TPTP Problem File: SLH0765^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Cotangent_PFD_Formula/0007_Cotangent_PFD_Formula/prob_00342_013322__14059456_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1404 (1005 unt; 119 typ; 0 def)
% Number of atoms : 2417 (2019 equ; 0 cnn)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 8701 ( 249 ~; 59 |; 98 &;7852 @)
% ( 0 <=>; 443 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 4 avg)
% Number of types : 15 ( 14 usr)
% Number of type conns : 188 ( 188 >; 0 *; 0 +; 0 <<)
% Number of symbols : 108 ( 105 usr; 24 con; 0-3 aty)
% Number of variables : 2518 ( 72 ^;2414 !; 32 ?;2518 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 12:58:34.722
%------------------------------------------------------------------------------
% Could-be-implicit typings (14)
thf(ty_n_t__Set__Oset_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_J,type,
set_Nu382503245525567899l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
numera4273646738625120315l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
numera6367994245245682809l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2417102609627094330l_num1: $tType ).
thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
extend8495563244428889912nnreal: $tType ).
thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
set_complex: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__Complex__Ocomplex,type,
complex: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (105)
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Cotangent__PFD__Formula_Ocot__pfd_001t__Complex__Ocomplex,type,
cotang8298477626502807258omplex: complex > complex ).
thf(sy_c_Cotangent__PFD__Formula_Ocot__pfd_001t__Real__Oreal,type,
cotang1502006655779026648d_real: real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
minus_minus_complex: complex > complex > complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nonnegative____Real__Oennreal,type,
minus_8429688780609304081nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
minus_5410813661909488930l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
one_one_complex: complex ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
one_on7795324986448017462l_num1: numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
one_on3868389512446148991l_num1: numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
one_on7819281148064737470l_num1: numera6367994245245682809l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
plus_plus_complex: complex > complex > complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
plus_p1441664204671982194l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
times_times_complex: complex > complex > complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nonnegative____Real__Oennreal,type,
times_1893300245718287421nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
times_2938166955517408246l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
zero_zero_complex: complex ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
zero_z2241845390563828978l_num1: numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Complex__Ocomplex,type,
if_complex: $o > complex > complex > complex ).
thf(sy_c_If_001t__Extended____Nat__Oenat,type,
if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).
thf(sy_c_If_001t__Extended____Nonnegative____Real__Oennreal,type,
if_Ext9135588136721118450nnreal: $o > extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
if_Num3220014061592582145l_num1: $o > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Complex__Ocomplex,type,
ring_1_Ints_complex: set_complex ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Int__Oint,type,
ring_1_Ints_int: set_int ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
ring_19056730708217498732l_num1: set_Nu382503245525567899l_num1 ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
ring_1_Ints_real: set_real ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
semiri8010041392384452111omplex: nat > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
semiri4216267220026989637d_enat: nat > extended_enat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nonnegative____Real__Oennreal,type,
semiri6283507881447550617nnreal: nat > extend8495563244428889912nnreal ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
semiri5667362542588693146l_num1: nat > numera4273646738625120315l_num1 ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
numera6690914467698888265omplex: num > complex ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nonnegative____Real__Oennreal,type,
numera4658534427948366547nnreal: num > extend8495563244428889912nnreal ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
numera7754357348821619680l_num1: num > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2161328050825114965l_num1: num > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
numera6112219686443703444l_num1: num > numera6367994245245682809l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
power_power_complex: complex > nat > complex ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nat__Oenat,type,
power_8040749407984259932d_enat: extended_enat > nat > extended_enat ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nonnegative____Real__Oennreal,type,
power_6007165696250533058nnreal: extend8495563244428889912nnreal > nat > extend8495563244428889912nnreal ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
power_1002146276965246001l_num1: numera4273646738625120315l_num1 > nat > numera4273646738625120315l_num1 ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
divide1717551699836669952omplex: complex > complex > complex ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Nonnegative____Real__Oennreal,type,
divide4826598186094686858nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
sums_complex: ( nat > complex ) > complex > $o ).
thf(sy_c_Series_Osums_001t__Real__Oreal,type,
sums_real: ( nat > real ) > real > $o ).
thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
collect_complex: ( complex > $o ) > set_complex ).
thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
artanh_real: real > real ).
thf(sy_c_Transcendental_Oln__class_Oln_001t__Complex__Ocomplex,type,
ln_ln_complex: complex > complex ).
thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
ln_ln_real: real > real ).
thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
tanh_complex: complex > complex ).
thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
tanh_real: real > real ).
thf(sy_c_member_001t__Complex__Ocomplex,type,
member_complex: complex > set_complex > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
member8231810200707485668l_num1: numera4273646738625120315l_num1 > set_Nu382503245525567899l_num1 > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_x,type,
x: complex ).
% Relevant facts (1269)
thf(fact_0__092_060open_062_I_092_060lambda_062n_O_A2_A_K_A_Ix_A_L_A1_J_A_P_A_I_Ix_A_L_A1_J_092_060_094sup_0622_A_N_A_Icomplex__of__nat_A_ISuc_An_J_J_092_060_094sup_0622_J_J_Asums_Acot__pfd_A_Ix_A_L_A1_J_092_060close_062,axiom,
( sums_complex
@ ^ [N: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( plus_plus_complex @ x @ one_one_complex ) ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ x @ one_one_complex ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( cotang8298477626502807258omplex @ ( plus_plus_complex @ x @ one_one_complex ) ) ) ).
% \<open>(\<lambda>n. 2 * (x + 1) / ((x + 1)\<^sup>2 - (complex_of_nat (Suc n))\<^sup>2)) sums cot_pfd (x + 1)\<close>
thf(fact_1_assms,axiom,
~ ( member_complex @ x @ ring_1_Ints_complex ) ).
% assms
thf(fact_2_sums__cot__pfd__complex,axiom,
! [X: complex] :
( sums_complex
@ ^ [N: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( cotang8298477626502807258omplex @ X ) ) ).
% sums_cot_pfd_complex
thf(fact_3_sum__power2__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_4_sum__power2__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_5_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_6_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_7_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_8_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_9_powser__sums__zero__iff,axiom,
! [A: nat > complex,X: complex] :
( ( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( A @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) )
@ X )
= ( ( A @ zero_zero_nat )
= X ) ) ).
% powser_sums_zero_iff
thf(fact_10_powser__sums__zero__iff,axiom,
! [A: nat > real,X: real] :
( ( sums_real
@ ^ [N: nat] : ( times_times_real @ ( A @ N ) @ ( power_power_real @ zero_zero_real @ N ) )
@ X )
= ( ( A @ zero_zero_nat )
= X ) ) ).
% powser_sums_zero_iff
thf(fact_11_zero__eq__power2,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% zero_eq_power2
thf(fact_12_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_13_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_14_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_15_zero__eq__power2,axiom,
! [A: extend8495563244428889912nnreal] :
( ( ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z7100319975126383169nnreal )
= ( A = zero_z7100319975126383169nnreal ) ) ).
% zero_eq_power2
thf(fact_16_one__add__one,axiom,
( ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ one_on2969667320475766781nnreal )
= ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_17_one__add__one,axiom,
( ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ one_on7795324986448017462l_num1 )
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_18_one__add__one,axiom,
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_19_one__add__one,axiom,
( ( plus_plus_complex @ one_one_complex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_20_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_21_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_22_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_23_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: nat] :
( ( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N2 )
= ( semiri4216267220026989637d_enat @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_24_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= ( semiri1316708129612266289at_nat @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_25_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: nat] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N2 )
= ( semiri8010041392384452111omplex @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_26_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 )
= ( semiri1314217659103216013at_int @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_27_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: nat] :
( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N2 )
= ( semiri5074537144036343181t_real @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_28_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N2: nat,Y: nat] :
( ( ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ X ) @ N2 )
= ( semiri6283507881447550617nnreal @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_29_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N2: nat] :
( ( ( semiri8010041392384452111omplex @ Y )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N2 ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_30_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N2: nat] :
( ( ( semiri1314217659103216013at_int @ Y )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_31_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N2: nat] :
( ( ( semiri5074537144036343181t_real @ Y )
= ( power_power_real @ ( numeral_numeral_real @ X ) @ N2 ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_32_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N2: nat] :
( ( ( semiri6283507881447550617nnreal @ Y )
= ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ X ) @ N2 ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_33_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N2: nat] :
( ( ( semiri1316708129612266289at_nat @ Y )
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_34_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N2: nat] :
( ( ( semiri4216267220026989637d_enat @ Y )
= ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N2 ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_35_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5667362542588693146l_num1 @ ( suc @ M ) )
= ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ ( semiri5667362542588693146l_num1 @ M ) ) ) ).
% of_nat_Suc
thf(fact_36_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ M ) )
= ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).
% of_nat_Suc
thf(fact_37_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% of_nat_Suc
thf(fact_38_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).
% of_nat_Suc
thf(fact_39_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri6283507881447550617nnreal @ ( suc @ M ) )
= ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( semiri6283507881447550617nnreal @ M ) ) ) ).
% of_nat_Suc
thf(fact_40_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).
% of_nat_Suc
thf(fact_41_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri4216267220026989637d_enat @ ( suc @ M ) )
= ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( semiri4216267220026989637d_enat @ M ) ) ) ).
% of_nat_Suc
thf(fact_42_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_43_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ one_one_complex )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_44_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_45_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_46_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_47_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ N2 ) @ one_on7795324986448017462l_num1 )
= ( numera7754357348821619680l_num1 @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_48_numeral__plus__one,axiom,
! [N2: num] :
( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ N2 ) @ one_on2969667320475766781nnreal )
= ( numera4658534427948366547nnreal @ ( plus_plus_num @ N2 @ one ) ) ) ).
% numeral_plus_one
thf(fact_49_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N2 ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_50_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N2 ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_51_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_52_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_53_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_54_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ ( numera7754357348821619680l_num1 @ N2 ) )
= ( numera7754357348821619680l_num1 @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_55_one__plus__numeral,axiom,
! [N2: num] :
( ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N2 ) )
= ( numera4658534427948366547nnreal @ ( plus_plus_num @ one @ N2 ) ) ) ).
% one_plus_numeral
thf(fact_56_divide__eq__eq__numeral1_I1_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
= A )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_57_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_58__092_060open_062x_A_092_060noteq_062_A0_092_060close_062,axiom,
x != zero_zero_complex ).
% \<open>x \<noteq> 0\<close>
thf(fact_59__C_K_K_C,axiom,
! [X: complex,N2: nat] :
( ~ ( member_complex @ X @ ring_1_Ints_complex )
=> ( ( plus_plus_complex @ X @ ( semiri8010041392384452111omplex @ N2 ) )
!= zero_zero_complex ) ) ).
% "**"
thf(fact_60__092_060open_062x_A_L_A1_A_092_060noteq_062_A0_092_060close_062,axiom,
( ( plus_plus_complex @ x @ one_one_complex )
!= zero_zero_complex ) ).
% \<open>x + 1 \<noteq> 0\<close>
thf(fact_61_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_62_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numera6690914467698888265omplex @ M )
= ( numera6690914467698888265omplex @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_63_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_64_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_65_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_66_numeral__eq__iff,axiom,
! [M: num,N2: num] :
( ( ( numera4658534427948366547nnreal @ M )
= ( numera4658534427948366547nnreal @ N2 ) )
= ( M = N2 ) ) ).
% numeral_eq_iff
thf(fact_67_power__one__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_68_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_69_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_70_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_71_power__one__right,axiom,
! [A: extend8495563244428889912nnreal] :
( ( power_6007165696250533058nnreal @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_72_power__one__right,axiom,
! [A: extended_enat] :
( ( power_8040749407984259932d_enat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_73_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_74_add__is__0,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus_nat @ M @ N2 )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N2 = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_75_mult__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N2 @ K ) )
= ( ( M = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_76_mult__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N2 ) )
= ( ( M = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_77_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_78_mult__is__0,axiom,
! [M: nat,N2: nat] :
( ( ( times_times_nat @ M @ N2 )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N2 = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_79_mult__Suc__right,axiom,
! [M: nat,N2: nat] :
( ( times_times_nat @ M @ ( suc @ N2 ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N2 ) ) ) ).
% mult_Suc_right
thf(fact_80_add__Suc__right,axiom,
! [M: nat,N2: nat] :
( ( plus_plus_nat @ M @ ( suc @ N2 ) )
= ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).
% add_Suc_right
thf(fact_81_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_82_nat_Oinject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
= ( X2 = Y2 ) ) ).
% nat.inject
thf(fact_83_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= ( semiri8010041392384452111omplex @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_84_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_85_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_86_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri6283507881447550617nnreal @ M )
= ( semiri6283507881447550617nnreal @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_87_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_88_of__nat__eq__iff,axiom,
! [M: nat,N2: nat] :
( ( ( semiri4216267220026989637d_enat @ M )
= ( semiri4216267220026989637d_enat @ N2 ) )
= ( M = N2 ) ) ).
% of_nat_eq_iff
thf(fact_89__092_060open_062x_A_L_A2_A_092_060noteq_062_A0_092_060close_062,axiom,
( ( plus_plus_complex @ x @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
!= zero_zero_complex ) ).
% \<open>x + 2 \<noteq> 0\<close>
thf(fact_90__C_K_C,axiom,
! [X: complex,N2: nat] :
( ~ ( member_complex @ X @ ring_1_Ints_complex )
=> ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= ( power_power_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% "*"
thf(fact_91_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_92_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_93_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_94_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_95_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_96_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_97_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_98_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_99_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_100_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Z ) )
= ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_101_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ W ) @ Z ) )
= ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_102_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_103_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_104_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_105_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_106_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_107_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N2 ) )
= ( numera7754357348821619680l_num1 @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_108_numeral__times__numeral,axiom,
! [M: num,N2: num] :
( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N2 ) )
= ( numera4658534427948366547nnreal @ ( times_times_num @ M @ N2 ) ) ) ).
% numeral_times_numeral
thf(fact_109_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_110_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_111_num__double,axiom,
! [N2: num] :
( ( times_times_num @ ( bit0 @ one ) @ N2 )
= ( bit0 @ N2 ) ) ).
% num_double
thf(fact_112_power__one,axiom,
! [N2: nat] :
( ( power_1002146276965246001l_num1 @ one_on7795324986448017462l_num1 @ N2 )
= one_on7795324986448017462l_num1 ) ).
% power_one
thf(fact_113_power__one,axiom,
! [N2: nat] :
( ( power_power_complex @ one_one_complex @ N2 )
= one_one_complex ) ).
% power_one
thf(fact_114_power__one,axiom,
! [N2: nat] :
( ( power_power_nat @ one_one_nat @ N2 )
= one_one_nat ) ).
% power_one
thf(fact_115_power__one,axiom,
! [N2: nat] :
( ( power_power_real @ one_one_real @ N2 )
= one_one_real ) ).
% power_one
thf(fact_116_power__one,axiom,
! [N2: nat] :
( ( power_power_int @ one_one_int @ N2 )
= one_one_int ) ).
% power_one
thf(fact_117_power__one,axiom,
! [N2: nat] :
( ( power_6007165696250533058nnreal @ one_on2969667320475766781nnreal @ N2 )
= one_on2969667320475766781nnreal ) ).
% power_one
thf(fact_118_power__one,axiom,
! [N2: nat] :
( ( power_8040749407984259932d_enat @ one_on7984719198319812577d_enat @ N2 )
= one_on7984719198319812577d_enat ) ).
% power_one
thf(fact_119_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri8010041392384452111omplex @ ( times_times_nat @ M @ N2 ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ).
% of_nat_mult
thf(fact_120_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N2 ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_mult
thf(fact_121_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N2 ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% of_nat_mult
thf(fact_122_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri6283507881447550617nnreal @ ( times_times_nat @ M @ N2 ) )
= ( times_1893300245718287421nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N2 ) ) ) ).
