TPTP Problem File: SLH0780^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Pluennecke_Ruzsa_Inequality/0003_Pluennecke_Ruzsa_Inequality/prob_00238_008019__12139924_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1376 ( 489 unt; 103 typ;   0 def)
%            Number of atoms       : 3813 (1202 equ;   0 cnn)
%            Maximal formula atoms :   13 (   2 avg)
%            Number of connectives : 12742 ( 390   ~;  55   |; 293   &;10110   @)
%                                         (   0 <=>;1894  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   7 avg)
%            Number of types       :    9 (   8 usr)
%            Number of type conns  :  789 ( 789   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   96 (  95 usr;  14 con; 0-5 aty)
%            Number of variables   : 3737 ( 156   ^;3457   !; 124   ?;3737   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:20:10.014
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
    set_Product_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Product____Type__Ounit,type,
    product_unit: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (95)
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
    finite410649719033368117t_unit: set_Product_unit > nat ).

thf(sy_c_Finite__Set_Ocard_001tf__a,type,
    finite_card_a: set_a > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Ounit,type,
    finite4290736615968046902t_unit: set_Product_unit > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
    finite_finite_set_a: set_set_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Group__Theory_Oabelian__group_001tf__a,type,
    group_201663378560352916roup_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Ocommutative__monoid_001t__Nat__Onat,type,
    group_6791354081887936081id_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Ocommutative__monoid_001tf__a,type,
    group_4866109990395492029noid_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Ogroup_001t__Nat__Onat,type,
    group_group_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Ogroup_001tf__a,type,
    group_group_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Omonoid_001t__Nat__Onat,type,
    group_monoid_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Omonoid_001tf__a,type,
    group_monoid_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Omonoid_OUnits_001t__Nat__Onat,type,
    group_Units_nat: set_nat > ( nat > nat > nat ) > nat > set_nat ).

thf(sy_c_Group__Theory_Omonoid_OUnits_001tf__a,type,
    group_Units_a: set_a > ( a > a > a ) > a > set_a ).

thf(sy_c_Group__Theory_Omonoid_Oinverse_001t__Nat__Onat,type,
    group_inverse_nat: set_nat > ( nat > nat > nat ) > nat > nat > nat ).

thf(sy_c_Group__Theory_Omonoid_Oinverse_001tf__a,type,
    group_inverse_a: set_a > ( a > a > a ) > a > a > a ).

thf(sy_c_Group__Theory_Omonoid_Oinvertible_001t__Nat__Onat,type,
    group_invertible_nat: set_nat > ( nat > nat > nat ) > nat > nat > $o ).

thf(sy_c_Group__Theory_Omonoid_Oinvertible_001tf__a,type,
    group_invertible_a: set_a > ( a > a > a ) > a > a > $o ).

thf(sy_c_Group__Theory_Osubgroup_001t__Nat__Onat,type,
    group_subgroup_nat: set_nat > set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Osubgroup_001tf__a,type,
    group_subgroup_a: set_a > set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    minus_6452836326544984404t_unit: set_Product_unit > set_Product_unit > set_Product_unit ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    nO_MATCH_set_a_set_a: set_a > set_a > $o ).

thf(sy_c_HOL_Oundefined_001t__Nat__Onat,type,
    undefined_nat: nat ).

thf(sy_c_HOL_Oundefined_001tf__a,type,
    undefined_a: a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    inf_in4660618365625256667t_unit: set_Product_unit > set_Product_unit > set_Product_unit ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Nat__Onat,type,
    lattic7446932960582359483at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001tf__a_001t__Nat__Onat,type,
    lattic6340287419671400565_a_nat: ( a > nat ) > set_a > a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    bot_bo3957492148770167129t_unit: set_Product_unit ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    ord_le3507040750410214029t_unit: set_Product_unit > set_Product_unit > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    top_to1996260823553986621t_unit: set_Product_unit ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Nat__Onat,type,
    pluenn2073725187428264546up_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Product____Type__Ounit,type,
    pluenn3635716580025208315t_unit: set_Product_unit > ( product_unit > product_unit > product_unit ) > product_unit > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001tf__a,type,
    pluenn1164192988769422572roup_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Nat__Onat,type,
    pluenn3669378163024332905et_nat: set_nat > ( nat > nat > nat ) > set_nat > set_nat > set_nat ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Product____Type__Ounit,type,
    pluenn1407455289632237236t_unit: set_Product_unit > ( product_unit > product_unit > product_unit ) > set_Product_unit > set_Product_unit > set_Product_unit ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001tf__a,type,
    pluenn3038260743871226533mset_a: set_a > ( a > a > a ) > set_a > set_a > set_a ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset__iterated_001tf__a,type,
    pluenn1960970773371692859ated_a: set_a > ( a > a > a ) > a > set_a > nat > set_a ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001t__Nat__Onat,type,
    pluenn5670965976768739049tp_nat: set_nat > ( nat > nat > nat ) > ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001tf__a,type,
    pluenn895083305082786853setp_a: set_a > ( a > a > a ) > ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Product____Type__Ounit,type,
    image_8730104196221521654t_unit: ( nat > product_unit ) > set_nat > set_Product_unit ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001tf__a,type,
    image_nat_a: ( nat > a ) > set_nat > set_a ).

thf(sy_c_Set_Oimage_001t__Product____Type__Ounit_001t__Product____Type__Ounit,type,
    image_405062704495631173t_unit: ( product_unit > product_unit ) > set_Product_unit > set_Product_unit ).

thf(sy_c_Set_Oimage_001t__Product____Type__Ounit_001tf__a,type,
    image_Product_unit_a: ( product_unit > a ) > set_Product_unit > set_a ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7916887816326733075et_nat: ( set_nat > set_nat ) > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    image_set_a_set_a: ( set_a > set_a ) > set_set_a > set_set_a ).

thf(sy_c_Set_Oimage_001tf__a_001t__Nat__Onat,type,
    image_a_nat: ( a > nat ) > set_a > set_nat ).

thf(sy_c_Set_Oimage_001tf__a_001t__Product____Type__Ounit,type,
    image_a_Product_unit: ( a > product_unit ) > set_a > set_Product_unit ).

thf(sy_c_Set_Oimage_001tf__a_001tf__a,type,
    image_a_a: ( a > a ) > set_a > set_a ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Ounit,type,
    insert_Product_unit: product_unit > set_Product_unit > set_Product_unit ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Ois__singleton_001t__Nat__Onat,type,
    is_singleton_nat: set_nat > $o ).

thf(sy_c_Set_Ois__singleton_001t__Product____Type__Ounit,type,
    is_sin2160648248035936513t_unit: set_Product_unit > $o ).

thf(sy_c_Set_Ois__singleton_001tf__a,type,
    is_singleton_a: set_a > $o ).

thf(sy_c_Set_Othe__elem_001t__Nat__Onat,type,
    the_elem_nat: set_nat > nat ).

thf(sy_c_Set_Othe__elem_001tf__a,type,
    the_elem_a: set_a > a ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Product____Type__Ounit,type,
    member_Product_unit: product_unit > set_Product_unit > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_A,type,
    a2: set_a ).

thf(sy_v_G,type,
    g: set_a ).

thf(sy_v_addition,type,
    addition: a > a > a ).

thf(sy_v_r,type,
    r: nat ).

thf(sy_v_zero,type,
    zero: a ).

% Relevant facts (1271)
thf(fact_0_commutative,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ g )
     => ( ( member_a @ Y @ g )
       => ( ( addition @ X @ Y )
          = ( addition @ Y @ X ) ) ) ) ).

% commutative
thf(fact_1_local_Oinverse__unique,axiom,
    ! [U: a,V: a,V2: a] :
      ( ( ( addition @ U @ V )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( ( member_a @ V @ g )
             => ( V2 = V ) ) ) ) ) ) ).

% local.inverse_unique
thf(fact_2_associative,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ g )
     => ( ( member_a @ B @ g )
       => ( ( member_a @ C @ g )
         => ( ( addition @ ( addition @ A @ B ) @ C )
            = ( addition @ A @ ( addition @ B @ C ) ) ) ) ) ) ).

% associative
thf(fact_3_composition__closed,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ g )
     => ( ( member_a @ B @ g )
       => ( member_a @ ( addition @ A @ B ) @ g ) ) ) ).

% composition_closed
thf(fact_4_unit__closed,axiom,
    member_a @ zero @ g ).

% unit_closed
thf(fact_5_left__unit,axiom,
    ! [A: a] :
      ( ( member_a @ A @ g )
     => ( ( addition @ zero @ A )
        = A ) ) ).

% left_unit
thf(fact_6_right__unit,axiom,
    ! [A: a] :
      ( ( member_a @ A @ g )
     => ( ( addition @ A @ zero )
        = A ) ) ).

% right_unit
thf(fact_7_additive__abelian__group__axioms,axiom,
    pluenn1164192988769422572roup_a @ g @ addition @ zero ).

% additive_abelian_group_axioms
thf(fact_8_commutative__monoid__axioms,axiom,
    group_4866109990395492029noid_a @ g @ addition @ zero ).

% commutative_monoid_axioms
thf(fact_9_additive__abelian__group_Osumset__iterated_Ocong,axiom,
    pluenn1960970773371692859ated_a = pluenn1960970773371692859ated_a ).

% additive_abelian_group.sumset_iterated.cong
thf(fact_10_abelian__group__axioms,axiom,
    group_201663378560352916roup_a @ g @ addition @ zero ).

% abelian_group_axioms
thf(fact_11_sumsetp_Ocases,axiom,
    ! [A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B2 @ A )
     => ~ ! [A3: a,B3: a] :
            ( ( A
              = ( addition @ A3 @ B3 ) )
           => ( ( A2 @ A3 )
             => ( ( member_a @ A3 @ g )
               => ( ( B2 @ B3 )
                 => ~ ( member_a @ B3 @ g ) ) ) ) ) ) ).

% sumsetp.cases
thf(fact_12_sumsetp_Osimps,axiom,
    ! [A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B2 @ A )
      = ( ? [A4: a,B4: a] :
            ( ( A
              = ( addition @ A4 @ B4 ) )
            & ( A2 @ A4 )
            & ( member_a @ A4 @ g )
            & ( B2 @ B4 )
            & ( member_a @ B4 @ g ) ) ) ) ).

% sumsetp.simps
thf(fact_13_sumsetp_OsumsetI,axiom,
    ! [A2: a > $o,A: a,B2: a > $o,B: a] :
      ( ( A2 @ A )
     => ( ( member_a @ A @ g )
       => ( ( B2 @ B )
         => ( ( member_a @ B @ g )
           => ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B2 @ ( addition @ A @ B ) ) ) ) ) ) ).

% sumsetp.sumsetI
thf(fact_14_sumset__iterated__subset__carrier,axiom,
    ! [A2: set_a,K: nat] : ( ord_less_eq_set_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) @ g ) ).

% sumset_iterated_subset_carrier
thf(fact_15_group__axioms,axiom,
    group_group_a @ g @ addition @ zero ).

% group_axioms
thf(fact_16_invertibleE,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ! [V3: a] :
            ( ( ( ( addition @ U @ V3 )
                = zero )
              & ( ( addition @ V3 @ U )
                = zero ) )
           => ~ ( member_a @ V3 @ g ) )
       => ~ ( member_a @ U @ g ) ) ) ).

% invertibleE
thf(fact_17_invertible__def,axiom,
    ! [U: a] :
      ( ( member_a @ U @ g )
     => ( ( group_invertible_a @ g @ addition @ zero @ U )
        = ( ? [X2: a] :
              ( ( member_a @ X2 @ g )
              & ( ( addition @ U @ X2 )
                = zero )
              & ( ( addition @ X2 @ U )
                = zero ) ) ) ) ) ).

% invertible_def
thf(fact_18_unit__invertible,axiom,
    group_invertible_a @ g @ addition @ zero @ zero ).

% unit_invertible
thf(fact_19_inverse__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ g )
     => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ X ) @ g ) ) ).

% inverse_closed
thf(fact_20_inverse__equality,axiom,
    ! [U: a,V2: a] :
      ( ( ( addition @ U @ V2 )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( ( group_inverse_a @ g @ addition @ zero @ U )
              = V2 ) ) ) ) ) ).

% inverse_equality
thf(fact_21_invertible__right__inverse2,axiom,
    ! [U: a,V2: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( member_a @ V2 @ g )
         => ( ( addition @ U @ ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ V2 ) )
            = V2 ) ) ) ) ).

% invertible_right_inverse2
thf(fact_22_invertible__left__inverse2,axiom,
    ! [U: a,V2: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( member_a @ V2 @ g )
         => ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ ( addition @ U @ V2 ) )
            = V2 ) ) ) ) ).

% invertible_left_inverse2
thf(fact_23_inverse__composition__commute,axiom,
    ! [X: a,Y: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( group_invertible_a @ g @ addition @ zero @ Y )
       => ( ( member_a @ X @ g )
         => ( ( member_a @ Y @ g )
           => ( ( group_inverse_a @ g @ addition @ zero @ ( addition @ X @ Y ) )
              = ( addition @ ( group_inverse_a @ g @ addition @ zero @ Y ) @ ( group_inverse_a @ g @ addition @ zero @ X ) ) ) ) ) ) ) ).

% inverse_composition_commute
thf(fact_24_invertible__right__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( member_a @ X @ g )
       => ( ( member_a @ Y @ g )
         => ( ( member_a @ Z @ g )
           => ( ( ( addition @ Y @ X )
                = ( addition @ Z @ X ) )
              = ( Y = Z ) ) ) ) ) ) ).

% invertible_right_cancel
thf(fact_25_invertible__left__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( member_a @ X @ g )
       => ( ( member_a @ Y @ g )
         => ( ( member_a @ Z @ g )
           => ( ( ( addition @ X @ Y )
                = ( addition @ X @ Z ) )
              = ( Y = Z ) ) ) ) ) ) ).

% invertible_left_cancel
thf(fact_26_invertibleI,axiom,
    ! [U: a,V2: a] :
      ( ( ( addition @ U @ V2 )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( group_invertible_a @ g @ addition @ zero @ U ) ) ) ) ) ).

% invertibleI
thf(fact_27_invertible,axiom,
    ! [U: a] :
      ( ( member_a @ U @ g )
     => ( group_invertible_a @ g @ addition @ zero @ U ) ) ).

% invertible
thf(fact_28_composition__invertible,axiom,
    ! [X: a,Y: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( group_invertible_a @ g @ addition @ zero @ Y )
       => ( ( member_a @ X @ g )
         => ( ( member_a @ Y @ g )
           => ( group_invertible_a @ g @ addition @ zero @ ( addition @ X @ Y ) ) ) ) ) ) ).

% composition_invertible
thf(fact_29_inverse__unit,axiom,
    ( ( group_inverse_a @ g @ addition @ zero @ zero )
    = zero ) ).

% inverse_unit
thf(fact_30_invertible__right__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( addition @ U @ ( group_inverse_a @ g @ addition @ zero @ U ) )
          = zero ) ) ) ).

% invertible_right_inverse
thf(fact_31_invertible__left__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ U )
          = zero ) ) ) ).

% invertible_left_inverse
thf(fact_32_invertible__inverse__invertible,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( group_invertible_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) ) ) ) ).

% invertible_inverse_invertible
thf(fact_33_invertible__inverse__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( group_inverse_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) )
          = U ) ) ) ).

% invertible_inverse_inverse
thf(fact_34_invertible__inverse__closed,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ U ) @ g ) ) ) ).

% invertible_inverse_closed
thf(fact_35_additive__abelian__group_Ointro,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( group_201663378560352916roup_a @ G @ Addition @ Zero )
     => ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero ) ) ).

% additive_abelian_group.intro
thf(fact_36_additive__abelian__group_Oaxioms,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( group_201663378560352916roup_a @ G @ Addition @ Zero ) ) ).

% additive_abelian_group.axioms
thf(fact_37_additive__abelian__group_Osumsetp_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,B2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B2 @ A )
       => ~ ! [A3: nat,B3: nat] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( A2 @ A3 )
               => ( ( member_nat @ A3 @ G )
                 => ( ( B2 @ B3 )
                   => ~ ( member_nat @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.cases
thf(fact_38_additive__abelian__group_Osumsetp_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B2 @ A )
       => ~ ! [A3: a,B3: a] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( A2 @ A3 )
               => ( ( member_a @ A3 @ G )
                 => ( ( B2 @ B3 )
                   => ~ ( member_a @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.cases
thf(fact_39_additive__abelian__group_Osumsetp_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,B2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B2 @ A )
        = ( ? [A4: nat,B4: nat] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( A2 @ A4 )
              & ( member_nat @ A4 @ G )
              & ( B2 @ B4 )
              & ( member_nat @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumsetp.simps
thf(fact_40_additive__abelian__group_Osumsetp_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B2 @ A )
        = ( ? [A4: a,B4: a] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( A2 @ A4 )
              & ( member_a @ A4 @ G )
              & ( B2 @ B4 )
              & ( member_a @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumsetp.simps
thf(fact_41_additive__abelian__group_Oinverse__closed,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,X: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ X @ G )
       => ( member_nat @ ( group_inverse_nat @ G @ Addition @ Zero @ X ) @ G ) ) ) ).

% additive_abelian_group.inverse_closed
thf(fact_42_additive__abelian__group_Oinverse__closed,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ X @ G )
       => ( member_a @ ( group_inverse_a @ G @ Addition @ Zero @ X ) @ G ) ) ) ).

% additive_abelian_group.inverse_closed
thf(fact_43_additive__abelian__group_Osumsetp_OsumsetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,A: nat,B2: nat > $o,B: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_nat @ A @ G )
         => ( ( B2 @ B )
           => ( ( member_nat @ B @ G )
             => ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B2 @ ( Addition @ A @ B ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.sumsetI
thf(fact_44_additive__abelian__group_Osumsetp_OsumsetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a,B2: a > $o,B: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_a @ A @ G )
         => ( ( B2 @ B )
           => ( ( member_a @ B @ G )
             => ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B2 @ ( Addition @ A @ B ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.sumsetI
thf(fact_45_additive__abelian__group__def,axiom,
    pluenn1164192988769422572roup_a = group_201663378560352916roup_a ).

% additive_abelian_group_def
thf(fact_46_additive__abelian__group_Osumsetp_Ocong,axiom,
    pluenn895083305082786853setp_a = pluenn895083305082786853setp_a ).

% additive_abelian_group.sumsetp.cong
thf(fact_47_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_48_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_49_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_50_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_51_additive__abelian__group_Osumset__iterated__subset__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) @ G ) ) ).

% additive_abelian_group.sumset_iterated_subset_carrier
thf(fact_52_mem__UnitsI,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) ) ) ) ).

% mem_UnitsI
thf(fact_53_mem__UnitsD,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) )
     => ( ( group_invertible_a @ g @ addition @ zero @ U )
        & ( member_a @ U @ g ) ) ) ).

% mem_UnitsD
thf(fact_54_subgroupI,axiom,
    ! [G: set_a] :
      ( ( ord_less_eq_set_a @ G @ g )
     => ( ( member_a @ zero @ G )
       => ( ! [G2: a,H: a] :
              ( ( member_a @ G2 @ G )
             => ( ( member_a @ H @ G )
               => ( member_a @ ( addition @ G2 @ H ) @ G ) ) )
         => ( ! [G2: a] :
                ( ( member_a @ G2 @ G )
               => ( group_invertible_a @ g @ addition @ zero @ G2 ) )
           => ( ! [G2: a] :
                  ( ( member_a @ G2 @ G )
                 => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ G2 ) @ G ) )
             => ( group_subgroup_a @ G @ g @ addition @ zero ) ) ) ) ) ) ).

% subgroupI
thf(fact_55_group__of__Units,axiom,
    group_group_a @ ( group_Units_a @ g @ addition @ zero ) @ addition @ zero ).

% group_of_Units
thf(fact_56_abelian__group_Ointro,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( group_4866109990395492029noid_a @ G @ Composition @ Unit )
       => ( group_201663378560352916roup_a @ G @ Composition @ Unit ) ) ) ).

% abelian_group.intro
thf(fact_57_abelian__group__def,axiom,
    ( group_201663378560352916roup_a
    = ( ^ [G3: set_a,Composition2: a > a > a,Unit2: a] :
          ( ( group_group_a @ G3 @ Composition2 @ Unit2 )
          & ( group_4866109990395492029noid_a @ G3 @ Composition2 @ Unit2 ) ) ) ) ).

% abelian_group_def
thf(fact_58_monoid__axioms,axiom,
    group_monoid_a @ g @ addition @ zero ).

% monoid_axioms
thf(fact_59_abelian__group_Oaxioms_I2_J,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_201663378560352916roup_a @ G @ Composition @ Unit )
     => ( group_4866109990395492029noid_a @ G @ Composition @ Unit ) ) ).

% abelian_group.axioms(2)
thf(fact_60_sumset__subset__carrier,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ g ) ).

% sumset_subset_carrier
thf(fact_61_sumset__mono,axiom,
    ! [A5: set_a,A2: set_a,B5: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A5 @ A2 )
     => ( ( ord_less_eq_set_a @ B5 @ B2 )
       => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% sumset_mono
thf(fact_62_finite__sumset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% finite_sumset
thf(fact_63_sumset_Ocases,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
     => ~ ! [A3: a,B3: a] :
            ( ( A
              = ( addition @ A3 @ B3 ) )
           => ( ( member_a @ A3 @ A2 )
             => ( ( member_a @ A3 @ g )
               => ( ( member_a @ B3 @ B2 )
                 => ~ ( member_a @ B3 @ g ) ) ) ) ) ) ).

% sumset.cases
thf(fact_64_sumset_Osimps,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
      = ( ? [A4: a,B4: a] :
            ( ( A
              = ( addition @ A4 @ B4 ) )
            & ( member_a @ A4 @ A2 )
            & ( member_a @ A4 @ g )
            & ( member_a @ B4 @ B2 )
            & ( member_a @ B4 @ g ) ) ) ) ).

% sumset.simps
thf(fact_65_sumset_OsumsetI,axiom,
    ! [A: a,A2: set_a,B: a,B2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( member_a @ A @ g )
       => ( ( member_a @ B @ B2 )
         => ( ( member_a @ B @ g )
           => ( member_a @ ( addition @ A @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ) ) ).

% sumset.sumsetI
thf(fact_66_sumset__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ C2 )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ C2 ) ) ) ).

% sumset_assoc
thf(fact_67_sumset__commute,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ A2 ) ) ).

% sumset_commute
thf(fact_68_subgroup__transitive,axiom,
    ! [K2: set_a,H2: set_a,Composition: a > a > a,Unit: a,G: set_a] :
      ( ( group_subgroup_a @ K2 @ H2 @ Composition @ Unit )
     => ( ( group_subgroup_a @ H2 @ G @ Composition @ Unit )
       => ( group_subgroup_a @ K2 @ G @ Composition @ Unit ) ) ) ).

% subgroup_transitive
thf(fact_69_Group__Theory_Omonoid__def,axiom,
    ( group_monoid_nat
    = ( ^ [M: set_nat,Composition2: nat > nat > nat,Unit2: nat] :
          ( ! [A4: nat,B4: nat] :
              ( ( member_nat @ A4 @ M )
             => ( ( member_nat @ B4 @ M )
               => ( member_nat @ ( Composition2 @ A4 @ B4 ) @ M ) ) )
          & ( member_nat @ Unit2 @ M )
          & ! [A4: nat,B4: nat,C3: nat] :
              ( ( member_nat @ A4 @ M )
             => ( ( member_nat @ B4 @ M )
               => ( ( member_nat @ C3 @ M )
                 => ( ( Composition2 @ ( Composition2 @ A4 @ B4 ) @ C3 )
                    = ( Composition2 @ A4 @ ( Composition2 @ B4 @ C3 ) ) ) ) ) )
          & ! [A4: nat] :
              ( ( member_nat @ A4 @ M )
             => ( ( Composition2 @ Unit2 @ A4 )
                = A4 ) )
          & ! [A4: nat] :
              ( ( member_nat @ A4 @ M )
             => ( ( Composition2 @ A4 @ Unit2 )
                = A4 ) ) ) ) ) ).

% Group_Theory.monoid_def
thf(fact_70_Group__Theory_Omonoid__def,axiom,
    ( group_monoid_a
    = ( ^ [M: set_a,Composition2: a > a > a,Unit2: a] :
          ( ! [A4: a,B4: a] :
              ( ( member_a @ A4 @ M )
             => ( ( member_a @ B4 @ M )
               => ( member_a @ ( Composition2 @ A4 @ B4 ) @ M ) ) )
          & ( member_a @ Unit2 @ M )
          & ! [A4: a,B4: a,C3: a] :
              ( ( member_a @ A4 @ M )
             => ( ( member_a @ B4 @ M )
               => ( ( member_a @ C3 @ M )
                 => ( ( Composition2 @ ( Composition2 @ A4 @ B4 ) @ C3 )
                    = ( Composition2 @ A4 @ ( Composition2 @ B4 @ C3 ) ) ) ) ) )
          & ! [A4: a] :
              ( ( member_a @ A4 @ M )
             => ( ( Composition2 @ Unit2 @ A4 )
                = A4 ) )
          & ! [A4: a] :
              ( ( member_a @ A4 @ M )
             => ( ( Composition2 @ A4 @ Unit2 )
                = A4 ) ) ) ) ) ).

