: int,B5: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B5 )
=> ( ( ord_less_eq_int @ B5 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B5 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_1216_zdiv__mono1__neg,axiom,
! [A: int,A5: int,B: int] :
( ( ord_less_eq_int @ A @ A5 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_1217_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide_int @ I @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_1218_zdiv__mono2,axiom,
! [A: int,B5: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B5 )
=> ( ( ord_less_eq_int @ B5 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B5 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_1219_zdiv__mono1,axiom,
! [A: int,A5: int,B: int] :
( ( ord_less_eq_int @ A @ A5 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_1220_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_1221_zdiv__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% zdiv_zmult2_eq
thf(fact_1222_int__ops_I8_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(8)
thf(fact_1223_less__eq__div__iff__mult__less__eq,axiom,
! [Q: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q )
=> ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M @ Q ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_1224_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_1225_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_1226_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I4: nat,J3: nat] :
( ( ( ord_less_nat @ J3 @ N )
& ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) ) )
=> ( P @ I4 ) ) ) ) ) ).
% split_div
thf(fact_1227_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1228_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_1229_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_1230_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y3: real] :
? [N3: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_1231_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_1232_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_1233_ereal__mult__right__mono,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ C )
=> ( ord_le1083603963089353582_ereal @ ( times_7703590493115627913_ereal @ A @ C ) @ ( times_7703590493115627913_ereal @ B @ C ) ) ) ) ).
% ereal_mult_right_mono
thf(fact_1234_ereal__mult__left__mono,axiom,
! [A: extended_ereal,B: extended_ereal,C: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ C )
=> ( ord_le1083603963089353582_ereal @ ( times_7703590493115627913_ereal @ C @ A ) @ ( times_7703590493115627913_ereal @ C @ B ) ) ) ) ).
% ereal_mult_left_mono
thf(fact_1235_ereal__zero__le__0__iff,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( times_7703590493115627913_ereal @ A @ B ) )
= ( ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
& ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B ) )
| ( ( ord_le1083603963089353582_ereal @ A @ zero_z2744965634713055877_ereal )
& ( ord_le1083603963089353582_ereal @ B @ zero_z2744965634713055877_ereal ) ) ) ) ).
% ereal_zero_le_0_iff
thf(fact_1236_ereal__mult__le__0__iff,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ ( times_7703590493115627913_ereal @ A @ B ) @ zero_z2744965634713055877_ereal )
= ( ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
& ( ord_le1083603963089353582_ereal @ B @ zero_z2744965634713055877_ereal ) )
| ( ( ord_le1083603963089353582_ereal @ A @ zero_z2744965634713055877_ereal )
& ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B ) ) ) ) ).
% ereal_mult_le_0_iff
thf(fact_1237_ereal__mult__mono_H,axiom,
! [A: extended_ereal,C: extended_ereal,B: extended_ereal,D: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ C )
=> ( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ( ord_le1083603963089353582_ereal @ C @ D )
=> ( ord_le1083603963089353582_ereal @ ( times_7703590493115627913_ereal @ A @ C ) @ ( times_7703590493115627913_ereal @ B @ D ) ) ) ) ) ) ).
% ereal_mult_mono'
thf(fact_1238_ereal__mult__mono,axiom,
! [B: extended_ereal,C: extended_ereal,A: extended_ereal,D: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ C )
=> ( ( ord_le1083603963089353582_ereal @ A @ B )
=> ( ( ord_le1083603963089353582_ereal @ C @ D )
=> ( ord_le1083603963089353582_ereal @ ( times_7703590493115627913_ereal @ A @ C ) @ ( times_7703590493115627913_ereal @ B @ D ) ) ) ) ) ) ).
% ereal_mult_mono
thf(fact_1239_ereal__0__le__mult,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( times_7703590493115627913_ereal @ A @ B ) ) ) ) ).
% ereal_0_le_mult
thf(fact_1240_ereal__le__add__self,axiom,
! [Y: extended_ereal,X: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ Y )
=> ( ord_le1083603963089353582_ereal @ X @ ( plus_p7876563987511257093_ereal @ X @ Y ) ) ) ).
% ereal_le_add_self
thf(fact_1241_ereal__le__add__mono1,axiom,
! [X: extended_ereal,Y: extended_ereal,Z: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ X @ Y )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ Z )
=> ( ord_le1083603963089353582_ereal @ X @ ( plus_p7876563987511257093_ereal @ Y @ Z ) ) ) ) ).
% ereal_le_add_mono1
thf(fact_1242_ereal__le__add__mono2,axiom,
! [X: extended_ereal,Z: extended_ereal,Y: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ X @ Z )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ Y )
=> ( ord_le1083603963089353582_ereal @ X @ ( plus_p7876563987511257093_ereal @ Y @ Z ) ) ) ) ).
% ereal_le_add_mono2
thf(fact_1243_ereal__le__add__self2,axiom,
! [Y: extended_ereal,X: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ Y )
=> ( ord_le1083603963089353582_ereal @ X @ ( plus_p7876563987511257093_ereal @ Y @ X ) ) ) ).