% of_nat_mult
thf(fact_123_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N2 ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_mult
thf(fact_124_of__nat__mult,axiom,
! [M: nat,N2: nat] :
( ( semiri4216267220026989637d_enat @ ( times_times_nat @ M @ N2 ) )
= ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N2 ) ) ) ).
% of_nat_mult
thf(fact_125_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri8010041392384452111omplex @ N2 )
= one_one_complex )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_126_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1314217659103216013at_int @ N2 )
= one_one_int )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_127_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri5074537144036343181t_real @ N2 )
= one_one_real )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_128_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri6283507881447550617nnreal @ N2 )
= one_on2969667320475766781nnreal )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_129_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1316708129612266289at_nat @ N2 )
= one_one_nat )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_130_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri4216267220026989637d_enat @ N2 )
= one_on7984719198319812577d_enat )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_131_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_complex
= ( semiri8010041392384452111omplex @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_132_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_133_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_134_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_on2969667320475766781nnreal
= ( semiri6283507881447550617nnreal @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_135_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_136_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_on7984719198319812577d_enat
= ( semiri4216267220026989637d_enat @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_137_mem__Collect__eq,axiom,
! [A: complex,P: complex > $o] :
( ( member_complex @ A @ ( collect_complex @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_138_Collect__mem__eq,axiom,
! [A2: set_complex] :
( ( collect_complex
@ ^ [X3: complex] : ( member_complex @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_139_of__nat__1,axiom,
( ( semiri5667362542588693146l_num1 @ one_one_nat )
= one_on7795324986448017462l_num1 ) ).
% of_nat_1
thf(fact_140_of__nat__1,axiom,
( ( semiri8010041392384452111omplex @ one_one_nat )
= one_one_complex ) ).
% of_nat_1
thf(fact_141_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_142_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_143_of__nat__1,axiom,
( ( semiri6283507881447550617nnreal @ one_one_nat )
= one_on2969667320475766781nnreal ) ).
% of_nat_1
thf(fact_144_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_145_of__nat__1,axiom,
( ( semiri4216267220026989637d_enat @ one_one_nat )
= one_on7984719198319812577d_enat ) ).
% of_nat_1
thf(fact_146_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri5667362542588693146l_num1 @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_p1441664204671982194l_num1 @ ( semiri5667362542588693146l_num1 @ M ) @ ( semiri5667362542588693146l_num1 @ N2 ) ) ) ).
% of_nat_add
thf(fact_147_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ).
% of_nat_add
thf(fact_148_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_add
thf(fact_149_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% of_nat_add
thf(fact_150_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri6283507881447550617nnreal @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_p1859984266308609217nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N2 ) ) ) ).
% of_nat_add
thf(fact_151_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_add
thf(fact_152_of__nat__add,axiom,
! [M: nat,N2: nat] :
( ( semiri4216267220026989637d_enat @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N2 ) ) ) ).
% of_nat_add
thf(fact_153_one__eq__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N2 ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_154_mult__eq__1__iff,axiom,
! [M: nat,N2: nat] :
( ( ( times_times_nat @ M @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_155_power__mult__numeral,axiom,
! [A: complex,M: num,N2: num] :
( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% power_mult_numeral
thf(fact_156_power__mult__numeral,axiom,
! [A: nat,M: num,N2: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% power_mult_numeral
thf(fact_157_power__mult__numeral,axiom,
! [A: real,M: num,N2: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% power_mult_numeral
thf(fact_158_power__mult__numeral,axiom,
! [A: int,M: num,N2: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% power_mult_numeral
thf(fact_159_power__mult__numeral,axiom,
! [A: extend8495563244428889912nnreal,M: num,N2: num] :
( ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
= ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% power_mult_numeral
thf(fact_160_power__mult__numeral,axiom,
! [A: extended_enat,M: num,N2: num] :
( ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
= ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).
% power_mult_numeral
thf(fact_161_Ints__add__iff2,axiom,
! [Y: complex,X: complex] :
( ( member_complex @ Y @ ring_1_Ints_complex )
=> ( ( member_complex @ ( plus_plus_complex @ X @ Y ) @ ring_1_Ints_complex )
= ( member_complex @ X @ ring_1_Ints_complex ) ) ) ).
% Ints_add_iff2
thf(fact_162_Ints__add__iff2,axiom,
! [Y: real,X: real] :
( ( member_real @ Y @ ring_1_Ints_real )
=> ( ( member_real @ ( plus_plus_real @ X @ Y ) @ ring_1_Ints_real )
= ( member_real @ X @ ring_1_Ints_real ) ) ) ).
% Ints_add_iff2
thf(fact_163_Ints__add__iff2,axiom,
! [Y: int,X: int] :
( ( member_int @ Y @ ring_1_Ints_int )
=> ( ( member_int @ ( plus_plus_int @ X @ Y ) @ ring_1_Ints_int )
= ( member_int @ X @ ring_1_Ints_int ) ) ) ).
% Ints_add_iff2
thf(fact_164_Ints__add__iff2,axiom,
! [Y: numera4273646738625120315l_num1,X: numera4273646738625120315l_num1] :
( ( member8231810200707485668l_num1 @ Y @ ring_19056730708217498732l_num1 )
=> ( ( member8231810200707485668l_num1 @ ( plus_p1441664204671982194l_num1 @ X @ Y ) @ ring_19056730708217498732l_num1 )
= ( member8231810200707485668l_num1 @ X @ ring_19056730708217498732l_num1 ) ) ) ).
% Ints_add_iff2
thf(fact_165_Ints__add__iff1,axiom,
! [X: complex,Y: complex] :
( ( member_complex @ X @ ring_1_Ints_complex )
=> ( ( member_complex @ ( plus_plus_complex @ X @ Y ) @ ring_1_Ints_complex )
= ( member_complex @ Y @ ring_1_Ints_complex ) ) ) ).
% Ints_add_iff1
thf(fact_166_Ints__add__iff1,axiom,
! [X: real,Y: real] :
( ( member_real @ X @ ring_1_Ints_real )
=> ( ( member_real @ ( plus_plus_real @ X @ Y ) @ ring_1_Ints_real )
= ( member_real @ Y @ ring_1_Ints_real ) ) ) ).
% Ints_add_iff1
thf(fact_167_Ints__add__iff1,axiom,
! [X: int,Y: int] :
( ( member_int @ X @ ring_1_Ints_int )
=> ( ( member_int @ ( plus_plus_int @ X @ Y ) @ ring_1_Ints_int )
= ( member_int @ Y @ ring_1_Ints_int ) ) ) ).
% Ints_add_iff1
thf(fact_168_Ints__add__iff1,axiom,
! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( member8231810200707485668l_num1 @ X @ ring_19056730708217498732l_num1 )
=> ( ( member8231810200707485668l_num1 @ ( plus_p1441664204671982194l_num1 @ X @ Y ) @ ring_19056730708217498732l_num1 )
= ( member8231810200707485668l_num1 @ Y @ ring_19056730708217498732l_num1 ) ) ) ).
% Ints_add_iff1
thf(fact_169_sum__squares__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_170_sum__squares__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_171_diff__numeral__special_I9_J,axiom,
( ( minus_5410813661909488930l_num1 @ one_on7795324986448017462l_num1 @ one_on7795324986448017462l_num1 )
= zero_z2241845390563828978l_num1 ) ).
% diff_numeral_special(9)
thf(fact_172_diff__numeral__special_I9_J,axiom,
( ( minus_minus_complex @ one_one_complex @ one_one_complex )
= zero_zero_complex ) ).
% diff_numeral_special(9)
thf(fact_173_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_174_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_175_distrib__right__numeral,axiom,
! [A: extended_enat,B: extended_enat,V: num] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( numera1916890842035813515d_enat @ V ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ V ) ) @ ( times_7803423173614009249d_enat @ B @ ( numera1916890842035813515d_enat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_176_distrib__right__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_177_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_178_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_179_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_180_distrib__right__numeral,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,V: num] :
( ( times_2938166955517408246l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ ( numera7754357348821619680l_num1 @ V ) )
= ( plus_p1441664204671982194l_num1 @ ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ B @ ( numera7754357348821619680l_num1 @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_181_distrib__right__numeral,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,V: num] :
( ( times_1893300245718287421nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ ( numera4658534427948366547nnreal @ V ) )
= ( plus_p1859984266308609217nnreal @ ( times_1893300245718287421nnreal @ A @ ( numera4658534427948366547nnreal @ V ) ) @ ( times_1893300245718287421nnreal @ B @ ( numera4658534427948366547nnreal @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_182_distrib__left__numeral,axiom,
! [V: num,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ B ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_183_distrib__left__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_184_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_185_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_186_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_187_distrib__left__numeral,axiom,
! [V: num,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( plus_p1441664204671982194l_num1 @ B @ C ) )
= ( plus_p1441664204671982194l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ B ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_188_distrib__left__numeral,axiom,
! [V: num,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( plus_p1859984266308609217nnreal @ B @ C ) )
= ( plus_p1859984266308609217nnreal @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ B ) @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_189_right__diff__distrib__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_190_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_191_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_192_right__diff__distrib__numeral,axiom,
! [V: num,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( minus_5410813661909488930l_num1 @ B @ C ) )
= ( minus_5410813661909488930l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ B ) @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_193_left__diff__distrib__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_194_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_195_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_196_left__diff__distrib__numeral,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,V: num] :
( ( times_2938166955517408246l_num1 @ ( minus_5410813661909488930l_num1 @ A @ B ) @ ( numera7754357348821619680l_num1 @ V ) )
= ( minus_5410813661909488930l_num1 @ ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ V ) ) @ ( times_2938166955517408246l_num1 @ B @ ( numera7754357348821619680l_num1 @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_197_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_198_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_complex
= ( numera6690914467698888265omplex @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_199_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_real
= ( numeral_numeral_real @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_200_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_201_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_one_int
= ( numeral_numeral_int @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_202_one__eq__numeral__iff,axiom,
! [N2: num] :
( ( one_on2969667320475766781nnreal
= ( numera4658534427948366547nnreal @ N2 ) )
= ( one = N2 ) ) ).
% one_eq_numeral_iff
thf(fact_203_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numera1916890842035813515d_enat @ N2 )
= one_on7984719198319812577d_enat )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_204_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numera6690914467698888265omplex @ N2 )
= one_one_complex )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_205_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_real @ N2 )
= one_one_real )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_206_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_nat @ N2 )
= one_one_nat )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_207_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numeral_numeral_int @ N2 )
= one_one_int )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_208_numeral__eq__one__iff,axiom,
! [N2: num] :
( ( ( numera4658534427948366547nnreal @ N2 )
= one_on2969667320475766781nnreal )
= ( N2 = one ) ) ).
% numeral_eq_one_iff
thf(fact_209_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_complex @ zero_zero_complex @ ( suc @ N2 ) )
= zero_zero_complex ) ).
% power_0_Suc
thf(fact_210_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N2 ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_211_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N2 ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_212_power__0__Suc,axiom,
! [N2: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N2 ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_213_power__0__Suc,axiom,
! [N2: nat] :
( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ ( suc @ N2 ) )
= zero_z7100319975126383169nnreal ) ).
% power_0_Suc
thf(fact_214_power__0__Suc,axiom,
! [N2: nat] :
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( suc @ N2 ) )
= zero_z5237406670263579293d_enat ) ).
% power_0_Suc
thf(fact_215_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= zero_zero_complex )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_216_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_217_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_218_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri6283507881447550617nnreal @ M )
= zero_z7100319975126383169nnreal )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_219_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_220_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri4216267220026989637d_enat @ M )
= zero_z5237406670263579293d_enat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_221_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_complex
= ( semiri8010041392384452111omplex @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_222_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_223_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_224_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_z7100319975126383169nnreal
= ( semiri6283507881447550617nnreal @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_225_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_226_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_z5237406670263579293d_enat
= ( semiri4216267220026989637d_enat @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_227_of__nat__0,axiom,
( ( semiri8010041392384452111omplex @ zero_zero_nat )
= zero_zero_complex ) ).
% of_nat_0
thf(fact_228_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_229_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_230_of__nat__0,axiom,
( ( semiri6283507881447550617nnreal @ zero_zero_nat )
= zero_z7100319975126383169nnreal ) ).
% of_nat_0
thf(fact_231_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_232_of__nat__0,axiom,
( ( semiri4216267220026989637d_enat @ zero_zero_nat )
= zero_z5237406670263579293d_enat ) ).
% of_nat_0
thf(fact_233_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
= zero_zero_complex ) ).
% power_zero_numeral
thf(fact_234_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_235_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_236_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_237_power__zero__numeral,axiom,
! [K: num] :
( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ ( numeral_numeral_nat @ K ) )
= zero_z7100319975126383169nnreal ) ).
% power_zero_numeral
thf(fact_238_power__zero__numeral,axiom,
! [K: num] :
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( numeral_numeral_nat @ K ) )
= zero_z5237406670263579293d_enat ) ).
% power_zero_numeral
thf(fact_239_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri5667362542588693146l_num1 @ ( numeral_numeral_nat @ N2 ) )
= ( numera7754357348821619680l_num1 @ N2 ) ) ).
% of_nat_numeral
thf(fact_240_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N2 ) )
= ( numera6690914467698888265omplex @ N2 ) ) ).
% of_nat_numeral
thf(fact_241_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_int @ N2 ) ) ).
% of_nat_numeral
thf(fact_242_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_real @ N2 ) ) ).
% of_nat_numeral
thf(fact_243_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ N2 ) )
= ( numera4658534427948366547nnreal @ N2 ) ) ).
% of_nat_numeral
thf(fact_244_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ N2 ) ) ).
% of_nat_numeral
thf(fact_245_of__nat__numeral,axiom,
! [N2: num] :
( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N2 ) )
= ( numera1916890842035813515d_enat @ N2 ) ) ).
% of_nat_numeral
thf(fact_246_power__Suc0__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_247_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_248_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_249_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_250_power__Suc0__right,axiom,
! [A: extend8495563244428889912nnreal] :
( ( power_6007165696250533058nnreal @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_251_power__Suc0__right,axiom,
! [A: extended_enat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_252_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_253_power__Suc__0,axiom,
! [N2: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_254_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri8010041392384452111omplex @ X )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_255_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_256_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_257_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri6283507881447550617nnreal @ X )
= ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_258_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_259_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri4216267220026989637d_enat @ X )
= ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_260_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
= ( semiri8010041392384452111omplex @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_261_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_262_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
= ( semiri5074537144036343181t_real @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_263_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ B ) @ W )
= ( semiri6283507881447550617nnreal @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_264_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_265_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ B ) @ W )
= ( semiri4216267220026989637d_enat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_266_of__nat__power,axiom,
! [M: nat,N2: nat] :
( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N2 ) )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N2 ) ) ).
% of_nat_power
thf(fact_267_of__nat__power,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N2 ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N2 ) ) ).
% of_nat_power
thf(fact_268_of__nat__power,axiom,
! [M: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N2 ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N2 ) ) ).
% of_nat_power
thf(fact_269_of__nat__power,axiom,
! [M: nat,N2: nat] :
( ( semiri6283507881447550617nnreal @ ( power_power_nat @ M @ N2 ) )
= ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ M ) @ N2 ) ) ).
% of_nat_power
thf(fact_270_of__nat__power,axiom,
! [M: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N2 ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N2 ) ) ).
% of_nat_power
thf(fact_271_of__nat__power,axiom,
! [M: nat,N2: nat] :
( ( semiri4216267220026989637d_enat @ ( power_power_nat @ M @ N2 ) )
= ( power_8040749407984259932d_enat @ ( semiri4216267220026989637d_enat @ M ) @ N2 ) ) ).