% Group_Theory.monoid_def
thf(fact_71_additive__abelian__group_Osumset_Ocong,axiom,
    pluenn3038260743871226533mset_a = pluenn3038260743871226533mset_a ).

% additive_abelian_group.sumset.cong
thf(fact_72_monoid_Ocomposition__closed,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,A: nat,B: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ A @ M2 )
       => ( ( member_nat @ B @ M2 )
         => ( member_nat @ ( Composition @ A @ B ) @ M2 ) ) ) ) ).

% monoid.composition_closed
thf(fact_73_monoid_Ocomposition__closed,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,A: a,B: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ A @ M2 )
       => ( ( member_a @ B @ M2 )
         => ( member_a @ ( Composition @ A @ B ) @ M2 ) ) ) ) ).

% monoid.composition_closed
thf(fact_74_monoid_Oinverse__unique,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V: nat,V2: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( ( Composition @ U @ V )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_nat @ U @ M2 )
           => ( ( member_nat @ V2 @ M2 )
             => ( ( member_nat @ V @ M2 )
               => ( V2 = V ) ) ) ) ) ) ) ).

% monoid.inverse_unique
thf(fact_75_monoid_Oinverse__unique,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a,V: a,V2: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( ( Composition @ U @ V )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_a @ U @ M2 )
           => ( ( member_a @ V2 @ M2 )
             => ( ( member_a @ V @ M2 )
               => ( V2 = V ) ) ) ) ) ) ) ).

% monoid.inverse_unique
thf(fact_76_monoid_Ounit__closed,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( member_nat @ Unit @ M2 ) ) ).

% monoid.unit_closed
thf(fact_77_monoid_Ounit__closed,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( member_a @ Unit @ M2 ) ) ).

% monoid.unit_closed
thf(fact_78_monoid_Oassociative,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,A: nat,B: nat,C: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ A @ M2 )
       => ( ( member_nat @ B @ M2 )
         => ( ( member_nat @ C @ M2 )
           => ( ( Composition @ ( Composition @ A @ B ) @ C )
              = ( Composition @ A @ ( Composition @ B @ C ) ) ) ) ) ) ) ).

% monoid.associative
thf(fact_79_monoid_Oassociative,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,A: a,B: a,C: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ A @ M2 )
       => ( ( member_a @ B @ M2 )
         => ( ( member_a @ C @ M2 )
           => ( ( Composition @ ( Composition @ A @ B ) @ C )
              = ( Composition @ A @ ( Composition @ B @ C ) ) ) ) ) ) ) ).

% monoid.associative
thf(fact_80_monoid_Oright__unit,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,A: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ A @ M2 )
       => ( ( Composition @ A @ Unit )
          = A ) ) ) ).

% monoid.right_unit
thf(fact_81_monoid_Oright__unit,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,A: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ A @ M2 )
       => ( ( Composition @ A @ Unit )
          = A ) ) ) ).

% monoid.right_unit
thf(fact_82_monoid_OUnits_Ocong,axiom,
    group_Units_a = group_Units_a ).

% monoid.Units.cong
thf(fact_83_monoid_Oleft__unit,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,A: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ A @ M2 )
       => ( ( Composition @ Unit @ A )
          = A ) ) ) ).

% monoid.left_unit
thf(fact_84_monoid_Oleft__unit,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,A: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ A @ M2 )
       => ( ( Composition @ Unit @ A )
          = A ) ) ) ).

% monoid.left_unit
thf(fact_85_Group__Theory_Omonoid_Ointro,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( member_nat @ A3 @ M2 )
         => ( ( member_nat @ B3 @ M2 )
           => ( member_nat @ ( Composition @ A3 @ B3 ) @ M2 ) ) )
     => ( ( member_nat @ Unit @ M2 )
       => ( ! [A3: nat,B3: nat,C4: nat] :
              ( ( member_nat @ A3 @ M2 )
             => ( ( member_nat @ B3 @ M2 )
               => ( ( member_nat @ C4 @ M2 )
                 => ( ( Composition @ ( Composition @ A3 @ B3 ) @ C4 )
                    = ( Composition @ A3 @ ( Composition @ B3 @ C4 ) ) ) ) ) )
         => ( ! [A3: nat] :
                ( ( member_nat @ A3 @ M2 )
               => ( ( Composition @ Unit @ A3 )
                  = A3 ) )
           => ( ! [A3: nat] :
                  ( ( member_nat @ A3 @ M2 )
                 => ( ( Composition @ A3 @ Unit )
                    = A3 ) )
             => ( group_monoid_nat @ M2 @ Composition @ Unit ) ) ) ) ) ) ).

% Group_Theory.monoid.intro
thf(fact_86_Group__Theory_Omonoid_Ointro,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a] :
      ( ! [A3: a,B3: a] :
          ( ( member_a @ A3 @ M2 )
         => ( ( member_a @ B3 @ M2 )
           => ( member_a @ ( Composition @ A3 @ B3 ) @ M2 ) ) )
     => ( ( member_a @ Unit @ M2 )
       => ( ! [A3: a,B3: a,C4: a] :
              ( ( member_a @ A3 @ M2 )
             => ( ( member_a @ B3 @ M2 )
               => ( ( member_a @ C4 @ M2 )
                 => ( ( Composition @ ( Composition @ A3 @ B3 ) @ C4 )
                    = ( Composition @ A3 @ ( Composition @ B3 @ C4 ) ) ) ) ) )
         => ( ! [A3: a] :
                ( ( member_a @ A3 @ M2 )
               => ( ( Composition @ Unit @ A3 )
                  = A3 ) )
           => ( ! [A3: a] :
                  ( ( member_a @ A3 @ M2 )
                 => ( ( Composition @ A3 @ Unit )
                    = A3 ) )
             => ( group_monoid_a @ M2 @ Composition @ Unit ) ) ) ) ) ) ).

% Group_Theory.monoid.intro
thf(fact_87_monoid_Omem__UnitsI,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( member_nat @ U @ ( group_Units_nat @ M2 @ Composition @ Unit ) ) ) ) ) ).

% monoid.mem_UnitsI
thf(fact_88_monoid_Omem__UnitsI,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( member_a @ U @ ( group_Units_a @ M2 @ Composition @ Unit ) ) ) ) ) ).

% monoid.mem_UnitsI
thf(fact_89_monoid_Omem__UnitsD,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ U @ ( group_Units_nat @ M2 @ Composition @ Unit ) )
       => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
          & ( member_nat @ U @ M2 ) ) ) ) ).

% monoid.mem_UnitsD
thf(fact_90_monoid_Omem__UnitsD,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ U @ ( group_Units_a @ M2 @ Composition @ Unit ) )
       => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
          & ( member_a @ U @ M2 ) ) ) ) ).

% monoid.mem_UnitsD
thf(fact_91_monoid_Ogroup__of__Units,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( group_group_a @ ( group_Units_a @ M2 @ Composition @ Unit ) @ Composition @ Unit ) ) ).

% monoid.group_of_Units
thf(fact_92_monoid_Oinverse__equality,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( ( Composition @ U @ V2 )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_nat @ U @ M2 )
           => ( ( member_nat @ V2 @ M2 )
             => ( ( group_inverse_nat @ M2 @ Composition @ Unit @ U )
                = V2 ) ) ) ) ) ) ).

% monoid.inverse_equality
thf(fact_93_monoid_Oinverse__equality,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( ( Composition @ U @ V2 )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_a @ U @ M2 )
           => ( ( member_a @ V2 @ M2 )
             => ( ( group_inverse_a @ M2 @ Composition @ Unit @ U )
                = V2 ) ) ) ) ) ) ).

% monoid.inverse_equality
thf(fact_94_monoid_Oinverse__unit,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_inverse_a @ M2 @ Composition @ Unit @ Unit )
        = Unit ) ) ).

% monoid.inverse_unit
thf(fact_95_monoid_Oinvertible__right__cancel,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat,Z: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ X )
       => ( ( member_nat @ X @ M2 )
         => ( ( member_nat @ Y @ M2 )
           => ( ( member_nat @ Z @ M2 )
             => ( ( ( Composition @ Y @ X )
                  = ( Composition @ Z @ X ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_right_cancel
thf(fact_96_monoid_Oinvertible__right__cancel,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,X: a,Y: a,Z: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ X )
       => ( ( member_a @ X @ M2 )
         => ( ( member_a @ Y @ M2 )
           => ( ( member_a @ Z @ M2 )
             => ( ( ( Composition @ Y @ X )
                  = ( Composition @ Z @ X ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_right_cancel
thf(fact_97_monoid_Oinvertible__left__cancel,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat,Z: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ X )
       => ( ( member_nat @ X @ M2 )
         => ( ( member_nat @ Y @ M2 )
           => ( ( member_nat @ Z @ M2 )
             => ( ( ( Composition @ X @ Y )
                  = ( Composition @ X @ Z ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_left_cancel
thf(fact_98_monoid_Oinvertible__left__cancel,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,X: a,Y: a,Z: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ X )
       => ( ( member_a @ X @ M2 )
         => ( ( member_a @ Y @ M2 )
           => ( ( member_a @ Z @ M2 )
             => ( ( ( Composition @ X @ Y )
                  = ( Composition @ X @ Z ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_left_cancel
thf(fact_99_monoid_Ocomposition__invertible,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ X )
       => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ Y )
         => ( ( member_nat @ X @ M2 )
           => ( ( member_nat @ Y @ M2 )
             => ( group_invertible_nat @ M2 @ Composition @ Unit @ ( Composition @ X @ Y ) ) ) ) ) ) ) ).

% monoid.composition_invertible
thf(fact_100_monoid_Ocomposition__invertible,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,X: a,Y: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ X )
       => ( ( group_invertible_a @ M2 @ Composition @ Unit @ Y )
         => ( ( member_a @ X @ M2 )
           => ( ( member_a @ Y @ M2 )
             => ( group_invertible_a @ M2 @ Composition @ Unit @ ( Composition @ X @ Y ) ) ) ) ) ) ) ).

% monoid.composition_invertible
thf(fact_101_monoid_Ounit__invertible,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( group_invertible_a @ M2 @ Composition @ Unit @ Unit ) ) ).

% monoid.unit_invertible
thf(fact_102_monoid_Oinvertible__def,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ U @ M2 )
       => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
          = ( ? [X2: nat] :
                ( ( member_nat @ X2 @ M2 )
                & ( ( Composition @ U @ X2 )
                  = Unit )
                & ( ( Composition @ X2 @ U )
                  = Unit ) ) ) ) ) ) ).

% monoid.invertible_def
thf(fact_103_monoid_Oinvertible__def,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ U @ M2 )
       => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
          = ( ? [X2: a] :
                ( ( member_a @ X2 @ M2 )
                & ( ( Composition @ U @ X2 )
                  = Unit )
                & ( ( Composition @ X2 @ U )
                  = Unit ) ) ) ) ) ) ).

% monoid.invertible_def
thf(fact_104_monoid_OinvertibleI,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( ( Composition @ U @ V2 )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_nat @ U @ M2 )
           => ( ( member_nat @ V2 @ M2 )
             => ( group_invertible_nat @ M2 @ Composition @ Unit @ U ) ) ) ) ) ) ).

% monoid.invertibleI
thf(fact_105_monoid_OinvertibleI,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( ( Composition @ U @ V2 )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_a @ U @ M2 )
           => ( ( member_a @ V2 @ M2 )
             => ( group_invertible_a @ M2 @ Composition @ Unit @ U ) ) ) ) ) ) ).

% monoid.invertibleI
thf(fact_106_monoid_OinvertibleE,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ! [V3: nat] :
              ( ( ( ( Composition @ U @ V3 )
                  = Unit )
                & ( ( Composition @ V3 @ U )
                  = Unit ) )
             => ~ ( member_nat @ V3 @ M2 ) )
         => ~ ( member_nat @ U @ M2 ) ) ) ) ).

% monoid.invertibleE
thf(fact_107_monoid_OinvertibleE,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ! [V3: a] :
              ( ( ( ( Composition @ U @ V3 )
                  = Unit )
                & ( ( Composition @ V3 @ U )
                  = Unit ) )
             => ~ ( member_a @ V3 @ M2 ) )
         => ~ ( member_a @ U @ M2 ) ) ) ) ).

% monoid.invertibleE
thf(fact_108_Group__Theory_Ogroup_Oaxioms_I1_J,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( group_monoid_a @ G @ Composition @ Unit ) ) ).

% Group_Theory.group.axioms(1)
thf(fact_109_subgroup_Osubgroup__inverse__equality,axiom,
    ! [G: set_nat,M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_subgroup_nat @ G @ M2 @ Composition @ Unit )
     => ( ( member_nat @ U @ G )
       => ( ( group_inverse_nat @ M2 @ Composition @ Unit @ U )
          = ( group_inverse_nat @ G @ Composition @ Unit @ U ) ) ) ) ).

% subgroup.subgroup_inverse_equality
thf(fact_110_subgroup_Osubgroup__inverse__equality,axiom,
    ! [G: set_a,M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_subgroup_a @ G @ M2 @ Composition @ Unit )
     => ( ( member_a @ U @ G )
       => ( ( group_inverse_a @ M2 @ Composition @ Unit @ U )
          = ( group_inverse_a @ G @ Composition @ Unit @ U ) ) ) ) ).

% subgroup.subgroup_inverse_equality
thf(fact_111_commutative__monoid_Oaxioms_I1_J,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_4866109990395492029noid_a @ M2 @ Composition @ Unit )
     => ( group_monoid_a @ M2 @ Composition @ Unit ) ) ).

% commutative_monoid.axioms(1)
thf(fact_112_subgroup_Oaxioms_I2_J,axiom,
    ! [G: set_a,M2: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_subgroup_a @ G @ M2 @ Composition @ Unit )
     => ( group_group_a @ G @ Composition @ Unit ) ) ).

% subgroup.axioms(2)
thf(fact_113_additive__abelian__group_Osumset__commute,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ A2 ) ) ) ).

% additive_abelian_group.sumset_commute
thf(fact_114_additive__abelian__group_Osumset_OsumsetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B: nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ A2 )
       => ( ( member_nat @ A @ G )
         => ( ( member_nat @ B @ B2 )
           => ( ( member_nat @ B @ G )
             => ( member_nat @ ( Addition @ A @ B ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.sumsetI
thf(fact_115_additive__abelian__group_Osumset_OsumsetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ G )
         => ( ( member_a @ B @ B2 )
           => ( ( member_a @ B @ G )
             => ( member_a @ ( Addition @ A @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.sumsetI
thf(fact_116_additive__abelian__group_Osumset__assoc,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ C2 )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ C2 ) ) ) ) ).

% additive_abelian_group.sumset_assoc
thf(fact_117_additive__abelian__group_Osumset_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) )
        = ( ? [A4: nat,B4: nat] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( member_nat @ A4 @ A2 )
              & ( member_nat @ A4 @ G )
              & ( member_nat @ B4 @ B2 )
              & ( member_nat @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumset.simps
thf(fact_118_additive__abelian__group_Osumset_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
        = ( ? [A4: a,B4: a] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( member_a @ A4 @ A2 )
              & ( member_a @ A4 @ G )
              & ( member_a @ B4 @ B2 )
              & ( member_a @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumset.simps
thf(fact_119_additive__abelian__group_Osumset_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) )
       => ~ ! [A3: nat,B3: nat] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( member_nat @ A3 @ A2 )
               => ( ( member_nat @ A3 @ G )
                 => ( ( member_nat @ B3 @ B2 )
                   => ~ ( member_nat @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.cases
thf(fact_120_additive__abelian__group_Osumset_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
       => ~ ! [A3: a,B3: a] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( member_a @ A3 @ A2 )
               => ( ( member_a @ A3 @ G )
                 => ( ( member_a @ B3 @ B2 )
                   => ~ ( member_a @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.cases
thf(fact_121_monoid_OsubgroupI,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,G: set_nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( ord_less_eq_set_nat @ G @ M2 )
       => ( ( member_nat @ Unit @ G )
         => ( ! [G2: nat,H: nat] :
                ( ( member_nat @ G2 @ G )
               => ( ( member_nat @ H @ G )
                 => ( member_nat @ ( Composition @ G2 @ H ) @ G ) ) )
           => ( ! [G2: nat] :
                  ( ( member_nat @ G2 @ G )
                 => ( group_invertible_nat @ M2 @ Composition @ Unit @ G2 ) )
             => ( ! [G2: nat] :
                    ( ( member_nat @ G2 @ G )
                   => ( member_nat @ ( group_inverse_nat @ M2 @ Composition @ Unit @ G2 ) @ G ) )
               => ( group_subgroup_nat @ G @ M2 @ Composition @ Unit ) ) ) ) ) ) ) ).

% monoid.subgroupI
thf(fact_122_monoid_OsubgroupI,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,G: set_a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( ord_less_eq_set_a @ G @ M2 )
       => ( ( member_a @ Unit @ G )
         => ( ! [G2: a,H: a] :
                ( ( member_a @ G2 @ G )
               => ( ( member_a @ H @ G )
                 => ( member_a @ ( Composition @ G2 @ H ) @ G ) ) )
           => ( ! [G2: a] :
                  ( ( member_a @ G2 @ G )
                 => ( group_invertible_a @ M2 @ Composition @ Unit @ G2 ) )
             => ( ! [G2: a] :
                    ( ( member_a @ G2 @ G )
                   => ( member_a @ ( group_inverse_a @ M2 @ Composition @ Unit @ G2 ) @ G ) )
               => ( group_subgroup_a @ G @ M2 @ Composition @ Unit ) ) ) ) ) ) ) ).

% monoid.subgroupI
thf(fact_123_monoid_Oinvertible__inverse__invertible,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( group_invertible_nat @ M2 @ Composition @ Unit @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) ) ) ) ) ).

% monoid.invertible_inverse_invertible
thf(fact_124_monoid_Oinvertible__inverse__invertible,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( group_invertible_a @ M2 @ Composition @ Unit @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) ) ) ) ) ).

% monoid.invertible_inverse_invertible
thf(fact_125_monoid_Oinverse__composition__commute,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ X )
       => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ Y )
         => ( ( member_nat @ X @ M2 )
           => ( ( member_nat @ Y @ M2 )
             => ( ( group_inverse_nat @ M2 @ Composition @ Unit @ ( Composition @ X @ Y ) )
                = ( Composition @ ( group_inverse_nat @ M2 @ Composition @ Unit @ Y ) @ ( group_inverse_nat @ M2 @ Composition @ Unit @ X ) ) ) ) ) ) ) ) ).

% monoid.inverse_composition_commute
thf(fact_126_monoid_Oinverse__composition__commute,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,X: a,Y: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ X )
       => ( ( group_invertible_a @ M2 @ Composition @ Unit @ Y )
         => ( ( member_a @ X @ M2 )
           => ( ( member_a @ Y @ M2 )
             => ( ( group_inverse_a @ M2 @ Composition @ Unit @ ( Composition @ X @ Y ) )
                = ( Composition @ ( group_inverse_a @ M2 @ Composition @ Unit @ Y ) @ ( group_inverse_a @ M2 @ Composition @ Unit @ X ) ) ) ) ) ) ) ) ).

% monoid.inverse_composition_commute
thf(fact_127_monoid_Oinvertible__inverse__inverse,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( ( group_inverse_nat @ M2 @ Composition @ Unit @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) )
            = U ) ) ) ) ).

% monoid.invertible_inverse_inverse
thf(fact_128_monoid_Oinvertible__inverse__inverse,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( ( group_inverse_a @ M2 @ Composition @ Unit @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) )
            = U ) ) ) ) ).

% monoid.invertible_inverse_inverse
thf(fact_129_monoid_Oinvertible__right__inverse2,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( ( member_nat @ V2 @ M2 )
           => ( ( Composition @ U @ ( Composition @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_right_inverse2
thf(fact_130_monoid_Oinvertible__right__inverse2,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( ( member_a @ V2 @ M2 )
           => ( ( Composition @ U @ ( Composition @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_right_inverse2
thf(fact_131_monoid_Oinvertible__inverse__closed,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( member_nat @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) @ M2 ) ) ) ) ).

% monoid.invertible_inverse_closed
thf(fact_132_monoid_Oinvertible__inverse__closed,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( member_a @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) @ M2 ) ) ) ) ).

% monoid.invertible_inverse_closed
thf(fact_133_monoid_Oinvertible__right__inverse,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( ( Composition @ U @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) )
            = Unit ) ) ) ) ).

% monoid.invertible_right_inverse
thf(fact_134_monoid_Oinvertible__right__inverse,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( ( Composition @ U @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) )
            = Unit ) ) ) ) ).

% monoid.invertible_right_inverse
thf(fact_135_monoid_Oinvertible__left__inverse2,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( ( member_nat @ V2 @ M2 )
           => ( ( Composition @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) @ ( Composition @ U @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_left_inverse2
thf(fact_136_monoid_Oinvertible__left__inverse2,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( ( member_a @ V2 @ M2 )
           => ( ( Composition @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) @ ( Composition @ U @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_left_inverse2
thf(fact_137_monoid_Oinvertible__left__inverse,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M2 )
         => ( ( Composition @ ( group_inverse_nat @ M2 @ Composition @ Unit @ U ) @ U )
            = Unit ) ) ) ) ).

% monoid.invertible_left_inverse
thf(fact_138_monoid_Oinvertible__left__inverse,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M2 )
         => ( ( Composition @ ( group_inverse_a @ M2 @ Composition @ Unit @ U ) @ U )
            = Unit ) ) ) ) ).

% monoid.invertible_left_inverse
thf(fact_139_subgroup_Osubgroup__inverse__iff,axiom,
    ! [G: set_nat,M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat] :
      ( ( group_subgroup_nat @ G @ M2 @ Composition @ Unit )
     => ( ( group_invertible_nat @ M2 @ Composition @ Unit @ X )
       => ( ( member_nat @ X @ M2 )
         => ( ( member_nat @ ( group_inverse_nat @ M2 @ Composition @ Unit @ X ) @ G )
            = ( member_nat @ X @ G ) ) ) ) ) ).

% subgroup.subgroup_inverse_iff
thf(fact_140_subgroup_Osubgroup__inverse__iff,axiom,
    ! [G: set_a,M2: set_a,Composition: a > a > a,Unit: a,X: a] :
      ( ( group_subgroup_a @ G @ M2 @ Composition @ Unit )
     => ( ( group_invertible_a @ M2 @ Composition @ Unit @ X )
       => ( ( member_a @ X @ M2 )
         => ( ( member_a @ ( group_inverse_a @ M2 @ Composition @ Unit @ X ) @ G )
            = ( member_a @ X @ G ) ) ) ) ) ).

% subgroup.subgroup_inverse_iff
thf(fact_141_additive__abelian__group_Ofinite__sumset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( finite_finite_nat @ B2 )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset
thf(fact_142_additive__abelian__group_Ofinite__sumset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( finite_finite_a @ B2 )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset
thf(fact_143_additive__abelian__group_Osumset__subset__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ G ) ) ).

% additive_abelian_group.sumset_subset_carrier
thf(fact_144_additive__abelian__group_Osumset__mono,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A5: set_a,A2: set_a,B5: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A5 @ A2 )
       => ( ( ord_less_eq_set_a @ B5 @ B2 )
         => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.sumset_mono
thf(fact_145_monoid_Oinverse_Ocong,axiom,
    group_inverse_a = group_inverse_a ).

% monoid.inverse.cong
thf(fact_146_monoid_Oinvertible_Ocong,axiom,
    group_invertible_a = group_invertible_a ).

% monoid.invertible.cong
thf(fact_147_commutative__monoid_Ocommutative,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat] :
      ( ( group_6791354081887936081id_nat @ M2 @ Composition @ Unit )
     => ( ( member_nat @ X @ M2 )
       => ( ( member_nat @ Y @ M2 )
         => ( ( Composition @ X @ Y )
            = ( Composition @ Y @ X ) ) ) ) ) ).

% commutative_monoid.commutative
thf(fact_148_commutative__monoid_Ocommutative,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,X: a,Y: a] :
      ( ( group_4866109990395492029noid_a @ M2 @ Composition @ Unit )
     => ( ( member_a @ X @ M2 )
       => ( ( member_a @ Y @ M2 )
         => ( ( Composition @ X @ Y )
            = ( Composition @ Y @ X ) ) ) ) ) ).

% commutative_monoid.commutative
thf(fact_149_group_Oinvertible,axiom,
    ! [G: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_group_nat @ G @ Composition @ Unit )
     => ( ( member_nat @ U @ G )
       => ( group_invertible_nat @ G @ Composition @ Unit @ U ) ) ) ).

% group.invertible
thf(fact_150_group_Oinvertible,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( member_a @ U @ G )
       => ( group_invertible_a @ G @ Composition @ Unit @ U ) ) ) ).

% group.invertible
thf(fact_151_abelian__group_Oaxioms_I1_J,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_201663378560352916roup_a @ G @ Composition @ Unit )
     => ( group_group_a @ G @ Composition @ Unit ) ) ).

