TPTP Problem File: SLH0784^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Pluennecke_Ruzsa_Inequality/0003_Pluennecke_Ruzsa_Inequality/prob_00539_021549__12340394_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1357 ( 539 unt; 81 typ; 0 def)
% Number of atoms : 3670 (1179 equ; 0 cnn)
% Maximal formula atoms : 15 ( 2 avg)
% Number of connectives : 11975 ( 366 ~; 63 |; 228 &;9603 @)
% ( 0 <=>;1715 =>; 0 <=; 0 <~>)
% Maximal formula depth : 35 ( 7 avg)
% Number of types : 8 ( 7 usr)
% Number of type conns : 430 ( 430 >; 0 *; 0 +; 0 <<)
% Number of symbols : 77 ( 74 usr; 20 con; 0-5 aty)
% Number of variables : 3348 ( 120 ^;3138 !; 90 ?;3348 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-18 16:24:35.024
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
set_set_a: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_Itf__a_J,type,
set_a: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (74)
thf(sy_c_Finite__Set_Ocard_001t__Real__Oreal,type,
finite_card_real: set_real > nat ).
thf(sy_c_Finite__Set_Ocard_001tf__a,type,
finite_card_a: set_a > nat ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
finite_finite_real: set_real > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
finite_finite_set_a: set_set_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
finite_finite_a: set_a > $o ).
thf(sy_c_Group__Theory_Oabelian__group_001tf__a,type,
group_201663378560352916roup_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Ocommutative__monoid_001tf__a,type,
group_4866109990395492029noid_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Ogroup_001tf__a,type,
group_group_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Omonoid_OUnits_001tf__a,type,
group_Units_a: set_a > ( a > a > a ) > a > set_a ).
thf(sy_c_Group__Theory_Omonoid_Oinvertible_001tf__a,type,
group_invertible_a: set_a > ( a > a > a ) > a > a > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
minus_minus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
minus_minus_set_a: set_a > set_a > set_a ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
inf_inf_nat: nat > nat > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Real__Oreal,type,
inf_inf_real: real > real > real ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Real__Oreal_J,type,
inf_inf_set_real: set_real > set_real > set_real ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
inf_inf_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
sup_sup_set_a: set_a > set_a > set_a ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
bot_bot_a_o: a > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
bot_bot_set_real: set_real ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
bot_bot_set_set_a: set_set_a ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
bot_bot_set_a: set_a ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
ord_less_set_a: set_a > set_a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
ord_less_eq_set_a: set_a > set_a > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Real__Oreal,type,
pluenn1014277435162747966p_real: set_real > ( real > real > real ) > real > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001tf__a,type,
pluenn1164192988769422572roup_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_ORuzsa__distance_001tf__a,type,
pluenn5761198478017115492ance_a: set_a > ( a > a > a ) > a > set_a > set_a > real ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Ominusset_001tf__a,type,
pluenn2534204936789923946sset_a: set_a > ( a > a > a ) > a > set_a > set_a ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Real__Oreal,type,
pluenn7361685508355272389t_real: set_real > ( real > real > real ) > set_real > set_real > set_real ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001tf__a,type,
pluenn3038260743871226533mset_a: set_a > ( a > a > a ) > set_a > set_a > set_a ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset__iterated_001tf__a,type,
pluenn1960970773371692859ated_a: set_a > ( a > a > a ) > a > set_a > nat > set_a ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001t__Real__Oreal,type,
pluenn3384280056939765061p_real: set_real > ( real > real > real ) > ( real > $o ) > ( real > $o ) > real > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001tf__a,type,
pluenn895083305082786853setp_a: set_a > ( a > a > a ) > ( a > $o ) > ( a > $o ) > a > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set_OCollect_001tf__a,type,
collect_a: ( a > $o ) > set_a ).
thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
insert_real: real > set_real > set_real ).
thf(sy_c_Set_Oinsert_001tf__a,type,
insert_a: a > set_a > set_a ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
member_set_a: set_a > set_set_a > $o ).
thf(sy_c_member_001tf__a,type,
member_a: a > set_a > $o ).
thf(sy_v_A,type,
a2: set_a ).
thf(sy_v_A_H____,type,
a3: set_a ).
thf(sy_v_B,type,
b: set_a ).
thf(sy_v_G,type,
g: set_a ).
thf(sy_v_K,type,
k: real ).
thf(sy_v_K_H____,type,
k2: real ).
thf(sy_v_addition,type,
addition: a > a > a ).
thf(sy_v_r____,type,
r: nat ).
thf(sy_v_thesis,type,
thesis: $o ).
thf(sy_v_zero,type,
zero: a ).
% Relevant facts (1270)
thf(fact_0_commutative,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( addition @ X @ Y )
= ( addition @ Y @ X ) ) ) ) ).
% commutative
thf(fact_1_A_H_I4_J,axiom,
ord_less_eq_real @ k2 @ k ).
% A'(4)
thf(fact_2_sumset_Ocases,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( addition @ A3 @ B2 ) )
=> ( ( member_a @ A3 @ A2 )
=> ( ( member_a @ A3 @ g )
=> ( ( member_a @ B2 @ B )
=> ~ ( member_a @ B2 @ g ) ) ) ) ) ) ).
% sumset.cases
thf(fact_3_sumset_Osimps,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
= ( ? [A4: a,B3: a] :
( ( A
= ( addition @ A4 @ B3 ) )
& ( member_a @ A4 @ A2 )
& ( member_a @ A4 @ g )
& ( member_a @ B3 @ B )
& ( member_a @ B3 @ g ) ) ) ) ).
% sumset.simps
thf(fact_4_sumset_OsumsetI,axiom,
! [A: a,A2: set_a,B4: a,B: set_a] :
( ( member_a @ A @ A2 )
=> ( ( member_a @ A @ g )
=> ( ( member_a @ B4 @ B )
=> ( ( member_a @ B4 @ g )
=> ( member_a @ ( addition @ A @ B4 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ) ) ).
% sumset.sumsetI
thf(fact_5_sumset__assoc,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ C )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ C ) ) ) ).
% sumset_assoc
thf(fact_6_sumset__commute,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
= ( pluenn3038260743871226533mset_a @ g @ addition @ B @ A2 ) ) ).
% sumset_commute
thf(fact_7_local_Oinverse__unique,axiom,
! [U: a,V: a,V2: a] :
( ( ( addition @ U @ V )
= zero )
=> ( ( ( addition @ V2 @ U )
= zero )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( ( member_a @ V @ g )
=> ( V2 = V ) ) ) ) ) ) ).
% local.inverse_unique
thf(fact_8_False,axiom,
b != bot_bot_set_a ).
% False
thf(fact_9_A_H_I2_J,axiom,
a3 != bot_bot_set_a ).
% A'(2)
thf(fact_10_assms_I5_J,axiom,
finite_finite_a @ b ).
% assms(5)
thf(fact_11_assms_I6_J,axiom,
ord_less_eq_set_a @ b @ g ).
% assms(6)
thf(fact_12_associative,axiom,
! [A: a,B4: a,C2: a] :
( ( member_a @ A @ g )
=> ( ( member_a @ B4 @ g )
=> ( ( member_a @ C2 @ g )
=> ( ( addition @ ( addition @ A @ B4 ) @ C2 )
= ( addition @ A @ ( addition @ B4 @ C2 ) ) ) ) ) ) ).
% associative
thf(fact_13_composition__closed,axiom,
! [A: a,B4: a] :
( ( member_a @ A @ g )
=> ( ( member_a @ B4 @ g )
=> ( member_a @ ( addition @ A @ B4 ) @ g ) ) ) ).
% composition_closed
thf(fact_14_unit__closed,axiom,
member_a @ zero @ g ).
% unit_closed
thf(fact_15_left__unit,axiom,
! [A: a] :
( ( member_a @ A @ g )
=> ( ( addition @ zero @ A )
= A ) ) ).
% left_unit
thf(fact_16_right__unit,axiom,
! [A: a] :
( ( member_a @ A @ g )
=> ( ( addition @ A @ zero )
= A ) ) ).
% right_unit
thf(fact_17_additive__abelian__group__axioms,axiom,
pluenn1164192988769422572roup_a @ g @ addition @ zero ).
% additive_abelian_group_axioms
thf(fact_18_commutative__monoid__axioms,axiom,
group_4866109990395492029noid_a @ g @ addition @ zero ).
% commutative_monoid_axioms
thf(fact_19_additive__abelian__group_Osumset_Ocong,axiom,
pluenn3038260743871226533mset_a = pluenn3038260743871226533mset_a ).
% additive_abelian_group.sumset.cong
thf(fact_20_additive__abelian__group_Osumset__iterated_Ocong,axiom,
pluenn1960970773371692859ated_a = pluenn1960970773371692859ated_a ).
% additive_abelian_group.sumset_iterated.cong
thf(fact_21_K,axiom,
ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ a2 @ b ) ) ) @ ( times_times_real @ k @ ( semiri5074537144036343181t_real @ ( finite_card_a @ a2 ) ) ) ).
% K
thf(fact_22_abelian__group__axioms,axiom,
group_201663378560352916roup_a @ g @ addition @ zero ).
% abelian_group_axioms
thf(fact_23__C_K_C,axiom,
! [R: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ a3 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ b @ ( suc @ R ) ) ) ) ) @ ( times_times_real @ k2 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ a3 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ b @ R ) ) ) ) ) ) ).
% "*"
thf(fact_24_sumsetp_Ocases,axiom,
! [A2: a > $o,B: a > $o,A: a] :
( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ A )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( addition @ A3 @ B2 ) )
=> ( ( A2 @ A3 )
=> ( ( member_a @ A3 @ g )
=> ( ( B @ B2 )
=> ~ ( member_a @ B2 @ g ) ) ) ) ) ) ).
% sumsetp.cases
thf(fact_25_sumsetp_Osimps,axiom,
! [A2: a > $o,B: a > $o,A: a] :
( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ A )
= ( ? [A4: a,B3: a] :
( ( A
= ( addition @ A4 @ B3 ) )
& ( A2 @ A4 )
& ( member_a @ A4 @ g )
& ( B @ B3 )
& ( member_a @ B3 @ g ) ) ) ) ).
% sumsetp.simps
thf(fact_26_sumsetp_OsumsetI,axiom,
! [A2: a > $o,A: a,B: a > $o,B4: a] :
( ( A2 @ A )
=> ( ( member_a @ A @ g )
=> ( ( B @ B4 )
=> ( ( member_a @ B4 @ g )
=> ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ ( addition @ A @ B4 ) ) ) ) ) ) ).
% sumsetp.sumsetI
thf(fact_27_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B4: nat,W: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B4 ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B4 @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_28_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B4: nat,W: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B4 ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B4 @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_29_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B4: nat,W: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B4 ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B4 @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_30_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B4: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B4 ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B4 @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_31_sumset__iterated__subset__carrier,axiom,
! [A2: set_a,K: nat] : ( ord_less_eq_set_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) @ g ) ).
% sumset_iterated_subset_carrier
thf(fact_32_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_33_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).
% of_nat_power
thf(fact_34_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B4: nat,W: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B4 ) @ W )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B4 @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_35_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B4: nat,W: nat,X: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B4 ) @ W )
= ( semiri5074537144036343181t_real @ X ) )
= ( ( power_power_nat @ B4 @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_36_assms_I4_J,axiom,
a2 != bot_bot_set_a ).
% assms(4)
thf(fact_37_assms_I2_J,axiom,
finite_finite_a @ a2 ).
% assms(2)
thf(fact_38_assms_I3_J,axiom,
ord_less_eq_set_a @ a2 @ g ).
% assms(3)
thf(fact_39_A_H_I1_J,axiom,
ord_less_eq_set_a @ a3 @ a2 ).
% A'(1)
thf(fact_40__092_060open_062A_H_A_092_060subseteq_062_AG_092_060close_062,axiom,
ord_less_eq_set_a @ a3 @ g ).
% \<open>A' \<subseteq> G\<close>
thf(fact_41_finite__sumset,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% finite_sumset
thf(fact_42_sumset__subset__carrier,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ g ) ).
% sumset_subset_carrier
thf(fact_43_sumset__mono,axiom,
! [A5: set_a,A2: set_a,B5: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A5 @ A2 )
=> ( ( ord_less_eq_set_a @ B5 @ B )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% sumset_mono
thf(fact_44_finite__sumset__iterated,axiom,
! [A2: set_a,R: nat] :
( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ R ) ) ) ).
% finite_sumset_iterated
thf(fact_45_card__le__sumset,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ A @ A2 )
=> ( ( member_a @ A @ g )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ g )
=> ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ) ) ) ) ).
% card_le_sumset
thf(fact_46_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B4: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B4 ) @ W ) )
= ( X
= ( power_power_nat @ B4 @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_47_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B4: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B4 ) @ W ) )
= ( X
= ( power_power_nat @ B4 @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_48_mem__Collect__eq,axiom,
! [A: a,P: a > $o] :
( ( member_a @ A @ ( collect_a @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_49_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_50_Collect__mem__eq,axiom,
! [A2: set_a] :
( ( collect_a
@ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_51_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_52_A_H__card,axiom,
! [C: set_a] :
( ( ord_less_eq_set_a @ C @ g )
=> ( ( finite_finite_a @ C )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ a3 @ ( pluenn3038260743871226533mset_a @ g @ addition @ b @ C ) ) ) ) @ ( times_times_real @ k2 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ a3 @ C ) ) ) ) ) ) ) ).
% A'_card
thf(fact_53_sumset__empty_I1_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ bot_bot_set_a )
= bot_bot_set_a ) ).
% sumset_empty(1)
thf(fact_54_sumset__empty_I2_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ bot_bot_set_a @ A2 )
= bot_bot_set_a ) ).
% sumset_empty(2)
thf(fact_55_sumset__iterated__Suc,axiom,
! [A2: set_a,K: nat] :
( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ ( suc @ K ) )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).
% sumset_iterated_Suc
thf(fact_56_that,axiom,
! [A5: set_a] :
( ( ord_less_eq_set_a @ A5 @ a2 )
=> ( ( A5 != bot_bot_set_a )
=> ( ! [R2: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ b @ R2 ) ) ) ) @ ( times_times_real @ ( power_power_real @ k @ R2 ) @ ( semiri5074537144036343181t_real @ ( finite_card_a @ A5 ) ) ) )
=> thesis ) ) ) ).
% that
thf(fact_57_Ruzsa__triangle__ineq2,axiom,
! [U2: set_a,V3: set_a,W2: set_a] :
( ( finite_finite_a @ U2 )
=> ( ( ord_less_eq_set_a @ U2 @ g )
=> ( ( U2 != bot_bot_set_a )
=> ( ( finite_finite_a @ V3 )
=> ( ( ord_less_eq_set_a @ V3 @ g )
=> ( ( finite_finite_a @ W2 )
=> ( ( ord_less_eq_set_a @ W2 @ g )
=> ( ord_less_eq_real @ ( pluenn5761198478017115492ance_a @ g @ addition @ zero @ V3 @ W2 ) @ ( times_times_real @ ( pluenn5761198478017115492ance_a @ g @ addition @ zero @ V3 @ U2 ) @ ( pluenn5761198478017115492ance_a @ g @ addition @ zero @ U2 @ W2 ) ) ) ) ) ) ) ) ) ) ).
% Ruzsa_triangle_ineq2
thf(fact_58_additive__abelian__group_Ointro,axiom,
! [G: set_a,Addition: a > a > a,Zero: a] :
( ( group_201663378560352916roup_a @ G @ Addition @ Zero )
=> ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero ) ) ).
% additive_abelian_group.intro
thf(fact_59_additive__abelian__group_Oaxioms,axiom,
! [G: set_a,Addition: a > a > a,Zero: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( group_201663378560352916roup_a @ G @ Addition @ Zero ) ) ).
% additive_abelian_group.axioms
thf(fact_60_additive__abelian__group_Osumsetp_Ocases,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A2: real > $o,B: real > $o,A: real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( pluenn3384280056939765061p_real @ G @ Addition @ A2 @ B @ A )
=> ~ ! [A3: real,B2: real] :
( ( A
= ( Addition @ A3 @ B2 ) )
=> ( ( A2 @ A3 )
=> ( ( member_real @ A3 @ G )
=> ( ( B @ B2 )
=> ~ ( member_real @ B2 @ G ) ) ) ) ) ) ) ).
% additive_abelian_group.sumsetp.cases
thf(fact_61_additive__abelian__group_Osumsetp_Ocases,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B: a > $o,A: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B @ A )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( Addition @ A3 @ B2 ) )
=> ( ( A2 @ A3 )
=> ( ( member_a @ A3 @ G )
=> ( ( B @ B2 )
=> ~ ( member_a @ B2 @ G ) ) ) ) ) ) ) ).
% additive_abelian_group.sumsetp.cases
thf(fact_62_additive__abelian__group_Osumsetp_Osimps,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A2: real > $o,B: real > $o,A: real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( pluenn3384280056939765061p_real @ G @ Addition @ A2 @ B @ A )
= ( ? [A4: real,B3: real] :
( ( A
= ( Addition @ A4 @ B3 ) )
& ( A2 @ A4 )
& ( member_real @ A4 @ G )
& ( B @ B3 )
& ( member_real @ B3 @ G ) ) ) ) ) ).
% additive_abelian_group.sumsetp.simps
thf(fact_63_additive__abelian__group_Osumsetp_Osimps,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B: a > $o,A: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B @ A )
= ( ? [A4: a,B3: a] :
( ( A
= ( Addition @ A4 @ B3 ) )
& ( A2 @ A4 )
& ( member_a @ A4 @ G )
& ( B @ B3 )
& ( member_a @ B3 @ G ) ) ) ) ) ).
% additive_abelian_group.sumsetp.simps
thf(fact_64_additive__abelian__group_Osumsetp_OsumsetI,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A2: real > $o,A: real,B: real > $o,B4: real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( A2 @ A )
=> ( ( member_real @ A @ G )
=> ( ( B @ B4 )
=> ( ( member_real @ B4 @ G )
=> ( pluenn3384280056939765061p_real @ G @ Addition @ A2 @ B @ ( Addition @ A @ B4 ) ) ) ) ) ) ) ).
% additive_abelian_group.sumsetp.sumsetI
thf(fact_65_additive__abelian__group_Osumsetp_OsumsetI,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a,B: a > $o,B4: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( A2 @ A )
=> ( ( member_a @ A @ G )
=> ( ( B @ B4 )
=> ( ( member_a @ B4 @ G )
=> ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B @ ( Addition @ A @ B4 ) ) ) ) ) ) ) ).
% additive_abelian_group.sumsetp.sumsetI
thf(fact_66_additive__abelian__group__def,axiom,
pluenn1164192988769422572roup_a = group_201663378560352916roup_a ).
% additive_abelian_group_def
thf(fact_67_additive__abelian__group_Ocard__le__sumset,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A2: set_real,A: real,B: set_real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( ( member_real @ A @ G )
=> ( ( finite_finite_real @ B )
=> ( ( ord_less_eq_set_real @ B @ G )
=> ( ord_less_eq_nat @ ( finite_card_real @ B ) @ ( finite_card_real @ ( pluenn7361685508355272389t_real @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ) ) ).
% additive_abelian_group.card_le_sumset
thf(fact_68_additive__abelian__group_Ocard__le__sumset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ( member_a @ A @ A2 )
=> ( ( member_a @ A @ G )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ G )
=> ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ) ) ).
% additive_abelian_group.card_le_sumset
thf(fact_69_additive__abelian__group_Ofinite__sumset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.finite_sumset
thf(fact_70_additive__abelian__group_Osumset__subset__carrier,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ G ) ) ).
% additive_abelian_group.sumset_subset_carrier
thf(fact_71_additive__abelian__group_Osumset__mono,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A5: set_a,A2: set_a,B5: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ord_less_eq_set_a @ A5 @ A2 )
=> ( ( ord_less_eq_set_a @ B5 @ B )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.sumset_mono
thf(fact_72_additive__abelian__group_Osumsetp_Ocong,axiom,
pluenn895083305082786853setp_a = pluenn895083305082786853setp_a ).
% additive_abelian_group.sumsetp.cong
thf(fact_73_additive__abelian__group_Osumset__empty_I1_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ bot_bot_set_a )
= bot_bot_set_a ) ) ).
% additive_abelian_group.sumset_empty(1)
thf(fact_74_additive__abelian__group_Osumset__empty_I2_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ bot_bot_set_a @ A2 )
= bot_bot_set_a ) ) ).
% additive_abelian_group.sumset_empty(2)
thf(fact_75_additive__abelian__group_Ofinite__sumset__iterated,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,R: nat] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ R ) ) ) ) ).
% additive_abelian_group.finite_sumset_iterated
thf(fact_76_additive__abelian__group_Osumset__iterated__subset__carrier,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) @ G ) ) ).
% additive_abelian_group.sumset_iterated_subset_carrier
thf(fact_77_additive__abelian__group_Osumset__iterated__Suc,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ ( suc @ K ) )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) ) ) ) ).
% additive_abelian_group.sumset_iterated_Suc
thf(fact_78_additive__abelian__group_Osumset__commute,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ A2 ) ) ) ).
% additive_abelian_group.sumset_commute
thf(fact_79_additive__abelian__group_Osumset_OsumsetI,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A: real,A2: set_real,B4: real,B: set_real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( member_real @ A @ A2 )
=> ( ( member_real @ A @ G )
=> ( ( member_real @ B4 @ B )
=> ( ( member_real @ B4 @ G )
=> ( member_real @ ( Addition @ A @ B4 ) @ ( pluenn7361685508355272389t_real @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ).
% additive_abelian_group.sumset.sumsetI
thf(fact_80_additive__abelian__group_Osumset_OsumsetI,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B4: a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( member_a @ A @ A2 )
=> ( ( member_a @ A @ G )
=> ( ( member_a @ B4 @ B )
=> ( ( member_a @ B4 @ G )
=> ( member_a @ ( Addition @ A @ B4 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ).
% additive_abelian_group.sumset.sumsetI
thf(fact_81_additive__abelian__group_Osumset__assoc,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ C )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ C ) ) ) ) ).
% additive_abelian_group.sumset_assoc
thf(fact_82_additive__abelian__group_Osumset_Osimps,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A: real,A2: set_real,B: set_real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( member_real @ A @ ( pluenn7361685508355272389t_real @ G @ Addition @ A2 @ B ) )
= ( ? [A4: real,B3: real] :
( ( A
= ( Addition @ A4 @ B3 ) )
& ( member_real @ A4 @ A2 )
& ( member_real @ A4 @ G )
& ( member_real @ B3 @ B )
& ( member_real @ B3 @ G ) ) ) ) ) ).
% additive_abelian_group.sumset.simps
thf(fact_83_additive__abelian__group_Osumset_Osimps,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
= ( ? [A4: a,B3: a] :
( ( A
= ( Addition @ A4 @ B3 ) )
& ( member_a @ A4 @ A2 )
& ( member_a @ A4 @ G )
& ( member_a @ B3 @ B )
& ( member_a @ B3 @ G ) ) ) ) ) ).