% of_nat_power
thf(fact_272_add__numeral__left,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_273_add__numeral__left,axiom,
! [V: num,W: num,Z: complex] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_274_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_275_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_276_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_277_add__numeral__left,axiom,
! [V: num,W: num,Z: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ V ) @ ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ W ) @ Z ) )
= ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_278_add__numeral__left,axiom,
! [V: num,W: num,Z: extend8495563244428889912nnreal] :
( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ V ) @ ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ W ) @ Z ) )
= ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_279_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_280_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_281_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_282_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_283_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_284_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ M ) @ ( numera7754357348821619680l_num1 @ N2 ) )
= ( numera7754357348821619680l_num1 @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_285_numeral__plus__numeral,axiom,
! [M: num,N2: num] :
( ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ M ) @ ( numera4658534427948366547nnreal @ N2 ) )
= ( numera4658534427948366547nnreal @ ( plus_plus_num @ M @ N2 ) ) ) ).
% numeral_plus_numeral
thf(fact_286_eq__divide__eq__numeral1_I1_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
= B ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_287_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_288_add__2__eq__Suc_H,axiom,
! [N2: nat] :
( ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N2 ) ) ) ).
% add_2_eq_Suc'
thf(fact_289_add__2__eq__Suc,axiom,
! [N2: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
= ( suc @ ( suc @ N2 ) ) ) ).
% add_2_eq_Suc
thf(fact_290_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_291_Suc__0__div__numeral_I2_J,axiom,
! [N2: num] :
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) )
= zero_zero_nat ) ).
% Suc_0_div_numeral(2)
thf(fact_292_Suc__0__div__numeral_I1_J,axiom,
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
= one_one_nat ) ).
% Suc_0_div_numeral(1)
thf(fact_293_power__add__numeral2,axiom,
! [A: extend8495563244428889912nnreal,M: num,N2: num,B: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
= ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_294_power__add__numeral2,axiom,
! [A: extended_enat,M: num,N2: num,B: extended_enat] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_295_power__add__numeral2,axiom,
! [A: complex,M: num,N2: num,B: complex] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
= ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_296_power__add__numeral2,axiom,
! [A: real,M: num,N2: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_297_power__add__numeral2,axiom,
! [A: nat,M: num,N2: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_298_power__add__numeral2,axiom,
! [A: int,M: num,N2: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_299_power__add__numeral,axiom,
! [A: extend8495563244428889912nnreal,M: num,N2: num] :
( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ N2 ) ) )
= ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% power_add_numeral
thf(fact_300_power__add__numeral,axiom,
! [A: extended_enat,M: num,N2: num] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ N2 ) ) )
= ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% power_add_numeral
thf(fact_301_power__add__numeral,axiom,
! [A: complex,M: num,N2: num] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N2 ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% power_add_numeral
thf(fact_302_power__add__numeral,axiom,
! [A: real,M: num,N2: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N2 ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% power_add_numeral
thf(fact_303_power__add__numeral,axiom,
! [A: nat,M: num,N2: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N2 ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% power_add_numeral
thf(fact_304_power__add__numeral,axiom,
! [A: int,M: num,N2: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N2 ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).
% power_add_numeral
thf(fact_305_Suc__numeral,axiom,
! [N2: num] :
( ( suc @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).
% Suc_numeral
thf(fact_306_mult__Suc,axiom,
! [M: nat,N2: nat] :
( ( times_times_nat @ ( suc @ M ) @ N2 )
= ( plus_plus_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ).
% mult_Suc
thf(fact_307_Suc__eq__plus1,axiom,
( suc
= ( ^ [N: nat] : ( plus_plus_nat @ N @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_308_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_309_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_310_mult__eq__self__implies__10,axiom,
! [M: nat,N2: nat] :
( ( M
= ( times_times_nat @ M @ N2 ) )
=> ( ( N2 = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_311_add__One__commute,axiom,
! [N2: num] :
( ( plus_plus_num @ one @ N2 )
= ( plus_plus_num @ N2 @ one ) ) ).
% add_One_commute
thf(fact_312_add__eq__self__zero,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus_nat @ M @ N2 )
= M )
=> ( N2 = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_313_plus__nat_Oadd__0,axiom,
! [N2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N2 )
= N2 ) ).
% plus_nat.add_0
thf(fact_314_power__mult,axiom,
! [A: complex,M: nat,N2: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ M @ N2 ) )
= ( power_power_complex @ ( power_power_complex @ A @ M ) @ N2 ) ) ).
% power_mult
thf(fact_315_power__mult,axiom,
! [A: nat,M: nat,N2: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N2 ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N2 ) ) ).
% power_mult
thf(fact_316_power__mult,axiom,
! [A: real,M: nat,N2: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N2 ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N2 ) ) ).
% power_mult
thf(fact_317_power__mult,axiom,
! [A: int,M: nat,N2: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N2 ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N2 ) ) ).
% power_mult
thf(fact_318_power__mult,axiom,
! [A: extend8495563244428889912nnreal,M: nat,N2: nat] :
( ( power_6007165696250533058nnreal @ A @ ( times_times_nat @ M @ N2 ) )
= ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ M ) @ N2 ) ) ).
% power_mult
thf(fact_319_power__mult,axiom,
! [A: extended_enat,M: nat,N2: nat] :
( ( power_8040749407984259932d_enat @ A @ ( times_times_nat @ M @ N2 ) )
= ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ M ) @ N2 ) ) ).
% power_mult
thf(fact_320_mult__0,axiom,
! [N2: nat] :
( ( times_times_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% mult_0
thf(fact_321_add__Suc__shift,axiom,
! [M: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N2 )
= ( plus_plus_nat @ M @ ( suc @ N2 ) ) ) ).
% add_Suc_shift
thf(fact_322_add__Suc,axiom,
! [M: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N2 )
= ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).
% add_Suc
thf(fact_323_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_324_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( M = N2 ) ) ).
% Suc_mult_cancel1
thf(fact_325_Suc__nat__number__of__add,axiom,
! [V: num,N2: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N2 ) ) ).
% Suc_nat_number_of_add
thf(fact_326_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_327_power__add,axiom,
! [A: extend8495563244428889912nnreal,M: nat,N2: nat] :
( ( power_6007165696250533058nnreal @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ M ) @ ( power_6007165696250533058nnreal @ A @ N2 ) ) ) ).
% power_add
thf(fact_328_power__add,axiom,
! [A: extended_enat,M: nat,N2: nat] :
( ( power_8040749407984259932d_enat @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ M ) @ ( power_8040749407984259932d_enat @ A @ N2 ) ) ) ).
% power_add
thf(fact_329_power__add,axiom,
! [A: complex,M: nat,N2: nat] :
( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).
% power_add
thf(fact_330_power__add,axiom,
! [A: real,M: nat,N2: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).
% power_add
thf(fact_331_power__add,axiom,
! [A: nat,M: nat,N2: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_add
thf(fact_332_power__add,axiom,
! [A: int,M: nat,N2: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N2 ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).
% power_add
thf(fact_333_div__mult2__numeral__eq,axiom,
! [A: nat,K: num,L: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_334_div__mult2__numeral__eq,axiom,
! [A: int,K: num,L: num] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_335_one__is__add,axiom,
! [M: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N2 ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_336_add__is__1,axiom,
! [M: nat,N2: nat] :
( ( ( plus_plus_nat @ M @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_337_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_338_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_339_nat__induct2,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct2
thf(fact_340_power__even__eq,axiom,
! [A: complex,N2: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( power_power_complex @ ( power_power_complex @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_341_power__even__eq,axiom,
! [A: nat,N2: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( power_power_nat @ ( power_power_nat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_342_power__even__eq,axiom,
! [A: real,N2: nat] :
( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( power_power_real @ ( power_power_real @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_343_power__even__eq,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( power_power_int @ ( power_power_int @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_344_power__even__eq,axiom,
! [A: extend8495563244428889912nnreal,N2: nat] :
( ( power_6007165696250533058nnreal @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_345_power__even__eq,axiom,
! [A: extended_enat,N2: nat] :
( ( power_8040749407984259932d_enat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_346_double__not__eq__Suc__double,axiom,
! [M: nat,N2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).
% double_not_eq_Suc_double
thf(fact_347_Suc__double__not__eq__double,axiom,
! [M: nat,N2: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% Suc_double_not_eq_double
thf(fact_348_is__num__normalize_I1_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_349_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_350_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_351_is__num__normalize_I1_J,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ C )
= ( plus_p1441664204671982194l_num1 @ A @ ( plus_p1441664204671982194l_num1 @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_352_n__not__Suc__n,axiom,
! [N2: nat] :
( N2
!= ( suc @ N2 ) ) ).
% n_not_Suc_n
thf(fact_353_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_354_exp__add__not__zero__imp__right,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_355_exp__add__not__zero__imp__right,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_356_exp__add__not__zero__imp__left,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_357_exp__add__not__zero__imp__left,axiom,
! [M: nat,N2: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_358_div__exp__eq,axiom,
! [A: nat,M: nat,N2: nat] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).
% div_exp_eq
thf(fact_359_div__exp__eq,axiom,
! [A: int,M: nat,N2: nat] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).
% div_exp_eq
thf(fact_360_zero__neq__numeral,axiom,
! [N2: num] :
( zero_z5237406670263579293d_enat
!= ( numera1916890842035813515d_enat @ N2 ) ) ).
% zero_neq_numeral
thf(fact_361_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_complex
!= ( numera6690914467698888265omplex @ N2 ) ) ).
% zero_neq_numeral
thf(fact_362_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N2 ) ) ).
% zero_neq_numeral
thf(fact_363_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N2 ) ) ).
% zero_neq_numeral
thf(fact_364_zero__neq__numeral,axiom,
! [N2: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N2 ) ) ).
% zero_neq_numeral
thf(fact_365_zero__neq__numeral,axiom,
! [N2: num] :
( zero_z7100319975126383169nnreal
!= ( numera4658534427948366547nnreal @ N2 ) ) ).
% zero_neq_numeral
thf(fact_366_power__not__zero,axiom,
! [A: complex,N2: nat] :
( ( A != zero_zero_complex )
=> ( ( power_power_complex @ A @ N2 )
!= zero_zero_complex ) ) ).
% power_not_zero
thf(fact_367_power__not__zero,axiom,
! [A: nat,N2: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N2 )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_368_power__not__zero,axiom,
! [A: real,N2: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N2 )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_369_power__not__zero,axiom,
! [A: int,N2: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N2 )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_370_power__not__zero,axiom,
! [A: extend8495563244428889912nnreal,N2: nat] :
( ( A != zero_z7100319975126383169nnreal )
=> ( ( power_6007165696250533058nnreal @ A @ N2 )
!= zero_z7100319975126383169nnreal ) ) ).
% power_not_zero
thf(fact_371_power__commuting__commutes,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N2: nat] :
( ( ( times_1893300245718287421nnreal @ X @ Y )
= ( times_1893300245718287421nnreal @ Y @ X ) )
=> ( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ X @ N2 ) @ Y )
= ( times_1893300245718287421nnreal @ Y @ ( power_6007165696250533058nnreal @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_372_power__commuting__commutes,axiom,
! [X: extended_enat,Y: extended_enat,N2: nat] :
( ( ( times_7803423173614009249d_enat @ X @ Y )
= ( times_7803423173614009249d_enat @ Y @ X ) )
=> ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ X @ N2 ) @ Y )
= ( times_7803423173614009249d_enat @ Y @ ( power_8040749407984259932d_enat @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_373_power__commuting__commutes,axiom,
! [X: complex,Y: complex,N2: nat] :
( ( ( times_times_complex @ X @ Y )
= ( times_times_complex @ Y @ X ) )
=> ( ( times_times_complex @ ( power_power_complex @ X @ N2 ) @ Y )
= ( times_times_complex @ Y @ ( power_power_complex @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_374_power__commuting__commutes,axiom,
! [X: real,Y: real,N2: nat] :
( ( ( times_times_real @ X @ Y )
= ( times_times_real @ Y @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ Y )
= ( times_times_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_375_power__commuting__commutes,axiom,
! [X: nat,Y: nat,N2: nat] :
( ( ( times_times_nat @ X @ Y )
= ( times_times_nat @ Y @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ Y )
= ( times_times_nat @ Y @ ( power_power_nat @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_376_power__commuting__commutes,axiom,
! [X: int,Y: int,N2: nat] :
( ( ( times_times_int @ X @ Y )
= ( times_times_int @ Y @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ Y )
= ( times_times_int @ Y @ ( power_power_int @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_377_power__mult__distrib,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,N2: nat] :
( ( power_6007165696250533058nnreal @ ( times_1893300245718287421nnreal @ A @ B ) @ N2 )
= ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ N2 ) @ ( power_6007165696250533058nnreal @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_378_power__mult__distrib,axiom,
! [A: extended_enat,B: extended_enat,N2: nat] :
( ( power_8040749407984259932d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ N2 )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N2 ) @ ( power_8040749407984259932d_enat @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_379_power__mult__distrib,axiom,
! [A: complex,B: complex,N2: nat] :
( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N2 )
= ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_380_power__mult__distrib,axiom,
! [A: real,B: real,N2: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N2 )
= ( times_times_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_381_power__mult__distrib,axiom,
! [A: nat,B: nat,N2: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N2 )
= ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_382_power__mult__distrib,axiom,
! [A: int,B: int,N2: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N2 )
= ( times_times_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_383_power__commutes,axiom,
! [A: extend8495563244428889912nnreal,N2: nat] :
( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ N2 ) @ A )
= ( times_1893300245718287421nnreal @ A @ ( power_6007165696250533058nnreal @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_384_power__commutes,axiom,
! [A: extended_enat,N2: nat] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N2 ) @ A )
= ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_385_power__commutes,axiom,
! [A: complex,N2: nat] :
( ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_386_power__commutes,axiom,
! [A: real,N2: nat] :
( ( times_times_real @ ( power_power_real @ A @ N2 ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_387_power__commutes,axiom,
! [A: nat,N2: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_388_power__commutes,axiom,
! [A: int,N2: nat] :
( ( times_times_int @ ( power_power_int @ A @ N2 ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_389_mult__of__nat__commute,axiom,
! [X: nat,Y: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ X ) @ Y )
= ( times_times_complex @ Y @ ( semiri8010041392384452111omplex @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_390_mult__of__nat__commute,axiom,
! [X: nat,Y: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
= ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_391_mult__of__nat__commute,axiom,
! [X: nat,Y: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
= ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_392_mult__of__nat__commute,axiom,
! [X: nat,Y: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( semiri6283507881447550617nnreal @ X ) @ Y )
= ( times_1893300245718287421nnreal @ Y @ ( semiri6283507881447550617nnreal @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_393_mult__of__nat__commute,axiom,
! [X: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_394_mult__of__nat__commute,axiom,
! [X: nat,Y: extended_enat] :
( ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ X ) @ Y )
= ( times_7803423173614009249d_enat @ Y @ ( semiri4216267220026989637d_enat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_395_power__divide,axiom,
! [A: complex,B: complex,N2: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N2 )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).
% power_divide
thf(fact_396_power__divide,axiom,
! [A: real,B: real,N2: nat] :
( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N2 )
= ( divide_divide_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).
% power_divide
thf(fact_397_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_398_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N2 ) )
= ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_399_not0__implies__Suc,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ? [M2: nat] :
( N2
= ( suc @ M2 ) ) ) ).
% not0_implies_Suc
thf(fact_400_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_401_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_402_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_403_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_404_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N2: nat] :
( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
=> ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
=> ( ! [X4: nat,Y3: nat] :
( ( P @ X4 @ Y3 )
=> ( P @ ( suc @ X4 ) @ ( suc @ Y3 ) ) )
=> ( P @ M @ N2 ) ) ) ) ).
% diff_induct
thf(fact_405_nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) )
=> ( P @ N2 ) ) ) ).
% nat_induct
thf(fact_406_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_407_nat_OdiscI,axiom,
! [Nat: nat,X2: nat] :
( ( Nat
= ( suc @ X2 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_408_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_409_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_410_nat_Odistinct_I1_J,axiom,
! [X2: nat] :
( zero_zero_nat
!= ( suc @ X2 ) ) ).