% abelian_group.axioms(1)
thf(fact_152_inverse__subgroupD,axiom,
    ! [H2: set_a] :
      ( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H2 ) @ g @ addition @ zero )
     => ( ( ord_less_eq_set_a @ H2 @ ( group_Units_a @ g @ addition @ zero ) )
       => ( group_subgroup_a @ H2 @ g @ addition @ zero ) ) ) ).

% inverse_subgroupD
thf(fact_153_inverse__subgroupI,axiom,
    ! [H2: set_a] :
      ( ( group_subgroup_a @ H2 @ g @ addition @ zero )
     => ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H2 ) @ g @ addition @ zero ) ) ).

% inverse_subgroupI
thf(fact_154_sumset__subset__insert_I2_J,axiom,
    ! [A2: set_a,B2: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B2 ) ) ).

% sumset_subset_insert(2)
thf(fact_155_sumset__subset__insert_I1_J,axiom,
    ! [A2: set_a,B2: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B2 ) ) ) ).

% sumset_subset_insert(1)
thf(fact_156_finite__sumset_H,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
     => ( ( finite_finite_a @ ( inf_inf_set_a @ B2 @ g ) )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% finite_sumset'
thf(fact_157_sumset__subset__Un_I2_J,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ C2 ) @ B2 ) ) ).

% sumset_subset_Un(2)
thf(fact_158_sumset__subset__Un_I1_J,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% sumset_subset_Un(1)
thf(fact_159_sumset__subset__Un1,axiom,
    ! [A2: set_a,A5: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B2 )
      = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B2 ) ) ) ).

% sumset_subset_Un1
thf(fact_160_sumset__subset__Un2,axiom,
    ! [A2: set_a,B2: set_a,B5: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B2 @ B5 ) )
      = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B5 ) ) ) ).

% sumset_subset_Un2
thf(fact_161_sumset__iterated__Suc,axiom,
    ! [A2: set_a,K: nat] :
      ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ ( suc @ K ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).

% sumset_iterated_Suc
thf(fact_162_subset__antisym,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_163_image__eqI,axiom,
    ! [B: a,F: a > a,X: a,A2: set_a] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ B @ ( image_a_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_164_image__eqI,axiom,
    ! [B: nat,F: a > nat,X: a,A2: set_a] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_nat @ B @ ( image_a_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_165_image__eqI,axiom,
    ! [B: a,F: nat > a,X: nat,A2: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A2 )
       => ( member_a @ B @ ( image_nat_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_166_image__eqI,axiom,
    ! [B: nat,F: nat > nat,X: nat,A2: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ B @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_167_subsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_nat @ X3 @ B2 ) )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% subsetI
thf(fact_168_subsetI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_a @ X3 @ B2 ) )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_169_insertCI,axiom,
    ! [A: a,B2: set_a,B: a] :
      ( ( ~ ( member_a @ A @ B2 )
       => ( A = B ) )
     => ( member_a @ A @ ( insert_a @ B @ B2 ) ) ) ).

% insertCI
thf(fact_170_insertCI,axiom,
    ! [A: nat,B2: set_nat,B: nat] :
      ( ( ~ ( member_nat @ A @ B2 )
       => ( A = B ) )
     => ( member_nat @ A @ ( insert_nat @ B @ B2 ) ) ) ).

% insertCI
thf(fact_171_insert__iff,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
      = ( ( A = B )
        | ( member_a @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_172_insert__iff,axiom,
    ! [A: nat,B: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
      = ( ( A = B )
        | ( member_nat @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_173_insert__absorb2,axiom,
    ! [X: a,A2: set_a] :
      ( ( insert_a @ X @ ( insert_a @ X @ A2 ) )
      = ( insert_a @ X @ A2 ) ) ).

% insert_absorb2
thf(fact_174_IntI,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ( member_nat @ C @ B2 )
       => ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% IntI
thf(fact_175_IntI,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ( member_a @ C @ B2 )
       => ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% IntI
thf(fact_176_Int__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        & ( member_nat @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_177_Int__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        & ( member_a @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_178_UnCI,axiom,
    ! [C: nat,B2: set_nat,A2: set_nat] :
      ( ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ A2 ) )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_179_UnCI,axiom,
    ! [C: a,B2: set_a,A2: set_a] :
      ( ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ A2 ) )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_180_Un__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        | ( member_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_181_Un__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        | ( member_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_182_image__insert,axiom,
    ! [F: nat > nat,A: nat,B2: set_nat] :
      ( ( image_nat_nat @ F @ ( insert_nat @ A @ B2 ) )
      = ( insert_nat @ ( F @ A ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_insert
thf(fact_183_image__insert,axiom,
    ! [F: a > a,A: a,B2: set_a] :
      ( ( image_a_a @ F @ ( insert_a @ A @ B2 ) )
      = ( insert_a @ ( F @ A ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_insert
thf(fact_184_insert__image,axiom,
    ! [X: a,A2: set_a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( ( insert_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) )
        = ( image_a_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_185_insert__image,axiom,
    ! [X: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( insert_nat @ ( F @ X ) @ ( image_nat_nat @ F @ A2 ) )
        = ( image_nat_nat @ F @ A2 ) ) ) ).

% insert_image
thf(fact_186_insert__image,axiom,
    ! [X: nat,A2: set_nat,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( ( insert_a @ ( F @ X ) @ ( image_nat_a @ F @ A2 ) )
        = ( image_nat_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_187_insert__subset,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
      = ( ( member_nat @ X @ B2 )
        & ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ).

% insert_subset
thf(fact_188_insert__subset,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B2 )
      = ( ( member_a @ X @ B2 )
        & ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ).

% insert_subset
thf(fact_189_Int__subset__iff,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A2 @ B2 ) )
      = ( ( ord_less_eq_set_a @ C2 @ A2 )
        & ( ord_less_eq_set_a @ C2 @ B2 ) ) ) ).

% Int_subset_iff
thf(fact_190_Int__insert__left__if0,axiom,
    ! [A: nat,C2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ A @ C2 )
     => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
        = ( inf_inf_set_nat @ B2 @ C2 ) ) ) ).

% Int_insert_left_if0
thf(fact_191_Int__insert__left__if0,axiom,
    ! [A: a,C2: set_a,B2: set_a] :
      ( ~ ( member_a @ A @ C2 )
     => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
        = ( inf_inf_set_a @ B2 @ C2 ) ) ) ).

% Int_insert_left_if0
thf(fact_192_Int__insert__left__if1,axiom,
    ! [A: nat,C2: set_nat,B2: set_nat] :
      ( ( member_nat @ A @ C2 )
     => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
        = ( insert_nat @ A @ ( inf_inf_set_nat @ B2 @ C2 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_193_Int__insert__left__if1,axiom,
    ! [A: a,C2: set_a,B2: set_a] :
      ( ( member_a @ A @ C2 )
     => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
        = ( insert_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_194_insert__inter__insert,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ ( insert_a @ A @ B2 ) )
      = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ).

% insert_inter_insert
thf(fact_195_Int__insert__right__if0,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
        = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_196_Int__insert__right__if0,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
        = ( inf_inf_set_a @ A2 @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_197_Int__insert__right__if1,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
        = ( insert_nat @ A @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_198_Int__insert__right__if1,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
        = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_199_Un__subset__iff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( ( ord_less_eq_set_a @ A2 @ C2 )
        & ( ord_less_eq_set_a @ B2 @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_200_Un__insert__left,axiom,
    ! [A: a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( insert_a @ A @ B2 ) @ C2 )
      = ( insert_a @ A @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_201_Un__insert__right,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( insert_a @ A @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% Un_insert_right
thf(fact_202_Int__Un__eq_I4_J,axiom,
    ! [T: set_a,S: set_a] :
      ( ( sup_sup_set_a @ T @ ( inf_inf_set_a @ S @ T ) )
      = T ) ).

% Int_Un_eq(4)
thf(fact_203_Int__Un__eq_I3_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ S @ ( inf_inf_set_a @ S @ T ) )
      = S ) ).

% Int_Un_eq(3)
thf(fact_204_Int__Un__eq_I2_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ T )
      = T ) ).

% Int_Un_eq(2)
thf(fact_205_Int__Un__eq_I1_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ S )
      = S ) ).

% Int_Un_eq(1)
thf(fact_206_Un__Int__eq_I4_J,axiom,
    ! [T: set_a,S: set_a] :
      ( ( inf_inf_set_a @ T @ ( sup_sup_set_a @ S @ T ) )
      = T ) ).

% Un_Int_eq(4)
thf(fact_207_Un__Int__eq_I3_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ S @ ( sup_sup_set_a @ S @ T ) )
      = S ) ).

% Un_Int_eq(3)
thf(fact_208_Un__Int__eq_I2_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ T )
      = T ) ).

% Un_Int_eq(2)
thf(fact_209_Un__Int__eq_I1_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ S )
      = S ) ).

% Un_Int_eq(1)
thf(fact_210_sumset__Int__carrier,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ g )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ).

% sumset_Int_carrier
thf(fact_211_sumset__Int__carrier__eq_I1_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( inf_inf_set_a @ B2 @ g ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ).

% sumset_Int_carrier_eq(1)
thf(fact_212_sumset__Int__carrier__eq_I2_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( inf_inf_set_a @ A2 @ g ) @ B2 )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ).

% sumset_Int_carrier_eq(2)
thf(fact_213_Un__Int__assoc__eq,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C2 )
        = ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) )
      = ( ord_less_eq_set_a @ C2 @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_214_image__Int__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ ( inf_inf_set_nat @ A2 @ B2 ) ) @ ( inf_inf_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_Int_subset
thf(fact_215_image__Int__subset,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( image_a_a @ F @ ( inf_inf_set_a @ A2 @ B2 ) ) @ ( inf_inf_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_Int_subset
thf(fact_216_UnE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) )
     => ( ~ ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_217_UnE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) )
     => ( ~ ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_218_IntE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ~ ( member_nat @ C @ B2 ) ) ) ).

% IntE
thf(fact_219_IntE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ~ ( member_a @ C @ B2 ) ) ) ).

% IntE
thf(fact_220_UnI1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_221_UnI1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_222_UnI2,axiom,
    ! [C: nat,B2: set_nat,A2: set_nat] :
      ( ( member_nat @ C @ B2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_223_UnI2,axiom,
    ! [C: a,B2: set_a,A2: set_a] :
      ( ( member_a @ C @ B2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_224_IntD1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ A2 ) ) ).

% IntD1
thf(fact_225_IntD1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ A2 ) ) ).

% IntD1
thf(fact_226_IntD2,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ B2 ) ) ).

% IntD2
thf(fact_227_IntD2,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ B2 ) ) ).

% IntD2
thf(fact_228_bex__Un,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o] :
      ( ( ? [X2: a] :
            ( ( member_a @ X2 @ ( sup_sup_set_a @ A2 @ B2 ) )
            & ( P @ X2 ) ) )
      = ( ? [X2: a] :
            ( ( member_a @ X2 @ A2 )
            & ( P @ X2 ) )
        | ? [X2: a] :
            ( ( member_a @ X2 @ B2 )
            & ( P @ X2 ) ) ) ) ).

% bex_Un
thf(fact_229_imageI,axiom,
    ! [X: a,A2: set_a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( member_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_230_imageI,axiom,
    ! [X: a,A2: set_a,F: a > nat] :
      ( ( member_a @ X @ A2 )
     => ( member_nat @ ( F @ X ) @ ( image_a_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_231_imageI,axiom,
    ! [X: nat,A2: set_nat,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( member_a @ ( F @ X ) @ ( image_nat_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_232_imageI,axiom,
    ! [X: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( member_nat @ ( F @ X ) @ ( image_nat_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_233_ball__Un,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o] :
      ( ( ! [X2: a] :
            ( ( member_a @ X2 @ ( sup_sup_set_a @ A2 @ B2 ) )
           => ( P @ X2 ) ) )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ( P @ X2 ) )
        & ! [X2: a] :
            ( ( member_a @ X2 @ B2 )
           => ( P @ X2 ) ) ) ) ).

% ball_Un
thf(fact_234_insertE,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
     => ( ( A != B )
       => ( member_a @ A @ A2 ) ) ) ).

% insertE
thf(fact_235_insertE,axiom,
    ! [A: nat,B: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
     => ( ( A != B )
       => ( member_nat @ A @ A2 ) ) ) ).

% insertE
thf(fact_236_Un__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_237_image__Un,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] :
      ( ( image_nat_nat @ F @ ( sup_sup_set_nat @ A2 @ B2 ) )
      = ( sup_sup_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_Un
thf(fact_238_image__Un,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] :
      ( ( image_a_a @ F @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( sup_sup_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_Un
thf(fact_239_insertI1,axiom,
    ! [A: a,B2: set_a] : ( member_a @ A @ ( insert_a @ A @ B2 ) ) ).

% insertI1
thf(fact_240_insertI1,axiom,
    ! [A: nat,B2: set_nat] : ( member_nat @ A @ ( insert_nat @ A @ B2 ) ) ).

% insertI1
thf(fact_241_insertI2,axiom,
    ! [A: a,B2: set_a,B: a] :
      ( ( member_a @ A @ B2 )
     => ( member_a @ A @ ( insert_a @ B @ B2 ) ) ) ).

% insertI2
thf(fact_242_insertI2,axiom,
    ! [A: nat,B2: set_nat,B: nat] :
      ( ( member_nat @ A @ B2 )
     => ( member_nat @ A @ ( insert_nat @ B @ B2 ) ) ) ).

% insertI2
thf(fact_243_Int__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C2 )
      = ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ).

% Int_assoc
thf(fact_244_Un__absorb,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_245_image__iff,axiom,
    ! [Z: a,F: a > a,A2: set_a] :
      ( ( member_a @ Z @ ( image_a_a @ F @ A2 ) )
      = ( ? [X2: a] :
            ( ( member_a @ X2 @ A2 )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_246_image__iff,axiom,
    ! [Z: nat,F: nat > nat,A2: set_nat] :
      ( ( member_nat @ Z @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_247_Int__absorb,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ A2 )
      = A2 ) ).

% Int_absorb
thf(fact_248_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A6: set_a,B6: set_a] : ( sup_sup_set_a @ B6 @ A6 ) ) ) ).

% Un_commute
thf(fact_249_bex__imageD,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( image_a_a @ F @ A2 ) )
          & ( P @ X4 ) )
     => ? [X3: a] :
          ( ( member_a @ X3 @ A2 )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_250_bex__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat @ X4 @ ( image_nat_nat @ F @ A2 ) )
          & ( P @ X4 ) )
     => ? [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_251_image__cong,axiom,
    ! [M2: set_a,N: set_a,F: a > a,G4: a > a] :
      ( ( M2 = N )
     => ( ! [X3: a] :
            ( ( member_a @ X3 @ N )
           => ( ( F @ X3 )
              = ( G4 @ X3 ) ) )
       => ( ( image_a_a @ F @ M2 )
          = ( image_a_a @ G4 @ N ) ) ) ) ).

% image_cong
thf(fact_252_image__cong,axiom,
    ! [M2: set_nat,N: set_nat,F: nat > nat,G4: nat > nat] :
      ( ( M2 = N )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ N )
           => ( ( F @ X3 )
              = ( G4 @ X3 ) ) )
       => ( ( image_nat_nat @ F @ M2 )
          = ( image_nat_nat @ G4 @ N ) ) ) ) ).

% image_cong
thf(fact_253_Set_Oset__insert,axiom,
    ! [X: a,A2: set_a] :
      ( ( member_a @ X @ A2 )
     => ~ ! [B7: set_a] :
            ( ( A2
              = ( insert_a @ X @ B7 ) )
           => ( member_a @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_254_Set_Oset__insert,axiom,
    ! [X: nat,A2: set_nat] :
      ( ( member_nat @ X @ A2 )
     => ~ ! [B7: set_nat] :
            ( ( A2
              = ( insert_nat @ X @ B7 ) )
           => ( member_nat @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_255_Int__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [A6: set_a,B6: set_a] : ( inf_inf_set_a @ B6 @ A6 ) ) ) ).

% Int_commute
thf(fact_256_ball__imageD,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ ( image_a_a @ F @ A2 ) )
         => ( P @ X3 ) )
     => ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_257_ball__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ ( image_nat_nat @ F @ A2 ) )
         => ( P @ X3 ) )
     => ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_258_Un__Int__crazy,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ B2 @ C2 ) ) @ ( inf_inf_set_a @ C2 @ A2 ) )
      = ( inf_inf_set_a @ ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ B2 @ C2 ) ) @ ( sup_sup_set_a @ C2 @ A2 ) ) ) ).

% Un_Int_crazy
thf(fact_259_insert__ident,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ~ ( member_a @ X @ B2 )
       => ( ( ( insert_a @ X @ A2 )
            = ( insert_a @ X @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% insert_ident
thf(fact_260_insert__ident,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ~ ( member_nat @ X @ B2 )
       => ( ( ( insert_nat @ X @ A2 )
            = ( insert_nat @ X @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% insert_ident
thf(fact_261_insert__absorb,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_262_insert__absorb,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_263_insert__eq__iff,axiom,
    ! [A: a,A2: set_a,B: a,B2: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ~ ( member_a @ B @ B2 )
       => ( ( ( insert_a @ A @ A2 )
            = ( insert_a @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A2 = B2 ) )
            & ( ( A != B )
             => ? [C5: set_a] :
                  ( ( A2
                    = ( insert_a @ B @ C5 ) )
                  & ~ ( member_a @ B @ C5 )
                  & ( B2
                    = ( insert_a @ A @ C5 ) )
                  & ~ ( member_a @ A @ C5 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_264_insert__eq__iff,axiom,
    ! [A: nat,A2: set_nat,B: nat,B2: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ~ ( member_nat @ B @ B2 )
       => ( ( ( insert_nat @ A @ A2 )
            = ( insert_nat @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A2 = B2 ) )
            & ( ( A != B )
             => ? [C5: set_nat] :
                  ( ( A2
                    = ( insert_nat @ B @ C5 ) )
                  & ~ ( member_nat @ B @ C5 )
                  & ( B2
                    = ( insert_nat @ A @ C5 ) )
                  & ~ ( member_nat @ A @ C5 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_265_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B: a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_a @ B @ ( image_a_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_266_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B: nat,F: a > nat] :
      ( ( member_a @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_nat @ B @ ( image_a_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_267_rev__image__eqI,axiom,
    ! [X: nat,A2: set_nat,B: a,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_a @ B @ ( image_nat_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_268_rev__image__eqI,axiom,
    ! [X: nat,A2: set_nat,B: nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_nat @ B @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_269_Int__Un__distrib,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ A2 @ C2 ) ) ) ).

% Int_Un_distrib
thf(fact_270_Un__Int__distrib,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ A2 @ C2 ) ) ) ).

% Un_Int_distrib
thf(fact_271_Un__left__absorb,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_left_absorb
thf(fact_272_insert__commute,axiom,
    ! [X: a,Y: a,A2: set_a] :
      ( ( insert_a @ X @ ( insert_a @ Y @ A2 ) )
      = ( insert_a @ Y @ ( insert_a @ X @ A2 ) ) ) ).

% insert_commute
thf(fact_273_Int__Un__distrib2,axiom,
    ! [B2: set_a,C2: set_a,A2: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ B2 @ C2 ) @ A2 )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ B2 @ A2 ) @ ( inf_inf_set_a @ C2 @ A2 ) ) ) ).

% Int_Un_distrib2
thf(fact_274_Int__insert__left,axiom,
    ! [A: nat,C2: set_nat,B2: set_nat] :
      ( ( ( member_nat @ A @ C2 )
       => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
          = ( insert_nat @ A @ ( inf_inf_set_nat @ B2 @ C2 ) ) ) )
      & ( ~ ( member_nat @ A @ C2 )
       => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
          = ( inf_inf_set_nat @ B2 @ C2 ) ) ) ) ).

% Int_insert_left
thf(fact_275_Int__insert__left,axiom,
    ! [A: a,C2: set_a,B2: set_a] :
      ( ( ( member_a @ A @ C2 )
       => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
          = ( insert_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) ) ) )
      & ( ~ ( member_a @ A @ C2 )
       => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
          = ( inf_inf_set_a @ B2 @ C2 ) ) ) ) ).

% Int_insert_left
thf(fact_276_Int__left__absorb,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B2 ) )
      = ( inf_inf_set_a @ A2 @ B2 ) ) ).

% Int_left_absorb
thf(fact_277_Un__Int__distrib2,axiom,
    ! [B2: set_a,C2: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ B2 @ C2 ) @ A2 )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ B2 @ A2 ) @ ( sup_sup_set_a @ C2 @ A2 ) ) ) ).

% Un_Int_distrib2
thf(fact_278_Un__left__commute,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ B2 @ ( sup_sup_set_a @ A2 @ C2 ) ) ) ).

% Un_left_commute
thf(fact_279_Int__insert__right,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( ( member_nat @ A @ A2 )
       => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
          = ( insert_nat @ A @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) )
      & ( ~ ( member_nat @ A @ A2 )
       => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
          = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_280_Int__insert__right,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( ( member_a @ A @ A2 )
       => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
          = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B2 ) ) ) )
      & ( ~ ( member_a @ A @ A2 )
       => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
          = ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_281_Int__left__commute,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( inf_inf_set_a @ B2 @ ( inf_inf_set_a @ A2 @ C2 ) ) ) ).

% Int_left_commute
thf(fact_282_mk__disjoint__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ? [B7: set_a] :
          ( ( A2
            = ( insert_a @ A @ B7 ) )
          & ~ ( member_a @ A @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_283_mk__disjoint__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ? [B7: set_nat] :
          ( ( A2
            = ( insert_nat @ A @ B7 ) )
          & ~ ( member_nat @ A @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_284_image__mono,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_mono
thf(fact_285_image__mono,axiom,
    ! [A2: set_a,B2: set_a,F: a > a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_mono
thf(fact_286_image__subsetI,axiom,
    ! [A2: set_a,F: a > nat,B2: set_nat] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_nat @ ( F @ X3 ) @ B2 ) )
     => ( ord_less_eq_set_nat @ ( image_a_nat @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_287_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat,B2: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_nat @ ( F @ X3 ) @ B2 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_288_image__subsetI,axiom,
    ! [A2: set_a,F: a > a,B2: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_a @ ( F @ X3 ) @ B2 ) )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_289_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > a,B2: set_a] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_a @ ( F @ X3 ) @ B2 ) )
     => ( ord_less_eq_set_a @ ( image_nat_a @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_290_subset__imageE,axiom,
    ! [B2: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [C6: set_nat] :
            ( ( ord_less_eq_set_nat @ C6 @ A2 )
           => ( B2
             != ( image_nat_nat @ F @ C6 ) ) ) ) ).

% subset_imageE
thf(fact_291_subset__imageE,axiom,
    ! [B2: set_a,F: a > a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
     => ~ ! [C6: set_a] :
            ( ( ord_less_eq_set_a @ C6 @ A2 )
           => ( B2
             != ( image_a_a @ F @ C6 ) ) ) ) ).

% subset_imageE
thf(fact_292_image__subset__iff,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B2 )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
           => ( member_nat @ ( F @ X2 ) @ B2 ) ) ) ) ).

% image_subset_iff
thf(fact_293_image__subset__iff,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B2 )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ( member_a @ ( F @ X2 ) @ B2 ) ) ) ) ).

% image_subset_iff
thf(fact_294_subset__image__iff,axiom,
    ! [B2: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B2
              = ( image_nat_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_295_subset__image__iff,axiom,
    ! [B2: set_a,F: a > a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A2 )
            & ( B2
              = ( image_a_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_296_Un__mono,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ D )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ C2 @ D ) ) ) ) ).

% Un_mono
thf(fact_297_Un__least,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 ) ) ) ).

% Un_least
thf(fact_298_Un__upper1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_upper1
thf(fact_299_Un__upper2,axiom,
    ! [B2: set_a,A2: set_a] : ( ord_less_eq_set_a @ B2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_upper2
thf(fact_300_Un__absorb1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = B2 ) ) ).

% Un_absorb1
thf(fact_301_Un__absorb2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = A2 ) ) ).

% Un_absorb2
thf(fact_302_subset__UnE,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A2 @ B2 ) )
     => ~ ! [A7: set_a] :
            ( ( ord_less_eq_set_a @ A7 @ A2 )
           => ! [B8: set_a] :
                ( ( ord_less_eq_set_a @ B8 @ B2 )
               => ( C2
                 != ( sup_sup_set_a @ A7 @ B8 ) ) ) ) ) ).

% subset_UnE
thf(fact_303_subset__Un__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( sup_sup_set_a @ A6 @ B6 )
          = B6 ) ) ) ).

% subset_Un_eq
thf(fact_304_Int__mono,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).

% Int_mono
thf(fact_305_Int__lower1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ A2 ) ).

% Int_lower1
thf(fact_306_Int__lower2,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ B2 ) ).

% Int_lower2
thf(fact_307_Int__absorb1,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = B2 ) ) ).

% Int_absorb1
thf(fact_308_Int__absorb2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = A2 ) ) ).

