TPTP Problem File: SLH0803^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : IMP_Compiler_Reuse/0005_Compiler/prob_00757_034205__5958488_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1389 ( 631 unt; 116 typ;   0 def)
%            Number of atoms       : 3351 (1459 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 10763 ( 339   ~;  86   |; 251   &;8793   @)
%                                         (   0 <=>;1294  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   30 (   6 avg)
%            Number of types       :   21 (  20 usr)
%            Number of type conns  :  589 ( 589   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   99 (  96 usr;  10 con; 0-3 aty)
%            Number of variables   : 3675 ( 119   ^;3373   !; 183   ?;3675   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:48:51.943
%------------------------------------------------------------------------------
% Could-be-implicit typings (20)
thf(ty_n_t__Product____Type__Oprod_It__Compiler__Oinstr_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J_J_J,type,
    produc5995290525303592096st_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_It__List__Olist_It__String__Ochar_J_J_Mt__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__Int__Oint_J_J,type,
    produc4189061985984568957nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J_J,type,
    produc6425607678544837394st_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J,type,
    produc369741286924889929st_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Com__Ocom_M_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_J,type,
    produc2931317944591925149ar_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__Int__Oint_J,type,
    produc4435102495419491129nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__BExp__Obexp_Mt__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    produc1897111610453708512_o_int: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__String__Ochar_J_J,type,
    list_list_char: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__String__Ochar_J_J,type,
    set_list_char: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    product_prod_o_int: $tType ).

thf(ty_n_t__List__Olist_It__Compiler__Oinstr_J,type,
    list_instr: $tType ).

thf(ty_n_t__List__Olist_It__String__Ochar_J,type,
    list_char: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__Compiler__Oinstr,type,
    instr: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__BExp__Obexp,type,
    bexp: $tType ).

thf(ty_n_t__AExp__Oaexp,type,
    aexp: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_t__Com__Ocom,type,
    com: $tType ).

% Explicit typings (96)
thf(sy_c_AExp_Oaval,type,
    aval: aexp > ( list_char > int ) > int ).

thf(sy_c_BExp_Obval,type,
    bval: bexp > ( list_char > int ) > $o ).

thf(sy_c_Big__Step_Obig__step,type,
    big_big_step: produc2931317944591925149ar_int > ( list_char > int ) > $o ).

thf(sy_c_Com_Ocom_OAssign,type,
    assign: list_char > aexp > com ).

thf(sy_c_Com_Ocom_OIf,type,
    if: bexp > com > com > com ).

thf(sy_c_Com_Ocom_OSKIP,type,
    skip: com ).

thf(sy_c_Com_Ocom_OSeq,type,
    seq: com > com > com ).

thf(sy_c_Com_Ocom_OWhile,type,
    while: bexp > com > com ).

thf(sy_c_Com_Ocom_Osize__com,type,
    size_com: com > nat ).

thf(sy_c_Compiler_Oacomp,type,
    acomp: aexp > list_instr ).

thf(sy_c_Compiler_Oaddr__of,type,
    addr_of: list_list_char > list_char > int ).

thf(sy_c_Compiler_Obcomp,type,
    bcomp: produc1897111610453708512_o_int > list_instr ).

thf(sy_c_Compiler_Occomp,type,
    ccomp: com > list_instr ).

thf(sy_c_Compiler_Oexec1,type,
    exec1: list_instr > produc6425607678544837394st_int > produc6425607678544837394st_int > $o ).

thf(sy_c_Compiler_Oiexec,type,
    iexec: instr > produc6425607678544837394st_int > produc6425607678544837394st_int ).

thf(sy_c_Compiler_Oinstr_OLOAD,type,
    load: list_char > instr ).

thf(sy_c_Compiler_Oinstr_OSTORE,type,
    store: list_char > instr ).

thf(sy_c_Compiler_Ointh_001t__Compiler__Oinstr,type,
    inth_instr: list_instr > int > instr ).

thf(sy_c_Compiler_Ointh_001t__Int__Oint,type,
    inth_int: list_int > int > int ).

thf(sy_c_Compiler_Ointh_001t__List__Olist_It__String__Ochar_J,type,
    inth_list_char: list_list_char > int > list_char ).

thf(sy_c_Compiler_Oto__m__state,type,
    to_m_state: list_list_char > ( list_char > int ) > int > int ).

thf(sy_c_Compiler_Oto__m__state__rel,type,
    to_m_state_rel: produc4189061985984568957nt_int > produc4189061985984568957nt_int > $o ).

thf(sy_c_Compiler_Ovars,type,
    vars: list_instr > list_list_char ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_List_Oappend_001t__Compiler__Oinstr,type,
    append_instr: list_instr > list_instr > list_instr ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Oappend_001t__List__Olist_It__String__Ochar_J,type,
    append_list_char: list_list_char > list_list_char > list_list_char ).

thf(sy_c_List_Obind_001t__Compiler__Oinstr_001t__Compiler__Oinstr,type,
    bind_instr_instr: list_instr > ( instr > list_instr ) > list_instr ).

thf(sy_c_List_Obind_001t__Int__Oint_001t__Compiler__Oinstr,type,
    bind_int_instr: list_int > ( int > list_instr ) > list_instr ).

thf(sy_c_List_Obind_001t__List__Olist_It__String__Ochar_J_001t__Compiler__Oinstr,type,
    bind_list_char_instr: list_list_char > ( list_char > list_instr ) > list_instr ).

thf(sy_c_List_Odistinct_001t__List__Olist_It__String__Ochar_J,type,
    distinct_list_char: list_list_char > $o ).

thf(sy_c_List_Olist_OCons_001t__Compiler__Oinstr,type,
    cons_instr: instr > list_instr > list_instr ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__String__Ochar_J,type,
    cons_list_char: list_char > list_list_char > list_list_char ).

thf(sy_c_List_Olist_Omap_001t__Compiler__Oinstr_001t__Compiler__Oinstr,type,
    map_instr_instr: ( instr > instr ) > list_instr > list_instr ).

thf(sy_c_List_Olist_Omap_001t__Compiler__Oinstr_001t__Int__Oint,type,
    map_instr_int: ( instr > int ) > list_instr > list_int ).

thf(sy_c_List_Olist_Omap_001t__Compiler__Oinstr_001t__List__Olist_It__String__Ochar_J,type,
    map_instr_list_char: ( instr > list_char ) > list_instr > list_list_char ).

thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Compiler__Oinstr,type,
    map_int_instr: ( int > instr ) > list_int > list_instr ).

thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Int__Oint,type,
    map_int_int: ( int > int ) > list_int > list_int ).

thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__List__Olist_It__String__Ochar_J,type,
    map_int_list_char: ( int > list_char ) > list_int > list_list_char ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_It__String__Ochar_J_001t__Compiler__Oinstr,type,
    map_list_char_instr: ( list_char > instr ) > list_list_char > list_instr ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_It__String__Ochar_J_001t__Int__Oint,type,
    map_list_char_int: ( list_char > int ) > list_list_char > list_int ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_It__String__Ochar_J_001t__List__Olist_It__String__Ochar_J,type,
    map_li116305933131242120t_char: ( list_char > list_char ) > list_list_char > list_list_char ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__String__Ochar_J,type,
    set_list_char2: list_list_char > set_list_char ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Com__Ocom,type,
    size_size_com: com > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Compiler__Oinstr,type,
    size_size_instr: instr > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Compiler__Oinstr_J,type,
    size_size_list_instr: list_instr > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__String__Ochar_J_J,type,
    size_s356637359517785349t_char: list_list_char > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Product__Type_OPair_001_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_001t__Int__Oint,type,
    produc5790713362662368625nt_int: ( list_char > int ) > int > produc4435102495419491129nt_int ).

thf(sy_c_Product__Type_OPair_001_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_001t__List__Olist_It__Int__Oint_J,type,
    produc8650753666468850689st_int: ( list_char > int ) > list_int > produc369741286924889929st_int ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Int__Oint,type,
    product_Pair_o_int: $o > int > product_prod_o_int ).

thf(sy_c_Product__Type_OPair_001t__BExp__Obexp_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    produc4047900504771817624_o_int: bexp > product_prod_o_int > produc1897111610453708512_o_int ).

thf(sy_c_Product__Type_OPair_001t__Com__Ocom_001_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J,type,
    produc5595214716300948949ar_int: com > ( list_char > int ) > produc2931317944591925149ar_int ).

thf(sy_c_Product__Type_OPair_001t__Compiler__Oinstr_001t__Product____Type__Oprod_It__Int__Oint_Mt__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J_J,type,
    produc1484136438817787418st_int: instr > produc6425607678544837394st_int > produc5995290525303592096st_int ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J,type,
    produc5086643055186798020st_int: int > produc369741286924889929st_int > produc6425607678544837394st_int ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_It__List__Olist_It__String__Ochar_J_J_001t__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__Int__Oint_J,type,
    produc3965054194175396271nt_int: list_list_char > produc4435102495419491129nt_int > produc4189061985984568957nt_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__String__Ochar_J,type,
    collect_list_char: ( list_char > $o ) > set_list_char ).

thf(sy_c_Star_Ostar_001t__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__Int__Oint_J,type,
    star_P2206551578999486376nt_int: ( produc4435102495419491129nt_int > produc4435102495419491129nt_int > $o ) > produc4435102495419491129nt_int > produc4435102495419491129nt_int > $o ).

thf(sy_c_Star_Ostar_001t__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J,type,
    star_P8562542470885916728st_int: ( produc369741286924889929st_int > produc369741286924889929st_int > $o ) > produc369741286924889929st_int > produc369741286924889929st_int > $o ).

thf(sy_c_Star_Ostar_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    star_P7760428584271161284_o_int: ( product_prod_o_int > product_prod_o_int > $o ) > product_prod_o_int > product_prod_o_int > $o ).

thf(sy_c_Star_Ostar_001t__Product____Type__Oprod_It__Com__Ocom_M_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_J,type,
    star_P702767028171920396ar_int: ( produc2931317944591925149ar_int > produc2931317944591925149ar_int > $o ) > produc2931317944591925149ar_int > produc2931317944591925149ar_int > $o ).

thf(sy_c_Star_Ostar_001t__Product____Type__Oprod_It__Int__Oint_Mt__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__List__Olist_It__Int__Oint_J_J_J,type,
    star_P707599355569300323st_int: ( produc6425607678544837394st_int > produc6425607678544837394st_int > $o ) > produc6425607678544837394st_int > produc6425607678544837394st_int > $o ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__List__Olist_It__List__Olist_It__String__Ochar_J_J_Mt__Product____Type__Oprod_I_062_It__List__Olist_It__String__Ochar_J_Mt__Int__Oint_J_Mt__Int__Oint_J_J,type,
    accp_P4562858270263085236nt_int: ( produc4189061985984568957nt_int > produc4189061985984568957nt_int > $o ) > produc4189061985984568957nt_int > $o ).

thf(sy_c_member_001t__List__Olist_It__String__Ochar_J,type,
    member_list_char: list_char > set_list_char > $o ).

thf(sy_v_b____,type,
    b: bexp ).

thf(sy_v_ca____,type,
    ca: com ).

thf(sy_v_s_092_060_094sub_0621____,type,
    s_1: list_char > int ).

thf(sy_v_s_092_060_094sub_0622____,type,
    s_2: list_char > int ).

thf(sy_v_s_092_060_094sub_0623____,type,
    s_3: list_char > int ).

thf(sy_v_stka____,type,
    stka: list_int ).

% Relevant facts (1265)
thf(fact_0_WhileTrue_Ohyps_I1_J,axiom,
    bval @ b @ s_1 ).

% WhileTrue.hyps(1)
thf(fact_1_exec__induct,axiom,
    ! [Pa: list_instr,X1a: int,X1b: list_char > int,X1c: list_int,X2a: int,X2b: list_char > int,X2c: list_int,P: int > ( list_char > int ) > list_int > int > ( list_char > int ) > list_int > $o] :
      ( ( star_P707599355569300323st_int @ ( exec1 @ Pa ) @ ( produc5086643055186798020st_int @ X1a @ ( produc8650753666468850689st_int @ X1b @ X1c ) ) @ ( produc5086643055186798020st_int @ X2a @ ( produc8650753666468850689st_int @ X2b @ X2c ) ) )
     => ( ! [A: int,Aa: list_char > int,B: list_int] : ( P @ A @ Aa @ B @ A @ Aa @ B )
       => ( ! [A: int,Aa: list_char > int,B: list_int,Ab: int,Ac: list_char > int,Ba: list_int,Ad: int,Ae: list_char > int,Bb: list_int] :
              ( ( exec1 @ Pa @ ( produc5086643055186798020st_int @ A @ ( produc8650753666468850689st_int @ Aa @ B ) ) @ ( produc5086643055186798020st_int @ Ab @ ( produc8650753666468850689st_int @ Ac @ Ba ) ) )
             => ( ( star_P707599355569300323st_int @ ( exec1 @ Pa ) @ ( produc5086643055186798020st_int @ Ab @ ( produc8650753666468850689st_int @ Ac @ Ba ) ) @ ( produc5086643055186798020st_int @ Ad @ ( produc8650753666468850689st_int @ Ae @ Bb ) ) )
               => ( ( P @ Ab @ Ac @ Ba @ Ad @ Ae @ Bb )
                 => ( P @ A @ Aa @ B @ Ad @ Ae @ Bb ) ) ) )
         => ( P @ X1a @ X1b @ X1c @ X2a @ X2b @ X2c ) ) ) ) ).

% exec_induct
thf(fact_2_calculation,axiom,
    star_P707599355569300323st_int @ ( exec1 @ ( ccomp @ ( while @ b @ ca ) ) ) @ ( produc5086643055186798020st_int @ zero_zero_int @ ( produc8650753666468850689st_int @ s_1 @ stka ) ) @ ( produc5086643055186798020st_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( bcomp @ ( produc4047900504771817624_o_int @ b @ ( product_Pair_o_int @ $false @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( ccomp @ ca ) ) ) @ one_one_int ) ) ) ) ) ) @ ( produc8650753666468850689st_int @ s_1 @ stka ) ) ).

% calculation
thf(fact_3_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_4_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_5_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_6_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_8_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_9_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_10_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_11_com_Oinject_I4_J,axiom,
    ! [X51: bexp,X52: com,Y51: bexp,Y52: com] :
      ( ( ( while @ X51 @ X52 )
        = ( while @ Y51 @ Y52 ) )
      = ( ( X51 = Y51 )
        & ( X52 = Y52 ) ) ) ).

% com.inject(4)
thf(fact_12_star__step1,axiom,
    ! [R: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,X: produc6425607678544837394st_int,Y: produc6425607678544837394st_int] :
      ( ( R @ X @ Y )
     => ( star_P707599355569300323st_int @ R @ X @ Y ) ) ).

% star_step1
thf(fact_13_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_14_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_15_add__left__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_16_add__left__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_17_add__right__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_18_add__right__cancel,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_19_prod_Oinject,axiom,
    ! [X1: $o,X2: int,Y1: $o,Y2: int] :
      ( ( ( product_Pair_o_int @ X1 @ X2 )
        = ( product_Pair_o_int @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_20_prod_Oinject,axiom,
    ! [X1: int,X2: produc369741286924889929st_int,Y1: int,Y2: produc369741286924889929st_int] :
      ( ( ( produc5086643055186798020st_int @ X1 @ X2 )
        = ( produc5086643055186798020st_int @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_21_prod_Oinject,axiom,
    ! [X1: com,X2: list_char > int,Y1: com,Y2: list_char > int] :
      ( ( ( produc5595214716300948949ar_int @ X1 @ X2 )
        = ( produc5595214716300948949ar_int @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_22_prod_Oinject,axiom,
    ! [X1: list_char > int,X2: list_int,Y1: list_char > int,Y2: list_int] :
      ( ( ( produc8650753666468850689st_int @ X1 @ X2 )
        = ( produc8650753666468850689st_int @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_23_prod_Oinject,axiom,
    ! [X1: list_char > int,X2: int,Y1: list_char > int,Y2: int] :
      ( ( ( produc5790713362662368625nt_int @ X1 @ X2 )
        = ( produc5790713362662368625nt_int @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_24_old_Oprod_Oinject,axiom,
    ! [A2: $o,B2: int,A3: $o,B3: int] :
      ( ( ( product_Pair_o_int @ A2 @ B2 )
        = ( product_Pair_o_int @ A3 @ B3 ) )
      = ( ( A2 = A3 )
        & ( B2 = B3 ) ) ) ).

% old.prod.inject
thf(fact_25_old_Oprod_Oinject,axiom,
    ! [A2: int,B2: produc369741286924889929st_int,A3: int,B3: produc369741286924889929st_int] :
      ( ( ( produc5086643055186798020st_int @ A2 @ B2 )
        = ( produc5086643055186798020st_int @ A3 @ B3 ) )
      = ( ( A2 = A3 )
        & ( B2 = B3 ) ) ) ).

% old.prod.inject
thf(fact_26_old_Oprod_Oinject,axiom,
    ! [A2: com,B2: list_char > int,A3: com,B3: list_char > int] :
      ( ( ( produc5595214716300948949ar_int @ A2 @ B2 )
        = ( produc5595214716300948949ar_int @ A3 @ B3 ) )
      = ( ( A2 = A3 )
        & ( B2 = B3 ) ) ) ).

% old.prod.inject
thf(fact_27_old_Oprod_Oinject,axiom,
    ! [A2: list_char > int,B2: list_int,A3: list_char > int,B3: list_int] :
      ( ( ( produc8650753666468850689st_int @ A2 @ B2 )
        = ( produc8650753666468850689st_int @ A3 @ B3 ) )
      = ( ( A2 = A3 )
        & ( B2 = B3 ) ) ) ).

% old.prod.inject
thf(fact_28_old_Oprod_Oinject,axiom,
    ! [A2: list_char > int,B2: int,A3: list_char > int,B3: int] :
      ( ( ( produc5790713362662368625nt_int @ A2 @ B2 )
        = ( produc5790713362662368625nt_int @ A3 @ B3 ) )
      = ( ( A2 = A3 )
        & ( B2 = B3 ) ) ) ).

% old.prod.inject
thf(fact_29_add__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add_0
thf(fact_30_add__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% add_0
thf(fact_31_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_32_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_33_add__cancel__right__right,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( plus_plus_int @ A2 @ B2 ) )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_34_add__cancel__right__right,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( plus_plus_nat @ A2 @ B2 ) )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_35_add__cancel__right__left,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( plus_plus_int @ B2 @ A2 ) )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_36_add__cancel__right__left,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( plus_plus_nat @ B2 @ A2 ) )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_37_add__cancel__left__right,axiom,
    ! [A2: int,B2: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_38_add__cancel__left__right,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_39_add__cancel__left__left,axiom,
    ! [B2: int,A2: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_40_add__cancel__left__left,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_41_double__zero__sym,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A2 @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_42_add_Oright__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.right_neutral
thf(fact_43_add_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.right_neutral
thf(fact_44_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_45_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_46_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_47_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_48_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_49_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_50_WhileTrue_Ohyps_I2_J,axiom,
    big_big_step @ ( produc5595214716300948949ar_int @ ca @ s_1 ) @ s_2 ).

% WhileTrue.hyps(2)
thf(fact_51_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_52_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_53_add_Ogroup__left__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add.group_left_neutral
thf(fact_54_add_Ocomm__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.comm_neutral
thf(fact_55_add_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.comm_neutral
thf(fact_56_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_57_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_58_iexec_Ocases,axiom,
    ! [X: produc5995290525303592096st_int] :
      ~ ! [Ins: instr,I: int,S: list_char > int,Stk: list_int] :
          ( X
         != ( produc1484136438817787418st_int @ Ins @ ( produc5086643055186798020st_int @ I @ ( produc8650753666468850689st_int @ S @ Stk ) ) ) ) ).