% nat.distinct(1)
thf(fact_411_sums__cot__pfd__complex_H,axiom,
! [X: complex] :
( ~ ( member_complex @ X @ ring_1_Ints_complex )
=> ( sums_complex
@ ^ [N: nat] : ( plus_plus_complex @ ( divide1717551699836669952omplex @ one_one_complex @ ( plus_plus_complex @ X @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) ) ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ X @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) ) ) )
@ ( cotang8298477626502807258omplex @ X ) ) ) ).
% sums_cot_pfd_complex'
thf(fact_412_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat ) ) ).
% one_plus_numeral_commute
thf(fact_413_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).
% one_plus_numeral_commute
thf(fact_414_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_415_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_416_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_417_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p1441664204671982194l_num1 @ one_on7795324986448017462l_num1 @ ( numera7754357348821619680l_num1 @ X ) )
= ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ X ) @ one_on7795324986448017462l_num1 ) ) ).
% one_plus_numeral_commute
thf(fact_418_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p1859984266308609217nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ X ) )
= ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ X ) @ one_on2969667320475766781nnreal ) ) ).
% one_plus_numeral_commute
thf(fact_419_mult__numeral__1__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_420_mult__numeral__1__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_421_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_422_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_423_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_424_mult__numeral__1__right,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ A @ ( numera7754357348821619680l_num1 @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_425_mult__numeral__1__right,axiom,
! [A: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ A @ ( numera4658534427948366547nnreal @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_426_mult__numeral__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_427_mult__numeral__1,axiom,
! [A: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_428_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_429_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_430_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_431_mult__numeral__1,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_432_mult__numeral__1,axiom,
! [A: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_433_numeral__Bit0,axiom,
! [N2: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ ( numera1916890842035813515d_enat @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_434_numeral__Bit0,axiom,
! [N2: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N2 ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_435_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_real @ ( bit0 @ N2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_436_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_437_numeral__Bit0,axiom,
! [N2: num] :
( ( numeral_numeral_int @ ( bit0 @ N2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_438_numeral__Bit0,axiom,
! [N2: num] :
( ( numera7754357348821619680l_num1 @ ( bit0 @ N2 ) )
= ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ N2 ) @ ( numera7754357348821619680l_num1 @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_439_numeral__Bit0,axiom,
! [N2: num] :
( ( numera4658534427948366547nnreal @ ( bit0 @ N2 ) )
= ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ N2 ) @ ( numera4658534427948366547nnreal @ N2 ) ) ) ).
% numeral_Bit0
thf(fact_440_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_441_numeral__One,axiom,
( ( numera6690914467698888265omplex @ one )
= one_one_complex ) ).
% numeral_One
thf(fact_442_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_443_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_444_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_445_numeral__One,axiom,
( ( numera7754357348821619680l_num1 @ one )
= one_on7795324986448017462l_num1 ) ).
% numeral_One
thf(fact_446_numeral__One,axiom,
( ( numera4658534427948366547nnreal @ one )
= one_on2969667320475766781nnreal ) ).
% numeral_One
thf(fact_447_left__right__inverse__power,axiom,
! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1,N2: nat] :
( ( ( times_2938166955517408246l_num1 @ X @ Y )
= one_on7795324986448017462l_num1 )
=> ( ( times_2938166955517408246l_num1 @ ( power_1002146276965246001l_num1 @ X @ N2 ) @ ( power_1002146276965246001l_num1 @ Y @ N2 ) )
= one_on7795324986448017462l_num1 ) ) ).
% left_right_inverse_power
thf(fact_448_left__right__inverse__power,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N2: nat] :
( ( ( times_1893300245718287421nnreal @ X @ Y )
= one_on2969667320475766781nnreal )
=> ( ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ X @ N2 ) @ ( power_6007165696250533058nnreal @ Y @ N2 ) )
= one_on2969667320475766781nnreal ) ) ).
% left_right_inverse_power
thf(fact_449_left__right__inverse__power,axiom,
! [X: extended_enat,Y: extended_enat,N2: nat] :
( ( ( times_7803423173614009249d_enat @ X @ Y )
= one_on7984719198319812577d_enat )
=> ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ X @ N2 ) @ ( power_8040749407984259932d_enat @ Y @ N2 ) )
= one_on7984719198319812577d_enat ) ) ).
% left_right_inverse_power
thf(fact_450_left__right__inverse__power,axiom,
! [X: complex,Y: complex,N2: nat] :
( ( ( times_times_complex @ X @ Y )
= one_one_complex )
=> ( ( times_times_complex @ ( power_power_complex @ X @ N2 ) @ ( power_power_complex @ Y @ N2 ) )
= one_one_complex ) ) ).
% left_right_inverse_power
thf(fact_451_left__right__inverse__power,axiom,
! [X: real,Y: real,N2: nat] :
( ( ( times_times_real @ X @ Y )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ ( power_power_real @ Y @ N2 ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_452_left__right__inverse__power,axiom,
! [X: nat,Y: nat,N2: nat] :
( ( ( times_times_nat @ X @ Y )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ ( power_power_nat @ Y @ N2 ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_453_left__right__inverse__power,axiom,
! [X: int,Y: int,N2: nat] :
( ( ( times_times_int @ X @ Y )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y @ N2 ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_454_divide__numeral__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_455_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_456_power__one__over,axiom,
! [A: complex,N2: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N2 )
= ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N2 ) ) ) ).
% power_one_over
thf(fact_457_power__one__over,axiom,
! [A: real,N2: nat] :
( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N2 )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).
% power_one_over
thf(fact_458_div__mult2__eq_H,axiom,
! [A: int,M: nat,N2: nat] :
( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% div_mult2_eq'
thf(fact_459_div__mult2__eq_H,axiom,
! [A: nat,M: nat,N2: nat] :
( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% div_mult2_eq'
thf(fact_460_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ N2 ) )
!= zero_zero_complex ) ).
% of_nat_neq_0
thf(fact_461_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_462_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N2 ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_463_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri6283507881447550617nnreal @ ( suc @ N2 ) )
!= zero_z7100319975126383169nnreal ) ).
% of_nat_neq_0
thf(fact_464_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N2 ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_465_of__nat__neq__0,axiom,
! [N2: nat] :
( ( semiri4216267220026989637d_enat @ ( suc @ N2 ) )
!= zero_z5237406670263579293d_enat ) ).
% of_nat_neq_0
thf(fact_466_power__0,axiom,
! [A: numera4273646738625120315l_num1] :
( ( power_1002146276965246001l_num1 @ A @ zero_zero_nat )
= one_on7795324986448017462l_num1 ) ).
% power_0
thf(fact_467_power__0,axiom,
! [A: complex] :
( ( power_power_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% power_0
thf(fact_468_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_469_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_470_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_471_power__0,axiom,
! [A: extend8495563244428889912nnreal] :
( ( power_6007165696250533058nnreal @ A @ zero_zero_nat )
= one_on2969667320475766781nnreal ) ).
% power_0
thf(fact_472_power__0,axiom,
! [A: extended_enat] :
( ( power_8040749407984259932d_enat @ A @ zero_zero_nat )
= one_on7984719198319812577d_enat ) ).
% power_0
thf(fact_473_power__Suc2,axiom,
! [A: extend8495563244428889912nnreal,N2: nat] :
( ( power_6007165696250533058nnreal @ A @ ( suc @ N2 ) )
= ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_474_power__Suc2,axiom,
! [A: extended_enat,N2: nat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ N2 ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_475_power__Suc2,axiom,
! [A: complex,N2: nat] :
( ( power_power_complex @ A @ ( suc @ N2 ) )
= ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_476_power__Suc2,axiom,
! [A: real,N2: nat] :
( ( power_power_real @ A @ ( suc @ N2 ) )
= ( times_times_real @ ( power_power_real @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_477_power__Suc2,axiom,
! [A: nat,N2: nat] :
( ( power_power_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_478_power__Suc2,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ ( power_power_int @ A @ N2 ) @ A ) ) ).
% power_Suc2
thf(fact_479_power__Suc,axiom,
! [A: extend8495563244428889912nnreal,N2: nat] :
( ( power_6007165696250533058nnreal @ A @ ( suc @ N2 ) )
= ( times_1893300245718287421nnreal @ A @ ( power_6007165696250533058nnreal @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_480_power__Suc,axiom,
! [A: extended_enat,N2: nat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ N2 ) )
= ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_481_power__Suc,axiom,
! [A: complex,N2: nat] :
( ( power_power_complex @ A @ ( suc @ N2 ) )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_482_power__Suc,axiom,
! [A: real,N2: nat] :
( ( power_power_real @ A @ ( suc @ N2 ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_483_power__Suc,axiom,
! [A: nat,N2: nat] :
( ( power_power_nat @ A @ ( suc @ N2 ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_484_power__Suc,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ A @ ( suc @ N2 ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).
% power_Suc
thf(fact_485_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N2 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N2 ) @ ( numera1916890842035813515d_enat @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_486_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N2 ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_487_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_real @ ( bit0 @ N2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_488_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_489_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numeral_numeral_int @ ( bit0 @ N2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_490_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numera7754357348821619680l_num1 @ ( bit0 @ N2 ) )
= ( plus_p1441664204671982194l_num1 @ ( numera7754357348821619680l_num1 @ N2 ) @ ( numera7754357348821619680l_num1 @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_491_numeral__code_I2_J,axiom,
! [N2: num] :
( ( numera4658534427948366547nnreal @ ( bit0 @ N2 ) )
= ( plus_p1859984266308609217nnreal @ ( numera4658534427948366547nnreal @ N2 ) @ ( numera4658534427948366547nnreal @ N2 ) ) ) ).
% numeral_code(2)
thf(fact_492_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( numera6690914467698888265omplex @ W )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_493_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_494_divide__eq__eq__numeral_I1_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( numera6690914467698888265omplex @ W ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_495_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_496_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_1002146276965246001l_num1 @ zero_z2241845390563828978l_num1 @ N2 )
= one_on7795324986448017462l_num1 ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_1002146276965246001l_num1 @ zero_z2241845390563828978l_num1 @ N2 )
= zero_z2241845390563828978l_num1 ) ) ) ).
% power_0_left
thf(fact_497_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N2 )
= one_one_complex ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N2 )
= zero_zero_complex ) ) ) ).
% power_0_left
thf(fact_498_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= one_one_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_499_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= one_one_real ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_500_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= one_one_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_501_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ N2 )
= one_on2969667320475766781nnreal ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ N2 )
= zero_z7100319975126383169nnreal ) ) ) ).
% power_0_left
thf(fact_502_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ N2 )
= one_on7984719198319812577d_enat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ N2 )
= zero_z5237406670263579293d_enat ) ) ) ).
% power_0_left
thf(fact_503_numeral__Bit0__div__2,axiom,
! [N2: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N2 ) ) ).
% numeral_Bit0_div_2
thf(fact_504_numeral__Bit0__div__2,axiom,
! [N2: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N2 ) ) ).
% numeral_Bit0_div_2
thf(fact_505_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_506_power__numeral__even,axiom,
! [Z: extend8495563244428889912nnreal,W: num] :
( ( power_6007165696250533058nnreal @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_1893300245718287421nnreal @ ( power_6007165696250533058nnreal @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_6007165696250533058nnreal @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_507_power__numeral__even,axiom,
! [Z: extended_enat,W: num] :
( ( power_8040749407984259932d_enat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_8040749407984259932d_enat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_508_power__numeral__even,axiom,
! [Z: complex,W: num] :
( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_complex @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_509_power__numeral__even,axiom,
! [Z: real,W: num] :
( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_510_power__numeral__even,axiom,
! [Z: nat,W: num] :
( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_511_power__numeral__even,axiom,
! [Z: int,W: num] :
( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_512_left__add__twice,axiom,
! [A: extended_enat,B: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ A @ B ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_513_left__add__twice,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_514_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_515_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_516_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_517_left__add__twice,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ A @ ( plus_p1441664204671982194l_num1 @ A @ B ) )
= ( plus_p1441664204671982194l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_518_left__add__twice,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( plus_p1859984266308609217nnreal @ A @ ( plus_p1859984266308609217nnreal @ A @ B ) )
= ( plus_p1859984266308609217nnreal @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_519_mult__2__right,axiom,
! [Z: extended_enat] :
( ( times_7803423173614009249d_enat @ Z @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_520_mult__2__right,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ Z @ Z ) ) ).
% mult_2_right
thf(fact_521_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_522_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_523_mult__2__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2_right
thf(fact_524_mult__2__right,axiom,
! [Z: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ Z @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
= ( plus_p1441664204671982194l_num1 @ Z @ Z ) ) ).
% mult_2_right
thf(fact_525_mult__2__right,axiom,
! [Z: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ Z @ ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) )
= ( plus_p1859984266308609217nnreal @ Z @ Z ) ) ).
% mult_2_right
thf(fact_526_mult__2,axiom,
! [Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ Z )
= ( plus_p3455044024723400733d_enat @ Z @ Z ) ) ).
% mult_2
thf(fact_527_mult__2,axiom,
! [Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_complex @ Z @ Z ) ) ).
% mult_2
thf(fact_528_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_529_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_530_mult__2,axiom,
! [Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2
thf(fact_531_mult__2,axiom,
! [Z: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) @ Z )
= ( plus_p1441664204671982194l_num1 @ Z @ Z ) ) ).
% mult_2
thf(fact_532_mult__2,axiom,
! [Z: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) @ Z )
= ( plus_p1859984266308609217nnreal @ Z @ Z ) ) ).
% mult_2
thf(fact_533_zero__power2,axiom,
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex ) ).
% zero_power2
thf(fact_534_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_535_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_536_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_537_zero__power2,axiom,
( ( power_6007165696250533058nnreal @ zero_z7100319975126383169nnreal @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z7100319975126383169nnreal ) ).
% zero_power2
thf(fact_538_zero__power2,axiom,
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z5237406670263579293d_enat ) ).
% zero_power2
thf(fact_539_power2__eq__square,axiom,
! [A: extend8495563244428889912nnreal] :
( ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_1893300245718287421nnreal @ A @ A ) ) ).
% power2_eq_square
thf(fact_540_power2__eq__square,axiom,
! [A: extended_enat] :
( ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_7803423173614009249d_enat @ A @ A ) ) ).
% power2_eq_square
thf(fact_541_power2__eq__square,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_complex @ A @ A ) ) ).
% power2_eq_square
thf(fact_542_power2__eq__square,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ A @ A ) ) ).
% power2_eq_square
thf(fact_543_power2__eq__square,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ A @ A ) ) ).
% power2_eq_square
thf(fact_544_power2__eq__square,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_int @ A @ A ) ) ).
% power2_eq_square
thf(fact_545_power4__eq__xxxx,axiom,
! [X: extend8495563244428889912nnreal] :
( ( power_6007165696250533058nnreal @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_546_power4__eq__xxxx,axiom,
! [X: extended_enat] :
( ( power_8040749407984259932d_enat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_547_power4__eq__xxxx,axiom,
! [X: complex] :
( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_548_power4__eq__xxxx,axiom,
! [X: real] :
( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_549_power4__eq__xxxx,axiom,
! [X: nat] :
( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_550_power4__eq__xxxx,axiom,
! [X: int] :
( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_551_one__power2,axiom,
( ( power_1002146276965246001l_num1 @ one_on7795324986448017462l_num1 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_on7795324986448017462l_num1 ) ).
% one_power2
thf(fact_552_one__power2,axiom,
( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex ) ).
% one_power2
thf(fact_553_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_554_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_555_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_556_one__power2,axiom,
( ( power_6007165696250533058nnreal @ one_on2969667320475766781nnreal @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_on2969667320475766781nnreal ) ).
% one_power2
thf(fact_557_one__power2,axiom,
( ( power_8040749407984259932d_enat @ one_on7984719198319812577d_enat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_on7984719198319812577d_enat ) ).