% Int_absorb2
thf(fact_309_Int__greatest,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ A2 )
     => ( ( ord_less_eq_set_a @ C2 @ B2 )
       => ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% Int_greatest
thf(fact_310_Int__Collect__mono,axiom,
    ! [A2: set_nat,B2: set_nat,P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( P @ X3 )
             => ( Q @ X3 ) ) )
       => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A2 @ ( collect_nat @ P ) ) @ ( inf_inf_set_nat @ B2 @ ( collect_nat @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_311_Int__Collect__mono,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( ( P @ X3 )
             => ( Q @ X3 ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B2 @ ( collect_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_312_insert__mono,axiom,
    ! [C2: set_a,D: set_a,A: a] :
      ( ( ord_less_eq_set_a @ C2 @ D )
     => ( ord_less_eq_set_a @ ( insert_a @ A @ C2 ) @ ( insert_a @ A @ D ) ) ) ).

% insert_mono
thf(fact_313_subset__insert,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
        = ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ).

% subset_insert
thf(fact_314_subset__insert,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B2 ) )
        = ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ).

% subset_insert
thf(fact_315_subset__insertI,axiom,
    ! [B2: set_a,A: a] : ( ord_less_eq_set_a @ B2 @ ( insert_a @ A @ B2 ) ) ).

% subset_insertI
thf(fact_316_subset__insertI2,axiom,
    ! [A2: set_a,B2: set_a,B: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ B2 ) ) ) ).

% subset_insertI2
thf(fact_317_additive__abelian__group_Osumset__subset__Un1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A5: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B2 )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B2 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un1
thf(fact_318_additive__abelian__group_Osumset__subset__Un2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,B5: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( sup_sup_set_a @ B2 @ B5 ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B5 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un2
thf(fact_319_subgroup_Oimage__of__inverse,axiom,
    ! [G: set_nat,M2: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat] :
      ( ( group_subgroup_nat @ G @ M2 @ Composition @ Unit )
     => ( ( member_nat @ X @ G )
       => ( member_nat @ X @ ( image_nat_nat @ ( group_inverse_nat @ M2 @ Composition @ Unit ) @ G ) ) ) ) ).

% subgroup.image_of_inverse
thf(fact_320_subgroup_Oimage__of__inverse,axiom,
    ! [G: set_a,M2: set_a,Composition: a > a > a,Unit: a,X: a] :
      ( ( group_subgroup_a @ G @ M2 @ Composition @ Unit )
     => ( ( member_a @ X @ G )
       => ( member_a @ X @ ( image_a_a @ ( group_inverse_a @ M2 @ Composition @ Unit ) @ G ) ) ) ) ).

% subgroup.image_of_inverse
thf(fact_321_additive__abelian__group_Osumset__Int__carrier__eq_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( inf_inf_set_a @ A2 @ G ) @ B2 )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ).

% additive_abelian_group.sumset_Int_carrier_eq(2)
thf(fact_322_additive__abelian__group_Osumset__Int__carrier__eq_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( inf_inf_set_a @ B2 @ G ) )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ).

% additive_abelian_group.sumset_Int_carrier_eq(1)
thf(fact_323_additive__abelian__group_Osumset__Int__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ G )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ).

% additive_abelian_group.sumset_Int_carrier
thf(fact_324_additive__abelian__group_Osumset__subset__Un_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( sup_sup_set_a @ A2 @ C2 ) @ B2 ) ) ) ).

% additive_abelian_group.sumset_subset_Un(2)
thf(fact_325_additive__abelian__group_Osumset__subset__Un_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un(1)
thf(fact_326_in__mono,axiom,
    ! [A2: set_nat,B2: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ X @ B2 ) ) ) ).

% in_mono
thf(fact_327_in__mono,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ X @ B2 ) ) ) ).

% in_mono
thf(fact_328_subsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% subsetD
thf(fact_329_subsetD,axiom,
    ! [A2: set_a,B2: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_330_equalityE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ~ ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_331_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ A6 )
         => ( member_nat @ X2 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_332_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
        ! [X2: a] :
          ( ( member_a @ X2 @ A6 )
         => ( member_a @ X2 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_333_equalityD1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_334_equalityD2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_335_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [T2: nat] :
          ( ( member_nat @ T2 @ A6 )
         => ( member_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_336_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
        ! [T2: a] :
          ( ( member_a @ T2 @ A6 )
         => ( member_a @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_337_subset__refl,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_338_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_339_subset__trans,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ A2 @ C2 ) ) ) ).

% subset_trans
thf(fact_340_set__eq__subset,axiom,
    ( ( ^ [Y2: set_a,Z2: set_a] : ( Y2 = Z2 ) )
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B6 )
          & ( ord_less_eq_set_a @ B6 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_341_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X2: a] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_342_additive__abelian__group_Ofinite__sumset_H,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
       => ( ( finite_finite_nat @ ( inf_inf_set_nat @ B2 @ G ) )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset'
thf(fact_343_additive__abelian__group_Ofinite__sumset_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
       => ( ( finite_finite_a @ ( inf_inf_set_a @ B2 @ G ) )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset'
thf(fact_344_additive__abelian__group_Osumset__subset__insert_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B2 ) ) ) ).

% additive_abelian_group.sumset_subset_insert(2)
thf(fact_345_additive__abelian__group_Osumset__subset__insert_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B2 ) ) ) ) ).

% additive_abelian_group.sumset_subset_insert(1)
thf(fact_346_group_Oinverse__subgroupI,axiom,
    ! [G: set_nat,Composition: nat > nat > nat,Unit: nat,H2: set_nat] :
      ( ( group_group_nat @ G @ Composition @ Unit )
     => ( ( group_subgroup_nat @ H2 @ G @ Composition @ Unit )
       => ( group_subgroup_nat @ ( image_nat_nat @ ( group_inverse_nat @ G @ Composition @ Unit ) @ H2 ) @ G @ Composition @ Unit ) ) ) ).

% group.inverse_subgroupI
thf(fact_347_group_Oinverse__subgroupI,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a,H2: set_a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( group_subgroup_a @ H2 @ G @ Composition @ Unit )
       => ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ G @ Composition @ Unit ) @ H2 ) @ G @ Composition @ Unit ) ) ) ).

% group.inverse_subgroupI
thf(fact_348_additive__abelian__group_Osumset__iterated__Suc,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ ( suc @ K ) )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) ) ) ) ).

% additive_abelian_group.sumset_iterated_Suc
thf(fact_349_group_Oinverse__subgroupD,axiom,
    ! [G: set_nat,Composition: nat > nat > nat,Unit: nat,H2: set_nat] :
      ( ( group_group_nat @ G @ Composition @ Unit )
     => ( ( group_subgroup_nat @ ( image_nat_nat @ ( group_inverse_nat @ G @ Composition @ Unit ) @ H2 ) @ G @ Composition @ Unit )
       => ( ( ord_less_eq_set_nat @ H2 @ ( group_Units_nat @ G @ Composition @ Unit ) )
         => ( group_subgroup_nat @ H2 @ G @ Composition @ Unit ) ) ) ) ).

% group.inverse_subgroupD
thf(fact_350_group_Oinverse__subgroupD,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a,H2: set_a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ G @ Composition @ Unit ) @ H2 ) @ G @ Composition @ Unit )
       => ( ( ord_less_eq_set_a @ H2 @ ( group_Units_a @ G @ Composition @ Unit ) )
         => ( group_subgroup_a @ H2 @ G @ Composition @ Unit ) ) ) ) ).

% group.inverse_subgroupD
thf(fact_351_infinite__sumset__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) )
      = ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
          & ( ( inf_inf_set_a @ B2 @ g )
           != bot_bot_set_a ) )
        | ( ( ( inf_inf_set_a @ A2 @ g )
           != bot_bot_set_a )
          & ~ ( finite_finite_a @ ( inf_inf_set_a @ B2 @ g ) ) ) ) ) ).

% infinite_sumset_iff
thf(fact_352_infinite__sumset__aux,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
     => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) )
        = ( ( inf_inf_set_a @ B2 @ g )
         != bot_bot_set_a ) ) ) ).

% infinite_sumset_aux
thf(fact_353_finite__Un,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) )
      = ( ( finite_finite_nat @ F2 )
        & ( finite_finite_nat @ G ) ) ) ).

% finite_Un
thf(fact_354_finite__Un,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) )
      = ( ( finite_finite_a @ F2 )
        & ( finite_finite_a @ G ) ) ) ).

% finite_Un
thf(fact_355_finite__Int,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( ( finite_finite_nat @ F2 )
        | ( finite_finite_nat @ G ) )
     => ( finite_finite_nat @ ( inf_inf_set_nat @ F2 @ G ) ) ) ).

% finite_Int
thf(fact_356_finite__Int,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( ( finite_finite_a @ F2 )
        | ( finite_finite_a @ G ) )
     => ( finite_finite_a @ ( inf_inf_set_a @ F2 @ G ) ) ) ).

% finite_Int
thf(fact_357_inf__sup__absorb,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = X ) ).

% inf_sup_absorb
thf(fact_358_sup__inf__absorb,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = X ) ).

% sup_inf_absorb
thf(fact_359_finite__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( finite_finite_a @ ( insert_a @ A @ A2 ) )
      = ( finite_finite_a @ A2 ) ) ).

% finite_insert
thf(fact_360_finite__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( finite_finite_nat @ ( insert_nat @ A @ A2 ) )
      = ( finite_finite_nat @ A2 ) ) ).

% finite_insert
thf(fact_361_sumset__empty_H_I1_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ A2 )
        = bot_bot_set_a ) ) ).

% sumset_empty'(1)
thf(fact_362_sumset__empty_H_I2_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 )
        = bot_bot_set_a ) ) ).

% sumset_empty'(2)
thf(fact_363_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_364_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_365_all__not__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ! [X2: nat] :
            ~ ( member_nat @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_366_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X2: a] :
            ~ ( member_a @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_367_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_368_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X2: a] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_369_inf__right__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_right_idem
thf(fact_370_inf_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ B )
      = ( inf_inf_set_a @ A @ B ) ) ).

% inf.right_idem
thf(fact_371_inf__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_left_idem
thf(fact_372_inf_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B ) )
      = ( inf_inf_set_a @ A @ B ) ) ).

% inf.left_idem
thf(fact_373_inf__idem,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ X )
      = X ) ).

% inf_idem
thf(fact_374_inf_Oidem,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ A )
      = A ) ).

% inf.idem
thf(fact_375_sup_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ B )
      = ( sup_sup_set_a @ A @ B ) ) ).

% sup.right_idem
thf(fact_376_sup__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% sup_left_idem
thf(fact_377_sup_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B ) )
      = ( sup_sup_set_a @ A @ B ) ) ).

% sup.left_idem
thf(fact_378_sup__idem,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ X )
      = X ) ).

% sup_idem
thf(fact_379_sup_Oidem,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ A )
      = A ) ).

% sup.idem
thf(fact_380_inf_Obounded__iff,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
      = ( ( ord_less_eq_set_a @ A @ B )
        & ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_381_inf_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
      = ( ( ord_less_eq_nat @ A @ B )
        & ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_382_le__inf__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( ( ord_less_eq_set_a @ X @ Y )
        & ( ord_less_eq_set_a @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_383_le__inf__iff,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) )
      = ( ( ord_less_eq_nat @ X @ Y )
        & ( ord_less_eq_nat @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_384_sup_Obounded__iff,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
      = ( ( ord_less_eq_set_a @ B @ A )
        & ( ord_less_eq_set_a @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_385_sup_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_386_le__sup__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( ( ord_less_eq_set_a @ X @ Z )
        & ( ord_less_eq_set_a @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_387_le__sup__iff,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
      = ( ( ord_less_eq_nat @ X @ Z )
        & ( ord_less_eq_nat @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_388_image__is__empty,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( ( image_nat_nat @ F @ A2 )
        = bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_389_image__is__empty,axiom,
    ! [F: a > a,A2: set_a] :
      ( ( ( image_a_a @ F @ A2 )
        = bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% image_is_empty
thf(fact_390_empty__is__image,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( bot_bot_set_nat
        = ( image_nat_nat @ F @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_391_empty__is__image,axiom,
    ! [F: a > a,A2: set_a] :
      ( ( bot_bot_set_a
        = ( image_a_a @ F @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% empty_is_image
thf(fact_392_image__empty,axiom,
    ! [F: nat > nat] :
      ( ( image_nat_nat @ F @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_393_image__empty,axiom,
    ! [F: a > a] :
      ( ( image_a_a @ F @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% image_empty
thf(fact_394_finite__imageI,axiom,
    ! [F2: set_a,H3: a > a] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_a @ ( image_a_a @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_395_finite__imageI,axiom,
    ! [F2: set_a,H3: a > nat] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_nat @ ( image_a_nat @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_396_finite__imageI,axiom,
    ! [F2: set_nat,H3: nat > a] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_a @ ( image_nat_a @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_397_finite__imageI,axiom,
    ! [F2: set_nat,H3: nat > nat] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_nat @ ( image_nat_nat @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_398_empty__subsetI,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).

% empty_subsetI
thf(fact_399_subset__empty,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_400_inf__bot__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% inf_bot_right
thf(fact_401_inf__bot__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% inf_bot_left
thf(fact_402_singletonI,axiom,
    ! [A: nat] : ( member_nat @ A @ ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_403_singletonI,axiom,
    ! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_404_sup__bot_Oright__neutral,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ bot_bot_set_a )
      = A ) ).

% sup_bot.right_neutral
thf(fact_405_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_a,B: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ A @ B ) )
      = ( ( A = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_406_sup__bot_Oleft__neutral,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_407_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ( sup_sup_set_a @ A @ B )
        = bot_bot_set_a )
      = ( ( A = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_408_sup__eq__bot__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( sup_sup_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% sup_eq_bot_iff
thf(fact_409_bot__eq__sup__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ X @ Y ) )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% bot_eq_sup_iff
thf(fact_410_sup__bot__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% sup_bot_right
thf(fact_411_sup__bot__left,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ X )
      = X ) ).

% sup_bot_left
thf(fact_412_Un__empty,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_413_singleton__insert__inj__eq_H,axiom,
    ! [A: a,A2: set_a,B: a] :
      ( ( ( insert_a @ A @ A2 )
        = ( insert_a @ B @ bot_bot_set_a ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_414_singleton__insert__inj__eq,axiom,
    ! [B: a,A: a,A2: set_a] :
      ( ( ( insert_a @ B @ bot_bot_set_a )
        = ( insert_a @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_415_insert__disjoint_I1_J,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ ( insert_nat @ A @ A2 ) @ B2 )
        = bot_bot_set_nat )
      = ( ~ ( member_nat @ A @ B2 )
        & ( ( inf_inf_set_nat @ A2 @ B2 )
          = bot_bot_set_nat ) ) ) ).

% insert_disjoint(1)
thf(fact_416_insert__disjoint_I1_J,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B2 )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B2 )
        & ( ( inf_inf_set_a @ A2 @ B2 )
          = bot_bot_set_a ) ) ) ).

% insert_disjoint(1)
thf(fact_417_insert__disjoint_I2_J,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( bot_bot_set_nat
        = ( inf_inf_set_nat @ ( insert_nat @ A @ A2 ) @ B2 ) )
      = ( ~ ( member_nat @ A @ B2 )
        & ( bot_bot_set_nat
          = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_418_insert__disjoint_I2_J,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B2 ) )
      = ( ~ ( member_a @ A @ B2 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_419_disjoint__insert_I1_J,axiom,
    ! [B2: set_nat,A: nat,A2: set_nat] :
      ( ( ( inf_inf_set_nat @ B2 @ ( insert_nat @ A @ A2 ) )
        = bot_bot_set_nat )
      = ( ~ ( member_nat @ A @ B2 )
        & ( ( inf_inf_set_nat @ B2 @ A2 )
          = bot_bot_set_nat ) ) ) ).

% disjoint_insert(1)
thf(fact_420_disjoint__insert_I1_J,axiom,
    ! [B2: set_a,A: a,A2: set_a] :
      ( ( ( inf_inf_set_a @ B2 @ ( insert_a @ A @ A2 ) )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B2 )
        & ( ( inf_inf_set_a @ B2 @ A2 )
          = bot_bot_set_a ) ) ) ).

% disjoint_insert(1)
thf(fact_421_disjoint__insert_I2_J,axiom,
    ! [A2: set_nat,B: nat,B2: set_nat] :
      ( ( bot_bot_set_nat
        = ( inf_inf_set_nat @ A2 @ ( insert_nat @ B @ B2 ) ) )
      = ( ~ ( member_nat @ B @ A2 )
        & ( bot_bot_set_nat
          = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_422_disjoint__insert_I2_J,axiom,
    ! [A2: set_a,B: a,B2: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ A2 @ ( insert_a @ B @ B2 ) ) )
      = ( ~ ( member_a @ B @ A2 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_423_sumset__empty_I2_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% sumset_empty(2)
thf(fact_424_sumset__empty_I1_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% sumset_empty(1)
thf(fact_425_sumset__is__empty__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ( ( inf_inf_set_a @ A2 @ g )
          = bot_bot_set_a )
        | ( ( inf_inf_set_a @ B2 @ g )
          = bot_bot_set_a ) ) ) ).

% sumset_is_empty_iff
thf(fact_426_sumset__D_I2_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ zero @ bot_bot_set_a ) @ A2 )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% sumset_D(2)
thf(fact_427_sumset__D_I1_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ zero @ bot_bot_set_a ) )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% sumset_D(1)
thf(fact_428_emptyE,axiom,
    ! [A: nat] :
      ~ ( member_nat @ A @ bot_bot_set_nat ) ).

% emptyE
thf(fact_429_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_430_equals0D,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( A2 = bot_bot_set_nat )
     => ~ ( member_nat @ A @ A2 ) ) ).

% equals0D
thf(fact_431_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_432_equals0I,axiom,
    ! [A2: set_nat] :
      ( ! [Y3: nat] :
          ~ ( member_nat @ Y3 @ A2 )
     => ( A2 = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_433_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y3: a] :
          ~ ( member_a @ Y3 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_434_ex__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ? [X2: nat] : ( member_nat @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_435_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X2: a] : ( member_a @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_436_finite_OemptyI,axiom,
    finite_finite_nat @ bot_bot_set_nat ).

% finite.emptyI
thf(fact_437_finite_OemptyI,axiom,
    finite_finite_a @ bot_bot_set_a ).

% finite.emptyI
thf(fact_438_infinite__imp__nonempty,axiom,
    ! [S: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( S != bot_bot_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_439_infinite__imp__nonempty,axiom,
    ! [S: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ( S != bot_bot_set_a ) ) ).

% infinite_imp_nonempty
thf(fact_440_singleton__inject,axiom,
    ! [A: a,B: a] :
      ( ( ( insert_a @ A @ bot_bot_set_a )
        = ( insert_a @ B @ bot_bot_set_a ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_441_insert__not__empty,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ A2 )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_442_doubleton__eq__iff,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ( insert_a @ A @ ( insert_a @ B @ bot_bot_set_a ) )
        = ( insert_a @ C @ ( insert_a @ D2 @ bot_bot_set_a ) ) )
      = ( ( ( A = C )
          & ( B = D2 ) )
        | ( ( A = D2 )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_443_singleton__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_444_singleton__iff,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_445_singletonD,axiom,
    ! [B: nat,A: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_446_singletonD,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_447_disjoint__iff__not__equal,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ! [Y4: a] :
                ( ( member_a @ Y4 @ B2 )
               => ( X2 != Y4 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_448_Int__empty__right,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% Int_empty_right
thf(fact_449_Int__empty__left,axiom,
    ! [B2: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ B2 )
      = bot_bot_set_a ) ).

% Int_empty_left
thf(fact_450_disjoint__iff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A2 @ B2 )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
           => ~ ( member_nat @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_451_disjoint__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ~ ( member_a @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_452_Int__emptyI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ~ ( member_nat @ X3 @ B2 ) )
     => ( ( inf_inf_set_nat @ A2 @ B2 )
        = bot_bot_set_nat ) ) ).

% Int_emptyI
thf(fact_453_Int__emptyI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ~ ( member_a @ X3 @ B2 ) )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a ) ) ).

% Int_emptyI
thf(fact_454_Un__empty__right,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Un_empty_right
thf(fact_455_Un__empty__left,axiom,
    ! [B2: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ B2 )
      = B2 ) ).

% Un_empty_left
thf(fact_456_finite__has__minimal,axiom,
    ! [A2: set_set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( A2 != bot_bot_set_set_a )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_457_finite__has__minimal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_458_finite__has__maximal,axiom,
    ! [A2: set_set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( A2 != bot_bot_set_set_a )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_459_finite__has__maximal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_460_infinite__finite__induct,axiom,
    ! [P: set_nat > $o,A2: set_nat] :
      ( ! [A8: set_nat] :
          ( ~ ( finite_finite_nat @ A8 )
         => ( P @ A8 ) )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_461_infinite__finite__induct,axiom,
    ! [P: set_a > $o,A2: set_a] :
      ( ! [A8: set_a] :
          ( ~ ( finite_finite_a @ A8 )
         => ( P @ A8 ) )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_462_finite__ne__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( F2 != bot_bot_set_nat )
       => ( ! [X3: nat] : ( P @ ( insert_nat @ X3 @ bot_bot_set_nat ) )
         => ( ! [X3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( F3 != bot_bot_set_nat )
                 => ( ~ ( member_nat @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_463_finite__ne__induct,axiom,
    ! [F2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( F2 != bot_bot_set_a )
       => ( ! [X3: a] : ( P @ ( insert_a @ X3 @ bot_bot_set_a ) )
         => ( ! [X3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( F3 != bot_bot_set_a )
                 => ( ~ ( member_a @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_a @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_464_finite__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_465_finite__induct,axiom,
    ! [F2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_466_finite_Osimps,axiom,
    ( finite_finite_nat
    = ( ^ [A4: set_nat] :
          ( ( A4 = bot_bot_set_nat )
          | ? [A6: set_nat,B4: nat] :
              ( ( A4
                = ( insert_nat @ B4 @ A6 ) )
              & ( finite_finite_nat @ A6 ) ) ) ) ) ).

% finite.simps
thf(fact_467_finite_Osimps,axiom,
    ( finite_finite_a
    = ( ^ [A4: set_a] :
          ( ( A4 = bot_bot_set_a )
          | ? [A6: set_a,B4: a] :
              ( ( A4
                = ( insert_a @ B4 @ A6 ) )
              & ( finite_finite_a @ A6 ) ) ) ) ) ).

% finite.simps
thf(fact_468_finite_Ocases,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ~ ! [A8: set_nat] :
              ( ? [A3: nat] :
                  ( A
                  = ( insert_nat @ A3 @ A8 ) )
             => ~ ( finite_finite_nat @ A8 ) ) ) ) ).

% finite.cases
thf(fact_469_finite_Ocases,axiom,
    ! [A: set_a] :
      ( ( finite_finite_a @ A )
     => ( ( A != bot_bot_set_a )
       => ~ ! [A8: set_a] :
              ( ? [A3: a] :
                  ( A
                  = ( insert_a @ A3 @ A8 ) )
             => ~ ( finite_finite_a @ A8 ) ) ) ) ).

% finite.cases
thf(fact_470_finite__subset__induct_H,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A3 @ A2 )
                 => ( ( ord_less_eq_set_nat @ F3 @ A2 )
                   => ( ~ ( member_nat @ A3 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_471_finite__subset__induct_H,axiom,
    ! [F2: set_a,A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( ord_less_eq_set_a @ F2 @ A2 )
       => ( ( P @ bot_bot_set_a )
         => ( ! [A3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( member_a @ A3 @ A2 )
                 => ( ( ord_less_eq_set_a @ F3 @ A2 )
                   => ( ~ ( member_a @ A3 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_472_finite__subset__induct,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A3 @ A2 )
                 => ( ~ ( member_nat @ A3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_473_finite__subset__induct,axiom,
    ! [F2: set_a,A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( ord_less_eq_set_a @ F2 @ A2 )
       => ( ( P @ bot_bot_set_a )
         => ( ! [A3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( member_a @ A3 @ A2 )
                 => ( ~ ( member_a @ A3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_474_subset__singleton__iff,axiom,
    ! [X5: set_a,A: a] :
      ( ( ord_less_eq_set_a @ X5 @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( ( X5 = bot_bot_set_a )
        | ( X5
          = ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_475_subset__singletonD,axiom,
    ! [A2: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) )
     => ( ( A2 = bot_bot_set_a )
        | ( A2
          = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_476_singleton__Un__iff,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ( ( insert_a @ X @ bot_bot_set_a )
        = ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( ( A2 = bot_bot_set_a )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2 = bot_bot_set_a ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_477_Un__singleton__iff,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( ( sup_sup_set_a @ A2 @ B2 )
        = ( insert_a @ X @ bot_bot_set_a ) )
      = ( ( ( A2 = bot_bot_set_a )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2 = bot_bot_set_a ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_478_insert__is__Un,axiom,
    ( insert_a
    = ( ^ [A4: a] : ( sup_sup_set_a @ ( insert_a @ A4 @ bot_bot_set_a ) ) ) ) ).

% insert_is_Un
thf(fact_479_additive__abelian__group_Osumset__empty_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ bot_bot_set_a )
        = bot_bot_set_a ) ) ).

% additive_abelian_group.sumset_empty(1)
thf(fact_480_additive__abelian__group_Osumset__empty_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ bot_bot_set_a @ A2 )
        = bot_bot_set_a ) ) ).