% additive_abelian_group.sumset.simps
thf(fact_84_additive__abelian__group_Osumset_Ocases,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A: real,A2: set_real,B: set_real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( member_real @ A @ ( pluenn7361685508355272389t_real @ G @ Addition @ A2 @ B ) )
=> ~ ! [A3: real,B2: real] :
( ( A
= ( Addition @ A3 @ B2 ) )
=> ( ( member_real @ A3 @ A2 )
=> ( ( member_real @ A3 @ G )
=> ( ( member_real @ B2 @ B )
=> ~ ( member_real @ B2 @ G ) ) ) ) ) ) ) ).
% additive_abelian_group.sumset.cases
thf(fact_85_additive__abelian__group_Osumset_Ocases,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( Addition @ A3 @ B2 ) )
=> ( ( member_a @ A3 @ A2 )
=> ( ( member_a @ A3 @ G )
=> ( ( member_a @ B2 @ B )
=> ~ ( member_a @ B2 @ G ) ) ) ) ) ) ) ).
% additive_abelian_group.sumset.cases
thf(fact_86_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_87_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_88_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_89_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_90_power__commuting__commutes,axiom,
! [X: real,Y: real,N: nat] :
( ( ( times_times_real @ X @ Y )
= ( times_times_real @ Y @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y )
= ( times_times_real @ Y @ ( power_power_real @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_91_power__commuting__commutes,axiom,
! [X: nat,Y: nat,N: nat] :
( ( ( times_times_nat @ X @ Y )
= ( times_times_nat @ Y @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
= ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_92_power__mult__distrib,axiom,
! [A: real,B4: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B4 ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B4 @ N ) ) ) ).
% power_mult_distrib
thf(fact_93_power__mult__distrib,axiom,
! [A: nat,B4: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B4 ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B4 @ N ) ) ) ).
% power_mult_distrib
thf(fact_94_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_95_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_96_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_97_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_98_card__sumset__le,axiom,
! [A2: set_a,A: a] :
( ( finite_finite_a @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ).
% card_sumset_le
thf(fact_99_card__sumset__0__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ g )
=> ( ( ord_less_eq_set_a @ B @ g )
=> ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
= zero_zero_nat )
= ( ( ( finite_card_a @ A2 )
= zero_zero_nat )
| ( ( finite_card_a @ B )
= zero_zero_nat ) ) ) ) ) ).
% card_sumset_0_iff
thf(fact_100_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_101_subset__empty,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
= ( A2 = bot_bot_set_a ) ) ).
% subset_empty
thf(fact_102_empty__subsetI,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).
% empty_subsetI
thf(fact_103_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_104_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_105_infinite__sumset__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) )
= ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
& ( ( inf_inf_set_a @ B @ g )
!= bot_bot_set_a ) )
| ( ( ( inf_inf_set_a @ A2 @ g )
!= bot_bot_set_a )
& ~ ( finite_finite_a @ ( inf_inf_set_a @ B @ g ) ) ) ) ) ).
% infinite_sumset_iff
thf(fact_106_infinite__sumset__aux,axiom,
! [A2: set_a,B: set_a] :
( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
=> ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) )
= ( ( inf_inf_set_a @ B @ g )
!= bot_bot_set_a ) ) ) ).
% infinite_sumset_aux
thf(fact_107_group__axioms,axiom,
group_group_a @ g @ addition @ zero ).
% group_axioms
thf(fact_108_card__sumset__iterated__minusset,axiom,
! [A2: set_a,K: nat] :
( ( finite_card_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ K ) )
= ( finite_card_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).
% card_sumset_iterated_minusset
thf(fact_109_empty__Collect__eq,axiom,
! [P: a > $o] :
( ( bot_bot_set_a
= ( collect_a @ P ) )
= ( ! [X2: a] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_110_Collect__empty__eq,axiom,
! [P: a > $o] :
( ( ( collect_a @ P )
= bot_bot_set_a )
= ( ! [X2: a] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_111_all__not__in__conv,axiom,
! [A2: set_real] :
( ( ! [X2: real] :
~ ( member_real @ X2 @ A2 ) )
= ( A2 = bot_bot_set_real ) ) ).
% all_not_in_conv
thf(fact_112_all__not__in__conv,axiom,
! [A2: set_a] :
( ( ! [X2: a] :
~ ( member_a @ X2 @ A2 ) )
= ( A2 = bot_bot_set_a ) ) ).
% all_not_in_conv
thf(fact_113_empty__iff,axiom,
! [C2: real] :
~ ( member_real @ C2 @ bot_bot_set_real ) ).
% empty_iff
thf(fact_114_empty__iff,axiom,
! [C2: a] :
~ ( member_a @ C2 @ bot_bot_set_a ) ).
% empty_iff
thf(fact_115_subset__antisym,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ A2 )
=> ( A2 = B ) ) ) ).
% subset_antisym
thf(fact_116_subsetI,axiom,
! [A2: set_real,B: set_real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( member_real @ X3 @ B ) )
=> ( ord_less_eq_set_real @ A2 @ B ) ) ).
% subsetI
thf(fact_117_subsetI,axiom,
! [A2: set_a,B: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( member_a @ X3 @ B ) )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ).
% subsetI
thf(fact_118_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_119_nat_Oinject,axiom,
! [X22: nat,Y2: nat] :
( ( ( suc @ X22 )
= ( suc @ Y2 ) )
= ( X22 = Y2 ) ) ).
% nat.inject
thf(fact_120_insert__absorb2,axiom,
! [X: a,A2: set_a] :
( ( insert_a @ X @ ( insert_a @ X @ A2 ) )
= ( insert_a @ X @ A2 ) ) ).
% insert_absorb2
thf(fact_121_insert__iff,axiom,
! [A: a,B4: a,A2: set_a] :
( ( member_a @ A @ ( insert_a @ B4 @ A2 ) )
= ( ( A = B4 )
| ( member_a @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_122_insert__iff,axiom,
! [A: real,B4: real,A2: set_real] :
( ( member_real @ A @ ( insert_real @ B4 @ A2 ) )
= ( ( A = B4 )
| ( member_real @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_123_insertCI,axiom,
! [A: a,B: set_a,B4: a] :
( ( ~ ( member_a @ A @ B )
=> ( A = B4 ) )
=> ( member_a @ A @ ( insert_a @ B4 @ B ) ) ) ).
% insertCI
thf(fact_124_insertCI,axiom,
! [A: real,B: set_real,B4: real] :
( ( ~ ( member_real @ A @ B )
=> ( A = B4 ) )
=> ( member_real @ A @ ( insert_real @ B4 @ B ) ) ) ).
% insertCI
thf(fact_125_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_126_Int__iff,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( inf_inf_set_real @ A2 @ B ) )
= ( ( member_real @ C2 @ A2 )
& ( member_real @ C2 @ B ) ) ) ).
% Int_iff
thf(fact_127_Int__iff,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
= ( ( member_a @ C2 @ A2 )
& ( member_a @ C2 @ B ) ) ) ).
% Int_iff
thf(fact_128_IntI,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ A2 )
=> ( ( member_real @ C2 @ B )
=> ( member_real @ C2 @ ( inf_inf_set_real @ A2 @ B ) ) ) ) ).
% IntI
thf(fact_129_IntI,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ A2 )
=> ( ( member_a @ C2 @ B )
=> ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% IntI
thf(fact_130_sumset__empty_H_I2_J,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
= bot_bot_set_a ) ) ).
% sumset_empty'(2)
thf(fact_131_sumset__empty_H_I1_J,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ g @ addition @ B @ A2 )
= bot_bot_set_a ) ) ).
% sumset_empty'(1)
thf(fact_132_finite__sumset_H,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
=> ( ( finite_finite_a @ ( inf_inf_set_a @ B @ g ) )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% finite_sumset'
thf(fact_133_sumset__subset__insert_I2_J,axiom,
! [A2: set_a,B: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B ) ) ).
% sumset_subset_insert(2)
thf(fact_134_sumset__subset__insert_I1_J,axiom,
! [A2: set_a,B: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B ) ) ) ).
% sumset_subset_insert(1)
thf(fact_135_minusset__distrib__sum,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
= ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B ) ) ) ).
% minusset_distrib_sum
thf(fact_136_minusset__subset__carrier,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ g ) ).
% minusset_subset_carrier
thf(fact_137_finite__minusset,axiom,
! [A2: set_a] :
( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) ) ).
% finite_minusset
thf(fact_138_minusset__iterated__minusset,axiom,
! [A2: set_a,K: nat] :
( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ K )
= ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).
% minusset_iterated_minusset
thf(fact_139_card__sumset__0__iff_H,axiom,
! [A2: set_a,B: set_a] :
( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
= zero_zero_nat )
= ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) )
= zero_zero_nat )
| ( ( finite_card_a @ ( inf_inf_set_a @ B @ g ) )
= zero_zero_nat ) ) ) ).
% card_sumset_0_iff'
thf(fact_140_card__differenceset__commute,axiom,
! [B: set_a,A2: set_a] :
( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) )
= ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B ) ) ) ) ).
% card_differenceset_commute
thf(fact_141_finite__differenceset,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B ) ) ) ) ) ).
% finite_differenceset
thf(fact_142_singletonI,axiom,
! [A: real] : ( member_real @ A @ ( insert_real @ A @ bot_bot_set_real ) ) ).
% singletonI
thf(fact_143_singletonI,axiom,
! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).
% singletonI
thf(fact_144_insert__subset,axiom,
! [X: real,A2: set_real,B: set_real] :
( ( ord_less_eq_set_real @ ( insert_real @ X @ A2 ) @ B )
= ( ( member_real @ X @ B )
& ( ord_less_eq_set_real @ A2 @ B ) ) ) ).
% insert_subset
thf(fact_145_insert__subset,axiom,
! [X: a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( ( member_a @ X @ B )
& ( ord_less_eq_set_a @ A2 @ B ) ) ) ).
% insert_subset
thf(fact_146_card__minusset_H,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ g )
=> ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
= ( finite_card_a @ A2 ) ) ) ).
% card_minusset'
thf(fact_147_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_148_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_149_Int__subset__iff,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) )
= ( ( ord_less_eq_set_a @ C @ A2 )
& ( ord_less_eq_set_a @ C @ B ) ) ) ).
% Int_subset_iff
thf(fact_150_Int__insert__right__if1,axiom,
! [A: real,A2: set_real,B: set_real] :
( ( member_real @ A @ A2 )
=> ( ( inf_inf_set_real @ A2 @ ( insert_real @ A @ B ) )
= ( insert_real @ A @ ( inf_inf_set_real @ A2 @ B ) ) ) ) ).
% Int_insert_right_if1
thf(fact_151_Int__insert__right__if1,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% Int_insert_right_if1
thf(fact_152_Int__insert__right__if0,axiom,
! [A: real,A2: set_real,B: set_real] :
( ~ ( member_real @ A @ A2 )
=> ( ( inf_inf_set_real @ A2 @ ( insert_real @ A @ B ) )
= ( inf_inf_set_real @ A2 @ B ) ) ) ).
% Int_insert_right_if0
thf(fact_153_Int__insert__right__if0,axiom,
! [A: a,A2: set_a,B: set_a] :
( ~ ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ) ).
% Int_insert_right_if0
thf(fact_154_insert__inter__insert,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) ).
% insert_inter_insert
thf(fact_155_Int__insert__left__if1,axiom,
! [A: real,C: set_real,B: set_real] :
( ( member_real @ A @ C )
=> ( ( inf_inf_set_real @ ( insert_real @ A @ B ) @ C )
= ( insert_real @ A @ ( inf_inf_set_real @ B @ C ) ) ) ) ).
% Int_insert_left_if1
thf(fact_156_Int__insert__left__if1,axiom,
! [A: a,C: set_a,B: set_a] :
( ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( insert_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).
% Int_insert_left_if1
thf(fact_157_Int__insert__left__if0,axiom,
! [A: real,C: set_real,B: set_real] :
( ~ ( member_real @ A @ C )
=> ( ( inf_inf_set_real @ ( insert_real @ A @ B ) @ C )
= ( inf_inf_set_real @ B @ C ) ) ) ).
% Int_insert_left_if0
thf(fact_158_Int__insert__left__if0,axiom,
! [A: a,C: set_a,B: set_a] :
( ~ ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( inf_inf_set_a @ B @ C ) ) ) ).
% Int_insert_left_if0
thf(fact_159_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_160_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_161_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_162_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_163_card__sumset__singleton__eq,axiom,
! [A2: set_a,A: a] :
( ( finite_finite_a @ A2 )
=> ( ( ( member_a @ A @ g )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) )
& ( ~ ( member_a @ A @ g )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= zero_zero_nat ) ) ) ) ).
% card_sumset_singleton_eq
thf(fact_164_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_165_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_166_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_167_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_168_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_169_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_170_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_171_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_172_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_173_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_174_singleton__insert__inj__eq_H,axiom,
! [A: a,A2: set_a,B4: a] :
( ( ( insert_a @ A @ A2 )
= ( insert_a @ B4 @ bot_bot_set_a ) )
= ( ( A = B4 )
& ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_175_singleton__insert__inj__eq,axiom,
! [B4: a,A: a,A2: set_a] :
( ( ( insert_a @ B4 @ bot_bot_set_a )
= ( insert_a @ A @ A2 ) )
= ( ( A = B4 )
& ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_176_disjoint__insert_I2_J,axiom,
! [A2: set_real,B4: real,B: set_real] :
( ( bot_bot_set_real
= ( inf_inf_set_real @ A2 @ ( insert_real @ B4 @ B ) ) )
= ( ~ ( member_real @ B4 @ A2 )
& ( bot_bot_set_real
= ( inf_inf_set_real @ A2 @ B ) ) ) ) ).
% disjoint_insert(2)
thf(fact_177_disjoint__insert_I2_J,axiom,
! [A2: set_a,B4: a,B: set_a] :
( ( bot_bot_set_a
= ( inf_inf_set_a @ A2 @ ( insert_a @ B4 @ B ) ) )
= ( ~ ( member_a @ B4 @ A2 )
& ( bot_bot_set_a
= ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% disjoint_insert(2)
thf(fact_178_disjoint__insert_I1_J,axiom,
! [B: set_real,A: real,A2: set_real] :
( ( ( inf_inf_set_real @ B @ ( insert_real @ A @ A2 ) )
= bot_bot_set_real )
= ( ~ ( member_real @ A @ B )
& ( ( inf_inf_set_real @ B @ A2 )
= bot_bot_set_real ) ) ) ).
% disjoint_insert(1)
thf(fact_179_disjoint__insert_I1_J,axiom,
! [B: set_a,A: a,A2: set_a] :
( ( ( inf_inf_set_a @ B @ ( insert_a @ A @ A2 ) )
= bot_bot_set_a )
= ( ~ ( member_a @ A @ B )
& ( ( inf_inf_set_a @ B @ A2 )
= bot_bot_set_a ) ) ) ).
% disjoint_insert(1)
thf(fact_180_insert__disjoint_I2_J,axiom,
! [A: real,A2: set_real,B: set_real] :
( ( bot_bot_set_real
= ( inf_inf_set_real @ ( insert_real @ A @ A2 ) @ B ) )
= ( ~ ( member_real @ A @ B )
& ( bot_bot_set_real
= ( inf_inf_set_real @ A2 @ B ) ) ) ) ).
% insert_disjoint(2)
thf(fact_181_insert__disjoint_I2_J,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( bot_bot_set_a
= ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B ) )
= ( ~ ( member_a @ A @ B )
& ( bot_bot_set_a
= ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% insert_disjoint(2)
thf(fact_182_insert__disjoint_I1_J,axiom,
! [A: real,A2: set_real,B: set_real] :
( ( ( inf_inf_set_real @ ( insert_real @ A @ A2 ) @ B )
= bot_bot_set_real )
= ( ~ ( member_real @ A @ B )
& ( ( inf_inf_set_real @ A2 @ B )
= bot_bot_set_real ) ) ) ).
% insert_disjoint(1)
thf(fact_183_insert__disjoint_I1_J,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B )
= bot_bot_set_a )
= ( ~ ( member_a @ A @ B )
& ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a ) ) ) ).
% insert_disjoint(1)
thf(fact_184_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_185_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_186_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_187_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_188_Ruzsa__triangle__ineq1,axiom,
! [U2: set_a,V3: set_a,W2: set_a] :
( ( finite_finite_a @ U2 )
=> ( ( ord_less_eq_set_a @ U2 @ g )
=> ( ( finite_finite_a @ V3 )
=> ( ( ord_less_eq_set_a @ V3 @ g )
=> ( ( finite_finite_a @ W2 )
=> ( ( ord_less_eq_set_a @ W2 @ g )
=> ( ord_less_eq_nat @ ( times_times_nat @ ( finite_card_a @ U2 ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ V3 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ W2 ) ) ) ) @ ( times_times_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ U2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ V3 ) ) ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ U2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ W2 ) ) ) ) ) ) ) ) ) ) ) ).
% Ruzsa_triangle_ineq1
thf(fact_189_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_190_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_191_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_192_sumset__Int__carrier__eq_I2_J,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( inf_inf_set_a @ A2 @ g ) @ B )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).
% sumset_Int_carrier_eq(2)
thf(fact_193_sumset__Int__carrier__eq_I1_J,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( inf_inf_set_a @ B @ g ) )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).
% sumset_Int_carrier_eq(1)
thf(fact_194_sumset__Int__carrier,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ g )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).
% sumset_Int_carrier
thf(fact_195_sumset__is__empty__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
= bot_bot_set_a )
= ( ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a )
| ( ( inf_inf_set_a @ B @ g )
= bot_bot_set_a ) ) ) ).
% sumset_is_empty_iff
thf(fact_196_differenceset__commute,axiom,
! [B: set_a,A2: set_a] :
( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B ) ) ) ).
% differenceset_commute
thf(fact_197_minus__minusset,axiom,
! [A2: set_a] :
( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
= ( inf_inf_set_a @ A2 @ g ) ) ).
% minus_minusset
thf(fact_198_card__minusset,axiom,
! [A2: set_a] :
( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
= ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) ).
% card_minusset
thf(fact_199_minusset__is__empty__iff,axiom,
! [A2: set_a] :
( ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 )
= bot_bot_set_a )
= ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a ) ) ).
% minusset_is_empty_iff
thf(fact_200_minusset__triv,axiom,
( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( insert_a @ zero @ bot_bot_set_a ) )
= ( insert_a @ zero @ bot_bot_set_a ) ) ).
% minusset_triv
thf(fact_201_sumset__iterated__0,axiom,
! [A2: set_a] :
( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ zero_zero_nat )
= ( insert_a @ zero @ bot_bot_set_a ) ) ).
% sumset_iterated_0
thf(fact_202_sumset__D_I2_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ zero @ bot_bot_set_a ) @ A2 )
= ( inf_inf_set_a @ A2 @ g ) ) ).
% sumset_D(2)
thf(fact_203_sumset__D_I1_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ zero @ bot_bot_set_a ) )
= ( inf_inf_set_a @ A2 @ g ) ) ).
% sumset_D(1)
thf(fact_204_mk__disjoint__insert,axiom,
! [A: a,A2: set_a] :
( ( member_a @ A @ A2 )
=> ? [B6: set_a] :
( ( A2
= ( insert_a @ A @ B6 ) )
& ~ ( member_a @ A @ B6 ) ) ) ).
% mk_disjoint_insert
thf(fact_205_mk__disjoint__insert,axiom,
! [A: real,A2: set_real] :
( ( member_real @ A @ A2 )
=> ? [B6: set_real] :
( ( A2
= ( insert_real @ A @ B6 ) )
& ~ ( member_real @ A @ B6 ) ) ) ).
% mk_disjoint_insert
thf(fact_206_Int__left__commute,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
= ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A2 @ C ) ) ) ).
% Int_left_commute
thf(fact_207_Int__insert__right,axiom,
! [A: real,A2: set_real,B: set_real] :
( ( ( member_real @ A @ A2 )
=> ( ( inf_inf_set_real @ A2 @ ( insert_real @ A @ B ) )
= ( insert_real @ A @ ( inf_inf_set_real @ A2 @ B ) ) ) )
& ( ~ ( member_real @ A @ A2 )
=> ( ( inf_inf_set_real @ A2 @ ( insert_real @ A @ B ) )
= ( inf_inf_set_real @ A2 @ B ) ) ) ) ).
% Int_insert_right
thf(fact_208_Int__insert__right,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) )
& ( ~ ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% Int_insert_right
thf(fact_209_Int__left__absorb,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ).
% Int_left_absorb
thf(fact_210_Int__insert__left,axiom,
! [A: real,C: set_real,B: set_real] :
( ( ( member_real @ A @ C )
=> ( ( inf_inf_set_real @ ( insert_real @ A @ B ) @ C )
= ( insert_real @ A @ ( inf_inf_set_real @ B @ C ) ) ) )
& ( ~ ( member_real @ A @ C )
=> ( ( inf_inf_set_real @ ( insert_real @ A @ B ) @ C )
= ( inf_inf_set_real @ B @ C ) ) ) ) ).
% Int_insert_left
thf(fact_211_Int__insert__left,axiom,
! [A: a,C: set_a,B: set_a] :
( ( ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( insert_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) )
& ( ~ ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( inf_inf_set_a @ B @ C ) ) ) ) ).
% Int_insert_left
thf(fact_212_insert__commute,axiom,
! [X: a,Y: a,A2: set_a] :
( ( insert_a @ X @ ( insert_a @ Y @ A2 ) )
= ( insert_a @ Y @ ( insert_a @ X @ A2 ) ) ) ).
% insert_commute
thf(fact_213_insert__eq__iff,axiom,
! [A: a,A2: set_a,B4: a,B: set_a] :
( ~ ( member_a @ A @ A2 )
=> ( ~ ( member_a @ B4 @ B )
=> ( ( ( insert_a @ A @ A2 )
= ( insert_a @ B4 @ B ) )
= ( ( ( A = B4 )
=> ( A2 = B ) )
& ( ( A != B4 )
=> ? [C3: set_a] :
( ( A2
= ( insert_a @ B4 @ C3 ) )
& ~ ( member_a @ B4 @ C3 )
& ( B
= ( insert_a @ A @ C3 ) )
& ~ ( member_a @ A @ C3 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_214_insert__eq__iff,axiom,
! [A: real,A2: set_real,B4: real,B: set_real] :
( ~ ( member_real @ A @ A2 )
=> ( ~ ( member_real @ B4 @ B )
=> ( ( ( insert_real @ A @ A2 )
= ( insert_real @ B4 @ B ) )
= ( ( ( A = B4 )
=> ( A2 = B ) )
& ( ( A != B4 )
=> ? [C3: set_real] :
( ( A2
= ( insert_real @ B4 @ C3 ) )
& ~ ( member_real @ B4 @ C3 )
& ( B
= ( insert_real @ A @ C3 ) )
& ~ ( member_real @ A @ C3 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_215_insert__absorb,axiom,
! [A: a,A2: set_a] :
( ( member_a @ A @ A2 )
=> ( ( insert_a @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_216_insert__absorb,axiom,
! [A: real,A2: set_real] :
( ( member_real @ A @ A2 )
=> ( ( insert_real @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_217_insert__ident,axiom,
! [X: a,A2: set_a,B: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ~ ( member_a @ X @ B )
=> ( ( ( insert_a @ X @ A2 )
= ( insert_a @ X @ B ) )
= ( A2 = B ) ) ) ) ).
