TPTP Problem File: SLH0755^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Actuarial_Mathematics/0001_Interest/prob_00584_023398__12946478_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1336 ( 495 unt;  67 typ;   0 def)
%            Number of atoms       : 3618 (1070 equ;   0 cnn)
%            Maximal formula atoms :   26 (   2 avg)
%            Number of connectives : 10662 ( 343   ~;  89   |; 158   &;8387   @)
%                                         (   0 <=>;1685  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   7 avg)
%            Number of types       :    8 (   7 usr)
%            Number of type conns  :  451 ( 451   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   63 (  60 usr;  11 con; 0-3 aty)
%            Number of variables   : 3537 ( 192   ^;3207   !; 138   ?;3537   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:14:09.219
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Int__Oint_J,type,
    filter_int: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (60)
thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Int__Oint,type,
    filterlim_nat_int: ( nat > int ) > filter_int > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Nat__Onat,type,
    filterlim_real_nat: ( real > nat ) > filter_nat > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Interest_Oacc,type,
    acc: real > nat > nat > real ).

thf(sy_c_Interest_Oacc__cont,type,
    acc_cont: real > real > real ).

thf(sy_c_Interest_Oacc__due,type,
    acc_due: real > nat > nat > real ).

thf(sy_c_Interest_Oann,type,
    ann: real > nat > nat > real ).

thf(sy_c_Interest_Oann__cont,type,
    ann_cont: real > real > real ).

thf(sy_c_Interest_Oann__due,type,
    ann_due: real > nat > nat > real ).

thf(sy_c_Interest_Od__nom,type,
    d_nom: real > nat > real ).

thf(sy_c_Interest_Oi__force,type,
    i_force: real > real ).

thf(sy_c_Interest_Oi__nom,type,
    i_nom: real > nat > real ).

thf(sy_c_Interest_Ointerest,type,
    interest: real > $o ).

thf(sy_c_Interest_Ov__pres,type,
    v_pres: real > real ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
    ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
    ord_le4104064031414453916r_real: filter_real > filter_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
    topolo4899668324122417113eq_int: ( nat > int ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
    topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Int__Oint,type,
    topolo8924058970096914807ds_int: int > filter_int ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Nat__Onat,type,
    topolo8926549440605965083ds_nat: nat > filter_nat ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_i,type,
    i: real ).

thf(sy_v_n,type,
    n: nat ).

% Relevant facts (1263)
thf(fact_0_False,axiom,
    i != zero_zero_real ).

% False
thf(fact_1_interest__axioms,axiom,
    interest @ i ).

% interest_axioms
thf(fact_2_lim__m__s,axiom,
    ! [N: nat] :
      ( filterlim_nat_real
      @ ^ [M: nat] : ( acc @ i @ M @ N )
      @ ( topolo2815343760600316023s_real @ ( acc_cont @ i @ ( semiri5074537144036343181t_real @ N ) ) )
      @ at_top_nat ) ).

% lim_m_s
thf(fact_3_tendsto__const,axiom,
    ! [K: nat,F: filter_nat] :
      ( filterlim_nat_nat
      @ ^ [X: nat] : K
      @ ( topolo8926549440605965083ds_nat @ K )
      @ F ) ).

% tendsto_const
thf(fact_4_tendsto__const,axiom,
    ! [K: real,F: filter_nat] :
      ( filterlim_nat_real
      @ ^ [X: nat] : K
      @ ( topolo2815343760600316023s_real @ K )
      @ F ) ).

% tendsto_const
thf(fact_5_LIMSEQ__Suc,axiom,
    ! [F2: nat > nat,L: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
     => ( filterlim_nat_nat
        @ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
        @ ( topolo8926549440605965083ds_nat @ L )
        @ at_top_nat ) ) ).

% LIMSEQ_Suc
thf(fact_6_LIMSEQ__Suc,axiom,
    ! [F2: nat > real,L: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
        @ ( topolo2815343760600316023s_real @ L )
        @ at_top_nat ) ) ).

% LIMSEQ_Suc
thf(fact_7_LIMSEQ__imp__Suc,axiom,
    ! [F2: nat > nat,L: nat] :
      ( ( filterlim_nat_nat
        @ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
        @ ( topolo8926549440605965083ds_nat @ L )
        @ at_top_nat )
     => ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat ) ) ).

% LIMSEQ_imp_Suc
thf(fact_8_LIMSEQ__imp__Suc,axiom,
    ! [F2: nat > real,L: real] :
      ( ( filterlim_nat_real
        @ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
        @ ( topolo2815343760600316023s_real @ L )
        @ at_top_nat )
     => ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ).

% LIMSEQ_imp_Suc
thf(fact_9_LIMSEQ__const__iff,axiom,
    ! [K: nat,L: nat] :
      ( ( filterlim_nat_nat
        @ ^ [N2: nat] : K
        @ ( topolo8926549440605965083ds_nat @ L )
        @ at_top_nat )
      = ( K = L ) ) ).

% LIMSEQ_const_iff
thf(fact_10_LIMSEQ__const__iff,axiom,
    ! [K: real,L: real] :
      ( ( filterlim_nat_real
        @ ^ [N2: nat] : K
        @ ( topolo2815343760600316023s_real @ L )
        @ at_top_nat )
      = ( K = L ) ) ).

% LIMSEQ_const_iff
thf(fact_11_filterlim__sequentially__Suc,axiom,
    ! [F2: nat > real,F: filter_real] :
      ( ( filterlim_nat_real
        @ ^ [X: nat] : ( F2 @ ( suc @ X ) )
        @ F
        @ at_top_nat )
      = ( filterlim_nat_real @ F2 @ F @ at_top_nat ) ) ).

% filterlim_sequentially_Suc
thf(fact_12_filterlim__sequentially__Suc,axiom,
    ! [F2: nat > nat,F: filter_nat] :
      ( ( filterlim_nat_nat
        @ ^ [X: nat] : ( F2 @ ( suc @ X ) )
        @ F
        @ at_top_nat )
      = ( filterlim_nat_nat @ F2 @ F @ at_top_nat ) ) ).

% filterlim_sequentially_Suc
thf(fact_13_LIMSEQ__unique,axiom,
    ! [X2: nat > nat,A: nat,B: nat] :
      ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ A ) @ at_top_nat )
     => ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ B ) @ at_top_nat )
       => ( A = B ) ) ) ).

% LIMSEQ_unique
thf(fact_14_LIMSEQ__unique,axiom,
    ! [X2: nat > real,A: real,B: real] :
      ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ A ) @ at_top_nat )
     => ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ B ) @ at_top_nat )
       => ( A = B ) ) ) ).

% LIMSEQ_unique
thf(fact_15_lim__m__a,axiom,
    ! [N: nat] :
      ( filterlim_nat_real
      @ ^ [M: nat] : ( ann @ i @ M @ N )
      @ ( topolo2815343760600316023s_real @ ( ann_cont @ i @ ( semiri5074537144036343181t_real @ N ) ) )
      @ at_top_nat ) ).

% lim_m_a
thf(fact_16_lim__m__a_H_H,axiom,
    ! [N: nat] :
      ( filterlim_nat_real
      @ ^ [M: nat] : ( ann_due @ i @ M @ N )
      @ ( topolo2815343760600316023s_real @ ( ann_cont @ i @ ( semiri5074537144036343181t_real @ N ) ) )
      @ at_top_nat ) ).

% lim_m_a''
thf(fact_17_of__nat__eq__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M2 )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M2 = N ) ) ).

% of_nat_eq_iff
thf(fact_18_of__nat__eq__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M2 )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M2 = N ) ) ).

% of_nat_eq_iff
thf(fact_19_nat_Oinject,axiom,
    ! [X22: nat,Y2: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y2 ) )
      = ( X22 = Y2 ) ) ).

% nat.inject
thf(fact_20_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_21_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_22_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_23_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_24_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_25_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_26_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_27_of__nat__eq__0__iff,axiom,
    ! [M2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M2 )
        = zero_zero_nat )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_28_of__nat__eq__0__iff,axiom,
    ! [M2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M2 )
        = zero_zero_real )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_29_of__nat__eq__0__iff,axiom,
    ! [M2: nat] :
      ( ( ( semiri1314217659103216013at_int @ M2 )
        = zero_zero_int )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_30_filterlim__Suc,axiom,
    filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).

% filterlim_Suc
thf(fact_31_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_32_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_33_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_34_interest_Olim__m__a_H_H,axiom,
    ! [I: real,N: nat] :
      ( ( interest @ I )
     => ( filterlim_nat_real
        @ ^ [M: nat] : ( ann_due @ I @ M @ N )
        @ ( topolo2815343760600316023s_real @ ( ann_cont @ I @ ( semiri5074537144036343181t_real @ N ) ) )
        @ at_top_nat ) ) ).

% interest.lim_m_a''
thf(fact_35_interest_Olim__m__a,axiom,
    ! [I: real,N: nat] :
      ( ( interest @ I )
     => ( filterlim_nat_real
        @ ^ [M: nat] : ( ann @ I @ M @ N )
        @ ( topolo2815343760600316023s_real @ ( ann_cont @ I @ ( semiri5074537144036343181t_real @ N ) ) )
        @ at_top_nat ) ) ).

% interest.lim_m_a
thf(fact_36_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_37_Suc__inject,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ( suc @ X3 )
        = ( suc @ Y ) )
     => ( X3 = Y ) ) ).

% Suc_inject
thf(fact_38_interest_Olim__m__s,axiom,
    ! [I: real,N: nat] :
      ( ( interest @ I )
     => ( filterlim_nat_real
        @ ^ [M: nat] : ( acc @ I @ M @ N )
        @ ( topolo2815343760600316023s_real @ ( acc_cont @ I @ ( semiri5074537144036343181t_real @ N ) ) )
        @ at_top_nat ) ) ).

% interest.lim_m_s
thf(fact_39_filterlim__compose,axiom,
    ! [G: real > real,F3: filter_real,F22: filter_real,F2: nat > real,F1: filter_nat] :
      ( ( filterlim_real_real @ G @ F3 @ F22 )
     => ( ( filterlim_nat_real @ F2 @ F22 @ F1 )
       => ( filterlim_nat_real
          @ ^ [X: nat] : ( G @ ( F2 @ X ) )
          @ F3
          @ F1 ) ) ) ).

% filterlim_compose
thf(fact_40_filterlim__compose,axiom,
    ! [G: real > nat,F3: filter_nat,F22: filter_real,F2: nat > real,F1: filter_nat] :
      ( ( filterlim_real_nat @ G @ F3 @ F22 )
     => ( ( filterlim_nat_real @ F2 @ F22 @ F1 )
       => ( filterlim_nat_nat
          @ ^ [X: nat] : ( G @ ( F2 @ X ) )
          @ F3
          @ F1 ) ) ) ).

% filterlim_compose
thf(fact_41_filterlim__compose,axiom,
    ! [G: nat > real,F3: filter_real,F22: filter_nat,F2: nat > nat,F1: filter_nat] :
      ( ( filterlim_nat_real @ G @ F3 @ F22 )
     => ( ( filterlim_nat_nat @ F2 @ F22 @ F1 )
       => ( filterlim_nat_real
          @ ^ [X: nat] : ( G @ ( F2 @ X ) )
          @ F3
          @ F1 ) ) ) ).

% filterlim_compose
thf(fact_42_filterlim__compose,axiom,
    ! [G: nat > nat,F3: filter_nat,F22: filter_nat,F2: nat > nat,F1: filter_nat] :
      ( ( filterlim_nat_nat @ G @ F3 @ F22 )
     => ( ( filterlim_nat_nat @ F2 @ F22 @ F1 )
       => ( filterlim_nat_nat
          @ ^ [X: nat] : ( G @ ( F2 @ X ) )
          @ F3
          @ F1 ) ) ) ).

% filterlim_compose
thf(fact_43_filterlim__ident,axiom,
    ! [F: filter_nat] :
      ( filterlim_nat_nat
      @ ^ [X: nat] : X
      @ F
      @ F ) ).

% filterlim_ident
thf(fact_44_tendsto__cong__limit,axiom,
    ! [F2: nat > real,L: real,F: filter_nat,K: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F )
     => ( ( K = L )
       => ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ K ) @ F ) ) ) ).

% tendsto_cong_limit
thf(fact_45_tendsto__cong__limit,axiom,
    ! [F2: nat > nat,L: nat,F: filter_nat,K: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ F )
     => ( ( K = L )
       => ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ K ) @ F ) ) ) ).

% tendsto_cong_limit
thf(fact_46_tendsto__eq__rhs,axiom,
    ! [F2: nat > real,X3: real,F: filter_nat,Y: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ X3 ) @ F )
     => ( ( X3 = Y )
       => ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ Y ) @ F ) ) ) ).

% tendsto_eq_rhs
thf(fact_47_tendsto__eq__rhs,axiom,
    ! [F2: nat > nat,X3: nat,F: filter_nat,Y: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ F )
     => ( ( X3 = Y )
       => ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ Y ) @ F ) ) ) ).

% tendsto_eq_rhs
thf(fact_48_delta__0__iff__i__0,axiom,
    ( ( ( i_force @ i )
      = zero_zero_real )
    = ( i = zero_zero_real ) ) ).

% delta_0_iff_i_0
thf(fact_49_s_H_H__calc__i__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i = zero_zero_real )
       => ( ( acc_due @ i @ M2 @ N )
          = ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% s''_calc_i_0
thf(fact_50_s__calc__i__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i = zero_zero_real )
       => ( ( acc @ i @ M2 @ N )
          = ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% s_calc_i_0
thf(fact_51_a__calc__i__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i = zero_zero_real )
       => ( ( ann @ i @ M2 @ N )
          = ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% a_calc_i_0
thf(fact_52_a_H_H__calc__i__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i = zero_zero_real )
       => ( ( ann_due @ i @ M2 @ N )
          = ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% a''_calc_i_0
thf(fact_53_s_H__calc__i__0,axiom,
    ! [N: real] :
      ( ( i = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ N )
       => ( ( acc_cont @ i @ N )
          = N ) ) ) ).

% s'_calc_i_0
thf(fact_54_a_H__calc__i__0,axiom,
    ! [N: real] :
      ( ( i = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ N )
       => ( ( ann_cont @ i @ N )
          = N ) ) ) ).

% a'_calc_i_0
thf(fact_55_lim__d__nom,axiom,
    filterlim_nat_real @ ( d_nom @ i ) @ ( topolo2815343760600316023s_real @ ( i_force @ i ) ) @ at_top_nat ).

% lim_d_nom
thf(fact_56_lim__i__nom,axiom,
    filterlim_nat_real @ ( i_nom @ i ) @ ( topolo2815343760600316023s_real @ ( i_force @ i ) ) @ at_top_nat ).

% lim_i_nom
thf(fact_57_interest_Os_H_H__calc__i__0,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I = zero_zero_real )
         => ( ( acc_due @ I @ M2 @ N )
            = ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% interest.s''_calc_i_0
thf(fact_58_interest_Oa__calc__i__0,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I = zero_zero_real )
         => ( ( ann @ I @ M2 @ N )
            = ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% interest.a_calc_i_0
thf(fact_59_i__nom__0__iff__i__0,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( ( i_nom @ i @ M2 )
          = zero_zero_real )
        = ( i = zero_zero_real ) ) ) ).