% additive_abelian_group.sumset_empty(2)
thf(fact_481_inf__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% inf_left_commute
thf(fact_482_inf_Oleft__commute,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A @ C ) )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ).

% inf.left_commute
thf(fact_483_inf__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [X2: set_a,Y4: set_a] : ( inf_inf_set_a @ Y4 @ X2 ) ) ) ).

% inf_commute
thf(fact_484_inf_Ocommute,axiom,
    ( inf_inf_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( inf_inf_set_a @ B4 @ A4 ) ) ) ).

% inf.commute
thf(fact_485_inf__assoc,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
      = ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).

% inf_assoc
thf(fact_486_inf_Oassoc,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ C )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ).

% inf.assoc
thf(fact_487_inf__sup__aci_I1_J,axiom,
    ( inf_inf_set_a
    = ( ^ [X2: set_a,Y4: set_a] : ( inf_inf_set_a @ Y4 @ X2 ) ) ) ).

% inf_sup_aci(1)
thf(fact_488_inf__sup__aci_I2_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
      = ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).

% inf_sup_aci(2)
thf(fact_489_inf__sup__aci_I3_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% inf_sup_aci(3)
thf(fact_490_inf__sup__aci_I4_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_sup_aci(4)
thf(fact_491_sup__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_492_sup_Oleft__commute,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A @ C ) )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_493_sup__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [X2: set_a,Y4: set_a] : ( sup_sup_set_a @ Y4 @ X2 ) ) ) ).

% sup_commute
thf(fact_494_sup_Ocommute,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( sup_sup_set_a @ B4 @ A4 ) ) ) ).

% sup.commute
thf(fact_495_sup__assoc,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_496_sup_Oassoc,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ C )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.assoc
thf(fact_497_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_a
    = ( ^ [X2: set_a,Y4: set_a] : ( sup_sup_set_a @ Y4 @ X2 ) ) ) ).

% inf_sup_aci(5)
thf(fact_498_inf__sup__aci_I6_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_499_inf__sup__aci_I7_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_500_inf__sup__aci_I8_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_501_additive__abelian__group_Osumset__empty_H_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_empty'(2)
thf(fact_502_additive__abelian__group_Osumset__empty_H_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ A2 )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_empty'(1)
thf(fact_503_additive__abelian__group_Osumset__is__empty__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 )
          = bot_bot_set_a )
        = ( ( ( inf_inf_set_a @ A2 @ G )
            = bot_bot_set_a )
          | ( ( inf_inf_set_a @ B2 @ G )
            = bot_bot_set_a ) ) ) ) ).

% additive_abelian_group.sumset_is_empty_iff
thf(fact_504_additive__abelian__group_Oinfinite__sumset__iff,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ~ ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) )
        = ( ( ~ ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
            & ( ( inf_inf_set_nat @ B2 @ G )
             != bot_bot_set_nat ) )
          | ( ( ( inf_inf_set_nat @ A2 @ G )
             != bot_bot_set_nat )
            & ~ ( finite_finite_nat @ ( inf_inf_set_nat @ B2 @ G ) ) ) ) ) ) ).

% additive_abelian_group.infinite_sumset_iff
thf(fact_505_additive__abelian__group_Oinfinite__sumset__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) )
        = ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
            & ( ( inf_inf_set_a @ B2 @ G )
             != bot_bot_set_a ) )
          | ( ( ( inf_inf_set_a @ A2 @ G )
             != bot_bot_set_a )
            & ~ ( finite_finite_a @ ( inf_inf_set_a @ B2 @ G ) ) ) ) ) ) ).

% additive_abelian_group.infinite_sumset_iff
thf(fact_506_additive__abelian__group_Oinfinite__sumset__aux,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ~ ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
       => ( ( ~ ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) )
          = ( ( inf_inf_set_nat @ B2 @ G )
           != bot_bot_set_nat ) ) ) ) ).

% additive_abelian_group.infinite_sumset_aux
thf(fact_507_additive__abelian__group_Oinfinite__sumset__aux,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
       => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) )
          = ( ( inf_inf_set_a @ B2 @ G )
           != bot_bot_set_a ) ) ) ) ).

% additive_abelian_group.infinite_sumset_aux
thf(fact_508_additive__abelian__group_Osumset__D_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ Zero @ bot_bot_set_a ) @ A2 )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(2)
thf(fact_509_additive__abelian__group_Osumset__D_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ Zero @ bot_bot_set_a ) )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(1)
thf(fact_510_finite__has__maximal2,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( member_set_a @ A @ A2 )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ( ord_less_eq_set_a @ A @ X3 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_511_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( ord_less_eq_nat @ A @ X3 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_512_finite__has__minimal2,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( member_set_a @ A @ A2 )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ( ord_less_eq_set_a @ X3 @ A )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_513_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( ord_less_eq_nat @ X3 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_514_inf_OcoboundedI2,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_515_inf_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_516_inf_OcoboundedI1,axiom,
    ! [A: set_a,C: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_517_inf_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_518_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( inf_inf_set_a @ A4 @ B4 )
          = B4 ) ) ) ).

% inf.absorb_iff2
thf(fact_519_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( inf_inf_nat @ A4 @ B4 )
          = B4 ) ) ) ).

% inf.absorb_iff2
thf(fact_520_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( inf_inf_set_a @ A4 @ B4 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_521_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( inf_inf_nat @ A4 @ B4 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_522_inf_Ocobounded2,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_523_inf_Ocobounded2,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_524_inf_Ocobounded1,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_525_inf_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_526_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( A4
          = ( inf_inf_set_a @ A4 @ B4 ) ) ) ) ).

% inf.order_iff
thf(fact_527_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( A4
          = ( inf_inf_nat @ A4 @ B4 ) ) ) ) ).

% inf.order_iff
thf(fact_528_inf__greatest,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Z )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_529_inf__greatest,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Z )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_530_inf_OboundedI,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ A @ C )
       => ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_531_inf_OboundedI,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ C )
       => ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_532_inf_OboundedE,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
     => ~ ( ( ord_less_eq_set_a @ A @ B )
         => ~ ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_533_inf_OboundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
     => ~ ( ( ord_less_eq_nat @ A @ B )
         => ~ ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_534_inf__absorb2,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( inf_inf_set_a @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_535_inf__absorb2,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( inf_inf_nat @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_536_inf__absorb1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( inf_inf_set_a @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_537_inf__absorb1,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( inf_inf_nat @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_538_inf_Oabsorb2,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( inf_inf_set_a @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_539_inf_Oabsorb2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( inf_inf_nat @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_540_inf_Oabsorb1,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( inf_inf_set_a @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_541_inf_Oabsorb1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( inf_inf_nat @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_542_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( inf_inf_set_a @ X2 @ Y4 )
          = X2 ) ) ) ).

% le_iff_inf
thf(fact_543_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( inf_inf_nat @ X2 @ Y4 )
          = X2 ) ) ) ).

% le_iff_inf
thf(fact_544_inf__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y3 ) @ X3 )
     => ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y3 ) @ Y3 )
       => ( ! [X3: set_a,Y3: set_a,Z3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ( ord_less_eq_set_a @ X3 @ Z3 )
               => ( ord_less_eq_set_a @ X3 @ ( F @ Y3 @ Z3 ) ) ) )
         => ( ( inf_inf_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_545_inf__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y3 ) @ X3 )
     => ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y3 ) @ Y3 )
       => ( ! [X3: nat,Y3: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ( ord_less_eq_nat @ X3 @ Z3 )
               => ( ord_less_eq_nat @ X3 @ ( F @ Y3 @ Z3 ) ) ) )
         => ( ( inf_inf_nat @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_546_inf_OorderI,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A
        = ( inf_inf_set_a @ A @ B ) )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% inf.orderI
thf(fact_547_inf_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( inf_inf_nat @ A @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% inf.orderI
thf(fact_548_inf_OorderE,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( A
        = ( inf_inf_set_a @ A @ B ) ) ) ).

% inf.orderE
thf(fact_549_inf_OorderE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( A
        = ( inf_inf_nat @ A @ B ) ) ) ).

% inf.orderE
thf(fact_550_le__infI2,axiom,
    ! [B: set_a,X: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_551_le__infI2,axiom,
    ! [B: nat,X: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_552_le__infI1,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_553_le__infI1,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_554_inf__mono,axiom,
    ! [A: set_a,C: set_a,B: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ( ord_less_eq_set_a @ B @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).

% inf_mono
thf(fact_555_inf__mono,axiom,
    ! [A: nat,C: nat,B: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D2 )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ ( inf_inf_nat @ C @ D2 ) ) ) ) ).

% inf_mono
thf(fact_556_le__infI,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ( ord_less_eq_set_a @ X @ B )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% le_infI
thf(fact_557_le__infI,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ( ord_less_eq_nat @ X @ B )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) ) ) ) ).

% le_infI
thf(fact_558_le__infE,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) )
     => ~ ( ( ord_less_eq_set_a @ X @ A )
         => ~ ( ord_less_eq_set_a @ X @ B ) ) ) ).

% le_infE
thf(fact_559_le__infE,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) )
     => ~ ( ( ord_less_eq_nat @ X @ A )
         => ~ ( ord_less_eq_nat @ X @ B ) ) ) ).

% le_infE
thf(fact_560_inf__le2,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_561_inf__le2,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_562_inf__le1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_563_inf__le1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_564_inf__sup__ord_I1_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_565_inf__sup__ord_I1_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_566_inf__sup__ord_I2_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_567_inf__sup__ord_I2_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_568_sup_OcoboundedI2,axiom,
    ! [C: set_a,B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ C @ B )
     => ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_569_sup_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_570_sup_OcoboundedI1,axiom,
    ! [C: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ A )
     => ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_571_sup_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_572_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B4 )
          = B4 ) ) ) ).

% sup.absorb_iff2
thf(fact_573_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( sup_sup_nat @ A4 @ B4 )
          = B4 ) ) ) ).

% sup.absorb_iff2
thf(fact_574_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B4 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_575_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( sup_sup_nat @ A4 @ B4 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_576_sup_Ocobounded2,axiom,
    ! [B: set_a,A: set_a] : ( ord_less_eq_set_a @ B @ ( sup_sup_set_a @ A @ B ) ) ).

% sup.cobounded2
thf(fact_577_sup_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( sup_sup_nat @ A @ B ) ) ).

% sup.cobounded2
thf(fact_578_sup_Ocobounded1,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ A @ ( sup_sup_set_a @ A @ B ) ) ).

% sup.cobounded1
thf(fact_579_sup_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( sup_sup_nat @ A @ B ) ) ).

% sup.cobounded1
thf(fact_580_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( A4
          = ( sup_sup_set_a @ A4 @ B4 ) ) ) ) ).

% sup.order_iff
thf(fact_581_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( A4
          = ( sup_sup_nat @ A4 @ B4 ) ) ) ) ).

% sup.order_iff
thf(fact_582_sup_OboundedI,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ A )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A ) ) ) ).

% sup.boundedI
thf(fact_583_sup_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A ) ) ) ).

% sup.boundedI
thf(fact_584_sup_OboundedE,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_set_a @ B @ A )
         => ~ ( ord_less_eq_set_a @ C @ A ) ) ) ).

% sup.boundedE
thf(fact_585_sup_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.boundedE
thf(fact_586_sup__absorb2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( sup_sup_set_a @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_587_sup__absorb2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( sup_sup_nat @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_588_sup__absorb1,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( sup_sup_set_a @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_589_sup__absorb1,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( sup_sup_nat @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_590_sup_Oabsorb2,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( sup_sup_set_a @ A @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_591_sup_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( sup_sup_nat @ A @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_592_sup_Oabsorb1,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( sup_sup_set_a @ A @ B )
        = A ) ) ).

% sup.absorb1
thf(fact_593_sup_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( sup_sup_nat @ A @ B )
        = A ) ) ).

% sup.absorb1
thf(fact_594_sup__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: set_a,Y3: set_a,Z3: set_a] :
              ( ( ord_less_eq_set_a @ Y3 @ X3 )
             => ( ( ord_less_eq_set_a @ Z3 @ X3 )
               => ( ord_less_eq_set_a @ ( F @ Y3 @ Z3 ) @ X3 ) ) )
         => ( ( sup_sup_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_595_sup__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: nat,Y3: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ Y3 @ X3 )
             => ( ( ord_less_eq_nat @ Z3 @ X3 )
               => ( ord_less_eq_nat @ ( F @ Y3 @ Z3 ) @ X3 ) ) )
         => ( ( sup_sup_nat @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_596_sup_OorderI,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A
        = ( sup_sup_set_a @ A @ B ) )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% sup.orderI
thf(fact_597_sup_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( sup_sup_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% sup.orderI
thf(fact_598_sup_OorderE,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( A
        = ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.orderE
thf(fact_599_sup_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( sup_sup_nat @ A @ B ) ) ) ).

% sup.orderE
thf(fact_600_le__iff__sup,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( sup_sup_set_a @ X2 @ Y4 )
          = Y4 ) ) ) ).

% le_iff_sup
thf(fact_601_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( sup_sup_nat @ X2 @ Y4 )
          = Y4 ) ) ) ).

% le_iff_sup
thf(fact_602_sup__least,axiom,
    ! [Y: set_a,X: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ Z @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_603_sup__least,axiom,
    ! [Y: nat,X: nat,Z: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ Z @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_604_sup__mono,axiom,
    ! [A: set_a,C: set_a,B: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ( ord_less_eq_set_a @ B @ D2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ ( sup_sup_set_a @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_605_sup__mono,axiom,
    ! [A: nat,C: nat,B: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ ( sup_sup_nat @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_606_sup_Omono,axiom,
    ! [C: set_a,A: set_a,D2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ A )
     => ( ( ord_less_eq_set_a @ D2 @ B )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ C @ D2 ) @ ( sup_sup_set_a @ A @ B ) ) ) ) ).

% sup.mono
thf(fact_607_sup_Omono,axiom,
    ! [C: nat,A: nat,D2: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D2 @ B )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C @ D2 ) @ ( sup_sup_nat @ A @ B ) ) ) ) ).

% sup.mono
thf(fact_608_le__supI2,axiom,
    ! [X: set_a,B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ X @ B )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% le_supI2
thf(fact_609_le__supI2,axiom,
    ! [X: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ X @ B )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% le_supI2
thf(fact_610_le__supI1,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% le_supI1
thf(fact_611_le__supI1,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% le_supI1
thf(fact_612_sup__ge2,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge2
thf(fact_613_sup__ge2,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge2
thf(fact_614_sup__ge1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge1
thf(fact_615_sup__ge1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge1
thf(fact_616_le__supI,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ( ord_less_eq_set_a @ B @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ X ) ) ) ).

% le_supI
thf(fact_617_le__supI,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ( ord_less_eq_nat @ B @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ X ) ) ) ).

% le_supI
thf(fact_618_le__supE,axiom,
    ! [A: set_a,B: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ X )
     => ~ ( ( ord_less_eq_set_a @ A @ X )
         => ~ ( ord_less_eq_set_a @ B @ X ) ) ) ).

% le_supE
thf(fact_619_le__supE,axiom,
    ! [A: nat,B: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ X )
     => ~ ( ( ord_less_eq_nat @ A @ X )
         => ~ ( ord_less_eq_nat @ B @ X ) ) ) ).

% le_supE
thf(fact_620_inf__sup__ord_I3_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_621_inf__sup__ord_I3_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_622_inf__sup__ord_I4_J,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_623_inf__sup__ord_I4_J,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_624_all__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ord_less_eq_set_nat @ B6 @ A2 )
           => ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_625_all__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ A2 )
           => ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_626_finite__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( finite_finite_nat @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_627_finite__subset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( finite_finite_a @ B2 )
       => ( finite_finite_a @ A2 ) ) ) ).

% finite_subset
thf(fact_628_infinite__super,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ord_less_eq_set_nat @ S @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_super
thf(fact_629_infinite__super,axiom,
    ! [S: set_a,T: set_a] :
      ( ( ord_less_eq_set_a @ S @ T )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ T ) ) ) ).

% infinite_super
thf(fact_630_rev__finite__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_631_rev__finite__subset,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( finite_finite_a @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_632_finite_OinsertI,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( insert_a @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_633_finite_OinsertI,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( insert_nat @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_634_sup__inf__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).

% sup_inf_distrib2
thf(fact_635_sup__inf__distrib1,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% sup_inf_distrib1
thf(fact_636_inf__sup__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).

% inf_sup_distrib2
thf(fact_637_inf__sup__distrib1,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% inf_sup_distrib1
thf(fact_638_distrib__imp2,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ! [X3: set_a,Y3: set_a,Z3: set_a] :
          ( ( sup_sup_set_a @ X3 @ ( inf_inf_set_a @ Y3 @ Z3 ) )
          = ( inf_inf_set_a @ ( sup_sup_set_a @ X3 @ Y3 ) @ ( sup_sup_set_a @ X3 @ Z3 ) ) )
     => ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
        = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ) ).

% distrib_imp2
thf(fact_639_distrib__imp1,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ! [X3: set_a,Y3: set_a,Z3: set_a] :
          ( ( inf_inf_set_a @ X3 @ ( sup_sup_set_a @ Y3 @ Z3 ) )
          = ( sup_sup_set_a @ ( inf_inf_set_a @ X3 @ Y3 ) @ ( inf_inf_set_a @ X3 @ Z3 ) ) )
     => ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
        = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ) ).

% distrib_imp1
thf(fact_640_finite__UnI,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ F2 )
     => ( ( finite_finite_nat @ G )
       => ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) ) ) ) ).

% finite_UnI
thf(fact_641_finite__UnI,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( finite_finite_a @ F2 )
     => ( ( finite_finite_a @ G )
       => ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) ) ) ) ).

% finite_UnI
thf(fact_642_Un__infinite,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) ) ).

% Un_infinite
thf(fact_643_Un__infinite,axiom,
    ! [S: set_a,T: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) ) ).

% Un_infinite
thf(fact_644_infinite__Un,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) )
      = ( ~ ( finite_finite_nat @ S )
        | ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_Un
thf(fact_645_infinite__Un,axiom,
    ! [S: set_a,T: set_a] :
      ( ( ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) )
      = ( ~ ( finite_finite_a @ S )
        | ~ ( finite_finite_a @ T ) ) ) ).

% infinite_Un
thf(fact_646_distrib__sup__le,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) @ ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% distrib_sup_le
thf(fact_647_distrib__sup__le,axiom,
    ! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) @ ( inf_inf_nat @ ( sup_sup_nat @ X @ Y ) @ ( sup_sup_nat @ X @ Z ) ) ) ).

% distrib_sup_le
thf(fact_648_distrib__inf__le,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) @ ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% distrib_inf_le
thf(fact_649_distrib__inf__le,axiom,
    ! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ ( inf_inf_nat @ X @ Y ) @ ( inf_inf_nat @ X @ Z ) ) @ ( inf_inf_nat @ X @ ( sup_sup_nat @ Y @ Z ) ) ) ).

% distrib_inf_le
thf(fact_650_all__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ A2 ) )
           => ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_651_all__finite__subset__image,axiom,
    ! [F: a > nat,A2: set_a,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_652_all__finite__subset__image,axiom,
    ! [F: nat > a,A2: set_nat,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ A2 ) )
           => ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_653_all__finite__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_654_ex__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ A2 )
            & ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_655_ex__finite__subset__image,axiom,
    ! [F: a > nat,A2: set_a,P: set_nat > $o] :
      ( ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_656_ex__finite__subset__image,axiom,
    ! [F: nat > a,A2: set_nat,P: set_a > $o] :
      ( ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ A2 )
            & ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_657_ex__finite__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_658_finite__subset__image,axiom,
    ! [B2: set_nat,F: nat > nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
       => ? [C6: set_nat] :
            ( ( ord_less_eq_set_nat @ C6 @ A2 )
            & ( finite_finite_nat @ C6 )
            & ( B2
              = ( image_nat_nat @ F @ C6 ) ) ) ) ) ).

% finite_subset_image
thf(fact_659_finite__subset__image,axiom,
    ! [B2: set_nat,F: a > nat,A2: set_a] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_a_nat @ F @ A2 ) )
       => ? [C6: set_a] :
            ( ( ord_less_eq_set_a @ C6 @ A2 )
            & ( finite_finite_a @ C6 )
            & ( B2
              = ( image_a_nat @ F @ C6 ) ) ) ) ) ).

% finite_subset_image
thf(fact_660_finite__subset__image,axiom,
    ! [B2: set_a,F: nat > a,A2: set_nat] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_nat_a @ F @ A2 ) )
       => ? [C6: set_nat] :
            ( ( ord_less_eq_set_nat @ C6 @ A2 )
            & ( finite_finite_nat @ C6 )
            & ( B2
              = ( image_nat_a @ F @ C6 ) ) ) ) ) ).

% finite_subset_image
thf(fact_661_finite__subset__image,axiom,
    ! [B2: set_a,F: a > a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
       => ? [C6: set_a] :
            ( ( ord_less_eq_set_a @ C6 @ A2 )
            & ( finite_finite_a @ C6 )
            & ( B2
              = ( image_a_a @ F @ C6 ) ) ) ) ) ).

% finite_subset_image
thf(fact_662_finite__surj,axiom,
    ! [A2: set_a,B2: set_nat,F: a > nat] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_a_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B2 ) ) ) ).

% finite_surj
thf(fact_663_finite__surj,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B2 ) ) ) ).

% finite_surj
thf(fact_664_finite__surj,axiom,
    ! [A2: set_a,B2: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
       => ( finite_finite_a @ B2 ) ) ) ).

% finite_surj
thf(fact_665_finite__surj,axiom,
    ! [A2: set_nat,B2: set_a,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_nat_a @ F @ A2 ) )
       => ( finite_finite_a @ B2 ) ) ) ).

% finite_surj
thf(fact_666_sumset__insert1,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B2 )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ bot_bot_set_a ) @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% sumset_insert1
thf(fact_667_sumset__insert2,axiom,
    ! [B2: set_a,A2: set_a,X: a] :
      ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B2 )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B2 ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% sumset_insert2
thf(fact_668_sumsetdiff__sing,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
      = ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% sumsetdiff_sing
thf(fact_669_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_right
thf(fact_670_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_left
thf(fact_671_finite__ranking__induct,axiom,
    ! [S: set_nat,P: set_nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,S2: set_nat] :
              ( ( finite_finite_nat @ S2 )
             => ( ! [Y5: nat] :
                    ( ( member_nat @ Y5 @ S2 )
                   => ( ord_less_eq_nat @ ( F @ Y5 ) @ ( F @ X3 ) ) )
               => ( ( P @ S2 )
                 => ( P @ ( insert_nat @ X3 @ S2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_672_finite__ranking__induct,axiom,
    ! [S: set_a,P: set_a > $o,F: a > nat] :
      ( ( finite_finite_a @ S )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,S2: set_a] :
              ( ( finite_finite_a @ S2 )
             => ( ! [Y5: a] :
                    ( ( member_a @ Y5 @ S2 )
                   => ( ord_less_eq_nat @ ( F @ Y5 ) @ ( F @ X3 ) ) )
               => ( ( P @ S2 )
                 => ( P @ ( insert_a @ X3 @ S2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_673_sumset__iterated__0,axiom,
    ! [A2: set_a] :
      ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ zero_zero_nat )
      = ( insert_a @ zero @ bot_bot_set_a ) ) ).

% sumset_iterated_0
thf(fact_674_Diff__idemp,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ B2 )
      = ( minus_minus_set_a @ A2 @ B2 ) ) ).

% Diff_idemp
thf(fact_675_Diff__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        & ~ ( member_nat @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_676_Diff__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        & ~ ( member_a @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_677_DiffI,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_678_DiffI,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_679_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_680_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_681_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_682_finite__Diff2,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
        = ( finite_finite_nat @ A2 ) ) ) ).

% finite_Diff2
thf(fact_683_finite__Diff2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) )
        = ( finite_finite_a @ A2 ) ) ) ).

% finite_Diff2
thf(fact_684_finite__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_685_finite__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_686_Diff__insert0,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
        = ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_687_Diff__insert0,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ A2 @ ( insert_a @ X @ B2 ) )
        = ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_688_insert__Diff1,axiom,
    ! [X: nat,B2: set_nat,A2: set_nat] :
      ( ( member_nat @ X @ B2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
        = ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_689_insert__Diff1,axiom,
    ! [X: a,B2: set_a,A2: set_a] :
      ( ( member_a @ X @ B2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B2 )
        = ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_690_Un__Diff__cancel,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B2 @ A2 ) )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_Diff_cancel
thf(fact_691_Un__Diff__cancel2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ B2 @ A2 ) @ A2 )
      = ( sup_sup_set_a @ B2 @ A2 ) ) ).

% Un_Diff_cancel2
thf(fact_692_Diff__eq__empty__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( minus_minus_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_693_insert__Diff__single,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
      = ( insert_a @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_694_finite__Diff__insert,axiom,
    ! [A2: set_nat,A: nat,B2: set_nat] :
      ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) ) )
      = ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_695_finite__Diff__insert,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) ) )
      = ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_696_Diff__disjoint,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B2 @ A2 ) )
      = bot_bot_set_a ) ).

% Diff_disjoint
thf(fact_697_DiffD2,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ~ ( member_nat @ C @ B2 ) ) ).