% iexec.cases
thf(fact_59_Pair__inject,axiom,
    ! [A2: $o,B2: int,A3: $o,B3: int] :
      ( ( ( product_Pair_o_int @ A2 @ B2 )
        = ( product_Pair_o_int @ A3 @ B3 ) )
     => ~ ( ( A2 = A3 )
         => ( B2 != B3 ) ) ) ).

% Pair_inject
thf(fact_60_Pair__inject,axiom,
    ! [A2: int,B2: produc369741286924889929st_int,A3: int,B3: produc369741286924889929st_int] :
      ( ( ( produc5086643055186798020st_int @ A2 @ B2 )
        = ( produc5086643055186798020st_int @ A3 @ B3 ) )
     => ~ ( ( A2 = A3 )
         => ( B2 != B3 ) ) ) ).

% Pair_inject
thf(fact_61_Pair__inject,axiom,
    ! [A2: com,B2: list_char > int,A3: com,B3: list_char > int] :
      ( ( ( produc5595214716300948949ar_int @ A2 @ B2 )
        = ( produc5595214716300948949ar_int @ A3 @ B3 ) )
     => ~ ( ( A2 = A3 )
         => ( B2 != B3 ) ) ) ).

% Pair_inject
thf(fact_62_Pair__inject,axiom,
    ! [A2: list_char > int,B2: list_int,A3: list_char > int,B3: list_int] :
      ( ( ( produc8650753666468850689st_int @ A2 @ B2 )
        = ( produc8650753666468850689st_int @ A3 @ B3 ) )
     => ~ ( ( A2 = A3 )
         => ( B2 != B3 ) ) ) ).

% Pair_inject
thf(fact_63_Pair__inject,axiom,
    ! [A2: list_char > int,B2: int,A3: list_char > int,B3: int] :
      ( ( ( produc5790713362662368625nt_int @ A2 @ B2 )
        = ( produc5790713362662368625nt_int @ A3 @ B3 ) )
     => ~ ( ( A2 = A3 )
         => ( B2 != B3 ) ) ) ).

% Pair_inject
thf(fact_64_prod__cases,axiom,
    ! [P: product_prod_o_int > $o,P2: product_prod_o_int] :
      ( ! [A: $o,B: int] : ( P @ ( product_Pair_o_int @ A @ B ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_65_prod__cases,axiom,
    ! [P: produc6425607678544837394st_int > $o,P2: produc6425607678544837394st_int] :
      ( ! [A: int,B: produc369741286924889929st_int] : ( P @ ( produc5086643055186798020st_int @ A @ B ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_66_prod__cases,axiom,
    ! [P: produc2931317944591925149ar_int > $o,P2: produc2931317944591925149ar_int] :
      ( ! [A: com,B: list_char > int] : ( P @ ( produc5595214716300948949ar_int @ A @ B ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_67_prod__cases,axiom,
    ! [P: produc369741286924889929st_int > $o,P2: produc369741286924889929st_int] :
      ( ! [A: list_char > int,B: list_int] : ( P @ ( produc8650753666468850689st_int @ A @ B ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_68_prod__cases,axiom,
    ! [P: produc4435102495419491129nt_int > $o,P2: produc4435102495419491129nt_int] :
      ( ! [A: list_char > int,B: int] : ( P @ ( produc5790713362662368625nt_int @ A @ B ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_69_surj__pair,axiom,
    ! [P2: product_prod_o_int] :
    ? [X3: $o,Y3: int] :
      ( P2
      = ( product_Pair_o_int @ X3 @ Y3 ) ) ).

% surj_pair
thf(fact_70_surj__pair,axiom,
    ! [P2: produc6425607678544837394st_int] :
    ? [X3: int,Y3: produc369741286924889929st_int] :
      ( P2
      = ( produc5086643055186798020st_int @ X3 @ Y3 ) ) ).

% surj_pair
thf(fact_71_surj__pair,axiom,
    ! [P2: produc2931317944591925149ar_int] :
    ? [X3: com,Y3: list_char > int] :
      ( P2
      = ( produc5595214716300948949ar_int @ X3 @ Y3 ) ) ).

% surj_pair
thf(fact_72_surj__pair,axiom,
    ! [P2: produc369741286924889929st_int] :
    ? [X3: list_char > int,Y3: list_int] :
      ( P2
      = ( produc8650753666468850689st_int @ X3 @ Y3 ) ) ).

% surj_pair
thf(fact_73_surj__pair,axiom,
    ! [P2: produc4435102495419491129nt_int] :
    ? [X3: list_char > int,Y3: int] :
      ( P2
      = ( produc5790713362662368625nt_int @ X3 @ Y3 ) ) ).

% surj_pair
thf(fact_74_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_o_int] :
      ~ ! [A: $o,B: int] :
          ( Y
         != ( product_Pair_o_int @ A @ B ) ) ).

% old.prod.exhaust
thf(fact_75_old_Oprod_Oexhaust,axiom,
    ! [Y: produc6425607678544837394st_int] :
      ~ ! [A: int,B: produc369741286924889929st_int] :
          ( Y
         != ( produc5086643055186798020st_int @ A @ B ) ) ).

% old.prod.exhaust
thf(fact_76_old_Oprod_Oexhaust,axiom,
    ! [Y: produc2931317944591925149ar_int] :
      ~ ! [A: com,B: list_char > int] :
          ( Y
         != ( produc5595214716300948949ar_int @ A @ B ) ) ).

% old.prod.exhaust
thf(fact_77_old_Oprod_Oexhaust,axiom,
    ! [Y: produc369741286924889929st_int] :
      ~ ! [A: list_char > int,B: list_int] :
          ( Y
         != ( produc8650753666468850689st_int @ A @ B ) ) ).

% old.prod.exhaust
thf(fact_78_old_Oprod_Oexhaust,axiom,
    ! [Y: produc4435102495419491129nt_int] :
      ~ ! [A: list_char > int,B: int] :
          ( Y
         != ( produc5790713362662368625nt_int @ A @ B ) ) ).

% old.prod.exhaust
thf(fact_79_add__right__imp__eq,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_80_add__right__imp__eq,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_81_add__left__imp__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_82_add__left__imp__eq,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_83_add_Oleft__commute,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( plus_plus_int @ B2 @ ( plus_plus_int @ A2 @ C ) )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_84_add_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( plus_plus_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_85_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A4: int,B4: int] : ( plus_plus_int @ B4 @ A4 ) ) ) ).

% add.commute
thf(fact_86_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B4: nat] : ( plus_plus_nat @ B4 @ A4 ) ) ) ).

% add.commute
thf(fact_87_add_Oright__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add.right_cancel
thf(fact_88_mem__Collect__eq,axiom,
    ! [A2: list_char,P: list_char > $o] :
      ( ( member_list_char @ A2 @ ( collect_list_char @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_89_Collect__mem__eq,axiom,
    ! [A5: set_list_char] :
      ( ( collect_list_char
        @ ^ [X4: list_char] : ( member_list_char @ X4 @ A5 ) )
      = A5 ) ).

% Collect_mem_eq
thf(fact_90_add_Oleft__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add.left_cancel
thf(fact_91_add_Oassoc,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_92_add_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_93_group__cancel_Oadd2,axiom,
    ! [B5: int,K: int,B2: int,A2: int] :
      ( ( B5
        = ( plus_plus_int @ K @ B2 ) )
     => ( ( plus_plus_int @ A2 @ B5 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_94_group__cancel_Oadd2,axiom,
    ! [B5: nat,K: nat,B2: nat,A2: nat] :
      ( ( B5
        = ( plus_plus_nat @ K @ B2 ) )
     => ( ( plus_plus_nat @ A2 @ B5 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_95_group__cancel_Oadd1,axiom,
    ! [A5: int,K: int,A2: int,B2: int] :
      ( ( A5
        = ( plus_plus_int @ K @ A2 ) )
     => ( ( plus_plus_int @ A5 @ B2 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_96_group__cancel_Oadd1,axiom,
    ! [A5: nat,K: nat,A2: nat,B2: nat] :
      ( ( A5
        = ( plus_plus_nat @ K @ A2 ) )
     => ( ( plus_plus_nat @ A5 @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_97_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( I2 = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I2 @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_98_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( I2 = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I2 @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_99_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_100_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_101_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_102_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_103_size__neq__size__imp__neq,axiom,
    ! [X: list_instr,Y: list_instr] :
      ( ( ( size_size_list_instr @ X )
       != ( size_size_list_instr @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_104_size__neq__size__imp__neq,axiom,
    ! [X: char,Y: char] :
      ( ( ( size_size_char @ X )
       != ( size_size_char @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_105_size__neq__size__imp__neq,axiom,
    ! [X: list_list_char,Y: list_list_char] :
      ( ( ( size_s356637359517785349t_char @ X )
       != ( size_s356637359517785349t_char @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_106_size__neq__size__imp__neq,axiom,
    ! [X: com,Y: com] :
      ( ( ( size_size_com @ X )
       != ( size_size_com @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_107_size__neq__size__imp__neq,axiom,
    ! [X: instr,Y: instr] :
      ( ( ( size_size_instr @ X )
       != ( size_size_instr @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_108_star__trans,axiom,
    ! [R: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,X: produc6425607678544837394st_int,Y: produc6425607678544837394st_int,Z: produc6425607678544837394st_int] :
      ( ( star_P707599355569300323st_int @ R @ X @ Y )
     => ( ( star_P707599355569300323st_int @ R @ Y @ Z )
       => ( star_P707599355569300323st_int @ R @ X @ Z ) ) ) ).

% star_trans
thf(fact_109_star_Osimps,axiom,
    ( star_P707599355569300323st_int
    = ( ^ [R2: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,A1: produc6425607678544837394st_int,A22: produc6425607678544837394st_int] :
          ( ? [X4: produc6425607678544837394st_int] :
              ( ( A1 = X4 )
              & ( A22 = X4 ) )
          | ? [X4: produc6425607678544837394st_int,Y4: produc6425607678544837394st_int,Z2: produc6425607678544837394st_int] :
              ( ( A1 = X4 )
              & ( A22 = Z2 )
              & ( R2 @ X4 @ Y4 )
              & ( star_P707599355569300323st_int @ R2 @ Y4 @ Z2 ) ) ) ) ) ).

% star.simps
thf(fact_110_star_Ocases,axiom,
    ! [R: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,A12: produc6425607678544837394st_int,A23: produc6425607678544837394st_int] :
      ( ( star_P707599355569300323st_int @ R @ A12 @ A23 )
     => ( ( A23 != A12 )
       => ~ ! [Y3: produc6425607678544837394st_int] :
              ( ( R @ A12 @ Y3 )
             => ~ ( star_P707599355569300323st_int @ R @ Y3 @ A23 ) ) ) ) ).

% star.cases
thf(fact_111_star_Ostep,axiom,
    ! [R: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,X: produc6425607678544837394st_int,Y: produc6425607678544837394st_int,Z: produc6425607678544837394st_int] :
      ( ( R @ X @ Y )
     => ( ( star_P707599355569300323st_int @ R @ Y @ Z )
       => ( star_P707599355569300323st_int @ R @ X @ Z ) ) ) ).

% star.step
thf(fact_112_star_Orefl,axiom,
    ! [R: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,X: produc6425607678544837394st_int] : ( star_P707599355569300323st_int @ R @ X @ X ) ).

% star.refl
thf(fact_113_prod__induct3,axiom,
    ! [P: produc6425607678544837394st_int > $o,X: produc6425607678544837394st_int] :
      ( ! [A: int,B: list_char > int,C2: list_int] : ( P @ ( produc5086643055186798020st_int @ A @ ( produc8650753666468850689st_int @ B @ C2 ) ) )
     => ( P @ X ) ) ).

% prod_induct3
thf(fact_114_prod__cases3,axiom,
    ! [Y: produc6425607678544837394st_int] :
      ~ ! [A: int,B: list_char > int,C2: list_int] :
          ( Y
         != ( produc5086643055186798020st_int @ A @ ( produc8650753666468850689st_int @ B @ C2 ) ) ) ).

% prod_cases3
thf(fact_115_star__induct,axiom,
    ! [R: product_prod_o_int > product_prod_o_int > $o,X1a: $o,X1b: int,X2a: $o,X2b: int,P: $o > int > $o > int > $o] :
      ( ( star_P7760428584271161284_o_int @ R @ ( product_Pair_o_int @ X1a @ X1b ) @ ( product_Pair_o_int @ X2a @ X2b ) )
     => ( ! [A: $o,B: int] : ( P @ A @ B @ A @ B )
       => ( ! [A: $o,B: int,Aa: $o,Ba: int,Ab: $o,Bb: int] :
              ( ( R @ ( product_Pair_o_int @ A @ B ) @ ( product_Pair_o_int @ Aa @ Ba ) )
             => ( ( star_P7760428584271161284_o_int @ R @ ( product_Pair_o_int @ Aa @ Ba ) @ ( product_Pair_o_int @ Ab @ Bb ) )
               => ( ( P @ Aa @ Ba @ Ab @ Bb )
                 => ( P @ A @ B @ Ab @ Bb ) ) ) )
         => ( P @ X1a @ X1b @ X2a @ X2b ) ) ) ) ).

% star_induct
thf(fact_116_star__induct,axiom,
    ! [R: produc6425607678544837394st_int > produc6425607678544837394st_int > $o,X1a: int,X1b: produc369741286924889929st_int,X2a: int,X2b: produc369741286924889929st_int,P: int > produc369741286924889929st_int > int > produc369741286924889929st_int > $o] :
      ( ( star_P707599355569300323st_int @ R @ ( produc5086643055186798020st_int @ X1a @ X1b ) @ ( produc5086643055186798020st_int @ X2a @ X2b ) )
     => ( ! [A: int,B: produc369741286924889929st_int] : ( P @ A @ B @ A @ B )
       => ( ! [A: int,B: produc369741286924889929st_int,Aa: int,Ba: produc369741286924889929st_int,Ab: int,Bb: produc369741286924889929st_int] :
              ( ( R @ ( produc5086643055186798020st_int @ A @ B ) @ ( produc5086643055186798020st_int @ Aa @ Ba ) )
             => ( ( star_P707599355569300323st_int @ R @ ( produc5086643055186798020st_int @ Aa @ Ba ) @ ( produc5086643055186798020st_int @ Ab @ Bb ) )
               => ( ( P @ Aa @ Ba @ Ab @ Bb )
                 => ( P @ A @ B @ Ab @ Bb ) ) ) )
         => ( P @ X1a @ X1b @ X2a @ X2b ) ) ) ) ).

% star_induct
thf(fact_117_star__induct,axiom,
    ! [R: produc2931317944591925149ar_int > produc2931317944591925149ar_int > $o,X1a: com,X1b: list_char > int,X2a: com,X2b: list_char > int,P: com > ( list_char > int ) > com > ( list_char > int ) > $o] :
      ( ( star_P702767028171920396ar_int @ R @ ( produc5595214716300948949ar_int @ X1a @ X1b ) @ ( produc5595214716300948949ar_int @ X2a @ X2b ) )
     => ( ! [A: com,B: list_char > int] : ( P @ A @ B @ A @ B )
       => ( ! [A: com,B: list_char > int,Aa: com,Ba: list_char > int,Ab: com,Bb: list_char > int] :
              ( ( R @ ( produc5595214716300948949ar_int @ A @ B ) @ ( produc5595214716300948949ar_int @ Aa @ Ba ) )
             => ( ( star_P702767028171920396ar_int @ R @ ( produc5595214716300948949ar_int @ Aa @ Ba ) @ ( produc5595214716300948949ar_int @ Ab @ Bb ) )
               => ( ( P @ Aa @ Ba @ Ab @ Bb )
                 => ( P @ A @ B @ Ab @ Bb ) ) ) )
         => ( P @ X1a @ X1b @ X2a @ X2b ) ) ) ) ).

% star_induct
thf(fact_118_star__induct,axiom,
    ! [R: produc369741286924889929st_int > produc369741286924889929st_int > $o,X1a: list_char > int,X1b: list_int,X2a: list_char > int,X2b: list_int,P: ( list_char > int ) > list_int > ( list_char > int ) > list_int > $o] :
      ( ( star_P8562542470885916728st_int @ R @ ( produc8650753666468850689st_int @ X1a @ X1b ) @ ( produc8650753666468850689st_int @ X2a @ X2b ) )
     => ( ! [A: list_char > int,B: list_int] : ( P @ A @ B @ A @ B )
       => ( ! [A: list_char > int,B: list_int,Aa: list_char > int,Ba: list_int,Ab: list_char > int,Bb: list_int] :
              ( ( R @ ( produc8650753666468850689st_int @ A @ B ) @ ( produc8650753666468850689st_int @ Aa @ Ba ) )
             => ( ( star_P8562542470885916728st_int @ R @ ( produc8650753666468850689st_int @ Aa @ Ba ) @ ( produc8650753666468850689st_int @ Ab @ Bb ) )
               => ( ( P @ Aa @ Ba @ Ab @ Bb )
                 => ( P @ A @ B @ Ab @ Bb ) ) ) )
         => ( P @ X1a @ X1b @ X2a @ X2b ) ) ) ) ).

% star_induct
thf(fact_119_star__induct,axiom,
    ! [R: produc4435102495419491129nt_int > produc4435102495419491129nt_int > $o,X1a: list_char > int,X1b: int,X2a: list_char > int,X2b: int,P: ( list_char > int ) > int > ( list_char > int ) > int > $o] :
      ( ( star_P2206551578999486376nt_int @ R @ ( produc5790713362662368625nt_int @ X1a @ X1b ) @ ( produc5790713362662368625nt_int @ X2a @ X2b ) )
     => ( ! [A: list_char > int,B: int] : ( P @ A @ B @ A @ B )
       => ( ! [A: list_char > int,B: int,Aa: list_char > int,Ba: int,Ab: list_char > int,Bb: int] :
              ( ( R @ ( produc5790713362662368625nt_int @ A @ B ) @ ( produc5790713362662368625nt_int @ Aa @ Ba ) )
             => ( ( star_P2206551578999486376nt_int @ R @ ( produc5790713362662368625nt_int @ Aa @ Ba ) @ ( produc5790713362662368625nt_int @ Ab @ Bb ) )
               => ( ( P @ Aa @ Ba @ Ab @ Bb )
                 => ( P @ A @ B @ Ab @ Bb ) ) ) )
         => ( P @ X1a @ X1b @ X2a @ X2b ) ) ) ) ).

% star_induct
thf(fact_120_WhileTrue_Ohyps_I3_J,axiom,
    big_big_step @ ( produc5595214716300948949ar_int @ ( while @ b @ ca ) @ s_2 ) @ s_3 ).

% WhileTrue.hyps(3)
thf(fact_121_bcomp__correct,axiom,
    ! [I2: int,B2: bexp,F: $o,S2: list_char > int,Stk2: list_int] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( star_P707599355569300323st_int @ ( exec1 @ ( bcomp @ ( produc4047900504771817624_o_int @ B2 @ ( product_Pair_o_int @ F @ I2 ) ) ) ) @ ( produc5086643055186798020st_int @ zero_zero_int @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) )
        @ ( produc5086643055186798020st_int
          @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( bcomp @ ( produc4047900504771817624_o_int @ B2 @ ( product_Pair_o_int @ F @ I2 ) ) ) ) )
            @ ( if_int
              @ ( F
                = ( bval @ B2 @ S2 ) )
              @ I2
              @ zero_zero_int ) )
          @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) ) ) ).

