TPTP Problem File: SLH0809^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Digit_Expansions/0000_Bits_Digits/prob_00049_001669__5475132_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1323 ( 735 unt;  55 typ;   0 def)
%            Number of atoms       : 3023 (1338 equ;   0 cnn)
%            Maximal formula atoms :    6 (   2 avg)
%            Number of connectives : 9491 ( 312   ~;  70   |; 129   &;8068   @)
%                                         (   0 <=>; 912  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   5 avg)
%            Number of types       :    5 (   4 usr)
%            Number of type conns  :  171 ( 171   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   54 (  51 usr;  10 con; 0-3 aty)
%            Number of variables   : 2600 (  58   ^;2433   !; 109   ?;2600   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:14:58.031
%------------------------------------------------------------------------------
% Could-be-implicit typings (4)
thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (51)
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bits__Digits_Onth__bit,type,
    bits_nth_bit: nat > nat > nat ).

thf(sy_c_Bits__Digits_Onth__digit,type,
    bits_nth_digit: nat > nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Int__Oint,type,
    comm_s627426869589437848ar_int: char > int ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Int__Oint,type,
    unique3093701091438710909of_int: int > char ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_v_c,type,
    c: nat ).

thf(sy_v_k,type,
    k: nat ).

thf(sy_v_x____,type,
    x: nat ).

% Relevant facts (1262)
thf(fact_0__092_060open_062k_A_060_Ac_092_060close_062,axiom,
    ord_less_nat @ k @ c ).

% \<open>k < c\<close>
thf(fact_1_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_2_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_3_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_4_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_5_cong__exp__iff__simps_I6_J,axiom,
    ! [Q: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_6_cong__exp__iff__simps_I6_J,axiom,
    ! [Q: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_7_nth__digit__base2__equiv,axiom,
    ( bits_nth_bit
    = ( ^ [A: nat,K: nat] : ( bits_nth_digit @ A @ K @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% nth_digit_base2_equiv
thf(fact_8_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_9_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_10_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_11_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_12_mod__mod__trivial,axiom,
    ! [A2: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A2 @ B ) @ B )
      = ( modulo_modulo_nat @ A2 @ B ) ) ).

% mod_mod_trivial
thf(fact_13_mod__mod__trivial,axiom,
    ! [A2: int,B: int] :
      ( ( modulo_modulo_int @ ( modulo_modulo_int @ A2 @ B ) @ B )
      = ( modulo_modulo_int @ A2 @ B ) ) ).

% mod_mod_trivial
thf(fact_14_verit__eq__simplify_I8_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( ( bit0 @ X2 )
        = ( bit0 @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% verit_eq_simplify(8)
thf(fact_15_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_16_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_17_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_18_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_19_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_20_mod__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = M ) ) ).

% mod_less
thf(fact_21_verit__comp__simplify1_I1_J,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_22_verit__comp__simplify1_I1_J,axiom,
    ! [A2: num] :
      ~ ( ord_less_num @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_23_verit__comp__simplify1_I1_J,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_24_verit__eq__simplify_I10_J,axiom,
    ! [X2: num] :
      ( one
     != ( bit0 @ X2 ) ) ).

% verit_eq_simplify(10)
thf(fact_25_power__mod,axiom,
    ! [A2: nat,B: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A2 @ B ) @ N ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A2 @ N ) @ B ) ) ).

% power_mod
thf(fact_26_power__mod,axiom,
    ! [A2: int,B: int,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A2 @ B ) @ N ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A2 @ N ) @ B ) ) ).

% power_mod
thf(fact_27_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_28_nth__bit__def,axiom,
    ( bits_nth_bit
    = ( ^ [Num: nat,K: nat] : ( modulo_modulo_nat @ ( divide_divide_nat @ Num @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% nth_bit_def
thf(fact_29_dbl__simps_I5_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K2 ) )
      = ( numeral_numeral_int @ ( bit0 @ K2 ) ) ) ).

% dbl_simps(5)
thf(fact_30_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_31_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_32_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_33_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_34_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_35_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_36_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_37_char__of__quasi__inj,axiom,
    ! [M: nat,N: nat] :
      ( ( ( unique3096191561947761185of_nat @ M )
        = ( unique3096191561947761185of_nat @ N ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) )
        = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% char_of_quasi_inj
thf(fact_38_char__of__quasi__inj,axiom,
    ! [M: int,N: int] :
      ( ( ( unique3093701091438710909of_int @ M )
        = ( unique3093701091438710909of_int @ N ) )
      = ( ( modulo_modulo_int @ M @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) )
        = ( modulo_modulo_int @ N @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% char_of_quasi_inj
thf(fact_39_char__of__mod__256,axiom,
    ! [N: nat] :
      ( ( unique3096191561947761185of_nat @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
      = ( unique3096191561947761185of_nat @ N ) ) ).

% char_of_mod_256
thf(fact_40_char__of__mod__256,axiom,
    ! [N: int] :
      ( ( unique3093701091438710909of_int @ ( modulo_modulo_int @ N @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
      = ( unique3093701091438710909of_int @ N ) ) ).

% char_of_mod_256
thf(fact_41_even__mod__2__iff,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) ) ).

% even_mod_2_iff
thf(fact_42_even__mod__2__iff,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) ) ).

% even_mod_2_iff
thf(fact_43_of__char__mod__256,axiom,
    ! [C: char] :
      ( ( modulo_modulo_int @ ( comm_s627426869589437848ar_int @ C ) @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) )
      = ( comm_s627426869589437848ar_int @ C ) ) ).

% of_char_mod_256
thf(fact_44_of__char__mod__256,axiom,
    ! [C: char] :
      ( ( modulo_modulo_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) )
      = ( comm_s629917340098488124ar_nat @ C ) ) ).

% of_char_mod_256
thf(fact_45_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_46_power__numeral,axiom,
    ! [K2: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K2 ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K2 @ L ) ) ) ).

% power_numeral
thf(fact_47_power__one__right,axiom,
    ! [A2: nat] :
      ( ( power_power_nat @ A2 @ one_one_nat )
      = A2 ) ).

% power_one_right
thf(fact_48_power__one__right,axiom,
    ! [A2: int] :
      ( ( power_power_int @ A2 @ one_one_nat )
      = A2 ) ).

% power_one_right
thf(fact_49_of__char__eq__iff,axiom,
    ! [C: char,D: char] :
      ( ( ( comm_s629917340098488124ar_nat @ C )
        = ( comm_s629917340098488124ar_nat @ D ) )
      = ( C = D ) ) ).

% of_char_eq_iff
thf(fact_50_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_51_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_52_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_53_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_54_char__of__nat,axiom,
    ! [N: nat] :
      ( ( unique3093701091438710909of_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( unique3096191561947761185of_nat @ N ) ) ).

% char_of_nat
thf(fact_55_char__of__char,axiom,
    ! [C: char] :
      ( ( unique3096191561947761185of_nat @ ( comm_s629917340098488124ar_nat @ C ) )
      = C ) ).

% char_of_char
thf(fact_56_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_57_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_58_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_59_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_60_power__inject__exp,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ( power_power_nat @ A2 @ M )
          = ( power_power_nat @ A2 @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_61_power__inject__exp,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ( power_power_int @ A2 @ M )
          = ( power_power_int @ A2 @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_62_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ N ) ) ).

% of_nat_numeral
thf(fact_63_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% of_nat_numeral
thf(fact_64_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_65_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_66_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_67_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_68_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_69_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_70_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_71_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_72_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_73_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_74_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_75_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_76_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_77_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_78_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_79_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_80_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_81_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_82_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_83_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = ( semiri1316708129612266289at_nat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_84_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N: nat,Y: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
        = ( semiri1314217659103216013at_int @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_85_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_86_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_87_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_88_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_89_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_90_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_91_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_92_of__char__of,axiom,
    ! [A2: int] :
      ( ( comm_s627426869589437848ar_int @ ( unique3093701091438710909of_int @ A2 ) )
      = ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% of_char_of
thf(fact_93_of__char__of,axiom,
    ! [A2: nat] :
      ( ( comm_s629917340098488124ar_nat @ ( unique3096191561947761185of_nat @ A2 ) )
      = ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% of_char_of
thf(fact_94_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_95_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_96_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_97_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_98_of__char__eqI,axiom,
    ! [C: char,D: char] :
      ( ( ( comm_s629917340098488124ar_nat @ C )
        = ( comm_s629917340098488124ar_nat @ D ) )
     => ( C = D ) ) ).

% of_char_eqI
thf(fact_99_of__nat__of__char,axiom,
    ! [C: char] :
      ( ( semiri1314217659103216013at_int @ ( comm_s629917340098488124ar_nat @ C ) )
      = ( comm_s627426869589437848ar_int @ C ) ) ).

% of_nat_of_char
thf(fact_100_of__nat__of__char,axiom,
    ! [C: char] :
      ( ( semiri1316708129612266289at_nat @ ( comm_s629917340098488124ar_nat @ C ) )
      = ( comm_s629917340098488124ar_nat @ C ) ) ).

% of_nat_of_char
thf(fact_101_div__power,axiom,
    ! [B: nat,A2: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A2 )
     => ( ( power_power_nat @ ( divide_divide_nat @ A2 @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_102_div__power,axiom,
    ! [B: int,A2: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A2 )
     => ( ( power_power_int @ ( divide_divide_int @ A2 @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_103_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_104_dvd__power__same,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_105_dvd__power__same,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_106_power__gt1,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_107_power__gt1,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A2 @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_108_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_109_dvd__mod,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ M )
     => ( ( dvd_dvd_nat @ K2 @ N )
       => ( dvd_dvd_nat @ K2 @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_110_dvd__mod,axiom,
    ! [K2: int,M: int,N: int] :
      ( ( dvd_dvd_int @ K2 @ M )
     => ( ( dvd_dvd_int @ K2 @ N )
       => ( dvd_dvd_int @ K2 @ ( modulo_modulo_int @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_111_mod__mod__cancel,axiom,
    ! [C: nat,B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A2 @ B ) @ C )
        = ( modulo_modulo_nat @ A2 @ C ) ) ) ).

% mod_mod_cancel
thf(fact_112_mod__mod__cancel,axiom,
    ! [C: int,B: int,A2: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( modulo_modulo_int @ ( modulo_modulo_int @ A2 @ B ) @ C )
        = ( modulo_modulo_int @ A2 @ C ) ) ) ).

% mod_mod_cancel
thf(fact_113_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_114_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_115_zmod__int,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% zmod_int
thf(fact_116_int__ops_I9_J,axiom,
    ! [A2: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A2 @ B ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(9)
thf(fact_117_mod__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% mod_Suc_eq
thf(fact_118_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).

% mod_Suc_Suc_eq
thf(fact_119_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_120_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_121_odd__iff__mod__2__eq__one,axiom,
    ! [A2: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) )
      = ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_122_odd__iff__mod__2__eq__one,axiom,
    ! [A2: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) )
      = ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_123_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mod
thf(fact_124_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mod
thf(fact_125_power__less__imp__less__exp,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ord_less_nat @ ( power_power_nat @ A2 @ M ) @ ( power_power_nat @ A2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_126_power__less__imp__less__exp,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ord_less_int @ ( power_power_int @ A2 @ M ) @ ( power_power_int @ A2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_127_power__strict__increasing,axiom,
    ! [N: nat,N2: nat,A2: nat] :
      ( ( ord_less_nat @ N @ N2 )
     => ( ( ord_less_nat @ one_one_nat @ A2 )
       => ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ A2 @ N2 ) ) ) ) ).

% power_strict_increasing
thf(fact_128_power__strict__increasing,axiom,
    ! [N: nat,N2: nat,A2: int] :
      ( ( ord_less_nat @ N @ N2 )
     => ( ( ord_less_int @ one_one_int @ A2 )
       => ( ord_less_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ A2 @ N2 ) ) ) ) ).