% insert_ident
thf(fact_218_insert__ident,axiom,
! [X: real,A2: set_real,B: set_real] :
( ~ ( member_real @ X @ A2 )
=> ( ~ ( member_real @ X @ B )
=> ( ( ( insert_real @ X @ A2 )
= ( insert_real @ X @ B ) )
= ( A2 = B ) ) ) ) ).
% insert_ident
thf(fact_219_Int__commute,axiom,
( inf_inf_set_a
= ( ^ [A6: set_a,B7: set_a] : ( inf_inf_set_a @ B7 @ A6 ) ) ) ).
% Int_commute
thf(fact_220_Set_Oset__insert,axiom,
! [X: a,A2: set_a] :
( ( member_a @ X @ A2 )
=> ~ ! [B6: set_a] :
( ( A2
= ( insert_a @ X @ B6 ) )
=> ( member_a @ X @ B6 ) ) ) ).
% Set.set_insert
thf(fact_221_Set_Oset__insert,axiom,
! [X: real,A2: set_real] :
( ( member_real @ X @ A2 )
=> ~ ! [B6: set_real] :
( ( A2
= ( insert_real @ X @ B6 ) )
=> ( member_real @ X @ B6 ) ) ) ).
% Set.set_insert
thf(fact_222_Int__absorb,axiom,
! [A2: set_a] :
( ( inf_inf_set_a @ A2 @ A2 )
= A2 ) ).
% Int_absorb
thf(fact_223_Int__assoc,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
= ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) ) ) ).
% Int_assoc
thf(fact_224_insertI2,axiom,
! [A: a,B: set_a,B4: a] :
( ( member_a @ A @ B )
=> ( member_a @ A @ ( insert_a @ B4 @ B ) ) ) ).
% insertI2
thf(fact_225_insertI2,axiom,
! [A: real,B: set_real,B4: real] :
( ( member_real @ A @ B )
=> ( member_real @ A @ ( insert_real @ B4 @ B ) ) ) ).
% insertI2
thf(fact_226_insertI1,axiom,
! [A: a,B: set_a] : ( member_a @ A @ ( insert_a @ A @ B ) ) ).
% insertI1
thf(fact_227_insertI1,axiom,
! [A: real,B: set_real] : ( member_real @ A @ ( insert_real @ A @ B ) ) ).
% insertI1
thf(fact_228_insertE,axiom,
! [A: a,B4: a,A2: set_a] :
( ( member_a @ A @ ( insert_a @ B4 @ A2 ) )
=> ( ( A != B4 )
=> ( member_a @ A @ A2 ) ) ) ).
% insertE
thf(fact_229_insertE,axiom,
! [A: real,B4: real,A2: set_real] :
( ( member_real @ A @ ( insert_real @ B4 @ A2 ) )
=> ( ( A != B4 )
=> ( member_real @ A @ A2 ) ) ) ).
% insertE
thf(fact_230_IntD2,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( inf_inf_set_real @ A2 @ B ) )
=> ( member_real @ C2 @ B ) ) ).
% IntD2
thf(fact_231_IntD2,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
=> ( member_a @ C2 @ B ) ) ).
% IntD2
thf(fact_232_IntD1,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( inf_inf_set_real @ A2 @ B ) )
=> ( member_real @ C2 @ A2 ) ) ).
% IntD1
thf(fact_233_IntD1,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
=> ( member_a @ C2 @ A2 ) ) ).
% IntD1
thf(fact_234_IntE,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( inf_inf_set_real @ A2 @ B ) )
=> ~ ( ( member_real @ C2 @ A2 )
=> ~ ( member_real @ C2 @ B ) ) ) ).
% IntE
thf(fact_235_IntE,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
=> ~ ( ( member_a @ C2 @ A2 )
=> ~ ( member_a @ C2 @ B ) ) ) ).
% IntE
thf(fact_236_additive__abelian__group_Ominusset_Ocong,axiom,
pluenn2534204936789923946sset_a = pluenn2534204936789923946sset_a ).
% additive_abelian_group.minusset.cong
thf(fact_237_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_238_disjoint__iff__not__equal,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ! [Y3: a] :
( ( member_a @ Y3 @ B )
=> ( X2 != Y3 ) ) ) ) ) ).
% disjoint_iff_not_equal
thf(fact_239_Int__empty__right,axiom,
! [A2: set_a] :
( ( inf_inf_set_a @ A2 @ bot_bot_set_a )
= bot_bot_set_a ) ).
% Int_empty_right
thf(fact_240_Int__empty__left,axiom,
! [B: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ B )
= bot_bot_set_a ) ).
% Int_empty_left
thf(fact_241_disjoint__iff,axiom,
! [A2: set_real,B: set_real] :
( ( ( inf_inf_set_real @ A2 @ B )
= bot_bot_set_real )
= ( ! [X2: real] :
( ( member_real @ X2 @ A2 )
=> ~ ( member_real @ X2 @ B ) ) ) ) ).
% disjoint_iff
thf(fact_242_disjoint__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ~ ( member_a @ X2 @ B ) ) ) ) ).
% disjoint_iff
thf(fact_243_Int__emptyI,axiom,
! [A2: set_real,B: set_real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ~ ( member_real @ X3 @ B ) )
=> ( ( inf_inf_set_real @ A2 @ B )
= bot_bot_set_real ) ) ).
% Int_emptyI
thf(fact_244_Int__emptyI,axiom,
! [A2: set_a,B: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ~ ( member_a @ X3 @ B ) )
=> ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a ) ) ).
% Int_emptyI
thf(fact_245_singleton__inject,axiom,
! [A: a,B4: a] :
( ( ( insert_a @ A @ bot_bot_set_a )
= ( insert_a @ B4 @ bot_bot_set_a ) )
=> ( A = B4 ) ) ).
% singleton_inject
thf(fact_246_insert__not__empty,axiom,
! [A: a,A2: set_a] :
( ( insert_a @ A @ A2 )
!= bot_bot_set_a ) ).
% insert_not_empty
thf(fact_247_doubleton__eq__iff,axiom,
! [A: a,B4: a,C2: a,D: a] :
( ( ( insert_a @ A @ ( insert_a @ B4 @ bot_bot_set_a ) )
= ( insert_a @ C2 @ ( insert_a @ D @ bot_bot_set_a ) ) )
= ( ( ( A = C2 )
& ( B4 = D ) )
| ( ( A = D )
& ( B4 = C2 ) ) ) ) ).
% doubleton_eq_iff
thf(fact_248_singleton__iff,axiom,
! [B4: real,A: real] :
( ( member_real @ B4 @ ( insert_real @ A @ bot_bot_set_real ) )
= ( B4 = A ) ) ).
% singleton_iff
thf(fact_249_singleton__iff,axiom,
! [B4: a,A: a] :
( ( member_a @ B4 @ ( insert_a @ A @ bot_bot_set_a ) )
= ( B4 = A ) ) ).
% singleton_iff
thf(fact_250_singletonD,axiom,
! [B4: real,A: real] :
( ( member_real @ B4 @ ( insert_real @ A @ bot_bot_set_real ) )
=> ( B4 = A ) ) ).
% singletonD
thf(fact_251_singletonD,axiom,
! [B4: a,A: a] :
( ( member_a @ B4 @ ( insert_a @ A @ bot_bot_set_a ) )
=> ( B4 = A ) ) ).
% singletonD
thf(fact_252_Int__Collect__mono,axiom,
! [A2: set_real,B: set_real,P: real > $o,Q: real > $o] :
( ( ord_less_eq_set_real @ A2 @ B )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( P @ X3 )
=> ( Q @ X3 ) ) )
=> ( ord_less_eq_set_real @ ( inf_inf_set_real @ A2 @ ( collect_real @ P ) ) @ ( inf_inf_set_real @ B @ ( collect_real @ Q ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_253_Int__Collect__mono,axiom,
! [A2: set_a,B: set_a,P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( ( P @ X3 )
=> ( Q @ X3 ) ) )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B @ ( collect_a @ Q ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_254_Int__greatest,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C @ A2 )
=> ( ( ord_less_eq_set_a @ C @ B )
=> ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% Int_greatest
thf(fact_255_Int__absorb2,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( inf_inf_set_a @ A2 @ B )
= A2 ) ) ).
% Int_absorb2
thf(fact_256_Int__absorb1,axiom,
! [B: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B @ A2 )
=> ( ( inf_inf_set_a @ A2 @ B )
= B ) ) ).
% Int_absorb1
thf(fact_257_Int__lower2,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ B ) ).
% Int_lower2
thf(fact_258_Int__lower1,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ A2 ) ).
% Int_lower1
thf(fact_259_Int__mono,axiom,
! [A2: set_a,C: set_a,B: set_a,D2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ B @ D2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).
% Int_mono
thf(fact_260_subset__insertI2,axiom,
! [A2: set_a,B: set_a,B4: a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ B ) ) ) ).
% subset_insertI2
thf(fact_261_subset__insertI,axiom,
! [B: set_a,A: a] : ( ord_less_eq_set_a @ B @ ( insert_a @ A @ B ) ) ).
% subset_insertI
thf(fact_262_subset__insert,axiom,
! [X: real,A2: set_real,B: set_real] :
( ~ ( member_real @ X @ A2 )
=> ( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X @ B ) )
= ( ord_less_eq_set_real @ A2 @ B ) ) ) ).
% subset_insert
thf(fact_263_subset__insert,axiom,
! [X: a,A2: set_a,B: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( ord_less_eq_set_a @ A2 @ B ) ) ) ).
% subset_insert
thf(fact_264_insert__mono,axiom,
! [C: set_a,D2: set_a,A: a] :
( ( ord_less_eq_set_a @ C @ D2 )
=> ( ord_less_eq_set_a @ ( insert_a @ A @ C ) @ ( insert_a @ A @ D2 ) ) ) ).
% insert_mono
thf(fact_265_additive__abelian__group_Ominus__minusset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
= ( inf_inf_set_a @ A2 @ G ) ) ) ).
% additive_abelian_group.minus_minusset
thf(fact_266_additive__abelian__group_ORuzsa__distance_Ocong,axiom,
pluenn5761198478017115492ance_a = pluenn5761198478017115492ance_a ).
% additive_abelian_group.Ruzsa_distance.cong
thf(fact_267_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_268_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_269_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_270_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_271_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_272_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_273_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M2: nat] :
( N
= ( suc @ M2 ) ) ) ).
% not0_implies_Suc
thf(fact_274_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_275_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_276_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_277_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_278_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
=> ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
=> ( ! [X3: nat,Y4: nat] :
( ( P @ X3 @ Y4 )
=> ( P @ ( suc @ X3 ) @ ( suc @ Y4 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_279_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_280_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_281_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_282_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_283_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_284_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_285_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_286_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_287_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_288_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_289_additive__abelian__group_Ominusset__is__empty__iff,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 )
= bot_bot_set_a )
= ( ( inf_inf_set_a @ A2 @ G )
= bot_bot_set_a ) ) ) ).
% additive_abelian_group.minusset_is_empty_iff
thf(fact_290_additive__abelian__group_Ominusset__triv,axiom,
! [G: set_a,Addition: a > a > a,Zero: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( insert_a @ Zero @ bot_bot_set_a ) )
= ( insert_a @ Zero @ bot_bot_set_a ) ) ) ).
% additive_abelian_group.minusset_triv
thf(fact_291_additive__abelian__group_Ocard__minusset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
= ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) ) ) ) ).
% additive_abelian_group.card_minusset
thf(fact_292_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_293_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_294_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_295_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_296_subset__singleton__iff,axiom,
! [X4: set_a,A: a] :
( ( ord_less_eq_set_a @ X4 @ ( insert_a @ A @ bot_bot_set_a ) )
= ( ( X4 = bot_bot_set_a )
| ( X4
= ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).
% subset_singleton_iff
thf(fact_297_subset__singletonD,axiom,
! [A2: set_a,X: a] :
( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) )
=> ( ( A2 = bot_bot_set_a )
| ( A2
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).
% subset_singletonD
thf(fact_298_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_299_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_300_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_301_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_302_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_303_additive__abelian__group_Osumset__D_I1_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ Zero @ bot_bot_set_a ) )
= ( inf_inf_set_a @ A2 @ G ) ) ) ).
% additive_abelian_group.sumset_D(1)
thf(fact_304_additive__abelian__group_Osumset__D_I2_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ Zero @ bot_bot_set_a ) @ A2 )
= ( inf_inf_set_a @ A2 @ G ) ) ) ).
% additive_abelian_group.sumset_D(2)
thf(fact_305_additive__abelian__group_Ocard__sumset__0__iff_H,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
= zero_zero_nat )
= ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) )
= zero_zero_nat )
| ( ( finite_card_a @ ( inf_inf_set_a @ B @ G ) )
= zero_zero_nat ) ) ) ) ).
% additive_abelian_group.card_sumset_0_iff'
thf(fact_306_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
! [G: set_real,Addition: real > real > real,Zero: real,A2: set_real,A: real] :
( ( pluenn1014277435162747966p_real @ G @ Addition @ Zero )
=> ( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ A @ G )
=> ( ( finite_card_real @ ( pluenn7361685508355272389t_real @ G @ Addition @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= ( finite_card_real @ ( inf_inf_set_real @ A2 @ G ) ) ) )
& ( ~ ( member_real @ A @ G )
=> ( ( finite_card_real @ ( pluenn7361685508355272389t_real @ G @ Addition @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= zero_zero_nat ) ) ) ) ) ).
% additive_abelian_group.card_sumset_singleton_eq
thf(fact_307_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ( ( member_a @ A @ G )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) ) ) )
& ( ~ ( member_a @ A @ G )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= zero_zero_nat ) ) ) ) ) ).
% additive_abelian_group.card_sumset_singleton_eq
thf(fact_308_additive__abelian__group_Osumset__iterated__0,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ zero_zero_nat )
= ( insert_a @ Zero @ bot_bot_set_a ) ) ) ).
% additive_abelian_group.sumset_iterated_0
thf(fact_309_power__mono,axiom,
! [A: real,B4: real,N: nat] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B4 @ N ) ) ) ) ).
% power_mono
thf(fact_310_power__mono,axiom,
! [A: nat,B4: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B4 @ N ) ) ) ) ).
% power_mono
thf(fact_311_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_312_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_313_additive__abelian__group_Osumset__Int__carrier__eq_I2_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( inf_inf_set_a @ A2 @ G ) @ B )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ).
% additive_abelian_group.sumset_Int_carrier_eq(2)
thf(fact_314_additive__abelian__group_Osumset__Int__carrier__eq_I1_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( inf_inf_set_a @ B @ G ) )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ).
% additive_abelian_group.sumset_Int_carrier_eq(1)
thf(fact_315_additive__abelian__group_Osumset__Int__carrier,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ G )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ).
% additive_abelian_group.sumset_Int_carrier
thf(fact_316_additive__abelian__group_Ofinite__minusset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) ) ) ).
% additive_abelian_group.finite_minusset
thf(fact_317_additive__abelian__group_Ominusset__subset__carrier,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ G ) ) ).
% additive_abelian_group.minusset_subset_carrier
thf(fact_318_additive__abelian__group_Odiff__minus__set,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B ) )
= ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ).
% additive_abelian_group.diff_minus_set
thf(fact_319_additive__abelian__group_Ominusset__distrib__sum,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B ) ) ) ) ).
% additive_abelian_group.minusset_distrib_sum
thf(fact_320_additive__abelian__group_Odifferenceset__commute,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,B: set_a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B ) ) ) ) ).
% additive_abelian_group.differenceset_commute
thf(fact_321_additive__abelian__group_Ominusset__iterated__minusset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ K )
= ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) ) ) ) ).
% additive_abelian_group.minusset_iterated_minusset
thf(fact_322_additive__abelian__group_ORuzsa__triangle__ineq1,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,U2: set_a,V3: set_a,W2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ U2 )
=> ( ( ord_less_eq_set_a @ U2 @ G )
=> ( ( finite_finite_a @ V3 )
=> ( ( ord_less_eq_set_a @ V3 @ G )
=> ( ( finite_finite_a @ W2 )
=> ( ( ord_less_eq_set_a @ W2 @ G )
=> ( ord_less_eq_nat @ ( times_times_nat @ ( finite_card_a @ U2 ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ V3 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ W2 ) ) ) ) @ ( times_times_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ U2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ V3 ) ) ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ U2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ W2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% additive_abelian_group.Ruzsa_triangle_ineq1
thf(fact_323_additive__abelian__group_Osumset__is__empty__iff,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
= bot_bot_set_a )
= ( ( ( inf_inf_set_a @ A2 @ G )
= bot_bot_set_a )
| ( ( inf_inf_set_a @ B @ G )
= bot_bot_set_a ) ) ) ) ).
% additive_abelian_group.sumset_is_empty_iff
thf(fact_324_additive__abelian__group_Osumset__empty_H_I1_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ( inf_inf_set_a @ A2 @ G )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ A2 )
= bot_bot_set_a ) ) ) ).
% additive_abelian_group.sumset_empty'(1)
thf(fact_325_additive__abelian__group_Osumset__empty_H_I2_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ( inf_inf_set_a @ A2 @ G )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
= bot_bot_set_a ) ) ) ).
% additive_abelian_group.sumset_empty'(2)
thf(fact_326_additive__abelian__group_Ofinite__sumset_H,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
=> ( ( finite_finite_a @ ( inf_inf_set_a @ B @ G ) )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.finite_sumset'
thf(fact_327_additive__abelian__group_Osumset__subset__insert_I1_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B ) ) ) ) ).
% additive_abelian_group.sumset_subset_insert(1)
thf(fact_328_additive__abelian__group_Osumset__subset__insert_I2_J,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B ) ) ) ).
% additive_abelian_group.sumset_subset_insert(2)
thf(fact_329_ex__in__conv,axiom,
! [A2: set_real] :
( ( ? [X2: real] : ( member_real @ X2 @ A2 ) )
= ( A2 != bot_bot_set_real ) ) ).
% ex_in_conv
thf(fact_330_ex__in__conv,axiom,
! [A2: set_a] :
( ( ? [X2: a] : ( member_a @ X2 @ A2 ) )
= ( A2 != bot_bot_set_a ) ) ).
% ex_in_conv
thf(fact_331_equals0I,axiom,
! [A2: set_real] :
( ! [Y4: real] :
~ ( member_real @ Y4 @ A2 )
=> ( A2 = bot_bot_set_real ) ) ).
% equals0I
thf(fact_332_equals0I,axiom,
! [A2: set_a] :
( ! [Y4: a] :
~ ( member_a @ Y4 @ A2 )
=> ( A2 = bot_bot_set_a ) ) ).
% equals0I
thf(fact_333_equals0D,axiom,
! [A2: set_real,A: real] :
( ( A2 = bot_bot_set_real )
=> ~ ( member_real @ A @ A2 ) ) ).
% equals0D
thf(fact_334_equals0D,axiom,
! [A2: set_a,A: a] :
( ( A2 = bot_bot_set_a )
=> ~ ( member_a @ A @ A2 ) ) ).
% equals0D
thf(fact_335_emptyE,axiom,
! [A: real] :
~ ( member_real @ A @ bot_bot_set_real ) ).
% emptyE
thf(fact_336_emptyE,axiom,
! [A: a] :
~ ( member_a @ A @ bot_bot_set_a ) ).
% emptyE
thf(fact_337_power__inject__base,axiom,
! [A: real,N: nat,B4: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B4 @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( A = B4 ) ) ) ) ).
% power_inject_base
thf(fact_338_power__inject__base,axiom,
! [A: nat,N: nat,B4: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B4 @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( A = B4 ) ) ) ) ).
% power_inject_base
thf(fact_339_power__le__imp__le__base,axiom,
! [A: real,N: nat,B4: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B4 @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ord_less_eq_real @ A @ B4 ) ) ) ).
% power_le_imp_le_base
thf(fact_340_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B4: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B4 @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ord_less_eq_nat @ A @ B4 ) ) ) ).
% power_le_imp_le_base
thf(fact_341_Collect__mono__iff,axiom,
! [P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
= ( ! [X2: a] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_342_set__eq__subset,axiom,
( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
= ( ^ [A6: set_a,B7: set_a] :
( ( ord_less_eq_set_a @ A6 @ B7 )
& ( ord_less_eq_set_a @ B7 @ A6 ) ) ) ) ).
% set_eq_subset
thf(fact_343_subset__trans,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% subset_trans
thf(fact_344_Collect__mono,axiom,
! [P: a > $o,Q: a > $o] :
( ! [X3: a] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).
% Collect_mono
thf(fact_345_subset__refl,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).
% subset_refl
thf(fact_346_subset__iff,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B7: set_real] :
! [T: real] :
( ( member_real @ T @ A6 )
=> ( member_real @ T @ B7 ) ) ) ) ).
% subset_iff
thf(fact_347_subset__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B7: set_a] :
! [T: a] :
( ( member_a @ T @ A6 )
=> ( member_a @ T @ B7 ) ) ) ) ).
% subset_iff
thf(fact_348_equalityD2,axiom,
! [A2: set_a,B: set_a] :
( ( A2 = B )
=> ( ord_less_eq_set_a @ B @ A2 ) ) ).
% equalityD2
thf(fact_349_equalityD1,axiom,
! [A2: set_a,B: set_a] :
( ( A2 = B )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ).
% equalityD1
thf(fact_350_subset__eq,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B7: set_real] :
! [X2: real] :
( ( member_real @ X2 @ A6 )
=> ( member_real @ X2 @ B7 ) ) ) ) ).
% subset_eq
thf(fact_351_subset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B7: set_a] :
! [X2: a] :
( ( member_a @ X2 @ A6 )
=> ( member_a @ X2 @ B7 ) ) ) ) ).
% subset_eq
thf(fact_352_equalityE,axiom,
! [A2: set_a,B: set_a] :
( ( A2 = B )
=> ~ ( ( ord_less_eq_set_a @ A2 @ B )
=> ~ ( ord_less_eq_set_a @ B @ A2 ) ) ) ).
% equalityE
thf(fact_353_subsetD,axiom,
! [A2: set_real,B: set_real,C2: real] :
( ( ord_less_eq_set_real @ A2 @ B )
=> ( ( member_real @ C2 @ A2 )
=> ( member_real @ C2 @ B ) ) ) ).