% DiffD2
thf(fact_698_DiffD2,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( member_a @ C @ B2 ) ) ).

% DiffD2
thf(fact_699_DiffD1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_700_DiffD1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_701_DiffE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ( member_nat @ C @ B2 ) ) ) ).

% DiffE
thf(fact_702_DiffE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ( member_a @ C @ B2 ) ) ) ).

% DiffE
thf(fact_703_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_704_Diff__infinite__finite,axiom,
    ! [T: set_nat,S: set_nat] :
      ( ( finite_finite_nat @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_705_Diff__infinite__finite,axiom,
    ! [T: set_a,S: set_a] :
      ( ( finite_finite_a @ T )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_706_Diff__mono,axiom,
    ! [A2: set_a,C2: set_a,D: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ D @ B2 )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ C2 @ D ) ) ) ) ).

% Diff_mono
thf(fact_707_Diff__subset,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ A2 ) ).

% Diff_subset
thf(fact_708_double__diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ( minus_minus_set_a @ B2 @ ( minus_minus_set_a @ C2 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_709_insert__Diff__if,axiom,
    ! [X: nat,B2: set_nat,A2: set_nat] :
      ( ( ( member_nat @ X @ B2 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
          = ( minus_minus_set_nat @ A2 @ B2 ) ) )
      & ( ~ ( member_nat @ X @ B2 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
          = ( insert_nat @ X @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_710_insert__Diff__if,axiom,
    ! [X: a,B2: set_a,A2: set_a] :
      ( ( ( member_a @ X @ B2 )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B2 )
          = ( minus_minus_set_a @ A2 @ B2 ) ) )
      & ( ~ ( member_a @ X @ B2 )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B2 )
          = ( insert_a @ X @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_711_Int__Diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C2 )
      = ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B2 @ C2 ) ) ) ).

% Int_Diff
thf(fact_712_Diff__Int2,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C2 ) @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C2 ) @ B2 ) ) ).

% Diff_Int2
thf(fact_713_Diff__Diff__Int,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( inf_inf_set_a @ A2 @ B2 ) ) ).

% Diff_Diff_Int
thf(fact_714_Diff__Int__distrib,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ C2 @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ C2 @ A2 ) @ ( inf_inf_set_a @ C2 @ B2 ) ) ) ).

% Diff_Int_distrib
thf(fact_715_Diff__Int__distrib2,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ C2 )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C2 ) @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ).

% Diff_Int_distrib2
thf(fact_716_Un__Diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ C2 ) @ ( minus_minus_set_a @ B2 @ C2 ) ) ) ).

% Un_Diff
thf(fact_717_diff__shunt__var,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( minus_minus_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_718_image__diff__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) @ ( image_nat_nat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% image_diff_subset
thf(fact_719_image__diff__subset,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) @ ( image_a_a @ F @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% image_diff_subset
thf(fact_720_in__image__insert__iff,axiom,
    ! [B2: set_set_nat,X: nat,A2: set_nat] :
      ( ! [C6: set_nat] :
          ( ( member_set_nat @ C6 @ B2 )
         => ~ ( member_nat @ X @ C6 ) )
     => ( ( member_set_nat @ A2 @ ( image_7916887816326733075et_nat @ ( insert_nat @ X ) @ B2 ) )
        = ( ( member_nat @ X @ A2 )
          & ( member_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_721_in__image__insert__iff,axiom,
    ! [B2: set_set_a,X: a,A2: set_a] :
      ( ! [C6: set_a] :
          ( ( member_set_a @ C6 @ B2 )
         => ~ ( member_a @ X @ C6 ) )
     => ( ( member_set_a @ A2 @ ( image_set_a_set_a @ ( insert_a @ X ) @ B2 ) )
        = ( ( member_a @ X @ A2 )
          & ( member_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_722_Diff__insert__absorb,axiom,
    ! [X: nat,A2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ ( insert_nat @ X @ bot_bot_set_nat ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_723_Diff__insert__absorb,axiom,
    ! [X: a,A2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_724_Diff__insert2,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) @ B2 ) ) ).

% Diff_insert2
thf(fact_725_insert__Diff,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_726_insert__Diff,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_727_Diff__insert,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ).

% Diff_insert
thf(fact_728_subset__Diff__insert,axiom,
    ! [A2: set_nat,B2: set_nat,X: nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B2 @ ( insert_nat @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B2 @ C2 ) )
        & ~ ( member_nat @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_729_subset__Diff__insert,axiom,
    ! [A2: set_a,B2: set_a,X: a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B2 @ ( insert_a @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B2 @ C2 ) )
        & ~ ( member_a @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_730_Int__Diff__disjoint,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ B2 ) )
      = bot_bot_set_a ) ).

% Int_Diff_disjoint
thf(fact_731_Diff__triv,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a )
     => ( ( minus_minus_set_a @ A2 @ B2 )
        = A2 ) ) ).

% Diff_triv
thf(fact_732_Diff__partition,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B2 @ A2 ) )
        = B2 ) ) ).

% Diff_partition
thf(fact_733_Diff__subset__conv,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ C2 )
      = ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_734_Diff__Un,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ C2 ) ) ) ).

% Diff_Un
thf(fact_735_Diff__Int,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ C2 ) ) ) ).

% Diff_Int
thf(fact_736_Int__Diff__Un,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ B2 ) )
      = A2 ) ).

% Int_Diff_Un
thf(fact_737_Un__Diff__Int,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ A2 @ B2 ) )
      = A2 ) ).

% Un_Diff_Int
thf(fact_738_infinite__remove,axiom,
    ! [S: set_nat,A: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).

% infinite_remove
thf(fact_739_infinite__remove,axiom,
    ! [S: set_a,A: a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% infinite_remove
thf(fact_740_infinite__coinduct,axiom,
    ! [X5: set_nat > $o,A2: set_nat] :
      ( ( X5 @ A2 )
     => ( ! [A8: set_nat] :
            ( ( X5 @ A8 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A8 )
                & ( ( X5 @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) )
                  | ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) ) ) ) )
       => ~ ( finite_finite_nat @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_741_infinite__coinduct,axiom,
    ! [X5: set_a > $o,A2: set_a] :
      ( ( X5 @ A2 )
     => ( ! [A8: set_a] :
            ( ( X5 @ A8 )
           => ? [X4: a] :
                ( ( member_a @ X4 @ A8 )
                & ( ( X5 @ ( minus_minus_set_a @ A8 @ ( insert_a @ X4 @ bot_bot_set_a ) ) )
                  | ~ ( finite_finite_a @ ( minus_minus_set_a @ A8 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) ) ) )
       => ~ ( finite_finite_a @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_742_finite__empty__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ A2 )
       => ( ! [A3: nat,A8: set_nat] :
              ( ( finite_finite_nat @ A8 )
             => ( ( member_nat @ A3 @ A8 )
               => ( ( P @ A8 )
                 => ( P @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ A3 @ bot_bot_set_nat ) ) ) ) ) )
         => ( P @ bot_bot_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_743_finite__empty__induct,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( P @ A2 )
       => ( ! [A3: a,A8: set_a] :
              ( ( finite_finite_a @ A8 )
             => ( ( member_a @ A3 @ A8 )
               => ( ( P @ A8 )
                 => ( P @ ( minus_minus_set_a @ A8 @ ( insert_a @ A3 @ bot_bot_set_a ) ) ) ) ) )
         => ( P @ bot_bot_set_a ) ) ) ) ).

% finite_empty_induct
thf(fact_744_subset__insert__iff,axiom,
    ! [A2: set_nat,X: nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
      = ( ( ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) )
        & ( ~ ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_745_subset__insert__iff,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B2 ) )
      = ( ( ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 ) )
        & ( ~ ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_746_Diff__single__insert,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 )
     => ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B2 ) ) ) ).

% Diff_single_insert
thf(fact_747_boolean__algebra__cancel_Oinf1,axiom,
    ! [A2: set_a,K: set_a,A: set_a,B: set_a] :
      ( ( A2
        = ( inf_inf_set_a @ K @ A ) )
     => ( ( inf_inf_set_a @ A2 @ B )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf1
thf(fact_748_boolean__algebra__cancel_Oinf2,axiom,
    ! [B2: set_a,K: set_a,B: set_a,A: set_a] :
      ( ( B2
        = ( inf_inf_set_a @ K @ B ) )
     => ( ( inf_inf_set_a @ A @ B2 )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf2
thf(fact_749_boolean__algebra__cancel_Osup1,axiom,
    ! [A2: set_a,K: set_a,A: set_a,B: set_a] :
      ( ( A2
        = ( sup_sup_set_a @ K @ A ) )
     => ( ( sup_sup_set_a @ A2 @ B )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_750_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: set_a,K: set_a,B: set_a,A: set_a] :
      ( ( B2
        = ( sup_sup_set_a @ K @ B ) )
     => ( ( sup_sup_set_a @ A @ B2 )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_751_finite__remove__induct,axiom,
    ! [B2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [A8: set_nat] :
              ( ( finite_finite_nat @ A8 )
             => ( ( A8 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A8 @ B2 )
                 => ( ! [X4: nat] :
                        ( ( member_nat @ X4 @ A8 )
                       => ( P @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A8 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_752_finite__remove__induct,axiom,
    ! [B2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [A8: set_a] :
              ( ( finite_finite_a @ A8 )
             => ( ( A8 != bot_bot_set_a )
               => ( ( ord_less_eq_set_a @ A8 @ B2 )
                 => ( ! [X4: a] :
                        ( ( member_a @ X4 @ A8 )
                       => ( P @ ( minus_minus_set_a @ A8 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) )
                   => ( P @ A8 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_753_remove__induct,axiom,
    ! [P: set_nat > $o,B2: set_nat] :
      ( ( P @ bot_bot_set_nat )
     => ( ( ~ ( finite_finite_nat @ B2 )
         => ( P @ B2 ) )
       => ( ! [A8: set_nat] :
              ( ( finite_finite_nat @ A8 )
             => ( ( A8 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A8 @ B2 )
                 => ( ! [X4: nat] :
                        ( ( member_nat @ X4 @ A8 )
                       => ( P @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A8 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% remove_induct
thf(fact_754_remove__induct,axiom,
    ! [P: set_a > $o,B2: set_a] :
      ( ( P @ bot_bot_set_a )
     => ( ( ~ ( finite_finite_a @ B2 )
         => ( P @ B2 ) )
       => ( ! [A8: set_a] :
              ( ( finite_finite_a @ A8 )
             => ( ( A8 != bot_bot_set_a )
               => ( ( ord_less_eq_set_a @ A8 @ B2 )
                 => ( ! [X4: a] :
                        ( ( member_a @ X4 @ A8 )
                       => ( P @ ( minus_minus_set_a @ A8 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) )
                   => ( P @ A8 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% remove_induct
thf(fact_755_additive__abelian__group_Osumsetdiff__sing,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% additive_abelian_group.sumsetdiff_sing
thf(fact_756_additive__abelian__group_Osumset__iterated__0,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ zero_zero_nat )
        = ( insert_a @ Zero @ bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_iterated_0
thf(fact_757_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_758_boolean__algebra_Oconj__disj__distrib,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% boolean_algebra.conj_disj_distrib
thf(fact_759_boolean__algebra_Odisj__conj__distrib,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% boolean_algebra.disj_conj_distrib
thf(fact_760_boolean__algebra_Oconj__disj__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).

% boolean_algebra.conj_disj_distrib2
thf(fact_761_boolean__algebra_Odisj__conj__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).

% boolean_algebra.disj_conj_distrib2
thf(fact_762_additive__abelian__group_Osumset__insert2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,B2: set_a,A2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B2 )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B2 ) )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.sumset_insert2
thf(fact_763_additive__abelian__group_Osumset__insert1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,X: a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B2 )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ bot_bot_set_a ) @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.sumset_insert1
thf(fact_764_card__sumset__singleton__eq,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ A @ g )
         => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) )
        & ( ~ ( member_a @ A @ g )
         => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = zero_zero_nat ) ) ) ) ).

% card_sumset_singleton_eq
thf(fact_765_card__sumset__le,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ).

% card_sumset_le
thf(fact_766_card__sumset__0__iff_H,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
        = zero_zero_nat )
      = ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) )
          = zero_zero_nat )
        | ( ( finite_card_a @ ( inf_inf_set_a @ B2 @ g ) )
          = zero_zero_nat ) ) ) ).

% card_sumset_0_iff'
thf(fact_767_card__sumset__0__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ g )
     => ( ( ord_less_eq_set_a @ B2 @ g )
       => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
            = zero_zero_nat )
          = ( ( ( finite_card_a @ A2 )
              = zero_zero_nat )
            | ( ( finite_card_a @ B2 )
              = zero_zero_nat ) ) ) ) ) ).

% card_sumset_0_iff
thf(fact_768_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_769_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_770_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_771_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_772_card__le__sumset,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ g )
         => ( ( finite_finite_a @ B2 )
           => ( ( ord_less_eq_set_a @ B2 @ g )
             => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ) ) ) ) ).

% card_le_sumset
thf(fact_773_card_Oempty,axiom,
    ( ( finite410649719033368117t_unit @ bot_bo3957492148770167129t_unit )
    = zero_zero_nat ) ).

% card.empty
thf(fact_774_card_Oempty,axiom,
    ( ( finite_card_a @ bot_bot_set_a )
    = zero_zero_nat ) ).

% card.empty
thf(fact_775_card_Oinfinite,axiom,
    ! [A2: set_Product_unit] :
      ( ~ ( finite4290736615968046902t_unit @ A2 )
     => ( ( finite410649719033368117t_unit @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_776_card_Oinfinite,axiom,
    ! [A2: set_a] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_card_a @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_777_card_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_778_card__0__eq,axiom,
    ! [A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( ( finite410649719033368117t_unit @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bo3957492148770167129t_unit ) ) ) ).

% card_0_eq
thf(fact_779_card__0__eq,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( finite_card_nat @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bot_set_nat ) ) ) ).

% card_0_eq
thf(fact_780_card__0__eq,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( finite_card_a @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bot_set_a ) ) ) ).

% card_0_eq
thf(fact_781_card__insert__disjoint,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ~ ( member_Product_unit @ X @ A2 )
       => ( ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ A2 ) )
          = ( suc @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_782_card__insert__disjoint,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ~ ( member_a @ X @ A2 )
       => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
          = ( suc @ ( finite_card_a @ A2 ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_783_card__insert__disjoint,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ X @ A2 )
       => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
          = ( suc @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_784_card__insert__le,axiom,
    ! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( insert_a @ X @ A2 ) ) ) ).

% card_insert_le
thf(fact_785_card__insert__le,axiom,
    ! [A2: set_Product_unit,X: product_unit] : ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ A2 ) ) ) ).

% card_insert_le
thf(fact_786_diff__card__le__card__Diff,axiom,
    ! [B2: set_Product_unit,A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) ) @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B2 ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_787_diff__card__le__card__Diff,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_788_diff__card__le__card__Diff,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_789_card__Diff__subset,axiom,
    ! [B2: set_Product_unit,A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ( ord_le3507040750410214029t_unit @ B2 @ A2 )
       => ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) ) ) ) ) ).

% card_Diff_subset
thf(fact_790_card__Diff__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_Diff_subset
thf(fact_791_card__Diff__subset,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_Diff_subset
thf(fact_792_card__Diff__subset__Int,axiom,
    ! [A2: set_Product_unit,B2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ B2 ) )
     => ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B2 ) )
        = ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ B2 ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_793_card__Diff__subset__Int,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
        = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_794_card__Diff__subset__Int,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) )
        = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_795_card__image__le,axiom,
    ! [A2: set_Product_unit,F: product_unit > a] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( image_Product_unit_a @ F @ A2 ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ).

% card_image_le
thf(fact_796_card__image__le,axiom,
    ! [A2: set_Product_unit,F: product_unit > product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( image_405062704495631173t_unit @ F @ A2 ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ).

% card_image_le
thf(fact_797_card__image__le,axiom,
    ! [A2: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( image_a_a @ F @ A2 ) ) @ ( finite_card_a @ A2 ) ) ) ).

% card_image_le
thf(fact_798_card__image__le,axiom,
    ! [A2: set_a,F: a > product_unit] :
      ( ( finite_finite_a @ A2 )
     => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( image_a_Product_unit @ F @ A2 ) ) @ ( finite_card_a @ A2 ) ) ) ).

% card_image_le
thf(fact_799_card__image__le,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ ( image_nat_nat @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_800_card__image__le,axiom,
    ! [A2: set_nat,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( image_nat_a @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_801_card__image__le,axiom,
    ! [A2: set_nat,F: nat > product_unit] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( image_8730104196221521654t_unit @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_802_infinite__arbitrarily__large,axiom,
    ! [A2: set_Product_unit,N2: nat] :
      ( ~ ( finite4290736615968046902t_unit @ A2 )
     => ? [B7: set_Product_unit] :
          ( ( finite4290736615968046902t_unit @ B7 )
          & ( ( finite410649719033368117t_unit @ B7 )
            = N2 )
          & ( ord_le3507040750410214029t_unit @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_803_infinite__arbitrarily__large,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ? [B7: set_nat] :
          ( ( finite_finite_nat @ B7 )
          & ( ( finite_card_nat @ B7 )
            = N2 )
          & ( ord_less_eq_set_nat @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_804_infinite__arbitrarily__large,axiom,
    ! [A2: set_a,N2: nat] :
      ( ~ ( finite_finite_a @ A2 )
     => ? [B7: set_a] :
          ( ( finite_finite_a @ B7 )
          & ( ( finite_card_a @ B7 )
            = N2 )
          & ( ord_less_eq_set_a @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_805_card__subset__eq,axiom,
    ! [B2: set_Product_unit,A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ( ord_le3507040750410214029t_unit @ A2 @ B2 )
       => ( ( ( finite410649719033368117t_unit @ A2 )
            = ( finite410649719033368117t_unit @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_806_card__subset__eq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ( finite_card_nat @ A2 )
            = ( finite_card_nat @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_807_card__subset__eq,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ( ( finite_card_a @ A2 )
            = ( finite_card_a @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_808_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_Product_unit,C2: nat] :
      ( ! [G5: set_Product_unit] :
          ( ( ord_le3507040750410214029t_unit @ G5 @ F2 )
         => ( ( finite4290736615968046902t_unit @ G5 )
           => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ G5 ) @ C2 ) ) )
     => ( ( finite4290736615968046902t_unit @ F2 )
        & ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_809_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_nat,C2: nat] :
      ( ! [G5: set_nat] :
          ( ( ord_less_eq_set_nat @ G5 @ F2 )
         => ( ( finite_finite_nat @ G5 )
           => ( ord_less_eq_nat @ ( finite_card_nat @ G5 ) @ C2 ) ) )
     => ( ( finite_finite_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_810_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_a,C2: nat] :
      ( ! [G5: set_a] :
          ( ( ord_less_eq_set_a @ G5 @ F2 )
         => ( ( finite_finite_a @ G5 )
           => ( ord_less_eq_nat @ ( finite_card_a @ G5 ) @ C2 ) ) )
     => ( ( finite_finite_a @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_a @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_811_obtain__subset__with__card__n,axiom,
    ! [N2: nat,S: set_Product_unit] :
      ( ( ord_less_eq_nat @ N2 @ ( finite410649719033368117t_unit @ S ) )
     => ~ ! [T3: set_Product_unit] :
            ( ( ord_le3507040750410214029t_unit @ T3 @ S )
           => ( ( ( finite410649719033368117t_unit @ T3 )
                = N2 )
             => ~ ( finite4290736615968046902t_unit @ T3 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_812_obtain__subset__with__card__n,axiom,
    ! [N2: nat,S: set_nat] :
      ( ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ S ) )
     => ~ ! [T3: set_nat] :
            ( ( ord_less_eq_set_nat @ T3 @ S )
           => ( ( ( finite_card_nat @ T3 )
                = N2 )
             => ~ ( finite_finite_nat @ T3 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_813_obtain__subset__with__card__n,axiom,
    ! [N2: nat,S: set_a] :
      ( ( ord_less_eq_nat @ N2 @ ( finite_card_a @ S ) )
     => ~ ! [T3: set_a] :
            ( ( ord_less_eq_set_a @ T3 @ S )
           => ( ( ( finite_card_a @ T3 )
                = N2 )
             => ~ ( finite_finite_a @ T3 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_814_exists__subset__between,axiom,
    ! [A2: set_Product_unit,N2: nat,C2: set_Product_unit] :
      ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( finite410649719033368117t_unit @ C2 ) )
       => ( ( ord_le3507040750410214029t_unit @ A2 @ C2 )
         => ( ( finite4290736615968046902t_unit @ C2 )
           => ? [B7: set_Product_unit] :
                ( ( ord_le3507040750410214029t_unit @ A2 @ B7 )
                & ( ord_le3507040750410214029t_unit @ B7 @ C2 )
                & ( ( finite410649719033368117t_unit @ B7 )
                  = N2 ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_815_exists__subset__between,axiom,
    ! [A2: set_nat,N2: nat,C2: set_nat] :
      ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ C2 ) )
       => ( ( ord_less_eq_set_nat @ A2 @ C2 )
         => ( ( finite_finite_nat @ C2 )
           => ? [B7: set_nat] :
                ( ( ord_less_eq_set_nat @ A2 @ B7 )
                & ( ord_less_eq_set_nat @ B7 @ C2 )
                & ( ( finite_card_nat @ B7 )
                  = N2 ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_816_exists__subset__between,axiom,
    ! [A2: set_a,N2: nat,C2: set_a] :
      ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( finite_card_a @ C2 ) )
       => ( ( ord_less_eq_set_a @ A2 @ C2 )
         => ( ( finite_finite_a @ C2 )
           => ? [B7: set_a] :
                ( ( ord_less_eq_set_a @ A2 @ B7 )
                & ( ord_less_eq_set_a @ B7 @ C2 )
                & ( ( finite_card_a @ B7 )
                  = N2 ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_817_card__seteq,axiom,
    ! [B2: set_Product_unit,A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ( ord_le3507040750410214029t_unit @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B2 ) @ ( finite410649719033368117t_unit @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_818_card__seteq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_819_card__seteq,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_820_card__mono,axiom,
    ! [B2: set_Product_unit,A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ( ord_le3507040750410214029t_unit @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) ) ) ) ).

% card_mono
thf(fact_821_card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% card_mono
thf(fact_822_card__mono,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ).

% card_mono
thf(fact_823_card__le__sym__Diff,axiom,
    ! [A2: set_Product_unit,B2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( finite4290736615968046902t_unit @ B2 )
       => ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) )
         => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B2 ) ) @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ B2 @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_824_card__le__sym__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_825_card__le__sym__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B2 @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_826_surj__card__le,axiom,
    ! [A2: set_Product_unit,B2: set_Product_unit,F: product_unit > product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( ord_le3507040750410214029t_unit @ B2 @ ( image_405062704495631173t_unit @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B2 ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_827_surj__card__le,axiom,
    ! [A2: set_a,B2: set_Product_unit,F: a > product_unit] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_le3507040750410214029t_unit @ B2 @ ( image_a_Product_unit @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B2 ) @ ( finite_card_a @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_828_surj__card__le,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_829_surj__card__le,axiom,
    ! [A2: set_nat,B2: set_Product_unit,F: nat > product_unit] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_le3507040750410214029t_unit @ B2 @ ( image_8730104196221521654t_unit @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B2 ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_830_surj__card__le,axiom,
    ! [A2: set_Product_unit,B2: set_a,F: product_unit > a] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_Product_unit_a @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_831_surj__card__le,axiom,
    ! [A2: set_a,B2: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_832_surj__card__le,axiom,
    ! [A2: set_nat,B2: set_a,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_nat_a @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_833_card__eq__0__iff,axiom,
    ! [A2: set_Product_unit] :
      ( ( ( finite410649719033368117t_unit @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bo3957492148770167129t_unit )
        | ~ ( finite4290736615968046902t_unit @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_834_card__eq__0__iff,axiom,
    ! [A2: set_nat] :
      ( ( ( finite_card_nat @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bot_set_nat )
        | ~ ( finite_finite_nat @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_835_card__eq__0__iff,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bot_set_a )
        | ~ ( finite_finite_a @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_836_card__le__Suc0__iff__eq,axiom,
    ! [A2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X2: product_unit] :
              ( ( member_Product_unit @ X2 @ A2 )
             => ! [Y4: product_unit] :
                  ( ( member_Product_unit @ Y4 @ A2 )
                 => ( X2 = Y4 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_837_card__le__Suc0__iff__eq,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X2: a] :
              ( ( member_a @ X2 @ A2 )
             => ! [Y4: a] :
                  ( ( member_a @ Y4 @ A2 )
                 => ( X2 = Y4 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_838_card__le__Suc0__iff__eq,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
             => ! [Y4: nat] :
                  ( ( member_nat @ Y4 @ A2 )
                 => ( X2 = Y4 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_839_card__Suc__eq__finite,axiom,
    ! [A2: set_Product_unit,K: nat] :
      ( ( ( finite410649719033368117t_unit @ A2 )
        = ( suc @ K ) )
      = ( ? [B4: product_unit,B6: set_Product_unit] :
            ( ( A2
              = ( insert_Product_unit @ B4 @ B6 ) )
            & ~ ( member_Product_unit @ B4 @ B6 )
            & ( ( finite410649719033368117t_unit @ B6 )
              = K )
            & ( finite4290736615968046902t_unit @ B6 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_840_card__Suc__eq__finite,axiom,
    ! [A2: set_a,K: nat] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ K ) )
      = ( ? [B4: a,B6: set_a] :
            ( ( A2
              = ( insert_a @ B4 @ B6 ) )
            & ~ ( member_a @ B4 @ B6 )
            & ( ( finite_card_a @ B6 )
              = K )
            & ( finite_finite_a @ B6 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_841_card__Suc__eq__finite,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ K ) )
      = ( ? [B4: nat,B6: set_nat] :
            ( ( A2
              = ( insert_nat @ B4 @ B6 ) )
            & ~ ( member_nat @ B4 @ B6 )
            & ( ( finite_card_nat @ B6 )
              = K )
            & ( finite_finite_nat @ B6 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_842_card__insert__if,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( ( member_Product_unit @ X @ A2 )
         => ( ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ A2 ) )
            = ( finite410649719033368117t_unit @ A2 ) ) )
        & ( ~ ( member_Product_unit @ X @ A2 )
         => ( ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ A2 ) )
            = ( suc @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ) ) ).