% i_nom_0_iff_i_0
thf(fact_60_d__nom__0__iff__i__0,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( ( d_nom @ i @ M2 )
          = zero_zero_real )
        = ( i = zero_zero_real ) ) ) ).

% d_nom_0_iff_i_0
thf(fact_61_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_62_of__nat__le__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% of_nat_le_iff
thf(fact_63_of__nat__le__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% of_nat_le_iff
thf(fact_64_of__nat__le__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% of_nat_le_iff
thf(fact_65_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_66_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X: real] : ( member_real @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_67_of__nat__le__0__iff,axiom,
    ! [M2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_68_of__nat__le__0__iff,axiom,
    ! [M2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_69_of__nat__le__0__iff,axiom,
    ! [M2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_70_lift__Suc__antimono__le,axiom,
    ! [F2: nat > real,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_eq_real @ ( F2 @ ( suc @ N4 ) ) @ ( F2 @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_real @ ( F2 @ N3 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_71_lift__Suc__antimono__le,axiom,
    ! [F2: nat > nat,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N4 ) ) @ ( F2 @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F2 @ N3 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_72_lift__Suc__antimono__le,axiom,
    ! [F2: nat > int,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_eq_int @ ( F2 @ ( suc @ N4 ) ) @ ( F2 @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_int @ ( F2 @ N3 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_73_lift__Suc__mono__le,axiom,
    ! [F2: nat > real,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_eq_real @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_real @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_74_lift__Suc__mono__le,axiom,
    ! [F2: nat > nat,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_75_lift__Suc__mono__le,axiom,
    ! [F2: nat > int,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_eq_int @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_int @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_76_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_77_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_78_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_79_zero__le,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X3 ) ).

% zero_le
thf(fact_80_interest_Oi__nom__0__iff__i__0,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( ( i_nom @ I @ M2 )
            = zero_zero_real )
          = ( I = zero_zero_real ) ) ) ) ).

% interest.i_nom_0_iff_i_0
thf(fact_81_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_82_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_83_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_84_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_85_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_86_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N4: nat] :
            ( ( P @ N4 )
           => ( P @ ( suc @ N4 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_87_diff__induct,axiom,
    ! [P: nat > nat > $o,M2: nat,N: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X4: nat,Y3: nat] :
              ( ( P @ X4 @ Y3 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y3 ) ) )
         => ( P @ M2 @ N ) ) ) ) ).

% diff_induct
thf(fact_88_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N4: nat] :
            ( ( P @ ( suc @ N4 ) )
           => ( P @ N4 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_89_Suc__neq__Zero,axiom,
    ! [M2: nat] :
      ( ( suc @ M2 )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_90_Zero__neq__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_neq_Suc
thf(fact_91_Zero__not__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_not_Suc
thf(fact_92_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% not0_implies_Suc
thf(fact_93_interest_Od__nom__0__iff__i__0,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( ( d_nom @ I @ M2 )
            = zero_zero_real )
          = ( I = zero_zero_real ) ) ) ) ).

% interest.d_nom_0_iff_i_0
thf(fact_94_lim__mono,axiom,
    ! [N5: nat,X2: nat > int,Y4: nat > int,X3: int,Y: int] :
      ( ! [N4: nat] :
          ( ( ord_less_eq_nat @ N5 @ N4 )
         => ( ord_less_eq_int @ ( X2 @ N4 ) @ ( Y4 @ N4 ) ) )
     => ( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
       => ( ( filterlim_nat_int @ Y4 @ ( topolo8924058970096914807ds_int @ Y ) @ at_top_nat )
         => ( ord_less_eq_int @ X3 @ Y ) ) ) ) ).

% lim_mono
thf(fact_95_lim__mono,axiom,
    ! [N5: nat,X2: nat > real,Y4: nat > real,X3: real,Y: real] :
      ( ! [N4: nat] :
          ( ( ord_less_eq_nat @ N5 @ N4 )
         => ( ord_less_eq_real @ ( X2 @ N4 ) @ ( Y4 @ N4 ) ) )
     => ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
       => ( ( filterlim_nat_real @ Y4 @ ( topolo2815343760600316023s_real @ Y ) @ at_top_nat )
         => ( ord_less_eq_real @ X3 @ Y ) ) ) ) ).

% lim_mono
thf(fact_96_lim__mono,axiom,
    ! [N5: nat,X2: nat > nat,Y4: nat > nat,X3: nat,Y: nat] :
      ( ! [N4: nat] :
          ( ( ord_less_eq_nat @ N5 @ N4 )
         => ( ord_less_eq_nat @ ( X2 @ N4 ) @ ( Y4 @ N4 ) ) )
     => ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
       => ( ( filterlim_nat_nat @ Y4 @ ( topolo8926549440605965083ds_nat @ Y ) @ at_top_nat )
         => ( ord_less_eq_nat @ X3 @ Y ) ) ) ) ).

% lim_mono
thf(fact_97_LIMSEQ__le,axiom,
    ! [X2: nat > int,X3: int,Y4: nat > int,Y: int] :
      ( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
     => ( ( filterlim_nat_int @ Y4 @ ( topolo8924058970096914807ds_int @ Y ) @ at_top_nat )
       => ( ? [N6: nat] :
            ! [N4: nat] :
              ( ( ord_less_eq_nat @ N6 @ N4 )
             => ( ord_less_eq_int @ ( X2 @ N4 ) @ ( Y4 @ N4 ) ) )
         => ( ord_less_eq_int @ X3 @ Y ) ) ) ) ).

% LIMSEQ_le
thf(fact_98_LIMSEQ__le,axiom,
    ! [X2: nat > real,X3: real,Y4: nat > real,Y: real] :
      ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
     => ( ( filterlim_nat_real @ Y4 @ ( topolo2815343760600316023s_real @ Y ) @ at_top_nat )
       => ( ? [N6: nat] :
            ! [N4: nat] :
              ( ( ord_less_eq_nat @ N6 @ N4 )
             => ( ord_less_eq_real @ ( X2 @ N4 ) @ ( Y4 @ N4 ) ) )
         => ( ord_less_eq_real @ X3 @ Y ) ) ) ) ).

% LIMSEQ_le
thf(fact_99_LIMSEQ__le,axiom,
    ! [X2: nat > nat,X3: nat,Y4: nat > nat,Y: nat] :
      ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
     => ( ( filterlim_nat_nat @ Y4 @ ( topolo8926549440605965083ds_nat @ Y ) @ at_top_nat )
       => ( ? [N6: nat] :
            ! [N4: nat] :
              ( ( ord_less_eq_nat @ N6 @ N4 )
             => ( ord_less_eq_nat @ ( X2 @ N4 ) @ ( Y4 @ N4 ) ) )
         => ( ord_less_eq_nat @ X3 @ Y ) ) ) ) ).

% LIMSEQ_le
thf(fact_100_Lim__bounded,axiom,
    ! [F2: nat > int,L: int,M4: nat,C: int] :
      ( ( filterlim_nat_int @ F2 @ ( topolo8924058970096914807ds_int @ L ) @ at_top_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ M4 @ N4 )
           => ( ord_less_eq_int @ ( F2 @ N4 ) @ C ) )
       => ( ord_less_eq_int @ L @ C ) ) ) ).

% Lim_bounded
thf(fact_101_Lim__bounded,axiom,
    ! [F2: nat > real,L: real,M4: nat,C: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ M4 @ N4 )
           => ( ord_less_eq_real @ ( F2 @ N4 ) @ C ) )
       => ( ord_less_eq_real @ L @ C ) ) ) ).

% Lim_bounded
thf(fact_102_Lim__bounded,axiom,
    ! [F2: nat > nat,L: nat,M4: nat,C: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ M4 @ N4 )
           => ( ord_less_eq_nat @ ( F2 @ N4 ) @ C ) )
       => ( ord_less_eq_nat @ L @ C ) ) ) ).

% Lim_bounded
thf(fact_103_Lim__bounded2,axiom,
    ! [F2: nat > int,L: int,N5: nat,C: int] :
      ( ( filterlim_nat_int @ F2 @ ( topolo8924058970096914807ds_int @ L ) @ at_top_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ N5 @ N4 )
           => ( ord_less_eq_int @ C @ ( F2 @ N4 ) ) )
       => ( ord_less_eq_int @ C @ L ) ) ) ).

% Lim_bounded2
thf(fact_104_Lim__bounded2,axiom,
    ! [F2: nat > real,L: real,N5: nat,C: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ N5 @ N4 )
           => ( ord_less_eq_real @ C @ ( F2 @ N4 ) ) )
       => ( ord_less_eq_real @ C @ L ) ) ) ).

% Lim_bounded2
thf(fact_105_Lim__bounded2,axiom,
    ! [F2: nat > nat,L: nat,N5: nat,C: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ N5 @ N4 )
           => ( ord_less_eq_nat @ C @ ( F2 @ N4 ) ) )
       => ( ord_less_eq_nat @ C @ L ) ) ) ).

% Lim_bounded2
thf(fact_106_LIMSEQ__le__const,axiom,
    ! [X2: nat > int,X3: int,A: int] :
      ( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
     => ( ? [N6: nat] :
          ! [N4: nat] :
            ( ( ord_less_eq_nat @ N6 @ N4 )
           => ( ord_less_eq_int @ A @ ( X2 @ N4 ) ) )
       => ( ord_less_eq_int @ A @ X3 ) ) ) ).

% LIMSEQ_le_const
thf(fact_107_LIMSEQ__le__const,axiom,
    ! [X2: nat > real,X3: real,A: real] :
      ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
     => ( ? [N6: nat] :
          ! [N4: nat] :
            ( ( ord_less_eq_nat @ N6 @ N4 )
           => ( ord_less_eq_real @ A @ ( X2 @ N4 ) ) )
       => ( ord_less_eq_real @ A @ X3 ) ) ) ).

% LIMSEQ_le_const
thf(fact_108_LIMSEQ__le__const,axiom,
    ! [X2: nat > nat,X3: nat,A: nat] :
      ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
     => ( ? [N6: nat] :
          ! [N4: nat] :
            ( ( ord_less_eq_nat @ N6 @ N4 )
           => ( ord_less_eq_nat @ A @ ( X2 @ N4 ) ) )
       => ( ord_less_eq_nat @ A @ X3 ) ) ) ).

% LIMSEQ_le_const
thf(fact_109_LIMSEQ__le__const2,axiom,
    ! [X2: nat > int,X3: int,A: int] :
      ( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
     => ( ? [N6: nat] :
          ! [N4: nat] :
            ( ( ord_less_eq_nat @ N6 @ N4 )
           => ( ord_less_eq_int @ ( X2 @ N4 ) @ A ) )
       => ( ord_less_eq_int @ X3 @ A ) ) ) ).

% LIMSEQ_le_const2
thf(fact_110_LIMSEQ__le__const2,axiom,
    ! [X2: nat > real,X3: real,A: real] :
      ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
     => ( ? [N6: nat] :
          ! [N4: nat] :
            ( ( ord_less_eq_nat @ N6 @ N4 )
           => ( ord_less_eq_real @ ( X2 @ N4 ) @ A ) )
       => ( ord_less_eq_real @ X3 @ A ) ) ) ).

% LIMSEQ_le_const2
thf(fact_111_LIMSEQ__le__const2,axiom,
    ! [X2: nat > nat,X3: nat,A: nat] :
      ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
     => ( ? [N6: nat] :
          ! [N4: nat] :
            ( ( ord_less_eq_nat @ N6 @ N4 )
           => ( ord_less_eq_nat @ ( X2 @ N4 ) @ A ) )
       => ( ord_less_eq_nat @ X3 @ A ) ) ) ).

% LIMSEQ_le_const2
thf(fact_112_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_113_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_114_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_115_interest_Olim__i__nom,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( filterlim_nat_real @ ( i_nom @ I ) @ ( topolo2815343760600316023s_real @ ( i_force @ I ) ) @ at_top_nat ) ) ).

% interest.lim_i_nom
thf(fact_116_zero__reorient,axiom,
    ! [X3: real] :
      ( ( zero_zero_real = X3 )
      = ( X3 = zero_zero_real ) ) ).

% zero_reorient
thf(fact_117_zero__reorient,axiom,
    ! [X3: nat] :
      ( ( zero_zero_nat = X3 )
      = ( X3 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_118_zero__reorient,axiom,
    ! [X3: int] :
      ( ( zero_zero_int = X3 )
      = ( X3 = zero_zero_int ) ) ).

% zero_reorient
thf(fact_119_interest_Odelta__0__iff__i__0,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ( ( i_force @ I )
          = zero_zero_real )
        = ( I = zero_zero_real ) ) ) ).

% interest.delta_0_iff_i_0
thf(fact_120_interest_Olim__d__nom,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( filterlim_nat_real @ ( d_nom @ I ) @ ( topolo2815343760600316023s_real @ ( i_force @ I ) ) @ at_top_nat ) ) ).

% interest.lim_d_nom
thf(fact_121_interest_Oa_H__calc__i__0,axiom,
    ! [I: real,N: real] :
      ( ( interest @ I )
     => ( ( I = zero_zero_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ N )
         => ( ( ann_cont @ I @ N )
            = N ) ) ) ) ).

% interest.a'_calc_i_0
thf(fact_122_interest_Os_H__calc__i__0,axiom,
    ! [I: real,N: real] :
      ( ( interest @ I )
     => ( ( I = zero_zero_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ N )
         => ( ( acc_cont @ I @ N )
            = N ) ) ) ) ).

% interest.s'_calc_i_0
thf(fact_123_interest_Oa_H_H__calc__i__0,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I = zero_zero_real )
         => ( ( ann_due @ I @ M2 @ N )
            = ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% interest.a''_calc_i_0
thf(fact_124_interest_Os__calc__i__0,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I = zero_zero_real )
         => ( ( acc @ I @ M2 @ N )
            = ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% interest.s_calc_i_0
thf(fact_125_d__nom__pos__iff__i__pos,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( ord_less_real @ zero_zero_real @ ( d_nom @ i @ M2 ) )
        = ( ord_less_real @ zero_zero_real @ i ) ) ) ).

% d_nom_pos_iff_i_pos
thf(fact_126_i__nom__pos__iff__i__pos,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( ord_less_real @ zero_zero_real @ ( i_nom @ i @ M2 ) )
        = ( ord_less_real @ zero_zero_real @ i ) ) ) ).

% i_nom_pos_iff_i_pos
thf(fact_127_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_128_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_129_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_130_order__refl,axiom,
    ! [X3: real] : ( ord_less_eq_real @ X3 @ X3 ) ).

% order_refl
thf(fact_131_order__refl,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ X3 @ X3 ) ).

% order_refl
thf(fact_132_order__refl,axiom,
    ! [X3: int] : ( ord_less_eq_int @ X3 @ X3 ) ).

% order_refl
thf(fact_133_list__decode_Ocases,axiom,
    ! [X3: nat] :
      ( ( X3 != zero_zero_nat )
     => ~ ! [N4: nat] :
            ( X3
           != ( suc @ N4 ) ) ) ).

% list_decode.cases
thf(fact_134_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N4: nat] :
            ( ~ ( P @ N4 )
            & ( P @ ( suc @ N4 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_135_real__arch__simple,axiom,
    ! [X3: real] :
    ? [N4: nat] : ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ N4 ) ) ).