% power_strict_increasing
thf(fact_129_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_130_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_131_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_132_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_133_mod__induct,axiom,
    ! [P: nat > $o,N: nat,P2: nat,M: nat] :
      ( ( P @ N )
     => ( ( ord_less_nat @ N @ P2 )
       => ( ( ord_less_nat @ M @ P2 )
         => ( ! [N3: nat] :
                ( ( ord_less_nat @ N3 @ P2 )
               => ( ( P @ N3 )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N3 ) @ P2 ) ) ) )
           => ( P @ M ) ) ) ) ) ).

% mod_induct
thf(fact_134_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_135_pow_Osimps_I1_J,axiom,
    ! [X: num] :
      ( ( pow @ X @ one )
      = X ) ).

% pow.simps(1)
thf(fact_136_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_137_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_138_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_139_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_140_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_141_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_142_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_143_nth__digit__def,axiom,
    ( bits_nth_digit
    = ( ^ [Num: nat,K: nat,Base: nat] : ( modulo_modulo_nat @ ( divide_divide_nat @ Num @ ( power_power_nat @ Base @ K ) ) @ Base ) ) ) ).

% nth_digit_def
thf(fact_144_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_145_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_146_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_147_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_148_unit__div__1__div__1,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A2 ) )
        = A2 ) ) ).

% unit_div_1_div_1
thf(fact_149_unit__div__1__div__1,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ A2 @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A2 ) )
        = A2 ) ) ).

% unit_div_1_div_1
thf(fact_150_unit__div__1__unit,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A2 ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_151_unit__div__1__unit,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ A2 @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A2 ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_152_unit__div,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A2 @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_153_unit__div,axiom,
    ! [A2: int,B: int] :
      ( ( dvd_dvd_int @ A2 @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A2 @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_154_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_155_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_156_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_157_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_158_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_159_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_160_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_161_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_162_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_163_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_164_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_165_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_166_div__by__1,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ A2 @ one_one_nat )
      = A2 ) ).

% div_by_1
thf(fact_167_div__by__1,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ one_one_int )
      = A2 ) ).

% div_by_1
thf(fact_168_bits__div__by__1,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ A2 @ one_one_nat )
      = A2 ) ).

% bits_div_by_1
thf(fact_169_bits__div__by__1,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ one_one_int )
      = A2 ) ).

% bits_div_by_1
thf(fact_170_div__dvd__div,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ A2 @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A2 ) @ ( divide_divide_nat @ C @ A2 ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_171_div__dvd__div,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A2 @ B )
     => ( ( dvd_dvd_int @ A2 @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A2 ) @ ( divide_divide_int @ C @ A2 ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_172_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_173_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_174_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_175_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_176_int__if,axiom,
    ! [P: $o,A2: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B ) )
          = ( semiri1314217659103216013at_int @ A2 ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_177_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_178_zdiv__int,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% zdiv_int
thf(fact_179_int__ops_I8_J,axiom,
    ! [A2: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A2 @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(8)
thf(fact_180_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_181_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_182_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_183_dvd__refl,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ A2 @ A2 ) ).

% dvd_refl
thf(fact_184_dvd__refl,axiom,
    ! [A2: int] : ( dvd_dvd_int @ A2 @ A2 ) ).

% dvd_refl
thf(fact_185_dvd__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% dvd_trans
thf(fact_186_dvd__trans,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A2 @ B )
     => ( ( dvd_dvd_int @ B @ C )
       => ( dvd_dvd_int @ A2 @ C ) ) ) ).

% dvd_trans
thf(fact_187_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_188_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_189_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_190_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_191_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_192_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_193_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_194_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_195_one__dvd,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ one_one_nat @ A2 ) ).

% one_dvd
thf(fact_196_one__dvd,axiom,
    ! [A2: int] : ( dvd_dvd_int @ one_one_int @ A2 ) ).

% one_dvd
thf(fact_197_unit__imp__dvd,axiom,
    ! [B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A2 ) ) ).

% unit_imp_dvd
thf(fact_198_unit__imp__dvd,axiom,
    ! [B: int,A2: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A2 ) ) ).

% unit_imp_dvd
thf(fact_199_dvd__unit__imp__unit,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A2 @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_200_dvd__unit__imp__unit,axiom,
    ! [A2: int,B: int] :
      ( ( dvd_dvd_int @ A2 @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A2 @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_201_dvd__div__eq__iff,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A2 )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( ( divide_divide_nat @ A2 @ C )
            = ( divide_divide_nat @ B @ C ) )
          = ( A2 = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_202_dvd__div__eq__iff,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( dvd_dvd_int @ C @ A2 )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( ( divide_divide_int @ A2 @ C )
            = ( divide_divide_int @ B @ C ) )
          = ( A2 = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_203_dvd__div__eq__cancel,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ( divide_divide_nat @ A2 @ C )
        = ( divide_divide_nat @ B @ C ) )
     => ( ( dvd_dvd_nat @ C @ A2 )
       => ( ( dvd_dvd_nat @ C @ B )
         => ( A2 = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_204_dvd__div__eq__cancel,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( ( divide_divide_int @ A2 @ C )
        = ( divide_divide_int @ B @ C ) )
     => ( ( dvd_dvd_int @ C @ A2 )
       => ( ( dvd_dvd_int @ C @ B )
         => ( A2 = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_205_div__div__div__same,axiom,
    ! [D: nat,B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ D @ B )
     => ( ( dvd_dvd_nat @ B @ A2 )
       => ( ( divide_divide_nat @ ( divide_divide_nat @ A2 @ D ) @ ( divide_divide_nat @ B @ D ) )
          = ( divide_divide_nat @ A2 @ B ) ) ) ) ).

% div_div_div_same
thf(fact_206_div__div__div__same,axiom,
    ! [D: int,B: int,A2: int] :
      ( ( dvd_dvd_int @ D @ B )
     => ( ( dvd_dvd_int @ B @ A2 )
       => ( ( divide_divide_int @ ( divide_divide_int @ A2 @ D ) @ ( divide_divide_int @ B @ D ) )
          = ( divide_divide_int @ A2 @ B ) ) ) ) ).

% div_div_div_same
thf(fact_207_Nat_OlessE,axiom,
    ! [I: nat,K2: nat] :
      ( ( ord_less_nat @ I @ K2 )
     => ( ( K2
         != ( suc @ I ) )
       => ~ ! [J: nat] :
              ( ( ord_less_nat @ I @ J )
             => ( K2
               != ( suc @ J ) ) ) ) ) ).

% Nat.lessE
thf(fact_208_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_209_Suc__lessE,axiom,
    ! [I: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K2 )
     => ~ ! [J: nat] :
            ( ( ord_less_nat @ I @ J )
           => ( K2
             != ( suc @ J ) ) ) ) ).

% Suc_lessE
thf(fact_210_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_211_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_212_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_213_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ N )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ I2 ) ) ) ) ).

% Ex_less_Suc
thf(fact_214_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_215_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_216_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ N )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ I2 ) ) ) ) ).

% All_less_Suc
thf(fact_217_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M3: nat] :
            ( ( M
              = ( suc @ M3 ) )
            & ( ord_less_nat @ N @ M3 ) ) ) ) ).

% Suc_less_eq2
thf(fact_218_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_219_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_220_less__trans__Suc,axiom,
    ! [I: nat,J2: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ( ord_less_nat @ J2 @ K2 )
       => ( ord_less_nat @ ( suc @ I ) @ K2 ) ) ) ).

% less_trans_Suc
thf(fact_221_less__Suc__induct,axiom,
    ! [I: nat,J2: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J: nat,K3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( ord_less_nat @ J @ K3 )
               => ( ( P @ I3 @ J )
                 => ( ( P @ J @ K3 )
                   => ( P @ I3 @ K3 ) ) ) ) )
         => ( P @ I @ J2 ) ) ) ) ).

% less_Suc_induct
thf(fact_222_strict__inc__induct,axiom,
    ! [I: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ! [I3: nat] :
            ( ( J2
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_223_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_224_dvd__mod__imp__dvd,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A2 @ B ) )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( dvd_dvd_nat @ C @ A2 ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_225_dvd__mod__imp__dvd,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A2 @ B ) )
     => ( ( dvd_dvd_int @ C @ B )
       => ( dvd_dvd_int @ C @ A2 ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_226_dvd__mod__iff,axiom,
    ! [C: nat,B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A2 @ B ) )
        = ( dvd_dvd_nat @ C @ A2 ) ) ) ).

% dvd_mod_iff
thf(fact_227_dvd__mod__iff,axiom,
    ! [C: int,B: int,A2: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A2 @ B ) )
        = ( dvd_dvd_int @ C @ A2 ) ) ) ).

% dvd_mod_iff
thf(fact_228_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_229_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_230_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_231_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_232_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_233_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_234_unit__div__cancel,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A2 )
          = ( divide_divide_nat @ C @ A2 ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_235_unit__div__cancel,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A2 @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A2 )
          = ( divide_divide_int @ C @ A2 ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_236_div__unit__dvd__iff,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A2 @ B ) @ C )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_237_div__unit__dvd__iff,axiom,
    ! [B: int,A2: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A2 @ B ) @ C )
        = ( dvd_dvd_int @ A2 @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_238_dvd__div__unit__iff,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A2 @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_239_dvd__div__unit__iff,axiom,
    ! [B: int,A2: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A2 @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A2 @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_240_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_241_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_242_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_243_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_244_bit__eq__rec,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_245_bit__eq__rec,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A: int,B2: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_246_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_247_int__dvd__int__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% int_dvd_int_iff
thf(fact_248_even__even__mod__4__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_249_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_250_even__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A2 @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_251_even__power,axiom,
    ! [A2: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A2 @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_252_power__less__zero__eq__numeral,axiom,
    ! [A2: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A2 @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_253_power__less__zero__eq,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A2 @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A2 @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_254_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_255_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_256_neg__equal__iff__equal,axiom,
    ! [A2: int,B: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = ( uminus_uminus_int @ B ) )
      = ( A2 = B ) ) ).

% neg_equal_iff_equal
thf(fact_257_add_Oinverse__inverse,axiom,
    ! [A2: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_258_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_259_neg__equal__zero,axiom,
    ! [A2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = A2 )
      = ( A2 = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_260_equal__neg__zero,axiom,
    ! [A2: int] :
      ( ( A2
        = ( uminus_uminus_int @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_261_neg__equal__0__iff__equal,axiom,
    ! [A2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_262_neg__0__equal__iff__equal,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A2 ) )
      = ( zero_zero_int = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_263_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_264_dvd__0__left__iff,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
      = ( A2 = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_265_dvd__0__left__iff,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A2 )
      = ( A2 = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_266_dvd__0__right,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ A2 @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_267_dvd__0__right,axiom,
    ! [A2: int] : ( dvd_dvd_int @ A2 @ zero_zero_int ) ).

% dvd_0_right
thf(fact_268_neg__less__iff__less,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ B ) ) ).

% neg_less_iff_less
thf(fact_269_bits__div__by__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_270_bits__div__by__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_271_bits__div__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_272_bits__div__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_273_div__by__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_274_div__by__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_275_div__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% div_0
thf(fact_276_div__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% div_0
thf(fact_277_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_278_mod__0,axiom,
    ! [A2: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% mod_0
thf(fact_279_mod__0,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% mod_0
thf(fact_280_mod__by__0,axiom,
    ! [A2: nat] :
      ( ( modulo_modulo_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% mod_by_0
thf(fact_281_mod__by__0,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ A2 @ zero_zero_int )
      = A2 ) ).

% mod_by_0
thf(fact_282_mod__self,axiom,
    ! [A2: nat] :
      ( ( modulo_modulo_nat @ A2 @ A2 )
      = zero_zero_nat ) ).

% mod_self
thf(fact_283_mod__self,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ A2 @ A2 )
      = zero_zero_int ) ).