% bcomp_correct
thf(fact_122_double__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( plus_plus_int @ A2 @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_123_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_124_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_125_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_126_int__ops_I5_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(5)
thf(fact_127_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_128_exec__Cons__1,axiom,
    ! [P: list_instr,S2: list_char > int,Stk2: list_int,J: int,T: list_char > int,Stk3: list_int,Ins2: instr] :
      ( ( star_P707599355569300323st_int @ ( exec1 @ P ) @ ( produc5086643055186798020st_int @ zero_zero_int @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ J @ ( produc8650753666468850689st_int @ T @ Stk3 ) ) )
     => ( star_P707599355569300323st_int @ ( exec1 @ ( cons_instr @ Ins2 @ P ) ) @ ( produc5086643055186798020st_int @ one_one_int @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ ( plus_plus_int @ one_one_int @ J ) @ ( produc8650753666468850689st_int @ T @ Stk3 ) ) ) ) ).

% exec_Cons_1
thf(fact_129_iexec__shift,axiom,
    ! [N: int,I3: int,S3: list_char > int,Stk3: list_int,Ins2: instr,I2: int,S2: list_char > int,Stk2: list_int] :
      ( ( ( produc5086643055186798020st_int @ ( plus_plus_int @ N @ I3 ) @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) )
        = ( iexec @ Ins2 @ ( produc5086643055186798020st_int @ ( plus_plus_int @ N @ I2 ) @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) ) )
      = ( ( produc5086643055186798020st_int @ I3 @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) )
        = ( iexec @ Ins2 @ ( produc5086643055186798020st_int @ I2 @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) ) ) ) ).

% iexec_shift
thf(fact_130_exec__appendL,axiom,
    ! [P: list_instr,I2: int,S2: list_char > int,Stk2: list_int,I3: int,S3: list_char > int,Stk3: list_int,P3: list_instr] :
      ( ( star_P707599355569300323st_int @ ( exec1 @ P ) @ ( produc5086643055186798020st_int @ I2 @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ I3 @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) )
     => ( star_P707599355569300323st_int @ ( exec1 @ ( append_instr @ P3 @ P ) ) @ ( produc5086643055186798020st_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) @ I2 ) @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) @ I3 ) @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) ) ) ).

% exec_appendL
thf(fact_131_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_132_add__le__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_133_add__le__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_134_add__le__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_135_add__le__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_136_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_137_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_138_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_139_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_140_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_141_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_142_le__add__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ B2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_143_le__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_144_le__add__same__cancel1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ A2 @ B2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_145_le__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_146_add__le__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_147_add__le__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_148_add__le__same__cancel1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_149_add__le__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_150_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_151_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_152_verit__la__disequality,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_int @ A2 @ B2 )
      | ~ ( ord_less_eq_int @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_153_verit__la__disequality,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_nat @ A2 @ B2 )
      | ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_154_verit__la__generic,axiom,
    ! [A2: int,X: int] :
      ( ( ord_less_eq_int @ A2 @ X )
      | ( A2 = X )
      | ( ord_less_eq_int @ X @ A2 ) ) ).

% verit_la_generic
thf(fact_155_verit__comp__simplify1_I2_J,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_156_verit__comp__simplify1_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_157_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_158_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I2 ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_159_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_160_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_161_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_162_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_163_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( I2 = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_164_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( I2 = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_165_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_166_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_167_add__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_168_add__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_169_add__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_170_add__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_171_less__eqE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ~ ! [C2: nat] :
            ( B2
           != ( plus_plus_nat @ A2 @ C2 ) ) ) ).

% less_eqE
thf(fact_172_add__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_173_add__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_174_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
        ? [C3: nat] :
          ( B4
          = ( plus_plus_nat @ A4 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_175_add__le__imp__le__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_176_add__le__imp__le__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_177_add__le__imp__le__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_178_add__le__imp__le__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_179_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_180_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_181_exec1__appendR,axiom,
    ! [P: list_instr,C: produc6425607678544837394st_int,C4: produc6425607678544837394st_int,P3: list_instr] :
      ( ( exec1 @ P @ C @ C4 )
     => ( exec1 @ ( append_instr @ P @ P3 ) @ C @ C4 ) ) ).

% exec1_appendR
thf(fact_182_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_183_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_184_int__ge__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I2 )
     => ( ( P @ K )
       => ( ! [I: int] :
              ( ( ord_less_eq_int @ K @ I )
             => ( ( P @ I )
               => ( P @ ( plus_plus_int @ I @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_ge_induct
thf(fact_185_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W: int,Z2: int] :
        ? [N3: nat] :
          ( Z2
          = ( plus_plus_int @ W @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_186_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_187_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_188_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_189_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_190_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_191_add__nonpos__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_192_add__nonpos__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_193_add__nonneg__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_194_add__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_195_add__increasing2,axiom,
    ! [C: int,B2: int,A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( ord_less_eq_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_196_add__increasing2,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_197_add__decreasing2,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_198_add__decreasing2,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_199_add__increasing,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_200_add__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_201_add__decreasing,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_202_add__decreasing,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_203_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_204_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_205_exec__appendR,axiom,
    ! [P: list_instr,C: produc6425607678544837394st_int,C4: produc6425607678544837394st_int,P3: list_instr] :
      ( ( star_P707599355569300323st_int @ ( exec1 @ P ) @ C @ C4 )
     => ( star_P707599355569300323st_int @ ( exec1 @ ( append_instr @ P @ P3 ) ) @ C @ C4 ) ) ).

% exec_appendR
thf(fact_206_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( semiri1314217659103216013at_int @ A4 )
          = ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_207_int__if,axiom,
    ! [P: $o,A2: nat,B2: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ A2 ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% int_if
thf(fact_208_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_209_exec1__appendL,axiom,
    ! [P: list_instr,I2: int,S2: list_char > int,Stk2: list_int,I3: int,S3: list_char > int,Stk3: list_int,P3: list_instr] :
      ( ( exec1 @ P @ ( produc5086643055186798020st_int @ I2 @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ I3 @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) )
     => ( exec1 @ ( append_instr @ P3 @ P ) @ ( produc5086643055186798020st_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) @ I2 ) @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) @ I3 ) @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) ) ) ).

% exec1_appendL
thf(fact_210_verit__sum__simplify,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% verit_sum_simplify
thf(fact_211_verit__sum__simplify,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% verit_sum_simplify
thf(fact_212_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_213_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_214_length__append,axiom,
    ! [Xs: list_instr,Ys: list_instr] :
      ( ( size_size_list_instr @ ( append_instr @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_instr @ Xs ) @ ( size_size_list_instr @ Ys ) ) ) ).

% length_append
thf(fact_215_length__append,axiom,
    ! [Xs: list_list_char,Ys: list_list_char] :
      ( ( size_s356637359517785349t_char @ ( append_list_char @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_s356637359517785349t_char @ Xs ) @ ( size_s356637359517785349t_char @ Ys ) ) ) ).

% length_append
thf(fact_216_append__eq__append__conv,axiom,
    ! [Xs: list_instr,Ys: list_instr,Us: list_instr,Vs: list_instr] :
      ( ( ( ( size_size_list_instr @ Xs )
          = ( size_size_list_instr @ Ys ) )
        | ( ( size_size_list_instr @ Us )
          = ( size_size_list_instr @ Vs ) ) )
     => ( ( ( append_instr @ Xs @ Us )
          = ( append_instr @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_217_append__eq__append__conv,axiom,
    ! [Xs: list_list_char,Ys: list_list_char,Us: list_list_char,Vs: list_list_char] :
      ( ( ( ( size_s356637359517785349t_char @ Xs )
          = ( size_s356637359517785349t_char @ Ys ) )
        | ( ( size_s356637359517785349t_char @ Us )
          = ( size_s356637359517785349t_char @ Vs ) ) )
     => ( ( ( append_list_char @ Xs @ Us )
          = ( append_list_char @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_218_WhileE,axiom,
    ! [B2: bexp,C: com,S2: list_char > int,T: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S2 ) @ T )
     => ( ( ( T = S2 )
         => ( bval @ B2 @ S2 ) )
       => ~ ( ( bval @ B2 @ S2 )
           => ! [S_2: list_char > int] :
                ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S2 ) @ S_2 )
               => ~ ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S_2 ) @ T ) ) ) ) ) ).

% WhileE
thf(fact_219_WhileFalse,axiom,
    ! [B2: bexp,S2: list_char > int,C: com] :
      ( ~ ( bval @ B2 @ S2 )
     => ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S2 ) @ S2 ) ) ).

% WhileFalse
thf(fact_220_big__step_OWhileTrue,axiom,
    ! [B2: bexp,S_1: list_char > int,C: com,S_22: list_char > int,S_3: list_char > int] :
      ( ( bval @ B2 @ S_1 )
     => ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S_1 ) @ S_22 )
       => ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S_22 ) @ S_3 )
         => ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S_1 ) @ S_3 ) ) ) ) ).

% big_step.WhileTrue
thf(fact_221_exec__append__trans,axiom,
    ! [P: list_instr,S2: list_char > int,Stk2: list_int,I3: int,S3: list_char > int,Stk3: list_int,P3: list_instr,I4: int,S4: list_char > int,Stk4: list_int,J2: int] :
      ( ( star_P707599355569300323st_int @ ( exec1 @ P ) @ ( produc5086643055186798020st_int @ zero_zero_int @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ I3 @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) )
     => ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P ) ) @ I3 )
       => ( ( star_P707599355569300323st_int @ ( exec1 @ P3 ) @ ( produc5086643055186798020st_int @ ( minus_minus_int @ I3 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P ) ) ) @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) @ ( produc5086643055186798020st_int @ I4 @ ( produc8650753666468850689st_int @ S4 @ Stk4 ) ) )
         => ( ( J2
              = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P ) ) @ I4 ) )
           => ( star_P707599355569300323st_int @ ( exec1 @ ( append_instr @ P @ P3 ) ) @ ( produc5086643055186798020st_int @ zero_zero_int @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ J2 @ ( produc8650753666468850689st_int @ S4 @ Stk4 ) ) ) ) ) ) ) ).

% exec_append_trans
thf(fact_222_exec__appendL__if,axiom,
    ! [P3: list_instr,I2: int,P: list_instr,S2: list_char > int,Stk2: list_int,J: int,S3: list_char > int,Stk3: list_int,I3: int] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) @ I2 )
     => ( ( star_P707599355569300323st_int @ ( exec1 @ P ) @ ( produc5086643055186798020st_int @ ( minus_minus_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) ) @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ J @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) )
       => ( ( I3
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P3 ) ) @ J ) )
         => ( star_P707599355569300323st_int @ ( exec1 @ ( append_instr @ P3 @ P ) ) @ ( produc5086643055186798020st_int @ I2 @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ I3 @ ( produc8650753666468850689st_int @ S3 @ Stk3 ) ) ) ) ) ) ).

% exec_appendL_if
thf(fact_223_sim__while__cong__aux,axiom,
    ! [B2: bexp,C: com,S2: list_char > int,T: list_char > int,C4: com] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S2 ) @ T )
     => ( ! [S: list_char > int,T2: list_char > int] :
            ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S ) @ T2 )
            = ( big_big_step @ ( produc5595214716300948949ar_int @ C4 @ S ) @ T2 ) )
       => ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C4 ) @ S2 ) @ T ) ) ) ).

% sim_while_cong_aux
thf(fact_224_sim__while__cong,axiom,
    ! [C: com,C4: com,B2: bexp] :
      ( ! [S: list_char > int,T2: list_char > int] :
          ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S ) @ T2 )
          = ( big_big_step @ ( produc5595214716300948949ar_int @ C4 @ S ) @ T2 ) )
     => ! [S5: list_char > int,T3: list_char > int] :
          ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S5 ) @ T3 )
          = ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C4 ) @ S5 ) @ T3 ) ) ) ).

% sim_while_cong
thf(fact_225_list_Oinject,axiom,
    ! [X21: instr,X22: list_instr,Y21: instr,Y22: list_instr] :
      ( ( ( cons_instr @ X21 @ X22 )
        = ( cons_instr @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_226_list_Oinject,axiom,
    ! [X21: int,X22: list_int,Y21: int,Y22: list_int] :
      ( ( ( cons_int @ X21 @ X22 )
        = ( cons_int @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_227_list_Oinject,axiom,
    ! [X21: list_char,X22: list_list_char,Y21: list_char,Y22: list_list_char] :
      ( ( ( cons_list_char @ X21 @ X22 )
        = ( cons_list_char @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_228_append_Oassoc,axiom,
    ! [A2: list_instr,B2: list_instr,C: list_instr] :
      ( ( append_instr @ ( append_instr @ A2 @ B2 ) @ C )
      = ( append_instr @ A2 @ ( append_instr @ B2 @ C ) ) ) ).

% append.assoc
thf(fact_229_append__assoc,axiom,
    ! [Xs: list_instr,Ys: list_instr,Zs: list_instr] :
      ( ( append_instr @ ( append_instr @ Xs @ Ys ) @ Zs )
      = ( append_instr @ Xs @ ( append_instr @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_230_append__same__eq,axiom,
    ! [Ys: list_instr,Xs: list_instr,Zs: list_instr] :
      ( ( ( append_instr @ Ys @ Xs )
        = ( append_instr @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_231_same__append__eq,axiom,
    ! [Xs: list_instr,Ys: list_instr,Zs: list_instr] :
      ( ( ( append_instr @ Xs @ Ys )
        = ( append_instr @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_232_diff__self,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ A2 )
      = zero_zero_int ) ).

% diff_self
thf(fact_233_diff__0__right,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% diff_0_right
thf(fact_234_zero__diff,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_235_diff__zero,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% diff_zero
thf(fact_236_diff__zero,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% diff_zero
thf(fact_237_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ A2 )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_238_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ A2 )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_239_add__diff__cancel__right_H,axiom,
    ! [A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% add_diff_cancel_right'
thf(fact_240_add__diff__cancel__right_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% add_diff_cancel_right'
thf(fact_241_add__diff__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( minus_minus_int @ A2 @ B2 ) ) ).

% add_diff_cancel_right
thf(fact_242_add__diff__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( minus_minus_nat @ A2 @ B2 ) ) ).

% add_diff_cancel_right
thf(fact_243_add__diff__cancel__left_H,axiom,
    ! [A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ A2 )
      = B2 ) ).

% add_diff_cancel_left'
thf(fact_244_add__diff__cancel__left_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ A2 )
      = B2 ) ).

% add_diff_cancel_left'
thf(fact_245_add__diff__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( minus_minus_int @ A2 @ B2 ) ) ).

% add_diff_cancel_left
thf(fact_246_add__diff__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( minus_minus_nat @ A2 @ B2 ) ) ).

% add_diff_cancel_left
thf(fact_247_diff__add__cancel,axiom,
    ! [A2: int,B2: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% diff_add_cancel
thf(fact_248_add__diff__cancel,axiom,
    ! [A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% add_diff_cancel
thf(fact_249_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_250_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_251_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_252_diff__ge__0__iff__ge,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A2 @ B2 ) )
      = ( ord_less_eq_int @ B2 @ A2 ) ) ).

% diff_ge_0_iff_ge
thf(fact_253_diff__add__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( minus_minus_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_254_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% of_nat_diff
thf(fact_255_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_256_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_257_le__trans,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_258_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_259_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_260_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_261_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B2: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B2 ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y6: nat] :
                ( ( P @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_262_diff__right__commute,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A2 @ C ) @ B2 )
      = ( minus_minus_int @ ( minus_minus_int @ A2 @ B2 ) @ C ) ) ).

% diff_right_commute
thf(fact_263_diff__right__commute,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ C ) @ B2 )
      = ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ C ) ) ).

% diff_right_commute
thf(fact_264_diff__eq__diff__eq,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A2 = B2 )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_265_diff__eq__diff__less__eq,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A2 @ B2 )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_266_diff__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ C ) ) ) ).

% diff_right_mono
thf(fact_267_diff__left__mono,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A2 ) @ ( minus_minus_int @ C @ B2 ) ) ) ).

% diff_left_mono
thf(fact_268_diff__mono,axiom,
    ! [A2: int,B2: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ D ) ) ) ) ).

% diff_mono
thf(fact_269_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( minus_minus_int @ A4 @ B4 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_270_diff__diff__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( minus_minus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% diff_diff_eq
thf(fact_271_diff__diff__eq,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ C )
      = ( minus_minus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% diff_diff_eq
thf(fact_272_add__implies__diff,axiom,
    ! [C: int,B2: int,A2: int] :
      ( ( ( plus_plus_int @ C @ B2 )
        = A2 )
     => ( C
        = ( minus_minus_int @ A2 @ B2 ) ) ) ).

% add_implies_diff
thf(fact_273_add__implies__diff,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ( plus_plus_nat @ C @ B2 )
        = A2 )
     => ( C
        = ( minus_minus_nat @ A2 @ B2 ) ) ) ).

% add_implies_diff
thf(fact_274_diff__add__eq__diff__diff__swap,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( minus_minus_int @ A2 @ ( plus_plus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A2 @ C ) @ B2 ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_275_diff__add__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ).

% diff_add_eq
thf(fact_276_diff__diff__eq2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( minus_minus_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ).

% diff_diff_eq2
thf(fact_277_add__diff__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ C ) ) ).

% add_diff_eq
thf(fact_278_eq__diff__eq,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( A2
        = ( minus_minus_int @ C @ B2 ) )
      = ( ( plus_plus_int @ A2 @ B2 )
        = C ) ) ).

% eq_diff_eq
thf(fact_279_diff__eq__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = C )
      = ( A2
        = ( plus_plus_int @ C @ B2 ) ) ) ).

% diff_eq_eq
thf(fact_280_group__cancel_Osub1,axiom,
    ! [A5: int,K: int,A2: int,B2: int] :
      ( ( A5
        = ( plus_plus_int @ K @ A2 ) )
     => ( ( minus_minus_int @ A5 @ B2 )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.sub1
thf(fact_281_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_282_int__diff__cases,axiom,
    ! [Z: int] :
      ~ ! [M2: nat,N2: nat] :
          ( Z
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_diff_cases
thf(fact_283_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_284_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_285_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_286_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_287_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_288_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_289_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_290_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_291_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_292_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_293_add__le__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_294_add__le__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_295_trans__le__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_296_trans__le__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_297_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_298_impossible__Cons,axiom,
    ! [Xs: list_int,Ys: list_int,X: int] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ ( size_size_list_int @ Ys ) )
     => ( Xs
       != ( cons_int @ X @ Ys ) ) ) ).

% impossible_Cons
thf(fact_299_impossible__Cons,axiom,
    ! [Xs: list_instr,Ys: list_instr,X: instr] :
      ( ( ord_less_eq_nat @ ( size_size_list_instr @ Xs ) @ ( size_size_list_instr @ Ys ) )
     => ( Xs
       != ( cons_instr @ X @ Ys ) ) ) ).

% impossible_Cons
thf(fact_300_impossible__Cons,axiom,
    ! [Xs: list_list_char,Ys: list_list_char,X: list_char] :
      ( ( ord_less_eq_nat @ ( size_s356637359517785349t_char @ Xs ) @ ( size_s356637359517785349t_char @ Ys ) )
     => ( Xs
       != ( cons_list_char @ X @ Ys ) ) ) ).

% impossible_Cons
thf(fact_301_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] : ( ord_less_eq_int @ ( minus_minus_int @ A4 @ B4 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_302_diff__le__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( ord_less_eq_int @ A2 @ ( plus_plus_int @ C @ B2 ) ) ) ).

% diff_le_eq
thf(fact_303_le__diff__eq,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( minus_minus_int @ C @ B2 ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ C ) ) ).

% le_diff_eq
thf(fact_304_diff__add,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B2 @ A2 ) @ A2 )
        = B2 ) ) ).

% diff_add
thf(fact_305_le__add__diff,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B2 @ C ) @ A2 ) ) ) ).