% real_arch_simple
thf(fact_136_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_137_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_138_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_139_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_140_of__nat__less__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% of_nat_less_iff
thf(fact_141_of__nat__less__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% of_nat_less_iff
thf(fact_142_of__nat__less__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% of_nat_less_iff
thf(fact_143_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_144_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_145_Suc__le__mono,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M2 ) )
      = ( ord_less_eq_nat @ N @ M2 ) ) ).

% Suc_le_mono
thf(fact_146_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_147_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_148_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_149_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_150_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_151_eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 = N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% eq_imp_le
thf(fact_152_le__antisym,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_eq_nat @ N @ M2 )
       => ( M2 = N ) ) ) ).

% le_antisym
thf(fact_153_nat__le__linear,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
      | ( ord_less_eq_nat @ N @ M2 ) ) ).

% nat_le_linear
thf(fact_154_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_155_lt__ex,axiom,
    ! [X3: real] :
    ? [Y3: real] : ( ord_less_real @ Y3 @ X3 ) ).

% lt_ex
thf(fact_156_lt__ex,axiom,
    ! [X3: int] :
    ? [Y3: int] : ( ord_less_int @ Y3 @ X3 ) ).

% lt_ex
thf(fact_157_gt__ex,axiom,
    ! [X3: real] :
    ? [X_12: real] : ( ord_less_real @ X3 @ X_12 ) ).

% gt_ex
thf(fact_158_gt__ex,axiom,
    ! [X3: nat] :
    ? [X_12: nat] : ( ord_less_nat @ X3 @ X_12 ) ).

% gt_ex
thf(fact_159_gt__ex,axiom,
    ! [X3: int] :
    ? [X_12: int] : ( ord_less_int @ X3 @ X_12 ) ).

% gt_ex
thf(fact_160_dense,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ? [Z: real] :
          ( ( ord_less_real @ X3 @ Z )
          & ( ord_less_real @ Z @ Y ) ) ) ).

% dense
thf(fact_161_less__imp__neq,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( X3 != Y ) ) ).

% less_imp_neq
thf(fact_162_less__imp__neq,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( X3 != Y ) ) ).

% less_imp_neq
thf(fact_163_less__imp__neq,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ( X3 != Y ) ) ).

% less_imp_neq
thf(fact_164_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_165_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_166_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_167_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C2 )
       => ( ord_less_real @ A @ C2 ) ) ) ).

% ord_eq_less_trans
thf(fact_168_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ord_less_nat @ A @ C2 ) ) ) ).

% ord_eq_less_trans
thf(fact_169_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C2 )
       => ( ord_less_int @ A @ C2 ) ) ) ).

% ord_eq_less_trans
thf(fact_170_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C2 )
       => ( ord_less_real @ A @ C2 ) ) ) ).

% ord_less_eq_trans
thf(fact_171_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C2 )
       => ( ord_less_nat @ A @ C2 ) ) ) ).

% ord_less_eq_trans
thf(fact_172_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C2 )
       => ( ord_less_int @ A @ C2 ) ) ) ).

% ord_less_eq_trans
thf(fact_173_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X4: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X4 )
             => ( P @ Y5 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_174_antisym__conv3,axiom,
    ! [Y: real,X3: real] :
      ( ~ ( ord_less_real @ Y @ X3 )
     => ( ( ~ ( ord_less_real @ X3 @ Y ) )
        = ( X3 = Y ) ) ) ).

% antisym_conv3
thf(fact_175_antisym__conv3,axiom,
    ! [Y: nat,X3: nat] :
      ( ~ ( ord_less_nat @ Y @ X3 )
     => ( ( ~ ( ord_less_nat @ X3 @ Y ) )
        = ( X3 = Y ) ) ) ).

% antisym_conv3
thf(fact_176_antisym__conv3,axiom,
    ! [Y: int,X3: int] :
      ( ~ ( ord_less_int @ Y @ X3 )
     => ( ( ~ ( ord_less_int @ X3 @ Y ) )
        = ( X3 = Y ) ) ) ).

% antisym_conv3
thf(fact_177_linorder__cases,axiom,
    ! [X3: real,Y: real] :
      ( ~ ( ord_less_real @ X3 @ Y )
     => ( ( X3 != Y )
       => ( ord_less_real @ Y @ X3 ) ) ) ).

% linorder_cases
thf(fact_178_linorder__cases,axiom,
    ! [X3: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y )
     => ( ( X3 != Y )
       => ( ord_less_nat @ Y @ X3 ) ) ) ).

% linorder_cases
thf(fact_179_linorder__cases,axiom,
    ! [X3: int,Y: int] :
      ( ~ ( ord_less_int @ X3 @ Y )
     => ( ( X3 != Y )
       => ( ord_less_int @ Y @ X3 ) ) ) ).

% linorder_cases
thf(fact_180_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_181_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_182_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_183_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_184_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_185_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_186_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N2: nat] :
          ( ( P3 @ N2 )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N2 )
             => ~ ( P3 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_187_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: real] : ( P @ A3 @ A3 )
       => ( ! [A3: real,B2: real] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_188_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B2: nat] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_189_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int] : ( P @ A3 @ A3 )
       => ( ! [A3: int,B2: int] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_190_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C2 )
       => ( ord_less_real @ A @ C2 ) ) ) ).

% order.strict_trans
thf(fact_191_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ord_less_nat @ A @ C2 ) ) ) ).

% order.strict_trans
thf(fact_192_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C2 )
       => ( ord_less_int @ A @ C2 ) ) ) ).

% order.strict_trans
thf(fact_193_not__less__iff__gr__or__eq,axiom,
    ! [X3: real,Y: real] :
      ( ( ~ ( ord_less_real @ X3 @ Y ) )
      = ( ( ord_less_real @ Y @ X3 )
        | ( X3 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_194_not__less__iff__gr__or__eq,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X3 @ Y ) )
      = ( ( ord_less_nat @ Y @ X3 )
        | ( X3 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_195_not__less__iff__gr__or__eq,axiom,
    ! [X3: int,Y: int] :
      ( ( ~ ( ord_less_int @ X3 @ Y ) )
      = ( ( ord_less_int @ Y @ X3 )
        | ( X3 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_196_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C2 @ B )
       => ( ord_less_real @ C2 @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_197_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C2 @ B )
       => ( ord_less_nat @ C2 @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_198_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C2 @ B )
       => ( ord_less_int @ C2 @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_199_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_200_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_201_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_202_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_203_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_204_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_205_linorder__neqE,axiom,
    ! [X3: real,Y: real] :
      ( ( X3 != Y )
     => ( ~ ( ord_less_real @ X3 @ Y )
       => ( ord_less_real @ Y @ X3 ) ) ) ).

% linorder_neqE
thf(fact_206_linorder__neqE,axiom,
    ! [X3: nat,Y: nat] :
      ( ( X3 != Y )
     => ( ~ ( ord_less_nat @ X3 @ Y )
       => ( ord_less_nat @ Y @ X3 ) ) ) ).

% linorder_neqE
thf(fact_207_linorder__neqE,axiom,
    ! [X3: int,Y: int] :
      ( ( X3 != Y )
     => ( ~ ( ord_less_int @ X3 @ Y )
       => ( ord_less_int @ Y @ X3 ) ) ) ).

% linorder_neqE
thf(fact_208_order__less__asym,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ~ ( ord_less_real @ Y @ X3 ) ) ).

% order_less_asym
thf(fact_209_order__less__asym,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ~ ( ord_less_nat @ Y @ X3 ) ) ).

% order_less_asym
thf(fact_210_order__less__asym,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ~ ( ord_less_int @ Y @ X3 ) ) ).

% order_less_asym
thf(fact_211_linorder__neq__iff,axiom,
    ! [X3: real,Y: real] :
      ( ( X3 != Y )
      = ( ( ord_less_real @ X3 @ Y )
        | ( ord_less_real @ Y @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_212_linorder__neq__iff,axiom,
    ! [X3: nat,Y: nat] :
      ( ( X3 != Y )
      = ( ( ord_less_nat @ X3 @ Y )
        | ( ord_less_nat @ Y @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_213_linorder__neq__iff,axiom,
    ! [X3: int,Y: int] :
      ( ( X3 != Y )
      = ( ( ord_less_int @ X3 @ Y )
        | ( ord_less_int @ Y @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_214_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_215_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_216_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_217_order__less__trans,axiom,
    ! [X3: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X3 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_218_order__less__trans,axiom,
    ! [X3: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X3 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_219_order__less__trans,axiom,
    ! [X3: int,Y: int,Z2: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ X3 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_220_ord__eq__less__subst,axiom,
    ! [A: real,F2: real > real,B: real,C2: real] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_221_ord__eq__less__subst,axiom,
    ! [A: nat,F2: real > nat,B: real,C2: real] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_222_ord__eq__less__subst,axiom,
    ! [A: int,F2: real > int,B: real,C2: real] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_223_ord__eq__less__subst,axiom,
    ! [A: real,F2: nat > real,B: nat,C2: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_224_ord__eq__less__subst,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C2: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_225_ord__eq__less__subst,axiom,
    ! [A: int,F2: nat > int,B: nat,C2: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_226_ord__eq__less__subst,axiom,
    ! [A: real,F2: int > real,B: int,C2: int] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_227_ord__eq__less__subst,axiom,
    ! [A: nat,F2: int > nat,B: int,C2: int] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_228_ord__eq__less__subst,axiom,
    ! [A: int,F2: int > int,B: int,C2: int] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_229_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F2: real > real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_230_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F2: real > nat,C2: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_231_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F2: real > int,C2: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_232_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > real,C2: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_233_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_234_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > int,C2: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_235_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F2: int > real,C2: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_236_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F2: int > nat,C2: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_237_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F2: int > int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_238_order__less__irrefl,axiom,
    ! [X3: real] :
      ~ ( ord_less_real @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_239_order__less__irrefl,axiom,
    ! [X3: nat] :
      ~ ( ord_less_nat @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_240_order__less__irrefl,axiom,
    ! [X3: int] :
      ~ ( ord_less_int @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_241_order__less__subst1,axiom,
    ! [A: real,F2: real > real,B: real,C2: real] :
      ( ( ord_less_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_242_order__less__subst1,axiom,
    ! [A: real,F2: nat > real,B: nat,C2: nat] :
      ( ( ord_less_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_243_order__less__subst1,axiom,
    ! [A: real,F2: int > real,B: int,C2: int] :
      ( ( ord_less_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_244_order__less__subst1,axiom,
    ! [A: nat,F2: real > nat,B: real,C2: real] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_245_order__less__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_246_order__less__subst1,axiom,
    ! [A: nat,F2: int > nat,B: int,C2: int] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_247_order__less__subst1,axiom,
    ! [A: int,F2: real > int,B: real,C2: real] :
      ( ( ord_less_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_248_order__less__subst1,axiom,
    ! [A: int,F2: nat > int,B: nat,C2: nat] :
      ( ( ord_less_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_249_order__less__subst1,axiom,
    ! [A: int,F2: int > int,B: int,C2: int] :
      ( ( ord_less_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_250_order__less__subst2,axiom,
    ! [A: real,B: real,F2: real > real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_251_order__less__subst2,axiom,
    ! [A: real,B: real,F2: real > nat,C2: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_252_order__less__subst2,axiom,
    ! [A: real,B: real,F2: real > int,C2: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_253_order__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > real,C2: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_254_order__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_255_order__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > int,C2: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_256_order__less__subst2,axiom,
    ! [A: int,B: int,F2: int > real,C2: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_257_order__less__subst2,axiom,
    ! [A: int,B: int,F2: int > nat,C2: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_258_order__less__subst2,axiom,
    ! [A: int,B: int,F2: int > int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_259_order__less__not__sym,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ~ ( ord_less_real @ Y @ X3 ) ) ).

% order_less_not_sym
thf(fact_260_order__less__not__sym,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ~ ( ord_less_nat @ Y @ X3 ) ) ).

% order_less_not_sym
thf(fact_261_order__less__not__sym,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ~ ( ord_less_int @ Y @ X3 ) ) ).

% order_less_not_sym
thf(fact_262_order__less__imp__triv,axiom,
    ! [X3: real,Y: real,P: $o] :
      ( ( ord_less_real @ X3 @ Y )
     => ( ( ord_less_real @ Y @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_263_order__less__imp__triv,axiom,
    ! [X3: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( ( ord_less_nat @ Y @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_264_order__less__imp__triv,axiom,
    ! [X3: int,Y: int,P: $o] :
      ( ( ord_less_int @ X3 @ Y )
     => ( ( ord_less_int @ Y @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_265_linorder__less__linear,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
      | ( X3 = Y )
      | ( ord_less_real @ Y @ X3 ) ) ).

% linorder_less_linear
thf(fact_266_linorder__less__linear,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
      | ( X3 = Y )
      | ( ord_less_nat @ Y @ X3 ) ) ).

% linorder_less_linear
thf(fact_267_linorder__less__linear,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
      | ( X3 = Y )
      | ( ord_less_int @ Y @ X3 ) ) ).

% linorder_less_linear
thf(fact_268_order__less__imp__not__eq,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( X3 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_269_order__less__imp__not__eq,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( X3 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_270_order__less__imp__not__eq,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ( X3 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_271_order__less__imp__not__eq2,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( Y != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_272_order__less__imp__not__eq2,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( Y != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_273_order__less__imp__not__eq2,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ( Y != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_274_order__less__imp__not__less,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ~ ( ord_less_real @ Y @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_275_order__less__imp__not__less,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ~ ( ord_less_nat @ Y @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_276_order__less__imp__not__less,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ~ ( ord_less_int @ Y @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_277_lift__Suc__mono__less,axiom,
    ! [F2: nat > real,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_real @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_real @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_278_lift__Suc__mono__less,axiom,
    ! [F2: nat > nat,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_nat @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_279_lift__Suc__mono__less,axiom,
    ! [F2: nat > int,N: nat,N3: nat] :
      ( ! [N4: nat] : ( ord_less_int @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_int @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_280_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > real,N: nat,M2: nat] :
      ( ! [N4: nat] : ( ord_less_real @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_real @ ( F2 @ N ) @ ( F2 @ M2 ) )
        = ( ord_less_nat @ N @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_281_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > nat,N: nat,M2: nat] :
      ( ! [N4: nat] : ( ord_less_nat @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ M2 ) )
        = ( ord_less_nat @ N @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_282_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > int,N: nat,M2: nat] :
      ( ! [N4: nat] : ( ord_less_int @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_int @ ( F2 @ N ) @ ( F2 @ M2 ) )
        = ( ord_less_nat @ N @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_283_less__imp__of__nat__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_284_less__imp__of__nat__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_285_less__imp__of__nat__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_286_of__nat__less__imp__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M2 @ N ) ) ).

% of_nat_less_imp_less
thf(fact_287_of__nat__less__imp__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M2 @ N ) ) ).

% of_nat_less_imp_less
thf(fact_288_of__nat__less__imp__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M2 @ N ) ) ).

% of_nat_less_imp_less
thf(fact_289_leD,axiom,
    ! [Y: real,X3: real] :
      ( ( ord_less_eq_real @ Y @ X3 )
     => ~ ( ord_less_real @ X3 @ Y ) ) ).

% leD
thf(fact_290_leD,axiom,
    ! [Y: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y @ X3 )
     => ~ ( ord_less_nat @ X3 @ Y ) ) ).