% mod_self
thf(fact_284_bits__mod__0,axiom,
    ! [A2: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_285_bits__mod__0,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_286_minus__dvd__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ ( uminus_uminus_int @ X ) @ Y )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_287_dvd__minus__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ ( uminus_uminus_int @ Y ) )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_288_div__minus__minus,axiom,
    ! [A2: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A2 ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A2 @ B ) ) ).

% div_minus_minus
thf(fact_289_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_290_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_291_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_292_mod__minus__minus,axiom,
    ! [A2: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ A2 ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A2 @ B ) ) ) ).

% mod_minus_minus
thf(fact_293_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_294_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_295_less__neg__neg,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_296_neg__less__pos,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% neg_less_pos
thf(fact_297_neg__0__less__iff__less,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_298_neg__less__0__iff__less,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% neg_less_0_iff_less
thf(fact_299_div__self,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( divide_divide_nat @ A2 @ A2 )
        = one_one_nat ) ) ).

% div_self
thf(fact_300_div__self,axiom,
    ! [A2: int] :
      ( ( A2 != zero_zero_int )
     => ( ( divide_divide_int @ A2 @ A2 )
        = one_one_int ) ) ).

% div_self
thf(fact_301_mod__by__1,axiom,
    ! [A2: nat] :
      ( ( modulo_modulo_nat @ A2 @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_302_mod__by__1,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ A2 @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_303_bits__mod__by__1,axiom,
    ! [A2: nat] :
      ( ( modulo_modulo_nat @ A2 @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_304_bits__mod__by__1,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ A2 @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_305_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_306_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_307_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_308_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_309_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_310_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_311_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_312_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_313_div__minus1__right,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A2 ) ) ).

% div_minus1_right
thf(fact_314_dvd__imp__mod__0,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( modulo_modulo_nat @ B @ A2 )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_315_dvd__imp__mod__0,axiom,
    ! [A2: int,B: int] :
      ( ( dvd_dvd_int @ A2 @ B )
     => ( ( modulo_modulo_int @ B @ A2 )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_316_mod__div__trivial,axiom,
    ! [A2: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A2 @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_317_mod__div__trivial,axiom,
    ! [A2: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A2 @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_318_bits__mod__div__trivial,axiom,
    ! [A2: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A2 @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_319_bits__mod__div__trivial,axiom,
    ! [A2: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A2 @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_320_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_321_power__zero__numeral,axiom,
    ! [K2: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K2 ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_322_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_323_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_324_power__Suc0__right,axiom,
    ! [A2: nat] :
      ( ( power_power_nat @ A2 @ ( suc @ zero_zero_nat ) )
      = A2 ) ).

% power_Suc0_right
thf(fact_325_power__Suc0__right,axiom,
    ! [A2: int] :
      ( ( power_power_int @ A2 @ ( suc @ zero_zero_nat ) )
      = A2 ) ).

% power_Suc0_right
thf(fact_326_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_327_dvd__1__left,axiom,
    ! [K2: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K2 ) ).

% dvd_1_left
thf(fact_328_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_329_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_330_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_331_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_332_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_333_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_334_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_335_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_336_dbl__simps_I1_J,axiom,
    ! [K2: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K2 ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K2 ) ) ) ) ).

% dbl_simps(1)
thf(fact_337_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_338_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_339_mod__minus1__right,axiom,
    ! [A2: int] :
      ( ( modulo_modulo_int @ A2 @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_340_power__eq__0__iff,axiom,
    ! [A2: nat,N: nat] :
      ( ( ( power_power_nat @ A2 @ N )
        = zero_zero_nat )
      = ( ( A2 = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_341_power__eq__0__iff,axiom,
    ! [A2: int,N: nat] :
      ( ( ( power_power_int @ A2 @ N )
        = zero_zero_int )
      = ( ( A2 = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_342_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_343_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_344_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_345_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_346_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_347_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_348_zero__eq__power2,axiom,
    ! [A2: nat] :
      ( ( ( power_power_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_349_zero__eq__power2,axiom,
    ! [A2: int] :
      ( ( ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_350_power2__minus,axiom,
    ! [A2: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_351_Suc__0__mod__numeral_I1_J,axiom,
    ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
    = zero_zero_nat ) ).

% Suc_0_mod_numeral(1)
thf(fact_352_Suc__0__div__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
      = zero_zero_nat ) ).

% Suc_0_div_numeral(2)
thf(fact_353_half__negative__int__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_354_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_355_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_356_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_357_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_358_not__mod__2__eq__0__eq__1,axiom,
    ! [A2: nat] :
      ( ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_359_not__mod__2__eq__0__eq__1,axiom,
    ! [A2: int] :
      ( ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_360_not__mod__2__eq__1__eq__0,axiom,
    ! [A2: nat] :
      ( ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_361_not__mod__2__eq__1__eq__0,axiom,
    ! [A2: int] :
      ( ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_362_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_363_zero__less__power2,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A2 != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_364_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_365_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_366_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_367_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_368_power__minus__odd,axiom,
    ! [N: nat,A2: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A2 ) @ N )
        = ( uminus_uminus_int @ ( power_power_int @ A2 @ N ) ) ) ) ).

% power_minus_odd
thf(fact_369_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A2: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A2 ) @ N )
        = ( power_power_int @ A2 @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_370_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_371_Suc__0__mod__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
      = one_one_nat ) ).

% Suc_0_mod_numeral(2)
thf(fact_372_Suc__0__div__numeral_I1_J,axiom,
    ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
    = one_one_nat ) ).

% Suc_0_div_numeral(1)
thf(fact_373_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_374_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_375_zero__less__power__eq__numeral,axiom,
    ! [A2: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A2 != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A2 ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_376_int__cases3,axiom,
    ! [K2: int] :
      ( ( K2 != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K2
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_377_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_378_uminus__dvd__conv_I1_J,axiom,
    ( dvd_dvd_int
    = ( ^ [D2: int] : ( dvd_dvd_int @ ( uminus_uminus_int @ D2 ) ) ) ) ).

% uminus_dvd_conv(1)
thf(fact_379_uminus__dvd__conv_I2_J,axiom,
    ( dvd_dvd_int
    = ( ^ [D2: int,T2: int] : ( dvd_dvd_int @ D2 @ ( uminus_uminus_int @ T2 ) ) ) ) ).

% uminus_dvd_conv(2)
thf(fact_380_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_381_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_382_verit__negate__coefficient_I3_J,axiom,
    ! [A2: int,B: int] :
      ( ( A2 = B )
     => ( ( uminus_uminus_int @ A2 )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_383_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_384_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_385_minus__equation__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_386_equation__minus__iff,axiom,
    ! [A2: int,B: int] :
      ( ( A2
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_387_minus__less__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A2 ) ) ).

% minus_less_iff
thf(fact_388_less__minus__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A2 ) ) ) ).

% less_minus_iff
thf(fact_389_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_390_zmod__zminus1__not__zero,axiom,
    ! [K2: int,L: int] :
      ( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K2 ) @ L )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K2 @ L )
       != zero_zero_int ) ) ).

% zmod_zminus1_not_zero
thf(fact_391_zmod__zminus2__not__zero,axiom,
    ! [K2: int,L: int] :
      ( ( ( modulo_modulo_int @ K2 @ ( uminus_uminus_int @ L ) )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K2 @ L )
       != zero_zero_int ) ) ).

% zmod_zminus2_not_zero
thf(fact_392_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_393_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_394_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_395_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_396_int__cases2,axiom,
    ! [Z2: int] :
      ( ! [N3: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% int_cases2
thf(fact_397_zdvd__not__zless,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_int @ M @ N )
       => ~ ( dvd_dvd_int @ N @ M ) ) ) ).

% zdvd_not_zless
thf(fact_398_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_399_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_400_neg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ K2 @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K2
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_401_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_402_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_403_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_404_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_405_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_406_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_407_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_408_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_409_verit__negate__coefficient_I2_J,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_410_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_411_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_412_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_413_div__minus__right,axiom,
    ! [A2: int,B: int] :
      ( ( divide_divide_int @ A2 @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A2 ) @ B ) ) ).

% div_minus_right
thf(fact_414_mod__minus__eq,axiom,
    ! [A2: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A2 @ B ) ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A2 ) @ B ) ) ).

% mod_minus_eq
thf(fact_415_mod__minus__cong,axiom,
    ! [A2: int,B: int,A3: int] :
      ( ( ( modulo_modulo_int @ A2 @ B )
        = ( modulo_modulo_int @ A3 @ B ) )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A2 ) @ B )
        = ( modulo_modulo_int @ ( uminus_uminus_int @ A3 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_416_mod__minus__right,axiom,
    ! [A2: int,B: int] :
      ( ( modulo_modulo_int @ A2 @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A2 ) @ B ) ) ) ).

% mod_minus_right
thf(fact_417_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_418_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N3: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% negD
thf(fact_419_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_420_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_421_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_422_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_423_zero__less__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K2
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_424_pos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ~ ! [N3: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_425_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_426_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_427_dvd__0__left,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
     => ( A2 = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_428_dvd__0__left,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A2 )
     => ( A2 = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_429_power__not__zero,axiom,
    ! [A2: nat,N: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( power_power_nat @ A2 @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_430_power__not__zero,axiom,
    ! [A2: int,N: nat] :
      ( ( A2 != zero_zero_int )
     => ( ( power_power_int @ A2 @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_431_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_432_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_433_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_434_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_435_zero__induct,axiom,
    ! [P: nat > $o,K2: nat] :
      ( ( P @ K2 )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_436_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
       => ( ! [X3: nat,Y4: nat] :
              ( ( P @ X3 @ Y4 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y4 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_437_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_438_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_439_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_440_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_441_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_442_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_443_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N3 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_444_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_445_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_446_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_447_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_448_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_449_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_450_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int )
        = ( ord_less_int @ A2 @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_451_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A2 ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_452_int__div__less__self,axiom,
    ! [X: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K2 )
       => ( ord_less_int @ ( divide_divide_int @ X @ K2 ) @ X ) ) ) ).

% int_div_less_self
thf(fact_453_div__neg__pos__less0,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_454_int__of__nat__induct,axiom,
    ! [P: int > $o,Z2: int] :
      ( ! [N3: nat] : ( P @ ( semiri1314217659103216013at_int @ N3 ) )
     => ( ! [N3: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) )
       => ( P @ Z2 ) ) ) ).

% int_of_nat_induct
thf(fact_455_int__cases,axiom,
    ! [Z2: int] :
      ( ! [N3: nat] :
          ( Z2
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% int_cases
thf(fact_456_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_457_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_458_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_459_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_460_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_461_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_462_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_463_dvd__neg__div,axiom,
    ! [B: int,A2: int] :
      ( ( dvd_dvd_int @ B @ A2 )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ A2 ) @ B )
        = ( uminus_uminus_int @ ( divide_divide_int @ A2 @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_464_dvd__div__neg,axiom,
    ! [B: int,A2: int] :
      ( ( dvd_dvd_int @ B @ A2 )
     => ( ( divide_divide_int @ A2 @ ( uminus_uminus_int @ B ) )
        = ( uminus_uminus_int @ ( divide_divide_int @ A2 @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_465_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_466_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_467_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_468_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_469_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_470_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_471_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_472_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_473_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_474_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_475_zero__less__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A2 @ N ) ) ) ).

% zero_less_power
thf(fact_476_zero__less__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A2 @ N ) ) ) ).

% zero_less_power
thf(fact_477_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_478_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_479_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_480_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_481_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ B @ A2 )
     => ( ( ( divide_divide_nat @ A2 @ B )
          = zero_zero_nat )
        = ( A2 = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_482_dvd__div__eq__0__iff,axiom,
    ! [B: int,A2: int] :
      ( ( dvd_dvd_int @ B @ A2 )
     => ( ( ( divide_divide_int @ A2 @ B )
          = zero_zero_int )
        = ( A2 = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_483_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_484_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_485_mod__0__imp__dvd,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A2 @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A2 ) ) ).