% le_add_diff
thf(fact_306_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ B2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_307_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B2 ) @ A2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_308_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B2 ) @ A2 )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_309_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B2 @ A2 ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B2 @ C ) @ A2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_310_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B2 @ C ) @ A2 )
        = ( plus_plus_nat @ ( minus_minus_nat @ B2 @ A2 ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_311_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A2 ) @ B2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_312_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ A2 @ ( minus_minus_nat @ B2 @ A2 ) )
        = B2 ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_313_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ( ( minus_minus_nat @ B2 @ A2 )
            = C )
          = ( B2
            = ( plus_plus_nat @ C @ A2 ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_314_int__le__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I2 @ K )
     => ( ( P @ K )
       => ( ! [I: int] :
              ( ( ord_less_eq_int @ I @ K )
             => ( ( P @ I )
               => ( P @ ( minus_minus_int @ I @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_le_induct
thf(fact_315_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_316_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_317_int__induct,axiom,
    ! [P: int > $o,K: int,I2: int] :
      ( ( P @ K )
     => ( ! [I: int] :
            ( ( ord_less_eq_int @ K @ I )
           => ( ( P @ I )
             => ( P @ ( plus_plus_int @ I @ one_one_int ) ) ) )
       => ( ! [I: int] :
              ( ( ord_less_eq_int @ I @ K )
             => ( ( P @ I )
               => ( P @ ( minus_minus_int @ I @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_induct
thf(fact_318_not__Cons__self2,axiom,
    ! [X: instr,Xs: list_instr] :
      ( ( cons_instr @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_319_not__Cons__self2,axiom,
    ! [X: int,Xs: list_int] :
      ( ( cons_int @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_320_not__Cons__self2,axiom,
    ! [X: list_char,Xs: list_list_char] :
      ( ( cons_list_char @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_321_neq__if__length__neq,axiom,
    ! [Xs: list_instr,Ys: list_instr] :
      ( ( ( size_size_list_instr @ Xs )
       != ( size_size_list_instr @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_322_neq__if__length__neq,axiom,
    ! [Xs: list_list_char,Ys: list_list_char] :
      ( ( ( size_s356637359517785349t_char @ Xs )
       != ( size_s356637359517785349t_char @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_323_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs2: list_instr] :
      ( ( size_size_list_instr @ Xs2 )
      = N ) ).

% Ex_list_of_length
thf(fact_324_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs2: list_list_char] :
      ( ( size_s356637359517785349t_char @ Xs2 )
      = N ) ).

% Ex_list_of_length
thf(fact_325_append__eq__appendI,axiom,
    ! [Xs: list_instr,Xs1: list_instr,Zs: list_instr,Ys: list_instr,Us: list_instr] :
      ( ( ( append_instr @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_instr @ Xs1 @ Us ) )
       => ( ( append_instr @ Xs @ Ys )
          = ( append_instr @ Zs @ Us ) ) ) ) ).

% append_eq_appendI
thf(fact_326_append__eq__append__conv2,axiom,
    ! [Xs: list_instr,Ys: list_instr,Zs: list_instr,Ts: list_instr] :
      ( ( ( append_instr @ Xs @ Ys )
        = ( append_instr @ Zs @ Ts ) )
      = ( ? [Us2: list_instr] :
            ( ( ( Xs
                = ( append_instr @ Zs @ Us2 ) )
              & ( ( append_instr @ Us2 @ Ys )
                = Ts ) )
            | ( ( ( append_instr @ Xs @ Us2 )
                = Zs )
              & ( Ys
                = ( append_instr @ Us2 @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_327_append__Cons,axiom,
    ! [X: instr,Xs: list_instr,Ys: list_instr] :
      ( ( append_instr @ ( cons_instr @ X @ Xs ) @ Ys )
      = ( cons_instr @ X @ ( append_instr @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_328_append__Cons,axiom,
    ! [X: int,Xs: list_int,Ys: list_int] :
      ( ( append_int @ ( cons_int @ X @ Xs ) @ Ys )
      = ( cons_int @ X @ ( append_int @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_329_append__Cons,axiom,
    ! [X: list_char,Xs: list_list_char,Ys: list_list_char] :
      ( ( append_list_char @ ( cons_list_char @ X @ Xs ) @ Ys )
      = ( cons_list_char @ X @ ( append_list_char @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_330_Cons__eq__appendI,axiom,
    ! [X: instr,Xs1: list_instr,Ys: list_instr,Xs: list_instr,Zs: list_instr] :
      ( ( ( cons_instr @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_instr @ Xs1 @ Zs ) )
       => ( ( cons_instr @ X @ Xs )
          = ( append_instr @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_331_Cons__eq__appendI,axiom,
    ! [X: int,Xs1: list_int,Ys: list_int,Xs: list_int,Zs: list_int] :
      ( ( ( cons_int @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_int @ Xs1 @ Zs ) )
       => ( ( cons_int @ X @ Xs )
          = ( append_int @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_332_Cons__eq__appendI,axiom,
    ! [X: list_char,Xs1: list_list_char,Ys: list_list_char,Xs: list_list_char,Zs: list_list_char] :
      ( ( ( cons_list_char @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_list_char @ Xs1 @ Zs ) )
       => ( ( cons_list_char @ X @ Xs )
          = ( append_list_char @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_333_big__step__determ,axiom,
    ! [C: com,S2: list_char > int,T: list_char > int,U: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S2 ) @ T )
     => ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S2 ) @ U )
       => ( U = T ) ) ) ).

% big_step_determ
thf(fact_334_sim__trans,axiom,
    ! [C: com,C4: com,C5: com] :
      ( ! [S: list_char > int,T2: list_char > int] :
          ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S ) @ T2 )
          = ( big_big_step @ ( produc5595214716300948949ar_int @ C4 @ S ) @ T2 ) )
     => ( ! [S: list_char > int,T2: list_char > int] :
            ( ( big_big_step @ ( produc5595214716300948949ar_int @ C4 @ S ) @ T2 )
            = ( big_big_step @ ( produc5595214716300948949ar_int @ C5 @ S ) @ T2 ) )
       => ! [S5: list_char > int,T3: list_char > int] :
            ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S5 ) @ T3 )
            = ( big_big_step @ ( produc5595214716300948949ar_int @ C5 @ S5 ) @ T3 ) ) ) ) ).

% sim_trans
thf(fact_335_sim__refl,axiom,
    ! [C: com,S5: list_char > int,T3: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S5 ) @ T3 )
      = ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S5 ) @ T3 ) ) ).

% sim_refl
thf(fact_336_sim__sym,axiom,
    ! [C: com,C4: com] :
      ( ( ! [S6: list_char > int,T4: list_char > int] :
            ( ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S6 ) @ T4 )
            = ( big_big_step @ ( produc5595214716300948949ar_int @ C4 @ S6 ) @ T4 ) ) )
      = ( ! [S6: list_char > int,T4: list_char > int] :
            ( ( big_big_step @ ( produc5595214716300948949ar_int @ C4 @ S6 ) @ T4 )
            = ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S6 ) @ T4 ) ) ) ) ).

% sim_sym
thf(fact_337_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_338_le__add__diff__inverse2,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( plus_plus_int @ ( minus_minus_int @ A2 @ B2 ) @ B2 )
        = A2 ) ) ).

% le_add_diff_inverse2
thf(fact_339_le__add__diff__inverse2,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ B2 )
        = A2 ) ) ).

% le_add_diff_inverse2
thf(fact_340_le__add__diff__inverse,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( plus_plus_int @ B2 @ ( minus_minus_int @ A2 @ B2 ) )
        = A2 ) ) ).

% le_add_diff_inverse
thf(fact_341_le__add__diff__inverse,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( plus_plus_nat @ B2 @ ( minus_minus_nat @ A2 @ B2 ) )
        = A2 ) ) ).

% le_add_diff_inverse
thf(fact_342_add__le__add__imp__diff__le,axiom,
    ! [I2: int,K: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_343_add__le__add__imp__diff__le,axiom,
    ! [I2: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_344_add__le__imp__le__diff,axiom,
    ! [I2: int,K: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ N )
     => ( ord_less_eq_int @ I2 @ ( minus_minus_int @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_345_add__le__imp__le__diff,axiom,
    ! [I2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ N )
     => ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_346_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_347_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_348_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_349_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_350_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_351_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_352_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C3: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_353_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_354_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_355_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_356_diff__diff__left,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_357_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_358_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_359_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_360_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_361_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_362_diff__commute,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J ) ) ).

% diff_commute
thf(fact_363_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_364_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_365_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_366_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B2 ) )
          = ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_367_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_368_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_369_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_370_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_371_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_372_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_373_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_374_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_375_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_376_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_377_Nat_Ole__imp__diff__is__add,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( minus_minus_nat @ J @ I2 )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_378_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I2 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_379_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K )
        = ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_380_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_381_le__diff__conv,axiom,
    ! [J: nat,K: nat,I2: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I2 @ K ) ) ) ).

% le_diff_conv
thf(fact_382_is__num__normalize_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_383_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_384_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_385_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_386_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_387_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_388_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_389_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C3: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_390_dual__order_Orefl,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_391_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_392_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_393_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_394_inth_Osimps,axiom,
    ! [I2: int,X: instr,Xs: list_instr] :
      ( ( ( I2 = zero_zero_int )
       => ( ( inth_instr @ ( cons_instr @ X @ Xs ) @ I2 )
          = X ) )
      & ( ( I2 != zero_zero_int )
       => ( ( inth_instr @ ( cons_instr @ X @ Xs ) @ I2 )
          = ( inth_instr @ Xs @ ( minus_minus_int @ I2 @ one_one_int ) ) ) ) ) ).

% inth.simps
thf(fact_395_inth_Osimps,axiom,
    ! [I2: int,X: int,Xs: list_int] :
      ( ( ( I2 = zero_zero_int )
       => ( ( inth_int @ ( cons_int @ X @ Xs ) @ I2 )
          = X ) )
      & ( ( I2 != zero_zero_int )
       => ( ( inth_int @ ( cons_int @ X @ Xs ) @ I2 )
          = ( inth_int @ Xs @ ( minus_minus_int @ I2 @ one_one_int ) ) ) ) ) ).

% inth.simps
thf(fact_396_inth_Osimps,axiom,
    ! [I2: int,X: list_char,Xs: list_list_char] :
      ( ( ( I2 = zero_zero_int )
       => ( ( inth_list_char @ ( cons_list_char @ X @ Xs ) @ I2 )
          = X ) )
      & ( ( I2 != zero_zero_int )
       => ( ( inth_list_char @ ( cons_list_char @ X @ Xs ) @ I2 )
          = ( inth_list_char @ Xs @ ( minus_minus_int @ I2 @ one_one_int ) ) ) ) ) ).

% inth.simps
thf(fact_397_conj__le__cong,axiom,
    ! [X: int,X5: int,P: $o,P3: $o] :
      ( ( X = X5 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
         => ( P = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X5 )
            & P3 ) ) ) ) ).

% conj_le_cong
thf(fact_398_imp__le__cong,axiom,
    ! [X: int,X5: int,P: $o,P3: $o] :
      ( ( X = X5 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
         => ( P = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X5 )
           => P3 ) ) ) ) ).

% imp_le_cong
thf(fact_399_nle__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_eq_int @ A2 @ B2 ) )
      = ( ( ord_less_eq_int @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_400_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_401_le__cases3,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ( ord_less_eq_int @ X @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z ) )
     => ( ( ( ord_less_eq_int @ Y @ X )
         => ~ ( ord_less_eq_int @ X @ Z ) )
       => ( ( ( ord_less_eq_int @ X @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y ) )
         => ( ( ( ord_less_eq_int @ Z @ Y )
             => ~ ( ord_less_eq_int @ Y @ X ) )
           => ( ( ( ord_less_eq_int @ Y @ Z )
               => ~ ( ord_less_eq_int @ Z @ X ) )
             => ~ ( ( ord_less_eq_int @ Z @ X )
                 => ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_402_le__cases3,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_403_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_eq_int @ X4 @ Y4 )
          & ( ord_less_eq_int @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_404_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_405_ord__eq__le__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_406_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_407_ord__le__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_408_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_409_order__antisym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_410_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_411_order_Otrans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% order.trans
thf(fact_412_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_413_order__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ X @ Z ) ) ) ).

% order_trans
thf(fact_414_order__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_415_linorder__wlog,axiom,
    ! [P: int > int > $o,A2: int,B2: int] :
      ( ! [A: int,B: int] :
          ( ( ord_less_eq_int @ A @ B )
         => ( P @ A @ B ) )
     => ( ! [A: int,B: int] :
            ( ( P @ B @ A )
           => ( P @ A @ B ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_416_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
         => ( P @ A @ B ) )
     => ( ! [A: nat,B: nat] :
            ( ( P @ B @ A )
           => ( P @ A @ B ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_417_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_418_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_419_dual__order_Oantisym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_420_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_421_dual__order_Otrans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_422_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_423_antisym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_424_antisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_425_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_426_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_427_order__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_428_order__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_429_order__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_430_order__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_431_order__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_432_order__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_433_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_434_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_435_order__eq__refl,axiom,
    ! [X: int,Y: int] :
      ( ( X = Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_eq_refl
thf(fact_436_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_437_linorder__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_linear
thf(fact_438_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_439_ord__eq__le__subst,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_440_ord__eq__le__subst,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_441_ord__eq__le__subst,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_442_ord__eq__le__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_443_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_444_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_445_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_446_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_447_linorder__le__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_448_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_449_order__antisym__conv,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_450_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_451_exec1I,axiom,
    ! [C4: produc6425607678544837394st_int,P: list_instr,I2: int,S2: list_char > int,Stk2: list_int] :
      ( ( C4
        = ( iexec @ ( inth_instr @ P @ I2 ) @ ( produc5086643055186798020st_int @ I2 @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ I2 )
       => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P ) ) )
         => ( exec1 @ P @ ( produc5086643055186798020st_int @ I2 @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ C4 ) ) ) ) ).

% exec1I
thf(fact_452_inth__append,axiom,
    ! [I2: int,Xs: list_instr,Ys: list_instr] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ Xs ) ) )
         => ( ( inth_instr @ ( append_instr @ Xs @ Ys ) @ I2 )
            = ( inth_instr @ Xs @ I2 ) ) )
        & ( ~ ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ Xs ) ) )
         => ( ( inth_instr @ ( append_instr @ Xs @ Ys ) @ I2 )
            = ( inth_instr @ Ys @ ( minus_minus_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ Xs ) ) ) ) ) ) ) ) ).

% inth_append
thf(fact_453_inth__append,axiom,
    ! [I2: int,Xs: list_list_char,Ys: list_list_char] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) )
         => ( ( inth_list_char @ ( append_list_char @ Xs @ Ys ) @ I2 )
            = ( inth_list_char @ Xs @ I2 ) ) )
        & ( ~ ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) )
         => ( ( inth_list_char @ ( append_list_char @ Xs @ Ys ) @ I2 )
            = ( inth_list_char @ Ys @ ( minus_minus_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) ) ) ) ) ) ) ).

% inth_append
thf(fact_454_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A: nat,B: nat] :
          ( ( P @ A @ B )
          = ( P @ B @ A ) )
     => ( ! [A: nat] : ( P @ A @ zero_zero_nat )
       => ( ! [A: nat,B: nat] :
              ( ( P @ A @ B )
             => ( P @ A @ ( plus_plus_nat @ A @ B ) ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% Euclid_induct
thf(fact_455_add__0__iff,axiom,
    ! [B2: int,A2: int] :
      ( ( B2
        = ( plus_plus_int @ B2 @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% add_0_iff
thf(fact_456_add__0__iff,axiom,
    ! [B2: nat,A2: nat] :
      ( ( B2
        = ( plus_plus_nat @ B2 @ A2 ) )
      = ( A2 = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_457_bind__simps_I2_J,axiom,
    ! [X: instr,Xs: list_instr,F: instr > list_instr] :
      ( ( bind_instr_instr @ ( cons_instr @ X @ Xs ) @ F )
      = ( append_instr @ ( F @ X ) @ ( bind_instr_instr @ Xs @ F ) ) ) ).

% bind_simps(2)
thf(fact_458_bind__simps_I2_J,axiom,
    ! [X: int,Xs: list_int,F: int > list_instr] :
      ( ( bind_int_instr @ ( cons_int @ X @ Xs ) @ F )
      = ( append_instr @ ( F @ X ) @ ( bind_int_instr @ Xs @ F ) ) ) ).

% bind_simps(2)
thf(fact_459_bind__simps_I2_J,axiom,
    ! [X: list_char,Xs: list_list_char,F: list_char > list_instr] :
      ( ( bind_list_char_instr @ ( cons_list_char @ X @ Xs ) @ F )
      = ( append_instr @ ( F @ X ) @ ( bind_list_char_instr @ Xs @ F ) ) ) ).

% bind_simps(2)
thf(fact_460_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_461_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_462_add__less__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_463_add__less__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_464_add__less__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_465_add__less__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_466_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_467_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_468_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_469_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_470_less__add__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ B2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_471_less__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_472_less__add__same__cancel1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ B2 ) )
      = ( ord_less_int @ zero_zero_int @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_473_less__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_474_add__less__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_475_add__less__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_476_add__less__same__cancel1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B2 @ A2 ) @ B2 )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_477_add__less__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_478_diff__gt__0__iff__gt,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A2 @ B2 ) )
      = ( ord_less_int @ B2 @ A2 ) ) ).

% diff_gt_0_iff_gt
thf(fact_479_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_480_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_481_zle__add1__eq__le,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W2 @ Z ) ) ).

% zle_add1_eq_le
thf(fact_482_zle__diff1__eq,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W2 @ Z ) ) ).

% zle_diff1_eq
thf(fact_483_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z4 )
     => ~ ( ord_less_int @ T @ X6 ) ) ).

% minf(7)
thf(fact_484_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z4 )
     => ~ ( ord_less_nat @ T @ X6 ) ) ).

% minf(7)
thf(fact_485_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z4 )
     => ( ord_less_int @ X6 @ T ) ) ).

% minf(5)
thf(fact_486_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z4 )
     => ( ord_less_nat @ X6 @ T ) ) ).

% minf(5)
thf(fact_487_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z4 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_488_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z4 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_489_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z4 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_490_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z4 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_491_minf_I2_J,axiom,
    ! [P: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z4 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_492_minf_I2_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z4 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_493_minf_I1_J,axiom,
    ! [P: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z4 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_494_minf_I1_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z4 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_495_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z4 @ X6 )
     => ( ord_less_int @ T @ X6 ) ) ).

% pinf(7)
thf(fact_496_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z4 @ X6 )
     => ( ord_less_nat @ T @ X6 ) ) ).

% pinf(7)
thf(fact_497_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z4 @ X6 )
     => ~ ( ord_less_int @ X6 @ T ) ) ).

% pinf(5)
thf(fact_498_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z4 @ X6 )
     => ~ ( ord_less_nat @ X6 @ T ) ) ).

% pinf(5)
thf(fact_499_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z4 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_500_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z4 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_501_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z4 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_502_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z4 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_503_pinf_I2_J,axiom,
    ! [P: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z4 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_504_pinf_I2_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z4 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_505_pinf_I1_J,axiom,
    ! [P: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z4 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_506_pinf_I1_J,axiom,
    ! [P: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z4 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P3 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_507_lt__ex,axiom,
    ! [X: int] :
    ? [Y3: int] : ( ord_less_int @ Y3 @ X ) ).

% lt_ex
thf(fact_508_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_509_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_510_less__imp__neq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_511_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_512_order_Oasym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order.asym
thf(fact_513_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_514_ord__eq__less__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_515_ord__eq__less__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_516_ord__less__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_517_ord__less__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_518_less__induct,axiom,
    ! [P: nat > $o,A2: nat] :
      ( ! [X3: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X3 )
             => ( P @ Y6 ) )
         => ( P @ X3 ) )
     => ( P @ A2 ) ) ).