% subsetD
thf(fact_354_subsetD,axiom,
! [A2: set_a,B: set_a,C2: a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% subsetD
thf(fact_355_in__mono,axiom,
! [A2: set_real,B: set_real,X: real] :
( ( ord_less_eq_set_real @ A2 @ B )
=> ( ( member_real @ X @ A2 )
=> ( member_real @ X @ B ) ) ) ).
% in_mono
thf(fact_356_in__mono,axiom,
! [A2: set_a,B: set_a,X: a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( member_a @ X @ A2 )
=> ( member_a @ X @ B ) ) ) ).
% in_mono
thf(fact_357_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_358_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_359_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B4: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B4 ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y6: nat] :
( ( P @ Y6 )
=> ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_360_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_361_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_362_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_363_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_364_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_365_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).
% nat_one_le_power
thf(fact_366_additive__abelian__group_Ocard__minusset_H,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ord_less_eq_set_a @ A2 @ G )
=> ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
= ( finite_card_a @ A2 ) ) ) ) ).
% additive_abelian_group.card_minusset'
thf(fact_367_additive__abelian__group_Ofinite__differenceset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B ) ) ) ) ) ) ).
% additive_abelian_group.finite_differenceset
thf(fact_368_additive__abelian__group_Ocard__differenceset__commute,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,B: set_a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) )
= ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B ) ) ) ) ) ).
% additive_abelian_group.card_differenceset_commute
thf(fact_369_additive__abelian__group_Ocard__sumset__iterated__minusset,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_card_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ K ) )
= ( finite_card_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) ) ) ) ).
% additive_abelian_group.card_sumset_iterated_minusset
thf(fact_370_additive__abelian__group_Oinfinite__sumset__iff,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) )
= ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
& ( ( inf_inf_set_a @ B @ G )
!= bot_bot_set_a ) )
| ( ( ( inf_inf_set_a @ A2 @ G )
!= bot_bot_set_a )
& ~ ( finite_finite_a @ ( inf_inf_set_a @ B @ G ) ) ) ) ) ) ).
% additive_abelian_group.infinite_sumset_iff
thf(fact_371_additive__abelian__group_Oinfinite__sumset__aux,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
=> ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) )
= ( ( inf_inf_set_a @ B @ G )
!= bot_bot_set_a ) ) ) ) ).
% additive_abelian_group.infinite_sumset_aux
thf(fact_372_additive__abelian__group_Ocard__sumset__0__iff,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ord_less_eq_set_a @ A2 @ G )
=> ( ( ord_less_eq_set_a @ B @ G )
=> ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
= zero_zero_nat )
= ( ( ( finite_card_a @ A2 )
= zero_zero_nat )
| ( ( finite_card_a @ B )
= zero_zero_nat ) ) ) ) ) ) ).
% additive_abelian_group.card_sumset_0_iff
thf(fact_373_additive__abelian__group_Ocard__sumset__le,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).
% additive_abelian_group.card_sumset_le
thf(fact_374_mult__of__nat__commute,axiom,
! [X: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_375_mult__of__nat__commute,axiom,
! [X: nat,Y: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
= ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_376_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R3: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X3: nat] : ( R3 @ X3 @ X3 )
=> ( ! [X3: nat,Y4: nat,Z2: nat] :
( ( R3 @ X3 @ Y4 )
=> ( ( R3 @ Y4 @ Z2 )
=> ( R3 @ X3 @ Z2 ) ) )
=> ( ! [N2: nat] : ( R3 @ N2 @ ( suc @ N2 ) )
=> ( R3 @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_377_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_378_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M3: nat] :
( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
=> ( P @ M3 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_379_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_380_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_381_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_382_Suc__le__D,axiom,
! [N: nat,M4: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
=> ? [M2: nat] :
( M4
= ( suc @ M2 ) ) ) ).
% Suc_le_D
thf(fact_383_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_384_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_385_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_386_lift__Suc__mono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_387_lift__Suc__mono__le,axiom,
! [F: nat > set_a,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_set_a @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_set_a @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_388_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_389_lift__Suc__antimono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_390_lift__Suc__antimono__le,axiom,
! [F: nat > set_a,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_set_a @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_set_a @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_391_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_392_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_393_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_394_additive__abelian__group_ORuzsa__triangle__ineq2,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,U2: set_a,V3: set_a,W2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( finite_finite_a @ U2 )
=> ( ( ord_less_eq_set_a @ U2 @ G )
=> ( ( U2 != bot_bot_set_a )
=> ( ( finite_finite_a @ V3 )
=> ( ( ord_less_eq_set_a @ V3 @ G )
=> ( ( finite_finite_a @ W2 )
=> ( ( ord_less_eq_set_a @ W2 @ G )
=> ( ord_less_eq_real @ ( pluenn5761198478017115492ance_a @ G @ Addition @ Zero @ V3 @ W2 ) @ ( times_times_real @ ( pluenn5761198478017115492ance_a @ G @ Addition @ Zero @ V3 @ U2 ) @ ( pluenn5761198478017115492ance_a @ G @ Addition @ Zero @ U2 @ W2 ) ) ) ) ) ) ) ) ) ) ) ).
% additive_abelian_group.Ruzsa_triangle_ineq2
thf(fact_395_card__insert__disjoint,axiom,
! [A2: set_real,X: real] :
( ( finite_finite_real @ A2 )
=> ( ~ ( member_real @ X @ A2 )
=> ( ( finite_card_real @ ( insert_real @ X @ A2 ) )
= ( suc @ ( finite_card_real @ A2 ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_396_card__insert__disjoint,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ~ ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
= ( suc @ ( finite_card_a @ A2 ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_397_card__0__eq,axiom,
! [A2: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( ( finite_card_a @ A2 )
= zero_zero_nat )
= ( A2 = bot_bot_set_a ) ) ) ).
% card_0_eq
thf(fact_398_card_Oinfinite,axiom,
! [A2: set_a] :
( ~ ( finite_finite_a @ A2 )
=> ( ( finite_card_a @ A2 )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_399_card_Oempty,axiom,
( ( finite_card_a @ bot_bot_set_a )
= zero_zero_nat ) ).
% card.empty
thf(fact_400_sumset__iterated__empty,axiom,
! [R: nat] :
( ( ord_less_nat @ zero_zero_nat @ R )
=> ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ bot_bot_set_a @ R )
= bot_bot_set_a ) ) ).
% sumset_iterated_empty
thf(fact_401_sumsetdiff__sing,axiom,
! [A2: set_a,B: set_a,X: a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ X @ bot_bot_set_a ) )
= ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).
% sumsetdiff_sing
thf(fact_402_card__le__Suc__iff,axiom,
! [N: nat,A2: set_real] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite_card_real @ A2 ) )
= ( ? [A4: real,B7: set_real] :
( ( A2
= ( insert_real @ A4 @ B7 ) )
& ~ ( member_real @ A4 @ B7 )
& ( ord_less_eq_nat @ N @ ( finite_card_real @ B7 ) )
& ( finite_finite_real @ B7 ) ) ) ) ).
% card_le_Suc_iff
thf(fact_403_card__le__Suc__iff,axiom,
! [N: nat,A2: set_a] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite_card_a @ A2 ) )
= ( ? [A4: a,B7: set_a] :
( ( A2
= ( insert_a @ A4 @ B7 ) )
& ~ ( member_a @ A4 @ B7 )
& ( ord_less_eq_nat @ N @ ( finite_card_a @ B7 ) )
& ( finite_finite_a @ B7 ) ) ) ) ).
% card_le_Suc_iff
thf(fact_404_finite__Int,axiom,
! [F2: set_a,G: set_a] :
( ( ( finite_finite_a @ F2 )
| ( finite_finite_a @ G ) )
=> ( finite_finite_a @ ( inf_inf_set_a @ F2 @ G ) ) ) ).
% finite_Int
thf(fact_405_card__le__Suc0__iff__eq,axiom,
! [A2: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( suc @ zero_zero_nat ) )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ! [Y3: a] :
( ( member_a @ Y3 @ A2 )
=> ( X2 = Y3 ) ) ) ) ) ) ).
% card_le_Suc0_iff_eq
thf(fact_406_card__1__singleton__iff,axiom,
! [A2: set_a] :
( ( ( finite_card_a @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X2: a] :
( A2
= ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).
% card_1_singleton_iff
thf(fact_407_Diff__idemp,axiom,
! [A2: set_a,B: set_a] :
( ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ B )
= ( minus_minus_set_a @ A2 @ B ) ) ).
% Diff_idemp
thf(fact_408_Diff__iff,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( minus_minus_set_real @ A2 @ B ) )
= ( ( member_real @ C2 @ A2 )
& ~ ( member_real @ C2 @ B ) ) ) ).
% Diff_iff
thf(fact_409_Diff__iff,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
= ( ( member_a @ C2 @ A2 )
& ~ ( member_a @ C2 @ B ) ) ) ).
% Diff_iff
thf(fact_410_DiffI,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ A2 )
=> ( ~ ( member_real @ C2 @ B )
=> ( member_real @ C2 @ ( minus_minus_set_real @ A2 @ B ) ) ) ) ).
% DiffI
thf(fact_411_DiffI,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ A2 )
=> ( ~ ( member_a @ C2 @ B )
=> ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).
% DiffI
thf(fact_412_finite__insert,axiom,
! [A: a,A2: set_a] :
( ( finite_finite_a @ ( insert_a @ A @ A2 ) )
= ( finite_finite_a @ A2 ) ) ).
% finite_insert
thf(fact_413_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_414_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_415_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_416_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_417_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_418_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_419_Diff__empty,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
= A2 ) ).
% Diff_empty
thf(fact_420_empty__Diff,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
= bot_bot_set_a ) ).
% empty_Diff
thf(fact_421_Diff__cancel,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ A2 @ A2 )
= bot_bot_set_a ) ).
% Diff_cancel
thf(fact_422_finite__Diff,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ).
% finite_Diff
thf(fact_423_finite__Diff2,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) )
= ( finite_finite_a @ A2 ) ) ) ).
% finite_Diff2
thf(fact_424_Diff__insert0,axiom,
! [X: real,A2: set_real,B: set_real] :
( ~ ( member_real @ X @ A2 )
=> ( ( minus_minus_set_real @ A2 @ ( insert_real @ X @ B ) )
= ( minus_minus_set_real @ A2 @ B ) ) ) ).
% Diff_insert0
thf(fact_425_Diff__insert0,axiom,
! [X: a,A2: set_a,B: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( minus_minus_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( minus_minus_set_a @ A2 @ B ) ) ) ).
% Diff_insert0
thf(fact_426_insert__Diff1,axiom,
! [X: real,B: set_real,A2: set_real] :
( ( member_real @ X @ B )
=> ( ( minus_minus_set_real @ ( insert_real @ X @ A2 ) @ B )
= ( minus_minus_set_real @ A2 @ B ) ) ) ).
% insert_Diff1
thf(fact_427_insert__Diff1,axiom,
! [X: a,B: set_a,A2: set_a] :
( ( member_a @ X @ B )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( minus_minus_set_a @ A2 @ B ) ) ) ).
% insert_Diff1
thf(fact_428_A_H_I3_J,axiom,
ord_less_real @ zero_zero_real @ k2 ).
% A'(3)
thf(fact_429_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_430_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_431_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_432_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_433_Diff__eq__empty__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ( minus_minus_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ A2 @ B ) ) ).
% Diff_eq_empty_iff
thf(fact_434_insert__Diff__single,axiom,
! [A: a,A2: set_a] :
( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= ( insert_a @ A @ A2 ) ) ).
% insert_Diff_single
thf(fact_435_finite__Diff__insert,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) ) )
= ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ).
% finite_Diff_insert
thf(fact_436_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_437_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_438_Diff__disjoint,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
= bot_bot_set_a ) ).
% Diff_disjoint
thf(fact_439_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_440_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_441_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_442_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_443_power__mono__iff,axiom,
! [A: real,B4: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B4 @ N ) )
= ( ord_less_eq_real @ A @ B4 ) ) ) ) ) ).
% power_mono_iff
thf(fact_444_power__mono__iff,axiom,
! [A: nat,B4: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B4 @ N ) )
= ( ord_less_eq_nat @ A @ B4 ) ) ) ) ) ).
% power_mono_iff
thf(fact_445_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_446_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_447_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B4: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B4 ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B4 @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_448_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B4: nat,W: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B4 ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B4 @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_449_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B4: nat,W: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B4 ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B4 @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_450_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B4: nat,W: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B4 ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B4 @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_451_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_452_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_453_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_454_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_455_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_456_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_457_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_458_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_459_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_460_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_461_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_462_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
& ~ ( P @ M3 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_463_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
=> ( P @ M3 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_464_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_465_less__not__refl3,axiom,
! [S: nat,T2: nat] :
( ( ord_less_nat @ S @ T2 )
=> ( S != T2 ) ) ).
% less_not_refl3
thf(fact_466_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_467_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_468_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_469_DiffD2,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( minus_minus_set_real @ A2 @ B ) )
=> ~ ( member_real @ C2 @ B ) ) ).
% DiffD2
thf(fact_470_DiffD2,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
=> ~ ( member_a @ C2 @ B ) ) ).
% DiffD2
thf(fact_471_DiffD1,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( minus_minus_set_real @ A2 @ B ) )
=> ( member_real @ C2 @ A2 ) ) ).
% DiffD1
thf(fact_472_DiffD1,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
=> ( member_a @ C2 @ A2 ) ) ).
% DiffD1
thf(fact_473_DiffE,axiom,
! [C2: real,A2: set_real,B: set_real] :
( ( member_real @ C2 @ ( minus_minus_set_real @ A2 @ B ) )
=> ~ ( ( member_real @ C2 @ A2 )
=> ( member_real @ C2 @ B ) ) ) ).
% DiffE
thf(fact_474_DiffE,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
=> ~ ( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% DiffE
thf(fact_475_Diff__infinite__finite,axiom,
! [T3: set_a,S2: set_a] :
( ( finite_finite_a @ T3 )
=> ( ~ ( finite_finite_a @ S2 )
=> ~ ( finite_finite_a @ ( minus_minus_set_a @ S2 @ T3 ) ) ) ) ).
% Diff_infinite_finite
thf(fact_476_card__less__sym__Diff,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
=> ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).
% card_less_sym_Diff
thf(fact_477_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_478_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_479_Diff__mono,axiom,
! [A2: set_a,C: set_a,D2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ D2 @ B )
=> ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ C @ D2 ) ) ) ) ).
% Diff_mono
thf(fact_480_Diff__subset,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ A2 ) ).
% Diff_subset
thf(fact_481_double__diff,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ( minus_minus_set_a @ B @ ( minus_minus_set_a @ C @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_482_insert__Diff__if,axiom,
! [X: real,B: set_real,A2: set_real] :
( ( ( member_real @ X @ B )
=> ( ( minus_minus_set_real @ ( insert_real @ X @ A2 ) @ B )
= ( minus_minus_set_real @ A2 @ B ) ) )
& ( ~ ( member_real @ X @ B )
=> ( ( minus_minus_set_real @ ( insert_real @ X @ A2 ) @ B )
= ( insert_real @ X @ ( minus_minus_set_real @ A2 @ B ) ) ) ) ) ).
% insert_Diff_if
thf(fact_483_insert__Diff__if,axiom,
! [X: a,B: set_a,A2: set_a] :
( ( ( member_a @ X @ B )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( minus_minus_set_a @ A2 @ B ) ) )
& ( ~ ( member_a @ X @ B )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( insert_a @ X @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ) ).
% insert_Diff_if
thf(fact_484_Int__Diff,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
= ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) ) ) ).
% Int_Diff
thf(fact_485_Diff__Int2,axiom,
! [A2: set_a,C: set_a,B: set_a] :
( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) )
= ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ B ) ) ).
% Diff_Int2
thf(fact_486_Diff__Diff__Int,axiom,
! [A2: set_a,B: set_a] :
( ( minus_minus_set_a @ A2 @ ( minus_minus_set_a @ A2 @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ).
% Diff_Diff_Int
thf(fact_487_Diff__Int__distrib,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( inf_inf_set_a @ C @ ( minus_minus_set_a @ A2 @ B ) )
= ( minus_minus_set_a @ ( inf_inf_set_a @ C @ A2 ) @ ( inf_inf_set_a @ C @ B ) ) ) ).
% Diff_Int_distrib
thf(fact_488_Diff__Int__distrib2,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
= ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) ) ) ).
% Diff_Int_distrib2
thf(fact_489_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_490_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_491_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_492_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_493_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_494_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_495_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
& ~ ( P @ M3 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_496_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_497_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_498_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_499_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_500_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_501_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_502_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ N )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ I2 ) ) ) ) ).
% Ex_less_Suc
thf(fact_503_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_504_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_505_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ I2 ) ) ) ) ).
% All_less_Suc
thf(fact_506_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M5: nat] :
( ( M
= ( suc @ M5 ) )
& ( ord_less_nat @ N @ M5 ) ) ) ) ).
% Suc_less_eq2
thf(fact_507_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_508_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_509_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_510_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J2: nat,K2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ K2 )
=> ( ( P @ I3 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I3 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_511_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( P @ ( suc @ I3 ) )
=> ( P @ I3 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_512_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_513_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M6: nat,N4: nat] :
( ( ord_less_eq_nat @ M6 @ N4 )
& ( M6 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_514_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_515_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N4: nat] :
( ( ord_less_nat @ M6 @ N4 )
| ( M6 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_516_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_517_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_518_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_519_card__Diff1__less,axiom,
! [A2: set_real,X: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X @ A2 )
=> ( ord_less_nat @ ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) ) @ ( finite_card_real @ A2 ) ) ) ) ).
% card_Diff1_less
thf(fact_520_card__Diff1__less,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ X @ A2 )
=> ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).
% card_Diff1_less
thf(fact_521_card__Diff2__less,axiom,
! [A2: set_real,X: real,Y: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X @ A2 )
=> ( ( member_real @ Y @ A2 )
=> ( ord_less_nat @ ( finite_card_real @ ( minus_minus_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) @ ( insert_real @ Y @ bot_bot_set_real ) ) ) @ ( finite_card_real @ A2 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_522_card__Diff2__less,axiom,
! [A2: set_a,X: a,Y: a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ X @ A2 )
=> ( ( member_a @ Y @ A2 )
=> ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( insert_a @ Y @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_523_card__Diff1__less__iff,axiom,
! [A2: set_real,X: real] :
( ( ord_less_nat @ ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) ) @ ( finite_card_real @ A2 ) )
= ( ( finite_finite_real @ A2 )
& ( member_real @ X @ A2 ) ) ) ).
% card_Diff1_less_iff
thf(fact_524_card__Diff1__less__iff,axiom,
! [A2: set_a,X: a] :
( ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) )
= ( ( finite_finite_a @ A2 )
& ( member_a @ X @ A2 ) ) ) ).
% card_Diff1_less_iff
thf(fact_525_power__strict__mono,axiom,
! [A: real,B4: real,N: nat] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B4 @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_526_power__strict__mono,axiom,
! [A: nat,B4: nat,N: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B4 @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_527_infinite__remove,axiom,
! [S2: set_a,A: a] :
( ~ ( finite_finite_a @ S2 )
=> ~ ( finite_finite_a @ ( minus_minus_set_a @ S2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).
% infinite_remove
thf(fact_528_infinite__coinduct,axiom,
! [X4: set_a > $o,A2: set_a] :
( ( X4 @ A2 )
=> ( ! [A7: set_a] :
( ( X4 @ A7 )
=> ? [X5: a] :
( ( member_a @ X5 @ A7 )
& ( ( X4 @ ( minus_minus_set_a @ A7 @ ( insert_a @ X5 @ bot_bot_set_a ) ) )
| ~ ( finite_finite_a @ ( minus_minus_set_a @ A7 @ ( insert_a @ X5 @ bot_bot_set_a ) ) ) ) ) )
=> ~ ( finite_finite_a @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_529_finite__empty__induct,axiom,
! [A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( P @ A2 )
=> ( ! [A3: real,A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ( member_real @ A3 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ A3 @ bot_bot_set_real ) ) ) ) ) )
=> ( P @ bot_bot_set_real ) ) ) ) ).
% finite_empty_induct
thf(fact_530_finite__empty__induct,axiom,
! [A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ A2 )
=> ( ( P @ A2 )
=> ( ! [A3: a,A7: set_a] :
( ( finite_finite_a @ A7 )
=> ( ( member_a @ A3 @ A7 )
=> ( ( P @ A7 )
=> ( P @ ( minus_minus_set_a @ A7 @ ( insert_a @ A3 @ bot_bot_set_a ) ) ) ) ) )
=> ( P @ bot_bot_set_a ) ) ) ) ).
% finite_empty_induct
thf(fact_531_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_532_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_533_card__le__sym__Diff,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).
% card_le_sym_Diff
thf(fact_534_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_535_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_536_Diff__insert__absorb,axiom,
! [X: real,A2: set_real] :
( ~ ( member_real @ X @ A2 )
=> ( ( minus_minus_set_real @ ( insert_real @ X @ A2 ) @ ( insert_real @ X @ bot_bot_set_real ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_537_Diff__insert__absorb,axiom,
! [X: a,A2: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_538_Diff__insert2,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) @ B ) ) ).
% Diff_insert2
thf(fact_539_insert__Diff,axiom,
! [A: real,A2: set_real] :
( ( member_real @ A @ A2 )
=> ( ( insert_real @ A @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_540_insert__Diff,axiom,
! [A: a,A2: set_a] :
( ( member_a @ A @ A2 )
=> ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_541_Diff__insert,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ).
% Diff_insert
thf(fact_542_subset__Diff__insert,axiom,
! [A2: set_real,B: set_real,X: real,C: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( minus_minus_set_real @ B @ ( insert_real @ X @ C ) ) )
= ( ( ord_less_eq_set_real @ A2 @ ( minus_minus_set_real @ B @ C ) )
& ~ ( member_real @ X @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_543_subset__Diff__insert,axiom,
! [A2: set_a,B: set_a,X: a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B @ ( insert_a @ X @ C ) ) )
= ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) )
& ~ ( member_a @ X @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_544_Int__Diff__disjoint,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
= bot_bot_set_a ) ).
% Int_Diff_disjoint
thf(fact_545_Diff__triv,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a )
=> ( ( minus_minus_set_a @ A2 @ B )
= A2 ) ) ).
% Diff_triv
thf(fact_546_card__ge__0__finite,axiom,
! [A2: set_a] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
=> ( finite_finite_a @ A2 ) ) ).
% card_ge_0_finite
thf(fact_547_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_548_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M2: nat] :
( N
= ( suc @ M2 ) ) ) ).