% mod_0_imp_dvd
thf(fact_486_mod__0__imp__dvd,axiom,
    ! [A2: int,B: int] :
      ( ( ( modulo_modulo_int @ A2 @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A2 ) ) ).

% mod_0_imp_dvd
thf(fact_487_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A: nat,B2: nat] :
          ( ( modulo_modulo_nat @ B2 @ A )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_488_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A: int,B2: int] :
          ( ( modulo_modulo_int @ B2 @ A )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_489_mod__eq__0__iff__dvd,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A2 @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A2 ) ) ).

% mod_eq_0_iff_dvd
thf(fact_490_mod__eq__0__iff__dvd,axiom,
    ! [A2: int,B: int] :
      ( ( ( modulo_modulo_int @ A2 @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A2 ) ) ).

% mod_eq_0_iff_dvd
thf(fact_491_mod__eq__self__iff__div__eq__0,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A2 @ B )
        = A2 )
      = ( ( divide_divide_nat @ A2 @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_492_mod__eq__self__iff__div__eq__0,axiom,
    ! [A2: int,B: int] :
      ( ( ( modulo_modulo_int @ A2 @ B )
        = A2 )
      = ( ( divide_divide_int @ A2 @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_493_power__0,axiom,
    ! [A2: nat] :
      ( ( power_power_nat @ A2 @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_494_power__0,axiom,
    ! [A2: int] :
      ( ( power_power_int @ A2 @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_495_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ ( suc @ I2 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_496_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M5: nat] :
            ( N
            = ( suc @ M5 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_497_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ ( suc @ I2 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_498_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_499_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_500_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_501_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_502_mod__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
          = N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
         != N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).

% mod_Suc
thf(fact_503_mod__less__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_less_divisor
thf(fact_504_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_505_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_506_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_int @ ( modulo_modulo_int @ K2 @ L ) @ L ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_507_neg__mod__bound,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_int @ L @ ( modulo_modulo_int @ K2 @ L ) ) ) ).

% neg_mod_bound
thf(fact_508_zdiv__mono__strict,axiom,
    ! [A4: int,B3: int,N: int] :
      ( ( ord_less_int @ A4 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ( ( modulo_modulo_int @ A4 @ N )
            = zero_zero_int )
         => ( ( ( modulo_modulo_int @ B3 @ N )
              = zero_zero_int )
           => ( ord_less_int @ ( divide_divide_int @ A4 @ N ) @ ( divide_divide_int @ B3 @ N ) ) ) ) ) ) ).

% zdiv_mono_strict
thf(fact_509_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_510_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_511_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_512_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_513_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_514_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_515_power__minus__Bit0,axiom,
    ! [X: int,K2: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) )
      = ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K2 ) ) ) ) ).

% power_minus_Bit0
thf(fact_516_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_517_zero__less__power__eq,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A2 @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A2 != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_int @ zero_zero_int @ A2 ) ) ) ) ).

% zero_less_power_eq
thf(fact_518_pinf_I1_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z3 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z3 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                & ( Q3 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_519_pinf_I1_J,axiom,
    ! [P: num > $o,P3: num > $o,Q2: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X3: num] :
          ( ( ord_less_num @ Z3 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z3 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z4 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                & ( Q3 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_520_pinf_I1_J,axiom,
    ! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z3 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( ( P @ X4 )
                & ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                & ( Q3 @ X4 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_521_pinf_I2_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z3 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z3 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                | ( Q3 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_522_pinf_I2_J,axiom,
    ! [P: num > $o,P3: num > $o,Q2: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X3: num] :
          ( ( ord_less_num @ Z3 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z3 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z4 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                | ( Q3 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_523_pinf_I2_J,axiom,
    ! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z3 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( ( P @ X4 )
                | ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                | ( Q3 @ X4 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_524_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_525_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z4 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_526_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ( X4 != T ) ) ).

% pinf(3)
thf(fact_527_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_528_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z4 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_529_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ( X4 != T ) ) ).

% pinf(4)
thf(fact_530_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ~ ( ord_less_nat @ X4 @ T ) ) ).

% pinf(5)
thf(fact_531_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z4 @ X4 )
     => ~ ( ord_less_num @ X4 @ T ) ) ).

% pinf(5)
thf(fact_532_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ~ ( ord_less_int @ X4 @ T ) ) ).

% pinf(5)
thf(fact_533_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ( ord_less_nat @ T @ X4 ) ) ).

% pinf(7)
thf(fact_534_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z4 @ X4 )
     => ( ord_less_num @ T @ X4 ) ) ).

% pinf(7)
thf(fact_535_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ( ord_less_int @ T @ X4 ) ) ).

% pinf(7)
thf(fact_536_minf_I1_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( ( P @ X4 )
                & ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                & ( Q3 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_537_minf_I1_J,axiom,
    ! [P: num > $o,P3: num > $o,Q2: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X3: num] :
          ( ( ord_less_num @ X3 @ Z3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z4 )
           => ( ( ( P @ X4 )
                & ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                & ( Q3 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_538_minf_I1_J,axiom,
    ! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( ( P @ X4 )
                & ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                & ( Q3 @ X4 ) ) ) ) ) ) ).

% minf(1)
thf(fact_539_minf_I2_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( ( P @ X4 )
                | ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                | ( Q3 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_540_minf_I2_J,axiom,
    ! [P: num > $o,P3: num > $o,Q2: num > $o,Q3: num > $o] :
      ( ? [Z3: num] :
        ! [X3: num] :
          ( ( ord_less_num @ X3 @ Z3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z4 )
           => ( ( ( P @ X4 )
                | ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                | ( Q3 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_541_minf_I2_J,axiom,
    ! [P: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( ( P @ X4 )
                | ( Q2 @ X4 ) )
              = ( ( P3 @ X4 )
                | ( Q3 @ X4 ) ) ) ) ) ) ).

% minf(2)
thf(fact_542_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_543_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z4 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_544_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ( X4 != T ) ) ).

% minf(3)
thf(fact_545_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_546_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z4 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_547_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ( X4 != T ) ) ).

% minf(4)
thf(fact_548_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ( ord_less_nat @ X4 @ T ) ) ).

% minf(5)
thf(fact_549_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z4 )
     => ( ord_less_num @ X4 @ T ) ) ).

% minf(5)
thf(fact_550_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ( ord_less_int @ X4 @ T ) ) ).

% minf(5)
thf(fact_551_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ~ ( ord_less_nat @ T @ X4 ) ) ).

% minf(7)
thf(fact_552_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z4 )
     => ~ ( ord_less_num @ T @ X4 ) ) ).

% minf(7)
thf(fact_553_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ~ ( ord_less_int @ T @ X4 ) ) ).

% minf(7)
thf(fact_554_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_555_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_556_unit__div__eq__0__iff,axiom,
    ! [B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A2 @ B )
          = zero_zero_nat )
        = ( A2 = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_557_unit__div__eq__0__iff,axiom,
    ! [B: int,A2: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A2 @ B )
          = zero_zero_int )
        = ( A2 = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_558_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_559_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_560_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_561_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_562_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A2 @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_563_unit__imp__mod__eq__0,axiom,
    ! [B: int,A2: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A2 @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_564_is__unit__power__iff,axiom,
    ! [A2: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A2 @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A2 @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_565_is__unit__power__iff,axiom,
    ! [A2: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A2 @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A2 @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_566_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_567_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_568_power__gt__expt,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K2 @ ( power_power_nat @ N @ K2 ) ) ) ).

% power_gt_expt
thf(fact_569_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_570_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_571_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_572_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_573_div__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat )
       => ( ( divide_divide_nat @ ( suc @ M ) @ N )
          = ( suc @ ( divide_divide_nat @ M @ N ) ) ) )
      & ( ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
         != zero_zero_nat )
       => ( ( divide_divide_nat @ ( suc @ M ) @ N )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% div_Suc
thf(fact_574_div__less__mono,axiom,
    ! [A4: nat,B3: nat,N: nat] :
      ( ( ord_less_nat @ A4 @ B3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( modulo_modulo_nat @ A4 @ N )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B3 @ N )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A4 @ N ) @ ( divide_divide_nat @ B3 @ N ) ) ) ) ) ) ).

% div_less_mono
thf(fact_575_even__minus,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) ) ).

% even_minus
thf(fact_576_power2__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_577_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_578_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_579_power__Suc__less__one,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ A2 @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_580_power__Suc__less__one,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ A2 @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A2 @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_581_power__strict__decreasing,axiom,
    ! [N: nat,N2: nat,A2: nat] :
      ( ( ord_less_nat @ N @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_nat @ A2 @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A2 @ N2 ) @ ( power_power_nat @ A2 @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_582_power__strict__decreasing,axiom,
    ! [N: nat,N2: nat,A2: int] :
      ( ( ord_less_nat @ N @ N2 )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ( ord_less_int @ A2 @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A2 @ N2 ) @ ( power_power_int @ A2 @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_583_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_584_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_585_one__less__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A2 @ N ) ) ) ) ).

% one_less_power
thf(fact_586_one__less__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A2 @ N ) ) ) ) ).

% one_less_power
thf(fact_587_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_588_dvd__power,axiom,
    ! [N: nat,X: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_nat ) )
     => ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N ) ) ) ).

% dvd_power
thf(fact_589_dvd__power,axiom,
    ! [N: nat,X: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_int ) )
     => ( dvd_dvd_int @ X @ ( power_power_int @ X @ N ) ) ) ).

% dvd_power
thf(fact_590_power2__eq__1__iff,axiom,
    ! [A2: int] :
      ( ( ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A2 = one_one_int )
        | ( A2
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_591_uminus__power__if,axiom,
    ! [N: nat,A2: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A2 ) @ N )
          = ( power_power_int @ A2 @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A2 ) @ N )
          = ( uminus_uminus_int @ ( power_power_int @ A2 @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_592_even__iff__mod__2__eq__zero,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
      = ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_593_even__iff__mod__2__eq__zero,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
      = ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_594_power2__less__0,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_595_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_596_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_597_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_598_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_599_mod2__eq__if,axiom,
    ! [A2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
       => ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
       => ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_600_mod2__eq__if,axiom,
    ! [A2: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
       => ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
       => ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_601_parity__cases,axiom,
    ! [A2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
       => ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
         => ( ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_602_parity__cases,axiom,
    ! [A2: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
       => ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
         => ( ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_603_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_604_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_605_pow__divides__pow__iff,axiom,
    ! [N: nat,A2: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B @ N ) )
        = ( dvd_dvd_nat @ A2 @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_606_pow__divides__pow__iff,axiom,
    ! [N: nat,A2: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) )
        = ( dvd_dvd_int @ A2 @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_607_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_608_gcd__nat_Onot__eq__order__implies__strict,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2 != B )
     => ( ( dvd_dvd_nat @ A2 @ B )
       => ( ( dvd_dvd_nat @ A2 @ B )
          & ( A2 != B ) ) ) ) ).

% gcd_nat.not_eq_order_implies_strict
thf(fact_609_gcd__nat_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
     => ( A2 != B ) ) ).

% gcd_nat.strict_implies_not_eq
thf(fact_610_gcd__nat_Ostrict__implies__order,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
     => ( dvd_dvd_nat @ A2 @ B ) ) ).

% gcd_nat.strict_implies_order
thf(fact_611_gcd__nat_Ostrict__iff__order,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
      = ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) ) ) ).

% gcd_nat.strict_iff_order
thf(fact_612_gcd__nat_Oorder__iff__strict,axiom,
    ( dvd_dvd_nat
    = ( ^ [A: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ A @ B2 )
            & ( A != B2 ) )
          | ( A = B2 ) ) ) ) ).