% less_induct
thf(fact_519_antisym__conv3,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_int @ Y @ X )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_520_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_521_linorder__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_522_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_523_dual__order_Oasym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ~ ( ord_less_int @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_524_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_525_dual__order_Oirrefl,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_526_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_527_exists__least__iff,axiom,
    ( ( ^ [P4: nat > $o] :
        ? [X7: nat] : ( P4 @ X7 ) )
    = ( ^ [P5: nat > $o] :
        ? [N3: nat] :
          ( ( P5 @ N3 )
          & ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ~ ( P5 @ M3 ) ) ) ) ) ).

% exists_least_iff
thf(fact_528_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A2: int,B2: int] :
      ( ! [A: int,B: int] :
          ( ( ord_less_int @ A @ B )
         => ( P @ A @ B ) )
     => ( ! [A: int] : ( P @ A @ A )
       => ( ! [A: int,B: int] :
              ( ( P @ B @ A )
             => ( P @ A @ B ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_529_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A: nat,B: nat] :
          ( ( ord_less_nat @ A @ B )
         => ( P @ A @ B ) )
     => ( ! [A: nat] : ( P @ A @ A )
       => ( ! [A: nat,B: nat] :
              ( ( P @ B @ A )
             => ( P @ A @ B ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_530_order_Ostrict__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_531_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_532_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ( ord_less_int @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_533_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_534_dual__order_Ostrict__trans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_535_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_536_order_Ostrict__implies__not__eq,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_537_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_538_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_539_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_540_linorder__neqE,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_541_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_542_order__less__asym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_asym
thf(fact_543_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_544_linorder__neq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
      = ( ( ord_less_int @ X @ Y )
        | ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_545_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_546_order__less__asym_H,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_547_order__less__asym_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_548_order__less__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_549_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_550_ord__eq__less__subst,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_551_ord__eq__less__subst,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_552_ord__eq__less__subst,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_553_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_554_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_555_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_556_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_557_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_558_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_559_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_560_order__less__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_561_order__less__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_562_order__less__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_563_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_564_order__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_565_order__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_566_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_567_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_568_order__less__not__sym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_569_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_570_order__less__imp__triv,axiom,
    ! [X: int,Y: int,P: $o] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_571_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_572_linorder__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
      | ( X = Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_573_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_574_order__less__imp__not__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_575_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_576_order__less__imp__not__eq2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_577_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_578_order__less__imp__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_579_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_580_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_581_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_582_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_583_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_584_verit__comp__simplify1_I1_J,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_585_verit__comp__simplify1_I1_J,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_586_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_587_verit__comp__simplify1_I3_J,axiom,
    ! [B3: int,A3: int] :
      ( ( ~ ( ord_less_eq_int @ B3 @ A3 ) )
      = ( ord_less_int @ A3 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_588_verit__comp__simplify1_I3_J,axiom,
    ! [B3: nat,A3: nat] :
      ( ( ~ ( ord_less_eq_nat @ B3 @ A3 ) )
      = ( ord_less_nat @ A3 @ B3 ) ) ).

% verit_comp_simplify1(3)
thf(fact_589_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X6 ) ) ).

% minf(8)
thf(fact_590_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X6 ) ) ).

% minf(8)
thf(fact_591_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z4 )
     => ( ord_less_eq_int @ X6 @ T ) ) ).

% minf(6)
thf(fact_592_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z4 )
     => ( ord_less_eq_nat @ X6 @ T ) ) ).

% minf(6)
thf(fact_593_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z4 @ X6 )
     => ( ord_less_eq_int @ T @ X6 ) ) ).

% pinf(8)
thf(fact_594_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z4 @ X6 )
     => ( ord_less_eq_nat @ T @ X6 ) ) ).

% pinf(8)
thf(fact_595_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z4 @ X6 )
     => ~ ( ord_less_eq_int @ X6 @ T ) ) ).

% pinf(6)
thf(fact_596_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z4 @ X6 )
     => ~ ( ord_less_eq_nat @ X6 @ T ) ) ).

% pinf(6)
thf(fact_597_leD,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ~ ( ord_less_int @ X @ Y ) ) ).

% leD
thf(fact_598_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_599_leI,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% leI
thf(fact_600_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_601_nless__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_int @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_int @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_602_nless__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_603_antisym__conv1,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_604_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_605_antisym__conv2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_606_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_607_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_eq_int @ X4 @ Y4 )
          & ~ ( ord_less_eq_int @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_608_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_609_not__le__imp__less,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y @ X )
     => ( ord_less_int @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_610_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_611_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_int @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_612_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_613_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_614_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_615_order_Ostrict__trans1,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_616_order_Ostrict__trans1,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_617_order_Ostrict__trans2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_618_order_Ostrict__trans2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_619_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ~ ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_620_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ~ ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_621_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_int @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_622_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_nat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_623_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_624_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_625_dual__order_Ostrict__trans1,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_626_dual__order_Ostrict__trans1,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_627_dual__order_Ostrict__trans2,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_628_dual__order_Ostrict__trans2,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_629_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ~ ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_630_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_631_order_Ostrict__implies__order,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_632_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_633_dual__order_Ostrict__implies__order,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ord_less_eq_int @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_634_dual__order_Ostrict__implies__order,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_635_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_int @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_636_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_nat @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_637_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_eq_int @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_638_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_639_linorder__not__le,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y ) )
      = ( ord_less_int @ Y @ X ) ) ).

% linorder_not_le
thf(fact_640_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_641_linorder__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_not_less
thf(fact_642_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_643_order__less__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_644_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_645_order__le__neq__trans,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_646_order__le__neq__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_647_order__neq__le__trans,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_648_order__neq__le__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_649_order__le__less__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_650_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_651_order__less__le__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_652_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_653_order__le__less__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_654_order__le__less__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_655_order__le__less__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_656_order__le__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_657_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_658_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_659_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_660_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_661_order__less__le__subst1,axiom,
    ! [A2: int,F: int > int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_662_order__less__le__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_663_order__less__le__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_664_order__less__le__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_665_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_666_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_667_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_668_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_669_linorder__le__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_670_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_671_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_672_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_673_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_674_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_675_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_676_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_677_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_678_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_679_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_680_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_681_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( I2 = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_682_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( I2 = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_683_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_684_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_685_add__strict__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_686_add__strict__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_687_add__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_688_add__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_689_add__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_690_add__strict__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_691_add__less__imp__less__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
     => ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_692_add__less__imp__less__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_693_add__less__imp__less__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
     => ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_694_add__less__imp__less__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_695_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_696_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_697_diff__strict__mono,axiom,
    ! [A2: int,B2: int,D: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_698_diff__eq__diff__less,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A2 @ B2 )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_699_diff__strict__left__mono,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ord_less_int @ ( minus_minus_int @ C @ A2 ) @ ( minus_minus_int @ C @ B2 ) ) ) ).

% diff_strict_left_mono
thf(fact_700_diff__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_701_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_702_add__less__le__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_703_add__less__le__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_704_add__le__less__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_705_add__le__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_706_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_707_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_708_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_709_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_710_add__less__zeroD,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_711_pos__add__strict,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_712_pos__add__strict,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_713_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ! [C2: nat] :
            ( ( B2
              = ( plus_plus_nat @ A2 @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_714_add__pos__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_715_add__pos__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_716_add__neg__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_717_add__neg__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_718_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_719_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_720_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_721_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_722_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_723_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_724_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] : ( ord_less_int @ ( minus_minus_int @ A4 @ B4 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_725_less__add__one,axiom,
    ! [A2: int] : ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ one_one_int ) ) ).

% less_add_one
thf(fact_726_less__add__one,axiom,
    ! [A2: nat] : ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ one_one_nat ) ) ).

% less_add_one
thf(fact_727_add__mono1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( plus_plus_int @ B2 @ one_one_int ) ) ) ).

% add_mono1
thf(fact_728_add__mono1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( plus_plus_nat @ B2 @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_729_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A2: int,B2: int] :
      ( ~ ( ord_less_int @ A2 @ B2 )
     => ( ( plus_plus_int @ B2 @ ( minus_minus_int @ A2 @ B2 ) )
        = A2 ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_730_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A2: nat,B2: nat] :
      ( ~ ( ord_less_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ B2 @ ( minus_minus_nat @ A2 @ B2 ) )
        = A2 ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_731_diff__less__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( ord_less_int @ A2 @ ( plus_plus_int @ C @ B2 ) ) ) ).

% diff_less_eq
thf(fact_732_less__diff__eq,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( minus_minus_int @ C @ B2 ) )
      = ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ C ) ) ).

% less_diff_eq
thf(fact_733_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_734_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_735_int__gr__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_int @ K @ I2 )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I: int] :
              ( ( ord_less_int @ K @ I )
             => ( ( P @ I )
               => ( P @ ( plus_plus_int @ I @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_gr_induct
thf(fact_736_zless__add1__eq,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W2 @ Z )
        | ( W2 = Z ) ) ) ).

% zless_add1_eq
thf(fact_737_int__less__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I2 @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I: int] :
              ( ( ord_less_int @ I @ K )
             => ( ( P @ I )
               => ( P @ ( minus_minus_int @ I @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_less_induct
thf(fact_738_add__strict__increasing2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_739_add__strict__increasing2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_740_add__strict__increasing,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_741_add__strict__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_742_add__pos__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_743_add__pos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_744_add__nonpos__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_745_add__nonpos__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_746_add__nonneg__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_747_add__nonneg__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_748_add__neg__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_749_add__neg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_750_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_751_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_752_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_753_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_754_add1__zle__eq,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z )
      = ( ord_less_int @ W2 @ Z ) ) ).

% add1_zle_eq
thf(fact_755_zless__imp__add1__zle,axiom,
    ! [W2: int,Z: int] :
      ( ( ord_less_int @ W2 @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_756_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X4: int] : ( plus_plus_int @ ( plus_plus_int @ X4 @ X4 ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_757_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_758_int__ops_I6_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A2 @ B2 ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A2 @ B2 ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% int_ops(6)
thf(fact_759_to__m__state_Oelims,axiom,
    ! [X: list_list_char,Xa: list_char > int,Xb: int,Y: int] :
      ( ( ( to_m_state @ X @ Xa @ Xb )
        = Y )
     => ( ( ( ( ord_less_int @ zero_zero_int @ Xb )
            & ( ord_less_eq_int @ Xb @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ X ) ) ) )
         => ( Y
            = ( Xa @ ( inth_list_char @ X @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ X ) ) @ Xb ) ) ) ) )
        & ( ~ ( ( ord_less_int @ zero_zero_int @ Xb )
              & ( ord_less_eq_int @ Xb @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ X ) ) ) )
         => ( Y = zero_zero_int ) ) ) ) ).

% to_m_state.elims
thf(fact_760_to__m__state_Osimps,axiom,
    ( to_m_state
    = ( ^ [Xs3: list_list_char,S6: list_char > int,A4: int] :
          ( if_int
          @ ( ( ord_less_int @ zero_zero_int @ A4 )
            & ( ord_less_eq_int @ A4 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs3 ) ) ) )
          @ ( S6 @ ( inth_list_char @ Xs3 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs3 ) ) @ A4 ) ) )
          @ zero_zero_int ) ) ) ).

% to_m_state.simps
thf(fact_761_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_762_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_763_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_764_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_765_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_766_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_767_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_768_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_769_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_770_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_771_less__not__refl3,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( S2 != T ) ) ).

% less_not_refl3
thf(fact_772_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_773_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N2 )
             => ( P @ M4 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_774_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N2 )
              & ~ ( P @ M4 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_775_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_776_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N2 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_777_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_778_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_779_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_780_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_781_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_782_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_783_length__induct,axiom,
    ! [P: list_instr > $o,Xs: list_instr] :
      ( ! [Xs2: list_instr] :
          ( ! [Ys2: list_instr] :
              ( ( ord_less_nat @ ( size_size_list_instr @ Ys2 ) @ ( size_size_list_instr @ Xs2 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs2 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_784_length__induct,axiom,
    ! [P: list_list_char > $o,Xs: list_list_char] :
      ( ! [Xs2: list_list_char] :
          ( ! [Ys2: list_list_char] :
              ( ( ord_less_nat @ ( size_s356637359517785349t_char @ Ys2 ) @ ( size_s356637359517785349t_char @ Xs2 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs2 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_785_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M3 @ N3 )
          & ( M3 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_786_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_787_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
          | ( M3 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_788_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_789_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_790_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J: nat] :
      ( ! [I: nat,J3: nat] :
          ( ( ord_less_nat @ I @ J3 )
         => ( ord_less_nat @ ( F @ I ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_791_add__lessD1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ K )
     => ( ord_less_nat @ I2 @ K ) ) ).

% add_lessD1
thf(fact_792_add__less__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_793_not__add__less1,axiom,
    ! [I2: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ I2 ) ).

% not_add_less1
thf(fact_794_not__add__less2,axiom,
    ! [J: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_795_add__less__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_796_trans__less__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_797_trans__less__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_798_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_799_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_800_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_801_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K3 )
               => ~ ( P @ I5 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_802_less__imp__add__positive,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I2 @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_803_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_804_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
         => ( ord_less_nat @ ( F @ M2 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_805_diff__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_nat @ ( minus_minus_nat @ A2 @ C ) @ ( minus_minus_nat @ B2 @ C ) ) ) ) ).

% diff_less_mono
thf(fact_806_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_807_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_808_less__diff__conv,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_809_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_810_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A2: nat,B2: nat] :
      ( ( P @ ( minus_minus_nat @ A2 @ B2 ) )
      = ( ~ ( ( ( ord_less_nat @ A2 @ B2 )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A2
                  = ( plus_plus_nat @ B2 @ D2 ) )
                & ~ ( P @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_811_nat__diff__split,axiom,
    ! [P: nat > $o,A2: nat,B2: nat] :
      ( ( P @ ( minus_minus_nat @ A2 @ B2 ) )
      = ( ( ( ord_less_nat @ A2 @ B2 )
         => ( P @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A2
              = ( plus_plus_nat @ B2 @ D2 ) )
           => ( P @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_812_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I2 @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_813_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_814_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_815_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_816_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I6: int,J4: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J4 @ I6 ) @ Js @ ( upto_aux @ I6 @ ( minus_minus_int @ J4 @ one_one_int ) @ ( cons_int @ J4 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_817_to__m__state_Opelims,axiom,
    ! [X: list_list_char,Xa: list_char > int,Xb: int,Y: int] :
      ( ( ( to_m_state @ X @ Xa @ Xb )
        = Y )
     => ( ( accp_P4562858270263085236nt_int @ to_m_state_rel @ ( produc3965054194175396271nt_int @ X @ ( produc5790713362662368625nt_int @ Xa @ Xb ) ) )
       => ~ ( ( ( ( ( ord_less_int @ zero_zero_int @ Xb )
                  & ( ord_less_eq_int @ Xb @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ X ) ) ) )
               => ( Y
                  = ( Xa @ ( inth_list_char @ X @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ X ) ) @ Xb ) ) ) ) )
              & ( ~ ( ( ord_less_int @ zero_zero_int @ Xb )
                    & ( ord_less_eq_int @ Xb @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ X ) ) ) )
               => ( Y = zero_zero_int ) ) )
           => ~ ( accp_P4562858270263085236nt_int @ to_m_state_rel @ ( produc3965054194175396271nt_int @ X @ ( produc5790713362662368625nt_int @ Xa @ Xb ) ) ) ) ) ) ).

% to_m_state.pelims
thf(fact_818_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M5: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M5 ) )
       => ~ ! [M2: nat] :
              ( ( P @ M2 )
             => ~ ! [X6: nat] :
                    ( ( P @ X6 )
                   => ( ord_less_eq_nat @ X6 @ M2 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_819_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I: nat] :
          ( ( ord_less_nat @ I @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I @ one_one_nat ) ) @ ( F @ I ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I: nat] :
              ( ( ord_less_eq_nat @ I @ N )
              & ( ( F @ I )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_820_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
           => ( ! [I5: nat] :
                  ( ( ord_less_nat @ K3 @ I5 )
                 => ( P @ I5 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_821_acomp__correct,axiom,
    ! [A2: aexp,S2: list_char > int,Stk2: list_int] : ( star_P707599355569300323st_int @ ( exec1 @ ( acomp @ A2 ) ) @ ( produc5086643055186798020st_int @ zero_zero_int @ ( produc8650753666468850689st_int @ S2 @ Stk2 ) ) @ ( produc5086643055186798020st_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( acomp @ A2 ) ) ) @ ( produc8650753666468850689st_int @ S2 @ ( cons_int @ ( aval @ A2 @ S2 ) @ Stk2 ) ) ) ) ).

% acomp_correct
thf(fact_822_inth__map,axiom,
    ! [I2: int,Xs: list_instr,F: instr > instr] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ Xs ) ) )
       => ( ( inth_instr @ ( map_instr_instr @ F @ Xs ) @ I2 )
          = ( F @ ( inth_instr @ Xs @ I2 ) ) ) ) ) ).

% inth_map
thf(fact_823_inth__map,axiom,
    ! [I2: int,Xs: list_instr,F: instr > list_char] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ Xs ) ) )
       => ( ( inth_list_char @ ( map_instr_list_char @ F @ Xs ) @ I2 )
          = ( F @ ( inth_instr @ Xs @ I2 ) ) ) ) ) ).

% inth_map
thf(fact_824_inth__map,axiom,
    ! [I2: int,Xs: list_list_char,F: list_char > instr] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) )
       => ( ( inth_instr @ ( map_list_char_instr @ F @ Xs ) @ I2 )
          = ( F @ ( inth_list_char @ Xs @ I2 ) ) ) ) ) ).

% inth_map
thf(fact_825_inth__map,axiom,
    ! [I2: int,Xs: list_list_char,F: list_char > list_char] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) )
       => ( ( inth_list_char @ ( map_li116305933131242120t_char @ F @ Xs ) @ I2 )
          = ( F @ ( inth_list_char @ Xs @ I2 ) ) ) ) ) ).

% inth_map
thf(fact_826_abs__abs,axiom,
    ! [A2: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A2 ) )
      = ( abs_abs_int @ A2 ) ) ).

% abs_abs
thf(fact_827_abs__idempotent,axiom,
    ! [A2: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A2 ) )
      = ( abs_abs_int @ A2 ) ) ).

% abs_idempotent
thf(fact_828_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_829_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_830_abs__eq__0,axiom,
    ! [A2: int] :
      ( ( ( abs_abs_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_831_abs__0__eq,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_832_abs__add__abs,axiom,
    ! [A2: int,B2: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_add_abs
thf(fact_833_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_834_length__map,axiom,
    ! [F: instr > instr,Xs: list_instr] :
      ( ( size_size_list_instr @ ( map_instr_instr @ F @ Xs ) )
      = ( size_size_list_instr @ Xs ) ) ).

% length_map
thf(fact_835_length__map,axiom,
    ! [F: list_char > instr,Xs: list_list_char] :
      ( ( size_size_list_instr @ ( map_list_char_instr @ F @ Xs ) )
      = ( size_s356637359517785349t_char @ Xs ) ) ).

% length_map
thf(fact_836_length__map,axiom,
    ! [F: instr > list_char,Xs: list_instr] :
      ( ( size_s356637359517785349t_char @ ( map_instr_list_char @ F @ Xs ) )
      = ( size_size_list_instr @ Xs ) ) ).

% length_map
thf(fact_837_length__map,axiom,
    ! [F: list_char > list_char,Xs: list_list_char] :
      ( ( size_s356637359517785349t_char @ ( map_li116305933131242120t_char @ F @ Xs ) )
      = ( size_s356637359517785349t_char @ Xs ) ) ).

% length_map
thf(fact_838_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_839_map__append,axiom,
    ! [F: instr > instr,Xs: list_instr,Ys: list_instr] :
      ( ( map_instr_instr @ F @ ( append_instr @ Xs @ Ys ) )
      = ( append_instr @ ( map_instr_instr @ F @ Xs ) @ ( map_instr_instr @ F @ Ys ) ) ) ).