% gr0_implies_Suc
thf(fact_549_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ ( suc @ I2 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_550_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M6: nat] :
( N
= ( suc @ M6 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_551_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ ( suc @ I2 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_552_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_553_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_554_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_555_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_556_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_557_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_558_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_559_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_560_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_561_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_562_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_563_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_564_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_565_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_566_remove__induct,axiom,
! [P: set_real > $o,B: set_real] :
( ( P @ bot_bot_set_real )
=> ( ( ~ ( finite_finite_real @ B )
=> ( P @ B ) )
=> ( ! [A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ( A7 != bot_bot_set_real )
=> ( ( ord_less_eq_set_real @ A7 @ B )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A7 )
=> ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ X5 @ bot_bot_set_real ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% remove_induct
thf(fact_567_remove__induct,axiom,
! [P: set_a > $o,B: set_a] :
( ( P @ bot_bot_set_a )
=> ( ( ~ ( finite_finite_a @ B )
=> ( P @ B ) )
=> ( ! [A7: set_a] :
( ( finite_finite_a @ A7 )
=> ( ( A7 != bot_bot_set_a )
=> ( ( ord_less_eq_set_a @ A7 @ B )
=> ( ! [X5: a] :
( ( member_a @ X5 @ A7 )
=> ( P @ ( minus_minus_set_a @ A7 @ ( insert_a @ X5 @ bot_bot_set_a ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% remove_induct
thf(fact_568_finite__remove__induct,axiom,
! [B: set_real,P: set_real > $o] :
( ( finite_finite_real @ B )
=> ( ( P @ bot_bot_set_real )
=> ( ! [A7: set_real] :
( ( finite_finite_real @ A7 )
=> ( ( A7 != bot_bot_set_real )
=> ( ( ord_less_eq_set_real @ A7 @ B )
=> ( ! [X5: real] :
( ( member_real @ X5 @ A7 )
=> ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ X5 @ bot_bot_set_real ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% finite_remove_induct
thf(fact_569_finite__remove__induct,axiom,
! [B: set_a,P: set_a > $o] :
( ( finite_finite_a @ B )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A7: set_a] :
( ( finite_finite_a @ A7 )
=> ( ( A7 != bot_bot_set_a )
=> ( ( ord_less_eq_set_a @ A7 @ B )
=> ( ! [X5: a] :
( ( member_a @ X5 @ A7 )
=> ( P @ ( minus_minus_set_a @ A7 @ ( insert_a @ X5 @ bot_bot_set_a ) ) ) )
=> ( P @ A7 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% finite_remove_induct
thf(fact_570_card__Diff1__le,axiom,
! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ).
% card_Diff1_le
thf(fact_571_card__gt__0__iff,axiom,
! [A2: set_a] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
= ( ( A2 != bot_bot_set_a )
& ( finite_finite_a @ A2 ) ) ) ).
% card_gt_0_iff
thf(fact_572_power__less__imp__less__base,axiom,
! [A: real,N: nat,B4: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B4 @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ord_less_real @ A @ B4 ) ) ) ).
% power_less_imp_less_base
thf(fact_573_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B4: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B4 @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ord_less_nat @ A @ B4 ) ) ) ).
% power_less_imp_less_base
thf(fact_574_subset__insert__iff,axiom,
! [A2: set_real,X: real,B: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X @ B ) )
= ( ( ( member_real @ X @ A2 )
=> ( ord_less_eq_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) @ B ) )
& ( ~ ( member_real @ X @ A2 )
=> ( ord_less_eq_set_real @ A2 @ B ) ) ) ) ).
% subset_insert_iff
thf(fact_575_subset__insert__iff,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( ( ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ) ) ).
% subset_insert_iff
thf(fact_576_Diff__single__insert,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B )
=> ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) ) ) ).
% Diff_single_insert
thf(fact_577_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_578_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_579_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_eq_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_580_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_581_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_582_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_583_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_584_card_Oremove,axiom,
! [A2: set_real,X: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X @ A2 )
=> ( ( finite_card_real @ A2 )
= ( suc @ ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) ) ) ) ) ) ).
% card.remove
thf(fact_585_card_Oremove,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ X @ A2 )
=> ( ( finite_card_a @ A2 )
= ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ) ) ).
% card.remove
thf(fact_586_card_Oinsert__remove,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
= ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ) ).
% card.insert_remove
thf(fact_587_card__Suc__Diff1,axiom,
! [A2: set_real,X: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ X @ A2 )
=> ( ( suc @ ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) ) )
= ( finite_card_real @ A2 ) ) ) ) ).
% card_Suc_Diff1
thf(fact_588_card__Suc__Diff1,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ X @ A2 )
=> ( ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) )
= ( finite_card_a @ A2 ) ) ) ) ).
% card_Suc_Diff1
thf(fact_589_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B4: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B4 @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B4 ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_590_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B4: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B4 @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B4 ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_591_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B4 @ N ) )
= ( A = B4 ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_592_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B4: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B4 @ N ) )
= ( A = B4 ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_593_additive__abelian__group_Osumsetdiff__sing,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ X @ bot_bot_set_a ) )
= ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).
% additive_abelian_group.sumsetdiff_sing
thf(fact_594_additive__abelian__group_Osumset__iterated__empty,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,R: nat] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ord_less_nat @ zero_zero_nat @ R )
=> ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ bot_bot_set_a @ R )
= bot_bot_set_a ) ) ) ).
% additive_abelian_group.sumset_iterated_empty
thf(fact_595_finite__has__minimal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X3: real] :
( ( member_real @ X3 @ A2 )
& ( ord_less_eq_real @ X3 @ A )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_596_finite__has__minimal2,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ( ord_less_eq_set_a @ X3 @ A )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_597_finite__has__minimal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_eq_nat @ X3 @ A )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_598_finite__has__maximal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X3: real] :
( ( member_real @ X3 @ A2 )
& ( ord_less_eq_real @ A @ X3 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_599_finite__has__maximal2,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ( ord_less_eq_set_a @ A @ X3 )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_600_finite__has__maximal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_eq_nat @ A @ X3 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_601_finite_OemptyI,axiom,
finite_finite_a @ bot_bot_set_a ).
% finite.emptyI
thf(fact_602_infinite__imp__nonempty,axiom,
! [S2: set_a] :
( ~ ( finite_finite_a @ S2 )
=> ( S2 != bot_bot_set_a ) ) ).
% infinite_imp_nonempty
thf(fact_603_finite__subset,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ A2 ) ) ) ).
% finite_subset
thf(fact_604_infinite__super,axiom,
! [S2: set_a,T3: set_a] :
( ( ord_less_eq_set_a @ S2 @ T3 )
=> ( ~ ( finite_finite_a @ S2 )
=> ~ ( finite_finite_a @ T3 ) ) ) ).
% infinite_super
thf(fact_605_rev__finite__subset,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( finite_finite_a @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_606_finite_OinsertI,axiom,
! [A2: set_a,A: a] :
( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( insert_a @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_607_finite__has__maximal,axiom,
! [A2: set_real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ? [X3: real] :
( ( member_real @ X3 @ A2 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_608_finite__has__maximal,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_609_finite__has__maximal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_610_finite__has__minimal,axiom,
! [A2: set_real] :
( ( finite_finite_real @ A2 )
=> ( ( A2 != bot_bot_set_real )
=> ? [X3: real] :
( ( member_real @ X3 @ A2 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_611_finite__has__minimal,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_612_finite__has__minimal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_613_finite_Ocases,axiom,
! [A: set_a] :
( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ~ ! [A7: set_a] :
( ? [A3: a] :
( A
= ( insert_a @ A3 @ A7 ) )
=> ~ ( finite_finite_a @ A7 ) ) ) ) ).
% finite.cases
thf(fact_614_finite_Osimps,axiom,
( finite_finite_a
= ( ^ [A4: set_a] :
( ( A4 = bot_bot_set_a )
| ? [A6: set_a,B3: a] :
( ( A4
= ( insert_a @ B3 @ A6 ) )
& ( finite_finite_a @ A6 ) ) ) ) ) ).
% finite.simps
thf(fact_615_finite__induct,axiom,
! [F2: set_real,P: set_real > $o] :
( ( finite_finite_real @ F2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [X3: real,F3: set_real] :
( ( finite_finite_real @ F3 )
=> ( ~ ( member_real @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_real @ X3 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_616_finite__induct,axiom,
! [F2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ~ ( member_a @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_617_finite__ne__induct,axiom,
! [F2: set_real,P: set_real > $o] :
( ( finite_finite_real @ F2 )
=> ( ( F2 != bot_bot_set_real )
=> ( ! [X3: real] : ( P @ ( insert_real @ X3 @ bot_bot_set_real ) )
=> ( ! [X3: real,F3: set_real] :
( ( finite_finite_real @ F3 )
=> ( ( F3 != bot_bot_set_real )
=> ( ~ ( member_real @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_real @ X3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_618_finite__ne__induct,axiom,
! [F2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( F2 != bot_bot_set_a )
=> ( ! [X3: a] : ( P @ ( insert_a @ X3 @ bot_bot_set_a ) )
=> ( ! [X3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( F3 != bot_bot_set_a )
=> ( ~ ( member_a @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_619_infinite__finite__induct,axiom,
! [P: set_real > $o,A2: set_real] :
( ! [A7: set_real] :
( ~ ( finite_finite_real @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_real )
=> ( ! [X3: real,F3: set_real] :
( ( finite_finite_real @ F3 )
=> ( ~ ( member_real @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_real @ X3 @ F3 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_620_infinite__finite__induct,axiom,
! [P: set_a > $o,A2: set_a] :
( ! [A7: set_a] :
( ~ ( finite_finite_a @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ~ ( member_a @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_621_card__subset__eq,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ( finite_card_a @ A2 )
= ( finite_card_a @ B ) )
=> ( A2 = B ) ) ) ) ).
% card_subset_eq
thf(fact_622_infinite__arbitrarily__large,axiom,
! [A2: set_a,N: nat] :
( ~ ( finite_finite_a @ A2 )
=> ? [B6: set_a] :
( ( finite_finite_a @ B6 )
& ( ( finite_card_a @ B6 )
= N )
& ( ord_less_eq_set_a @ B6 @ A2 ) ) ) ).
% infinite_arbitrarily_large
thf(fact_623_card__insert__le,axiom,
! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( insert_a @ X @ A2 ) ) ) ).
% card_insert_le
thf(fact_624_finite__subset__induct,axiom,
! [F2: set_real,A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ F2 )
=> ( ( ord_less_eq_set_real @ F2 @ A2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [A3: real,F3: set_real] :
( ( finite_finite_real @ F3 )
=> ( ( member_real @ A3 @ A2 )
=> ( ~ ( member_real @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_real @ A3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_625_finite__subset__induct,axiom,
! [F2: set_a,A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( ord_less_eq_set_a @ F2 @ A2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( member_a @ A3 @ A2 )
=> ( ~ ( member_a @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_626_finite__subset__induct_H,axiom,
! [F2: set_real,A2: set_real,P: set_real > $o] :
( ( finite_finite_real @ F2 )
=> ( ( ord_less_eq_set_real @ F2 @ A2 )
=> ( ( P @ bot_bot_set_real )
=> ( ! [A3: real,F3: set_real] :
( ( finite_finite_real @ F3 )
=> ( ( member_real @ A3 @ A2 )
=> ( ( ord_less_eq_set_real @ F3 @ A2 )
=> ( ~ ( member_real @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_real @ A3 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_627_finite__subset__induct_H,axiom,
! [F2: set_a,A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( ord_less_eq_set_a @ F2 @ A2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( member_a @ A3 @ A2 )
=> ( ( ord_less_eq_set_a @ F3 @ A2 )
=> ( ~ ( member_a @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_628_card__eq__0__iff,axiom,
! [A2: set_a] :
( ( ( finite_card_a @ A2 )
= zero_zero_nat )
= ( ( A2 = bot_bot_set_a )
| ~ ( finite_finite_a @ A2 ) ) ) ).
% card_eq_0_iff
thf(fact_629_card__insert__if,axiom,
! [A2: set_real,X: real] :
( ( finite_finite_real @ A2 )
=> ( ( ( member_real @ X @ A2 )
=> ( ( finite_card_real @ ( insert_real @ X @ A2 ) )
= ( finite_card_real @ A2 ) ) )
& ( ~ ( member_real @ X @ A2 )
=> ( ( finite_card_real @ ( insert_real @ X @ A2 ) )
= ( suc @ ( finite_card_real @ A2 ) ) ) ) ) ) ).
% card_insert_if
thf(fact_630_card__insert__if,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ( ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
= ( finite_card_a @ A2 ) ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
= ( suc @ ( finite_card_a @ A2 ) ) ) ) ) ) ).
% card_insert_if
thf(fact_631_card__Suc__eq__finite,axiom,
! [A2: set_real,K: nat] :
( ( ( finite_card_real @ A2 )
= ( suc @ K ) )
= ( ? [B3: real,B7: set_real] :
( ( A2
= ( insert_real @ B3 @ B7 ) )
& ~ ( member_real @ B3 @ B7 )
& ( ( finite_card_real @ B7 )
= K )
& ( finite_finite_real @ B7 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_632_card__Suc__eq__finite,axiom,
! [A2: set_a,K: nat] :
( ( ( finite_card_a @ A2 )
= ( suc @ K ) )
= ( ? [B3: a,B7: set_a] :
( ( A2
= ( insert_a @ B3 @ B7 ) )
& ~ ( member_a @ B3 @ B7 )
& ( ( finite_card_a @ B7 )
= K )
& ( finite_finite_a @ B7 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_633_card__mono,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ).
% card_mono
thf(fact_634_card__seteq,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ A2 ) )
=> ( A2 = B ) ) ) ) ).
% card_seteq
thf(fact_635_exists__subset__between,axiom,
! [A2: set_a,N: nat,C: set_a] :
( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( finite_card_a @ C ) )
=> ( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( finite_finite_a @ C )
=> ? [B6: set_a] :
( ( ord_less_eq_set_a @ A2 @ B6 )
& ( ord_less_eq_set_a @ B6 @ C )
& ( ( finite_card_a @ B6 )
= N ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_636_obtain__subset__with__card__n,axiom,
! [N: nat,S2: set_a] :
( ( ord_less_eq_nat @ N @ ( finite_card_a @ S2 ) )
=> ~ ! [T4: set_a] :
( ( ord_less_eq_set_a @ T4 @ S2 )
=> ( ( ( finite_card_a @ T4 )
= N )
=> ~ ( finite_finite_a @ T4 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_637_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_a,C: nat] :
( ! [G2: set_a] :
( ( ord_less_eq_set_a @ G2 @ F2 )
=> ( ( finite_finite_a @ G2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ G2 ) @ C ) ) )
=> ( ( finite_finite_a @ F2 )
& ( ord_less_eq_nat @ ( finite_card_a @ F2 ) @ C ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_638_card__Suc__eq,axiom,
! [A2: set_real,K: nat] :
( ( ( finite_card_real @ A2 )
= ( suc @ K ) )
= ( ? [B3: real,B7: set_real] :
( ( A2
= ( insert_real @ B3 @ B7 ) )
& ~ ( member_real @ B3 @ B7 )
& ( ( finite_card_real @ B7 )
= K )
& ( ( K = zero_zero_nat )
=> ( B7 = bot_bot_set_real ) ) ) ) ) ).
% card_Suc_eq
thf(fact_639_card__Suc__eq,axiom,
! [A2: set_a,K: nat] :
( ( ( finite_card_a @ A2 )
= ( suc @ K ) )
= ( ? [B3: a,B7: set_a] :
( ( A2
= ( insert_a @ B3 @ B7 ) )
& ~ ( member_a @ B3 @ B7 )
& ( ( finite_card_a @ B7 )
= K )
& ( ( K = zero_zero_nat )
=> ( B7 = bot_bot_set_a ) ) ) ) ) ).
% card_Suc_eq
thf(fact_640_card__eq__SucD,axiom,
! [A2: set_real,K: nat] :
( ( ( finite_card_real @ A2 )
= ( suc @ K ) )
=> ? [B2: real,B6: set_real] :
( ( A2
= ( insert_real @ B2 @ B6 ) )
& ~ ( member_real @ B2 @ B6 )
& ( ( finite_card_real @ B6 )
= K )
& ( ( K = zero_zero_nat )
=> ( B6 = bot_bot_set_real ) ) ) ) ).
% card_eq_SucD
thf(fact_641_card__eq__SucD,axiom,
! [A2: set_a,K: nat] :
( ( ( finite_card_a @ A2 )
= ( suc @ K ) )
=> ? [B2: a,B6: set_a] :
( ( A2
= ( insert_a @ B2 @ B6 ) )
& ~ ( member_a @ B2 @ B6 )
& ( ( finite_card_a @ B6 )
= K )
& ( ( K = zero_zero_nat )
=> ( B6 = bot_bot_set_a ) ) ) ) ).
% card_eq_SucD
thf(fact_642__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062A_H_AK_H_O_A_092_060lbrakk_062A_H_A_092_060subseteq_062_AA_059_AA_H_A_092_060noteq_062_A_123_125_059_A0_A_060_AK_H_059_AK_H_A_092_060le_062_AK_059_A_092_060And_062C_O_A_092_060lbrakk_062C_A_092_060subseteq_062_AG_059_Afinite_AC_092_060rbrakk_062_A_092_060Longrightarrow_062_Areal_A_Icard_A_Isumset_AA_H_A_Isumset_AB_AC_J_J_J_A_092_060le_062_AK_H_A_K_Areal_A_Icard_A_Isumset_AA_H_AC_J_J_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
~ ! [A8: set_a] :
( ( ord_less_eq_set_a @ A8 @ a2 )
=> ( ( A8 != bot_bot_set_a )
=> ! [K3: real] :
( ( ord_less_real @ zero_zero_real @ K3 )
=> ( ( ord_less_eq_real @ K3 @ k )
=> ~ ! [C4: set_a] :
( ( ord_less_eq_set_a @ C4 @ g )
=> ( ( finite_finite_a @ C4 )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A8 @ ( pluenn3038260743871226533mset_a @ g @ addition @ b @ C4 ) ) ) ) @ ( times_times_real @ K3 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A8 @ C4 ) ) ) ) ) ) ) ) ) ) ) ).
% \<open>\<And>thesis. (\<And>A' K'. \<lbrakk>A' \<subseteq> A; A' \<noteq> {}; 0 < K'; K' \<le> K; \<And>C. \<lbrakk>C \<subseteq> G; finite C\<rbrakk> \<Longrightarrow> real (card (sumset A' (sumset B C))) \<le> K' * real (card (sumset A' C))\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_643_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_644_Plu__2__2,axiom,
! [A0: set_a,B: set_a,K0: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A0 @ B ) ) ) @ ( times_times_real @ K0 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ A0 ) ) ) )
=> ( ( finite_finite_a @ A0 )
=> ( ( ord_less_eq_set_a @ A0 @ g )
=> ( ( A0 != bot_bot_set_a )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ g )
=> ( ( B != bot_bot_set_a )
=> ~ ! [A7: set_a] :
( ( ord_less_eq_set_a @ A7 @ A0 )
=> ( ( A7 != bot_bot_set_a )
=> ! [K4: real] :
( ( ord_less_real @ zero_zero_real @ K4 )
=> ( ( ord_less_eq_real @ K4 @ K0 )
=> ~ ! [C4: set_a] :
( ( ord_less_eq_set_a @ C4 @ g )
=> ( ( finite_finite_a @ C4 )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A7 @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ C4 ) ) ) ) @ ( times_times_real @ K4 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A7 @ C4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Plu_2_2
thf(fact_645_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_646_diff__gt__0__iff__gt,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B4 ) )
= ( ord_less_real @ B4 @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_647_diff__ge__0__iff__ge,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B4 ) )
= ( ord_less_eq_real @ B4 @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_648_psubsetI,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( A2 != B )
=> ( ord_less_set_a @ A2 @ B ) ) ) ).
% psubsetI
thf(fact_649_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_650_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_651_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_652_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_653_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_654_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_655_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_656_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_657_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_658_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_659_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_660_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_661_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_662_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_663_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_664_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_665_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_666_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_667_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_668_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_669_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_670_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_671_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_672_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_673_not__psubset__empty,axiom,
! [A2: set_a] :
~ ( ord_less_set_a @ A2 @ bot_bot_set_a ) ).
% not_psubset_empty
thf(fact_674_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_675_le__diff__iff_H,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B4 ) )
= ( ord_less_eq_nat @ B4 @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_676_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_677_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_678_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_679_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_680_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_681_finite__psubset__induct,axiom,
! [A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ A2 )
=> ( ! [A7: set_a] :
( ( finite_finite_a @ A7 )
=> ( ! [B8: set_a] :
( ( ord_less_set_a @ B8 @ A7 )
=> ( P @ B8 ) )
=> ( P @ A7 ) ) )
=> ( P @ A2 ) ) ) ).
% finite_psubset_induct
thf(fact_682_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B7: set_a] :
( ( ord_less_set_a @ A6 @ B7 )
| ( A6 = B7 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_683_subset__psubset__trans,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_set_a @ B @ C )
=> ( ord_less_set_a @ A2 @ C ) ) ) ).
% subset_psubset_trans
thf(fact_684_subset__not__subset__eq,axiom,
( ord_less_set_a
= ( ^ [A6: set_a,B7: set_a] :
( ( ord_less_eq_set_a @ A6 @ B7 )
& ~ ( ord_less_eq_set_a @ B7 @ A6 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_685_psubset__subset__trans,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_set_a @ A2 @ C ) ) ) ).
% psubset_subset_trans
thf(fact_686_psubset__imp__subset,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ).
% psubset_imp_subset
thf(fact_687_psubset__eq,axiom,
( ord_less_set_a
= ( ^ [A6: set_a,B7: set_a] :
( ( ord_less_eq_set_a @ A6 @ B7 )
& ( A6 != B7 ) ) ) ) ).
% psubset_eq
thf(fact_688_psubsetE,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ~ ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ B @ A2 ) ) ) ).
% psubsetE
thf(fact_689_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_690_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_691_psubset__imp__ex__mem,axiom,
! [A2: set_real,B: set_real] :
( ( ord_less_set_real @ A2 @ B )
=> ? [B2: real] : ( member_real @ B2 @ ( minus_minus_set_real @ B @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_692_psubset__imp__ex__mem,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ? [B2: a] : ( member_a @ B2 @ ( minus_minus_set_a @ B @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_693_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_694_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_695_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_696_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_697_diff__less__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ C2 @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B4 @ C2 ) ) ) ) ).
% diff_less_mono
thf(fact_698_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_699_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_700_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_701_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_702_psubset__card__mono,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_set_a @ A2 @ B )
=> ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_703_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B4: real,C2: real] :
( ( times_times_real @ ( times_times_real @ A @ B4 ) @ C2 )
= ( times_times_real @ A @ ( times_times_real @ B4 @ C2 ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_704_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B4 ) @ C2 )
= ( times_times_nat @ A @ ( times_times_nat @ B4 @ C2 ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_705_mult_Oassoc,axiom,
! [A: real,B4: real,C2: real] :
( ( times_times_real @ ( times_times_real @ A @ B4 ) @ C2 )
= ( times_times_real @ A @ ( times_times_real @ B4 @ C2 ) ) ) ).
% mult.assoc
thf(fact_706_mult_Oassoc,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B4 ) @ C2 )
= ( times_times_nat @ A @ ( times_times_nat @ B4 @ C2 ) ) ) ).