% gcd_nat.order_iff_strict
thf(fact_613_gcd__nat_Ostrict__iff__not,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
      = ( ( dvd_dvd_nat @ A2 @ B )
        & ~ ( dvd_dvd_nat @ B @ A2 ) ) ) ).

% gcd_nat.strict_iff_not
thf(fact_614_gcd__nat_Ostrict__trans2,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( ( dvd_dvd_nat @ A2 @ C )
          & ( A2 != C ) ) ) ) ).

% gcd_nat.strict_trans2
thf(fact_615_gcd__nat_Ostrict__trans1,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( ( dvd_dvd_nat @ B @ C )
          & ( B != C ) )
       => ( ( dvd_dvd_nat @ A2 @ C )
          & ( A2 != C ) ) ) ) ).

% gcd_nat.strict_trans1
thf(fact_616_gcd__nat_Ostrict__trans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
     => ( ( ( dvd_dvd_nat @ B @ C )
          & ( B != C ) )
       => ( ( dvd_dvd_nat @ A2 @ C )
          & ( A2 != C ) ) ) ) ).

% gcd_nat.strict_trans
thf(fact_617_gcd__nat_Oantisym,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ B @ A2 )
       => ( A2 = B ) ) ) ).

% gcd_nat.antisym
thf(fact_618_gcd__nat_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ( dvd_dvd_nat @ A2 @ A2 )
        & ( A2 != A2 ) ) ).

% gcd_nat.irrefl
thf(fact_619_gcd__nat_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A: nat,B2: nat] :
          ( ( dvd_dvd_nat @ A @ B2 )
          & ( dvd_dvd_nat @ B2 @ A ) ) ) ) ).

% gcd_nat.eq_iff
thf(fact_620_gcd__nat_Otrans,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% gcd_nat.trans
thf(fact_621_gcd__nat_Orefl,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ A2 @ A2 ) ).

% gcd_nat.refl
thf(fact_622_gcd__nat_Oasym,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A2 @ B )
        & ( A2 != B ) )
     => ~ ( ( dvd_dvd_nat @ B @ A2 )
          & ( B != A2 ) ) ) ).

% gcd_nat.asym
thf(fact_623_gcd__nat_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
     => ( A2 = zero_zero_nat ) ) ).

% gcd_nat.extremum_uniqueI
thf(fact_624_gcd__nat_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ( dvd_dvd_nat @ A2 @ zero_zero_nat )
        & ( A2 != zero_zero_nat ) ) ) ).

% gcd_nat.not_eq_extremum
thf(fact_625_gcd__nat_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
      = ( A2 = zero_zero_nat ) ) ).

% gcd_nat.extremum_unique
thf(fact_626_gcd__nat_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
        & ( zero_zero_nat != A2 ) ) ).

% gcd_nat.extremum_strict
thf(fact_627_gcd__nat_Oextremum,axiom,
    ! [A2: nat] : ( dvd_dvd_nat @ A2 @ zero_zero_nat ) ).

% gcd_nat.extremum
thf(fact_628_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_629_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
     => ( ! [M4: nat,N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ( P @ N3 @ ( modulo_modulo_nat @ M4 @ N3 ) )
             => ( P @ M4 @ N3 ) ) )
       => ( P @ M @ N ) ) ) ).

% gcd_nat_induct
thf(fact_630_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C2: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_631_even__succ__mod__exp,axiom,
    ! [A2: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_632_even__succ__mod__exp,axiom,
    ! [A2: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_633_add__left__cancel,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ A2 @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_634_add__left__cancel,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_635_add__right__cancel,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_636_add__right__cancel,axiom,
    ! [B: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_637_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_638_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_639_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_640_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_641_nat__add__left__cancel__less,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_642_double__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( plus_plus_int @ A2 @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_643_add__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% add_0
thf(fact_644_add__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add_0
thf(fact_645_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_646_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_647_add__cancel__right__right,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ A2 @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_648_add__cancel__right__right,axiom,
    ! [A2: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ A2 @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_649_add__cancel__right__left,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ B @ A2 ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_650_add__cancel__right__left,axiom,
    ! [A2: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ B @ A2 ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_651_add__cancel__left__right,axiom,
    ! [A2: nat,B: nat] :
      ( ( ( plus_plus_nat @ A2 @ B )
        = A2 )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_652_add__cancel__left__right,axiom,
    ! [A2: int,B: int] :
      ( ( ( plus_plus_int @ A2 @ B )
        = A2 )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_653_add__cancel__left__left,axiom,
    ! [B: nat,A2: nat] :
      ( ( ( plus_plus_nat @ B @ A2 )
        = A2 )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_654_add__cancel__left__left,axiom,
    ! [B: int,A2: int] :
      ( ( ( plus_plus_int @ B @ A2 )
        = A2 )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_655_double__zero__sym,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A2 @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_656_add_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.right_neutral
thf(fact_657_add_Oright__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.right_neutral
thf(fact_658_add__less__cancel__right,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A2 @ B ) ) ).

% add_less_cancel_right
thf(fact_659_add__less__cancel__right,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A2 @ B ) ) ).

% add_less_cancel_right
thf(fact_660_add__less__cancel__left,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A2 @ B ) ) ).

% add_less_cancel_left
thf(fact_661_add__less__cancel__left,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A2 @ B ) ) ).

% add_less_cancel_left
thf(fact_662_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_663_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_664_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_665_add__numeral__left,axiom,
    ! [V: num,W: num,Z2: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).

% add_numeral_left
thf(fact_666_minus__add__distrib,axiom,
    ! [A2: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A2 @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_667_minus__add__cancel,axiom,
    ! [A2: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ ( plus_plus_int @ A2 @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_668_add__minus__cancel,axiom,
    ! [A2: int,B: int] :
      ( ( plus_plus_int @ A2 @ ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_669_dvd__add__triv__right__iff,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ A2 ) )
      = ( dvd_dvd_nat @ A2 @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_670_dvd__add__triv__right__iff,axiom,
    ! [A2: int,B: int] :
      ( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ A2 ) )
      = ( dvd_dvd_int @ A2 @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_671_dvd__add__triv__left__iff,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ A2 @ B ) )
      = ( dvd_dvd_nat @ A2 @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_672_dvd__add__triv__left__iff,axiom,
    ! [A2: int,B: int] :
      ( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ A2 @ B ) )
      = ( dvd_dvd_int @ A2 @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_673_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_674_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_675_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_676_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_677_mod__add__self1,axiom,
    ! [B: nat,A2: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A2 ) @ B )
      = ( modulo_modulo_nat @ A2 @ B ) ) ).

% mod_add_self1
thf(fact_678_mod__add__self1,axiom,
    ! [B: int,A2: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ B @ A2 ) @ B )
      = ( modulo_modulo_int @ A2 @ B ) ) ).

% mod_add_self1
thf(fact_679_mod__add__self2,axiom,
    ! [A2: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A2 @ B ) @ B )
      = ( modulo_modulo_nat @ A2 @ B ) ) ).

% mod_add_self2
thf(fact_680_mod__add__self2,axiom,
    ! [A2: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A2 @ B ) @ B )
      = ( modulo_modulo_int @ A2 @ B ) ) ).

% mod_add_self2
thf(fact_681_add__less__same__cancel1,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A2 ) @ B )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_682_add__less__same__cancel1,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A2 ) @ B )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_683_add__less__same__cancel2,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ B ) @ B )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_684_add__less__same__cancel2,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ B ) @ B )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_685_less__add__same__cancel1,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_686_less__add__same__cancel1,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_687_less__add__same__cancel2,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ B @ A2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_688_less__add__same__cancel2,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ B @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_689_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_690_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_691_ab__left__minus,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_692_add_Oright__inverse,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_693_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_694_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_695_div__add,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A2 )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A2 @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_696_div__add,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( dvd_dvd_int @ C @ A2 )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A2 @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A2 @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_697_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_698_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_699_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_700_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_701_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_702_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_703_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_704_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_705_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_706_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_707_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_708_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_709_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_710_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_711_odd__add,axiom,
    ! [A2: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_712_odd__add,axiom,
    ! [A2: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_713_even__add,axiom,
    ! [A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_714_even__add,axiom,
    ! [A2: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_715_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_716_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_717_even__plus__one__iff,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) ) ) ).

% even_plus_one_iff
thf(fact_718_even__plus__one__iff,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) ) ) ).

% even_plus_one_iff
thf(fact_719_odd__succ__div__two,axiom,
    ! [A2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_720_odd__succ__div__two,axiom,
    ! [A2: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
     => ( ( divide_divide_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_721_even__succ__div__two,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_722_even__succ__div__two,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
     => ( ( divide_divide_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_723_even__succ__div__2,axiom,
    ! [A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_724_even__succ__div__2,axiom,
    ! [A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_725_even__succ__div__exp,axiom,
    ! [A2: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_726_even__succ__div__exp,axiom,
    ! [A2: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_727_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A2: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( P @ A5 @ B4 )
          = ( P @ B4 @ A5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B4: nat] :
              ( ( P @ A5 @ B4 )
             => ( P @ A5 @ ( plus_plus_nat @ A5 @ B4 ) ) )
         => ( P @ A2 @ B ) ) ) ) ).

% Euclid_induct
thf(fact_728_plus__int__code_I1_J,axiom,
    ! [K2: int] :
      ( ( plus_plus_int @ K2 @ zero_zero_int )
      = K2 ) ).

% plus_int_code(1)
thf(fact_729_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_730_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_731_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_732_add_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.comm_neutral
thf(fact_733_add_Ocomm__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.comm_neutral
thf(fact_734_add_Ogroup__left__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add.group_left_neutral
thf(fact_735_verit__sum__simplify,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% verit_sum_simplify
thf(fact_736_verit__sum__simplify,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% verit_sum_simplify
thf(fact_737_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_738_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I @ J2 )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_739_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( I = J2 )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_740_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( I = J2 )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_741_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( K2 = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_742_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I @ J2 )
        & ( K2 = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_743_add__strict__mono,axiom,
    ! [A2: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_744_add__strict__mono,axiom,
    ! [A2: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_745_add__strict__left__mono,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_746_add__strict__left__mono,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_int @ A2 @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_747_add__strict__right__mono,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_748_add__strict__right__mono,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_int @ A2 @ B )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_749_add__less__imp__less__left,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A2 @ B ) ) ).

% add_less_imp_less_left
thf(fact_750_add__less__imp__less__left,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A2 @ B ) ) ).

% add_less_imp_less_left
thf(fact_751_add__less__imp__less__right,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A2 @ B ) ) ).

% add_less_imp_less_right
thf(fact_752_add__less__imp__less__right,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A2 @ B ) ) ).

% add_less_imp_less_right
thf(fact_753_group__cancel_Oneg1,axiom,
    ! [A4: int,K2: int,A2: int] :
      ( ( A4
        = ( plus_plus_int @ K2 @ A2 ) )
     => ( ( uminus_uminus_int @ A4 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K2 ) @ ( uminus_uminus_int @ A2 ) ) ) ) ).

% group_cancel.neg1
thf(fact_754_add_Oinverse__distrib__swap,axiom,
    ! [A2: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A2 @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% add.inverse_distrib_swap
thf(fact_755_is__num__normalize_I8_J,axiom,
    ! [A2: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A2 @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% is_num_normalize(8)
thf(fact_756_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_757_dvd__add,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ A2 @ C )
       => ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_758_dvd__add,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A2 @ B )
     => ( ( dvd_dvd_int @ A2 @ C )
       => ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_759_dvd__add__left__iff,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A2 @ C )
     => ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A2 @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_760_dvd__add__left__iff,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A2 @ C )
     => ( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A2 @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_761_dvd__add__right__iff,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A2 @ B )
     => ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A2 @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_762_dvd__add__right__iff,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A2 @ B )
     => ( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A2 @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_763_nat__arith_Osuc1,axiom,
    ! [A4: nat,K2: nat,A2: nat] :
      ( ( A4
        = ( plus_plus_nat @ K2 @ A2 ) )
     => ( ( suc @ A4 )
        = ( plus_plus_nat @ K2 @ ( suc @ A2 ) ) ) ) ).