% map_append
thf(fact_840_abs__of__nonneg,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( abs_abs_int @ A2 )
        = A2 ) ) ).

% abs_of_nonneg
thf(fact_841_abs__le__self__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A2 ) @ A2 )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% abs_le_self_iff
thf(fact_842_abs__le__zero__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A2 ) @ zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_843_zero__less__abs__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A2 ) )
      = ( A2 != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_844_zabs__less__one__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
      = ( Z = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_845_list_Osimps_I9_J,axiom,
    ! [F: instr > instr,X21: instr,X22: list_instr] :
      ( ( map_instr_instr @ F @ ( cons_instr @ X21 @ X22 ) )
      = ( cons_instr @ ( F @ X21 ) @ ( map_instr_instr @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_846_list_Osimps_I9_J,axiom,
    ! [F: instr > int,X21: instr,X22: list_instr] :
      ( ( map_instr_int @ F @ ( cons_instr @ X21 @ X22 ) )
      = ( cons_int @ ( F @ X21 ) @ ( map_instr_int @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_847_list_Osimps_I9_J,axiom,
    ! [F: instr > list_char,X21: instr,X22: list_instr] :
      ( ( map_instr_list_char @ F @ ( cons_instr @ X21 @ X22 ) )
      = ( cons_list_char @ ( F @ X21 ) @ ( map_instr_list_char @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_848_list_Osimps_I9_J,axiom,
    ! [F: int > instr,X21: int,X22: list_int] :
      ( ( map_int_instr @ F @ ( cons_int @ X21 @ X22 ) )
      = ( cons_instr @ ( F @ X21 ) @ ( map_int_instr @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_849_list_Osimps_I9_J,axiom,
    ! [F: int > int,X21: int,X22: list_int] :
      ( ( map_int_int @ F @ ( cons_int @ X21 @ X22 ) )
      = ( cons_int @ ( F @ X21 ) @ ( map_int_int @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_850_list_Osimps_I9_J,axiom,
    ! [F: int > list_char,X21: int,X22: list_int] :
      ( ( map_int_list_char @ F @ ( cons_int @ X21 @ X22 ) )
      = ( cons_list_char @ ( F @ X21 ) @ ( map_int_list_char @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_851_list_Osimps_I9_J,axiom,
    ! [F: list_char > instr,X21: list_char,X22: list_list_char] :
      ( ( map_list_char_instr @ F @ ( cons_list_char @ X21 @ X22 ) )
      = ( cons_instr @ ( F @ X21 ) @ ( map_list_char_instr @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_852_list_Osimps_I9_J,axiom,
    ! [F: list_char > int,X21: list_char,X22: list_list_char] :
      ( ( map_list_char_int @ F @ ( cons_list_char @ X21 @ X22 ) )
      = ( cons_int @ ( F @ X21 ) @ ( map_list_char_int @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_853_list_Osimps_I9_J,axiom,
    ! [F: list_char > list_char,X21: list_char,X22: list_list_char] :
      ( ( map_li116305933131242120t_char @ F @ ( cons_list_char @ X21 @ X22 ) )
      = ( cons_list_char @ ( F @ X21 ) @ ( map_li116305933131242120t_char @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_854_Cons__eq__map__D,axiom,
    ! [X: instr,Xs: list_instr,F: instr > instr,Ys: list_instr] :
      ( ( ( cons_instr @ X @ Xs )
        = ( map_instr_instr @ F @ Ys ) )
     => ? [Z4: instr,Zs2: list_instr] :
          ( ( Ys
            = ( cons_instr @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_instr_instr @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_855_Cons__eq__map__D,axiom,
    ! [X: instr,Xs: list_instr,F: int > instr,Ys: list_int] :
      ( ( ( cons_instr @ X @ Xs )
        = ( map_int_instr @ F @ Ys ) )
     => ? [Z4: int,Zs2: list_int] :
          ( ( Ys
            = ( cons_int @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_int_instr @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_856_Cons__eq__map__D,axiom,
    ! [X: instr,Xs: list_instr,F: list_char > instr,Ys: list_list_char] :
      ( ( ( cons_instr @ X @ Xs )
        = ( map_list_char_instr @ F @ Ys ) )
     => ? [Z4: list_char,Zs2: list_list_char] :
          ( ( Ys
            = ( cons_list_char @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_list_char_instr @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_857_Cons__eq__map__D,axiom,
    ! [X: int,Xs: list_int,F: instr > int,Ys: list_instr] :
      ( ( ( cons_int @ X @ Xs )
        = ( map_instr_int @ F @ Ys ) )
     => ? [Z4: instr,Zs2: list_instr] :
          ( ( Ys
            = ( cons_instr @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_instr_int @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_858_Cons__eq__map__D,axiom,
    ! [X: int,Xs: list_int,F: int > int,Ys: list_int] :
      ( ( ( cons_int @ X @ Xs )
        = ( map_int_int @ F @ Ys ) )
     => ? [Z4: int,Zs2: list_int] :
          ( ( Ys
            = ( cons_int @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_int_int @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_859_Cons__eq__map__D,axiom,
    ! [X: int,Xs: list_int,F: list_char > int,Ys: list_list_char] :
      ( ( ( cons_int @ X @ Xs )
        = ( map_list_char_int @ F @ Ys ) )
     => ? [Z4: list_char,Zs2: list_list_char] :
          ( ( Ys
            = ( cons_list_char @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_list_char_int @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_860_Cons__eq__map__D,axiom,
    ! [X: list_char,Xs: list_list_char,F: instr > list_char,Ys: list_instr] :
      ( ( ( cons_list_char @ X @ Xs )
        = ( map_instr_list_char @ F @ Ys ) )
     => ? [Z4: instr,Zs2: list_instr] :
          ( ( Ys
            = ( cons_instr @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_instr_list_char @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_861_Cons__eq__map__D,axiom,
    ! [X: list_char,Xs: list_list_char,F: int > list_char,Ys: list_int] :
      ( ( ( cons_list_char @ X @ Xs )
        = ( map_int_list_char @ F @ Ys ) )
     => ? [Z4: int,Zs2: list_int] :
          ( ( Ys
            = ( cons_int @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_int_list_char @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_862_Cons__eq__map__D,axiom,
    ! [X: list_char,Xs: list_list_char,F: list_char > list_char,Ys: list_list_char] :
      ( ( ( cons_list_char @ X @ Xs )
        = ( map_li116305933131242120t_char @ F @ Ys ) )
     => ? [Z4: list_char,Zs2: list_list_char] :
          ( ( Ys
            = ( cons_list_char @ Z4 @ Zs2 ) )
          & ( X
            = ( F @ Z4 ) )
          & ( Xs
            = ( map_li116305933131242120t_char @ F @ Zs2 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_863_map__eq__Cons__D,axiom,
    ! [F: instr > instr,Xs: list_instr,Y: instr,Ys: list_instr] :
      ( ( ( map_instr_instr @ F @ Xs )
        = ( cons_instr @ Y @ Ys ) )
     => ? [Z4: instr,Zs2: list_instr] :
          ( ( Xs
            = ( cons_instr @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_instr_instr @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_864_map__eq__Cons__D,axiom,
    ! [F: int > instr,Xs: list_int,Y: instr,Ys: list_instr] :
      ( ( ( map_int_instr @ F @ Xs )
        = ( cons_instr @ Y @ Ys ) )
     => ? [Z4: int,Zs2: list_int] :
          ( ( Xs
            = ( cons_int @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_int_instr @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_865_map__eq__Cons__D,axiom,
    ! [F: list_char > instr,Xs: list_list_char,Y: instr,Ys: list_instr] :
      ( ( ( map_list_char_instr @ F @ Xs )
        = ( cons_instr @ Y @ Ys ) )
     => ? [Z4: list_char,Zs2: list_list_char] :
          ( ( Xs
            = ( cons_list_char @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_list_char_instr @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_866_map__eq__Cons__D,axiom,
    ! [F: instr > int,Xs: list_instr,Y: int,Ys: list_int] :
      ( ( ( map_instr_int @ F @ Xs )
        = ( cons_int @ Y @ Ys ) )
     => ? [Z4: instr,Zs2: list_instr] :
          ( ( Xs
            = ( cons_instr @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_instr_int @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_867_map__eq__Cons__D,axiom,
    ! [F: int > int,Xs: list_int,Y: int,Ys: list_int] :
      ( ( ( map_int_int @ F @ Xs )
        = ( cons_int @ Y @ Ys ) )
     => ? [Z4: int,Zs2: list_int] :
          ( ( Xs
            = ( cons_int @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_int_int @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_868_map__eq__Cons__D,axiom,
    ! [F: list_char > int,Xs: list_list_char,Y: int,Ys: list_int] :
      ( ( ( map_list_char_int @ F @ Xs )
        = ( cons_int @ Y @ Ys ) )
     => ? [Z4: list_char,Zs2: list_list_char] :
          ( ( Xs
            = ( cons_list_char @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_list_char_int @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_869_map__eq__Cons__D,axiom,
    ! [F: instr > list_char,Xs: list_instr,Y: list_char,Ys: list_list_char] :
      ( ( ( map_instr_list_char @ F @ Xs )
        = ( cons_list_char @ Y @ Ys ) )
     => ? [Z4: instr,Zs2: list_instr] :
          ( ( Xs
            = ( cons_instr @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_instr_list_char @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_870_map__eq__Cons__D,axiom,
    ! [F: int > list_char,Xs: list_int,Y: list_char,Ys: list_list_char] :
      ( ( ( map_int_list_char @ F @ Xs )
        = ( cons_list_char @ Y @ Ys ) )
     => ? [Z4: int,Zs2: list_int] :
          ( ( Xs
            = ( cons_int @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_int_list_char @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_871_map__eq__Cons__D,axiom,
    ! [F: list_char > list_char,Xs: list_list_char,Y: list_char,Ys: list_list_char] :
      ( ( ( map_li116305933131242120t_char @ F @ Xs )
        = ( cons_list_char @ Y @ Ys ) )
     => ? [Z4: list_char,Zs2: list_list_char] :
          ( ( Xs
            = ( cons_list_char @ Z4 @ Zs2 ) )
          & ( ( F @ Z4 )
            = Y )
          & ( ( map_li116305933131242120t_char @ F @ Zs2 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_872_Cons__eq__map__conv,axiom,
    ! [X: instr,Xs: list_instr,F: instr > instr,Ys: list_instr] :
      ( ( ( cons_instr @ X @ Xs )
        = ( map_instr_instr @ F @ Ys ) )
      = ( ? [Z2: instr,Zs3: list_instr] :
            ( ( Ys
              = ( cons_instr @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_instr_instr @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_873_Cons__eq__map__conv,axiom,
    ! [X: instr,Xs: list_instr,F: int > instr,Ys: list_int] :
      ( ( ( cons_instr @ X @ Xs )
        = ( map_int_instr @ F @ Ys ) )
      = ( ? [Z2: int,Zs3: list_int] :
            ( ( Ys
              = ( cons_int @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_int_instr @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_874_Cons__eq__map__conv,axiom,
    ! [X: instr,Xs: list_instr,F: list_char > instr,Ys: list_list_char] :
      ( ( ( cons_instr @ X @ Xs )
        = ( map_list_char_instr @ F @ Ys ) )
      = ( ? [Z2: list_char,Zs3: list_list_char] :
            ( ( Ys
              = ( cons_list_char @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_list_char_instr @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_875_Cons__eq__map__conv,axiom,
    ! [X: int,Xs: list_int,F: instr > int,Ys: list_instr] :
      ( ( ( cons_int @ X @ Xs )
        = ( map_instr_int @ F @ Ys ) )
      = ( ? [Z2: instr,Zs3: list_instr] :
            ( ( Ys
              = ( cons_instr @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_instr_int @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_876_Cons__eq__map__conv,axiom,
    ! [X: int,Xs: list_int,F: int > int,Ys: list_int] :
      ( ( ( cons_int @ X @ Xs )
        = ( map_int_int @ F @ Ys ) )
      = ( ? [Z2: int,Zs3: list_int] :
            ( ( Ys
              = ( cons_int @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_int_int @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_877_Cons__eq__map__conv,axiom,
    ! [X: int,Xs: list_int,F: list_char > int,Ys: list_list_char] :
      ( ( ( cons_int @ X @ Xs )
        = ( map_list_char_int @ F @ Ys ) )
      = ( ? [Z2: list_char,Zs3: list_list_char] :
            ( ( Ys
              = ( cons_list_char @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_list_char_int @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_878_Cons__eq__map__conv,axiom,
    ! [X: list_char,Xs: list_list_char,F: instr > list_char,Ys: list_instr] :
      ( ( ( cons_list_char @ X @ Xs )
        = ( map_instr_list_char @ F @ Ys ) )
      = ( ? [Z2: instr,Zs3: list_instr] :
            ( ( Ys
              = ( cons_instr @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_instr_list_char @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_879_Cons__eq__map__conv,axiom,
    ! [X: list_char,Xs: list_list_char,F: int > list_char,Ys: list_int] :
      ( ( ( cons_list_char @ X @ Xs )
        = ( map_int_list_char @ F @ Ys ) )
      = ( ? [Z2: int,Zs3: list_int] :
            ( ( Ys
              = ( cons_int @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_int_list_char @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_880_Cons__eq__map__conv,axiom,
    ! [X: list_char,Xs: list_list_char,F: list_char > list_char,Ys: list_list_char] :
      ( ( ( cons_list_char @ X @ Xs )
        = ( map_li116305933131242120t_char @ F @ Ys ) )
      = ( ? [Z2: list_char,Zs3: list_list_char] :
            ( ( Ys
              = ( cons_list_char @ Z2 @ Zs3 ) )
            & ( X
              = ( F @ Z2 ) )
            & ( Xs
              = ( map_li116305933131242120t_char @ F @ Zs3 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_881_map__eq__Cons__conv,axiom,
    ! [F: instr > instr,Xs: list_instr,Y: instr,Ys: list_instr] :
      ( ( ( map_instr_instr @ F @ Xs )
        = ( cons_instr @ Y @ Ys ) )
      = ( ? [Z2: instr,Zs3: list_instr] :
            ( ( Xs
              = ( cons_instr @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_instr_instr @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_882_map__eq__Cons__conv,axiom,
    ! [F: int > instr,Xs: list_int,Y: instr,Ys: list_instr] :
      ( ( ( map_int_instr @ F @ Xs )
        = ( cons_instr @ Y @ Ys ) )
      = ( ? [Z2: int,Zs3: list_int] :
            ( ( Xs
              = ( cons_int @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_int_instr @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_883_map__eq__Cons__conv,axiom,
    ! [F: list_char > instr,Xs: list_list_char,Y: instr,Ys: list_instr] :
      ( ( ( map_list_char_instr @ F @ Xs )
        = ( cons_instr @ Y @ Ys ) )
      = ( ? [Z2: list_char,Zs3: list_list_char] :
            ( ( Xs
              = ( cons_list_char @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_list_char_instr @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_884_map__eq__Cons__conv,axiom,
    ! [F: instr > int,Xs: list_instr,Y: int,Ys: list_int] :
      ( ( ( map_instr_int @ F @ Xs )
        = ( cons_int @ Y @ Ys ) )
      = ( ? [Z2: instr,Zs3: list_instr] :
            ( ( Xs
              = ( cons_instr @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_instr_int @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_885_map__eq__Cons__conv,axiom,
    ! [F: int > int,Xs: list_int,Y: int,Ys: list_int] :
      ( ( ( map_int_int @ F @ Xs )
        = ( cons_int @ Y @ Ys ) )
      = ( ? [Z2: int,Zs3: list_int] :
            ( ( Xs
              = ( cons_int @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_int_int @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_886_map__eq__Cons__conv,axiom,
    ! [F: list_char > int,Xs: list_list_char,Y: int,Ys: list_int] :
      ( ( ( map_list_char_int @ F @ Xs )
        = ( cons_int @ Y @ Ys ) )
      = ( ? [Z2: list_char,Zs3: list_list_char] :
            ( ( Xs
              = ( cons_list_char @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_list_char_int @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_887_map__eq__Cons__conv,axiom,
    ! [F: instr > list_char,Xs: list_instr,Y: list_char,Ys: list_list_char] :
      ( ( ( map_instr_list_char @ F @ Xs )
        = ( cons_list_char @ Y @ Ys ) )
      = ( ? [Z2: instr,Zs3: list_instr] :
            ( ( Xs
              = ( cons_instr @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_instr_list_char @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_888_map__eq__Cons__conv,axiom,
    ! [F: int > list_char,Xs: list_int,Y: list_char,Ys: list_list_char] :
      ( ( ( map_int_list_char @ F @ Xs )
        = ( cons_list_char @ Y @ Ys ) )
      = ( ? [Z2: int,Zs3: list_int] :
            ( ( Xs
              = ( cons_int @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_int_list_char @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_889_map__eq__Cons__conv,axiom,
    ! [F: list_char > list_char,Xs: list_list_char,Y: list_char,Ys: list_list_char] :
      ( ( ( map_li116305933131242120t_char @ F @ Xs )
        = ( cons_list_char @ Y @ Ys ) )
      = ( ? [Z2: list_char,Zs3: list_list_char] :
            ( ( Xs
              = ( cons_list_char @ Z2 @ Zs3 ) )
            & ( ( F @ Z2 )
              = Y )
            & ( ( map_li116305933131242120t_char @ F @ Zs3 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_890_map__eq__append__conv,axiom,
    ! [F: instr > instr,Xs: list_instr,Ys: list_instr,Zs: list_instr] :
      ( ( ( map_instr_instr @ F @ Xs )
        = ( append_instr @ Ys @ Zs ) )
      = ( ? [Us2: list_instr,Vs2: list_instr] :
            ( ( Xs
              = ( append_instr @ Us2 @ Vs2 ) )
            & ( Ys
              = ( map_instr_instr @ F @ Us2 ) )
            & ( Zs
              = ( map_instr_instr @ F @ Vs2 ) ) ) ) ) ).

% map_eq_append_conv
thf(fact_891_append__eq__map__conv,axiom,
    ! [Ys: list_instr,Zs: list_instr,F: instr > instr,Xs: list_instr] :
      ( ( ( append_instr @ Ys @ Zs )
        = ( map_instr_instr @ F @ Xs ) )
      = ( ? [Us2: list_instr,Vs2: list_instr] :
            ( ( Xs
              = ( append_instr @ Us2 @ Vs2 ) )
            & ( Ys
              = ( map_instr_instr @ F @ Us2 ) )
            & ( Zs
              = ( map_instr_instr @ F @ Vs2 ) ) ) ) ) ).

% append_eq_map_conv
thf(fact_892_abs__minus__commute,axiom,
    ! [A2: int,B2: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) )
      = ( abs_abs_int @ ( minus_minus_int @ B2 @ A2 ) ) ) ).

% abs_minus_commute
thf(fact_893_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_894_abs__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( abs_abs_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_895_abs__le__D1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A2 ) @ B2 )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% abs_le_D1
thf(fact_896_abs__ge__self,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ ( abs_abs_int @ A2 ) ) ).

% abs_ge_self
thf(fact_897_abs__ge__zero,axiom,
    ! [A2: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A2 ) ) ).

% abs_ge_zero
thf(fact_898_abs__not__less__zero,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A2 ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_899_abs__of__pos,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( abs_abs_int @ A2 )
        = A2 ) ) ).

% abs_of_pos
thf(fact_900_abs__triangle__ineq,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A2 @ B2 ) ) @ ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_triangle_ineq
thf(fact_901_abs__triangle__ineq2,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) @ ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) ) ) ).

% abs_triangle_ineq2
thf(fact_902_abs__triangle__ineq3,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) ) ) ).