% one_power2
thf(fact_558_power2__commute,axiom,
! [X: complex,Y: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ ( minus_minus_complex @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_559_power2__commute,axiom,
! [X: int,Y: int] :
( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ ( minus_minus_int @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_560_power2__commute,axiom,
! [X: real,Y: real] :
( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ ( minus_minus_real @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_561_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_562_powser__sums__zero,axiom,
! [A: nat > complex] :
( sums_complex
@ ^ [N: nat] : ( times_times_complex @ ( A @ N ) @ ( power_power_complex @ zero_zero_complex @ N ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_563_powser__sums__zero,axiom,
! [A: nat > real] :
( sums_real
@ ^ [N: nat] : ( times_times_real @ ( A @ N ) @ ( power_power_real @ zero_zero_real @ N ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_564_power__odd__eq,axiom,
! [A: extend8495563244428889912nnreal,N2: nat] :
( ( power_6007165696250533058nnreal @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( times_1893300245718287421nnreal @ A @ ( power_6007165696250533058nnreal @ ( power_6007165696250533058nnreal @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_565_power__odd__eq,axiom,
! [A: extended_enat,N2: nat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_566_power__odd__eq,axiom,
! [A: complex,N2: nat] :
( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_567_power__odd__eq,axiom,
! [A: real,N2: nat] :
( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_568_power__odd__eq,axiom,
! [A: nat,N2: nat] :
( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_569_power__odd__eq,axiom,
! [A: int,N2: nat] :
( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
= ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_570_power2__sum,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( power_8040749407984259932d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( power_8040749407984259932d_enat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8040749407984259932d_enat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_571_power2__sum,axiom,
! [X: complex,Y: complex] :
( ( power_power_complex @ ( plus_plus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_572_power2__sum,axiom,
! [X: real,Y: real] :
( ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_573_power2__sum,axiom,
! [X: nat,Y: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_574_power2__sum,axiom,
! [X: int,Y: int] :
( ( power_power_int @ ( plus_plus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_575_power2__sum,axiom,
! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( power_1002146276965246001l_num1 @ ( plus_p1441664204671982194l_num1 @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p1441664204671982194l_num1 @ ( plus_p1441664204671982194l_num1 @ ( power_1002146276965246001l_num1 @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_1002146276965246001l_num1 @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_2938166955517408246l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_576_power2__sum,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( power_6007165696250533058nnreal @ ( plus_p1859984266308609217nnreal @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p1859984266308609217nnreal @ ( plus_p1859984266308609217nnreal @ ( power_6007165696250533058nnreal @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_6007165696250533058nnreal @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_577_power2__diff,axiom,
! [X: complex,Y: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_diff
thf(fact_578_power2__diff,axiom,
! [X: real,Y: real] :
( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_diff
thf(fact_579_power2__diff,axiom,
! [X: int,Y: int] :
( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_diff
thf(fact_580_power2__diff,axiom,
! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( power_1002146276965246001l_num1 @ ( minus_5410813661909488930l_num1 @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_5410813661909488930l_num1 @ ( plus_p1441664204671982194l_num1 @ ( power_1002146276965246001l_num1 @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_1002146276965246001l_num1 @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_2938166955517408246l_num1 @ ( times_2938166955517408246l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_diff
thf(fact_581_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_582_div__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_583_div__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_584_div__mult__self3,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_585_div__mult__self3,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_586_div__mult__self2,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_587_div__mult__self2,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_588_div__mult__self1,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_589_div__mult__self1,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_590_nonzero__divide__mult__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_591_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_592_nonzero__divide__mult__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_593_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_594_nat__neq__4k1,axiom,
! [M: nat,K: nat,N2: nat] :
( ( semiri8010041392384452111omplex @ M )
!= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% nat_neq_4k1
thf(fact_595_nat__neq__4k1,axiom,
! [M: nat,K: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ M )
!= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).
% nat_neq_4k1
thf(fact_596_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_597_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_598_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_599_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_600_semiring__norm_I87_J,axiom,
! [M: num,N2: num] :
( ( ( bit0 @ M )
= ( bit0 @ N2 ) )
= ( M = N2 ) ) ).
% semiring_norm(87)
thf(fact_601_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_602_diff__0__eq__0,axiom,
! [N2: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_603_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_604_diff__Suc__Suc,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( minus_minus_nat @ M @ N2 ) ) ).
% diff_Suc_Suc
thf(fact_605_Suc__diff__diff,axiom,
! [M: nat,N2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N2 ) @ K ) ) ).
% Suc_diff_diff
thf(fact_606_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_607_divide__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divide_eq_0_iff
thf(fact_608_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_609_divide__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ C @ A )
= ( divide1717551699836669952omplex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_610_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_611_divide__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_612_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_613_division__ring__divide__zero,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% division_ring_divide_zero
thf(fact_614_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_615_times__divide__eq__left,axiom,
! [B: complex,C: complex,A: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
= ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_616_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_617_divide__divide__eq__left,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_618_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_619_divide__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_620_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_621_times__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_622_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_623_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_624_semiring__norm_I83_J,axiom,
! [N2: num] :
( one
!= ( bit0 @ N2 ) ) ).
% semiring_norm(83)
thf(fact_625_diff__Suc__1,axiom,
! [N2: nat] :
( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
= N2 ) ).
% diff_Suc_1
thf(fact_626_nat__1__eq__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N2 ) )
= ( ( M = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_627_nat__mult__eq__1__iff,axiom,
! [M: nat,N2: nat] :
( ( ( times_times_nat @ M @ N2 )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_628_semiring__norm_I6_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
= ( bit0 @ ( plus_plus_num @ M @ N2 ) ) ) ).
% semiring_norm(6)
thf(fact_629_semiring__norm_I13_J,axiom,
! [M: num,N2: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N2 ) ) ) ) ).
% semiring_norm(13)
thf(fact_630_semiring__norm_I12_J,axiom,
! [N2: num] :
( ( times_times_num @ one @ N2 )
= N2 ) ).
% semiring_norm(12)
thf(fact_631_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_632_mult__divide__mult__cancel__left__if,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( C = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= zero_zero_complex ) )
& ( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_633_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_634_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_635_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_636_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_637_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_638_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_639_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_640_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_641_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_642_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_643_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_644_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_645_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_646_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_647_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_648_divide__eq__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_649_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_650_one__eq__divide__iff,axiom,
! [A: complex,B: complex] :
( ( one_one_complex
= ( divide1717551699836669952omplex @ A @ B ) )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_651_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_652_divide__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% divide_self
thf(fact_653_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_654_divide__self__if,axiom,
! [A: complex] :
( ( ( A = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= zero_zero_complex ) )
& ( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ) ).
% divide_self_if
thf(fact_655_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_656_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_657_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_658_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_659_nat__mult__1,axiom,
! [N2: nat] :
( ( times_times_nat @ one_one_nat @ N2 )
= N2 ) ).
% nat_mult_1
thf(fact_660_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
= ( minus_minus_nat @ M @ N2 ) ) ).
% Nat.diff_cancel
thf(fact_661_diff__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M @ N2 ) ) ).
% diff_cancel2
thf(fact_662_add__mult__distrib,axiom,
! [M: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N2 ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% add_mult_distrib
thf(fact_663_diff__add__inverse,axiom,
! [N2: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M ) @ N2 )
= M ) ).
% diff_add_inverse
thf(fact_664_nat__mult__1__right,axiom,
! [N2: nat] :
( ( times_times_nat @ N2 @ one_one_nat )
= N2 ) ).
% nat_mult_1_right
thf(fact_665_add__mult__distrib2,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N2 ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% add_mult_distrib2
thf(fact_666_diff__add__inverse2,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ N2 )
= M ) ).
% diff_add_inverse2
thf(fact_667_diff__mult__distrib,axiom,
! [M: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% diff_mult_distrib
thf(fact_668_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N2: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% diff_mult_distrib2
thf(fact_669_zdiv__int,axiom,
! [M: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zdiv_int
thf(fact_670_div__mult2__eq,axiom,
! [M: nat,N2: nat,Q: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N2 @ Q ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N2 ) @ Q ) ) ).
% div_mult2_eq
thf(fact_671_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_672_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_673_diffs0__imp__equal,axiom,
! [M: nat,N2: nat] :
( ( ( minus_minus_nat @ M @ N2 )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N2 @ M )
= zero_zero_nat )
=> ( M = N2 ) ) ) ).
% diffs0_imp_equal
thf(fact_674_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N ) ) ) ) ) ).
% mult_eq_if
thf(fact_675_diff__add__0,axiom,
! [N2: nat,M: nat] :
( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_676_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_677_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N2: nat] :
( ( minus_minus_nat @ M @ ( suc @ N2 ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_678_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M3: nat,N: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N ) ) ) ) ) ).
% add_eq_if
thf(fact_679_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N2 ) )
= ( ( K = zero_zero_nat )
| ( M = N2 ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_680_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( divide_divide_nat @ M @ N2 ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_681_power__eq__if,axiom,
( power_1002146276965246001l_num1
= ( ^ [P2: numera4273646738625120315l_num1,M3: nat] : ( if_Num3220014061592582145l_num1 @ ( M3 = zero_zero_nat ) @ one_on7795324986448017462l_num1 @ ( times_2938166955517408246l_num1 @ P2 @ ( power_1002146276965246001l_num1 @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_682_power__eq__if,axiom,
( power_6007165696250533058nnreal
= ( ^ [P2: extend8495563244428889912nnreal,M3: nat] : ( if_Ext9135588136721118450nnreal @ ( M3 = zero_zero_nat ) @ one_on2969667320475766781nnreal @ ( times_1893300245718287421nnreal @ P2 @ ( power_6007165696250533058nnreal @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_683_power__eq__if,axiom,
( power_8040749407984259932d_enat
= ( ^ [P2: extended_enat,M3: nat] : ( if_Extended_enat @ ( M3 = zero_zero_nat ) @ one_on7984719198319812577d_enat @ ( times_7803423173614009249d_enat @ P2 @ ( power_8040749407984259932d_enat @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_684_power__eq__if,axiom,
( power_power_complex
= ( ^ [P2: complex,M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P2 @ ( power_power_complex @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_685_power__eq__if,axiom,
( power_power_real
= ( ^ [P2: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P2 @ ( power_power_real @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_686_power__eq__if,axiom,
( power_power_nat
= ( ^ [P2: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P2 @ ( power_power_nat @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_687_power__eq__if,axiom,
( power_power_int
= ( ^ [P2: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P2 @ ( power_power_int @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_688_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N2: nat,M: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
!= zero_zero_nat ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_689_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N2: nat,M: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
!= zero_zero_int ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_690_times__divide__times__eq,axiom,
! [X: complex,Y: complex,Z: complex,W: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ Z @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ Y @ W ) ) ) ).
% times_divide_times_eq
thf(fact_691_times__divide__times__eq,axiom,
! [X: real,Y: real,Z: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).
% times_divide_times_eq
thf(fact_692_divide__divide__times__eq,axiom,
! [X: complex,Y: complex,Z: complex,W: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ Z @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X @ W ) @ ( times_times_complex @ Y @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_693_divide__divide__times__eq,axiom,
! [X: real,Y: real,Z: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_694_divide__divide__eq__left_H,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_695_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_696_add__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_697_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_698_diff__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
= ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_699_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_700_frac__eq__eq,axiom,
! [Y: complex,Z: complex,X: complex,W: complex] :
( ( Y != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ X @ Y )
= ( divide1717551699836669952omplex @ W @ Z ) )
= ( ( times_times_complex @ X @ Z )
= ( times_times_complex @ W @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_701_frac__eq__eq,axiom,
! [Y: real,Z: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ( divide_divide_real @ X @ Y )
= ( divide_divide_real @ W @ Z ) )
= ( ( times_times_real @ X @ Z )
= ( times_times_real @ W @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_702_divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq
thf(fact_703_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_704_eq__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq
thf(fact_705_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_706_divide__eq__imp,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( B
= ( times_times_complex @ A @ C ) )
=> ( ( divide1717551699836669952omplex @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_707_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_708_eq__divide__imp,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= B )
=> ( A
= ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_709_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_710_nonzero__divide__eq__eq,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( B
= ( times_times_complex @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_711_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_712_nonzero__eq__divide__eq,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( times_times_complex @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_713_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_714_right__inverse__eq,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_715_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_716_add__divide__eq__if__simps_I2_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_717_add__divide__eq__if__simps_I2_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_718_add__divide__eq__if__simps_I1_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_719_add__divide__eq__if__simps_I1_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_720_add__frac__eq,axiom,
! [Y: complex,Z: complex,X: complex,W: complex] :
( ( Y != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ W @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_721_add__frac__eq,axiom,
! [Y: real,Z: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_722_add__frac__num,axiom,
! [Y: complex,X: complex,Z: complex] :
( ( Y != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ Z )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_723_add__frac__num,axiom,
! [Y: real,X: real,Z: real] :
( ( Y != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ Z )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_724_add__num__frac,axiom,
! [Y: complex,Z: complex,X: complex] :
( ( Y != zero_zero_complex )
=> ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X @ Y ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_725_add__num__frac,axiom,
! [Y: real,Z: real,X: real] :
( ( Y != zero_zero_real )
=> ( ( plus_plus_real @ Z @ ( divide_divide_real @ X @ Y ) )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_726_add__divide__eq__iff,axiom,
! [Z: complex,X: complex,Y: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ Y @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z ) @ Y ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_727_add__divide__eq__iff,axiom,
! [Z: real,X: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ X @ ( divide_divide_real @ Y @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_728_divide__add__eq__iff,axiom,
! [Z: complex,X: complex,Y: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Z ) @ Y )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_729_divide__add__eq__iff,axiom,
! [Z: real,X: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Z ) @ Y )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_730_add__divide__eq__if__simps_I4_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_731_add__divide__eq__if__simps_I4_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_732_diff__frac__eq,axiom,
! [Y: complex,Z: complex,X: complex,W: complex] :
( ( Y != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ W @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_733_diff__frac__eq,axiom,
! [Y: real,Z: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_734_diff__divide__eq__iff,axiom,
! [Z: complex,X: complex,Y: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ X @ ( divide1717551699836669952omplex @ Y @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z ) @ Y ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_735_diff__divide__eq__iff,axiom,
! [Z: real,X: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ X @ ( divide_divide_real @ Y @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_736_divide__diff__eq__iff,axiom,
! [Z: complex,X: complex,Y: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Z ) @ Y )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ X @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_737_divide__diff__eq__iff,axiom,
! [Z: real,X: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Z ) @ Y )
= ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_738_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_739_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_740_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_741_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_742_div__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% div_self
thf(fact_743_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_744_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_745_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_746_nonzero__mult__div__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_747_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_748_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_749_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_750_nonzero__mult__div__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_751_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_752_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_753_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_754_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_755_mult__cancel__left1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_left1
thf(fact_756_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_757_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_758_mult__cancel__left2,axiom,
! [C: complex,A: complex] :
( ( ( times_times_complex @ C @ A )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_left2
thf(fact_759_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_760_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_761_mult__cancel__right1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_right1
thf(fact_762_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_763_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_764_mult__cancel__right2,axiom,
! [A: complex,C: complex] :
( ( ( times_times_complex @ A @ C )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_right2
thf(fact_765_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_766_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_767_add__right__cancel,axiom,
! [B: complex,A: complex,C: complex] :
( ( ( plus_plus_complex @ B @ A )
= ( plus_plus_complex @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_768_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_769_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_770_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_771_add__right__cancel,axiom,
! [B: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ B @ A )
= ( plus_p1441664204671982194l_num1 @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_772_add__left__cancel,axiom,
! [A: complex,B: complex,C: complex] :
( ( ( plus_plus_complex @ A @ B )
= ( plus_plus_complex @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_773_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_774_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_775_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_776_add__left__cancel,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ A @ B )
= ( plus_p1441664204671982194l_num1 @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_777_mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_778_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_779_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_780_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_781_mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_782_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_783_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_784_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_785_mult__eq__0__iff,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( ( times_1893300245718287421nnreal @ A @ B )
= zero_z7100319975126383169nnreal )
= ( ( A = zero_z7100319975126383169nnreal )
| ( B = zero_z7100319975126383169nnreal ) ) ) ).