% nat_arith.suc1
thf(fact_764_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_765_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_766_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_767_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_768_mod__add__right__eq,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A2 @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A2 @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_769_mod__add__right__eq,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A2 @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A2 @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_770_mod__add__left__eq,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A2 @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A2 @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_771_mod__add__left__eq,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A2 @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A2 @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_772_mod__add__cong,axiom,
    ! [A2: nat,C: nat,A3: nat,B: nat,B5: nat] :
      ( ( ( modulo_modulo_nat @ A2 @ C )
        = ( modulo_modulo_nat @ A3 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B5 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A3 @ B5 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_773_mod__add__cong,axiom,
    ! [A2: int,C: int,A3: int,B: int,B5: int] :
      ( ( ( modulo_modulo_int @ A2 @ C )
        = ( modulo_modulo_int @ A3 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B5 @ C ) )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ A2 @ B ) @ C )
          = ( modulo_modulo_int @ ( plus_plus_int @ A3 @ B5 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_774_mod__add__eq,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A2 @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A2 @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_775_mod__add__eq,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A2 @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A2 @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_776_add__lessD1,axiom,
    ! [I: nat,J2: nat,K2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J2 ) @ K2 )
     => ( ord_less_nat @ I @ K2 ) ) ).

% add_lessD1
thf(fact_777_add__less__mono,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ( ord_less_nat @ K2 @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_less_mono
thf(fact_778_not__add__less1,axiom,
    ! [I: nat,J2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J2 ) @ I ) ).

% not_add_less1
thf(fact_779_not__add__less2,axiom,
    ! [J2: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J2 @ I ) @ I ) ).

% not_add_less2
thf(fact_780_add__less__mono1,axiom,
    ! [I: nat,J2: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ K2 ) ) ) ).

% add_less_mono1
thf(fact_781_trans__less__add1,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_less_add1
thf(fact_782_trans__less__add2,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_less_add2
thf(fact_783_less__add__eq__less,axiom,
    ! [K2: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K2 @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_784_int__ops_I5_J,axiom,
    ! [A2: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A2 @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_785_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_786_is__num__normalize_I1_J,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_787_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_788_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_789_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( I = J2 )
        & ( K2 = L ) )
     => ( ( plus_plus_nat @ I @ K2 )
        = ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_790_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( I = J2 )
        & ( K2 = L ) )
     => ( ( plus_plus_int @ I @ K2 )
        = ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_791_group__cancel_Oadd1,axiom,
    ! [A4: nat,K2: nat,A2: nat,B: nat] :
      ( ( A4
        = ( plus_plus_nat @ K2 @ A2 ) )
     => ( ( plus_plus_nat @ A4 @ B )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_792_group__cancel_Oadd1,axiom,
    ! [A4: int,K2: int,A2: int,B: int] :
      ( ( A4
        = ( plus_plus_int @ K2 @ A2 ) )
     => ( ( plus_plus_int @ A4 @ B )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_793_group__cancel_Oadd2,axiom,
    ! [B3: nat,K2: nat,B: nat,A2: nat] :
      ( ( B3
        = ( plus_plus_nat @ K2 @ B ) )
     => ( ( plus_plus_nat @ A2 @ B3 )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_794_group__cancel_Oadd2,axiom,
    ! [B3: int,K2: int,B: int,A2: int] :
      ( ( B3
        = ( plus_plus_int @ K2 @ B ) )
     => ( ( plus_plus_int @ A2 @ B3 )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_795_add_Oassoc,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_796_add_Oassoc,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_797_add_Oleft__cancel,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_798_add_Oright__cancel,axiom,
    ! [B: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_799_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A: nat,B2: nat] : ( plus_plus_nat @ B2 @ A ) ) ) ).

% add.commute
thf(fact_800_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A: int,B2: int] : ( plus_plus_int @ B2 @ A ) ) ) ).

% add.commute
thf(fact_801_add_Oleft__commute,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A2 @ C ) )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_802_add_Oleft__commute,axiom,
    ! [B: int,A2: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A2 @ C ) )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_803_add__left__imp__eq,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ A2 @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_804_add__left__imp__eq,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ A2 @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_805_add__right__imp__eq,axiom,
    ! [B: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_806_add__right__imp__eq,axiom,
    ! [B: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_807_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z2: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).

% zadd_int_left
thf(fact_808_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_809_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X5: int] : ( plus_plus_int @ X5 @ X5 ) ) ) ).

% dbl_def
thf(fact_810_add__less__zeroD,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_811_add__neg__neg,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_812_add__neg__neg,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_813_add__pos__pos,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% add_pos_pos
thf(fact_814_add__pos__pos,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% add_pos_pos
thf(fact_815_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A2 @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_816_pos__add__strict,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_817_pos__add__strict,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_818_less__add__one,axiom,
    ! [A2: nat] : ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ one_one_nat ) ) ).

% less_add_one
thf(fact_819_less__add__one,axiom,
    ! [A2: int] : ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ one_one_int ) ) ).

% less_add_one
thf(fact_820_add__mono1,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_821_add__mono1,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ B )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_822_neg__eq__iff__add__eq__0,axiom,
    ! [A2: int,B: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = B )
      = ( ( plus_plus_int @ A2 @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_823_eq__neg__iff__add__eq__0,axiom,
    ! [A2: int,B: int] :
      ( ( A2
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A2 @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_824_add_Oinverse__unique,axiom,
    ! [A2: int,B: int] :
      ( ( ( plus_plus_int @ A2 @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A2 )
        = B ) ) ).

% add.inverse_unique
thf(fact_825_ab__group__add__class_Oab__left__minus,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_826_add__eq__0__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ( plus_plus_int @ A2 @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A2 ) ) ) ).

% add_eq_0_iff
thf(fact_827_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_828_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_829_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_830_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_831_minf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_832_minf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_833_minf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_834_minf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) ) ) ) ).

% minf(9)
thf(fact_835_pinf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_836_pinf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_837_pinf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_838_pinf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X4 @ S ) ) ) ) ).

% pinf(9)
thf(fact_839_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A2 )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A2 @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_840_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( dvd_dvd_int @ C @ A2 )
     => ( ( divide_divide_int @ ( plus_plus_int @ A2 @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A2 @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_841_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A2: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A2 @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_842_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A2: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A2 @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A2 @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_843_div__add1__eq,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A2 @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_844_div__add1__eq,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( divide_divide_int @ ( plus_plus_int @ A2 @ B ) @ C )
      = ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A2 @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A2 @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_845_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_846_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_847_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q4: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).

% less_natE
thf(fact_848_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_849_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_850_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N5: nat] :
        ? [K: nat] :
          ( N5
          = ( suc @ ( plus_plus_nat @ M5 @ K ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_851_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_852_less__imp__add__positive,axiom,
    ! [I: nat,J2: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J2 ) ) ) ).

% less_imp_add_positive
thf(fact_853_odd__nonzero,axiom,
    ! [Z2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_854_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_855_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_856_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N5: nat] : ( plus_plus_nat @ N5 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_857_zless__add1__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z2 )
        | ( W = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_858_int__gr__induct,axiom,
    ! [K2: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K2 @ I )
     => ( ( P @ ( plus_plus_int @ K2 @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K2 @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_859_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_860_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_861_div__add__self1,axiom,
    ! [B: nat,A2: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A2 ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A2 @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_862_div__add__self1,axiom,
    ! [B: int,A2: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A2 ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A2 @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_863_div__add__self2,axiom,
    ! [B: nat,A2: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A2 @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_864_div__add__self2,axiom,
    ! [B: int,A2: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A2 @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A2 @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_865_int__ops_I4_J,axiom,
    ! [A2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_866_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_867_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z5: int] :
        ? [N5: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N5 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_868_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_869_odd__even__add,axiom,
    ! [A2: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% odd_even_add
thf(fact_870_odd__even__add,axiom,
    ! [A2: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% odd_even_add
thf(fact_871_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_872_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_873_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_874_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_875_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_876_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_877_div__exp__eq,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_878_div__exp__eq,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_879_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_880_bits__stable__imp__add__self,axiom,
    ! [A2: nat] :
      ( ( ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A2 )
     => ( ( plus_plus_nat @ A2 @ ( modulo_modulo_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_881_bits__stable__imp__add__self,axiom,
    ! [A2: int] :
      ( ( ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A2 )
     => ( ( plus_plus_int @ A2 @ ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_882_not__sum__power2__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_883_sum__power2__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_884_div__exp__mod__exp__eq,axiom,
    ! [A2: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_885_div__exp__mod__exp__eq,axiom,
    ! [A2: int,N: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_886_signed__take__bit__0,axiom,
    ! [A2: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A2 )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_887_power__le__zero__eq__numeral,axiom,
    ! [A2: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A2 @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A2 = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_888_even__set__bit__iff,axiom,
    ! [M: nat,A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_889_even__set__bit__iff,axiom,
    ! [M: nat,A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A2 ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_890_even__flip__bit__iff,axiom,
    ! [M: nat,A2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_891_even__flip__bit__iff,axiom,
    ! [M: nat,A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A2 ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_892_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_893_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_894_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_895_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_896_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_897_flip__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_898_set__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_899_nat__add__left__cancel__le,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_900_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_901_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_902_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_903_add__le__cancel__left,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A2 @ B ) ) ).

% add_le_cancel_left
thf(fact_904_add__le__cancel__left,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A2 @ B ) ) ).

% add_le_cancel_left
thf(fact_905_add__le__cancel__right,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A2 @ B ) ) ).

% add_le_cancel_right
thf(fact_906_add__le__cancel__right,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A2 @ B ) ) ).

% add_le_cancel_right
thf(fact_907_neg__le__iff__le,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ B ) ) ).

% neg_le_iff_le
thf(fact_908_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_909_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_910_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_911_set__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_912_flip__bit__negative__int__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K2 ) @ zero_zero_int )
      = ( ord_less_int @ K2 @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_913_signed__take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_914_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_915_add__le__same__cancel1,axiom,
    ! [B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A2 ) @ B )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_916_add__le__same__cancel1,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A2 ) @ B )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_917_add__le__same__cancel2,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B ) @ B )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_918_add__le__same__cancel2,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B ) @ B )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_919_le__add__same__cancel1,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ A2 @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_920_le__add__same__cancel1,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ A2 @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_921_le__add__same__cancel2,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ B @ A2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_922_le__add__same__cancel2,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ B @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_923_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_924_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_925_neg__0__le__iff__le,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_926_neg__le__0__iff__le,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_927_less__eq__neg__nonpos,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_928_neg__less__eq__nonneg,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% neg_less_eq_nonneg
thf(fact_929_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_930_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_931_signed__take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_932_signed__take__bit__numeral__of__1,axiom,
    ! [K2: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K2 ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_933_zle__add1__eq__le,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_934_div__neg__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ( ( ord_less_int @ L @ K2 )
       => ( ( divide_divide_int @ K2 @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_935_div__pos__pos__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ K2 @ L )
       => ( ( divide_divide_int @ K2 @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_936_mod__neg__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ( ( ord_less_int @ L @ K2 )
       => ( ( modulo_modulo_int @ K2 @ L )
          = K2 ) ) ) ).

% mod_neg_neg_trivial
thf(fact_937_mod__pos__pos__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ K2 @ L )
       => ( ( modulo_modulo_int @ K2 @ L )
          = K2 ) ) ) ).

% mod_pos_pos_trivial
thf(fact_938_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_939_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_940_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_941_power__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_942_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_943_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_944_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_945_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_946_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_947_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_948_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_949_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_950_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_951_power__mono__iff,axiom,
    ! [A2: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A2 @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_952_power__mono__iff,axiom,
    ! [A2: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A2 @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_953_half__nonnegative__int__iff,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K2 ) ) ).