% abs_triangle_ineq3
thf(fact_903_abs__triangle__ineq2__sym,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) @ ( abs_abs_int @ ( minus_minus_int @ B2 @ A2 ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_904_abs__diff__triangle__ineq,axiom,
    ! [A2: int,B2: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A2 @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B2 @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_905_abs__triangle__ineq4,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) ) @ ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_triangle_ineq4
thf(fact_906_abs__diff__le__iff,axiom,
    ! [X: int,A2: int,R: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A2 ) ) @ R )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A2 @ R ) @ X )
        & ( ord_less_eq_int @ X @ ( plus_plus_int @ A2 @ R ) ) ) ) ).

% abs_diff_le_iff
thf(fact_907_abs__diff__less__iff,axiom,
    ! [X: int,A2: int,R: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A2 ) ) @ R )
      = ( ( ord_less_int @ ( minus_minus_int @ A2 @ R ) @ X )
        & ( ord_less_int @ X @ ( plus_plus_int @ A2 @ R ) ) ) ) ).

% abs_diff_less_iff
thf(fact_908_abs__add__one__gt__zero,axiom,
    ! [X: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_909_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I: nat] :
          ( ( ord_less_nat @ I @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I ) ) @ ( F @ I ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I: nat] :
              ( ( ord_less_eq_nat @ I @ N )
              & ( ( F @ I )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_910_complete__interval,axiom,
    ! [A2: int,B2: int,P: int > $o] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( P @ A2 )
       => ( ~ ( P @ B2 )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A2 @ C2 )
              & ( ord_less_eq_int @ C2 @ B2 )
              & ! [X6: int] :
                  ( ( ( ord_less_eq_int @ A2 @ X6 )
                    & ( ord_less_int @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D3: int] :
                  ( ! [X3: int] :
                      ( ( ( ord_less_eq_int @ A2 @ X3 )
                        & ( ord_less_int @ X3 @ D3 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_int @ D3 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_911_complete__interval,axiom,
    ! [A2: nat,B2: nat,P: nat > $o] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( P @ A2 )
       => ( ~ ( P @ B2 )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A2 @ C2 )
              & ( ord_less_eq_nat @ C2 @ B2 )
              & ! [X6: nat] :
                  ( ( ( ord_less_eq_nat @ A2 @ X6 )
                    & ( ord_less_nat @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D3: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A2 @ X3 )
                        & ( ord_less_nat @ X3 @ D3 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D3 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_912_decr__lemma,axiom,
    ! [D: int,X: int,Z: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z ) ) @ one_one_int ) @ D ) ) @ Z ) ) ).

% decr_lemma
thf(fact_913_incr__lemma,axiom,
    ! [D: int,Z: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_914_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_915_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_916_mult__zero__left,axiom,
    ! [A2: int] :
      ( ( times_times_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_917_mult__zero__left,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_918_mult__zero__right,axiom,
    ! [A2: int] :
      ( ( times_times_int @ A2 @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_919_mult__zero__right,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_920_mult__eq__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ( times_times_int @ A2 @ B2 )
        = zero_zero_int )
      = ( ( A2 = zero_zero_int )
        | ( B2 = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_921_mult__eq__0__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
      = ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_922_mult__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ( times_times_int @ C @ A2 )
        = ( times_times_int @ C @ B2 ) )
      = ( ( C = zero_zero_int )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_923_mult__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ( times_times_nat @ C @ A2 )
        = ( times_times_nat @ C @ B2 ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_924_mult__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ( times_times_int @ A2 @ C )
        = ( times_times_int @ B2 @ C ) )
      = ( ( C = zero_zero_int )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_925_mult__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ C )
        = ( times_times_nat @ B2 @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_926_mult__1,axiom,
    ! [A2: int] :
      ( ( times_times_int @ one_one_int @ A2 )
      = A2 ) ).

% mult_1
thf(fact_927_mult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% mult_1
thf(fact_928_mult_Oright__neutral,axiom,
    ! [A2: int] :
      ( ( times_times_int @ A2 @ one_one_int )
      = A2 ) ).

% mult.right_neutral
thf(fact_929_mult_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.right_neutral
thf(fact_930_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_931_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_932_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_933_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_934_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_935_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_936_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_937_abs__mult__self__eq,axiom,
    ! [A2: int] :
      ( ( times_times_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ A2 ) )
      = ( times_times_int @ A2 @ A2 ) ) ).

% abs_mult_self_eq
thf(fact_938_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_939_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_940_mult__cancel__right2,axiom,
    ! [A2: int,C: int] :
      ( ( ( times_times_int @ A2 @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A2 = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_941_mult__cancel__right1,axiom,
    ! [C: int,B2: int] :
      ( ( C
        = ( times_times_int @ B2 @ C ) )
      = ( ( C = zero_zero_int )
        | ( B2 = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_942_mult__cancel__left2,axiom,
    ! [C: int,A2: int] :
      ( ( ( times_times_int @ C @ A2 )
        = C )
      = ( ( C = zero_zero_int )
        | ( A2 = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_943_mult__cancel__left1,axiom,
    ! [C: int,B2: int] :
      ( ( C
        = ( times_times_int @ C @ B2 ) )
      = ( ( C = zero_zero_int )
        | ( B2 = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_944_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_945_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_946_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_947_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_948_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_949_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_950_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I2 )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_951_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_952_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_953_abs__mult,axiom,
    ! [A2: int,B2: int] :
      ( ( abs_abs_int @ ( times_times_int @ A2 @ B2 ) )
      = ( times_times_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_mult
thf(fact_954_mult__right__cancel,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A2 @ C )
          = ( times_times_int @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_955_mult__right__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A2 @ C )
          = ( times_times_nat @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_956_mult__left__cancel,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A2 )
          = ( times_times_int @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_957_mult__left__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A2 )
          = ( times_times_nat @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_958_no__zero__divisors,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 != zero_zero_int )
     => ( ( B2 != zero_zero_int )
       => ( ( times_times_int @ A2 @ B2 )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_959_no__zero__divisors,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( B2 != zero_zero_nat )
       => ( ( times_times_nat @ A2 @ B2 )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_960_divisors__zero,axiom,
    ! [A2: int,B2: int] :
      ( ( ( times_times_int @ A2 @ B2 )
        = zero_zero_int )
     => ( ( A2 = zero_zero_int )
        | ( B2 = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_961_divisors__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
     => ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_962_mult__not__zero,axiom,
    ! [A2: int,B2: int] :
      ( ( ( times_times_int @ A2 @ B2 )
       != zero_zero_int )
     => ( ( A2 != zero_zero_int )
        & ( B2 != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_963_mult__not__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
       != zero_zero_nat )
     => ( ( A2 != zero_zero_nat )
        & ( B2 != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_964_ring__class_Oring__distribs_I2_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_965_ring__class_Oring__distribs_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( plus_plus_int @ B2 @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_966_comm__semiring__class_Odistrib,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_967_comm__semiring__class_Odistrib,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_968_distrib__left,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( plus_plus_int @ B2 @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% distrib_left
thf(fact_969_distrib__left,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) ) ) ).

% distrib_left
thf(fact_970_distrib__right,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% distrib_right
thf(fact_971_distrib__right,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ).

% distrib_right
thf(fact_972_combine__common__factor,axiom,
    ! [A2: int,E: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A2 @ E ) @ ( plus_plus_int @ ( times_times_int @ B2 @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_973_combine__common__factor,axiom,
    ! [A2: nat,E: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A2 @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B2 @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_974_crossproduct__eq,axiom,
    ! [W2: int,Y: int,X: int,Z: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W2 @ Y ) @ ( times_times_int @ X @ Z ) )
        = ( plus_plus_int @ ( times_times_int @ W2 @ Z ) @ ( times_times_int @ X @ Y ) ) )
      = ( ( W2 = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_975_crossproduct__eq,axiom,
    ! [W2: nat,Y: nat,X: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W2 @ Y ) @ ( times_times_nat @ X @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W2 @ Z ) @ ( times_times_nat @ X @ Y ) ) )
      = ( ( W2 = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_976_crossproduct__noteq,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( A2 != B2 )
        & ( C != D ) )
      = ( ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) )
       != ( plus_plus_int @ ( times_times_int @ A2 @ D ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_977_crossproduct__noteq,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ( A2 != B2 )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A2 @ D ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_978_mult_Ocomm__neutral,axiom,
    ! [A2: int] :
      ( ( times_times_int @ A2 @ one_one_int )
      = A2 ) ).

% mult.comm_neutral
thf(fact_979_mult_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.comm_neutral
thf(fact_980_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: int] :
      ( ( times_times_int @ one_one_int @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_981_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_982_inf__period_I2_J,axiom,
    ! [P: int > $o,D4: int,Q: int > $o] :
      ( ! [X3: int,K3: int] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
     => ( ! [X3: int,K3: int] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
       => ! [X6: int,K4: int] :
            ( ( ( P @ X6 )
              | ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D4 ) ) )
              | ( Q @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_983_inf__period_I1_J,axiom,
    ! [P: int > $o,D4: int,Q: int > $o] :
      ( ! [X3: int,K3: int] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
     => ( ! [X3: int,K3: int] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
       => ! [X6: int,K4: int] :
            ( ( ( P @ X6 )
              & ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D4 ) ) )
              & ( Q @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_984_right__diff__distrib_H,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% right_diff_distrib'
thf(fact_985_right__diff__distrib_H,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ A2 @ ( minus_minus_nat @ B2 @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) ) ) ).

% right_diff_distrib'
thf(fact_986_left__diff__distrib_H,axiom,
    ! [B2: int,C: int,A2: int] :
      ( ( times_times_int @ ( minus_minus_int @ B2 @ C ) @ A2 )
      = ( minus_minus_int @ ( times_times_int @ B2 @ A2 ) @ ( times_times_int @ C @ A2 ) ) ) ).

% left_diff_distrib'
thf(fact_987_left__diff__distrib_H,axiom,
    ! [B2: nat,C: nat,A2: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B2 @ C ) @ A2 )
      = ( minus_minus_nat @ ( times_times_nat @ B2 @ A2 ) @ ( times_times_nat @ C @ A2 ) ) ) ).

% left_diff_distrib'
thf(fact_988_right__diff__distrib,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% right_diff_distrib
thf(fact_989_left__diff__distrib,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% left_diff_distrib
thf(fact_990_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_991_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_992_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_993_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_994_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_995_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_996_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_997_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_998_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_999_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1000_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1001_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_1002_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1003_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1004_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1005_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M2: nat] :
          ( M6
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_1006_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1007_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1008_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1009_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N2 )
             => ( P @ M4 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_1010_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1011_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R3: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R3 @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z4: nat] :
              ( ( R3 @ X3 @ Y3 )
             => ( ( R3 @ Y3 @ Z4 )
               => ( R3 @ X3 @ Z4 ) ) )
         => ( ! [N2: nat] : ( R3 @ N2 @ ( suc @ N2 ) )
           => ( R3 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1012_mult__of__nat__commute,axiom,
    ! [X: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_1013_mult__of__nat__commute,axiom,
    ! [X: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_1014_nat__arith_Osuc1,axiom,
    ! [A5: nat,K: nat,A2: nat] :
      ( ( A5
        = ( plus_plus_nat @ K @ A2 ) )
     => ( ( suc @ A5 )
        = ( plus_plus_nat @ K @ ( suc @ A2 ) ) ) ) ).

% nat_arith.suc1
thf(fact_1015_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1016_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1017_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_1018_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_1019_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I2: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_1020_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W2: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W2 )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).

% int_distrib(1)
thf(fact_1021_int__distrib_I2_J,axiom,
    ! [W2: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W2 @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_1022_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W2: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W2 )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).

% int_distrib(3)
thf(fact_1023_int__distrib_I4_J,axiom,
    ! [W2: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W2 @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_1024_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A2 @ B2 ) @ C )
      = ( times_times_int @ A2 @ ( times_times_int @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1025_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1026_mult_Oassoc,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A2 @ B2 ) @ C )
      = ( times_times_int @ A2 @ ( times_times_int @ B2 @ C ) ) ) ).

% mult.assoc
thf(fact_1027_mult_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% mult.assoc
thf(fact_1028_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A4: int,B4: int] : ( times_times_int @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_1029_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B4: nat] : ( times_times_nat @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_1030_mult_Oleft__commute,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( times_times_int @ B2 @ ( times_times_int @ A2 @ C ) )
      = ( times_times_int @ A2 @ ( times_times_int @ B2 @ C ) ) ) ).

% mult.left_commute
thf(fact_1031_mult_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( times_times_nat @ B2 @ ( times_times_nat @ A2 @ C ) )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% mult.left_commute
thf(fact_1032_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_1033_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_1034_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1035_strict__inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I: nat] :
            ( ( J
              = ( suc @ I ) )
           => ( P @ I ) )
       => ( ! [I: nat] :
              ( ( ord_less_nat @ I @ J )
             => ( ( P @ ( suc @ I ) )
               => ( P @ I ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_1036_less__Suc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I: nat] : ( P @ I @ ( suc @ I ) )
       => ( ! [I: nat,J3: nat,K3: nat] :
              ( ( ord_less_nat @ I @ J3 )
             => ( ( ord_less_nat @ J3 @ K3 )
               => ( ( P @ I @ J3 )
                 => ( ( P @ J3 @ K3 )
                   => ( P @ I @ K3 ) ) ) ) )
         => ( P @ I2 @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1037_less__trans__Suc,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1038_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_1039_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_1040_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M7: nat] :
            ( ( M
              = ( suc @ M7 ) )
            & ( ord_less_nat @ N @ M7 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1041_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I6: nat] :
            ( ( ord_less_nat @ I6 @ ( suc @ N ) )
           => ( P @ I6 ) ) )
      = ( ( P @ N )
        & ! [I6: nat] :
            ( ( ord_less_nat @ I6 @ N )
           => ( P @ I6 ) ) ) ) ).

% All_less_Suc
thf(fact_1042_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1043_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_1044_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I6: nat] :
            ( ( ord_less_nat @ I6 @ ( suc @ N ) )
            & ( P @ I6 ) ) )
      = ( ( P @ N )
        | ? [I6: nat] :
            ( ( ord_less_nat @ I6 @ N )
            & ( P @ I6 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1045_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_1046_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_1047_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_1048_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less_nat @ I2 @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_1049_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_1050_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J3: nat] :
              ( ( ord_less_nat @ I2 @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1051_mult__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1052_mult__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1053_mult__mono_H,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1054_mult__mono_H,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1055_zero__le__square,axiom,
    ! [A2: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ A2 ) ) ).

% zero_le_square
thf(fact_1056_split__mult__pos__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ).

% split_mult_pos_le
thf(fact_1057_mult__left__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1058_mult__nonpos__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1059_mult__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_1060_mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_1061_mult__right__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1062_mult__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1063_mult__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1064_mult__le__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ) ) ).

% mult_le_0_iff
thf(fact_1065_split__mult__neg__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_1066_split__mult__neg__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
          & ( ord_less_eq_nat @ B2 @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_1067_mult__nonneg__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1068_mult__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1069_mult__nonneg__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1070_mult__nonneg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1071_mult__nonpos__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1072_mult__nonpos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1073_mult__nonneg__nonpos2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B2 @ A2 ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1074_mult__nonneg__nonpos2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1075_zero__le__mult__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1076_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1077_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1078_mult__neg__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_neg_neg
thf(fact_1079_not__square__less__zero,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ ( times_times_int @ A2 @ A2 ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_1080_mult__less__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A2 )
          & ( ord_less_int @ B2 @ zero_zero_int ) )
        | ( ( ord_less_int @ A2 @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B2 ) ) ) ) ).

% mult_less_0_iff
thf(fact_1081_mult__neg__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_1082_mult__neg__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_1083_mult__pos__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_1084_mult__pos__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_1085_mult__pos__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_pos_pos
thf(fact_1086_mult__pos__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% mult_pos_pos
thf(fact_1087_mult__pos__neg2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B2 @ A2 ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_1088_mult__pos__neg2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_1089_zero__less__mult__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A2 )
          & ( ord_less_int @ zero_zero_int @ B2 ) )
        | ( ( ord_less_int @ A2 @ zero_zero_int )
          & ( ord_less_int @ B2 @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1090_zero__less__mult__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ord_less_int @ zero_zero_int @ B2 ) ) ) ).

% zero_less_mult_pos
thf(fact_1091_zero__less__mult__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ord_less_nat @ zero_zero_nat @ B2 ) ) ) ).

% zero_less_mult_pos
thf(fact_1092_zero__less__mult__pos2,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B2 @ A2 ) )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ord_less_int @ zero_zero_int @ B2 ) ) ) ).

% zero_less_mult_pos2
thf(fact_1093_zero__less__mult__pos2,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B2 @ A2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ord_less_nat @ zero_zero_nat @ B2 ) ) ) ).

% zero_less_mult_pos2
thf(fact_1094_mult__less__cancel__left__neg,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
        = ( ord_less_int @ B2 @ A2 ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1095_mult__less__cancel__left__pos,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
        = ( ord_less_int @ A2 @ B2 ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1096_mult__strict__left__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1097_mult__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1098_mult__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1099_mult__less__cancel__left__disj,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A2 @ B2 ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B2 @ A2 ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1100_mult__strict__right__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1101_mult__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1102_mult__strict__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1103_mult__less__cancel__right__disj,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A2 @ B2 ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B2 @ A2 ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1104_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1105_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1106_add__scale__eq__noteq,axiom,
    ! [R: int,A2: int,B2: int,C: int,D: int] :
      ( ( R != zero_zero_int )
     => ( ( ( A2 = B2 )
          & ( C != D ) )
       => ( ( plus_plus_int @ A2 @ ( times_times_int @ R @ C ) )
         != ( plus_plus_int @ B2 @ ( times_times_int @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1107_add__scale__eq__noteq,axiom,
    ! [R: nat,A2: nat,B2: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A2 = B2 )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A2 @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B2 @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1108_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1109_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I6: nat] :
            ( ( ord_less_nat @ I6 @ ( suc @ N ) )
            & ( P @ I6 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I6: nat] :
            ( ( ord_less_nat @ I6 @ N )
            & ( P @ ( suc @ I6 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1110_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1111_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I6: nat] :
            ( ( ord_less_nat @ I6 @ ( suc @ N ) )
           => ( P @ I6 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I6: nat] :
            ( ( ord_less_nat @ I6 @ N )
           => ( P @ ( suc @ I6 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1112_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% gr0_implies_Suc
thf(fact_1113_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J4: nat] :
            ( ( M
              = ( suc @ J4 ) )
            & ( ord_less_nat @ J4 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1114_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1115_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1116_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1117_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1118_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1119_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1120_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1121_inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ ( suc @ N2 ) )
                 => ( P @ N2 ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% inc_induct
thf(fact_1122_dec__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ I2 )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ N2 )
                 => ( P @ ( suc @ N2 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1123_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1124_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1125_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1126_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1127_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_1128_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_1129_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q3: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_1130_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1131_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1132_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1133_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1134_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1135_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1136_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1137_zmult__zless__mono2,axiom,
    ! [I2: int,J: int,K: int] :
      ( ( ord_less_int @ I2 @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I2 ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_1138_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1139_abs__zmult__eq__1,axiom,
    ! [M: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_1140_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I5: nat] :
                ( ( ord_less_eq_nat @ I5 @ K3 )
               => ~ ( P @ I5 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1141_diff__Suc__less,axiom,
    ! [N: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_1142_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1143_int__ops_I4_J,axiom,
    ! [A2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1144_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1145_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_1146_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W: int,Z2: int] :
        ? [N3: nat] :
          ( Z2
          = ( plus_plus_int @ W @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1147_plusinfinity,axiom,
    ! [D: int,P3: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K3: int] :
            ( ( P3 @ X3 )
            = ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ? [Z5: int] :
            ! [X3: int] :
              ( ( ord_less_int @ Z5 @ X3 )
             => ( ( P @ X3 )
                = ( P3 @ X3 ) ) )
         => ( ? [X_12: int] : ( P3 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_1148_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K3: int] :
            ( ( P1 @ X3 )
            = ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ? [Z5: int] :
            ! [X3: int] :
              ( ( ord_less_int @ X3 @ Z5 )
             => ( ( P @ X3 )
                = ( P1 @ X3 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_1149_com_Osize_I10_J,axiom,
    ! [X51: bexp,X52: com] :
      ( ( size_size_com @ ( while @ X51 @ X52 ) )
      = ( plus_plus_nat @ ( size_size_com @ X52 ) @ ( suc @ zero_zero_nat ) ) ) ).