% card_insert_if
thf(fact_843_card__insert__if,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ X @ A2 )
         => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
            = ( finite_card_a @ A2 ) ) )
        & ( ~ ( member_a @ X @ A2 )
         => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
            = ( suc @ ( finite_card_a @ A2 ) ) ) ) ) ) ).

% card_insert_if
thf(fact_844_card__insert__if,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( member_nat @ X @ A2 )
         => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
            = ( finite_card_nat @ A2 ) ) )
        & ( ~ ( member_nat @ X @ A2 )
         => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
            = ( suc @ ( finite_card_nat @ A2 ) ) ) ) ) ) ).

% card_insert_if
thf(fact_845_card__le__Suc__iff,axiom,
    ! [N2: nat,A2: set_Product_unit] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( finite410649719033368117t_unit @ A2 ) )
      = ( ? [A4: product_unit,B6: set_Product_unit] :
            ( ( A2
              = ( insert_Product_unit @ A4 @ B6 ) )
            & ~ ( member_Product_unit @ A4 @ B6 )
            & ( ord_less_eq_nat @ N2 @ ( finite410649719033368117t_unit @ B6 ) )
            & ( finite4290736615968046902t_unit @ B6 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_846_card__le__Suc__iff,axiom,
    ! [N2: nat,A2: set_a] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( finite_card_a @ A2 ) )
      = ( ? [A4: a,B6: set_a] :
            ( ( A2
              = ( insert_a @ A4 @ B6 ) )
            & ~ ( member_a @ A4 @ B6 )
            & ( ord_less_eq_nat @ N2 @ ( finite_card_a @ B6 ) )
            & ( finite_finite_a @ B6 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_847_card__le__Suc__iff,axiom,
    ! [N2: nat,A2: set_nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( finite_card_nat @ A2 ) )
      = ( ? [A4: nat,B6: set_nat] :
            ( ( A2
              = ( insert_nat @ A4 @ B6 ) )
            & ~ ( member_nat @ A4 @ B6 )
            & ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ B6 ) )
            & ( finite_finite_nat @ B6 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_848_card__Diff1__le,axiom,
    ! [A2: set_Product_unit,X: product_unit] : ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ).

% card_Diff1_le
thf(fact_849_card__Diff1__le,axiom,
    ! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ).

% card_Diff1_le
thf(fact_850_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_851_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_852_card__Suc__eq,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ K ) )
      = ( ? [B4: nat,B6: set_nat] :
            ( ( A2
              = ( insert_nat @ B4 @ B6 ) )
            & ~ ( member_nat @ B4 @ B6 )
            & ( ( finite_card_nat @ B6 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B6 = bot_bot_set_nat ) ) ) ) ) ).

% card_Suc_eq
thf(fact_853_card__Suc__eq,axiom,
    ! [A2: set_Product_unit,K: nat] :
      ( ( ( finite410649719033368117t_unit @ A2 )
        = ( suc @ K ) )
      = ( ? [B4: product_unit,B6: set_Product_unit] :
            ( ( A2
              = ( insert_Product_unit @ B4 @ B6 ) )
            & ~ ( member_Product_unit @ B4 @ B6 )
            & ( ( finite410649719033368117t_unit @ B6 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B6 = bot_bo3957492148770167129t_unit ) ) ) ) ) ).

% card_Suc_eq
thf(fact_854_card__Suc__eq,axiom,
    ! [A2: set_a,K: nat] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ K ) )
      = ( ? [B4: a,B6: set_a] :
            ( ( A2
              = ( insert_a @ B4 @ B6 ) )
            & ~ ( member_a @ B4 @ B6 )
            & ( ( finite_card_a @ B6 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B6 = bot_bot_set_a ) ) ) ) ) ).

% card_Suc_eq
thf(fact_855_card__eq__SucD,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ K ) )
     => ? [B3: nat,B7: set_nat] :
          ( ( A2
            = ( insert_nat @ B3 @ B7 ) )
          & ~ ( member_nat @ B3 @ B7 )
          & ( ( finite_card_nat @ B7 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B7 = bot_bot_set_nat ) ) ) ) ).

% card_eq_SucD
thf(fact_856_card__eq__SucD,axiom,
    ! [A2: set_Product_unit,K: nat] :
      ( ( ( finite410649719033368117t_unit @ A2 )
        = ( suc @ K ) )
     => ? [B3: product_unit,B7: set_Product_unit] :
          ( ( A2
            = ( insert_Product_unit @ B3 @ B7 ) )
          & ~ ( member_Product_unit @ B3 @ B7 )
          & ( ( finite410649719033368117t_unit @ B7 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B7 = bot_bo3957492148770167129t_unit ) ) ) ) ).

% card_eq_SucD
thf(fact_857_card__eq__SucD,axiom,
    ! [A2: set_a,K: nat] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ K ) )
     => ? [B3: a,B7: set_a] :
          ( ( A2
            = ( insert_a @ B3 @ B7 ) )
          & ~ ( member_a @ B3 @ B7 )
          & ( ( finite_card_a @ B7 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B7 = bot_bot_set_a ) ) ) ) ).

% card_eq_SucD
thf(fact_858_card__1__singleton__iff,axiom,
    ! [A2: set_Product_unit] :
      ( ( ( finite410649719033368117t_unit @ A2 )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X2: product_unit] :
            ( A2
            = ( insert_Product_unit @ X2 @ bot_bo3957492148770167129t_unit ) ) ) ) ).

% card_1_singleton_iff
thf(fact_859_card__1__singleton__iff,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X2: a] :
            ( A2
            = ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).

% card_1_singleton_iff
thf(fact_860_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,A: product_unit,B2: set_Product_unit] :
      ( ( pluenn3635716580025208315t_unit @ G @ Addition @ Zero )
     => ( ( finite4290736615968046902t_unit @ A2 )
       => ( ( member_Product_unit @ A @ A2 )
         => ( ( member_Product_unit @ A @ G )
           => ( ( finite4290736615968046902t_unit @ B2 )
             => ( ( ord_le3507040750410214029t_unit @ B2 @ G )
               => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B2 ) @ ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_861_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( member_nat @ A @ A2 )
         => ( ( member_nat @ A @ G )
           => ( ( finite_finite_nat @ B2 )
             => ( ( ord_less_eq_set_nat @ B2 @ G )
               => ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_862_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( member_a @ A @ A2 )
         => ( ( member_a @ A @ G )
           => ( ( finite_finite_a @ B2 )
             => ( ( ord_less_eq_set_a @ B2 @ G )
               => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_863_additive__abelian__group_Ocard__sumset__0__iff,axiom,
    ! [G: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,B2: set_Product_unit] :
      ( ( pluenn3635716580025208315t_unit @ G @ Addition @ Zero )
     => ( ( ord_le3507040750410214029t_unit @ A2 @ G )
       => ( ( ord_le3507040750410214029t_unit @ B2 @ G )
         => ( ( ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G @ Addition @ A2 @ B2 ) )
              = zero_zero_nat )
            = ( ( ( finite410649719033368117t_unit @ A2 )
                = zero_zero_nat )
              | ( ( finite410649719033368117t_unit @ B2 )
                = zero_zero_nat ) ) ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff
thf(fact_864_additive__abelian__group_Ocard__sumset__0__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A2 @ G )
       => ( ( ord_less_eq_set_a @ B2 @ G )
         => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
              = zero_zero_nat )
            = ( ( ( finite_card_a @ A2 )
                = zero_zero_nat )
              | ( ( finite_card_a @ B2 )
                = zero_zero_nat ) ) ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff
thf(fact_865_additive__abelian__group_Ocard__sumset__0__iff_H,axiom,
    ! [G: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,B2: set_Product_unit] :
      ( ( pluenn3635716580025208315t_unit @ G @ Addition @ Zero )
     => ( ( ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G @ Addition @ A2 @ B2 ) )
          = zero_zero_nat )
        = ( ( ( finite410649719033368117t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ G ) )
            = zero_zero_nat )
          | ( ( finite410649719033368117t_unit @ ( inf_in4660618365625256667t_unit @ B2 @ G ) )
            = zero_zero_nat ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff'
thf(fact_866_additive__abelian__group_Ocard__sumset__0__iff_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
          = zero_zero_nat )
        = ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) )
            = zero_zero_nat )
          | ( ( finite_card_a @ ( inf_inf_set_a @ B2 @ G ) )
            = zero_zero_nat ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff'
thf(fact_867_card__Suc__Diff1,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( member_Product_unit @ X @ A2 )
       => ( ( suc @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) )
          = ( finite410649719033368117t_unit @ A2 ) ) ) ) ).

% card_Suc_Diff1
thf(fact_868_card__Suc__Diff1,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) )
          = ( finite_card_nat @ A2 ) ) ) ) ).

% card_Suc_Diff1
thf(fact_869_card__Suc__Diff1,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) )
          = ( finite_card_a @ A2 ) ) ) ) ).

% card_Suc_Diff1
thf(fact_870_card_Oinsert__remove,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ A2 ) )
        = ( suc @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_871_card_Oinsert__remove,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
        = ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_872_card_Oinsert__remove,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
        = ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_873_card_Oremove,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( member_Product_unit @ X @ A2 )
       => ( ( finite410649719033368117t_unit @ A2 )
          = ( suc @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) ) ) ) ) ).

% card.remove
thf(fact_874_card_Oremove,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ( finite_card_nat @ A2 )
          = ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ).

% card.remove
thf(fact_875_card_Oremove,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ( finite_card_a @ A2 )
          = ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ) ) ).

% card.remove
thf(fact_876_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,A: product_unit] :
      ( ( pluenn3635716580025208315t_unit @ G @ Addition @ Zero )
     => ( ( finite4290736615968046902t_unit @ A2 )
       => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G @ Addition @ A2 @ ( insert_Product_unit @ A @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_877_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_878_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_879_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_880_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,A: product_unit] :
      ( ( pluenn3635716580025208315t_unit @ G @ Addition @ Zero )
     => ( ( finite4290736615968046902t_unit @ A2 )
       => ( ( ( member_Product_unit @ A @ G )
           => ( ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G @ Addition @ A2 @ ( insert_Product_unit @ A @ bot_bo3957492148770167129t_unit ) ) )
              = ( finite410649719033368117t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ G ) ) ) )
          & ( ~ ( member_Product_unit @ A @ G )
           => ( ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G @ Addition @ A2 @ ( insert_Product_unit @ A @ bot_bo3957492148770167129t_unit ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_881_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( ( member_nat @ A @ G )
           => ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ G ) ) ) )
          & ( ~ ( member_nat @ A @ G )
           => ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_882_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( ( member_a @ A @ G )
           => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
              = ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) ) ) )
          & ( ~ ( member_a @ A @ G )
           => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_883_Suc__le__mono,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M3 ) )
      = ( ord_less_eq_nat @ N2 @ M3 ) ) ).

% Suc_le_mono
thf(fact_884_diff__is__0__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M3 @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% diff_is_0_eq
thf(fact_885_diff__is__0__eq_H,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( minus_minus_nat @ M3 @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_886_order__refl,axiom,
    ! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).

% order_refl
thf(fact_887_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_888_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_889_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_890_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_891_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_892_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_893_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_894_diff__self__eq__0,axiom,
    ! [M3: nat] :
      ( ( minus_minus_nat @ M3 @ M3 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_895_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_896_diff__Suc__Suc,axiom,
    ! [M3: nat,N2: nat] :
      ( ( minus_minus_nat @ ( suc @ M3 ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ M3 @ N2 ) ) ).

% diff_Suc_Suc
thf(fact_897_Suc__diff__diff,axiom,
    ! [M3: nat,N2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M3 ) @ N2 ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M3 @ N2 ) @ K ) ) ).

% Suc_diff_diff
thf(fact_898_diff__diff__cancel,axiom,
    ! [I: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_899_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_900_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_901_le__cases3,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_902_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: set_a,Z2: set_a] : ( Y2 = Z2 ) )
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y4 )
          & ( ord_less_eq_set_a @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_903_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: nat,Z2: nat] : ( Y2 = Z2 ) )
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_904_ord__eq__le__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_905_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_906_ord__le__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_907_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_908_order__antisym,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_909_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_910_order_Otrans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_911_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_912_order__trans,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_eq_set_a @ X @ Z ) ) ) ).

% order_trans
thf(fact_913_order__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_914_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat,B3: nat] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_915_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: set_a,Z2: set_a] : ( Y2 = Z2 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_916_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: nat,Z2: nat] : ( Y2 = Z2 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_917_dual__order_Oantisym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_918_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_919_dual__order_Otrans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_920_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_921_antisym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_922_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_923_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: set_a,Z2: set_a] : ( Y2 = Z2 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_924_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: nat,Z2: nat] : ( Y2 = Z2 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_925_order__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_926_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_927_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_928_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_929_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_930_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_931_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_932_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_933_order__eq__refl,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( X = Y )
     => ( ord_less_eq_set_a @ X @ Y ) ) ).

% order_eq_refl
thf(fact_934_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_935_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_936_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_937_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_938_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_939_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_940_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_941_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_942_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_943_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_944_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_945_order__antisym__conv,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_946_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_947_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_948_diffs0__imp__equal,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M3 @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M3 )
          = zero_zero_nat )
       => ( M3 = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_949_minus__nat_Odiff__0,axiom,
    ! [M3: nat] :
      ( ( minus_minus_nat @ M3 @ zero_zero_nat )
      = M3 ) ).

% minus_nat.diff_0
thf(fact_950_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_951_n__not__Suc__n,axiom,
    ! [N2: nat] :
      ( N2
     != ( suc @ N2 ) ) ).

% n_not_Suc_n
thf(fact_952_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_953_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_954_nat__le__linear,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
      | ( ord_less_eq_nat @ N2 @ M3 ) ) ).

% nat_le_linear
thf(fact_955_diff__le__mono2,axiom,
    ! [M3: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M3 ) ) ) ).

% diff_le_mono2
thf(fact_956_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_957_diff__le__self,axiom,
    ! [M3: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ N2 ) @ M3 ) ).

% diff_le_self
thf(fact_958_diff__le__mono,axiom,
    ! [M3: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).

% diff_le_mono
thf(fact_959_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M3 @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_960_le__diff__iff,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M3 @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_961_eq__diff__iff,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M3 @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M3 = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_962_le__antisym,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M3 )
       => ( M3 = N2 ) ) ) ).

% le_antisym
thf(fact_963_eq__imp__le,axiom,
    ! [M3: nat,N2: nat] :
      ( ( M3 = N2 )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% eq_imp_le
thf(fact_964_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_965_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_966_bot_Oextremum__uniqueI,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
     => ( A = bot_bot_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_967_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_968_bot_Oextremum__unique,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
      = ( A = bot_bot_set_a ) ) ).

% bot.extremum_unique
thf(fact_969_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_970_bot_Oextremum,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).

% bot.extremum
thf(fact_971_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_972_not0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ? [M4: nat] :
          ( N2
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_973_Zero__not__Suc,axiom,
    ! [M3: nat] :
      ( zero_zero_nat
     != ( suc @ M3 ) ) ).

% Zero_not_Suc
thf(fact_974_Zero__neq__Suc,axiom,
    ! [M3: nat] :
      ( zero_zero_nat
     != ( suc @ M3 ) ) ).

% Zero_neq_Suc
thf(fact_975_Suc__neq__Zero,axiom,
    ! [M3: nat] :
      ( ( suc @ M3 )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_976_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_977_diff__induct,axiom,
    ! [P: nat > nat > $o,M3: nat,N2: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M3 @ N2 ) ) ) ) ).

% diff_induct
thf(fact_978_nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N2 ) ) ) ).

% nat_induct
thf(fact_979_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_980_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_981_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_982_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_983_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_984_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_985_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_986_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_987_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_988_transitive__stepwise__le,axiom,
    ! [M3: nat,N2: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z3: nat] :
              ( ( R @ X3 @ Y3 )
             => ( ( R @ Y3 @ Z3 )
               => ( R @ X3 @ Z3 ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M3 @ N2 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_989_nat__induct__at__least,axiom,
    ! [M3: nat,N2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( P @ M3 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M3 @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_at_least
thf(fact_990_full__nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M5 ) @ N3 )
             => ( P @ M5 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% full_nat_induct
thf(fact_991_not__less__eq__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ~ ( ord_less_eq_nat @ M3 @ N2 ) )
      = ( ord_less_eq_nat @ ( suc @ N2 ) @ M3 ) ) ).

% not_less_eq_eq
thf(fact_992_Suc__n__not__le__n,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).

% Suc_n_not_le_n
thf(fact_993_le__Suc__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ ( suc @ N2 ) )
      = ( ( ord_less_eq_nat @ M3 @ N2 )
        | ( M3
          = ( suc @ N2 ) ) ) ) ).

% le_Suc_eq
thf(fact_994_Suc__le__D,axiom,
    ! [N2: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ M6 )
     => ? [M4: nat] :
          ( M6
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_995_le__SucI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ M3 @ ( suc @ N2 ) ) ) ).

% le_SucI
thf(fact_996_le__SucE,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ ( suc @ N2 ) )
     => ( ~ ( ord_less_eq_nat @ M3 @ N2 )
       => ( M3
          = ( suc @ N2 ) ) ) ) ).

% le_SucE
thf(fact_997_Suc__leD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% Suc_leD
thf(fact_998_Suc__diff__le,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_eq_nat @ N2 @ M3 )
     => ( ( minus_minus_nat @ ( suc @ M3 ) @ N2 )
        = ( suc @ ( minus_minus_nat @ M3 @ N2 ) ) ) ) ).

% Suc_diff_le
thf(fact_999_lift__Suc__mono__le,axiom,
    ! [F: nat > set_a,N2: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_a @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_set_a @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1000_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N2: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1001_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_a,N2: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_a @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_set_a @ ( F @ N4 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1002_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N2: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1003_card__le__if__inj__on__rel,axiom,
    ! [B2: set_Product_unit,A2: set_nat,R2: nat > product_unit > $o] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B9: product_unit] :
                ( ( member_Product_unit @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: nat,A22: nat,B3: product_unit] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_Product_unit @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1004_card__le__if__inj__on__rel,axiom,
    ! [B2: set_Product_unit,A2: set_a,R2: a > product_unit > $o] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B9: product_unit] :
                ( ( member_Product_unit @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: a,A22: a,B3: product_unit] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_Product_unit @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1005_card__le__if__inj__on__rel,axiom,
    ! [B2: set_Product_unit,A2: set_Product_unit,R2: product_unit > product_unit > $o] :
      ( ( finite4290736615968046902t_unit @ B2 )
     => ( ! [A3: product_unit] :
            ( ( member_Product_unit @ A3 @ A2 )
           => ? [B9: product_unit] :
                ( ( member_Product_unit @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: product_unit,A22: product_unit,B3: product_unit] :
              ( ( member_Product_unit @ A1 @ A2 )
             => ( ( member_Product_unit @ A22 @ A2 )
               => ( ( member_Product_unit @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1006_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_nat,R2: nat > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B9: a] :
                ( ( member_a @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: nat,A22: nat,B3: a] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_a @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1007_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_a,R2: a > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B9: a] :
                ( ( member_a @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: a,A22: a,B3: a] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_a @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1008_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_Product_unit,R2: product_unit > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A3: product_unit] :
            ( ( member_Product_unit @ A3 @ A2 )
           => ? [B9: a] :
                ( ( member_a @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: product_unit,A22: product_unit,B3: a] :
              ( ( member_Product_unit @ A1 @ A2 )
             => ( ( member_Product_unit @ A22 @ A2 )
               => ( ( member_a @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1009_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_nat,R2: nat > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B9: nat] :
                ( ( member_nat @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: nat,A22: nat,B3: nat] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_nat @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1010_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_a,R2: a > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B9: nat] :
                ( ( member_nat @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: a,A22: a,B3: nat] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_nat @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1011_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_Product_unit,R2: product_unit > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A3: product_unit] :
            ( ( member_Product_unit @ A3 @ A2 )
           => ? [B9: nat] :
                ( ( member_nat @ B9 @ B2 )
                & ( R2 @ A3 @ B9 ) ) )
       => ( ! [A1: product_unit,A22: product_unit,B3: nat] :
              ( ( member_Product_unit @ A1 @ A2 )
             => ( ( member_Product_unit @ A22 @ A2 )
               => ( ( member_nat @ B3 @ B2 )
                 => ( ( R2 @ A1 @ B3 )
                   => ( ( R2 @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1012_the__elem__eq,axiom,
    ! [X: a] :
      ( ( the_elem_a @ ( insert_a @ X @ bot_bot_set_a ) )
      = X ) ).

% the_elem_eq
thf(fact_1013_Collect__empty__eq__bot,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( P = bot_bot_a_o ) ) ).

% Collect_empty_eq_bot
thf(fact_1014_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M2: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M2 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1015_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N5: set_nat] :
        ? [M7: nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ N5 )
         => ( ord_less_eq_nat @ X2 @ M7 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_1016_the__elem__image__unique,axiom,
    ! [A2: set_nat,F: nat > nat,X: nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [Y3: nat] :
            ( ( member_nat @ Y3 @ A2 )
           => ( ( F @ Y3 )
              = ( F @ X ) ) )
       => ( ( the_elem_nat @ ( image_nat_nat @ F @ A2 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_1017_the__elem__image__unique,axiom,
    ! [A2: set_a,F: a > a,X: a] :
      ( ( A2 != bot_bot_set_a )
     => ( ! [Y3: a] :
            ( ( member_a @ Y3 @ A2 )
           => ( ( F @ Y3 )
              = ( F @ X ) ) )
       => ( ( the_elem_a @ ( image_a_a @ F @ A2 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_1018_zero__notin__Suc__image,axiom,
    ! [A2: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).

% zero_notin_Suc_image
thf(fact_1019_bot__empty__eq,axiom,
    ( bot_bot_nat_o
    = ( ^ [X2: nat] : ( member_nat @ X2 @ bot_bot_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_1020_bot__empty__eq,axiom,
    ( bot_bot_a_o
    = ( ^ [X2: a] : ( member_a @ X2 @ bot_bot_set_a ) ) ) ).

% bot_empty_eq
thf(fact_1021_is__singleton__the__elem,axiom,
    ( is_singleton_a
    = ( ^ [A6: set_a] :
          ( A6
          = ( insert_a @ ( the_elem_a @ A6 ) @ bot_bot_set_a ) ) ) ) ).

% is_singleton_the_elem
thf(fact_1022_inverse__undefined,axiom,
    ! [U: a] :
      ( ~ ( member_a @ U @ g )
     => ( ( group_inverse_a @ g @ addition @ zero @ U )
        = undefined_a ) ) ).

% inverse_undefined
thf(fact_1023_is__singletonI,axiom,
    ! [X: a] : ( is_singleton_a @ ( insert_a @ X @ bot_bot_set_a ) ) ).

% is_singletonI
thf(fact_1024_monoid_Oinverse__undefined,axiom,
    ! [M2: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M2 @ Composition @ Unit )
     => ( ~ ( member_nat @ U @ M2 )
       => ( ( group_inverse_nat @ M2 @ Composition @ Unit @ U )
          = undefined_nat ) ) ) ).

% monoid.inverse_undefined
thf(fact_1025_monoid_Oinverse__undefined,axiom,
    ! [M2: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M2 @ Composition @ Unit )
     => ( ~ ( member_a @ U @ M2 )
       => ( ( group_inverse_a @ M2 @ Composition @ Unit @ U )
          = undefined_a ) ) ) ).

% monoid.inverse_undefined
thf(fact_1026_is__singletonI_H,axiom,
    ! [A2: set_nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [X3: nat,Y3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( member_nat @ Y3 @ A2 )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_nat @ A2 ) ) ) ).

% is_singletonI'
thf(fact_1027_is__singletonI_H,axiom,
    ! [A2: set_a] :
      ( ( A2 != bot_bot_set_a )
     => ( ! [X3: a,Y3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( ( member_a @ Y3 @ A2 )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_a @ A2 ) ) ) ).