% leD
thf(fact_291_leD,axiom,
    ! [Y: int,X3: int] :
      ( ( ord_less_eq_int @ Y @ X3 )
     => ~ ( ord_less_int @ X3 @ Y ) ) ).

% leD
thf(fact_292_leI,axiom,
    ! [X3: real,Y: real] :
      ( ~ ( ord_less_real @ X3 @ Y )
     => ( ord_less_eq_real @ Y @ X3 ) ) ).

% leI
thf(fact_293_leI,axiom,
    ! [X3: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y )
     => ( ord_less_eq_nat @ Y @ X3 ) ) ).

% leI
thf(fact_294_leI,axiom,
    ! [X3: int,Y: int] :
      ( ~ ( ord_less_int @ X3 @ Y )
     => ( ord_less_eq_int @ Y @ X3 ) ) ).

% leI
thf(fact_295_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_296_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_297_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_298_antisym__conv1,axiom,
    ! [X3: real,Y: real] :
      ( ~ ( ord_less_real @ X3 @ Y )
     => ( ( ord_less_eq_real @ X3 @ Y )
        = ( X3 = Y ) ) ) ).

% antisym_conv1
thf(fact_299_antisym__conv1,axiom,
    ! [X3: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y )
     => ( ( ord_less_eq_nat @ X3 @ Y )
        = ( X3 = Y ) ) ) ).

% antisym_conv1
thf(fact_300_antisym__conv1,axiom,
    ! [X3: int,Y: int] :
      ( ~ ( ord_less_int @ X3 @ Y )
     => ( ( ord_less_eq_int @ X3 @ Y )
        = ( X3 = Y ) ) ) ).

% antisym_conv1
thf(fact_301_antisym__conv2,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
     => ( ( ~ ( ord_less_real @ X3 @ Y ) )
        = ( X3 = Y ) ) ) ).

% antisym_conv2
thf(fact_302_antisym__conv2,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
     => ( ( ~ ( ord_less_nat @ X3 @ Y ) )
        = ( X3 = Y ) ) ) ).

% antisym_conv2
thf(fact_303_antisym__conv2,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
     => ( ( ~ ( ord_less_int @ X3 @ Y ) )
        = ( X3 = Y ) ) ) ).

% antisym_conv2
thf(fact_304_dense__ge,axiom,
    ! [Z2: real,Y: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ Z2 @ X4 )
         => ( ord_less_eq_real @ Y @ X4 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_ge
thf(fact_305_dense__le,axiom,
    ! [Y: real,Z2: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ X4 @ Y )
         => ( ord_less_eq_real @ X4 @ Z2 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_le
thf(fact_306_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y6: real] :
          ( ( ord_less_eq_real @ X @ Y6 )
          & ~ ( ord_less_eq_real @ Y6 @ X ) ) ) ) ).

% less_le_not_le
thf(fact_307_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y6: nat] :
          ( ( ord_less_eq_nat @ X @ Y6 )
          & ~ ( ord_less_eq_nat @ Y6 @ X ) ) ) ) ).

% less_le_not_le
thf(fact_308_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y6: int] :
          ( ( ord_less_eq_int @ X @ Y6 )
          & ~ ( ord_less_eq_int @ Y6 @ X ) ) ) ) ).

% less_le_not_le
thf(fact_309_not__le__imp__less,axiom,
    ! [Y: real,X3: real] :
      ( ~ ( ord_less_eq_real @ Y @ X3 )
     => ( ord_less_real @ X3 @ Y ) ) ).

% not_le_imp_less
thf(fact_310_not__le__imp__less,axiom,
    ! [Y: nat,X3: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X3 )
     => ( ord_less_nat @ X3 @ Y ) ) ).

% not_le_imp_less
thf(fact_311_not__le__imp__less,axiom,
    ! [Y: int,X3: int] :
      ( ~ ( ord_less_eq_int @ Y @ X3 )
     => ( ord_less_int @ X3 @ Y ) ) ).

% not_le_imp_less
thf(fact_312_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_real @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_313_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_314_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_int @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_315_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_316_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_317_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_318_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C2 )
       => ( ord_less_real @ A @ C2 ) ) ) ).

% order.strict_trans1
thf(fact_319_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ord_less_nat @ A @ C2 ) ) ) ).

% order.strict_trans1
thf(fact_320_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C2 )
       => ( ord_less_int @ A @ C2 ) ) ) ).

% order.strict_trans1
thf(fact_321_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ord_less_real @ A @ C2 ) ) ) ).

% order.strict_trans2
thf(fact_322_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ord_less_nat @ A @ C2 ) ) ) ).

% order.strict_trans2
thf(fact_323_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ord_less_int @ A @ C2 ) ) ) ).

% order.strict_trans2
thf(fact_324_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ~ ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_325_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_326_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ~ ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_327_dense__ge__bounded,axiom,
    ! [Z2: real,X3: real,Y: real] :
      ( ( ord_less_real @ Z2 @ X3 )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z2 @ W )
           => ( ( ord_less_real @ W @ X3 )
             => ( ord_less_eq_real @ Y @ W ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_ge_bounded
thf(fact_328_dense__le__bounded,axiom,
    ! [X3: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( ! [W: real] :
            ( ( ord_less_real @ X3 @ W )
           => ( ( ord_less_real @ W @ Y )
             => ( ord_less_eq_real @ W @ Z2 ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_le_bounded
thf(fact_329_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_real @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_330_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_331_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_int @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_332_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_333_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_334_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_335_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C2 @ B )
       => ( ord_less_real @ C2 @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_336_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C2 @ B )
       => ( ord_less_nat @ C2 @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_337_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C2 @ B )
       => ( ord_less_int @ C2 @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_338_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C2 @ B )
       => ( ord_less_real @ C2 @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_339_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C2 @ B )
       => ( ord_less_nat @ C2 @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_340_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C2 @ B )
       => ( ord_less_int @ C2 @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_341_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ~ ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_342_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_343_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ~ ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_344_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_345_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_346_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_347_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_348_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_349_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_350_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y6: real] :
          ( ( ord_less_real @ X @ Y6 )
          | ( X = Y6 ) ) ) ) ).

% order_le_less
thf(fact_351_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y6: nat] :
          ( ( ord_less_nat @ X @ Y6 )
          | ( X = Y6 ) ) ) ) ).

% order_le_less
thf(fact_352_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Y6: int] :
          ( ( ord_less_int @ X @ Y6 )
          | ( X = Y6 ) ) ) ) ).

% order_le_less
thf(fact_353_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y6: real] :
          ( ( ord_less_eq_real @ X @ Y6 )
          & ( X != Y6 ) ) ) ) ).

% order_less_le
thf(fact_354_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y6: nat] :
          ( ( ord_less_eq_nat @ X @ Y6 )
          & ( X != Y6 ) ) ) ) ).

% order_less_le
thf(fact_355_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y6: int] :
          ( ( ord_less_eq_int @ X @ Y6 )
          & ( X != Y6 ) ) ) ) ).

% order_less_le
thf(fact_356_linorder__not__le,axiom,
    ! [X3: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X3 @ Y ) )
      = ( ord_less_real @ Y @ X3 ) ) ).

% linorder_not_le
thf(fact_357_linorder__not__le,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X3 @ Y ) )
      = ( ord_less_nat @ Y @ X3 ) ) ).

% linorder_not_le
thf(fact_358_linorder__not__le,axiom,
    ! [X3: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X3 @ Y ) )
      = ( ord_less_int @ Y @ X3 ) ) ).

% linorder_not_le
thf(fact_359_linorder__not__less,axiom,
    ! [X3: real,Y: real] :
      ( ( ~ ( ord_less_real @ X3 @ Y ) )
      = ( ord_less_eq_real @ Y @ X3 ) ) ).

% linorder_not_less
thf(fact_360_linorder__not__less,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X3 @ Y ) )
      = ( ord_less_eq_nat @ Y @ X3 ) ) ).

% linorder_not_less
thf(fact_361_linorder__not__less,axiom,
    ! [X3: int,Y: int] :
      ( ( ~ ( ord_less_int @ X3 @ Y ) )
      = ( ord_less_eq_int @ Y @ X3 ) ) ).

% linorder_not_less
thf(fact_362_order__less__imp__le,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( ord_less_eq_real @ X3 @ Y ) ) ).

% order_less_imp_le
thf(fact_363_order__less__imp__le,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( ord_less_eq_nat @ X3 @ Y ) ) ).

% order_less_imp_le
thf(fact_364_order__less__imp__le,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ( ord_less_eq_int @ X3 @ Y ) ) ).

% order_less_imp_le
thf(fact_365_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_366_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_367_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_368_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_369_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_370_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_371_order__le__less__trans,axiom,
    ! [X3: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X3 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_372_order__le__less__trans,axiom,
    ! [X3: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X3 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_373_order__le__less__trans,axiom,
    ! [X3: int,Y: int,Z2: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ X3 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_374_order__less__le__trans,axiom,
    ! [X3: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_real @ X3 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_375_order__less__le__trans,axiom,
    ! [X3: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X3 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_nat @ X3 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_376_order__less__le__trans,axiom,
    ! [X3: int,Y: int,Z2: int] :
      ( ( ord_less_int @ X3 @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_int @ X3 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_377_order__le__less__subst1,axiom,
    ! [A: real,F2: real > real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_378_order__le__less__subst1,axiom,
    ! [A: real,F2: nat > real,B: nat,C2: nat] :
      ( ( ord_less_eq_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_379_order__le__less__subst1,axiom,
    ! [A: real,F2: int > real,B: int,C2: int] :
      ( ( ord_less_eq_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_380_order__le__less__subst1,axiom,
    ! [A: nat,F2: real > nat,B: real,C2: real] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_381_order__le__less__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_382_order__le__less__subst1,axiom,
    ! [A: nat,F2: int > nat,B: int,C2: int] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_383_order__le__less__subst1,axiom,
    ! [A: int,F2: real > int,B: real,C2: real] :
      ( ( ord_less_eq_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_384_order__le__less__subst1,axiom,
    ! [A: int,F2: nat > int,B: nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_385_order__le__less__subst1,axiom,
    ! [A: int,F2: int > int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_386_order__le__less__subst2,axiom,
    ! [A: real,B: real,F2: real > real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_387_order__le__less__subst2,axiom,
    ! [A: real,B: real,F2: real > nat,C2: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_388_order__le__less__subst2,axiom,
    ! [A: real,B: real,F2: real > int,C2: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_389_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > real,C2: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_390_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_391_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > int,C2: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_392_order__le__less__subst2,axiom,
    ! [A: int,B: int,F2: int > real,C2: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_393_order__le__less__subst2,axiom,
    ! [A: int,B: int,F2: int > nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_394_order__le__less__subst2,axiom,
    ! [A: int,B: int,F2: int > int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_395_order__less__le__subst1,axiom,
    ! [A: real,F2: real > real,B: real,C2: real] :
      ( ( ord_less_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_396_order__less__le__subst1,axiom,
    ! [A: nat,F2: real > nat,B: real,C2: real] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_397_order__less__le__subst1,axiom,
    ! [A: int,F2: real > int,B: real,C2: real] :
      ( ( ord_less_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_398_order__less__le__subst1,axiom,
    ! [A: real,F2: nat > real,B: nat,C2: nat] :
      ( ( ord_less_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_399_order__less__le__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_400_order__less__le__subst1,axiom,
    ! [A: int,F2: nat > int,B: nat,C2: nat] :
      ( ( ord_less_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_401_order__less__le__subst1,axiom,
    ! [A: real,F2: int > real,B: int,C2: int] :
      ( ( ord_less_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_402_order__less__le__subst1,axiom,
    ! [A: nat,F2: int > nat,B: int,C2: int] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_403_order__less__le__subst1,axiom,
    ! [A: int,F2: int > int,B: int,C2: int] :
      ( ( ord_less_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_404_order__less__le__subst2,axiom,
    ! [A: real,B: real,F2: real > real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_405_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > real,C2: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_406_order__less__le__subst2,axiom,
    ! [A: int,B: int,F2: int > real,C2: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_407_order__less__le__subst2,axiom,
    ! [A: real,B: real,F2: real > nat,C2: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_408_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_409_order__less__le__subst2,axiom,
    ! [A: int,B: int,F2: int > nat,C2: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_410_order__less__le__subst2,axiom,
    ! [A: real,B: real,F2: real > int,C2: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_411_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > int,C2: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_412_order__less__le__subst2,axiom,
    ! [A: int,B: int,F2: int > int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_413_linorder__le__less__linear,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
      | ( ord_less_real @ Y @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_414_linorder__le__less__linear,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
      | ( ord_less_nat @ Y @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_415_linorder__le__less__linear,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
      | ( ord_less_int @ Y @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_416_order__le__imp__less__or__eq,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
     => ( ( ord_less_real @ X3 @ Y )
        | ( X3 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_417_order__le__imp__less__or__eq,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
     => ( ( ord_less_nat @ X3 @ Y )
        | ( X3 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_418_order__le__imp__less__or__eq,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
     => ( ( ord_less_int @ X3 @ Y )
        | ( X3 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_419_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_420_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_421_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_422_reals__Archimedean2,axiom,
    ! [X3: real] :
    ? [N4: nat] : ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ N4 ) ) ).

% reals_Archimedean2
thf(fact_423_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_424_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_425_gr__implies__not__zero,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_426_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_427_filterlim__mono,axiom,
    ! [F2: nat > real,F22: filter_real,F1: filter_nat,F23: filter_real,F12: filter_nat] :
      ( ( filterlim_nat_real @ F2 @ F22 @ F1 )
     => ( ( ord_le4104064031414453916r_real @ F22 @ F23 )
       => ( ( ord_le2510731241096832064er_nat @ F12 @ F1 )
         => ( filterlim_nat_real @ F2 @ F23 @ F12 ) ) ) ) ).

% filterlim_mono
thf(fact_428_filterlim__mono,axiom,
    ! [F2: nat > nat,F22: filter_nat,F1: filter_nat,F23: filter_nat,F12: filter_nat] :
      ( ( filterlim_nat_nat @ F2 @ F22 @ F1 )
     => ( ( ord_le2510731241096832064er_nat @ F22 @ F23 )
       => ( ( ord_le2510731241096832064er_nat @ F12 @ F1 )
         => ( filterlim_nat_nat @ F2 @ F23 @ F12 ) ) ) ) ).

% filterlim_mono
thf(fact_429_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_430_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_431_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_432_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_433_transitive__stepwise__le,axiom,
    ! [M2: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ! [X4: nat] : ( R @ X4 @ X4 )
       => ( ! [X4: nat,Y3: nat,Z: nat] :
              ( ( R @ X4 @ Y3 )
             => ( ( R @ Y3 @ Z )
               => ( R @ X4 @ Z ) ) )
         => ( ! [N4: nat] : ( R @ N4 @ ( suc @ N4 ) )
           => ( R @ M2 @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_434_nat__induct__at__least,axiom,
    ! [M2: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( P @ M2 )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ M2 @ N4 )
             => ( ( P @ N4 )
               => ( P @ ( suc @ N4 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_435_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M5 ) @ N4 )
             => ( P @ M5 ) )
         => ( P @ N4 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_436_not__less__eq__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M2 @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M2 ) ) ).