% mult_eq_0_iff
thf(fact_786_mult__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% mult_eq_0_iff
thf(fact_787_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_788_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_789_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_790_mult__zero__right,axiom,
! [A: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ A @ zero_z7100319975126383169nnreal )
= zero_z7100319975126383169nnreal ) ).
% mult_zero_right
thf(fact_791_mult__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% mult_zero_right
thf(fact_792_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_793_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_794_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_795_mult__zero__left,axiom,
! [A: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ zero_z7100319975126383169nnreal @ A )
= zero_z7100319975126383169nnreal ) ).
% mult_zero_left
thf(fact_796_mult__zero__left,axiom,
! [A: complex] :
( ( times_times_complex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% mult_zero_left
thf(fact_797_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_798_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_799_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_800_add__0,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
= A ) ).
% add_0
thf(fact_801_add__0,axiom,
! [A: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ zero_z2241845390563828978l_num1 @ A )
= A ) ).
% add_0
thf(fact_802_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_803_add__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add_0
thf(fact_804_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_805_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_806_add__0,axiom,
! [A: extend8495563244428889912nnreal] :
( ( plus_p1859984266308609217nnreal @ zero_z7100319975126383169nnreal @ A )
= A ) ).
% add_0
thf(fact_807_zero__eq__add__iff__both__eq__0,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( zero_z5237406670263579293d_enat
= ( plus_p3455044024723400733d_enat @ X @ Y ) )
= ( ( X = zero_z5237406670263579293d_enat )
& ( Y = zero_z5237406670263579293d_enat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_808_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_809_zero__eq__add__iff__both__eq__0,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( zero_z7100319975126383169nnreal
= ( plus_p1859984266308609217nnreal @ X @ Y ) )
= ( ( X = zero_z7100319975126383169nnreal )
& ( Y = zero_z7100319975126383169nnreal ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_810_add__eq__0__iff__both__eq__0,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ X @ Y )
= zero_z5237406670263579293d_enat )
= ( ( X = zero_z5237406670263579293d_enat )
& ( Y = zero_z5237406670263579293d_enat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_811_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_812_add__eq__0__iff__both__eq__0,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( ( plus_p1859984266308609217nnreal @ X @ Y )
= zero_z7100319975126383169nnreal )
= ( ( X = zero_z7100319975126383169nnreal )
& ( Y = zero_z7100319975126383169nnreal ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_813_add__cancel__right__right,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( A
= ( plus_p1441664204671982194l_num1 @ A @ B ) )
= ( B = zero_z2241845390563828978l_num1 ) ) ).
% add_cancel_right_right
thf(fact_814_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_815_add__cancel__right__right,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ A @ B ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_right
thf(fact_816_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_817_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_818_add__cancel__right__left,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( A
= ( plus_p1441664204671982194l_num1 @ B @ A ) )
= ( B = zero_z2241845390563828978l_num1 ) ) ).
% add_cancel_right_left
thf(fact_819_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_820_add__cancel__right__left,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ B @ A ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_left
thf(fact_821_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_822_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_823_add__cancel__left__right,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ A @ B )
= A )
= ( B = zero_z2241845390563828978l_num1 ) ) ).
% add_cancel_left_right
thf(fact_824_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_825_add__cancel__left__right,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_right
thf(fact_826_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_827_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_828_add__cancel__left__left,axiom,
! [B: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ B @ A )
= A )
= ( B = zero_z2241845390563828978l_num1 ) ) ).
% add_cancel_left_left
thf(fact_829_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_830_add__cancel__left__left,axiom,
! [B: complex,A: complex] :
( ( ( plus_plus_complex @ B @ A )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_left
thf(fact_831_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_832_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_833_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_834_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_835_add_Oright__neutral,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
= A ) ).
% add.right_neutral
thf(fact_836_add_Oright__neutral,axiom,
! [A: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ A @ zero_z2241845390563828978l_num1 )
= A ) ).
% add.right_neutral
thf(fact_837_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_838_add_Oright__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.right_neutral
thf(fact_839_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_840_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_841_add_Oright__neutral,axiom,
! [A: extend8495563244428889912nnreal] :
( ( plus_p1859984266308609217nnreal @ A @ zero_z7100319975126383169nnreal )
= A ) ).
% add.right_neutral
thf(fact_842_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_843_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_844_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_845_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_846_diff__zero,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_zero
thf(fact_847_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_848_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_849_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_850_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_851_diff__0__right,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_0_right
thf(fact_852_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_853_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_854_diff__self,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% diff_self
thf(fact_855_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_856_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_857_mult__1,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ one_on7795324986448017462l_num1 @ A )
= A ) ).
% mult_1
thf(fact_858_mult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% mult_1
thf(fact_859_mult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% mult_1
thf(fact_860_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_861_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_862_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_863_mult_Oright__neutral,axiom,
! [A: numera4273646738625120315l_num1] :
( ( times_2938166955517408246l_num1 @ A @ one_on7795324986448017462l_num1 )
= A ) ).
% mult.right_neutral
thf(fact_864_mult_Oright__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.right_neutral
thf(fact_865_mult_Oright__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.right_neutral
thf(fact_866_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_867_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_868_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_869_div__by__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% div_by_0
thf(fact_870_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_871_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_872_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_873_div__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% div_0
thf(fact_874_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_875_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_876_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_877_add__diff__cancel__right_H,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( minus_5410813661909488930l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_878_add__diff__cancel__right_H,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_879_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_880_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_881_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_882_add__diff__cancel__right,axiom,
! [A: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( minus_5410813661909488930l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ C ) @ ( plus_p1441664204671982194l_num1 @ B @ C ) )
= ( minus_5410813661909488930l_num1 @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_883_add__diff__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( minus_minus_complex @ ( plus_plus_complex @ A @ C ) @ ( plus_plus_complex @ B @ C ) )
= ( minus_minus_complex @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_884_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_885_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_886_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_887_add__diff__cancel__left_H,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( minus_5410813661909488930l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_888_add__diff__cancel__left_H,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_889_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_890_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_891_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_892_add__diff__cancel__left,axiom,
! [C: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( minus_5410813661909488930l_num1 @ ( plus_p1441664204671982194l_num1 @ C @ A ) @ ( plus_p1441664204671982194l_num1 @ C @ B ) )
= ( minus_5410813661909488930l_num1 @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_893_add__diff__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( minus_minus_complex @ ( plus_plus_complex @ C @ A ) @ ( plus_plus_complex @ C @ B ) )
= ( minus_minus_complex @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_894_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_895_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_896_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_897_diff__add__cancel,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ ( minus_5410813661909488930l_num1 @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_898_diff__add__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( minus_minus_complex @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_899_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_900_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_901_add__diff__cancel,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( minus_5410813661909488930l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_902_add__diff__cancel,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_903_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_904_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_905_div__by__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ one_one_complex )
= A ) ).
% div_by_1
thf(fact_906_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_907_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_908_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_909_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_910_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_911_zero__reorient,axiom,
! [X: complex] :
( ( zero_zero_complex = X )
= ( X = zero_zero_complex ) ) ).
% zero_reorient
thf(fact_912_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_913_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_914_zero__reorient,axiom,
! [X: extend8495563244428889912nnreal] :
( ( zero_z7100319975126383169nnreal = X )
= ( X = zero_z7100319975126383169nnreal ) ) ).
% zero_reorient
thf(fact_915_mult_Oleft__commute,axiom,
! [B: complex,A: complex,C: complex] :
( ( times_times_complex @ B @ ( times_times_complex @ A @ C ) )
= ( times_times_complex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_916_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_917_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_918_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_919_mult_Ocommute,axiom,
( times_times_complex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_920_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_921_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_922_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_923_mult_Oassoc,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ ( times_times_complex @ A @ B ) @ C )
= ( times_times_complex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% mult.assoc
thf(fact_924_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_925_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_926_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_927_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ ( times_times_complex @ A @ B ) @ C )
= ( times_times_complex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_928_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_929_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_930_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_931_one__reorient,axiom,
! [X: numera4273646738625120315l_num1] :
( ( one_on7795324986448017462l_num1 = X )
= ( X = one_on7795324986448017462l_num1 ) ) ).
% one_reorient
thf(fact_932_one__reorient,axiom,
! [X: complex] :
( ( one_one_complex = X )
= ( X = one_one_complex ) ) ).
% one_reorient
thf(fact_933_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_934_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_935_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_936_one__reorient,axiom,
! [X: extended_enat] :
( ( one_on7984719198319812577d_enat = X )
= ( X = one_on7984719198319812577d_enat ) ) ).
% one_reorient
thf(fact_937_add__right__imp__eq,axiom,
! [B: complex,A: complex,C: complex] :
( ( ( plus_plus_complex @ B @ A )
= ( plus_plus_complex @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_938_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_939_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_940_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_941_add__right__imp__eq,axiom,
! [B: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ B @ A )
= ( plus_p1441664204671982194l_num1 @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_942_add__left__imp__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( ( plus_plus_complex @ A @ B )
= ( plus_plus_complex @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_943_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_944_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_945_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_946_add__left__imp__eq,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ A @ B )
= ( plus_p1441664204671982194l_num1 @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_947_add_Oleft__commute,axiom,
! [B: complex,A: complex,C: complex] :
( ( plus_plus_complex @ B @ ( plus_plus_complex @ A @ C ) )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% add.left_commute
thf(fact_948_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_949_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_950_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_951_add_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_952_add_Oleft__commute,axiom,
! [B: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ B @ ( plus_p1441664204671982194l_num1 @ A @ C ) )
= ( plus_p1441664204671982194l_num1 @ A @ ( plus_p1441664204671982194l_num1 @ B @ C ) ) ) ).
% add.left_commute
thf(fact_953_add_Ocommute,axiom,
( plus_plus_complex
= ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_954_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_955_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_956_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_957_add_Ocommute,axiom,
( plus_p3455044024723400733d_enat
= ( ^ [A3: extended_enat,B2: extended_enat] : ( plus_p3455044024723400733d_enat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_958_add_Ocommute,axiom,
( plus_p1441664204671982194l_num1
= ( ^ [A3: numera4273646738625120315l_num1,B2: numera4273646738625120315l_num1] : ( plus_p1441664204671982194l_num1 @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_959_add_Oright__cancel,axiom,
! [B: complex,A: complex,C: complex] :
( ( ( plus_plus_complex @ B @ A )
= ( plus_plus_complex @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_960_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_961_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_962_add_Oright__cancel,axiom,
! [B: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ B @ A )
= ( plus_p1441664204671982194l_num1 @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_963_add_Oleft__cancel,axiom,
! [A: complex,B: complex,C: complex] :
( ( ( plus_plus_complex @ A @ B )
= ( plus_plus_complex @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_964_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_965_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_966_add_Oleft__cancel,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( ( plus_p1441664204671982194l_num1 @ A @ B )
= ( plus_p1441664204671982194l_num1 @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_967_add_Oassoc,axiom,
! [A: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% add.assoc
thf(fact_968_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_969_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_970_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_971_add_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.assoc
thf(fact_972_add_Oassoc,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ C )
= ( plus_p1441664204671982194l_num1 @ A @ ( plus_p1441664204671982194l_num1 @ B @ C ) ) ) ).
% add.assoc
thf(fact_973_group__cancel_Oadd2,axiom,
! [B3: complex,K: complex,B: complex,A: complex] :
( ( B3
= ( plus_plus_complex @ K @ B ) )
=> ( ( plus_plus_complex @ A @ B3 )
= ( plus_plus_complex @ K @ ( plus_plus_complex @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_974_group__cancel_Oadd2,axiom,
! [B3: real,K: real,B: real,A: real] :
( ( B3
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B3 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_975_group__cancel_Oadd2,axiom,
! [B3: nat,K: nat,B: nat,A: nat] :
( ( B3
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B3 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_976_group__cancel_Oadd2,axiom,
! [B3: int,K: int,B: int,A: int] :
( ( B3
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B3 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_977_group__cancel_Oadd2,axiom,
! [B3: extended_enat,K: extended_enat,B: extended_enat,A: extended_enat] :
( ( B3
= ( plus_p3455044024723400733d_enat @ K @ B ) )
=> ( ( plus_p3455044024723400733d_enat @ A @ B3 )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_978_group__cancel_Oadd2,axiom,
! [B3: numera4273646738625120315l_num1,K: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1] :
( ( B3
= ( plus_p1441664204671982194l_num1 @ K @ B ) )
=> ( ( plus_p1441664204671982194l_num1 @ A @ B3 )
= ( plus_p1441664204671982194l_num1 @ K @ ( plus_p1441664204671982194l_num1 @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_979_group__cancel_Oadd1,axiom,
! [A2: complex,K: complex,A: complex,B: complex] :
( ( A2
= ( plus_plus_complex @ K @ A ) )
=> ( ( plus_plus_complex @ A2 @ B )
= ( plus_plus_complex @ K @ ( plus_plus_complex @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_980_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_981_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_982_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_983_group__cancel_Oadd1,axiom,
! [A2: extended_enat,K: extended_enat,A: extended_enat,B: extended_enat] :
( ( A2
= ( plus_p3455044024723400733d_enat @ K @ A ) )
=> ( ( plus_p3455044024723400733d_enat @ A2 @ B )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_984_group__cancel_Oadd1,axiom,
! [A2: numera4273646738625120315l_num1,K: numera4273646738625120315l_num1,A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1] :
( ( A2
= ( plus_p1441664204671982194l_num1 @ K @ A ) )
=> ( ( plus_p1441664204671982194l_num1 @ A2 @ B )
= ( plus_p1441664204671982194l_num1 @ K @ ( plus_p1441664204671982194l_num1 @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_985_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: complex,J: complex,K: complex,L: complex] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_complex @ I @ K )
= ( plus_plus_complex @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_986_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_987_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_988_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_989_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_p3455044024723400733d_enat @ I @ K )
= ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_990_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_991_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_992_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_993_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_994_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_995_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: numera4273646738625120315l_num1,B: numera4273646738625120315l_num1,C: numera4273646738625120315l_num1] :
( ( plus_p1441664204671982194l_num1 @ ( plus_p1441664204671982194l_num1 @ A @ B ) @ C )
= ( plus_p1441664204671982194l_num1 @ A @ ( plus_p1441664204671982194l_num1 @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_996_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_997_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_998_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_999_nat__add__1__add__1,axiom,
! [N2: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ one_one_nat )
= ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% nat_add_1_add_1
thf(fact_1000_int__int__eq,axiom,
! [M: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M = N2 ) ) ).
% int_int_eq
thf(fact_1001_int__diff__cases,axiom,
! [Z: int] :
~ ! [M2: nat,N3: nat] :
( Z
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_diff_cases
thf(fact_1002_zadd__int__left,axiom,
! [M: nat,N2: nat,Z: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ Z ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) ) @ Z ) ) ).
% zadd_int_left
thf(fact_1003_power__half__series,axiom,
( sums_real
@ ^ [N: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N ) )
@ one_one_real ) ).
% power_half_series
thf(fact_1004_real__average__minus__second,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_second
thf(fact_1005_real__average__minus__first,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_first
thf(fact_1006_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z2: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z2 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z2 ) ) ) ).
% int_distrib(4)
thf(fact_1007_int__distrib_I3_J,axiom,
! [Z1: int,Z2: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z2 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z2 @ W ) ) ) ).
% int_distrib(3)
thf(fact_1008_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1009_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1010_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_1011_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_1012_int__distrib_I1_J,axiom,
! [Z1: int,Z2: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z2 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z2 @ W ) ) ) ).
% int_distrib(1)
thf(fact_1013_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z2: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z2 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z2 ) ) ) ).