% is_singletonI'
thf(fact_1028_is__singletonE,axiom,
    ! [A2: set_a] :
      ( ( is_singleton_a @ A2 )
     => ~ ! [X3: a] :
            ( A2
           != ( insert_a @ X3 @ bot_bot_set_a ) ) ) ).

% is_singletonE
thf(fact_1029_is__singleton__def,axiom,
    ( is_singleton_a
    = ( ^ [A6: set_a] :
        ? [X2: a] :
          ( A6
          = ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).

% is_singleton_def
thf(fact_1030_sumset__iterated__r,axiom,
    ! [R2: nat,A2: set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ R2 )
     => ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ R2 )
        = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ ( minus_minus_nat @ R2 @ one_one_nat ) ) ) ) ) ).

% sumset_iterated_r
thf(fact_1031_arg__min__least,axiom,
    ! [S: set_nat,Y: nat,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ( ( member_nat @ Y @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_1032_arg__min__least,axiom,
    ! [S: set_a,Y: a,F: a > nat] :
      ( ( finite_finite_a @ S )
     => ( ( S != bot_bot_set_a )
       => ( ( member_a @ Y @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_1033_insert__subsetI,axiom,
    ! [X: nat,A2: set_nat,X5: set_nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( ord_less_eq_set_nat @ X5 @ A2 )
       => ( ord_less_eq_set_nat @ ( insert_nat @ X @ X5 ) @ A2 ) ) ) ).

% insert_subsetI
thf(fact_1034_insert__subsetI,axiom,
    ! [X: a,A2: set_a,X5: set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ X5 @ A2 )
       => ( ord_less_eq_set_a @ ( insert_a @ X @ X5 ) @ A2 ) ) ) ).

% insert_subsetI
thf(fact_1035_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_1036_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1037_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_1038_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1039_Suc__less__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M3 ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_less_eq
thf(fact_1040_Suc__mono,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_nat @ ( suc @ M3 ) @ ( suc @ N2 ) ) ) ).

% Suc_mono
thf(fact_1041_lessI,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).

% lessI
thf(fact_1042_less__Suc0,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1043_zero__less__Suc,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).

% zero_less_Suc
thf(fact_1044_zero__less__diff,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M3 ) )
      = ( ord_less_nat @ M3 @ N2 ) ) ).

% zero_less_diff
thf(fact_1045_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_1046_diff__Suc__1,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
      = N2 ) ).

% diff_Suc_1
thf(fact_1047_Suc__pred,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% Suc_pred
thf(fact_1048_Suc__diff__1,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
        = N2 ) ) ).

% Suc_diff_1
thf(fact_1049_card__Diff__insert,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ~ ( member_nat @ A @ B2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) ) )
          = ( minus_minus_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ one_one_nat ) ) ) ) ).

% card_Diff_insert
thf(fact_1050_card__Diff__insert,axiom,
    ! [A: product_unit,A2: set_Product_unit,B2: set_Product_unit] :
      ( ( member_Product_unit @ A @ A2 )
     => ( ~ ( member_Product_unit @ A @ B2 )
       => ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ A @ B2 ) ) )
          = ( minus_minus_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B2 ) ) @ one_one_nat ) ) ) ) ).

% card_Diff_insert
thf(fact_1051_card__Diff__insert,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ~ ( member_a @ A @ B2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) ) )
          = ( minus_minus_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) @ one_one_nat ) ) ) ) ).

% card_Diff_insert
thf(fact_1052_arg__min__if__finite_I2_J,axiom,
    ! [S: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ~ ? [X4: nat] :
              ( ( member_nat @ X4 @ S )
              & ( ord_less_nat @ ( F @ X4 ) @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_1053_arg__min__if__finite_I2_J,axiom,
    ! [S: set_a,F: a > nat] :
      ( ( finite_finite_a @ S )
     => ( ( S != bot_bot_set_a )
       => ~ ? [X4: a] :
              ( ( member_a @ X4 @ S )
              & ( ord_less_nat @ ( F @ X4 ) @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) ) ) ) ) ).

% arg_min_if_finite(2)
thf(fact_1054_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1055_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_1056_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1057_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_1058_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1059_diff__less__mono2,axiom,
    ! [M3: nat,N2: nat,L: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ( ord_less_nat @ M3 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M3 ) ) ) ) ).

% diff_less_mono2
thf(fact_1060_gr__implies__not0,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1061_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M5: nat] :
                  ( ( ord_less_nat @ M5 @ N3 )
                  & ~ ( P @ M5 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_1062_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1063_Suc__diff__eq__diff__pred,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( minus_minus_nat @ ( suc @ M3 ) @ N2 )
        = ( minus_minus_nat @ M3 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1064_nat__induct__non__zero,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1065_Suc__pred_H,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( N2
        = ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1066_not__less__less__Suc__eq,axiom,
    ! [N2: nat,M3: nat] :
      ( ~ ( ord_less_nat @ N2 @ M3 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M3 ) )
        = ( N2 = M3 ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1067_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] :
            ( ( J
              = ( suc @ I2 ) )
           => ( P @ I2 ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ( P @ ( suc @ I2 ) )
               => ( P @ I2 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_1068_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
       => ( ! [I2: nat,J2: nat,K3: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( ( ord_less_nat @ J2 @ K3 )
               => ( ( P @ I2 @ J2 )
                 => ( ( P @ J2 @ K3 )
                   => ( P @ I2 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1069_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1070_Suc__less__SucD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M3 ) @ ( suc @ N2 ) )
     => ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_less_SucD
thf(fact_1071_less__antisym,axiom,
    ! [N2: nat,M3: nat] :
      ( ~ ( ord_less_nat @ N2 @ M3 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M3 ) )
       => ( M3 = N2 ) ) ) ).

% less_antisym
thf(fact_1072_Suc__less__eq2,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ M3 )
      = ( ? [M8: nat] :
            ( ( M3
              = ( suc @ M8 ) )
            & ( ord_less_nat @ N2 @ M8 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1073_All__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
           => ( P @ I3 ) ) )
      = ( ( P @ N2 )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
           => ( P @ I3 ) ) ) ) ).

% All_less_Suc
thf(fact_1074_not__less__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ~ ( ord_less_nat @ M3 @ N2 ) )
      = ( ord_less_nat @ N2 @ ( suc @ M3 ) ) ) ).

% not_less_eq
thf(fact_1075_less__Suc__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
      = ( ( ord_less_nat @ M3 @ N2 )
        | ( M3 = N2 ) ) ) ).

% less_Suc_eq
thf(fact_1076_Ex__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
            & ( P @ I3 ) ) )
      = ( ( P @ N2 )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
            & ( P @ I3 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1077_less__SucI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_nat @ M3 @ ( suc @ N2 ) ) ) ).

% less_SucI
thf(fact_1078_less__SucE,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
     => ( ~ ( ord_less_nat @ M3 @ N2 )
       => ( M3 = N2 ) ) ) ).

% less_SucE
thf(fact_1079_Suc__lessI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ( ( suc @ M3 )
         != N2 )
       => ( ord_less_nat @ ( suc @ M3 ) @ N2 ) ) ) ).

% Suc_lessI
thf(fact_1080_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1081_Suc__lessD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M3 ) @ N2 )
     => ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_lessD
thf(fact_1082_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1083_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N2: nat,M3: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N2 ) @ ( F @ M3 ) )
        = ( ord_less_nat @ N2 @ M3 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1084_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N2: nat,N4: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ord_less_nat @ ( F @ N2 ) @ ( F @ N4 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1085_less__infI1,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ X )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% less_infI1
thf(fact_1086_less__infI1,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_nat @ A @ X )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% less_infI1
thf(fact_1087_less__infI2,axiom,
    ! [B: set_a,X: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ X )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% less_infI2
thf(fact_1088_less__infI2,axiom,
    ! [B: nat,X: nat,A: nat] :
      ( ( ord_less_nat @ B @ X )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% less_infI2
thf(fact_1089_inf_Oabsorb3,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( inf_inf_set_a @ A @ B )
        = A ) ) ).

% inf.absorb3
thf(fact_1090_inf_Oabsorb3,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( inf_inf_nat @ A @ B )
        = A ) ) ).

% inf.absorb3
thf(fact_1091_inf_Oabsorb4,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( inf_inf_set_a @ A @ B )
        = B ) ) ).

% inf.absorb4
thf(fact_1092_inf_Oabsorb4,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( inf_inf_nat @ A @ B )
        = B ) ) ).

% inf.absorb4
thf(fact_1093_inf_Ostrict__boundedE,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
     => ~ ( ( ord_less_set_a @ A @ B )
         => ~ ( ord_less_set_a @ A @ C ) ) ) ).

% inf.strict_boundedE
thf(fact_1094_inf_Ostrict__boundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( inf_inf_nat @ B @ C ) )
     => ~ ( ( ord_less_nat @ A @ B )
         => ~ ( ord_less_nat @ A @ C ) ) ) ).

% inf.strict_boundedE
thf(fact_1095_inf_Ostrict__order__iff,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( A4
            = ( inf_inf_set_a @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% inf.strict_order_iff
thf(fact_1096_inf_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( A4
            = ( inf_inf_nat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% inf.strict_order_iff
thf(fact_1097_inf_Ostrict__coboundedI1,axiom,
    ! [A: set_a,C: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ C )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI1
thf(fact_1098_inf_Ostrict__coboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ A @ C )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI1
thf(fact_1099_inf_Ostrict__coboundedI2,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ C )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI2
thf(fact_1100_inf_Ostrict__coboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ B @ C )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI2
thf(fact_1101_less__supI1,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_set_a @ X @ A )
     => ( ord_less_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% less_supI1
thf(fact_1102_less__supI1,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ X @ A )
     => ( ord_less_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% less_supI1
thf(fact_1103_less__supI2,axiom,
    ! [X: set_a,B: set_a,A: set_a] :
      ( ( ord_less_set_a @ X @ B )
     => ( ord_less_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% less_supI2
thf(fact_1104_less__supI2,axiom,
    ! [X: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ X @ B )
     => ( ord_less_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% less_supI2
thf(fact_1105_sup_Oabsorb3,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( sup_sup_set_a @ A @ B )
        = A ) ) ).

% sup.absorb3
thf(fact_1106_sup_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( sup_sup_nat @ A @ B )
        = A ) ) ).

% sup.absorb3
thf(fact_1107_sup_Oabsorb4,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( sup_sup_set_a @ A @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_1108_sup_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( sup_sup_nat @ A @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_1109_sup_Ostrict__boundedE,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
     => ~ ( ( ord_less_set_a @ B @ A )
         => ~ ( ord_less_set_a @ C @ A ) ) ) ).

% sup.strict_boundedE
thf(fact_1110_sup_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( sup_sup_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% sup.strict_boundedE
thf(fact_1111_sup_Ostrict__order__iff,axiom,
    ( ord_less_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( A4
            = ( sup_sup_set_a @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_1112_sup_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( A4
            = ( sup_sup_nat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_1113_sup_Ostrict__coboundedI1,axiom,
    ! [C: set_a,A: set_a,B: set_a] :
      ( ( ord_less_set_a @ C @ A )
     => ( ord_less_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_1114_sup_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_1115_sup_Ostrict__coboundedI2,axiom,
    ! [C: set_a,B: set_a,A: set_a] :
      ( ( ord_less_set_a @ C @ B )
     => ( ord_less_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_1116_sup_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_1117_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_1118_gr__implies__not__zero,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_1119_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_1120_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_1121_leD,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ~ ( ord_less_set_a @ X @ Y ) ) ).

% leD
thf(fact_1122_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_1123_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_1124_nless__le,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ~ ( ord_less_set_a @ A @ B ) )
      = ( ~ ( ord_less_eq_set_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1125_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1126_antisym__conv1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ~ ( ord_less_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1127_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1128_antisym__conv2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ~ ( ord_less_set_a @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1129_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1130_less__le__not__le,axiom,
    ( ord_less_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y4 )
          & ~ ( ord_less_eq_set_a @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_1131_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_1132_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1133_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_set_a @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1134_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1135_order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1136_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1137_order_Ostrict__trans1,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1138_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1139_order_Ostrict__trans2,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1140_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1141_order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ~ ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1142_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ~ ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1143_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( ord_less_set_a @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1144_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_nat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1145_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1146_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1147_dual__order_Ostrict__trans1,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1148_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1149_dual__order_Ostrict__trans2,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1150_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1151_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ~ ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1152_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1153_order_Ostrict__implies__order,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1154_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1155_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1156_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1157_order__le__less,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_set_a @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1158_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_nat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1159_order__less__le,axiom,
    ( ord_less_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1160_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1161_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1162_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1163_order__less__imp__le,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_set_a @ X @ Y )
     => ( ord_less_eq_set_a @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1164_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1165_order__le__neq__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1166_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1167_order__neq__le__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A != B )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1168_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1169_order__le__less__trans,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_set_a @ Y @ Z )
       => ( ord_less_set_a @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1170_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1171_order__less__le__trans,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_set_a @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1172_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1173_order__le__less__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1174_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1175_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1176_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1177_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1178_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1179_order__less__le__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1180_order__less__le__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1181_order__less__le__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1182_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1183_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1184_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1185_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1186_order__le__imp__less__or__eq,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_set_a @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1187_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1188_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1189_le__neq__implies__less,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( M3 != N2 )
       => ( ord_less_nat @ M3 @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_1190_less__or__eq__imp__le,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( ord_less_nat @ M3 @ N2 )
        | ( M3 = N2 ) )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_1191_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M7: nat,N6: nat] :
          ( ( ord_less_nat @ M7 @ N6 )
          | ( M7 = N6 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1192_less__imp__le__nat,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% less_imp_le_nat
thf(fact_1193_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M7: nat,N6: nat] :
          ( ( ord_less_eq_nat @ M7 @ N6 )
          & ( M7 != N6 ) ) ) ) ).

% nat_less_le
thf(fact_1194_bot_Oextremum__strict,axiom,
    ! [A: set_a] :
      ~ ( ord_less_set_a @ A @ bot_bot_set_a ) ).

% bot.extremum_strict
thf(fact_1195_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_1196_bot_Onot__eq__extremum,axiom,
    ! [A: set_a] :
      ( ( A != bot_bot_set_a )
      = ( ord_less_set_a @ bot_bot_set_a @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1197_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1198_infinite__growing,axiom,
    ! [X5: set_nat] :
      ( ( X5 != bot_bot_set_nat )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ X5 )
           => ? [Xa: nat] :
                ( ( member_nat @ Xa @ X5 )
                & ( ord_less_nat @ X3 @ Xa ) ) )
       => ~ ( finite_finite_nat @ X5 ) ) ) ).

% infinite_growing
thf(fact_1199_ex__min__if__finite,axiom,
    ! [S: set_nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ S )
            & ~ ? [Xa: nat] :
                  ( ( member_nat @ Xa @ S )
                  & ( ord_less_nat @ Xa @ X3 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1200_less__Suc__eq__0__disj,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
      = ( ( M3 = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M3
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N2 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1201_gr0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ? [M4: nat] :
          ( N2
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_1202_All__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
           => ( P @ I3 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
           => ( P @ ( suc @ I3 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1203_gr0__conv__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( ? [M7: nat] :
            ( N2
            = ( suc @ M7 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1204_Ex__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
            & ( P @ I3 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N2 )
            & ( P @ ( suc @ I3 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1205_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N2 )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1206_Suc__leI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 ) ) ).

% Suc_leI
thf(fact_1207_Suc__le__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
      = ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_le_eq
thf(fact_1208_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1209_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1210_Suc__le__lessD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
     => ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_le_lessD
thf(fact_1211_le__less__Suc__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M3 ) )
        = ( N2 = M3 ) ) ) ).

% le_less_Suc_eq
thf(fact_1212_less__Suc__eq__le,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% less_Suc_eq_le
thf(fact_1213_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N6: nat] : ( ord_less_eq_nat @ ( suc @ N6 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1214_le__imp__less__Suc,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_nat @ M3 @ ( suc @ N2 ) ) ) ).

% le_imp_less_Suc
thf(fact_1215_diff__less,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M3 )
       => ( ord_less_nat @ ( minus_minus_nat @ M3 @ N2 ) @ M3 ) ) ) ).

% diff_less
thf(fact_1216_Suc__diff__Suc,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ N2 @ M3 )
     => ( ( suc @ ( minus_minus_nat @ M3 @ ( suc @ N2 ) ) )
        = ( minus_minus_nat @ M3 @ N2 ) ) ) ).

% Suc_diff_Suc
thf(fact_1217_diff__less__Suc,axiom,
    ! [M3: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M3 @ N2 ) @ ( suc @ M3 ) ) ).

% diff_less_Suc
thf(fact_1218_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1219_less__diff__iff,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_nat @ M3 @ N2 ) ) ) ) ).

% less_diff_iff
thf(fact_1220_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1221_diff__Suc__eq__diff__pred,axiom,
    ! [M3: nat,N2: nat] :
      ( ( minus_minus_nat @ M3 @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N2 ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1222_card__insert__le__m1,axiom,
    ! [N2: nat,Y: set_a,X: a] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ ( finite_card_a @ Y ) @ ( minus_minus_nat @ N2 @ one_one_nat ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ ( insert_a @ X @ Y ) ) @ N2 ) ) ) ).

% card_insert_le_m1
thf(fact_1223_card__insert__le__m1,axiom,
    ! [N2: nat,Y: set_Product_unit,X: product_unit] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ Y ) @ ( minus_minus_nat @ N2 @ one_one_nat ) )
       => ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ Y ) ) @ N2 ) ) ) ).

% card_insert_le_m1
thf(fact_1224_additive__abelian__group_Osumset__iterated__r,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,R2: nat,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_nat @ zero_zero_nat @ R2 )
       => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ R2 )
          = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ ( minus_minus_nat @ R2 @ one_one_nat ) ) ) ) ) ) ).

% additive_abelian_group.sumset_iterated_r
thf(fact_1225_is__singleton__altdef,axiom,
    ( is_singleton_a
    = ( ^ [A6: set_a] :
          ( ( finite_card_a @ A6 )
          = one_one_nat ) ) ) ).

% is_singleton_altdef
thf(fact_1226_is__singleton__altdef,axiom,
    ( is_sin2160648248035936513t_unit
    = ( ^ [A6: set_Product_unit] :
          ( ( finite410649719033368117t_unit @ A6 )
          = one_one_nat ) ) ) ).

% is_singleton_altdef
thf(fact_1227_finite__linorder__min__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B3: nat,A8: set_nat] :
              ( ( finite_finite_nat @ A8 )
             => ( ! [X4: nat] :
                    ( ( member_nat @ X4 @ A8 )
                   => ( ord_less_nat @ B3 @ X4 ) )
               => ( ( P @ A8 )
                 => ( P @ ( insert_nat @ B3 @ A8 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_1228_finite__linorder__max__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B3: nat,A8: set_nat] :
              ( ( finite_finite_nat @ A8 )
             => ( ! [X4: nat] :
                    ( ( member_nat @ X4 @ A8 )
                   => ( ord_less_nat @ X4 @ B3 ) )
               => ( ( P @ A8 )
                 => ( P @ ( insert_nat @ B3 @ A8 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_1229_ex__least__nat__less,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N2 )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1230_diff__Suc__less,axiom,
    ! [N2: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).

% diff_Suc_less
thf(fact_1231_card__ge__0__finite,axiom,
    ! [A2: set_Product_unit] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite410649719033368117t_unit @ A2 ) )
     => ( finite4290736615968046902t_unit @ A2 ) ) ).

% card_ge_0_finite
thf(fact_1232_card__ge__0__finite,axiom,
    ! [A2: set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
     => ( finite_finite_a @ A2 ) ) ).

% card_ge_0_finite
thf(fact_1233_card__ge__0__finite,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
     => ( finite_finite_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_1234_card__less__sym__Diff,axiom,
    ! [A2: set_Product_unit,B2: set_Product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( finite4290736615968046902t_unit @ B2 )
       => ( ( ord_less_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B2 ) )
         => ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B2 ) ) @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ B2 @ A2 ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_1235_card__less__sym__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_1236_card__less__sym__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) )
         => ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B2 @ A2 ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_1237_card__1__singletonE,axiom,
    ! [A2: set_Product_unit] :
      ( ( ( finite410649719033368117t_unit @ A2 )
        = one_one_nat )
     => ~ ! [X3: product_unit] :
            ( A2
           != ( insert_Product_unit @ X3 @ bot_bo3957492148770167129t_unit ) ) ) ).

% card_1_singletonE
thf(fact_1238_card__1__singletonE,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = one_one_nat )
     => ~ ! [X3: a] :
            ( A2
           != ( insert_a @ X3 @ bot_bot_set_a ) ) ) ).

% card_1_singletonE
thf(fact_1239_card__gt__0__iff,axiom,
    ! [A2: set_Product_unit] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite410649719033368117t_unit @ A2 ) )
      = ( ( A2 != bot_bo3957492148770167129t_unit )
        & ( finite4290736615968046902t_unit @ A2 ) ) ) ).

% card_gt_0_iff
thf(fact_1240_card__gt__0__iff,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
      = ( ( A2 != bot_bot_set_nat )
        & ( finite_finite_nat @ A2 ) ) ) ).

% card_gt_0_iff
thf(fact_1241_card__gt__0__iff,axiom,
    ! [A2: set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
      = ( ( A2 != bot_bot_set_a )
        & ( finite_finite_a @ A2 ) ) ) ).

% card_gt_0_iff
thf(fact_1242_card__Diff1__less,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( member_Product_unit @ X @ A2 )
       => ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).

% card_Diff1_less
thf(fact_1243_card__Diff1__less,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% card_Diff1_less
thf(fact_1244_card__Diff1__less,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).

% card_Diff1_less
thf(fact_1245_card__Diff2__less,axiom,
    ! [A2: set_Product_unit,X: product_unit,Y: product_unit] :
      ( ( finite4290736615968046902t_unit @ A2 )
     => ( ( member_Product_unit @ X @ A2 )
       => ( ( member_Product_unit @ Y @ A2 )
         => ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) @ ( insert_Product_unit @ Y @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ) ).

% card_Diff2_less
thf(fact_1246_card__Diff2__less,axiom,
    ! [A2: set_nat,X: nat,Y: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ( member_nat @ Y @ A2 )
         => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( insert_nat @ Y @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% card_Diff2_less
thf(fact_1247_card__Diff2__less,axiom,
    ! [A2: set_a,X: a,Y: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ( member_a @ Y @ A2 )
         => ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( insert_a @ Y @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ) ).

% card_Diff2_less
thf(fact_1248_card__Diff1__less__iff,axiom,
    ! [A2: set_Product_unit,X: product_unit] :
      ( ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) )
      = ( ( finite4290736615968046902t_unit @ A2 )
        & ( member_Product_unit @ X @ A2 ) ) ) ).

% card_Diff1_less_iff
thf(fact_1249_card__Diff1__less__iff,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) )
      = ( ( finite_finite_nat @ A2 )
        & ( member_nat @ X @ A2 ) ) ) ).

% card_Diff1_less_iff
thf(fact_1250_card__Diff1__less__iff,axiom,
    ! [A2: set_a,X: a] :
      ( ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) )
      = ( ( finite_finite_a @ A2 )
        & ( member_a @ X @ A2 ) ) ) ).

% card_Diff1_less_iff
thf(fact_1251_card__Diff__singleton,axiom,
    ! [X: product_unit,A2: set_Product_unit] :
      ( ( member_Product_unit @ X @ A2 )
     => ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) )
        = ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ one_one_nat ) ) ) ).

% card_Diff_singleton
thf(fact_1252_card__Diff__singleton,axiom,
    ! [X: a,A2: set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
        = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) ) ).

% card_Diff_singleton
thf(fact_1253_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M3: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N2 @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N2 )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K3 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K3 ) ) )
       => ( P @ M3 ) ) ) ).

% nat_descend_induct
thf(fact_1254_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N3: nat] :
            ( ~ ( P @ N3 )
            & ( P @ ( suc @ N3 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_1255_card__UNIV__unit,axiom,
    ( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
    = one_one_nat ) ).

% card_UNIV_unit
thf(fact_1256_Nat_Oadd__0__right,axiom,
    ! [M3: nat] :
      ( ( plus_plus_nat @ M3 @ zero_zero_nat )
      = M3 ) ).

% Nat.add_0_right
thf(fact_1257_add__is__0,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M3 @ N2 )
        = zero_zero_nat )
      = ( ( M3 = zero_zero_nat )
        & ( N2 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1258_add__Suc__right,axiom,
    ! [M3: nat,N2: nat] :
      ( ( plus_plus_nat @ M3 @ ( suc @ N2 ) )
      = ( suc @ ( plus_plus_nat @ M3 @ N2 ) ) ) ).

% add_Suc_right
thf(fact_1259_nat__add__left__cancel__le,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M3 ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% nat_add_left_cancel_le
thf(fact_1260_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1261_add__gr__0,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M3 @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M3 )
        | ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% add_gr_0
thf(fact_1262_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1263_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1264_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1265_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1266_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1267_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1268_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1269_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1270_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2

% Conjectures (2)
thf(conj_0,hypothesis,
    finite_finite_a @ a2 ).

thf(conj_1,conjecture,
    finite_finite_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ a2 @ r ) ).

%------------------------------------------------------------------------------