% com.size(10)
thf(fact_1150_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1151_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1152_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_1153_zmult__zless__mono2__lemma,axiom,
    ! [I2: int,J: int,K: nat] :
      ( ( ord_less_int @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I2 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_1154_incr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int] :
            ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( plus_plus_int @ X6 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_1155_decr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int] :
            ( ( P @ X3 )
           => ( P @ ( minus_minus_int @ X3 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_1156_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K: int] :
      ( ! [I: nat] :
          ( ( ( ord_less_eq_nat @ M @ I )
            & ( ord_less_nat @ I @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I ) ) @ ( F @ I ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N ) )
           => ? [I: nat] :
                ( ( ord_less_eq_nat @ M @ I )
                & ( ord_less_eq_nat @ I @ N )
                & ( ( F @ I )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_1157_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1158_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1159_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1160_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1161_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1162_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1163_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1164_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1165_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1166_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1167_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1168_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_1169_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1170_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1171_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1172_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1173_mult__le__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1174_mult__le__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_1175_mult__le__mono2,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_1176_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1177_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1178_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_1179_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_1180_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1181_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1182_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_1183_mult__less__mono2,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1184_mult__less__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1185_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_1186_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1187_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1188_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1189_int__ops_I7_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A2 @ B2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(7)
thf(fact_1190_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_1191_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_1192_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_1193_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% mult_eq_if
thf(fact_1194_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1195_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1196_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1197_left__add__mult__distrib,axiom,
    ! [I2: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I2 @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_1198_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_1199_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_1200_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1201_nat__diff__add__eq2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_1202_nat__diff__add__eq1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_1203_nat__le__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_1204_nat__le__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_1205_nat__eq__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_1206_nat__eq__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_1207_nat__less__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_1208_nat__less__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1209_com_Osize__gen_I5_J,axiom,
    ! [X51: bexp,X52: com] :
      ( ( size_com @ ( while @ X51 @ X52 ) )
      = ( plus_plus_nat @ ( size_com @ X52 ) @ ( suc @ zero_zero_nat ) ) ) ).

% com.size_gen(5)
thf(fact_1210_addr__of__correct,axiom,
    ! [X: list_char,Xs: list_list_char] :
      ( ( member_list_char @ X @ ( set_list_char2 @ Xs ) )
     => ( ( inth_list_char @ Xs @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) @ ( addr_of @ Xs @ X ) ) )
        = X ) ) ).

% addr_of_correct
thf(fact_1211_addr__of__set,axiom,
    ! [X: list_char,Xs: list_list_char] :
      ( ( member_list_char @ X @ ( set_list_char2 @ Xs ) )
     => ( ord_less_int @ zero_zero_int @ ( addr_of @ Xs @ X ) ) ) ).

% addr_of_set
thf(fact_1212_addr__of__neq2,axiom,
    ! [X: list_char,Xs: list_list_char,X5: list_char] :
      ( ( member_list_char @ X @ ( set_list_char2 @ Xs ) )
     => ( ( X5 != X )
       => ( ( addr_of @ Xs @ X5 )
         != ( addr_of @ Xs @ X ) ) ) ) ).

% addr_of_neq2
thf(fact_1213_addr__of__nset,axiom,
    ! [X: list_char,Xs: list_list_char] :
      ( ~ ( member_list_char @ X @ ( set_list_char2 @ Xs ) )
     => ( ( addr_of @ Xs @ X )
        = zero_zero_int ) ) ).

% addr_of_nset
thf(fact_1214_addr__of__nneg,axiom,
    ! [Xs: list_list_char,X: list_char] : ( ord_less_eq_int @ zero_zero_int @ ( addr_of @ Xs @ X ) ) ).

% addr_of_nneg
thf(fact_1215_fact__ge__Suc__0__nat,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_Suc_0_nat
thf(fact_1216_fact__less__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono_nat
thf(fact_1217_fact__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_mono_nat
thf(fact_1218_fact__ge__self,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_self
thf(fact_1219_addr__of__max,axiom,
    ! [Xs: list_list_char,X: list_char] : ( ord_less_eq_int @ ( addr_of @ Xs @ X ) @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) ) ).

% addr_of_max
thf(fact_1220_addr__of_Osimps_I2_J,axiom,
    ! [X: list_char,Y: list_char,Xs: list_list_char] :
      ( ( ( X = Y )
       => ( ( addr_of @ ( cons_list_char @ X @ Xs ) @ Y )
          = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) @ one_one_int ) ) )
      & ( ( X != Y )
       => ( ( addr_of @ ( cons_list_char @ X @ Xs ) @ Y )
          = ( addr_of @ Xs @ Y ) ) ) ) ).

% addr_of.simps(2)
thf(fact_1221_addr__of__neq,axiom,
    ! [Xs: list_list_char,X: list_char] :
      ( ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) )
     != ( addr_of @ Xs @ X ) ) ).

% addr_of_neq
thf(fact_1222_addr__of__unique,axiom,
    ! [Xs: list_list_char,A2: int] :
      ( ( distinct_list_char @ Xs )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ A2 @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) )
         => ( ( addr_of @ Xs @ ( inth_list_char @ Xs @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ ( size_s356637359517785349t_char @ Xs ) ) @ A2 ) ) )
            = A2 ) ) ) ) ).

% addr_of_unique
thf(fact_1223_com_Osize__gen_I3_J,axiom,
    ! [X31: com,X32: com] :
      ( ( size_com @ ( seq @ X31 @ X32 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_com @ X31 ) @ ( size_com @ X32 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% com.size_gen(3)
thf(fact_1224_com_Oinject_I2_J,axiom,
    ! [X31: com,X32: com,Y31: com,Y32: com] :
      ( ( ( seq @ X31 @ X32 )
        = ( seq @ Y31 @ Y32 ) )
      = ( ( X31 = Y31 )
        & ( X32 = Y32 ) ) ) ).

% com.inject(2)
thf(fact_1225_Seq__assoc,axiom,
    ! [C1: com,C22: com,C32: com,S2: list_char > int,S3: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( seq @ ( seq @ C1 @ C22 ) @ C32 ) @ S2 ) @ S3 )
      = ( big_big_step @ ( produc5595214716300948949ar_int @ ( seq @ C1 @ ( seq @ C22 @ C32 ) ) @ S2 ) @ S3 ) ) ).

% Seq_assoc
thf(fact_1226_SeqE,axiom,
    ! [C1: com,C22: com,S1: list_char > int,S32: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( seq @ C1 @ C22 ) @ S1 ) @ S32 )
     => ~ ! [S_2: list_char > int] :
            ( ( big_big_step @ ( produc5595214716300948949ar_int @ C1 @ S1 ) @ S_2 )
           => ~ ( big_big_step @ ( produc5595214716300948949ar_int @ C22 @ S_2 ) @ S32 ) ) ) ).

% SeqE
thf(fact_1227_Seq,axiom,
    ! [C_1: com,S_1: list_char > int,S_22: list_char > int,C_2: com,S_3: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ C_1 @ S_1 ) @ S_22 )
     => ( ( big_big_step @ ( produc5595214716300948949ar_int @ C_2 @ S_22 ) @ S_3 )
       => ( big_big_step @ ( produc5595214716300948949ar_int @ ( seq @ C_1 @ C_2 ) @ S_1 ) @ S_3 ) ) ) ).

% Seq
thf(fact_1228_com_Odistinct_I17_J,axiom,
    ! [X31: com,X32: com,X51: bexp,X52: com] :
      ( ( seq @ X31 @ X32 )
     != ( while @ X51 @ X52 ) ) ).

% com.distinct(17)
thf(fact_1229_ccomp_Osimps_I3_J,axiom,
    ! [C_1: com,C_2: com] :
      ( ( ccomp @ ( seq @ C_1 @ C_2 ) )
      = ( append_instr @ ( ccomp @ C_1 ) @ ( ccomp @ C_2 ) ) ) ).

% ccomp.simps(3)
thf(fact_1230_com_Osize_I8_J,axiom,
    ! [X31: com,X32: com] :
      ( ( size_size_com @ ( seq @ X31 @ X32 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_size_com @ X31 ) @ ( size_size_com @ X32 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% com.size(8)
thf(fact_1231_com_Osize_I9_J,axiom,
    ! [X41: bexp,X42: com,X43: com] :
      ( ( size_size_com @ ( if @ X41 @ X42 @ X43 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_size_com @ X42 ) @ ( size_size_com @ X43 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% com.size(9)
thf(fact_1232_com_Oinject_I3_J,axiom,
    ! [X41: bexp,X42: com,X43: com,Y41: bexp,Y42: com,Y43: com] :
      ( ( ( if @ X41 @ X42 @ X43 )
        = ( if @ Y41 @ Y42 @ Y43 ) )
      = ( ( X41 = Y41 )
        & ( X42 = Y42 )
        & ( X43 = Y43 ) ) ) ).

% com.inject(3)
thf(fact_1233_com_Odistinct_I15_J,axiom,
    ! [X31: com,X32: com,X41: bexp,X42: com,X43: com] :
      ( ( seq @ X31 @ X32 )
     != ( if @ X41 @ X42 @ X43 ) ) ).

% com.distinct(15)
thf(fact_1234_com_Odistinct_I19_J,axiom,
    ! [X41: bexp,X42: com,X43: com,X51: bexp,X52: com] :
      ( ( if @ X41 @ X42 @ X43 )
     != ( while @ X51 @ X52 ) ) ).

% com.distinct(19)
thf(fact_1235_triv__if,axiom,
    ! [B2: bexp,C: com,S5: list_char > int,T3: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B2 @ C @ C ) @ S5 ) @ T3 )
      = ( big_big_step @ ( produc5595214716300948949ar_int @ C @ S5 ) @ T3 ) ) ).

% triv_if
thf(fact_1236_commute__if,axiom,
    ! [B1: bexp,B22: bexp,C11: com,C12: com,C22: com,S5: list_char > int,T3: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B1 @ ( if @ B22 @ C11 @ C12 ) @ C22 ) @ S5 ) @ T3 )
      = ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B22 @ ( if @ B1 @ C11 @ C22 ) @ ( if @ B1 @ C12 @ C22 ) ) @ S5 ) @ T3 ) ) ).

% commute_if
thf(fact_1237_IfE,axiom,
    ! [B2: bexp,C1: com,C22: com,S2: list_char > int,T: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B2 @ C1 @ C22 ) @ S2 ) @ T )
     => ( ( ( bval @ B2 @ S2 )
         => ~ ( big_big_step @ ( produc5595214716300948949ar_int @ C1 @ S2 ) @ T ) )
       => ~ ( ~ ( bval @ B2 @ S2 )
           => ~ ( big_big_step @ ( produc5595214716300948949ar_int @ C22 @ S2 ) @ T ) ) ) ) ).

% IfE
thf(fact_1238_IfFalse,axiom,
    ! [B2: bexp,S2: list_char > int,C_2: com,T: list_char > int,C_1: com] :
      ( ~ ( bval @ B2 @ S2 )
     => ( ( big_big_step @ ( produc5595214716300948949ar_int @ C_2 @ S2 ) @ T )
       => ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B2 @ C_1 @ C_2 ) @ S2 ) @ T ) ) ) ).

% IfFalse
thf(fact_1239_IfTrue,axiom,
    ! [B2: bexp,S2: list_char > int,C_1: com,T: list_char > int,C_2: com] :
      ( ( bval @ B2 @ S2 )
     => ( ( big_big_step @ ( produc5595214716300948949ar_int @ C_1 @ S2 ) @ T )
       => ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B2 @ C_1 @ C_2 ) @ S2 ) @ T ) ) ) ).

% IfTrue
thf(fact_1240_com_Osize__gen_I4_J,axiom,
    ! [X41: bexp,X42: com,X43: com] :
      ( ( size_com @ ( if @ X41 @ X42 @ X43 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_com @ X42 ) @ ( size_com @ X43 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% com.size_gen(4)
thf(fact_1241_while__unfold,axiom,
    ! [B2: bexp,C: com,S5: list_char > int,T3: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ ( while @ B2 @ C ) @ S5 ) @ T3 )
      = ( big_big_step @ ( produc5595214716300948949ar_int @ ( if @ B2 @ ( seq @ C @ ( while @ B2 @ C ) ) @ skip ) @ S5 ) @ T3 ) ) ).

% while_unfold
thf(fact_1242_vars__store,axiom,
    ! [I2: int,P: list_instr,X: list_char] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P ) ) )
       => ( ( ( inth_instr @ P @ I2 )
            = ( store @ X ) )
         => ( member_list_char @ X @ ( set_list_char2 @ ( vars @ P ) ) ) ) ) ) ).

% vars_store
thf(fact_1243_instr_Oinject_I3_J,axiom,
    ! [X44: list_char,Y44: list_char] :
      ( ( ( store @ X44 )
        = ( store @ Y44 ) )
      = ( X44 = Y44 ) ) ).

% instr.inject(3)
thf(fact_1244_com_Odistinct_I5_J,axiom,
    ! [X41: bexp,X42: com,X43: com] :
      ( skip
     != ( if @ X41 @ X42 @ X43 ) ) ).

% com.distinct(5)
thf(fact_1245_instr_Osize_I11_J,axiom,
    ! [X44: list_char] :
      ( ( size_size_instr @ ( store @ X44 ) )
      = zero_zero_nat ) ).

% instr.size(11)
thf(fact_1246_com_Odistinct_I7_J,axiom,
    ! [X51: bexp,X52: com] :
      ( skip
     != ( while @ X51 @ X52 ) ) ).

% com.distinct(7)
thf(fact_1247_vars__dist,axiom,
    ! [P: list_instr] : ( distinct_list_char @ ( vars @ P ) ) ).

% vars_dist
thf(fact_1248_com_Odistinct_I3_J,axiom,
    ! [X31: com,X32: com] :
      ( skip
     != ( seq @ X31 @ X32 ) ) ).

% com.distinct(3)
thf(fact_1249_Skip,axiom,
    ! [S2: list_char > int] : ( big_big_step @ ( produc5595214716300948949ar_int @ skip @ S2 ) @ S2 ) ).

% Skip
thf(fact_1250_SkipE,axiom,
    ! [S2: list_char > int,T: list_char > int] :
      ( ( big_big_step @ ( produc5595214716300948949ar_int @ skip @ S2 ) @ T )
     => ( T = S2 ) ) ).

% SkipE
thf(fact_1251_com_Osize_I6_J,axiom,
    ( ( size_size_com @ skip )
    = zero_zero_nat ) ).

% com.size(6)
thf(fact_1252_com_Osize__gen_I1_J,axiom,
    ( ( size_com @ skip )
    = zero_zero_nat ) ).

% com.size_gen(1)
thf(fact_1253_vars__load,axiom,
    ! [I2: int,P: list_instr,X: list_char] :
      ( ( ord_less_eq_int @ zero_zero_int @ I2 )
     => ( ( ord_less_int @ I2 @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ P ) ) )
       => ( ( ( inth_instr @ P @ I2 )
            = ( load @ X ) )
         => ( member_list_char @ X @ ( set_list_char2 @ ( vars @ P ) ) ) ) ) ) ).

% vars_load
thf(fact_1254_com_Oinject_I1_J,axiom,
    ! [X21: list_char,X22: aexp,Y21: list_char,Y22: aexp] :
      ( ( ( assign @ X21 @ X22 )
        = ( assign @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% com.inject(1)
thf(fact_1255_instr_Oinject_I2_J,axiom,
    ! [X2: list_char,Y2: list_char] :
      ( ( ( load @ X2 )
        = ( load @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% instr.inject(2)
thf(fact_1256_com_Odistinct_I1_J,axiom,
    ! [X21: list_char,X22: aexp] :
      ( skip
     != ( assign @ X21 @ X22 ) ) ).

% com.distinct(1)
thf(fact_1257_instr_Odistinct_I15_J,axiom,
    ! [X2: list_char,X44: list_char] :
      ( ( load @ X2 )
     != ( store @ X44 ) ) ).

% instr.distinct(15)
thf(fact_1258_com_Odistinct_I9_J,axiom,
    ! [X21: list_char,X22: aexp,X31: com,X32: com] :
      ( ( assign @ X21 @ X22 )
     != ( seq @ X31 @ X32 ) ) ).

% com.distinct(9)
thf(fact_1259_com_Odistinct_I13_J,axiom,
    ! [X21: list_char,X22: aexp,X51: bexp,X52: com] :
      ( ( assign @ X21 @ X22 )
     != ( while @ X51 @ X52 ) ) ).

% com.distinct(13)
thf(fact_1260_instr_Osize_I9_J,axiom,
    ! [X2: list_char] :
      ( ( size_size_instr @ ( load @ X2 ) )
      = zero_zero_nat ) ).

% instr.size(9)
thf(fact_1261_com_Odistinct_I11_J,axiom,
    ! [X21: list_char,X22: aexp,X41: bexp,X42: com,X43: com] :
      ( ( assign @ X21 @ X22 )
     != ( if @ X41 @ X42 @ X43 ) ) ).

% com.distinct(11)
thf(fact_1262_com_Osize__gen_I2_J,axiom,
    ! [X21: list_char,X22: aexp] :
      ( ( size_com @ ( assign @ X21 @ X22 ) )
      = zero_zero_nat ) ).

% com.size_gen(2)
thf(fact_1263_com_Osize_I7_J,axiom,
    ! [X21: list_char,X22: aexp] :
      ( ( size_size_com @ ( assign @ X21 @ X22 ) )
      = zero_zero_nat ) ).

% com.size(7)
thf(fact_1264_com_Oexhaust,axiom,
    ! [Y: com] :
      ( ( Y != skip )
     => ( ! [X212: list_char,X222: aexp] :
            ( Y
           != ( assign @ X212 @ X222 ) )
       => ( ! [X312: com,X322: com] :
              ( Y
             != ( seq @ X312 @ X322 ) )
         => ( ! [X412: bexp,X422: com,X432: com] :
                ( Y
               != ( if @ X412 @ X422 @ X432 ) )
           => ~ ! [X512: bexp,X522: com] :
                  ( Y
                 != ( while @ X512 @ X522 ) ) ) ) ) ) ).

% com.exhaust

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    star_P707599355569300323st_int @ ( exec1 @ ( ccomp @ ( while @ b @ ca ) ) ) @ ( produc5086643055186798020st_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( bcomp @ ( produc4047900504771817624_o_int @ b @ ( product_Pair_o_int @ $false @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( ccomp @ ca ) ) ) @ one_one_int ) ) ) ) ) ) @ ( produc8650753666468850689st_int @ s_1 @ stka ) ) @ ( produc5086643055186798020st_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( bcomp @ ( produc4047900504771817624_o_int @ b @ ( product_Pair_o_int @ $false @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( ccomp @ ca ) ) ) @ one_one_int ) ) ) ) ) ) @ ( semiri1314217659103216013at_int @ ( size_size_list_instr @ ( ccomp @ ca ) ) ) ) @ ( produc8650753666468850689st_int @ s_2 @ stka ) ) ).

%------------------------------------------------------------------------------