% int_distrib(2)
thf(fact_1014_exhaust__2,axiom,
! [X: numera2417102609627094330l_num1] :
( ( X = one_on3868389512446148991l_num1 )
| ( X
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% exhaust_2
thf(fact_1015_forall__2,axiom,
( ( ^ [P3: numera2417102609627094330l_num1 > $o] :
! [X5: numera2417102609627094330l_num1] : ( P3 @ X5 ) )
= ( ^ [P4: numera2417102609627094330l_num1 > $o] :
( ( P4 @ one_on3868389512446148991l_num1 )
& ( P4 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ) ) ).
% forall_2
thf(fact_1016_sums__cot__pfd__real,axiom,
! [X: real] :
( sums_real
@ ^ [N: nat] : ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( cotang1502006655779026648d_real @ X ) ) ).
% sums_cot_pfd_real
thf(fact_1017_four__x__squared,axiom,
! [X: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_1018_real__divide__square__eq,axiom,
! [R: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
= ( divide_divide_real @ A @ R ) ) ).
% real_divide_square_eq
thf(fact_1019_int__Suc,axiom,
! [N2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).
% int_Suc
thf(fact_1020_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_1021_verit__eq__simplify_I8_J,axiom,
! [X2: num,Y2: num] :
( ( ( bit0 @ X2 )
= ( bit0 @ Y2 ) )
= ( X2 = Y2 ) ) ).
% verit_eq_simplify(8)
thf(fact_1022_semiring__norm_I90_J,axiom,
! [M: num,N2: num] :
( ( ( bit1 @ M )
= ( bit1 @ N2 ) )
= ( M = N2 ) ) ).
% semiring_norm(90)
thf(fact_1023_semiring__norm_I88_J,axiom,
! [M: num,N2: num] :
( ( bit0 @ M )
!= ( bit1 @ N2 ) ) ).
% semiring_norm(88)
thf(fact_1024_semiring__norm_I89_J,axiom,
! [M: num,N2: num] :
( ( bit1 @ M )
!= ( bit0 @ N2 ) ) ).
% semiring_norm(89)
thf(fact_1025_semiring__norm_I84_J,axiom,
! [N2: num] :
( one
!= ( bit1 @ N2 ) ) ).
% semiring_norm(84)
thf(fact_1026_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_1027_semiring__norm_I9_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( bit1 @ ( plus_plus_num @ M @ N2 ) ) ) ).
% semiring_norm(9)
thf(fact_1028_semiring__norm_I7_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( bit1 @ ( plus_plus_num @ M @ N2 ) ) ) ).
% semiring_norm(7)
thf(fact_1029_semiring__norm_I15_J,axiom,
! [M: num,N2: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N2 ) ) ) ).
% semiring_norm(15)
thf(fact_1030_semiring__norm_I14_J,axiom,
! [M: num,N2: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
= ( bit0 @ ( times_times_num @ M @ ( bit1 @ N2 ) ) ) ) ).
% semiring_norm(14)
thf(fact_1031_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_1032_semiring__norm_I3_J,axiom,
! [N2: num] :
( ( plus_plus_num @ one @ ( bit0 @ N2 ) )
= ( bit1 @ N2 ) ) ).
% semiring_norm(3)
thf(fact_1033_semiring__norm_I4_J,axiom,
! [N2: num] :
( ( plus_plus_num @ one @ ( bit1 @ N2 ) )
= ( bit0 @ ( plus_plus_num @ N2 @ one ) ) ) ).
% semiring_norm(4)
thf(fact_1034_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_1035_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_1036_semiring__norm_I10_J,axiom,
! [M: num,N2: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N2 ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_1037_semiring__norm_I16_J,axiom,
! [M: num,N2: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N2 ) @ ( bit0 @ ( times_times_num @ M @ N2 ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_1038_Suc__0__div__numeral_I3_J,axiom,
! [N2: num] :
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) )
= zero_zero_nat ) ).
% Suc_0_div_numeral(3)
thf(fact_1039_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_1040_div__Suc__eq__div__add3,axiom,
! [M: nat,N2: nat] :
( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
= ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_1041_verit__eq__simplify_I14_J,axiom,
! [X2: num,X32: num] :
( ( bit0 @ X2 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_1042_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_1043_exhaust__4,axiom,
! [X: numera4273646738625120315l_num1] :
( ( X = one_on7795324986448017462l_num1 )
| ( X
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
| ( X
= ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
| ( X
= ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% exhaust_4
thf(fact_1044_forall__4,axiom,
( ( ^ [P3: numera4273646738625120315l_num1 > $o] :
! [X5: numera4273646738625120315l_num1] : ( P3 @ X5 ) )
= ( ^ [P4: numera4273646738625120315l_num1 > $o] :
( ( P4 @ one_on7795324986448017462l_num1 )
& ( P4 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
& ( P4 @ ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
& ( P4 @ ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ).
% forall_4
thf(fact_1045_exhaust__3,axiom,
! [X: numera6367994245245682809l_num1] :
( ( X = one_on7819281148064737470l_num1 )
| ( X
= ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
| ( X
= ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ).
% exhaust_3
thf(fact_1046_forall__3,axiom,
( ( ^ [P3: numera6367994245245682809l_num1 > $o] :
! [X5: numera6367994245245682809l_num1] : ( P3 @ X5 ) )
= ( ^ [P4: numera6367994245245682809l_num1 > $o] :
( ( P4 @ one_on7819281148064737470l_num1 )
& ( P4 @ ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
& ( P4 @ ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ) ) ).
% forall_3
thf(fact_1047_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one )
=> ( ! [X22: num] :
( Y
!= ( bit0 @ X22 ) )
=> ~ ! [X33: num] :
( Y
!= ( bit1 @ X33 ) ) ) ) ).
% num.exhaust
thf(fact_1048_eval__nat__numeral_I3_J,axiom,
! [N2: num] :
( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
= ( suc @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_1049_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_1050_nat__int__comparison_I1_J,axiom,
( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
= ( ^ [A3: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_1051_numeral__3__eq__3,axiom,
( ( numeral_numeral_nat @ ( bit1 @ one ) )
= ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).
% numeral_3_eq_3
thf(fact_1052_Suc3__eq__add__3,axiom,
! [N2: nat] :
( ( suc @ ( suc @ ( suc @ N2 ) ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ).
% Suc3_eq_add_3
thf(fact_1053_Suc__div__eq__add3__div,axiom,
! [M: nat,N2: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).
% Suc_div_eq_add3_div
thf(fact_1054_verit__eq__simplify_I10_J,axiom,
! [X2: num] :
( one
!= ( bit0 @ X2 ) ) ).
% verit_eq_simplify(10)
thf(fact_1055_neq__4k1__k43,axiom,
! [M: nat,N2: nat,M4: nat,N4: nat] :
( ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) )
!= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ M4 ) ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% neq_4k1_k43
thf(fact_1056_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_1057_int__ops_I3_J,axiom,
! [N2: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
= ( numeral_numeral_int @ N2 ) ) ).
% int_ops(3)
thf(fact_1058_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_1059_int__plus,axiom,
! [N2: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_1060_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_1061_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_1062_int__ops_I8_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(8)
thf(fact_1063_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_1064_neq0__conv,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% neq0_conv
thf(fact_1065_less__nat__zero__code,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_1066_lessI,axiom,
! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).
% lessI
thf(fact_1067_Suc__mono,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).
% Suc_mono
thf(fact_1068_Suc__less__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% Suc_less_eq
thf(fact_1069_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% nat_add_left_cancel_less
thf(fact_1070_less__Suc0,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( N2 = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_1071_zero__less__Suc,axiom,
! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).
% zero_less_Suc
thf(fact_1072_add__gr__0,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% add_gr_0
thf(fact_1073_zero__less__diff,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% zero_less_diff
thf(fact_1074_less__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ one_one_nat )
= ( N2 = zero_zero_nat ) ) ).
% less_one
thf(fact_1075_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N2 ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1076_nat__0__less__mult__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% nat_0_less_mult_iff
thf(fact_1077_mult__less__cancel2,axiom,
! [M: nat,K: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N2 ) ) ) ).
% mult_less_cancel2
thf(fact_1078_div__less,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( divide_divide_nat @ M @ N2 )
= zero_zero_nat ) ) ).
% div_less
thf(fact_1079_nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1080_Suc__pred,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
= N2 ) ) ).
% Suc_pred
thf(fact_1081_div__mult__self1__is__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide_divide_nat @ ( times_times_nat @ N2 @ M ) @ N2 )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_1082_div__mult__self__is__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N2 ) @ N2 )
= M ) ) ).
% div_mult_self_is_m
thf(fact_1083_Suc__diff__1,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
= N2 ) ) ).
% Suc_diff_1
thf(fact_1084_not__less__less__Suc__eq,axiom,
! [N2: nat,M: nat] :
( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ord_less_nat @ N2 @ ( suc @ M ) )
= ( N2 = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_1085_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_1086_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J2: nat,K2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ K2 )
=> ( ( P @ I2 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I2 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_1087_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_1088_Suc__less__SucD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ).
% Suc_less_SucD
thf(fact_1089_less__antisym,axiom,
! [N2: nat,M: nat] :
( ~ ( ord_less_nat @ N2 @ M )
=> ( ( ord_less_nat @ N2 @ ( suc @ M ) )
=> ( M = N2 ) ) ) ).
% less_antisym
thf(fact_1090_Suc__less__eq2,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N2 ) @ M )
= ( ? [M5: nat] :
( ( M
= ( suc @ M5 ) )
& ( ord_less_nat @ N2 @ M5 ) ) ) ) ).
% Suc_less_eq2
thf(fact_1091_All__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
=> ( P @ I3 ) ) )
= ( ( P @ N2 )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
=> ( P @ I3 ) ) ) ) ).
% All_less_Suc
thf(fact_1092_not__less__eq,axiom,
! [M: nat,N2: nat] :
( ( ~ ( ord_less_nat @ M @ N2 ) )
= ( ord_less_nat @ N2 @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_1093_less__Suc__eq,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
= ( ( ord_less_nat @ M @ N2 )
| ( M = N2 ) ) ) ).
% less_Suc_eq
thf(fact_1094_Ex__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
& ( P @ I3 ) ) )
= ( ( P @ N2 )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
& ( P @ I3 ) ) ) ) ).
% Ex_less_Suc
thf(fact_1095_less__SucI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).
% less_SucI
thf(fact_1096_less__SucE,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
=> ( ~ ( ord_less_nat @ M @ N2 )
=> ( M = N2 ) ) ) ).
% less_SucE
thf(fact_1097_Suc__lessI,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( ( suc @ M )
!= N2 )
=> ( ord_less_nat @ ( suc @ M ) @ N2 ) ) ) ).
% Suc_lessI
thf(fact_1098_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_1099_Suc__lessD,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N2 )
=> ( ord_less_nat @ M @ N2 ) ) ).
% Suc_lessD
thf(fact_1100_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_1101_nat__neq__iff,axiom,
! [M: nat,N2: nat] :
( ( M != N2 )
= ( ( ord_less_nat @ M @ N2 )
| ( ord_less_nat @ N2 @ M ) ) ) ).
% nat_neq_iff
thf(fact_1102_less__not__refl,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_not_refl
thf(fact_1103_less__not__refl2,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ N2 @ M )
=> ( M != N2 ) ) ).
% less_not_refl2
thf(fact_1104_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_1105_less__irrefl__nat,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_irrefl_nat
thf(fact_1106_nat__less__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N3: nat] :
( ! [M6: nat] :
( ( ord_less_nat @ M6 @ N3 )
=> ( P @ M6 ) )
=> ( P @ N3 ) )
=> ( P @ N2 ) ) ).
% nat_less_induct
thf(fact_1107_infinite__descent,axiom,
! [P: nat > $o,N2: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M6: nat] :
( ( ord_less_nat @ M6 @ N3 )
& ~ ( P @ M6 ) ) )
=> ( P @ N2 ) ) ).
% infinite_descent
thf(fact_1108_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_1109_diff__less__mono2,axiom,
! [M: nat,N2: nat,L: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_1110_less__imp__diff__less,axiom,
! [J: nat,K: nat,N2: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1111_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N2: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% less_add_eq_less
thf(fact_1112_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1113_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1114_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1115_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1116_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1117_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1118_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1119_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_1120_gr0I,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr0I
thf(fact_1121_not__gr0,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr0
thf(fact_1122_not__less0,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less0
thf(fact_1123_less__zeroE,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_zeroE
thf(fact_1124_gr__implies__not0,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_1125_infinite__descent0,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M6: nat] :
( ( ord_less_nat @ M6 @ N3 )
& ~ ( P @ M6 ) ) ) )
=> ( P @ N2 ) ) ) ).
% infinite_descent0
thf(fact_1126_Ex__less__Suc2,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
& ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
& ( P @ ( suc @ I3 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_1127_gr0__conv__Suc,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( ? [M3: nat] :
( N2
= ( suc @ M3 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_1128_All__less__Suc2,axiom,
! [N2: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N2 ) )
=> ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N2 )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_1129_gr0__implies__Suc,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ? [M2: nat] :
( N2
= ( suc @ M2 ) ) ) ).
% gr0_implies_Suc
thf(fact_1130_less__Suc__eq__0__disj,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ ( suc @ N2 ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N2 ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_1131_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1132_less__imp__Suc__add,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ? [K2: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_1133_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M3: nat,N: nat] :
? [K3: nat] :
( N
= ( suc @ ( plus_plus_nat @ M3 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_1134_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_1135_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_1136_less__natE,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
=> ~ ! [Q2: nat] :
( N2
!= ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).
% less_natE
thf(fact_1137_diff__less,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ) ) ).
% diff_less
thf(fact_1138_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ) ).
% nat_mult_less_cancel1
thf(fact_1139_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N2 ) )
= ( M = N2 ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_1140_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_1141_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_1142_diff__less__Suc,axiom,
! [M: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_1143_Suc__diff__Suc,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ N2 @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N2 ) ) )
= ( minus_minus_nat @ M @ N2 ) ) ) ).
% Suc_diff_Suc
thf(fact_1144_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( ord_less_nat @ M @ N2 ) ) ).
% Suc_mult_less_cancel1
thf(fact_1145_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1146_add__diff__inverse__nat,axiom,
! [M: nat,N2: nat] :
( ~ ( ord_less_nat @ M @ N2 )
=> ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M @ N2 ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1147_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N2: nat] :
( ( ( divide_divide_nat @ M @ N2 )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N2 )
| ( N2 = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_1148_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N2 ) )
=> ( ord_less_nat @ M @ N2 ) ) ) ).
% nat_power_less_imp_less
thf(fact_1149_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N2: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I @ N2 ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_1150_diff__Suc__less,axiom,
! [N2: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).
% diff_Suc_less
thf(fact_1151_nat__induct__non__zero,axiom,
! [N2: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_non_zero
thf(fact_1152_one__less__mult,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) ) ) ) ).
% one_less_mult
thf(fact_1153_n__less__m__mult__n,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ) ).
% n_less_m_mult_n
thf(fact_1154_n__less__n__mult__m,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N2 @ ( times_times_nat @ N2 @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_1155_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D: nat] :
( ( A
= ( plus_plus_nat @ B @ D ) )
& ~ ( P @ D ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1156_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D: nat] :
( ( A
= ( plus_plus_nat @ B @ D ) )
=> ( P @ D ) ) ) ) ).
% nat_diff_split
thf(fact_1157_power__gt__expt,axiom,
! [N2: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ord_less_nat @ K @ ( power_power_nat @ N2 @ K ) ) ) ).
% power_gt_expt
thf(fact_1158_div__eq__dividend__iff,axiom,
! [M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N2 )
= M )
= ( N2 = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_1159_div__less__dividend,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ) ) ).
% div_less_dividend
thf(fact_1160_div__less__iff__less__mult,axiom,
! [Q: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q ) @ N2 )
= ( ord_less_nat @ M @ ( times_times_nat @ N2 @ Q ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_1161_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
= ( divide_divide_nat @ M @ N2 ) ) ) ).