% mult.assoc
thf(fact_707_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A4: real,B3: real] : ( times_times_real @ B3 @ A4 ) ) ) ).
% mult.commute
thf(fact_708_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A4: nat,B3: nat] : ( times_times_nat @ B3 @ A4 ) ) ) ).
% mult.commute
thf(fact_709_mult_Oleft__commute,axiom,
! [B4: real,A: real,C2: real] :
( ( times_times_real @ B4 @ ( times_times_real @ A @ C2 ) )
= ( times_times_real @ A @ ( times_times_real @ B4 @ C2 ) ) ) ).
% mult.left_commute
thf(fact_710_mult_Oleft__commute,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( times_times_nat @ B4 @ ( times_times_nat @ A @ C2 ) )
= ( times_times_nat @ A @ ( times_times_nat @ B4 @ C2 ) ) ) ).
% mult.left_commute
thf(fact_711_diff__right__commute,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C2 ) @ B4 )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B4 ) @ C2 ) ) ).
% diff_right_commute
thf(fact_712_card__Diff__subset,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).
% card_Diff_subset
thf(fact_713_diff__card__le__card__Diff,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).
% diff_card_le_card_Diff
thf(fact_714_finite__induct__select,axiom,
! [S2: set_a,P: set_a > $o] :
( ( finite_finite_a @ S2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [T4: set_a] :
( ( ord_less_set_a @ T4 @ S2 )
=> ( ( P @ T4 )
=> ? [X5: a] :
( ( member_a @ X5 @ ( minus_minus_set_a @ S2 @ T4 ) )
& ( P @ ( insert_a @ X5 @ T4 ) ) ) ) )
=> ( P @ S2 ) ) ) ) ).
% finite_induct_select
thf(fact_715_card__psubset,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
=> ( ord_less_set_a @ A2 @ B ) ) ) ) ).
% card_psubset
thf(fact_716_psubset__insert__iff,axiom,
! [A2: set_real,X: real,B: set_real] :
( ( ord_less_set_real @ A2 @ ( insert_real @ X @ B ) )
= ( ( ( member_real @ X @ B )
=> ( ord_less_set_real @ A2 @ B ) )
& ( ~ ( member_real @ X @ B )
=> ( ( ( member_real @ X @ A2 )
=> ( ord_less_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) @ B ) )
& ( ~ ( member_real @ X @ A2 )
=> ( ord_less_eq_set_real @ A2 @ B ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_717_psubset__insert__iff,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( ord_less_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( ( ( member_a @ X @ B )
=> ( ord_less_set_a @ A2 @ B ) )
& ( ~ ( member_a @ X @ B )
=> ( ( ( member_a @ X @ A2 )
=> ( ord_less_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_718_card__Diff__subset__Int,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ B ) )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ) ).
% card_Diff_subset_Int
thf(fact_719_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_720_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_721_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_722_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_723_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_724_diff__mono,axiom,
! [A: real,B4: real,D: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ D @ C2 )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B4 @ D ) ) ) ) ).
% diff_mono
thf(fact_725_diff__left__mono,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_eq_real @ B4 @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C2 @ A ) @ ( minus_minus_real @ C2 @ B4 ) ) ) ).
% diff_left_mono
thf(fact_726_diff__right__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B4 @ C2 ) ) ) ).
% diff_right_mono
thf(fact_727_diff__eq__diff__less__eq,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ( minus_minus_real @ A @ B4 )
= ( minus_minus_real @ C2 @ D ) )
=> ( ( ord_less_eq_real @ A @ B4 )
= ( ord_less_eq_real @ C2 @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_728_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: real,Z: real] : ( Y5 = Z ) )
= ( ^ [A4: real,B3: real] :
( ( minus_minus_real @ A4 @ B3 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_729_diff__strict__right__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ord_less_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B4 @ C2 ) ) ) ).
% diff_strict_right_mono
thf(fact_730_diff__strict__left__mono,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_real @ B4 @ A )
=> ( ord_less_real @ ( minus_minus_real @ C2 @ A ) @ ( minus_minus_real @ C2 @ B4 ) ) ) ).
% diff_strict_left_mono
thf(fact_731_diff__eq__diff__less,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ( minus_minus_real @ A @ B4 )
= ( minus_minus_real @ C2 @ D ) )
=> ( ( ord_less_real @ A @ B4 )
= ( ord_less_real @ C2 @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_732_diff__strict__mono,axiom,
! [A: real,B4: real,D: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ D @ C2 )
=> ( ord_less_real @ ( minus_minus_real @ A @ C2 ) @ ( minus_minus_real @ B4 @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_733_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_734_additive__abelian__group_OPlu__2__2,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,A0: set_a,B: set_a,K0: real] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A0 @ B ) ) ) @ ( times_times_real @ K0 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ A0 ) ) ) )
=> ( ( finite_finite_a @ A0 )
=> ( ( ord_less_eq_set_a @ A0 @ G )
=> ( ( A0 != bot_bot_set_a )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ G )
=> ( ( B != bot_bot_set_a )
=> ~ ! [A7: set_a] :
( ( ord_less_eq_set_a @ A7 @ A0 )
=> ( ( A7 != bot_bot_set_a )
=> ! [K4: real] :
( ( ord_less_real @ zero_zero_real @ K4 )
=> ( ( ord_less_eq_real @ K4 @ K0 )
=> ~ ! [C4: set_a] :
( ( ord_less_eq_set_a @ C4 @ G )
=> ( ( finite_finite_a @ C4 )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A7 @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ C4 ) ) ) ) @ ( times_times_real @ K4 @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A7 @ C4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% additive_abelian_group.Plu_2_2
thf(fact_735_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A4: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A4 @ B3 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_736_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A4: real,B3: real] : ( ord_less_real @ ( minus_minus_real @ A4 @ B3 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_737_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_738_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_739_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_740_sumset__iterated__r,axiom,
! [R: nat,A2: set_a] :
( ( ord_less_nat @ zero_zero_nat @ R )
=> ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ R )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ ( minus_minus_nat @ R @ one_one_nat ) ) ) ) ) ).
% sumset_iterated_r
thf(fact_741_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_742_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ! [M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ X ) @ C2 ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_743_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
& ( ( power_power_real @ X3 @ N )
= A )
& ! [Y6: real] :
( ( ( ord_less_real @ zero_zero_real @ Y6 )
& ( ( power_power_real @ Y6 @ N )
= A ) )
=> ( Y6 = X3 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_744_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_745_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_746_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_747_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_748_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_749_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_750_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_751_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_752_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_753_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_754_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_755_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_756_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_757_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_758_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_759_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_760_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_761_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_762_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_763_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_764_power__strict__increasing__iff,axiom,
! [B4: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B4 )
=> ( ( ord_less_nat @ ( power_power_nat @ B4 @ X ) @ ( power_power_nat @ B4 @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_765_power__strict__increasing__iff,axiom,
! [B4: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B4 )
=> ( ( ord_less_real @ ( power_power_real @ B4 @ X ) @ ( power_power_real @ B4 @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_766_power__strict__decreasing__iff,axiom,
! [B4: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_nat @ B4 @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B4 @ M ) @ ( power_power_nat @ B4 @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_767_power__strict__decreasing__iff,axiom,
! [B4: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B4 )
=> ( ( ord_less_real @ B4 @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B4 @ M ) @ ( power_power_real @ B4 @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_768_power__increasing__iff,axiom,
! [B4: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B4 )
=> ( ( ord_less_eq_real @ ( power_power_real @ B4 @ X ) @ ( power_power_real @ B4 @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_769_power__increasing__iff,axiom,
! [B4: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B4 )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B4 @ X ) @ ( power_power_nat @ B4 @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_770_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_771_card__Diff__insert,axiom,
! [A: real,A2: set_real,B: set_real] :
( ( member_real @ A @ A2 )
=> ( ~ ( member_real @ A @ B )
=> ( ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B ) ) )
= ( minus_minus_nat @ ( finite_card_real @ ( minus_minus_set_real @ A2 @ B ) ) @ one_one_nat ) ) ) ) ).
% card_Diff_insert
thf(fact_772_card__Diff__insert,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ A2 )
=> ( ~ ( member_a @ A @ B )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) ) )
= ( minus_minus_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ one_one_nat ) ) ) ) ).
% card_Diff_insert
thf(fact_773_power__decreasing__iff,axiom,
! [B4: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B4 )
=> ( ( ord_less_real @ B4 @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B4 @ M ) @ ( power_power_real @ B4 @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_774_power__decreasing__iff,axiom,
! [B4: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_nat @ B4 @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B4 @ M ) @ ( power_power_nat @ B4 @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_775_psubsetD,axiom,
! [A2: set_a,B: set_a,C2: a] :
( ( ord_less_set_a @ A2 @ B )
=> ( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% psubsetD
thf(fact_776_psubsetD,axiom,
! [A2: set_real,B: set_real,C2: real] :
( ( ord_less_set_real @ A2 @ B )
=> ( ( member_real @ C2 @ A2 )
=> ( member_real @ C2 @ B ) ) ) ).
% psubsetD
thf(fact_777_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_778_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_779_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_780_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_781_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_782_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_783_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_784_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_785_power__eq__if,axiom,
( power_power_real
= ( ^ [P2: real,M6: nat] : ( if_real @ ( M6 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P2 @ ( power_power_real @ P2 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_786_power__eq__if,axiom,
( power_power_nat
= ( ^ [P2: nat,M6: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P2 @ ( power_power_nat @ P2 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_787_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_788_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_789_left__right__inverse__power,axiom,
! [X: real,Y: real,N: nat] :
( ( ( times_times_real @ X @ Y )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_790_left__right__inverse__power,axiom,
! [X: nat,Y: nat,N: nat] :
( ( ( times_times_nat @ X @ Y )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_791_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_792_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_793_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_794_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_795_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_796_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_797_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_798_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_799_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_800_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_801_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_802_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_803_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_804_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_805_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_806_power__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_807_power__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_808_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_809_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_810_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_811_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_812_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_813_complete__real,axiom,
! [S2: set_real] :
( ? [X5: real] : ( member_real @ X5 @ S2 )
=> ( ? [Z3: real] :
! [X3: real] :
( ( member_real @ X3 @ S2 )
=> ( ord_less_eq_real @ X3 @ Z3 ) )
=> ? [Y4: real] :
( ! [X5: real] :
( ( member_real @ X5 @ S2 )
=> ( ord_less_eq_real @ X5 @ Y4 ) )
& ! [Z3: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S2 )
=> ( ord_less_eq_real @ X3 @ Z3 ) )
=> ( ord_less_eq_real @ Y4 @ Z3 ) ) ) ) ) ).
% complete_real
thf(fact_814_card__1__singletonE,axiom,
! [A2: set_a] :
( ( ( finite_card_a @ A2 )
= one_one_nat )
=> ~ ! [X3: a] :
( A2
!= ( insert_a @ X3 @ bot_bot_set_a ) ) ) ).
% card_1_singletonE
thf(fact_815_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_816_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_817_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_818_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_819_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_820_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_821_power__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_822_power__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_823_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_824_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_825_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_826_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_827_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_828_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_829_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_830_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_831_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_832_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_833_power__minus__mult,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_834_power__minus__mult,axiom,
! [N: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_835_card__Diff__singleton__if,axiom,
! [X: real,A2: set_real] :
( ( ( member_real @ X @ A2 )
=> ( ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) )
= ( minus_minus_nat @ ( finite_card_real @ A2 ) @ one_one_nat ) ) )
& ( ~ ( member_real @ X @ A2 )
=> ( ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) )
= ( finite_card_real @ A2 ) ) ) ) ).
% card_Diff_singleton_if
thf(fact_836_card__Diff__singleton__if,axiom,
! [X: a,A2: set_a] :
( ( ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
= ( finite_card_a @ A2 ) ) ) ) ).
% card_Diff_singleton_if
thf(fact_837_card__Diff__singleton,axiom,
! [X: real,A2: set_real] :
( ( member_real @ X @ A2 )
=> ( ( finite_card_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X @ bot_bot_set_real ) ) )
= ( minus_minus_nat @ ( finite_card_real @ A2 ) @ one_one_nat ) ) ) ).
% card_Diff_singleton
thf(fact_838_card__Diff__singleton,axiom,
! [X: a,A2: set_a] :
( ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) ) ).
% card_Diff_singleton
thf(fact_839_card__insert__le__m1,axiom,
! [N: nat,Y: set_a,X: a] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ Y ) @ ( minus_minus_nat @ N @ one_one_nat ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( insert_a @ X @ Y ) ) @ N ) ) ) ).
% card_insert_le_m1
thf(fact_840_field__lbound__gt__zero,axiom,
! [D1: real,D22: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D22 )
=> ? [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
& ( ord_less_real @ E @ D1 )
& ( ord_less_real @ E @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_841_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y3: real] :
( ( ord_less_real @ X2 @ Y3 )
| ( X2 = Y3 ) ) ) ) ).
% less_eq_real_def
thf(fact_842_additive__abelian__group_Osumset__iterated__r,axiom,
! [G: set_a,Addition: a > a > a,Zero: a,R: nat,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
=> ( ( ord_less_nat @ zero_zero_nat @ R )
=> ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ R )
= ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ ( minus_minus_nat @ R @ one_one_nat ) ) ) ) ) ) ).
% additive_abelian_group.sumset_iterated_r
thf(fact_843_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_844_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y6: real] :
? [N2: nat] : ( ord_less_real @ Y6 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_845_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_846_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_847_mult__cancel__left1,axiom,
! [C2: real,B4: real] :
( ( C2
= ( times_times_real @ C2 @ B4 ) )
= ( ( C2 = zero_zero_real )
| ( B4 = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_848_mult__cancel__left2,axiom,
! [C2: real,A: real] :
( ( ( times_times_real @ C2 @ A )
= C2 )
= ( ( C2 = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_849_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_850_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_851_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_852_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_853_mult__eq__0__iff,axiom,
! [A: real,B4: real] :
( ( ( times_times_real @ A @ B4 )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B4 = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_854_mult__eq__0__iff,axiom,
! [A: nat,B4: nat] :
( ( ( times_times_nat @ A @ B4 )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B4 = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_855_mult__cancel__left,axiom,
! [C2: real,A: real,B4: real] :
( ( ( times_times_real @ C2 @ A )
= ( times_times_real @ C2 @ B4 ) )
= ( ( C2 = zero_zero_real )
| ( A = B4 ) ) ) ).
% mult_cancel_left
thf(fact_856_mult__cancel__left,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( ( times_times_nat @ C2 @ A )
= ( times_times_nat @ C2 @ B4 ) )
= ( ( C2 = zero_zero_nat )
| ( A = B4 ) ) ) ).
% mult_cancel_left
thf(fact_857_mult__cancel__right,axiom,
! [A: real,C2: real,B4: real] :
( ( ( times_times_real @ A @ C2 )
= ( times_times_real @ B4 @ C2 ) )
= ( ( C2 = zero_zero_real )
| ( A = B4 ) ) ) ).
% mult_cancel_right
thf(fact_858_mult__cancel__right,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ( times_times_nat @ A @ C2 )
= ( times_times_nat @ B4 @ C2 ) )
= ( ( C2 = zero_zero_nat )
| ( A = B4 ) ) ) ).
% mult_cancel_right
thf(fact_859_mult__cancel__right2,axiom,
! [A: real,C2: real] :
( ( ( times_times_real @ A @ C2 )
= C2 )
= ( ( C2 = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_860_mult__cancel__right1,axiom,
! [C2: real,B4: real] :
( ( C2
= ( times_times_real @ B4 @ C2 ) )
= ( ( C2 = zero_zero_real )
| ( B4 = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_861_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_862_linorder__neqE__linordered__idom,axiom,
! [X: real,Y: real] :
( ( X != Y )
=> ( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_863_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_864_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_865_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_866_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_867_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_868_mult__not__zero,axiom,
! [A: real,B4: real] :
( ( ( times_times_real @ A @ B4 )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B4 != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_869_mult__not__zero,axiom,
! [A: nat,B4: nat] :
( ( ( times_times_nat @ A @ B4 )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B4 != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_870_divisors__zero,axiom,
! [A: real,B4: real] :
( ( ( times_times_real @ A @ B4 )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B4 = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_871_divisors__zero,axiom,
! [A: nat,B4: nat] :
( ( ( times_times_nat @ A @ B4 )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B4 = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_872_no__zero__divisors,axiom,
! [A: real,B4: real] :
( ( A != zero_zero_real )
=> ( ( B4 != zero_zero_real )
=> ( ( times_times_real @ A @ B4 )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_873_no__zero__divisors,axiom,
! [A: nat,B4: nat] :
( ( A != zero_zero_nat )
=> ( ( B4 != zero_zero_nat )
=> ( ( times_times_nat @ A @ B4 )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_874_mult__left__cancel,axiom,
! [C2: real,A: real,B4: real] :
( ( C2 != zero_zero_real )
=> ( ( ( times_times_real @ C2 @ A )
= ( times_times_real @ C2 @ B4 ) )
= ( A = B4 ) ) ) ).
% mult_left_cancel
thf(fact_875_mult__left__cancel,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( C2 != zero_zero_nat )
=> ( ( ( times_times_nat @ C2 @ A )
= ( times_times_nat @ C2 @ B4 ) )
= ( A = B4 ) ) ) ).
% mult_left_cancel
thf(fact_876_mult__right__cancel,axiom,
! [C2: real,A: real,B4: real] :
( ( C2 != zero_zero_real )
=> ( ( ( times_times_real @ A @ C2 )
= ( times_times_real @ B4 @ C2 ) )
= ( A = B4 ) ) ) ).
% mult_right_cancel
thf(fact_877_mult__right__cancel,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( C2 != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C2 )
= ( times_times_nat @ B4 @ C2 ) )
= ( A = B4 ) ) ) ).
% mult_right_cancel
thf(fact_878_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_879_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_880_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_881_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_882_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_883_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_884_left__diff__distrib,axiom,
! [A: real,B4: real,C2: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B4 ) @ C2 )
= ( minus_minus_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) ) ) ).
% left_diff_distrib
thf(fact_885_right__diff__distrib,axiom,
! [A: real,B4: real,C2: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B4 @ C2 ) )
= ( minus_minus_real @ ( times_times_real @ A @ B4 ) @ ( times_times_real @ A @ C2 ) ) ) ).
% right_diff_distrib
thf(fact_886_left__diff__distrib_H,axiom,
! [B4: real,C2: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B4 @ C2 ) @ A )
= ( minus_minus_real @ ( times_times_real @ B4 @ A ) @ ( times_times_real @ C2 @ A ) ) ) ).
% left_diff_distrib'
thf(fact_887_left__diff__distrib_H,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B4 @ C2 ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B4 @ A ) @ ( times_times_nat @ C2 @ A ) ) ) ).
% left_diff_distrib'
thf(fact_888_right__diff__distrib_H,axiom,
! [A: real,B4: real,C2: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B4 @ C2 ) )
= ( minus_minus_real @ ( times_times_real @ A @ B4 ) @ ( times_times_real @ A @ C2 ) ) ) ).
% right_diff_distrib'
thf(fact_889_right__diff__distrib_H,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B4 @ C2 ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B4 ) @ ( times_times_nat @ A @ C2 ) ) ) ).
% right_diff_distrib'
thf(fact_890_mult__mono,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ C2 @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_891_mult__mono,axiom,
! [A: nat,B4: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_892_mult__mono_H,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ C2 @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_893_mult__mono_H,axiom,
! [A: nat,B4: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_894_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_895_split__mult__pos__le,axiom,
! [A: real,B4: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B4 ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B4 @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) ) ) ).
% split_mult_pos_le
thf(fact_896_mult__left__mono__neg,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_eq_real @ B4 @ A )
=> ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) ) ) ) ).
% mult_left_mono_neg
thf(fact_897_mult__nonpos__nonpos,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B4 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_898_mult__left__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) ) ) ) ).
% mult_left_mono
thf(fact_899_mult__left__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B4 ) ) ) ) ).
% mult_left_mono
thf(fact_900_mult__right__mono__neg,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_eq_real @ B4 @ A )
=> ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) ) ) ) ).
% mult_right_mono_neg
thf(fact_901_mult__right__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) ) ) ) ).
% mult_right_mono
thf(fact_902_mult__right__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ C2 ) ) ) ) ).
% mult_right_mono
thf(fact_903_mult__le__0__iff,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B4 @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B4 ) ) ) ) ).
% mult_le_0_iff
thf(fact_904_split__mult__neg__le,axiom,
! [A: real,B4: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B4 @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B4 ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_905_split__mult__neg__le,axiom,
! [A: nat,B4: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B4 @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B4 ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B4 ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_906_mult__nonneg__nonneg,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_907_mult__nonneg__nonneg,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B4 ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_908_mult__nonneg__nonpos,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B4 @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos
thf(fact_909_mult__nonneg__nonpos,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B4 @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B4 ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_910_mult__nonpos__nonneg,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real ) ) ) ).
% mult_nonpos_nonneg
thf(fact_911_mult__nonpos__nonneg,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B4 ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_912_mult__nonneg__nonpos2,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B4 @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B4 @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_913_mult__nonneg__nonpos2,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B4 @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B4 @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_914_zero__le__mult__iff,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B4 ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B4 @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_915_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_916_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B4 ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_917_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_918_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_919_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_920_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_921_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_922_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_923_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B4 ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_924_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_925_mult__less__cancel__right__disj,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
& ( ord_less_real @ A @ B4 ) )
| ( ( ord_less_real @ C2 @ zero_zero_real )
& ( ord_less_real @ B4 @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_926_mult__strict__right__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ C2 ) ) ) ) ).
% mult_strict_right_mono
thf(fact_927_mult__strict__right__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) ) ) ) ).
% mult_strict_right_mono
thf(fact_928_mult__strict__right__mono__neg,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_real @ B4 @ A )
=> ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_929_mult__less__cancel__left__disj,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
& ( ord_less_real @ A @ B4 ) )
| ( ( ord_less_real @ C2 @ zero_zero_real )
& ( ord_less_real @ B4 @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_930_mult__strict__left__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B4 ) ) ) ) ).
% mult_strict_left_mono
thf(fact_931_mult__strict__left__mono,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) ) ) ) ).
% mult_strict_left_mono
thf(fact_932_mult__strict__left__mono__neg,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_real @ B4 @ A )
=> ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_933_mult__less__cancel__left__pos,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ord_less_real @ A @ B4 ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_934_mult__less__cancel__left__neg,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ord_less_real @ B4 @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_935_zero__less__mult__pos2,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B4 @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B4 ) ) ) ).
% zero_less_mult_pos2
thf(fact_936_zero__less__mult__pos2,axiom,
! [B4: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B4 @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B4 ) ) ) ).
% zero_less_mult_pos2
thf(fact_937_zero__less__mult__pos,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B4 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B4 ) ) ) ).
% zero_less_mult_pos
thf(fact_938_zero__less__mult__pos,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B4 ) ) ) ).