% half_nonnegative_int_iff
thf(fact_954_power2__eq__iff__nonneg,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_955_power2__eq__iff__nonneg,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_956_power2__less__eq__zero__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_957_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_958_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I: num,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_959_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_960_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_961_zero__le__power__eq__numeral,axiom,
    ! [A2: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_962_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K2: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K2 ) @ ( F @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_963_add__leE,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K2 @ N ) ) ) ).

% add_leE
thf(fact_964_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_965_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_966_add__leD1,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_967_add__leD2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ K2 @ N ) ) ).

% add_leD2
thf(fact_968_le__Suc__ex,axiom,
    ! [K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ K2 @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K2 @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_969_add__le__mono,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_le_mono
thf(fact_970_add__le__mono1,axiom,
    ! [I: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ K2 ) ) ) ).

% add_le_mono1
thf(fact_971_trans__le__add1,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_le_add1
thf(fact_972_trans__le__add2,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_le_add2
thf(fact_973_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N5: nat] :
        ? [K: nat] :
          ( N5
          = ( plus_plus_nat @ M5 @ K ) ) ) ) ).

% nat_le_iff_add
thf(fact_974_signed__take__bit__add,axiom,
    ! [N: nat,K2: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K2 @ L ) ) ) ).

% signed_take_bit_add
thf(fact_975_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J2 )
        & ( K2 = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_976_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J2 )
        & ( K2 = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_977_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( I = J2 )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_978_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( I = J2 )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_979_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J2 )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_980_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J2 )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_981_add__mono,axiom,
    ! [A2: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_982_add__mono,axiom,
    ! [A2: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_983_add__left__mono,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_984_add__left__mono,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_985_less__eqE,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A2 @ C3 ) ) ) ).

% less_eqE
thf(fact_986_add__right__mono,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_987_add__right__mono,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_988_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B2: nat] :
        ? [C2: nat] :
          ( B2
          = ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_989_add__le__imp__le__left,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A2 @ B ) ) ).

% add_le_imp_le_left
thf(fact_990_add__le__imp__le__left,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A2 @ B ) ) ).

% add_le_imp_le_left
thf(fact_991_add__le__imp__le__right,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A2 @ B ) ) ).

% add_le_imp_le_right
thf(fact_992_add__le__imp__le__right,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A2 @ B ) ) ).

% add_le_imp_le_right
thf(fact_993_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z5: int] :
        ? [N5: nat] :
          ( Z5
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N5 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_994_int__ge__induct,axiom,
    ! [K2: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K2 @ I )
     => ( ( P @ K2 )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K2 @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_995_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_996_verit__la__disequality,axiom,
    ! [A2: num,B: num] :
      ( ( A2 = B )
      | ~ ( ord_less_eq_num @ A2 @ B )
      | ~ ( ord_less_eq_num @ B @ A2 ) ) ).

% verit_la_disequality
thf(fact_997_verit__la__disequality,axiom,
    ! [A2: nat,B: nat] :
      ( ( A2 = B )
      | ~ ( ord_less_eq_nat @ A2 @ B )
      | ~ ( ord_less_eq_nat @ B @ A2 ) ) ).

% verit_la_disequality
thf(fact_998_verit__la__disequality,axiom,
    ! [A2: int,B: int] :
      ( ( A2 = B )
      | ~ ( ord_less_eq_int @ A2 @ B )
      | ~ ( ord_less_eq_int @ B @ A2 ) ) ).

% verit_la_disequality
thf(fact_999_verit__comp__simplify1_I2_J,axiom,
    ! [A2: num] : ( ord_less_eq_num @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_1000_verit__comp__simplify1_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_1001_verit__comp__simplify1_I2_J,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_1002_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1003_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1004_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1005_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_num @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1006_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1007_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1008_of__nat__mono,axiom,
    ! [I: nat,J2: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J2 ) ) ) ).

% of_nat_mono
thf(fact_1009_of__nat__mono,axiom,
    ! [I: nat,J2: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J2 ) ) ) ).

% of_nat_mono
thf(fact_1010_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_1011_div__le__mono,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K2 ) @ ( divide_divide_nat @ N @ K2 ) ) ) ).

% div_le_mono
thf(fact_1012_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_1013_mod__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).

% mod_less_eq_dividend
thf(fact_1014_obtain__smallest,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ? [K3: nat] :
          ( ( ord_less_eq_nat @ K3 @ N )
          & ( P @ K3 )
          & ! [A6: nat] :
              ( ( ord_less_nat @ A6 @ K3 )
             => ~ ( P @ A6 ) ) ) ) ).

% obtain_smallest
thf(fact_1015_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J2: nat] :
      ( ! [I3: nat,J: nat] :
          ( ( ord_less_nat @ I3 @ J )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J ) ) )
     => ( ( ord_less_eq_nat @ I @ J2 )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J2 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1016_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1017_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1018_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N5: nat] :
          ( ( ord_less_nat @ M5 @ N5 )
          | ( M5 = N5 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1019_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1020_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N5: nat] :
          ( ( ord_less_eq_nat @ M5 @ N5 )
          & ( M5 != N5 ) ) ) ) ).

% nat_less_le
thf(fact_1021_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1022_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1023_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1024_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1025_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y4: nat,Z4: nat] :
              ( ( R @ X3 @ Y4 )
             => ( ( R @ Y4 @ Z4 )
               => ( R @ X3 @ Z4 ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1026_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1027_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_1028_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1029_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1030_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1031_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M4: nat] :
          ( M6
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_1032_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1033_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1034_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1035_le__imp__neg__le,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_1036_minus__le__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A2 ) ) ).

% minus_le_iff
thf(fact_1037_le__minus__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A2 ) ) ) ).

% le_minus_iff
thf(fact_1038_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_1039_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_1040_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_1041_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z4 @ X4 )
     => ~ ( ord_less_eq_num @ X4 @ T ) ) ).

% pinf(6)
thf(fact_1042_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ~ ( ord_less_eq_nat @ X4 @ T ) ) ).

% pinf(6)
thf(fact_1043_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ~ ( ord_less_eq_int @ X4 @ T ) ) ).

% pinf(6)
thf(fact_1044_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ Z4 @ X4 )
     => ( ord_less_eq_num @ T @ X4 ) ) ).

% pinf(8)
thf(fact_1045_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z4 @ X4 )
     => ( ord_less_eq_nat @ T @ X4 ) ) ).

% pinf(8)
thf(fact_1046_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ Z4 @ X4 )
     => ( ord_less_eq_int @ T @ X4 ) ) ).

% pinf(8)
thf(fact_1047_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z4 )
     => ( ord_less_eq_num @ X4 @ T ) ) ).

% minf(6)
thf(fact_1048_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ( ord_less_eq_nat @ X4 @ T ) ) ).

% minf(6)
thf(fact_1049_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ( ord_less_eq_int @ X4 @ T ) ) ).

% minf(6)
thf(fact_1050_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X4: num] :
      ( ( ord_less_num @ X4 @ Z4 )
     => ~ ( ord_less_eq_num @ T @ X4 ) ) ).

% minf(8)
thf(fact_1051_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X4 ) ) ).

% minf(8)
thf(fact_1052_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X4: int] :
      ( ( ord_less_int @ X4 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X4 ) ) ).

% minf(8)
thf(fact_1053_verit__comp__simplify1_I3_J,axiom,
    ! [B5: num,A3: num] :
      ( ( ~ ( ord_less_eq_num @ B5 @ A3 ) )
      = ( ord_less_num @ A3 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1054_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A3: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A3 ) )
      = ( ord_less_nat @ A3 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1055_verit__comp__simplify1_I3_J,axiom,
    ! [B5: int,A3: int] :
      ( ( ~ ( ord_less_eq_int @ B5 @ A3 ) )
      = ( ord_less_int @ A3 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1056_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_1057_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_1058_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_1059_power__increasing,axiom,
    ! [N: nat,N2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A2 )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ A2 @ N2 ) ) ) ) ).

% power_increasing
thf(fact_1060_power__increasing,axiom,
    ! [N: nat,N2: nat,A2: int] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_int @ one_one_int @ A2 )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ A2 @ N2 ) ) ) ) ).

% power_increasing
thf(fact_1061_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_1062_imp__le__cong,axiom,
    ! [X: int,X6: int,P: $o,P3: $o] :
      ( ( X = X6 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
         => ( P = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X6 )
           => P3 ) ) ) ) ).

% imp_le_cong
thf(fact_1063_conj__le__cong,axiom,
    ! [X: int,X6: int,P: $o,P3: $o] :
      ( ( X = X6 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
         => ( P = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X6 )
            & P3 ) ) ) ) ).

% conj_le_cong
thf(fact_1064_signed__take__bit__minus,axiom,
    ! [N: nat,K2: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K2 ) ) ) ).

% signed_take_bit_minus
thf(fact_1065_power__decreasing,axiom,
    ! [N: nat,N2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N2 ) @ ( power_power_nat @ A2 @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_1066_power__decreasing,axiom,
    ! [N: nat,N2: nat,A2: int] :
      ( ( ord_less_eq_nat @ N @ N2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ A2 @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A2 @ N2 ) @ ( power_power_int @ A2 @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_1067_power__le__imp__le__exp,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A2 @ M ) @ ( power_power_nat @ A2 @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_1068_power__le__imp__le__exp,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ord_less_eq_int @ ( power_power_int @ A2 @ M ) @ ( power_power_int @ A2 @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_1069_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_1070_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_1071_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_1072_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_le_numeral
thf(fact_1073_add__decreasing,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1074_add__decreasing,axiom,
    ! [A2: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1075_add__increasing,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_1076_add__increasing,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_1077_add__decreasing2,axiom,
    ! [C: nat,A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A2 @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1078_add__decreasing2,axiom,
    ! [C: int,A2: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A2 @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1079_add__increasing2,axiom,
    ! [C: nat,B: nat,A2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A2 )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_1080_add__increasing2,axiom,
    ! [C: int,B: int,A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A2 )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_1081_add__nonneg__nonneg,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1082_add__nonneg__nonneg,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1083_add__nonpos__nonpos,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1084_add__nonpos__nonpos,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_1085_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1086_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1087_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1088_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1089_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_1090_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_1091_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1092_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1093_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_1094_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_1095_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J2 )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1096_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J2 )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1097_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J2: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1098_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J2: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I @ J2 )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1099_add__le__less__mono,axiom,
    ! [A2: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1100_add__le__less__mono,axiom,
    ! [A2: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1101_add__less__le__mono,axiom,
    ! [A2: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1102_add__less__le__mono,axiom,
    ! [A2: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1103_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_1104_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_1105_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_1106_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_1107_zero__le__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A2 @ N ) ) ) ).

% zero_le_power
thf(fact_1108_zero__le__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A2 @ N ) ) ) ).

% zero_le_power
thf(fact_1109_power__mono,axiom,
    ! [A2: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_1110_power__mono,axiom,
    ! [A2: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A2 @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_1111_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_1112_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_1113_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_1114_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_1115_one__le__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A2 )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A2 @ N ) ) ) ).

% one_le_power
thf(fact_1116_one__le__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A2 )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A2 @ N ) ) ) ).

% one_le_power
thf(fact_1117_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1118_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N5: nat] : ( ord_less_eq_nat @ ( suc @ N5 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1119_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1120_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1121_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1122_inc__induct,axiom,
    ! [I: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( P @ J2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J2 )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1123_dec__induct,axiom,
    ! [I: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J2 )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J2 ) ) ) ) ).