% nat_mult_div_cancel1
thf(fact_1162_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_1163_Suc__pred_H,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( N2
= ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_1164_Suc__diff__eq__diff__pred,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_1165_less__exp,axiom,
! [N2: nat] : ( ord_less_nat @ N2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).
% less_exp
thf(fact_1166_div__if,axiom,
( divide_divide_nat
= ( ^ [M3: nat,N: nat] :
( if_nat
@ ( ( ord_less_nat @ M3 @ N )
| ( N = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N ) @ N ) ) ) ) ) ).
% div_if
thf(fact_1167_dividend__less__times__div,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_1168_dividend__less__div__times,axiom,
! [N2: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) ) ) ) ).
% dividend_less_div_times
thf(fact_1169_split__div,axiom,
! [P: nat > $o,M: nat,N2: nat] :
( ( P @ ( divide_divide_nat @ M @ N2 ) )
= ( ( ( N2 = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N2 != zero_zero_nat )
=> ! [I3: nat,J3: nat] :
( ( ( ord_less_nat @ J3 @ N2 )
& ( M
= ( plus_plus_nat @ ( times_times_nat @ N2 @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% split_div
thf(fact_1170_less__2__cases,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N2 = zero_zero_nat )
| ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_1171_less__2__cases__iff,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N2 = zero_zero_nat )
| ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_1172_nat__bit__induct,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_bit_induct
thf(fact_1173_div__2__gt__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_1174_Suc__n__div__2__gt__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_1175_Ln__times__of__nat,axiom,
! [R: nat,Z: complex] :
( ( ord_less_nat @ zero_zero_nat @ R )
=> ( ( Z != zero_zero_complex )
=> ( ( ln_ln_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ R ) @ Z ) )
= ( plus_plus_complex @ ( ln_ln_complex @ ( semiri8010041392384452111omplex @ R ) ) @ ( ln_ln_complex @ Z ) ) ) ) ) ).
% Ln_times_of_nat
thf(fact_1176_Ln__1,axiom,
( ( ln_ln_complex @ one_one_complex )
= zero_zero_complex ) ).
% Ln_1
thf(fact_1177_ln__less__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ).
% ln_less_zero_iff
thf(fact_1178_ln__gt__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
= ( ord_less_real @ one_one_real @ X ) ) ) ).
% ln_gt_zero_iff
thf(fact_1179_ln__eq__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ln_ln_real @ X )
= zero_zero_real )
= ( X = one_one_real ) ) ) ).
% ln_eq_zero_iff
thf(fact_1180_unset__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_1181_set__bit__negative__int__iff,axiom,
! [N2: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N2 @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_1182_semiring__norm_I78_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(78)
thf(fact_1183_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_1184_semiring__norm_I80_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(80)
thf(fact_1185_semiring__norm_I76_J,axiom,
! [N2: num] : ( ord_less_num @ one @ ( bit0 @ N2 ) ) ).
% semiring_norm(76)
thf(fact_1186_semiring__norm_I81_J,axiom,
! [M: num,N2: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
= ( ord_less_num @ M @ N2 ) ) ).
% semiring_norm(81)
thf(fact_1187_semiring__norm_I77_J,axiom,
! [N2: num] : ( ord_less_num @ one @ ( bit1 @ N2 ) ) ).
% semiring_norm(77)
thf(fact_1188_real__of__nat__less__numeral__iff,axiom,
! [N2: nat,W: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( numeral_numeral_real @ W ) )
= ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_1189_numeral__less__real__of__nat__iff,axiom,
! [W: num,N2: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N2 ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_1190_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_1191_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1192_ln__gt__zero__imp__gt__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ one_one_real @ X ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_1193_ln__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).
% ln_less_zero
thf(fact_1194_ln__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).
% ln_gt_zero
thf(fact_1195_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_1196_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N3: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N3 ) ) ) ).
% real_arch_pow
thf(fact_1197_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1198_realpow__pos__nth2,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ ( suc @ N2 ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_1199_ln__mult,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ln_ln_real @ ( times_times_real @ X @ Y ) )
= ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).
% ln_mult
thf(fact_1200_ln__eq__minus__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ln_ln_real @ X )
= ( minus_minus_real @ X @ one_one_real ) )
=> ( X = one_one_real ) ) ) ).
% ln_eq_minus_one
thf(fact_1201_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1202_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y5: real] :
? [N3: nat] : ( ord_less_real @ Y5 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_1203_ln__div,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ln_ln_real @ ( divide_divide_real @ X @ Y ) )
= ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).
% ln_div
thf(fact_1204_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_1205_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1206_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_1207_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_1208_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_1209_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_1210_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_less_as_int
thf(fact_1211_ln3__gt__1,axiom,
ord_less_real @ one_one_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% ln3_gt_1
thf(fact_1212_realpow__pos__nth,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N2 )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1213_realpow__pos__nth__unique,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ( power_power_real @ X4 @ N2 )
= A )
& ! [Y5: real] :
( ( ( ord_less_real @ zero_zero_real @ Y5 )
& ( ( power_power_real @ Y5 @ N2 )
= A ) )
=> ( Y5 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1214_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W2: int,Z4: int] :
? [N: nat] :
( Z4
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_1215_pos__zmult__eq__1__iff,axiom,
! [M: int,N2: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N2 )
= one_one_int )
= ( ( M = one_one_int )
& ( N2 = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1216_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1217_ln__realpow,axiom,
! [X: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ln_ln_real @ ( power_power_real @ X @ N2 ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( ln_ln_real @ X ) ) ) ) ).
% ln_realpow
thf(fact_1218_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_1219_Ln__eq__iff,axiom,
! [W: complex,Z: complex] :
( ( W != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( ( ln_ln_complex @ W )
= ( ln_ln_complex @ Z ) )
= ( W = Z ) ) ) ) ).
% Ln_eq_iff
thf(fact_1220_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_1221_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1222_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1223_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_1224_ln__272__gt__1,axiom,
ord_less_real @ one_one_real @ ( ln_ln_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ).
% ln_272_gt_1
thf(fact_1225_reals__power__lt__ex,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ Y )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ord_less_real @ ( power_power_real @ ( divide_divide_real @ one_one_real @ Y ) @ K2 ) @ X ) ) ) ) ).
% reals_power_lt_ex
thf(fact_1226_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_1227_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N3: nat] :
( ~ ( P @ N3 )
& ( P @ ( suc @ N3 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_1228_exists__complex__root,axiom,
! [N2: nat,Z: complex] :
( ( N2 != zero_zero_nat )
=> ~ ! [W3: complex] :
( Z
!= ( power_power_complex @ W3 @ N2 ) ) ) ).
% exists_complex_root
thf(fact_1229_exists__complex__root__nonzero,axiom,
! [Z: complex,N2: nat] :
( ( Z != zero_zero_complex )
=> ( ( N2 != zero_zero_nat )
=> ~ ! [W3: complex] :
( ( W3 != zero_zero_complex )
=> ( Z
!= ( power_power_complex @ W3 @ N2 ) ) ) ) ) ).
% exists_complex_root_nonzero
thf(fact_1230_ln__series__quadratic,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( sums_real
@ ^ [N: nat] : ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( divide_divide_real @ ( minus_minus_real @ X @ one_one_real ) @ ( plus_plus_real @ X @ one_one_real ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) )
@ ( ln_ln_real @ X ) ) ) ).
% ln_series_quadratic
thf(fact_1231_one__less__numeral,axiom,
! [N2: num] :
( ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N2 ) )
= ( ord_less_num @ one @ N2 ) ) ).
% one_less_numeral
thf(fact_1232_enat__ord__number_I2_J,axiom,
! [M: num,N2: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).
% enat_ord_number(2)
thf(fact_1233_one__divide__one__divide__ennreal,axiom,
! [C: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ C ) )
= C ) ).
% one_divide_one_divide_ennreal
thf(fact_1234_ln__inj__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ( ln_ln_real @ X )
= ( ln_ln_real @ Y ) )
= ( X = Y ) ) ) ) ).
% ln_inj_iff
thf(fact_1235_ln__less__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
= ( ord_less_real @ X @ Y ) ) ) ) ).
% ln_less_cancel_iff
thf(fact_1236_ln__less__self,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).
% ln_less_self
thf(fact_1237_diff__gr0__ennreal,axiom,
! [B: extend8495563244428889912nnreal,A: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ B @ A )
=> ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) ) ) ).
% diff_gr0_ennreal
thf(fact_1238_ennreal__zero__less__one,axiom,
ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).
% ennreal_zero_less_one
thf(fact_1239_numeral__eq__of__nat,axiom,
( numera4658534427948366547nnreal
= ( ^ [A3: num] : ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ A3 ) ) ) ) ).
% numeral_eq_of_nat
thf(fact_1240_ln__2__less__1,axiom,
ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).
% ln_2_less_1
thf(fact_1241_ennreal__minus__zero,axiom,
! [A: extend8495563244428889912nnreal] :
( ( minus_8429688780609304081nnreal @ A @ zero_z7100319975126383169nnreal )
= A ) ).
% ennreal_minus_zero
thf(fact_1242_zero__minus__ennreal,axiom,
! [A: extend8495563244428889912nnreal] :
( ( minus_8429688780609304081nnreal @ zero_z7100319975126383169nnreal @ A )
= zero_z7100319975126383169nnreal ) ).
% zero_minus_ennreal
thf(fact_1243_ennreal__zero__divide,axiom,
! [X: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ zero_z7100319975126383169nnreal @ X )
= zero_z7100319975126383169nnreal ) ).
% ennreal_zero_divide
thf(fact_1244_power__divide__distrib__ennreal,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N2: nat] :
( ( power_6007165696250533058nnreal @ ( divide4826598186094686858nnreal @ X @ Y ) @ N2 )
= ( divide4826598186094686858nnreal @ ( power_6007165696250533058nnreal @ X @ N2 ) @ ( power_6007165696250533058nnreal @ Y @ N2 ) ) ) ).
% power_divide_distrib_ennreal
thf(fact_1245_ennreal__divide__times,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ ( divide4826598186094686858nnreal @ A @ B ) @ C )
= ( times_1893300245718287421nnreal @ A @ ( divide4826598186094686858nnreal @ C @ B ) ) ) ).
% ennreal_divide_times
thf(fact_1246_ennreal__times__divide,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( times_1893300245718287421nnreal @ A @ ( divide4826598186094686858nnreal @ B @ C ) )
= ( divide4826598186094686858nnreal @ ( times_1893300245718287421nnreal @ A @ B ) @ C ) ) ).
% ennreal_times_divide
thf(fact_1247_add__divide__distrib__ennreal,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ C )
= ( plus_p1859984266308609217nnreal @ ( divide4826598186094686858nnreal @ A @ C ) @ ( divide4826598186094686858nnreal @ B @ C ) ) ) ).
% add_divide_distrib_ennreal
thf(fact_1248_diff__add__eq__diff__diff__swap__ennreal,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,Z: extend8495563244428889912nnreal] :
( ( minus_8429688780609304081nnreal @ X @ ( plus_p1859984266308609217nnreal @ Y @ Z ) )
= ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ X @ Y ) @ Z ) ) ).
% diff_add_eq_diff_diff_swap_ennreal
thf(fact_1249_diff__diff__commute__ennreal,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ A @ B ) @ C )
= ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ A @ C ) @ B ) ) ).
% diff_diff_commute_ennreal
thf(fact_1250_eq__diff__eq_H,axiom,
! [X: real,Y: real,Z: real] :
( ( X
= ( minus_minus_real @ Y @ Z ) )
= ( Y
= ( plus_plus_real @ X @ Z ) ) ) ).
% eq_diff_eq'
thf(fact_1251_plusinfinity,axiom,
! [D2: int,P5: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X4: int,K2: int] :
( ( P5 @ X4 )
= ( P5 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D2 ) ) ) )
=> ( ? [Z5: int] :
! [X4: int] :
( ( ord_less_int @ Z5 @ X4 )
=> ( ( P @ X4 )
= ( P5 @ X4 ) ) )
=> ( ? [X_1: int] : ( P5 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% plusinfinity
thf(fact_1252_minusinfinity,axiom,
! [D2: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X4: int,K2: int] :
( ( P1 @ X4 )
= ( P1 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D2 ) ) ) )
=> ( ? [Z5: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z5 )
=> ( ( P @ X4 )
= ( P1 @ X4 ) ) )
=> ( ? [X_1: int] : ( P1 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% minusinfinity
thf(fact_1253_tanh__ln__complex,axiom,
! [X: complex] :
( ( X != zero_zero_complex )
=> ( ( tanh_complex @ ( ln_ln_complex @ X ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ) ) ).
% tanh_ln_complex
thf(fact_1254_square__bound__lemma,axiom,
! [X: real] : ( ord_less_real @ X @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X ) @ ( plus_plus_real @ one_one_real @ X ) ) ) ).
% square_bound_lemma
thf(fact_1255_tanh__real__zero__iff,axiom,
! [X: real] :
( ( ( tanh_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% tanh_real_zero_iff
thf(fact_1256_tanh__real__less__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( tanh_real @ X ) @ ( tanh_real @ Y ) )
= ( ord_less_real @ X @ Y ) ) ).
% tanh_real_less_iff
thf(fact_1257_tanh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( tanh_real @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% tanh_real_neg_iff
thf(fact_1258_tanh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% tanh_real_pos_iff
thf(fact_1259_tanh__real__lt__1,axiom,
! [X: real] : ( ord_less_real @ ( tanh_real @ X ) @ one_one_real ) ).
% tanh_real_lt_1
thf(fact_1260_tanh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( tanh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% tanh_ln_real
thf(fact_1261_tanh__real__eq__iff,axiom,
! [X: real,Y: real] :
( ( ( tanh_real @ X )
= ( tanh_real @ Y ) )
= ( X = Y ) ) ).
% tanh_real_eq_iff
thf(fact_1262_artanh__tanh__real,axiom,
! [X: real] :
( ( artanh_real @ ( tanh_real @ X ) )
= X ) ).
% artanh_tanh_real
thf(fact_1263_tanh__real__le__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( tanh_real @ X ) @ ( tanh_real @ Y ) )
= ( ord_less_eq_real @ X @ Y ) ) ).
% tanh_real_le_iff
thf(fact_1264_tanh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( tanh_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% tanh_real_nonpos_iff
thf(fact_1265_tanh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% tanh_real_nonneg_iff
thf(fact_1266_ln__le__cancel__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
= ( ord_less_eq_real @ X @ Y ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_1267_ln__ge__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% ln_ge_zero_iff
thf(fact_1268_ln__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% ln_le_zero_iff
% Helper facts (15)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
! [X: complex,Y: complex] :
( ( if_complex @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
! [X: complex,Y: complex] :
( ( if_complex @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( if_Extended_enat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( if_Extended_enat @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Extended____Nonnegative____Real__Oennreal_T,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( if_Ext9135588136721118450nnreal @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Extended____Nonnegative____Real__Oennreal_T,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ( if_Ext9135588136721118450nnreal @ $true @ X @ Y )
= X ) ).
thf(help_If_3_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_T,axiom,
! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( if_Num3220014061592582145l_num1 @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_T,axiom,
! [X: numera4273646738625120315l_num1,Y: numera4273646738625120315l_num1] :
( ( if_Num3220014061592582145l_num1 @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( sums_complex
@ ^ [N: nat] : ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ x ) @ ( minus_minus_complex @ ( power_power_complex @ x @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( plus_plus_complex @ x @ one_one_complex ) ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ x @ one_one_complex ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( semiri8010041392384452111omplex @ ( suc @ ( suc @ N ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( minus_minus_complex @ ( cotang8298477626502807258omplex @ x ) @ ( minus_minus_complex @ ( cotang8298477626502807258omplex @ ( plus_plus_complex @ x @ one_one_complex ) ) @ ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( plus_plus_complex @ x @ one_one_complex ) ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ x @ one_one_complex ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( semiri8010041392384452111omplex @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------