% zero_less_mult_pos
thf(fact_939_zero__less__mult__iff,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B4 ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B4 @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_940_mult__pos__neg2,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B4 @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B4 @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_941_mult__pos__neg2,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B4 @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B4 @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_942_mult__pos__pos,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B4 )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B4 ) ) ) ) ).
% mult_pos_pos
thf(fact_943_mult__pos__pos,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B4 )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) ) ) ) ).
% mult_pos_pos
thf(fact_944_mult__pos__neg,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B4 @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B4 ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_945_mult__pos__neg,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B4 @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_946_mult__neg__pos,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B4 )
=> ( ord_less_nat @ ( times_times_nat @ A @ B4 ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_947_mult__neg__pos,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B4 )
=> ( ord_less_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_948_mult__less__0__iff,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ A @ B4 ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B4 @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B4 ) ) ) ) ).
% mult_less_0_iff
thf(fact_949_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_950_mult__neg__neg,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B4 @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B4 ) ) ) ) ).
% mult_neg_neg
thf(fact_951_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_952_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_953_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_954_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_955_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_956_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_957_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_958_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_959_mult__le__cancel__left,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ A @ B4 ) )
& ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ B4 @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_960_mult__le__cancel__right,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ A @ B4 ) )
& ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ B4 @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_961_mult__left__less__imp__less,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ A @ B4 ) ) ) ).
% mult_left_less_imp_less
thf(fact_962_mult__left__less__imp__less,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( ord_less_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B4 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ A @ B4 ) ) ) ).
% mult_left_less_imp_less
thf(fact_963_mult__strict__mono,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ C2 @ D )
=> ( ( ord_less_real @ zero_zero_real @ B4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_964_mult__strict__mono,axiom,
! [A: nat,B4: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_965_mult__less__cancel__left,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ A @ B4 ) )
& ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ B4 @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_966_mult__right__less__imp__less,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ A @ B4 ) ) ) ).
% mult_right_less_imp_less
thf(fact_967_mult__right__less__imp__less,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ C2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ A @ B4 ) ) ) ).
% mult_right_less_imp_less
thf(fact_968_mult__strict__mono_H,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ C2 @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_969_mult__strict__mono_H,axiom,
! [A: nat,B4: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_970_mult__less__cancel__right,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ A @ B4 ) )
& ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ B4 @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_971_mult__le__cancel__left__neg,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ord_less_eq_real @ B4 @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_972_mult__le__cancel__left__pos,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
= ( ord_less_eq_real @ A @ B4 ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_973_mult__left__le__imp__le,axiom,
! [C2: real,A: real,B4: real] :
( ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ ( times_times_real @ C2 @ B4 ) )
=> ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ A @ B4 ) ) ) ).
% mult_left_le_imp_le
thf(fact_974_mult__left__le__imp__le,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C2 @ A ) @ ( times_times_nat @ C2 @ B4 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ A @ B4 ) ) ) ).
% mult_left_le_imp_le
thf(fact_975_mult__right__le__imp__le,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ C2 ) )
=> ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ A @ B4 ) ) ) ).
% mult_right_le_imp_le
thf(fact_976_mult__right__le__imp__le,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ C2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_eq_nat @ A @ B4 ) ) ) ).
% mult_right_le_imp_le
thf(fact_977_mult__le__less__imp__less,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_real @ C2 @ D )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_978_mult__le__less__imp__less,axiom,
! [A: nat,B4: nat,C2: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_nat @ C2 @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_979_mult__less__le__imp__less,axiom,
! [A: real,B4: real,C2: real,D: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_eq_real @ C2 @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ ( times_times_real @ A @ C2 ) @ ( times_times_real @ B4 @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_980_mult__less__le__imp__less,axiom,
! [A: nat,B4: nat,C2: nat,D: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ C2 @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C2 )
=> ( ord_less_nat @ ( times_times_nat @ A @ C2 ) @ ( times_times_nat @ B4 @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_981_mult__left__le__one__le,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ Y @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Y @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_982_mult__right__le__one__le,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ Y @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ X @ Y ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_983_mult__le__one,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B4 )
=> ( ( ord_less_eq_real @ B4 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B4 ) @ one_one_real ) ) ) ) ).
% mult_le_one
thf(fact_984_mult__le__one,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B4 )
=> ( ( ord_less_eq_nat @ B4 @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B4 ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_985_mult__left__le,axiom,
! [C2: real,A: real] :
( ( ord_less_eq_real @ C2 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ A ) ) ) ).
% mult_left_le
thf(fact_986_mult__left__le,axiom,
! [C2: nat,A: nat] :
( ( ord_less_eq_nat @ C2 @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C2 ) @ A ) ) ) ).
% mult_left_le
thf(fact_987_mult__less__cancel__right2,axiom,
! [A: real,C2: real] :
( ( ord_less_real @ ( times_times_real @ A @ C2 ) @ C2 )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_988_mult__less__cancel__right1,axiom,
! [C2: real,B4: real] :
( ( ord_less_real @ C2 @ ( times_times_real @ B4 @ C2 ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ one_one_real @ B4 ) )
& ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ B4 @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_989_mult__less__cancel__left2,axiom,
! [C2: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C2 @ A ) @ C2 )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_990_mult__less__cancel__left1,axiom,
! [C2: real,B4: real] :
( ( ord_less_real @ C2 @ ( times_times_real @ C2 @ B4 ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C2 )
=> ( ord_less_real @ one_one_real @ B4 ) )
& ( ( ord_less_eq_real @ C2 @ zero_zero_real )
=> ( ord_less_real @ B4 @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_991_mult__le__cancel__right2,axiom,
! [A: real,C2: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C2 ) @ C2 )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_992_mult__le__cancel__right1,axiom,
! [C2: real,B4: real] :
( ( ord_less_eq_real @ C2 @ ( times_times_real @ B4 @ C2 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ one_one_real @ B4 ) )
& ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ B4 @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_993_mult__le__cancel__left2,axiom,
! [C2: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C2 @ A ) @ C2 )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_994_mult__le__cancel__left1,axiom,
! [C2: real,B4: real] :
( ( ord_less_eq_real @ C2 @ ( times_times_real @ C2 @ B4 ) )
= ( ( ( ord_less_real @ zero_zero_real @ C2 )
=> ( ord_less_eq_real @ one_one_real @ B4 ) )
& ( ( ord_less_real @ C2 @ zero_zero_real )
=> ( ord_less_eq_real @ B4 @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_995_boolean__algebra_Oconj__zero__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ bot_bot_set_a )
= bot_bot_set_a ) ).
% boolean_algebra.conj_zero_right
thf(fact_996_boolean__algebra_Oconj__zero__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ X )
= bot_bot_set_a ) ).
% boolean_algebra.conj_zero_left
thf(fact_997_inf__bot__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ bot_bot_set_a )
= bot_bot_set_a ) ).
% inf_bot_right
thf(fact_998_inf_Oidem,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ A @ A )
= A ) ).
% inf.idem
thf(fact_999_inf__idem,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ X )
= X ) ).
% inf_idem
thf(fact_1000_inf_Oleft__idem,axiom,
! [A: set_a,B4: set_a] :
( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B4 ) )
= ( inf_inf_set_a @ A @ B4 ) ) ).
% inf.left_idem
thf(fact_1001_inf__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_left_idem
thf(fact_1002_inf_Oright__idem,axiom,
! [A: set_a,B4: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B4 ) @ B4 )
= ( inf_inf_set_a @ A @ B4 ) ) ).
% inf.right_idem
thf(fact_1003_inf__right__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_right_idem
thf(fact_1004_inf_Obounded__iff,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ ( inf_inf_real @ B4 @ C2 ) )
= ( ( ord_less_eq_real @ A @ B4 )
& ( ord_less_eq_real @ A @ C2 ) ) ) ).
% inf.bounded_iff
thf(fact_1005_inf_Obounded__iff,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
= ( ( ord_less_eq_set_a @ A @ B4 )
& ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% inf.bounded_iff
thf(fact_1006_inf_Obounded__iff,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
= ( ( ord_less_eq_nat @ A @ B4 )
& ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% inf.bounded_iff
thf(fact_1007_le__inf__iff,axiom,
! [X: real,Y: real,Z4: real] :
( ( ord_less_eq_real @ X @ ( inf_inf_real @ Y @ Z4 ) )
= ( ( ord_less_eq_real @ X @ Y )
& ( ord_less_eq_real @ X @ Z4 ) ) ) ).
% le_inf_iff
thf(fact_1008_le__inf__iff,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
= ( ( ord_less_eq_set_a @ X @ Y )
& ( ord_less_eq_set_a @ X @ Z4 ) ) ) ).
% le_inf_iff
thf(fact_1009_le__inf__iff,axiom,
! [X: nat,Y: nat,Z4: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z4 ) )
= ( ( ord_less_eq_nat @ X @ Y )
& ( ord_less_eq_nat @ X @ Z4 ) ) ) ).
% le_inf_iff
thf(fact_1010_inf__bot__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ X )
= bot_bot_set_a ) ).
% inf_bot_left
thf(fact_1011_bot__set__def,axiom,
( bot_bot_set_a
= ( collect_a @ bot_bot_a_o ) ) ).
% bot_set_def
thf(fact_1012_bot__nat__def,axiom,
bot_bot_nat = zero_zero_nat ).
% bot_nat_def
thf(fact_1013_inf__sup__aci_I4_J,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_sup_aci(4)
thf(fact_1014_inf__sup__aci_I3_J,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
= ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z4 ) ) ) ).
% inf_sup_aci(3)
thf(fact_1015_inf__sup__aci_I2_J,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z4 )
= ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) ) ).
% inf_sup_aci(2)
thf(fact_1016_inf__sup__aci_I1_J,axiom,
( inf_inf_set_a
= ( ^ [X2: set_a,Y3: set_a] : ( inf_inf_set_a @ Y3 @ X2 ) ) ) ).
% inf_sup_aci(1)
thf(fact_1017_inf_Oassoc,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 )
= ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ).
% inf.assoc
thf(fact_1018_inf__assoc,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z4 )
= ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) ) ).
% inf_assoc
thf(fact_1019_inf_Ocommute,axiom,
( inf_inf_set_a
= ( ^ [A4: set_a,B3: set_a] : ( inf_inf_set_a @ B3 @ A4 ) ) ) ).
% inf.commute
thf(fact_1020_inf__commute,axiom,
( inf_inf_set_a
= ( ^ [X2: set_a,Y3: set_a] : ( inf_inf_set_a @ Y3 @ X2 ) ) ) ).
% inf_commute
thf(fact_1021_boolean__algebra__cancel_Oinf1,axiom,
! [A2: set_a,K: set_a,A: set_a,B4: set_a] :
( ( A2
= ( inf_inf_set_a @ K @ A ) )
=> ( ( inf_inf_set_a @ A2 @ B4 )
= ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).
% boolean_algebra_cancel.inf1
thf(fact_1022_boolean__algebra__cancel_Oinf2,axiom,
! [B: set_a,K: set_a,B4: set_a,A: set_a] :
( ( B
= ( inf_inf_set_a @ K @ B4 ) )
=> ( ( inf_inf_set_a @ A @ B )
= ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).
% boolean_algebra_cancel.inf2
thf(fact_1023_inf_Oleft__commute,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( inf_inf_set_a @ B4 @ ( inf_inf_set_a @ A @ C2 ) )
= ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ).
% inf.left_commute
thf(fact_1024_inf__left__commute,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
= ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z4 ) ) ) ).
% inf_left_commute
thf(fact_1025_inf_OcoboundedI2,axiom,
! [B4: real,C2: real,A: real] :
( ( ord_less_eq_real @ B4 @ C2 )
=> ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI2
thf(fact_1026_inf_OcoboundedI2,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI2
thf(fact_1027_inf_OcoboundedI2,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI2
thf(fact_1028_inf_OcoboundedI1,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_eq_real @ A @ C2 )
=> ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI1
thf(fact_1029_inf_OcoboundedI1,axiom,
! [A: set_a,C2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI1
thf(fact_1030_inf_OcoboundedI1,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI1
thf(fact_1031_inf_Oabsorb__iff2,axiom,
( ord_less_eq_real
= ( ^ [B3: real,A4: real] :
( ( inf_inf_real @ A4 @ B3 )
= B3 ) ) ) ).
% inf.absorb_iff2
thf(fact_1032_inf_Oabsorb__iff2,axiom,
( ord_less_eq_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( inf_inf_set_a @ A4 @ B3 )
= B3 ) ) ) ).
% inf.absorb_iff2
thf(fact_1033_inf_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A4: nat] :
( ( inf_inf_nat @ A4 @ B3 )
= B3 ) ) ) ).
% inf.absorb_iff2
thf(fact_1034_inf_Oabsorb__iff1,axiom,
( ord_less_eq_real
= ( ^ [A4: real,B3: real] :
( ( inf_inf_real @ A4 @ B3 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_1035_inf_Oabsorb__iff1,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( inf_inf_set_a @ A4 @ B3 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_1036_inf_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( ( inf_inf_nat @ A4 @ B3 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_1037_inf_Ocobounded2,axiom,
! [A: real,B4: real] : ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ B4 ) ).
% inf.cobounded2
thf(fact_1038_inf_Ocobounded2,axiom,
! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ B4 ) ).
% inf.cobounded2
thf(fact_1039_inf_Ocobounded2,axiom,
! [A: nat,B4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ B4 ) ).
% inf.cobounded2
thf(fact_1040_inf_Ocobounded1,axiom,
! [A: real,B4: real] : ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ A ) ).
% inf.cobounded1
thf(fact_1041_inf_Ocobounded1,axiom,
! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ A ) ).
% inf.cobounded1
thf(fact_1042_inf_Ocobounded1,axiom,
! [A: nat,B4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ A ) ).
% inf.cobounded1
thf(fact_1043_inf_Oorder__iff,axiom,
( ord_less_eq_real
= ( ^ [A4: real,B3: real] :
( A4
= ( inf_inf_real @ A4 @ B3 ) ) ) ) ).
% inf.order_iff
thf(fact_1044_inf_Oorder__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B3: set_a] :
( A4
= ( inf_inf_set_a @ A4 @ B3 ) ) ) ) ).
% inf.order_iff
thf(fact_1045_inf_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( A4
= ( inf_inf_nat @ A4 @ B3 ) ) ) ) ).
% inf.order_iff
thf(fact_1046_inf__greatest,axiom,
! [X: real,Y: real,Z4: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ X @ Z4 )
=> ( ord_less_eq_real @ X @ ( inf_inf_real @ Y @ Z4 ) ) ) ) ).
% inf_greatest
thf(fact_1047_inf__greatest,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ X @ Z4 )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) ) ) ).
% inf_greatest
thf(fact_1048_inf__greatest,axiom,
! [X: nat,Y: nat,Z4: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Z4 )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z4 ) ) ) ) ).
% inf_greatest
thf(fact_1049_inf_OboundedI,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ A @ C2 )
=> ( ord_less_eq_real @ A @ ( inf_inf_real @ B4 @ C2 ) ) ) ) ).
% inf.boundedI
thf(fact_1050_inf_OboundedI,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ A @ C2 )
=> ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ) ).
% inf.boundedI
thf(fact_1051_inf_OboundedI,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ A @ C2 )
=> ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) ) ) ) ).
% inf.boundedI
thf(fact_1052_inf_OboundedE,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ ( inf_inf_real @ B4 @ C2 ) )
=> ~ ( ( ord_less_eq_real @ A @ B4 )
=> ~ ( ord_less_eq_real @ A @ C2 ) ) ) ).
% inf.boundedE
thf(fact_1053_inf_OboundedE,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
=> ~ ( ( ord_less_eq_set_a @ A @ B4 )
=> ~ ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% inf.boundedE
thf(fact_1054_inf_OboundedE,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
=> ~ ( ( ord_less_eq_nat @ A @ B4 )
=> ~ ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% inf.boundedE
thf(fact_1055_inf__absorb2,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ( ( inf_inf_real @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_1056_inf__absorb2,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( inf_inf_set_a @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_1057_inf__absorb2,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( inf_inf_nat @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_1058_inf__absorb1,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( inf_inf_real @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_1059_inf__absorb1,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( inf_inf_set_a @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_1060_inf__absorb1,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( inf_inf_nat @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_1061_inf_Oabsorb2,axiom,
! [B4: real,A: real] :
( ( ord_less_eq_real @ B4 @ A )
=> ( ( inf_inf_real @ A @ B4 )
= B4 ) ) ).
% inf.absorb2
thf(fact_1062_inf_Oabsorb2,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( inf_inf_set_a @ A @ B4 )
= B4 ) ) ).
% inf.absorb2
thf(fact_1063_inf_Oabsorb2,axiom,
! [B4: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( inf_inf_nat @ A @ B4 )
= B4 ) ) ).
% inf.absorb2
thf(fact_1064_inf_Oabsorb1,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( inf_inf_real @ A @ B4 )
= A ) ) ).
% inf.absorb1
thf(fact_1065_inf_Oabsorb1,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( inf_inf_set_a @ A @ B4 )
= A ) ) ).
% inf.absorb1
thf(fact_1066_inf_Oabsorb1,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( inf_inf_nat @ A @ B4 )
= A ) ) ).
% inf.absorb1
thf(fact_1067_le__iff__inf,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y3: real] :
( ( inf_inf_real @ X2 @ Y3 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_1068_le__iff__inf,axiom,
( ord_less_eq_set_a
= ( ^ [X2: set_a,Y3: set_a] :
( ( inf_inf_set_a @ X2 @ Y3 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_1069_le__iff__inf,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y3: nat] :
( ( inf_inf_nat @ X2 @ Y3 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_1070_inf__unique,axiom,
! [F: real > real > real,X: real,Y: real] :
( ! [X3: real,Y4: real] : ( ord_less_eq_real @ ( F @ X3 @ Y4 ) @ X3 )
=> ( ! [X3: real,Y4: real] : ( ord_less_eq_real @ ( F @ X3 @ Y4 ) @ Y4 )
=> ( ! [X3: real,Y4: real,Z2: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ( ord_less_eq_real @ X3 @ Z2 )
=> ( ord_less_eq_real @ X3 @ ( F @ Y4 @ Z2 ) ) ) )
=> ( ( inf_inf_real @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_1071_inf__unique,axiom,
! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
( ! [X3: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y4 ) @ X3 )
=> ( ! [X3: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y4 ) @ Y4 )
=> ( ! [X3: set_a,Y4: set_a,Z2: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ( ord_less_eq_set_a @ X3 @ Z2 )
=> ( ord_less_eq_set_a @ X3 @ ( F @ Y4 @ Z2 ) ) ) )
=> ( ( inf_inf_set_a @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_1072_inf__unique,axiom,
! [F: nat > nat > nat,X: nat,Y: nat] :
( ! [X3: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y4 ) @ X3 )
=> ( ! [X3: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y4 ) @ Y4 )
=> ( ! [X3: nat,Y4: nat,Z2: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ( ord_less_eq_nat @ X3 @ Z2 )
=> ( ord_less_eq_nat @ X3 @ ( F @ Y4 @ Z2 ) ) ) )
=> ( ( inf_inf_nat @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_1073_inf_OorderI,axiom,
! [A: real,B4: real] :
( ( A
= ( inf_inf_real @ A @ B4 ) )
=> ( ord_less_eq_real @ A @ B4 ) ) ).
% inf.orderI
thf(fact_1074_inf_OorderI,axiom,
! [A: set_a,B4: set_a] :
( ( A
= ( inf_inf_set_a @ A @ B4 ) )
=> ( ord_less_eq_set_a @ A @ B4 ) ) ).
% inf.orderI
thf(fact_1075_inf_OorderI,axiom,
! [A: nat,B4: nat] :
( ( A
= ( inf_inf_nat @ A @ B4 ) )
=> ( ord_less_eq_nat @ A @ B4 ) ) ).
% inf.orderI
thf(fact_1076_inf_OorderE,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( A
= ( inf_inf_real @ A @ B4 ) ) ) ).
% inf.orderE
thf(fact_1077_inf_OorderE,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( A
= ( inf_inf_set_a @ A @ B4 ) ) ) ).
% inf.orderE
thf(fact_1078_inf_OorderE,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( A
= ( inf_inf_nat @ A @ B4 ) ) ) ).
% inf.orderE
thf(fact_1079_le__infI2,axiom,
! [B4: real,X: real,A: real] :
( ( ord_less_eq_real @ B4 @ X )
=> ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ X ) ) ).
% le_infI2
thf(fact_1080_le__infI2,axiom,
! [B4: set_a,X: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% le_infI2
thf(fact_1081_le__infI2,axiom,
! [B4: nat,X: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% le_infI2
thf(fact_1082_le__infI1,axiom,
! [A: real,X: real,B4: real] :
( ( ord_less_eq_real @ A @ X )
=> ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ X ) ) ).
% le_infI1
thf(fact_1083_le__infI1,axiom,
! [A: set_a,X: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% le_infI1
thf(fact_1084_le__infI1,axiom,
! [A: nat,X: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% le_infI1
thf(fact_1085_inf__mono,axiom,
! [A: real,C2: real,B4: real,D: real] :
( ( ord_less_eq_real @ A @ C2 )
=> ( ( ord_less_eq_real @ B4 @ D )
=> ( ord_less_eq_real @ ( inf_inf_real @ A @ B4 ) @ ( inf_inf_real @ C2 @ D ) ) ) ) ).
% inf_mono
thf(fact_1086_inf__mono,axiom,
! [A: set_a,C2: set_a,B4: set_a,D: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( ord_less_eq_set_a @ B4 @ D )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).
% inf_mono
thf(fact_1087_inf__mono,axiom,
! [A: nat,C2: nat,B4: nat,D: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ( ord_less_eq_nat @ B4 @ D )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ ( inf_inf_nat @ C2 @ D ) ) ) ) ).
% inf_mono
thf(fact_1088_le__infI,axiom,
! [X: real,A: real,B4: real] :
( ( ord_less_eq_real @ X @ A )
=> ( ( ord_less_eq_real @ X @ B4 )
=> ( ord_less_eq_real @ X @ ( inf_inf_real @ A @ B4 ) ) ) ) ).
% le_infI
thf(fact_1089_le__infI,axiom,
! [X: set_a,A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ X @ A )
=> ( ( ord_less_eq_set_a @ X @ B4 )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).
% le_infI
thf(fact_1090_le__infI,axiom,
! [X: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ X @ A )
=> ( ( ord_less_eq_nat @ X @ B4 )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B4 ) ) ) ) ).
% le_infI
thf(fact_1091_le__infE,axiom,
! [X: real,A: real,B4: real] :
( ( ord_less_eq_real @ X @ ( inf_inf_real @ A @ B4 ) )
=> ~ ( ( ord_less_eq_real @ X @ A )
=> ~ ( ord_less_eq_real @ X @ B4 ) ) ) ).
% le_infE
thf(fact_1092_le__infE,axiom,
! [X: set_a,A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B4 ) )
=> ~ ( ( ord_less_eq_set_a @ X @ A )
=> ~ ( ord_less_eq_set_a @ X @ B4 ) ) ) ).