% not_less_eq_eq
thf(fact_437_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_438_le__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M2 @ N )
        | ( M2
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_439_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M3: nat] :
          ( M6
          = ( suc @ M3 ) ) ) ).

% Suc_le_D
thf(fact_440_le__SucI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_441_le__SucE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M2 @ N )
       => ( M2
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_442_Suc__leD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% Suc_leD
thf(fact_443_of__nat__less__0__iff,axiom,
    ! [M2: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_444_of__nat__less__0__iff,axiom,
    ! [M2: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_445_of__nat__less__0__iff,axiom,
    ! [M2: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_446_tendsto__mono,axiom,
    ! [F: filter_nat,F4: filter_nat,F2: nat > real,L: real] :
      ( ( ord_le2510731241096832064er_nat @ F @ F4 )
     => ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F4 )
       => ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F ) ) ) ).

% tendsto_mono
thf(fact_447_tendsto__mono,axiom,
    ! [F: filter_nat,F4: filter_nat,F2: nat > nat,L: nat] :
      ( ( ord_le2510731241096832064er_nat @ F @ F4 )
     => ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ F4 )
       => ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ F ) ) ) ).

% tendsto_mono
thf(fact_448_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_449_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_450_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_451_le__cases3,axiom,
    ! [X3: real,Y: real,Z2: real] :
      ( ( ( ord_less_eq_real @ X3 @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_real @ Y @ X3 )
         => ~ ( ord_less_eq_real @ X3 @ Z2 ) )
       => ( ( ( ord_less_eq_real @ X3 @ Z2 )
           => ~ ( ord_less_eq_real @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_real @ Z2 @ Y )
             => ~ ( ord_less_eq_real @ Y @ X3 ) )
           => ( ( ( ord_less_eq_real @ Y @ Z2 )
               => ~ ( ord_less_eq_real @ Z2 @ X3 ) )
             => ~ ( ( ord_less_eq_real @ Z2 @ X3 )
                 => ~ ( ord_less_eq_real @ X3 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_452_le__cases3,axiom,
    ! [X3: nat,Y: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X3 @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X3 )
         => ~ ( ord_less_eq_nat @ X3 @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X3 @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X3 ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X3 ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X3 )
                 => ~ ( ord_less_eq_nat @ X3 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_453_le__cases3,axiom,
    ! [X3: int,Y: int,Z2: int] :
      ( ( ( ord_less_eq_int @ X3 @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_int @ Y @ X3 )
         => ~ ( ord_less_eq_int @ X3 @ Z2 ) )
       => ( ( ( ord_less_eq_int @ X3 @ Z2 )
           => ~ ( ord_less_eq_int @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_int @ Z2 @ Y )
             => ~ ( ord_less_eq_int @ Y @ X3 ) )
           => ( ( ( ord_less_eq_int @ Y @ Z2 )
               => ~ ( ord_less_eq_int @ Z2 @ X3 ) )
             => ~ ( ( ord_less_eq_int @ Z2 @ X3 )
                 => ~ ( ord_less_eq_int @ X3 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_454_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y7: real,Z3: real] : ( Y7 = Z3 ) )
    = ( ^ [X: real,Y6: real] :
          ( ( ord_less_eq_real @ X @ Y6 )
          & ( ord_less_eq_real @ Y6 @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_455_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y7: nat,Z3: nat] : ( Y7 = Z3 ) )
    = ( ^ [X: nat,Y6: nat] :
          ( ( ord_less_eq_nat @ X @ Y6 )
          & ( ord_less_eq_nat @ Y6 @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_456_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y7: int,Z3: int] : ( Y7 = Z3 ) )
    = ( ^ [X: int,Y6: int] :
          ( ( ord_less_eq_int @ X @ Y6 )
          & ( ord_less_eq_int @ Y6 @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_457_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ord_less_eq_real @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_458_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_459_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ord_less_eq_int @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_460_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C2 )
       => ( ord_less_eq_real @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_461_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_462_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C2 )
       => ( ord_less_eq_int @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_463_order__antisym,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
     => ( ( ord_less_eq_real @ Y @ X3 )
       => ( X3 = Y ) ) ) ).

% order_antisym
thf(fact_464_order__antisym,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
     => ( ( ord_less_eq_nat @ Y @ X3 )
       => ( X3 = Y ) ) ) ).

% order_antisym
thf(fact_465_order__antisym,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
     => ( ( ord_less_eq_int @ Y @ X3 )
       => ( X3 = Y ) ) ) ).

% order_antisym
thf(fact_466_order_Otrans,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ord_less_eq_real @ A @ C2 ) ) ) ).

% order.trans
thf(fact_467_order_Otrans,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% order.trans
thf(fact_468_order_Otrans,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ord_less_eq_int @ A @ C2 ) ) ) ).

% order.trans
thf(fact_469_order__trans,axiom,
    ! [X3: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_eq_real @ X3 @ Z2 ) ) ) ).

% order_trans
thf(fact_470_order__trans,axiom,
    ! [X3: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_eq_nat @ X3 @ Z2 ) ) ) ).

% order_trans
thf(fact_471_order__trans,axiom,
    ! [X3: int,Y: int,Z2: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_eq_int @ X3 @ Z2 ) ) ) ).

% order_trans
thf(fact_472_linorder__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: real,B2: real] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_473_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat,B2: nat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_474_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int,B2: int] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_475_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y7: real,Z3: real] : ( Y7 = Z3 ) )
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_476_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y7: nat,Z3: nat] : ( Y7 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_477_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y7: int,Z3: int] : ( Y7 = Z3 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_478_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_479_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_480_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_481_dual__order_Otrans,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C2 @ B )
       => ( ord_less_eq_real @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_482_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C2 @ B )
       => ( ord_less_eq_nat @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_483_dual__order_Otrans,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C2 @ B )
       => ( ord_less_eq_int @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_484_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_485_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_486_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_487_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y7: real,Z3: real] : ( Y7 = Z3 ) )
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_488_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y7: nat,Z3: nat] : ( Y7 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_489_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y7: int,Z3: int] : ( Y7 = Z3 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_490_order__subst1,axiom,
    ! [A: real,F2: real > real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_491_order__subst1,axiom,
    ! [A: real,F2: nat > real,B: nat,C2: nat] :
      ( ( ord_less_eq_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_492_order__subst1,axiom,
    ! [A: real,F2: int > real,B: int,C2: int] :
      ( ( ord_less_eq_real @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_493_order__subst1,axiom,
    ! [A: nat,F2: real > nat,B: real,C2: real] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_494_order__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_495_order__subst1,axiom,
    ! [A: nat,F2: int > nat,B: int,C2: int] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_496_order__subst1,axiom,
    ! [A: int,F2: real > int,B: real,C2: real] :
      ( ( ord_less_eq_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_497_order__subst1,axiom,
    ! [A: int,F2: nat > int,B: nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_498_order__subst1,axiom,
    ! [A: int,F2: int > int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_499_order__subst2,axiom,
    ! [A: real,B: real,F2: real > real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_500_order__subst2,axiom,
    ! [A: real,B: real,F2: real > nat,C2: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_501_order__subst2,axiom,
    ! [A: real,B: real,F2: real > int,C2: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_502_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > real,C2: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_503_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_504_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > int,C2: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_505_order__subst2,axiom,
    ! [A: int,B: int,F2: int > real,C2: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_506_order__subst2,axiom,
    ! [A: int,B: int,F2: int > nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_507_order__subst2,axiom,
    ! [A: int,B: int,F2: int > int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F2 @ B ) @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_508_order__eq__refl,axiom,
    ! [X3: real,Y: real] :
      ( ( X3 = Y )
     => ( ord_less_eq_real @ X3 @ Y ) ) ).

% order_eq_refl
thf(fact_509_order__eq__refl,axiom,
    ! [X3: nat,Y: nat] :
      ( ( X3 = Y )
     => ( ord_less_eq_nat @ X3 @ Y ) ) ).

% order_eq_refl
thf(fact_510_order__eq__refl,axiom,
    ! [X3: int,Y: int] :
      ( ( X3 = Y )
     => ( ord_less_eq_int @ X3 @ Y ) ) ).

% order_eq_refl
thf(fact_511_linorder__linear,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
      | ( ord_less_eq_real @ Y @ X3 ) ) ).

% linorder_linear
thf(fact_512_linorder__linear,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
      | ( ord_less_eq_nat @ Y @ X3 ) ) ).

% linorder_linear
thf(fact_513_linorder__linear,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
      | ( ord_less_eq_int @ Y @ X3 ) ) ).

% linorder_linear
thf(fact_514_ord__eq__le__subst,axiom,
    ! [A: real,F2: real > real,B: real,C2: real] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_515_ord__eq__le__subst,axiom,
    ! [A: nat,F2: real > nat,B: real,C2: real] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_516_ord__eq__le__subst,axiom,
    ! [A: int,F2: real > int,B: real,C2: real] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_517_ord__eq__le__subst,axiom,
    ! [A: real,F2: nat > real,B: nat,C2: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_518_ord__eq__le__subst,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C2: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_519_ord__eq__le__subst,axiom,
    ! [A: int,F2: nat > int,B: nat,C2: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_520_ord__eq__le__subst,axiom,
    ! [A: real,F2: int > real,B: int,C2: int] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_521_ord__eq__le__subst,axiom,
    ! [A: nat,F2: int > nat,B: int,C2: int] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_522_ord__eq__le__subst,axiom,
    ! [A: int,F2: int > int,B: int,C2: int] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F2 @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_523_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F2: real > real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_524_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F2: real > nat,C2: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_525_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F2: real > int,C2: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_eq_real @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_526_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > real,C2: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_527_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_528_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > int,C2: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_529_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F2: int > real,C2: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_530_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F2: int > nat,C2: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_531_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F2: int > int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F2 @ B )
          = C2 )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X4 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_532_linorder__le__cases,axiom,
    ! [X3: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X3 @ Y )
     => ( ord_less_eq_real @ Y @ X3 ) ) ).

% linorder_le_cases
thf(fact_533_linorder__le__cases,axiom,
    ! [X3: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X3 @ Y )
     => ( ord_less_eq_nat @ Y @ X3 ) ) ).

% linorder_le_cases
thf(fact_534_linorder__le__cases,axiom,
    ! [X3: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X3 @ Y )
     => ( ord_less_eq_int @ Y @ X3 ) ) ).

% linorder_le_cases
thf(fact_535_order__antisym__conv,axiom,
    ! [Y: real,X3: real] :
      ( ( ord_less_eq_real @ Y @ X3 )
     => ( ( ord_less_eq_real @ X3 @ Y )
        = ( X3 = Y ) ) ) ).

% order_antisym_conv
thf(fact_536_order__antisym__conv,axiom,
    ! [Y: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y @ X3 )
     => ( ( ord_less_eq_nat @ X3 @ Y )
        = ( X3 = Y ) ) ) ).

% order_antisym_conv
thf(fact_537_order__antisym__conv,axiom,
    ! [Y: int,X3: int] :
      ( ( ord_less_eq_int @ Y @ X3 )
     => ( ( ord_less_eq_int @ X3 @ Y )
        = ( X3 = Y ) ) ) ).

% order_antisym_conv
thf(fact_538_approx__from__below__dense__linorder,axiom,
    ! [Y: real,X3: real] :
      ( ( ord_less_real @ Y @ X3 )
     => ? [U: nat > real] :
          ( ! [N7: nat] : ( ord_less_real @ ( U @ N7 ) @ X3 )
          & ( filterlim_nat_real @ U @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat ) ) ) ).

% approx_from_below_dense_linorder
thf(fact_539_approx__from__above__dense__linorder,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ X3 @ Y )
     => ? [U: nat > real] :
          ( ! [N7: nat] : ( ord_less_real @ X3 @ ( U @ N7 ) )
          & ( filterlim_nat_real @ U @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat ) ) ) ).

% approx_from_above_dense_linorder
thf(fact_540_interest_Oi__nom__pos__iff__i__pos,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( ord_less_real @ zero_zero_real @ ( i_nom @ I @ M2 ) )
          = ( ord_less_real @ zero_zero_real @ I ) ) ) ) ).

% interest.i_nom_pos_iff_i_pos
thf(fact_541_interest_Od__nom__pos__iff__i__pos,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( ord_less_real @ zero_zero_real @ ( d_nom @ I @ M2 ) )
          = ( ord_less_real @ zero_zero_real @ I ) ) ) ) ).

% interest.d_nom_pos_iff_i_pos
thf(fact_542_v__pos,axiom,
    ord_less_real @ zero_zero_real @ ( v_pres @ i ) ).

% v_pos
thf(fact_543_seq__mono__lemma,axiom,
    ! [M2: nat,D: nat > real,E: nat > real] :
      ( ! [N4: nat] :
          ( ( ord_less_eq_nat @ M2 @ N4 )
         => ( ord_less_real @ ( D @ N4 ) @ ( E @ N4 ) ) )
     => ( ! [N4: nat] :
            ( ( ord_less_eq_nat @ M2 @ N4 )
           => ( ord_less_eq_real @ ( E @ N4 ) @ ( E @ M2 ) ) )
       => ! [N7: nat] :
            ( ( ord_less_eq_nat @ M2 @ N7 )
           => ( ord_less_real @ ( D @ N7 ) @ ( E @ M2 ) ) ) ) ) ).

% seq_mono_lemma
thf(fact_544_monoseq__le,axiom,
    ! [A: nat > int,X3: int] :
      ( ( topolo4899668324122417113eq_int @ A )
     => ( ( filterlim_nat_int @ A @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
       => ( ( ! [N7: nat] : ( ord_less_eq_int @ ( A @ N7 ) @ X3 )
            & ! [M5: nat,N7: nat] :
                ( ( ord_less_eq_nat @ M5 @ N7 )
               => ( ord_less_eq_int @ ( A @ M5 ) @ ( A @ N7 ) ) ) )
          | ( ! [N7: nat] : ( ord_less_eq_int @ X3 @ ( A @ N7 ) )
            & ! [M5: nat,N7: nat] :
                ( ( ord_less_eq_nat @ M5 @ N7 )
               => ( ord_less_eq_int @ ( A @ N7 ) @ ( A @ M5 ) ) ) ) ) ) ) ).

% monoseq_le
thf(fact_545_monoseq__le,axiom,
    ! [A: nat > real,X3: real] :
      ( ( topolo6980174941875973593q_real @ A )
     => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
       => ( ( ! [N7: nat] : ( ord_less_eq_real @ ( A @ N7 ) @ X3 )
            & ! [M5: nat,N7: nat] :
                ( ( ord_less_eq_nat @ M5 @ N7 )
               => ( ord_less_eq_real @ ( A @ M5 ) @ ( A @ N7 ) ) ) )
          | ( ! [N7: nat] : ( ord_less_eq_real @ X3 @ ( A @ N7 ) )
            & ! [M5: nat,N7: nat] :
                ( ( ord_less_eq_nat @ M5 @ N7 )
               => ( ord_less_eq_real @ ( A @ N7 ) @ ( A @ M5 ) ) ) ) ) ) ) ).