% dec_induct
thf(fact_1124_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1125_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1126_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1127_dvd__power__le,axiom,
    ! [X: nat,Y: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1128_dvd__power__le,axiom,
    ! [X: int,Y: int,N: nat,M: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1129_power__le__dvd,axiom,
    ! [A2: nat,N: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A2 @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ ( power_power_nat @ A2 @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1130_power__le__dvd,axiom,
    ! [A2: int,N: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A2 @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_int @ ( power_power_int @ A2 @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1131_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_nat @ ( power_power_nat @ A2 @ M ) @ ( power_power_nat @ A2 @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1132_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A2: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_int @ ( power_power_int @ A2 @ M ) @ ( power_power_int @ A2 @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1133_nonneg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ~ ! [N3: nat] :
            ( K2
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_1134_zero__le__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ? [N3: nat] :
          ( K2
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_1135_mod__Suc__le__divisor,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).

% mod_Suc_le_divisor
thf(fact_1136_add1__zle__eq,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W @ Z2 ) ) ).

% add1_zle_eq
thf(fact_1137_zless__imp__add1__zle,axiom,
    ! [W: int,Z2: int] :
      ( ( ord_less_int @ W @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_1138_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_1139_zdvd__antisym__nonneg,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ N )
       => ( ( dvd_dvd_int @ M @ N )
         => ( ( dvd_dvd_int @ N @ M )
           => ( M = N ) ) ) ) ) ).

% zdvd_antisym_nonneg
thf(fact_1140_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K2 ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_1141_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ K2 @ ( bit_ri631733984087533419it_int @ N @ K2 ) )
      = ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_1142_signed__take__bit__int__less__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ K2 )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K2 ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_1143_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ K2 )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K2 ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_1144_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N: nat,K2: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K2 ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_1145_signed__take__bit__int__eq__self,axiom,
    ! [N: nat,K2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K2 )
     => ( ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_ri631733984087533419it_int @ N @ K2 )
          = K2 ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_1146_signed__take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K2: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ K2 )
        = K2 )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K2 )
        & ( ord_less_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_1147_add__neg__nonpos,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_1148_add__neg__nonpos,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_1149_add__nonneg__pos,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1150_add__nonneg__pos,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1151_add__nonpos__neg,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_1152_add__nonpos__neg,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_1153_add__pos__nonneg,axiom,
    ! [A2: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1154_add__pos__nonneg,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1155_add__strict__increasing,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1156_add__strict__increasing,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1157_add__strict__increasing2,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1158_add__strict__increasing2,axiom,
    ! [A2: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1159_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_1160_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_1161_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_1162_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_1163_power__less__imp__less__base,axiom,
    ! [A2: nat,N: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A2 @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_1164_power__less__imp__less__base,axiom,
    ! [A2: int,N: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A2 @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_1165_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_1166_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_1167_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_1168_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_1169_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_1170_power__le__one,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_1171_power__le__one,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ A2 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_1172_nth__bit__bounded,axiom,
    ! [A2: nat,K2: nat] : ( ord_less_eq_nat @ ( bits_nth_bit @ A2 @ K2 ) @ one_one_nat ) ).

% nth_bit_bounded
thf(fact_1173_power__inject__base,axiom,
    ! [A2: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A2 @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A2 = B ) ) ) ) ).

% power_inject_base
thf(fact_1174_power__inject__base,axiom,
    ! [A2: int,N: nat,B: int] :
      ( ( ( power_power_int @ A2 @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A2 = B ) ) ) ) ).

% power_inject_base
thf(fact_1175_power__le__imp__le__base,axiom,
    ! [A2: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A2 @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_1176_power__le__imp__le__base,axiom,
    ! [A2: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A2 @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A2 @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_1177_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1178_dvd__imp__le,axiom,
    ! [K2: nat,N: nat] :
      ( ( dvd_dvd_nat @ K2 @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K2 @ N ) ) ) ).

% dvd_imp_le
thf(fact_1179_mod__le__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_le_divisor
thf(fact_1180_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_1181_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_1182_div__le__mono2,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K2 @ N ) @ ( divide_divide_nat @ K2 @ M ) ) ) ) ).

% div_le_mono2
thf(fact_1183_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_1184_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_1185_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_1186_nonpos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_1187_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_1188_zdvd__imp__le,axiom,
    ! [Z2: int,N: int] :
      ( ( dvd_dvd_int @ Z2 @ N )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int @ Z2 @ N ) ) ) ).

% zdvd_imp_le
thf(fact_1189_zdiv__mono1,axiom,
    ! [A2: int,A3: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ A3 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ ( divide_divide_int @ A3 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_1190_zdiv__mono2,axiom,
    ! [A2: int,B5: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ ( divide_divide_int @ A2 @ B5 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_1191_zdiv__eq__0__iff,axiom,
    ! [I: int,K2: int] :
      ( ( ( divide_divide_int @ I @ K2 )
        = zero_zero_int )
      = ( ( K2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K2 ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K2 @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_1192_zdiv__mono1__neg,axiom,
    ! [A2: int,A3: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ A3 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A3 @ B ) @ ( divide_divide_int @ A2 @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_1193_zdiv__mono2__neg,axiom,
    ! [A2: int,B5: int,B: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B5 ) @ ( divide_divide_int @ A2 @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_1194_div__int__pos__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K2 @ L ) )
      = ( ( K2 = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K2 )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K2 @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_1195_div__nonneg__neg__le0,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_1196_div__nonpos__pos__le0,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_1197_pos__imp__zdiv__pos__iff,axiom,
    ! [K2: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K2 ) )
        = ( ord_less_eq_int @ K2 @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_1198_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A2 @ B ) )
        = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_1199_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A2: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A2 @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_1200_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A2: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A2 @ B ) )
        = ( ( ord_less_eq_int @ B @ A2 )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_1201_neg__mod__sign,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K2 @ L ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_1202_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K2 @ L ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_1203_zmod__trivial__iff,axiom,
    ! [I: int,K2: int] :
      ( ( ( modulo_modulo_int @ I @ K2 )
        = I )
      = ( ( K2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K2 ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K2 @ I ) ) ) ) ).

% zmod_trivial_iff
thf(fact_1204_mod__pos__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K2 @ L ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K2 @ L )
          = ( plus_plus_int @ K2 @ L ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_1205_signed__take__bit__int__greater__eq,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ K2 @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K2 ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_1206_power__Suc__le__self,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) @ A2 ) ) ) ).

% power_Suc_le_self
thf(fact_1207_power__Suc__le__self,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ A2 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ ( suc @ N ) ) @ A2 ) ) ) ).

% power_Suc_le_self
thf(fact_1208_power__eq__iff__eq__base,axiom,
    ! [N: nat,A2: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A2 @ N )
              = ( power_power_nat @ B @ N ) )
            = ( A2 = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1209_power__eq__iff__eq__base,axiom,
    ! [N: nat,A2: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A2 @ N )
              = ( power_power_int @ B @ N ) )
            = ( A2 = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1210_power__eq__imp__eq__base,axiom,
    ! [A2: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A2 @ N )
        = ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A2 = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1211_power__eq__imp__eq__base,axiom,
    ! [A2: int,N: nat,B: int] :
      ( ( ( power_power_int @ A2 @ N )
        = ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A2 = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1212_dvd__power__iff,axiom,
    ! [X: nat,M: nat,N: nat] :
      ( ( X != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N ) )
        = ( ( dvd_dvd_nat @ X @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_1213_dvd__power__iff,axiom,
    ! [X: int,M: nat,N: nat] :
      ( ( X != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N ) )
        = ( ( dvd_dvd_int @ X @ one_one_int )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_1214_self__le__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A2 @ ( power_power_nat @ A2 @ N ) ) ) ) ).

% self_le_power
thf(fact_1215_self__le__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A2 @ ( power_power_int @ A2 @ N ) ) ) ) ).

% self_le_power
thf(fact_1216_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_1217_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_1218_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_1219_self__le__ge2__pow,axiom,
    ! [K2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K2 @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_1220_verit__less__mono__div__int2,axiom,
    ! [A4: int,B3: int,N: int] :
      ( ( ord_less_eq_int @ A4 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B3 @ N ) @ ( divide_divide_int @ A4 @ N ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_1221_power__dvd__imp__le,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
     => ( ( ord_less_nat @ one_one_nat @ I )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_dvd_imp_le
thf(fact_1222_mod__int__pos__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K2 @ L ) )
      = ( ( dvd_dvd_int @ L @ K2 )
        | ( ( L = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K2 ) )
        | ( ord_less_int @ zero_zero_int @ L ) ) ) ).

% mod_int_pos_iff
thf(fact_1223_signed__take__bit__int__less__exp,axiom,
    ! [N: nat,K2: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% signed_take_bit_int_less_exp
thf(fact_1224_power__strict__mono,axiom,
    ! [A2: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1225_power__strict__mono,axiom,
    ! [A2: int,B: int,N: nat] :
      ( ( ord_less_int @ A2 @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1226_power2__le__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_1227_power2__le__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_1228_power2__eq__imp__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_1229_power2__eq__imp__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_1230_zero__le__power2,axiom,
    ! [A2: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_1231_power__mono__odd,axiom,
    ! [N: nat,A2: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ A2 @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_1232_even__signed__take__bit__iff,axiom,
    ! [M: nat,A2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) ) ).

% even_signed_take_bit_iff
thf(fact_1233_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_1234_dvd__power__iff__le,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K2 @ M ) @ ( power_power_nat @ K2 @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% dvd_power_iff_le
thf(fact_1235_div__pos__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K2 @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K2 @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_1236_verit__le__mono__div,axiom,
    ! [A4: nat,B3: nat,N: nat] :
      ( ( ord_less_nat @ A4 @ B3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A4 @ N )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B3 @ N )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B3 @ N ) ) ) ) ).

% verit_le_mono_div
thf(fact_1237_verit__le__mono__div__int,axiom,
    ! [A4: int,B3: int,N: int] :
      ( ( ord_less_int @ A4 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A4 @ N )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B3 @ N )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B3 @ N ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_1238_signed__take__bit__int__greater__self__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_int @ K2 @ ( bit_ri631733984087533419it_int @ N @ K2 ) )
      = ( ord_less_int @ K2 @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_1239_power2__less__imp__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_nat @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_1240_power2__less__imp__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_int @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_1241_sum__power2__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_1242_ex__power__ivl2,axiom,
    ! [B: nat,K2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 )
       => ? [N3: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K2 )
            & ( ord_less_eq_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_1243_ex__power__ivl1,axiom,
    ! [B: nat,K2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K2 )
       => ? [N3: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K2 )
            & ( ord_less_nat @ K2 @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_1244_verit__la__generic,axiom,
    ! [A2: int,X: int] :
      ( ( ord_less_eq_int @ A2 @ X )
      | ( A2 = X )
      | ( ord_less_eq_int @ X @ A2 ) ) ).

% verit_la_generic
thf(fact_1245_set__bit__greater__eq,axiom,
    ! [K2: int,N: nat] : ( ord_less_eq_int @ K2 @ ( bit_se7879613467334960850it_int @ N @ K2 ) ) ).

% set_bit_greater_eq
thf(fact_1246_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K2: nat,B: nat] :
      ( ( P @ K2 )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_1247_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_1248_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_1249_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_1250_le__trans,axiom,
    ! [I: nat,J2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K2 )
       => ( ord_less_eq_nat @ I @ K2 ) ) ) ).

% le_trans
thf(fact_1251_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_1252_num_Osize__gen_I2_J,axiom,
    ! [X2: num] :
      ( ( size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_1253_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_1254_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_1255_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_1256_mult__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K2 )
        = ( times_times_nat @ N @ K2 ) )
      = ( ( M = N )
        | ( K2 = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1257_mult__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K2 @ M )
        = ( times_times_nat @ K2 @ N ) )
      = ( ( M = N )
        | ( K2 = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1258_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1259_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1260_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1261_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff

% Helper facts (5)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( bits_nth_bit @ ( modulo_modulo_nat @ x @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ c ) ) @ k )
    = ( bits_nth_bit @ x @ k ) ) ).

%------------------------------------------------------------------------------