% le_infE
thf(fact_1093_le__infE,axiom,
! [X: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B4 ) )
=> ~ ( ( ord_less_eq_nat @ X @ A )
=> ~ ( ord_less_eq_nat @ X @ B4 ) ) ) ).
% le_infE
thf(fact_1094_inf__le2,axiom,
! [X: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_1095_inf__le2,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_1096_inf__le2,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_1097_inf__le1,axiom,
! [X: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_1098_inf__le1,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_1099_inf__le1,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_1100_inf__sup__ord_I1_J,axiom,
! [X: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_1101_inf__sup__ord_I1_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_1102_inf__sup__ord_I1_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_1103_inf__sup__ord_I2_J,axiom,
! [X: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_1104_inf__sup__ord_I2_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_1105_inf__sup__ord_I2_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_1106_less__infI1,axiom,
! [A: set_a,X: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ X )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% less_infI1
thf(fact_1107_less__infI1,axiom,
! [A: nat,X: nat,B4: nat] :
( ( ord_less_nat @ A @ X )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% less_infI1
thf(fact_1108_less__infI1,axiom,
! [A: real,X: real,B4: real] :
( ( ord_less_real @ A @ X )
=> ( ord_less_real @ ( inf_inf_real @ A @ B4 ) @ X ) ) ).
% less_infI1
thf(fact_1109_less__infI2,axiom,
! [B4: set_a,X: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ X )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% less_infI2
thf(fact_1110_less__infI2,axiom,
! [B4: nat,X: nat,A: nat] :
( ( ord_less_nat @ B4 @ X )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% less_infI2
thf(fact_1111_less__infI2,axiom,
! [B4: real,X: real,A: real] :
( ( ord_less_real @ B4 @ X )
=> ( ord_less_real @ ( inf_inf_real @ A @ B4 ) @ X ) ) ).
% less_infI2
thf(fact_1112_inf_Oabsorb3,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ B4 )
=> ( ( inf_inf_set_a @ A @ B4 )
= A ) ) ).
% inf.absorb3
thf(fact_1113_inf_Oabsorb3,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( inf_inf_nat @ A @ B4 )
= A ) ) ).
% inf.absorb3
thf(fact_1114_inf_Oabsorb3,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( inf_inf_real @ A @ B4 )
= A ) ) ).
% inf.absorb3
thf(fact_1115_inf_Oabsorb4,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ A )
=> ( ( inf_inf_set_a @ A @ B4 )
= B4 ) ) ).
% inf.absorb4
thf(fact_1116_inf_Oabsorb4,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ( inf_inf_nat @ A @ B4 )
= B4 ) ) ).
% inf.absorb4
thf(fact_1117_inf_Oabsorb4,axiom,
! [B4: real,A: real] :
( ( ord_less_real @ B4 @ A )
=> ( ( inf_inf_real @ A @ B4 )
= B4 ) ) ).
% inf.absorb4
thf(fact_1118_inf_Ostrict__boundedE,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
=> ~ ( ( ord_less_set_a @ A @ B4 )
=> ~ ( ord_less_set_a @ A @ C2 ) ) ) ).
% inf.strict_boundedE
thf(fact_1119_inf_Ostrict__boundedE,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
=> ~ ( ( ord_less_nat @ A @ B4 )
=> ~ ( ord_less_nat @ A @ C2 ) ) ) ).
% inf.strict_boundedE
thf(fact_1120_inf_Ostrict__boundedE,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ ( inf_inf_real @ B4 @ C2 ) )
=> ~ ( ( ord_less_real @ A @ B4 )
=> ~ ( ord_less_real @ A @ C2 ) ) ) ).
% inf.strict_boundedE
thf(fact_1121_inf_Ostrict__order__iff,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( A4
= ( inf_inf_set_a @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_1122_inf_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [A4: nat,B3: nat] :
( ( A4
= ( inf_inf_nat @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_1123_inf_Ostrict__order__iff,axiom,
( ord_less_real
= ( ^ [A4: real,B3: real] :
( ( A4
= ( inf_inf_real @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_1124_inf_Ostrict__coboundedI1,axiom,
! [A: set_a,C2: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ C2 )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI1
thf(fact_1125_inf_Ostrict__coboundedI1,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_nat @ A @ C2 )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI1
thf(fact_1126_inf_Ostrict__coboundedI1,axiom,
! [A: real,C2: real,B4: real] :
( ( ord_less_real @ A @ C2 )
=> ( ord_less_real @ ( inf_inf_real @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI1
thf(fact_1127_inf_Ostrict__coboundedI2,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ C2 )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI2
thf(fact_1128_inf_Ostrict__coboundedI2,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI2
thf(fact_1129_inf_Ostrict__coboundedI2,axiom,
! [B4: real,C2: real,A: real] :
( ( ord_less_real @ B4 @ C2 )
=> ( ord_less_real @ ( inf_inf_real @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI2
thf(fact_1130_diff__shunt__var,axiom,
! [X: set_a,Y: set_a] :
( ( ( minus_minus_set_a @ X @ Y )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ X @ Y ) ) ).
% diff_shunt_var
thf(fact_1131_field__le__mult__one__interval,axiom,
! [X: real,Y: real] :
( ! [Z2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ Z2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ Y ) ) )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% field_le_mult_one_interval
thf(fact_1132_group__of__Units,axiom,
group_group_a @ ( group_Units_a @ g @ addition @ zero ) @ addition @ zero ).
% group_of_Units
thf(fact_1133_linordered__field__no__ub,axiom,
! [X5: real] :
? [X_1: real] : ( ord_less_real @ X5 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_1134_linordered__field__no__lb,axiom,
! [X5: real] :
? [Y4: real] : ( ord_less_real @ Y4 @ X5 ) ).
% linordered_field_no_lb
thf(fact_1135_mem__UnitsD,axiom,
! [U: a] :
( ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) )
=> ( ( group_invertible_a @ g @ addition @ zero @ U )
& ( member_a @ U @ g ) ) ) ).
% mem_UnitsD
thf(fact_1136_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_1137_dual__order_Orefl,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).
% dual_order.refl
thf(fact_1138_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_1139_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_1140_order__refl,axiom,
! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).
% order_refl
thf(fact_1141_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_1142_unit__invertible,axiom,
group_invertible_a @ g @ addition @ zero @ zero ).
% unit_invertible
thf(fact_1143_invertible__def,axiom,
! [U: a] :
( ( member_a @ U @ g )
=> ( ( group_invertible_a @ g @ addition @ zero @ U )
= ( ? [X2: a] :
( ( member_a @ X2 @ g )
& ( ( addition @ U @ X2 )
= zero )
& ( ( addition @ X2 @ U )
= zero ) ) ) ) ) ).
% invertible_def
thf(fact_1144_invertibleE,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ! [V4: a] :
( ( ( ( addition @ U @ V4 )
= zero )
& ( ( addition @ V4 @ U )
= zero ) )
=> ~ ( member_a @ V4 @ g ) )
=> ~ ( member_a @ U @ g ) ) ) ).
% invertibleE
thf(fact_1145_mem__UnitsI,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) ) ) ) ).
% mem_UnitsI
thf(fact_1146_invertible__right__cancel,axiom,
! [X: a,Y: a,Z4: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( member_a @ Z4 @ g )
=> ( ( ( addition @ Y @ X )
= ( addition @ Z4 @ X ) )
= ( Y = Z4 ) ) ) ) ) ) ).
% invertible_right_cancel
thf(fact_1147_invertible__left__cancel,axiom,
! [X: a,Y: a,Z4: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( member_a @ Z4 @ g )
=> ( ( ( addition @ X @ Y )
= ( addition @ X @ Z4 ) )
= ( Y = Z4 ) ) ) ) ) ) ).
% invertible_left_cancel
thf(fact_1148_invertibleI,axiom,
! [U: a,V2: a] :
( ( ( addition @ U @ V2 )
= zero )
=> ( ( ( addition @ V2 @ U )
= zero )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( group_invertible_a @ g @ addition @ zero @ U ) ) ) ) ) ).
% invertibleI
thf(fact_1149_invertible,axiom,
! [U: a] :
( ( member_a @ U @ g )
=> ( group_invertible_a @ g @ addition @ zero @ U ) ) ).
% invertible
thf(fact_1150_composition__invertible,axiom,
! [X: a,Y: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( group_invertible_a @ g @ addition @ zero @ Y )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( group_invertible_a @ g @ addition @ zero @ ( addition @ X @ Y ) ) ) ) ) ) ).
% composition_invertible
thf(fact_1151_order__antisym__conv,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ( ( ord_less_eq_real @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_1152_order__antisym__conv,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( ord_less_eq_set_a @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_1153_order__antisym__conv,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_1154_linorder__le__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_1155_linorder__le__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_1156_ord__le__eq__subst,axiom,
! [A: real,B4: real,F: real > real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1157_ord__le__eq__subst,axiom,
! [A: real,B4: real,F: real > set_a,C2: set_a] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1158_ord__le__eq__subst,axiom,
! [A: real,B4: real,F: real > nat,C2: nat] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1159_ord__le__eq__subst,axiom,
! [A: set_a,B4: set_a,F: set_a > real,C2: real] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1160_ord__le__eq__subst,axiom,
! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1161_ord__le__eq__subst,axiom,
! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1162_ord__le__eq__subst,axiom,
! [A: nat,B4: nat,F: nat > real,C2: real] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1163_ord__le__eq__subst,axiom,
! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1164_ord__le__eq__subst,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_1165_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B4: real,C2: real] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1166_ord__eq__le__subst,axiom,
! [A: set_a,F: real > set_a,B4: real,C2: real] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1167_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B4: real,C2: real] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1168_ord__eq__le__subst,axiom,
! [A: real,F: set_a > real,B4: set_a,C2: set_a] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1169_ord__eq__le__subst,axiom,
! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1170_ord__eq__le__subst,axiom,
! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1171_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B4: nat,C2: nat] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1172_ord__eq__le__subst,axiom,
! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1173_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_1174_linorder__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
| ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_linear
thf(fact_1175_linorder__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_linear
thf(fact_1176_order__eq__refl,axiom,
! [X: real,Y: real] :
( ( X = Y )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% order_eq_refl
thf(fact_1177_order__eq__refl,axiom,
! [X: set_a,Y: set_a] :
( ( X = Y )
=> ( ord_less_eq_set_a @ X @ Y ) ) ).
% order_eq_refl
thf(fact_1178_order__eq__refl,axiom,
! [X: nat,Y: nat] :
( ( X = Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_1179_order__subst2,axiom,
! [A: real,B4: real,F: real > real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ ( F @ B4 ) @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1180_order__subst2,axiom,
! [A: real,B4: real,F: real > set_a,C2: set_a] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1181_order__subst2,axiom,
! [A: real,B4: real,F: real > nat,C2: nat] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1182_order__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > real,C2: real] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_real @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1183_order__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1184_order__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1185_order__subst2,axiom,
! [A: nat,B4: nat,F: nat > real,C2: real] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_real @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1186_order__subst2,axiom,
! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1187_order__subst2,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_1188_order__subst1,axiom,
! [A: real,F: real > real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1189_order__subst1,axiom,
! [A: real,F: set_a > real,B4: set_a,C2: set_a] :
( ( ord_less_eq_real @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1190_order__subst1,axiom,
! [A: real,F: nat > real,B4: nat,C2: nat] :
( ( ord_less_eq_real @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1191_order__subst1,axiom,
! [A: set_a,F: real > set_a,B4: real,C2: real] :
( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1192_order__subst1,axiom,
! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1193_order__subst1,axiom,
! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1194_order__subst1,axiom,
! [A: nat,F: real > nat,B4: real,C2: real] :
( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ! [X3: real,Y4: real] :
( ( ord_less_eq_real @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1195_order__subst1,axiom,
! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1196_order__subst1,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y4: nat] :
( ( ord_less_eq_nat @ X3 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_1197_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: real,Z: real] : ( Y5 = Z ) )
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
& ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_1198_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A4 @ B3 )
& ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_1199_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: nat,Z: nat] : ( Y5 = Z ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_1200_antisym,axiom,
! [A: real,B4: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ B4 @ A )
=> ( A = B4 ) ) ) ).
% antisym
thf(fact_1201_antisym,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ A )
=> ( A = B4 ) ) ) ).
% antisym
thf(fact_1202_antisym,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ B4 @ A )
=> ( A = B4 ) ) ) ).
% antisym
thf(fact_1203_dual__order_Otrans,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_eq_real @ B4 @ A )
=> ( ( ord_less_eq_real @ C2 @ B4 )
=> ( ord_less_eq_real @ C2 @ A ) ) ) ).
% dual_order.trans
thf(fact_1204_dual__order_Otrans,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( ord_less_eq_set_a @ C2 @ B4 )
=> ( ord_less_eq_set_a @ C2 @ A ) ) ) ).
% dual_order.trans
thf(fact_1205_dual__order_Otrans,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( ord_less_eq_nat @ C2 @ B4 )
=> ( ord_less_eq_nat @ C2 @ A ) ) ) ).
% dual_order.trans
thf(fact_1206_dual__order_Oantisym,axiom,
! [B4: real,A: real] :
( ( ord_less_eq_real @ B4 @ A )
=> ( ( ord_less_eq_real @ A @ B4 )
=> ( A = B4 ) ) ) ).
% dual_order.antisym
thf(fact_1207_dual__order_Oantisym,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( ord_less_eq_set_a @ A @ B4 )
=> ( A = B4 ) ) ) ).
% dual_order.antisym
thf(fact_1208_dual__order_Oantisym,axiom,
! [B4: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( ord_less_eq_nat @ A @ B4 )
=> ( A = B4 ) ) ) ).
% dual_order.antisym
thf(fact_1209_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: real,Z: real] : ( Y5 = Z ) )
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ B3 @ A4 )
& ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_1210_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ B3 @ A4 )
& ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_1211_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: nat,Z: nat] : ( Y5 = Z ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_1212_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B4: real] :
( ! [A3: real,B2: real] :
( ( ord_less_eq_real @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: real,B2: real] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B4 ) ) ) ).
% linorder_wlog
thf(fact_1213_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B4: nat] :
( ! [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: nat,B2: nat] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B4 ) ) ) ).
% linorder_wlog
thf(fact_1214_order__trans,axiom,
! [X: real,Y: real,Z4: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ Z4 )
=> ( ord_less_eq_real @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_1215_order__trans,axiom,
! [X: set_a,Y: set_a,Z4: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ Z4 )
=> ( ord_less_eq_set_a @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_1216_order__trans,axiom,
! [X: nat,Y: nat,Z4: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z4 )
=> ( ord_less_eq_nat @ X @ Z4 ) ) ) ).
% order_trans
thf(fact_1217_order_Otrans,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ord_less_eq_real @ A @ C2 ) ) ) ).
% order.trans
thf(fact_1218_order_Otrans,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% order.trans
thf(fact_1219_order_Otrans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% order.trans
thf(fact_1220_order__antisym,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_1221_order__antisym,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_1222_order__antisym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_1223_ord__le__eq__trans,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_eq_real @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_eq_real @ A @ C2 ) ) ) ).
% ord_le_eq_trans
thf(fact_1224_ord__le__eq__trans,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% ord_le_eq_trans
thf(fact_1225_ord__le__eq__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% ord_le_eq_trans
thf(fact_1226_ord__eq__le__trans,axiom,
! [A: real,B4: real,C2: real] :
( ( A = B4 )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( ord_less_eq_real @ A @ C2 ) ) ) ).
% ord_eq_le_trans
thf(fact_1227_ord__eq__le__trans,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( A = B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% ord_eq_le_trans
thf(fact_1228_ord__eq__le__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( A = B4 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% ord_eq_le_trans
thf(fact_1229_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: real,Z: real] : ( Y5 = Z ) )
= ( ^ [X2: real,Y3: real] :
( ( ord_less_eq_real @ X2 @ Y3 )
& ( ord_less_eq_real @ Y3 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_1230_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: set_a,Z: set_a] : ( Y5 = Z ) )
= ( ^ [X2: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y3 )
& ( ord_less_eq_set_a @ Y3 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_1231_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: nat,Z: nat] : ( Y5 = Z ) )
= ( ^ [X2: nat,Y3: nat] :
( ( ord_less_eq_nat @ X2 @ Y3 )
& ( ord_less_eq_nat @ Y3 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_1232_le__cases3,axiom,
! [X: real,Y: real,Z4: real] :
( ( ( ord_less_eq_real @ X @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z4 ) )
=> ( ( ( ord_less_eq_real @ Y @ X )
=> ~ ( ord_less_eq_real @ X @ Z4 ) )
=> ( ( ( ord_less_eq_real @ X @ Z4 )
=> ~ ( ord_less_eq_real @ Z4 @ Y ) )
=> ( ( ( ord_less_eq_real @ Z4 @ Y )
=> ~ ( ord_less_eq_real @ Y @ X ) )
=> ( ( ( ord_less_eq_real @ Y @ Z4 )
=> ~ ( ord_less_eq_real @ Z4 @ X ) )
=> ~ ( ( ord_less_eq_real @ Z4 @ X )
=> ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_1233_le__cases3,axiom,
! [X: nat,Y: nat,Z4: nat] :
( ( ( ord_less_eq_nat @ X @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z4 ) )
=> ( ( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_eq_nat @ X @ Z4 ) )
=> ( ( ( ord_less_eq_nat @ X @ Z4 )
=> ~ ( ord_less_eq_nat @ Z4 @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z4 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z4 )
=> ~ ( ord_less_eq_nat @ Z4 @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z4 @ X )
=> ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_1234_nle__le,axiom,
! [A: real,B4: real] :
( ( ~ ( ord_less_eq_real @ A @ B4 ) )
= ( ( ord_less_eq_real @ B4 @ A )
& ( B4 != A ) ) ) ).
% nle_le
thf(fact_1235_nle__le,axiom,
! [A: nat,B4: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B4 ) )
= ( ( ord_less_eq_nat @ B4 @ A )
& ( B4 != A ) ) ) ).
% nle_le
thf(fact_1236_lt__ex,axiom,
! [X: real] :
? [Y4: real] : ( ord_less_real @ Y4 @ X ) ).
% lt_ex
thf(fact_1237_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_1238_gt__ex,axiom,
! [X: real] :
? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).
% gt_ex
thf(fact_1239_dense,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ? [Z2: real] :
( ( ord_less_real @ X @ Z2 )
& ( ord_less_real @ Z2 @ Y ) ) ) ).
% dense
thf(fact_1240_less__imp__neq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1241_less__imp__neq,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_1242_order_Oasym,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ~ ( ord_less_nat @ B4 @ A ) ) ).
% order.asym
thf(fact_1243_order_Oasym,axiom,
! [A: real,B4: real] :
( ( ord_less_real @ A @ B4 )
=> ~ ( ord_less_real @ B4 @ A ) ) ).
% order.asym
thf(fact_1244_ord__eq__less__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( A = B4 )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% ord_eq_less_trans
thf(fact_1245_ord__eq__less__trans,axiom,
! [A: real,B4: real,C2: real] :
( ( A = B4 )
=> ( ( ord_less_real @ B4 @ C2 )
=> ( ord_less_real @ A @ C2 ) ) ) ).
% ord_eq_less_trans
thf(fact_1246_ord__less__eq__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% ord_less_eq_trans
thf(fact_1247_ord__less__eq__trans,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_real @ A @ C2 ) ) ) ).
% ord_less_eq_trans
thf(fact_1248_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X3: nat] :
( ! [Y6: nat] :
( ( ord_less_nat @ Y6 @ X3 )
=> ( P @ Y6 ) )
=> ( P @ X3 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_1249_antisym__conv3,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_nat @ Y @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1250_antisym__conv3,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_real @ Y @ X )
=> ( ( ~ ( ord_less_real @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_1251_linorder__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_1252_linorder__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_1253_dual__order_Oasym,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ~ ( ord_less_nat @ A @ B4 ) ) ).
% dual_order.asym
thf(fact_1254_dual__order_Oasym,axiom,
! [B4: real,A: real] :
( ( ord_less_real @ B4 @ A )
=> ~ ( ord_less_real @ A @ B4 ) ) ).
% dual_order.asym
thf(fact_1255_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_1256_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_1257_exists__least__iff,axiom,
( ( ^ [P3: nat > $o] :
? [X6: nat] : ( P3 @ X6 ) )
= ( ^ [P4: nat > $o] :
? [N4: nat] :
( ( P4 @ N4 )
& ! [M6: nat] :
( ( ord_less_nat @ M6 @ N4 )
=> ~ ( P4 @ M6 ) ) ) ) ) ).
% exists_least_iff
thf(fact_1258_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B4: nat] :
( ! [A3: nat,B2: nat] :
( ( ord_less_nat @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: nat] : ( P @ A3 @ A3 )
=> ( ! [A3: nat,B2: nat] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B4 ) ) ) ) ).
% linorder_less_wlog
thf(fact_1259_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B4: real] :
( ! [A3: real,B2: real] :
( ( ord_less_real @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: real] : ( P @ A3 @ A3 )
=> ( ! [A3: real,B2: real] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B4 ) ) ) ) ).
% linorder_less_wlog
thf(fact_1260_order_Ostrict__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% order.strict_trans
thf(fact_1261_order_Ostrict__trans,axiom,
! [A: real,B4: real,C2: real] :
( ( ord_less_real @ A @ B4 )
=> ( ( ord_less_real @ B4 @ C2 )
=> ( ord_less_real @ A @ C2 ) ) ) ).
% order.strict_trans
thf(fact_1262_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ( ord_less_nat @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1263_not__less__iff__gr__or__eq,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_real @ X @ Y ) )
= ( ( ord_less_real @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1264_dual__order_Ostrict__trans,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ( ord_less_nat @ C2 @ B4 )
=> ( ord_less_nat @ C2 @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1265_dual__order_Ostrict__trans,axiom,
! [B4: real,A: real,C2: real] :
( ( ord_less_real @ B4 @ A )
=> ( ( ord_less_real @ C2 @ B4 )
=> ( ord_less_real @ C2 @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1266_sumset__subset__Un_I2_J,axiom,
! [A2: set_a,B: set_a,C: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ C ) @ B ) ) ).
% sumset_subset_Un(2)
thf(fact_1267_sumset__subset__Un_I1_J,axiom,
! [A2: set_a,B: set_a,C: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).
% sumset_subset_Un(1)
thf(fact_1268_sumset__subset__Un2,axiom,
! [A2: set_a,B: set_a,B5: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B @ B5 ) )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B5 ) ) ) ).
% sumset_subset_Un2
thf(fact_1269_sumset__subset__Un1,axiom,
! [A2: set_a,A5: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B ) ) ) ).
% sumset_subset_Un1
% Helper facts (5)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ a3 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ b @ r ) ) ) ) @ ( times_times_real @ ( power_power_real @ k2 @ r ) @ ( semiri5074537144036343181t_real @ ( finite_card_a @ a3 ) ) ) ).
%------------------------------------------------------------------------------