% monoseq_le
thf(fact_546_monoseq__le,axiom,
    ! [A: nat > nat,X3: nat] :
      ( ( topolo4902158794631467389eq_nat @ A )
     => ( ( filterlim_nat_nat @ A @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
       => ( ( ! [N7: nat] : ( ord_less_eq_nat @ ( A @ N7 ) @ X3 )
            & ! [M5: nat,N7: nat] :
                ( ( ord_less_eq_nat @ M5 @ N7 )
               => ( ord_less_eq_nat @ ( A @ M5 ) @ ( A @ N7 ) ) ) )
          | ( ! [N7: nat] : ( ord_less_eq_nat @ X3 @ ( A @ N7 ) )
            & ! [M5: nat,N7: nat] :
                ( ( ord_less_eq_nat @ M5 @ N7 )
               => ( ord_less_eq_nat @ ( A @ N7 ) @ ( A @ M5 ) ) ) ) ) ) ) ).

% monoseq_le
thf(fact_547_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y6: real] :
          ( ( ord_less_real @ X @ Y6 )
          | ( X = Y6 ) ) ) ) ).

% less_eq_real_def
thf(fact_548_bgauge__existence__lemma,axiom,
    ! [S: set_real,Q: real > real > $o] :
      ( ( ! [X: real] :
            ( ( member_real @ X @ S )
           => ? [D2: real] :
                ( ( ord_less_real @ zero_zero_real @ D2 )
                & ( Q @ D2 @ X ) ) ) )
      = ( ! [X: real] :
          ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ( ( member_real @ X @ S )
             => ( Q @ D2 @ X ) ) ) ) ) ).

% bgauge_existence_lemma
thf(fact_549_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_550_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ~ ( ord_less_eq_real @ T @ X6 ) ) ).

% minf(8)
thf(fact_551_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ~ ( ord_less_eq_nat @ T @ X6 ) ) ).

% minf(8)
thf(fact_552_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ~ ( ord_less_eq_int @ T @ X6 ) ) ).

% minf(8)
thf(fact_553_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( ord_less_eq_real @ X6 @ T ) ) ).

% minf(6)
thf(fact_554_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( ord_less_eq_nat @ X6 @ T ) ) ).

% minf(6)
thf(fact_555_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( ord_less_eq_int @ X6 @ T ) ) ).

% minf(6)
thf(fact_556_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_557_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_558_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_559_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_560_Suc__mono,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_561_Suc__less__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% Suc_less_eq
thf(fact_562_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_563_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_564_linorder__neqE__nat,axiom,
    ! [X3: nat,Y: nat] :
      ( ( X3 != Y )
     => ( ~ ( ord_less_nat @ X3 @ Y )
       => ( ord_less_nat @ Y @ X3 ) ) ) ).

% linorder_neqE_nat
thf(fact_565_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ~ ( P @ N4 )
         => ? [M5: nat] :
              ( ( ord_less_nat @ M5 @ N4 )
              & ~ ( P @ M5 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_566_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N4 )
             => ( P @ M5 ) )
         => ( P @ N4 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_567_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_568_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_569_less__not__refl2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ N @ M2 )
     => ( M2 != N ) ) ).

% less_not_refl2
thf(fact_570_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_571_nat__neq__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != N )
      = ( ( ord_less_nat @ M2 @ N )
        | ( ord_less_nat @ N @ M2 ) ) ) ).

% nat_neq_iff
thf(fact_572_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_573_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_574_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_575_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_576_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_577_gr__implies__not0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_578_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N4 )
           => ( ~ ( P @ N4 )
             => ? [M5: nat] :
                  ( ( ord_less_nat @ M5 @ N4 )
                  & ~ ( P @ M5 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_579_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_580_Suc__lessD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_lessD
thf(fact_581_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_582_Suc__lessI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ( suc @ M2 )
         != N )
       => ( ord_less_nat @ ( suc @ M2 ) @ N ) ) ) ).

% Suc_lessI
thf(fact_583_less__SucE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M2 @ N )
       => ( M2 = N ) ) ) ).

% less_SucE
thf(fact_584_less__SucI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_585_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ N )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ I2 ) ) ) ) ).

% Ex_less_Suc
thf(fact_586_less__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) ) ) ).

% less_Suc_eq
thf(fact_587_not__less__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M2 @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M2 ) ) ) ).

% not_less_eq
thf(fact_588_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ N )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ I2 ) ) ) ) ).

% All_less_Suc
thf(fact_589_Suc__less__eq2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M2 )
      = ( ? [M7: nat] :
            ( ( M2
              = ( suc @ M7 ) )
            & ( ord_less_nat @ N @ M7 ) ) ) ) ).

% Suc_less_eq2
thf(fact_590_less__antisym,axiom,
    ! [N: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N @ M2 )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
       => ( M2 = N ) ) ) ).

% less_antisym
thf(fact_591_Suc__less__SucD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_less_SucD
thf(fact_592_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_593_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_594_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_595_not__less__less__Suc__eq,axiom,
    ! [N: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N @ M2 )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
        = ( N = M2 ) ) ) ).

% not_less_less_Suc_eq
thf(fact_596_less__mono__imp__le__mono,axiom,
    ! [F2: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F2 @ I3 ) @ ( F2 @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_597_le__neq__implies__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( M2 != N )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% le_neq_implies_less
thf(fact_598_less__or__eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_or_eq_imp_le
thf(fact_599_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_nat @ M @ N2 )
          | ( M = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_600_less__imp__le__nat,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_imp_le_nat
thf(fact_601_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M @ N2 )
          & ( M != N2 ) ) ) ) ).

% nat_less_le
thf(fact_602_less__Suc__eq__0__disj,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ( M2 = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M2
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_603_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% gr0_implies_Suc
thf(fact_604_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
           => ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
           => ( P @ ( suc @ I2 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_605_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M: nat] :
            ( N
            = ( suc @ M ) ) ) ) ).

% gr0_conv_Suc
thf(fact_606_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N ) )
            & ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N )
            & ( P @ ( suc @ I2 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_607_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_608_le__imp__less__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_609_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_610_less__Suc__eq__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_Suc_eq_le
thf(fact_611_le__less__Suc__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M2 ) )
        = ( N = M2 ) ) ) ).

% le_less_Suc_eq
thf(fact_612_Suc__le__lessD,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
     => ( ord_less_nat @ M2 @ N ) ) ).

% Suc_le_lessD
thf(fact_613_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ I @ N4 )
             => ( ( ord_less_nat @ N4 @ J )
               => ( ( P @ ( suc @ N4 ) )
                 => ( P @ N4 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_614_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ I @ N4 )
             => ( ( ord_less_nat @ N4 @ J )
               => ( ( P @ N4 )
                 => ( P @ ( suc @ N4 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_615_Suc__le__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
      = ( ord_less_nat @ M2 @ N ) ) ).

% Suc_le_eq
thf(fact_616_Suc__leI,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( suc @ M2 ) @ N ) ) ).

% Suc_leI
thf(fact_617_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z4 @ X4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z @ X6 )
           => ( ( ( P @ X6 )
                & ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q3 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_618_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z @ X6 )
           => ( ( ( P @ X6 )
                & ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q3 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_619_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z @ X6 )
           => ( ( ( P @ X6 )
                & ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q3 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_620_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z4 @ X4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z @ X6 )
           => ( ( ( P @ X6 )
                | ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q3 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_621_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z @ X6 )
           => ( ( ( P @ X6 )
                | ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q3 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_622_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z @ X6 )
           => ( ( ( P @ X6 )
                | ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q3 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_623_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_624_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_625_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_626_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_627_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_628_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_629_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ~ ( ord_less_real @ X6 @ T ) ) ).

% pinf(5)
thf(fact_630_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ~ ( ord_less_nat @ X6 @ T ) ) ).

% pinf(5)
thf(fact_631_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ~ ( ord_less_int @ X6 @ T ) ) ).

% pinf(5)
thf(fact_632_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( ord_less_real @ T @ X6 ) ) ).

% pinf(7)
thf(fact_633_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( ord_less_nat @ T @ X6 ) ) ).

% pinf(7)
thf(fact_634_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( ord_less_int @ T @ X6 ) ) ).

% pinf(7)
thf(fact_635_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z )
           => ( ( ( P @ X6 )
                & ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q3 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_636_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z )
           => ( ( ( P @ X6 )
                & ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q3 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_637_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z )
           => ( ( ( P @ X6 )
                & ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q3 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_638_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z )
           => ( ( ( P @ X6 )
                | ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q3 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_639_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z )
           => ( ( ( P @ X6 )
                | ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q3 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_640_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( Q2 @ X4 )
              = ( Q3 @ X4 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z )
           => ( ( ( P @ X6 )
                | ( Q2 @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q3 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_641_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_642_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_643_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_644_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_645_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_646_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_647_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( ord_less_real @ X6 @ T ) ) ).

% minf(5)
thf(fact_648_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( ord_less_nat @ X6 @ T ) ) ).

% minf(5)
thf(fact_649_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( ord_less_int @ X6 @ T ) ) ).

% minf(5)
thf(fact_650_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ~ ( ord_less_real @ T @ X6 ) ) ).

% minf(7)
thf(fact_651_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ~ ( ord_less_nat @ T @ X6 ) ) ).

% minf(7)
thf(fact_652_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ~ ( ord_less_int @ T @ X6 ) ) ).

% minf(7)
thf(fact_653_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_654_monoseq__Suc,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X7: nat > real] :
          ( ! [N2: nat] : ( ord_less_eq_real @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_real @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_655_monoseq__Suc,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X7: nat > nat] :
          ( ! [N2: nat] : ( ord_less_eq_nat @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_nat @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_656_monoseq__Suc,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X7: nat > int] :
          ( ! [N2: nat] : ( ord_less_eq_int @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
          | ! [N2: nat] : ( ord_less_eq_int @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_657_mono__SucI2,axiom,
    ! [X2: nat > real] :
      ( ! [N4: nat] : ( ord_less_eq_real @ ( X2 @ ( suc @ N4 ) ) @ ( X2 @ N4 ) )
     => ( topolo6980174941875973593q_real @ X2 ) ) ).

% mono_SucI2
thf(fact_658_mono__SucI2,axiom,
    ! [X2: nat > nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( X2 @ ( suc @ N4 ) ) @ ( X2 @ N4 ) )
     => ( topolo4902158794631467389eq_nat @ X2 ) ) ).

% mono_SucI2
thf(fact_659_mono__SucI2,axiom,
    ! [X2: nat > int] :
      ( ! [N4: nat] : ( ord_less_eq_int @ ( X2 @ ( suc @ N4 ) ) @ ( X2 @ N4 ) )
     => ( topolo4899668324122417113eq_int @ X2 ) ) ).

% mono_SucI2
thf(fact_660_mono__SucI1,axiom,
    ! [X2: nat > real] :
      ( ! [N4: nat] : ( ord_less_eq_real @ ( X2 @ N4 ) @ ( X2 @ ( suc @ N4 ) ) )
     => ( topolo6980174941875973593q_real @ X2 ) ) ).

% mono_SucI1
thf(fact_661_mono__SucI1,axiom,
    ! [X2: nat > nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( X2 @ N4 ) @ ( X2 @ ( suc @ N4 ) ) )
     => ( topolo4902158794631467389eq_nat @ X2 ) ) ).

% mono_SucI1
thf(fact_662_mono__SucI1,axiom,
    ! [X2: nat > int] :
      ( ! [N4: nat] : ( ord_less_eq_int @ ( X2 @ N4 ) @ ( X2 @ ( suc @ N4 ) ) )
     => ( topolo4899668324122417113eq_int @ X2 ) ) ).

% mono_SucI1
thf(fact_663_monoI1,axiom,
    ! [X2: nat > real] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M3 @ N4 )
         => ( ord_less_eq_real @ ( X2 @ M3 ) @ ( X2 @ N4 ) ) )
     => ( topolo6980174941875973593q_real @ X2 ) ) ).

% monoI1
thf(fact_664_monoI1,axiom,
    ! [X2: nat > nat] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M3 @ N4 )
         => ( ord_less_eq_nat @ ( X2 @ M3 ) @ ( X2 @ N4 ) ) )
     => ( topolo4902158794631467389eq_nat @ X2 ) ) ).

% monoI1
thf(fact_665_monoI1,axiom,
    ! [X2: nat > int] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M3 @ N4 )
         => ( ord_less_eq_int @ ( X2 @ M3 ) @ ( X2 @ N4 ) ) )
     => ( topolo4899668324122417113eq_int @ X2 ) ) ).

% monoI1
thf(fact_666_monoI2,axiom,
    ! [X2: nat > real] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M3 @ N4 )
         => ( ord_less_eq_real @ ( X2 @ N4 ) @ ( X2 @ M3 ) ) )
     => ( topolo6980174941875973593q_real @ X2 ) ) ).

% monoI2
thf(fact_667_monoI2,axiom,
    ! [X2: nat > nat] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M3 @ N4 )
         => ( ord_less_eq_nat @ ( X2 @ N4 ) @ ( X2 @ M3 ) ) )
     => ( topolo4902158794631467389eq_nat @ X2 ) ) ).

% monoI2
thf(fact_668_monoI2,axiom,
    ! [X2: nat > int] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M3 @ N4 )
         => ( ord_less_eq_int @ ( X2 @ N4 ) @ ( X2 @ M3 ) ) )
     => ( topolo4899668324122417113eq_int @ X2 ) ) ).

% monoI2
thf(fact_669_monoseq__def,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X7: nat > real] :
          ( ! [M: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ord_less_eq_real @ ( X7 @ M ) @ ( X7 @ N2 ) ) )
          | ! [M: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ord_less_eq_real @ ( X7 @ N2 ) @ ( X7 @ M ) ) ) ) ) ) ).

% monoseq_def
thf(fact_670_monoseq__def,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X7: nat > nat] :
          ( ! [M: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ord_less_eq_nat @ ( X7 @ M ) @ ( X7 @ N2 ) ) )
          | ! [M: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ord_less_eq_nat @ ( X7 @ N2 ) @ ( X7 @ M ) ) ) ) ) ) ).

% monoseq_def
thf(fact_671_monoseq__def,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X7: nat > int] :
          ( ! [M: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ord_less_eq_int @ ( X7 @ M ) @ ( X7 @ N2 ) ) )
          | ! [M: nat,N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ord_less_eq_int @ ( X7 @ N2 ) @ ( X7 @ M ) ) ) ) ) ) ).

% monoseq_def
thf(fact_672_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X6: real] : ( member_real @ X6 @ S2 )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S2 )
           => ( ord_less_eq_real @ X4 @ Z4 ) )
       => ? [Y3: real] :
            ( ! [X6: real] :
                ( ( member_real @ X6 @ S2 )
               => ( ord_less_eq_real @ X6 @ Y3 ) )
            & ! [Z4: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S2 )
                   => ( ord_less_eq_real @ X4 @ Z4 ) )
               => ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_673_interest_Ov__pos,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ord_less_real @ zero_zero_real @ ( v_pres @ I ) ) ) ).

% interest.v_pos
thf(fact_674_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ~ ( ord_less_eq_real @ X6 @ T ) ) ).

% pinf(6)
thf(fact_675_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ~ ( ord_less_eq_nat @ X6 @ T ) ) ).

% pinf(6)
thf(fact_676_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ~ ( ord_less_eq_int @ X6 @ T ) ) ).

% pinf(6)
thf(fact_677_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( ord_less_eq_real @ T @ X6 ) ) ).

% pinf(8)
thf(fact_678_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( ord_less_eq_nat @ T @ X6 ) ) ).