% ereal_le_add_self2
thf(fact_1244_ereal__add__nonneg__eq__0__iff,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ( ( plus_p7876563987511257093_ereal @ A @ B )
= zero_z2744965634713055877_ereal )
= ( ( A = zero_z2744965634713055877_ereal )
& ( B = zero_z2744965634713055877_ereal ) ) ) ) ) ).
% ereal_add_nonneg_eq_0_iff
thf(fact_1245_ereal__le__epsilon,axiom,
! [X: extended_ereal,Y: extended_ereal] :
( ! [E2: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ E2 )
=> ( ord_le1083603963089353582_ereal @ X @ ( plus_p7876563987511257093_ereal @ Y @ E2 ) ) )
=> ( ord_le1083603963089353582_ereal @ X @ Y ) ) ).
% ereal_le_epsilon
thf(fact_1246_abs__ereal__pos,axiom,
! [X: extended_ereal] : ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( abs_ab7465543570706387889_ereal @ X ) ) ).
% abs_ereal_pos
thf(fact_1247_zero__less__one__ereal,axiom,
ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ one_on4623092294121504201_ereal ).
% zero_less_one_ereal
thf(fact_1248_one__not__le__zero__ereal,axiom,
~ ( ord_le1083603963089353582_ereal @ one_on4623092294121504201_ereal @ zero_z2744965634713055877_ereal ) ).
% one_not_le_zero_ereal
thf(fact_1249_ereal__of__enat__nonneg,axiom,
! [N: extended_enat] : ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( extend916958517839893267f_enat @ N ) ) ).
% ereal_of_enat_nonneg
thf(fact_1250_real__of__nat__div4,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% real_of_nat_div4
thf(fact_1251_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1252_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_1253_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1254_ereal__le__epsilon2,axiom,
! [X: extended_ereal,Y: extended_ereal] :
( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ( ord_le1083603963089353582_ereal @ X @ ( plus_p7876563987511257093_ereal @ Y @ ( extended_ereal2 @ E2 ) ) ) )
=> ( ord_le1083603963089353582_ereal @ X @ Y ) ) ).
% ereal_le_epsilon2
thf(fact_1255_ereal__right__distrib,axiom,
! [A: extended_ereal,B: extended_ereal,R: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ( times_7703590493115627913_ereal @ R @ ( plus_p7876563987511257093_ereal @ A @ B ) )
= ( plus_p7876563987511257093_ereal @ ( times_7703590493115627913_ereal @ R @ A ) @ ( times_7703590493115627913_ereal @ R @ B ) ) ) ) ) ).
% ereal_right_distrib
thf(fact_1256_ereal__left__distrib,axiom,
! [A: extended_ereal,B: extended_ereal,R: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A )
=> ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ B )
=> ( ( times_7703590493115627913_ereal @ ( plus_p7876563987511257093_ereal @ A @ B ) @ R )
= ( plus_p7876563987511257093_ereal @ ( times_7703590493115627913_ereal @ A @ R ) @ ( times_7703590493115627913_ereal @ B @ R ) ) ) ) ) ).
% ereal_left_distrib
thf(fact_1257_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I4: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
=> ( P @ I4 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I4: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
=> ( P @ I4 ) ) ) ) ) ).
% split_zdiv
thf(fact_1258_int__div__neg__eq,axiom,
! [A: int,B: int,Q: int,R: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
=> ( ( ord_less_eq_int @ R @ zero_zero_int )
=> ( ( ord_less_int @ B @ R )
=> ( ( divide_divide_int @ A @ B )
= Q ) ) ) ) ).
% int_div_neg_eq
thf(fact_1259_int__div__pos__eq,axiom,
! [A: int,B: int,Q: int,R: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R )
=> ( ( ord_less_int @ R @ B )
=> ( ( divide_divide_int @ A @ B )
= Q ) ) ) ) ).
% int_div_pos_eq
thf(fact_1260_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_1261_log__mult,axiom,
! [A: real,X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( log @ A @ ( times_times_real @ X @ Y ) )
= ( plus_plus_real @ ( log @ A @ X ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).
% log_mult
thf(fact_1262_distrib__left__ereal__nn,axiom,
! [C: real,X: extended_ereal,Y: extended_ereal] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( times_7703590493115627913_ereal @ ( plus_p7876563987511257093_ereal @ X @ Y ) @ ( extended_ereal2 @ C ) )
= ( plus_p7876563987511257093_ereal @ ( times_7703590493115627913_ereal @ X @ ( extended_ereal2 @ C ) ) @ ( times_7703590493115627913_ereal @ Y @ ( extended_ereal2 @ C ) ) ) ) ) ).
% distrib_left_ereal_nn
thf(fact_1263_pos__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% pos_zdiv_mult_2
thf(fact_1264_neg__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).
% neg_zdiv_mult_2
thf(fact_1265_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_1266_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_1267_div__mult2__eq,axiom,
! [M: nat,N: nat,Q: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) ).
% div_mult2_eq
thf(fact_1268_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_1269_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_1270_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).
% div_times_less_eq_dividend
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_le1083603963089353582_ereal @ ( prefix3213528784805800034_count @ ( prefix_Free_Code_I_e @ n ) ) @ ( extended_ereal2 @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( plus_plus_int @ r @ one_one_int ) ) ) ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
%------------------------------------------------------------------------------