% pinf(8)
thf(fact_679_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( ord_less_eq_int @ T @ X6 ) ) ).

% pinf(8)
thf(fact_680_v__lt__1__iff__i__pos,axiom,
    ( ( ord_less_real @ ( v_pres @ i ) @ one_one_real )
    = ( ord_less_real @ zero_zero_real @ i ) ) ).

% v_lt_1_iff_i_pos
thf(fact_681_LIMSEQ__if__less,axiom,
    ! [I: nat,A: real,B: real] :
      ( filterlim_nat_real
      @ ^ [K3: nat] : ( if_real @ ( ord_less_nat @ I @ K3 ) @ A @ B )
      @ ( topolo2815343760600316023s_real @ A )
      @ at_top_nat ) ).

% LIMSEQ_if_less
thf(fact_682_LIMSEQ__if__less,axiom,
    ! [I: nat,A: nat,B: nat] :
      ( filterlim_nat_nat
      @ ^ [K3: nat] : ( if_nat @ ( ord_less_nat @ I @ K3 ) @ A @ B )
      @ ( topolo8926549440605965083ds_nat @ A )
      @ at_top_nat ) ).

% LIMSEQ_if_less
thf(fact_683_v__1__iff__i__0,axiom,
    ( ( ( v_pres @ i )
      = one_one_real )
    = ( i = zero_zero_real ) ) ).

% v_1_iff_i_0
thf(fact_684_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M2: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M2 ) ) ) ).

% nat_descend_induct
thf(fact_685_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N4: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N4 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N4 ) ) ) ).

% pos_int_cases
thf(fact_686_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N4: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N4 )
          & ( K
            = ( semiri1314217659103216013at_int @ N4 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_687_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_688_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_689_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_690_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_691_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_692_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_693_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_694_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_695_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_696_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_697_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_698_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N4: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N4 ) ) ) ).

% nonneg_int_cases
thf(fact_699_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N4: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N4 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_700_imp__le__cong,axiom,
    ! [X3: int,X8: int,P: $o,P4: $o] :
      ( ( X3 = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X3 )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_701_conj__le__cong,axiom,
    ! [X3: int,X8: int,P: $o,P4: $o] :
      ( ( X3 = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X3 )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_702_one__reorient,axiom,
    ! [X3: real] :
      ( ( one_one_real = X3 )
      = ( X3 = one_one_real ) ) ).

% one_reorient
thf(fact_703_one__reorient,axiom,
    ! [X3: nat] :
      ( ( one_one_nat = X3 )
      = ( X3 = one_one_nat ) ) ).

% one_reorient
thf(fact_704_one__reorient,axiom,
    ! [X3: int] :
      ( ( one_one_int = X3 )
      = ( X3 = one_one_int ) ) ).

% one_reorient
thf(fact_705_int__int__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M2 )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M2 = N ) ) ).

% int_int_eq
thf(fact_706_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_707_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_708_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_709_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_710_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_711_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_712_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_713_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_714_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_715_le__left__mono,axiom,
    ! [X3: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ X3 @ Y )
     => ( ( ord_less_eq_real @ Y @ A )
       => ( ord_less_eq_real @ X3 @ A ) ) ) ).

% le_left_mono
thf(fact_716_le__left__mono,axiom,
    ! [X3: nat,Y: nat,A: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y )
     => ( ( ord_less_eq_nat @ Y @ A )
       => ( ord_less_eq_nat @ X3 @ A ) ) ) ).

% le_left_mono
thf(fact_717_le__left__mono,axiom,
    ! [X3: int,Y: int,A: int] :
      ( ( ord_less_eq_int @ X3 @ Y )
     => ( ( ord_less_eq_int @ Y @ A )
       => ( ord_less_eq_int @ X3 @ A ) ) ) ).

% le_left_mono
thf(fact_718_zle__int,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% zle_int
thf(fact_719_interest_Ov__1__iff__i__0,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ( ( v_pres @ I )
          = one_one_real )
        = ( I = zero_zero_real ) ) ) ).

% interest.v_1_iff_i_0
thf(fact_720_interest_Ov__lt__1__iff__i__pos,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ( ord_less_real @ ( v_pres @ I ) @ one_one_real )
        = ( ord_less_real @ zero_zero_real @ I ) ) ) ).

% interest.v_lt_1_iff_i_pos
thf(fact_721_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_722_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_723_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ one_one_int @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_724_v__futr__pos,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ i ) ).

% v_futr_pos
thf(fact_725_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_less_as_int
thf(fact_726_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_727_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_728_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_729_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_730_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_731_add__left__cancel,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_732_add__left__cancel,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_733_add__left__cancel,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add_left_cancel
thf(fact_734_add__right__cancel,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_735_add__right__cancel,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_736_add__right__cancel,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add_right_cancel
thf(fact_737_add__le__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_738_add__le__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_739_add__le__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_740_add__le__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_741_add__le__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_742_add__le__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_743_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_744_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_745_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_746_zero__eq__add__iff__both__eq__0,axiom,
    ! [X3: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X3 @ Y ) )
      = ( ( X3 = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_747_add__eq__0__iff__both__eq__0,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X3 @ Y )
        = zero_zero_nat )
      = ( ( X3 = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_748_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_749_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_750_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_751_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_752_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_753_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_754_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_755_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_756_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_757_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_758_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_759_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_760_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_761_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_762_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_763_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_764_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_765_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_766_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_767_add__less__cancel__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_768_add__less__cancel__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_769_add__less__cancel__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_770_add__less__cancel__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_771_add__less__cancel__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_772_add__less__cancel__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_773_of__nat__add,axiom,
    ! [M2: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M2 @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_774_of__nat__add,axiom,
    ! [M2: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M2 @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_775_of__nat__add,axiom,
    ! [M2: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M2 @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_776_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_777_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_778_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_779_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_780_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_781_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_782_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_783_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_784_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_785_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_786_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_787_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_788_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_789_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_790_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_791_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_792_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_793_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_794_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_795_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_796_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_797_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_798_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_799_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_800_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_801_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_802_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_803_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_804_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_805_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_806_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_807_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_808_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_809_of__nat__Suc,axiom,
    ! [M2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M2 ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M2 ) ) ) ).

% of_nat_Suc
thf(fact_810_of__nat__Suc,axiom,
    ! [M2: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M2 ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ).

% of_nat_Suc
thf(fact_811_of__nat__Suc,axiom,
    ! [M2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M2 ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).

% of_nat_Suc
thf(fact_812_i__nom__1,axiom,
    ( ( i_nom @ i @ one_one_nat )
    = i ) ).

% i_nom_1
thf(fact_813_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_814_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_815_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_816_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_817_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% is_num_normalize(1)
thf(fact_818_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% is_num_normalize(1)
thf(fact_819_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_820_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_821_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_822_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_823_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_824_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_825_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_826_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_827_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_828_group__cancel_Oadd2,axiom,
    ! [B4: real,K: real,B: real,A: real] :
      ( ( B4
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B4 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_829_group__cancel_Oadd2,axiom,
    ! [B4: nat,K: nat,B: nat,A: nat] :
      ( ( B4
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B4 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_830_group__cancel_Oadd2,axiom,
    ! [B4: int,K: int,B: int,A: int] :
      ( ( B4
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B4 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_831_add_Oassoc,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C2 )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_832_add_Oassoc,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C2 )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_833_add_Oassoc,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C2 )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add.assoc
thf(fact_834_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add.left_cancel
thf(fact_835_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
      = ( B = C2 ) ) ).

% add.left_cancel
thf(fact_836_add_Oright__cancel,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add.right_cancel
thf(fact_837_add_Oright__cancel,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
      = ( B = C2 ) ) ).

% add.right_cancel
thf(fact_838_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_839_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_840_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_841_add_Oleft__commute,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C2 ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_842_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C2 ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_843_add_Oleft__commute,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C2 ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add.left_commute
thf(fact_844_add__left__imp__eq,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_845_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_846_add__left__imp__eq,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C2 ) )
     => ( B = C2 ) ) ).

% add_left_imp_eq
thf(fact_847_add__right__imp__eq,axiom,
    ! [B: real,A: real,C2: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_848_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C2: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_849_add__right__imp__eq,axiom,
    ! [B: int,A: int,C2: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C2 @ A ) )
     => ( B = C2 ) ) ).

% add_right_imp_eq
thf(fact_850_add__le__imp__le__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_851_add__le__imp__le__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_852_add__le__imp__le__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_853_add__le__imp__le__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_854_add__le__imp__le__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_855_add__le__imp__le__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_856_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
        ? [C3: nat] :
          ( B3
          = ( plus_plus_nat @ A4 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_857_add__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add_right_mono
thf(fact_858_add__right__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add_right_mono
thf(fact_859_add__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add_right_mono
thf(fact_860_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C4: nat] :
            ( B
           != ( plus_plus_nat @ A @ C4 ) ) ) ).

% less_eqE
thf(fact_861_add__left__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) ) ) ).

% add_left_mono
thf(fact_862_add__left__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).

% add_left_mono
thf(fact_863_add__left__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).

% add_left_mono
thf(fact_864_add__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C2 @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_865_add__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C2 @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_866_add__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C2 @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_867_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_868_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_869_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_870_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_871_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_872_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_873_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_874_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_875_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_876_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_877_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_878_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_879_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_880_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_881_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_882_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_883_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_884_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_885_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_886_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_887_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_888_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_889_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_890_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_891_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_892_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_893_add__strict__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C2 @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_894_add__strict__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C2 @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_895_add__strict__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C2 @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_896_add__strict__left__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_897_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_898_add__strict__left__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) ) ) ).

% add_strict_left_mono
thf(fact_899_add__strict__right__mono,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_900_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_901_add__strict__right__mono,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) ) ) ).

% add_strict_right_mono
thf(fact_902_add__less__imp__less__left,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C2 @ A ) @ ( plus_plus_real @ C2 @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_903_add__less__imp__less__left,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C2 @ A ) @ ( plus_plus_nat @ C2 @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_904_add__less__imp__less__left,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C2 @ A ) @ ( plus_plus_int @ C2 @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_905_add__less__imp__less__right,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ C2 ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_906_add__less__imp__less__right,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ C2 ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_907_add__less__imp__less__right,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ C2 ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_908_add__less__zeroD,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X3 @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X3 @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_909_add__less__zeroD,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X3 @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X3 @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_910_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_911_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_912_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_913_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_914_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_915_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_916_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_917_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_918_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_919_add__decreasing,axiom,
    ! [A: real,C2: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C2 @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ B ) ) ) ).

% add_decreasing
thf(fact_920_add__decreasing,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C2 @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ B ) ) ) ).

% add_decreasing
thf(fact_921_add__decreasing,axiom,
    ! [A: int,C2: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C2 @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ) ).

% add_decreasing
thf(fact_922_add__increasing,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C2 ) ) ) ) ).

% add_increasing
thf(fact_923_add__increasing,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% add_increasing
thf(fact_924_add__increasing,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).

% add_increasing
thf(fact_925_add__decreasing2,axiom,
    ! [C2: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C2 ) @ B ) ) ) ).

% add_decreasing2
thf(fact_926_add__decreasing2,axiom,
    ! [C2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C2 ) @ B ) ) ) ).

% add_decreasing2
thf(fact_927_add__decreasing2,axiom,
    ! [C2: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C2 ) @ B ) ) ) ).

% add_decreasing2
thf(fact_928_add__increasing2,axiom,
    ! [C2: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C2 )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C2 ) ) ) ) ).

% add_increasing2
thf(fact_929_add__increasing2,axiom,
    ! [C2: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C2 )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% add_increasing2
thf(fact_930_add__increasing2,axiom,
    ! [C2: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C2 )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).

% add_increasing2
thf(fact_931_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_932_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_933_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_934_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_935_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_936_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_937_add__nonneg__eq__0__iff,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X3 @ Y )
            = zero_zero_real )
          = ( ( X3 = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_938_add__nonneg__eq__0__iff,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X3 @ Y )
            = zero_zero_nat )
          = ( ( X3 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_939_add__nonneg__eq__0__iff,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X3 @ Y )
            = zero_zero_int )
          = ( ( X3 = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_940_add__nonpos__eq__0__iff,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X3 @ Y )
            = zero_zero_real )
          = ( ( X3 = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_941_add__nonpos__eq__0__iff,axiom,
    ! [X3: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X3 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X3 @ Y )
            = zero_zero_nat )
          = ( ( X3 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_942_add__nonpos__eq__0__iff,axiom,
    ! [X3: int,Y: int] :
      ( ( ord_less_eq_int @ X3 @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X3 @ Y )
            = zero_zero_int )
          = ( ( X3 = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_943_add__less__le__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C2 @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_944_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C2 @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_945_add__less__le__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C2 @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_946_add__le__less__mono,axiom,
    ! [A: real,B: real,C2: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C2 @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C2 ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_947_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C2: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C2 @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C2 ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_948_add__le__less__mono,axiom,
    ! [A: int,B: int,C2: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C2 @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C2 ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_949_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_950_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_951_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_952_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_953_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_954_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_955_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_956_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_957_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_958_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_959_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_960_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_961_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C4: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C4 ) )
           => ( C4 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_962_pos__add__strict,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C2 )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_963_pos__add__strict,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_964_pos__add__strict,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C2 )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).

% pos_add_strict
thf(fact_965_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_966_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_967_interest_Oi__nom__1,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ( i_nom @ I @ one_one_nat )
        = I ) ) ).

% interest.i_nom_1
thf(fact_968_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_969_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_970_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_971_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_972_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_973_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_974_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_975_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_976_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_977_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_978_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_979_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_980_add__strict__increasing,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C2 )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C2 ) ) ) ) ).

% add_strict_increasing
thf(fact_981_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% add_strict_increasing
thf(fact_982_add__strict__increasing,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C2 )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).

% add_strict_increasing
thf(fact_983_add__strict__increasing2,axiom,
    ! [A: real,B: real,C2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C2 )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C2 ) ) ) ) ).

% add_strict_increasing2
thf(fact_984_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C2 )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C2 ) ) ) ) ).

% add_strict_increasing2
thf(fact_985_add__strict__increasing2,axiom,
    ! [A: int,B: int,C2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C2 )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C2 ) ) ) ) ).

% add_strict_increasing2
thf(fact_986_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_987_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_988_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_989_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_990_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_991_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_992_linorder__neqE__linordered__idom,axiom,
    ! [X3: real,Y: real] :
      ( ( X3 != Y )
     => ( ~ ( ord_less_real @ X3 @ Y )
       => ( ord_less_real @ Y @ X3 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_993_linorder__neqE__linordered__idom,axiom,
    ! [X3: int,Y: int] :
      ( ( X3 != Y )
     => ( ~ ( ord_less_int @ X3 @ Y )
       => ( ord_less_int @ Y @ X3 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_994_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_995_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_996_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_997_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N4 )
             => ( ( P @ N4 )
               => ( P @ ( suc @ N4 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_998_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y7: nat,Z3: nat] : ( Y7 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( semiri1314217659103216013at_int @ A4 )
          = ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_999_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_1000_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat,M: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% nat_less_real_le
thf(fact_1001_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N2: nat,M: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_1002_interest__def,axiom,
    ( interest
    = ( ^ [I2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).

% interest_def
thf(fact_1003_interest_Ov__futr__pos,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I ) ) ) ).

% interest.v_futr_pos
thf(fact_1004_interest_Ointro,axiom,
    ! [I: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I ) )
     => ( interest @ I ) ) ).

% interest.intro
thf(fact_1005_verit__comp__simplify1_I3_J,axiom,
    ! [B5: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B5 @ A5 ) )
      = ( ord_less_real @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1006_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
      = ( ord_less_nat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1007_verit__comp__simplify1_I3_J,axiom,
    ! [B5: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B5 @ A5 ) )
      = ( ord_less_int @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1008_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_1009_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_1010_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_1011_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_1012_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_leq_as_int
thf(fact_1013_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_1014_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_1015_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_1016_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1017_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1018_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1019_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_1020_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_1021_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_1022_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_1023_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_1024_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_1025_increasing__LIMSEQ,axiom,
    ! [F2: nat > real,L: real] :
      ( ! [N4: nat] : ( ord_less_eq_real @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ! [N4: nat] : ( ord_less_eq_real @ ( F2 @ N4 ) @ L )
       => ( ! [E2: real] :
              ( ( ord_less_real @ zero_zero_real @ E2 )
             => ? [N7: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F2 @ N7 ) @ E2 ) ) )
         => ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_1026_v__futr__m__pos,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ).

% v_futr_m_pos
thf(fact_1027_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F2: ( nat > real ) > nat > real,Q2: nat > $o] :
      ( ! [X4: nat > real] :
          ( ( P @ X4 )
         => ( P @ ( F2 @ X4 ) ) )
     => ( ! [X4: nat > real] :
            ( ( P @ X4 )
           => ! [I3: nat] :
                ( ( Q2 @ I3 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X4 @ I3 ) )
                  & ( ord_less_eq_real @ ( X4 @ I3 ) @ one_one_real ) ) ) )
       => ? [L2: ( nat > real ) > nat > nat] :
            ( ! [X6: nat > real,I4: nat] : ( ord_less_eq_nat @ ( L2 @ X6 @ I4 ) @ one_one_nat )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q2 @ I4 )
                  & ( ( X6 @ I4 )
                    = zero_zero_real ) )
               => ( ( L2 @ X6 @ I4 )
                  = zero_zero_nat ) )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q2 @ I4 )
                  & ( ( X6 @ I4 )
                    = one_one_real ) )
               => ( ( L2 @ X6 @ I4 )
                  = one_one_nat ) )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q2 @ I4 )
                  & ( ( L2 @ X6 @ I4 )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X6 @ I4 ) @ ( F2 @ X6 @ I4 ) ) )
            & ! [X6: nat > real,I4: nat] :
                ( ( ( P @ X6 )
                  & ( Q2 @ I4 )
                  & ( ( L2 @ X6 @ I4 )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F2 @ X6 @ I4 ) @ ( X6 @ I4 ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_1028_real__of__nat__ge__one__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ one_one_nat @ N ) ) ).

% real_of_nat_ge_one_iff
thf(fact_1029_tendsto__add__zero,axiom,
    ! [F2: nat > real,F: filter_nat,G: nat > real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
     => ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
       => ( filterlim_nat_real
          @ ^ [X: nat] : ( plus_plus_real @ ( F2 @ X ) @ ( G @ X ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ F ) ) ) ).

% tendsto_add_zero
thf(fact_1030_tendsto__add__zero,axiom,
    ! [F2: nat > nat,F: filter_nat,G: nat > nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ zero_zero_nat ) @ F )
     => ( ( filterlim_nat_nat @ G @ ( topolo8926549440605965083ds_nat @ zero_zero_nat ) @ F )
       => ( filterlim_nat_nat
          @ ^ [X: nat] : ( plus_plus_nat @ ( F2 @ X ) @ ( G @ X ) )
          @ ( topolo8926549440605965083ds_nat @ zero_zero_nat )
          @ F ) ) ) ).

% tendsto_add_zero
thf(fact_1031_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_1032_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_1033_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_1034_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_1035_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_1036_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_1037_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_1038_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_1039_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_1040_Nat_Oadd__0__right,axiom,
    ! [M2: nat] :
      ( ( plus_plus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% Nat.add_0_right
thf(fact_1041_add__is__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( plus_plus_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ( M2 = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1042_add__Suc__right,axiom,
    ! [M2: nat,N: nat] :
      ( ( plus_plus_nat @ M2 @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M2 @ N ) ) ) ).

% add_Suc_right
thf(fact_1043_nat__add__left__cancel__le,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1044_nat__add__left__cancel__less,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_1045_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_1046_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_1047_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_1048_add__gr__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M2 )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1049_zle__add1__eq__le,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W2 @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_1050_tendsto__zero__divide__iff,axiom,
    ! [C2: real,A: nat > real] :
      ( ( C2 != zero_zero_real )
     => ( ( filterlim_nat_real
          @ ^ [N2: nat] : ( divide_divide_real @ ( A @ N2 ) @ C2 )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat )
        = ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% tendsto_zero_divide_iff
thf(fact_1051_zadd__int__left,axiom,
    ! [M2: nat,N: nat,Z2: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M2 @ N ) ) @ Z2 ) ) ).

% zadd_int_left
thf(fact_1052_int__plus,axiom,
    ! [N: nat,M2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).

% int_plus
thf(fact_1053_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1054_add__eq__self__zero,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( plus_plus_nat @ M2 @ N )
        = M2 )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1055_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1056_add__Suc__shift,axiom,
    ! [M2: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M2 ) @ N )
      = ( plus_plus_nat @ M2 @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1057_add__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M2 ) @ N )
      = ( suc @ ( plus_plus_nat @ M2 @ N ) ) ) ).

% add_Suc
thf(fact_1058_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1059_add__leE,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M2 @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1060_le__add1,axiom,
    ! [N: nat,M2: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M2 ) ) ).

% le_add1
thf(fact_1061_le__add2,axiom,
    ! [N: nat,M2: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M2 @ N ) ) ).

% le_add2
thf(fact_1062_add__leD1,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% add_leD1
thf(fact_1063_add__leD2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1064_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N4: nat] :
          ( L
          = ( plus_plus_nat @ K @ N4 ) ) ) ).

% le_Suc_ex
thf(fact_1065_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_1066_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_1067_trans__le__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_le_add1
thf(fact_1068_trans__le__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_le_add2
thf(fact_1069_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N2: nat] :
        ? [K3: nat] :
          ( N2
          = ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1070_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_1071_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_1072_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_1073_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_1074_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_1075_trans__less__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_less_add1
thf(fact_1076_trans__less__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_less_add2
thf(fact_1077_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M2 @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% less_add_eq_less
thf(fact_1078_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1079_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1080_odd__nonzero,axiom,
    ! [Z2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1081_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1082_zless__add1__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W2 @ Z2 )
        | ( W2 = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_1083_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_1084_add__is__1,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( plus_plus_nat @ M2 @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M2
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M2 = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1085_one__is__add,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M2 @ N ) )
      = ( ( ( M2
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M2 = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1086_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1087_less__imp__Suc__add,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1088_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N2: nat] :
        ? [K3: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1089_less__add__Suc2,axiom,
    ! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M2 @ I ) ) ) ).

% less_add_Suc2
thf(fact_1090_less__add__Suc1,axiom,
    ! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M2 ) ) ) ).

% less_add_Suc1
thf(fact_1091_less__natE,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ~ ! [Q4: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M2 @ Q4 ) ) ) ) ).

% less_natE
thf(fact_1092_mono__nat__linear__lb,axiom,
    ! [F2: nat > nat,M2: nat,K: nat] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_nat @ M3 @ N4 )
         => ( ord_less_nat @ ( F2 @ M3 ) @ ( F2 @ N4 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F2 @ M2 ) @ K ) @ ( F2 @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1093_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1094_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1095_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1096_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1097_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1098_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1099_add1__zle__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W2 @ Z2 ) ) ).

% add1_zle_eq
thf(fact_1100_zless__imp__add1__zle,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_1101_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z5: int] :
        ? [N2: nat] :
          ( Z5
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1102_tendsto__divide__zero,axiom,
    ! [F2: nat > real,F: filter_nat,C2: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
     => ( filterlim_nat_real
        @ ^ [X: nat] : ( divide_divide_real @ ( F2 @ X ) @ C2 )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ F ) ) ).

% tendsto_divide_zero
thf(fact_1103_tendsto__divide,axiom,
    ! [F2: nat > real,A: real,F: filter_nat,G: nat > real,B: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
     => ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ B ) @ F )
       => ( ( B != zero_zero_real )
         => ( filterlim_nat_real
            @ ^ [X: nat] : ( divide_divide_real @ ( F2 @ X ) @ ( G @ X ) )
            @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ A @ B ) )
            @ F ) ) ) ) ).

% tendsto_divide
thf(fact_1104_kuhn__lemma,axiom,
    ! [P5: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ P5 )
     => ( ! [X4: nat > nat] :
            ( ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ N )
               => ( ord_less_eq_nat @ ( X4 @ I4 ) @ P5 ) )
           => ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ N )
               => ( ( ( Label @ X4 @ I3 )
                    = zero_zero_nat )
                  | ( ( Label @ X4 @ I3 )
                    = one_one_nat ) ) ) )
       => ( ! [X4: nat > nat] :
              ( ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ N )
                 => ( ord_less_eq_nat @ ( X4 @ I4 ) @ P5 ) )
             => ! [I3: nat] :
                  ( ( ord_less_nat @ I3 @ N )
                 => ( ( ( X4 @ I3 )
                      = zero_zero_nat )
                   => ( ( Label @ X4 @ I3 )
                      = zero_zero_nat ) ) ) )
         => ( ! [X4: nat > nat] :
                ( ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ N )
                   => ( ord_less_eq_nat @ ( X4 @ I4 ) @ P5 ) )
               => ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ N )
                   => ( ( ( X4 @ I3 )
                        = P5 )
                     => ( ( Label @ X4 @ I3 )
                        = one_one_nat ) ) ) )
           => ~ ! [Q4: nat > nat] :
                  ( ! [I4: nat] :
                      ( ( ord_less_nat @ I4 @ N )
                     => ( ord_less_nat @ ( Q4 @ I4 ) @ P5 ) )
                 => ~ ! [I4: nat] :
                        ( ( ord_less_nat @ I4 @ N )
                       => ? [R2: nat > nat] :
                            ( ! [J4: nat] :
                                ( ( ord_less_nat @ J4 @ N )
                               => ( ( ord_less_eq_nat @ ( Q4 @ J4 ) @ ( R2 @ J4 ) )
                                  & ( ord_less_eq_nat @ ( R2 @ J4 ) @ ( plus_plus_nat @ ( Q4 @ J4 ) @ one_one_nat ) ) ) )
                            & ? [S3: nat > nat] :
                                ( ! [J4: nat] :
                                    ( ( ord_less_nat @ J4 @ N )
                                   => ( ( ord_less_eq_nat @ ( Q4 @ J4 ) @ ( S3 @ J4 ) )
                                      & ( ord_less_eq_nat @ ( S3 @ J4 ) @ ( plus_plus_nat @ ( Q4 @ J4 ) @ one_one_nat ) ) ) )
                                & ( ( Label @ R2 @ I4 )
                                 != ( Label @ S3 @ I4 ) ) ) ) ) ) ) ) ) ) ).

% kuhn_lemma
thf(fact_1105_filterlim__add__const__nat__at__top,axiom,
    ! [C2: nat] :
      ( filterlim_nat_nat
      @ ^ [N2: nat] : ( plus_plus_nat @ N2 @ C2 )
      @ at_top_nat
      @ at_top_nat ) ).

% filterlim_add_const_nat_at_top
thf(fact_1106_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W3: int,Z5: int] :
        ? [N2: nat] :
          ( Z5
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1107_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_1108_v__pres__def,axiom,
    ( v_pres
    = ( ^ [I2: real] : ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).

% v_pres_def
thf(fact_1109_LIMSEQ__ignore__initial__segment,axiom,
    ! [F2: nat > real,A: real,K: nat] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ at_top_nat )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
        @ ( topolo2815343760600316023s_real @ A )
        @ at_top_nat ) ) ).

% LIMSEQ_ignore_initial_segment
thf(fact_1110_LIMSEQ__ignore__initial__segment,axiom,
    ! [F2: nat > nat,A: nat,K: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ at_top_nat )
     => ( filterlim_nat_nat
        @ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
        @ ( topolo8926549440605965083ds_nat @ A )
        @ at_top_nat ) ) ).

% LIMSEQ_ignore_initial_segment
thf(fact_1111_LIMSEQ__offset,axiom,
    ! [F2: nat > real,K: nat,A: real] :
      ( ( filterlim_nat_real
        @ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
        @ ( topolo2815343760600316023s_real @ A )
        @ at_top_nat )
     => ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ at_top_nat ) ) ).

% LIMSEQ_offset
thf(fact_1112_LIMSEQ__offset,axiom,
    ! [F2: nat > nat,K: nat,A: nat] :
      ( ( filterlim_nat_nat
        @ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
        @ ( topolo8926549440605965083ds_nat @ A )
        @ at_top_nat )
     => ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ at_top_nat ) ) ).

% LIMSEQ_offset
thf(fact_1113_lim__const__over__n,axiom,
    ! [A: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ N2 ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_nat ) ).

% lim_const_over_n
thf(fact_1114_lim__1__over__n,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_1_over_n
thf(fact_1115_LIMSEQ__n__over__Suc__n,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_n_over_Suc_n
thf(fact_1116_LIMSEQ__Suc__n__over__n,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_Suc_n_over_n
thf(fact_1117_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_1118_nat__approx__posE,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ~ ! [N4: nat] :
            ~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_1119_inverse__of__nat__le,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ N @ M2 )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_1120_d__nom__def,axiom,
    ( d_nom
    = ( ^ [I2: real,M: nat] : ( divide_divide_real @ ( i_nom @ I2 @ M ) @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I2 @ M ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ).

% d_nom_def
thf(fact_1121_interest_Ov__futr__m__pos,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).

% interest.v_futr_m_pos
thf(fact_1122_tendsto__add__const__iff,axiom,
    ! [C2: real,F2: nat > real,D: real,F: filter_nat] :
      ( ( filterlim_nat_real
        @ ^ [X: nat] : ( plus_plus_real @ C2 @ ( F2 @ X ) )
        @ ( topolo2815343760600316023s_real @ ( plus_plus_real @ C2 @ D ) )
        @ F )
      = ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ D ) @ F ) ) ).

% tendsto_add_const_iff
thf(fact_1123_tendsto__add,axiom,
    ! [F2: nat > real,A: real,F: filter_nat,G: nat > real,B: real] :
      ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
     => ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ B ) @ F )
       => ( filterlim_nat_real
          @ ^ [X: nat] : ( plus_plus_real @ ( F2 @ X ) @ ( G @ X ) )
          @ ( topolo2815343760600316023s_real @ ( plus_plus_real @ A @ B ) )
          @ F ) ) ) ).

% tendsto_add
thf(fact_1124_tendsto__add,axiom,
    ! [F2: nat > nat,A: nat,F: filter_nat,G: nat > nat,B: nat] :
      ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ F )
     => ( ( filterlim_nat_nat @ G @ ( topolo8926549440605965083ds_nat @ B ) @ F )
       => ( filterlim_nat_nat
          @ ^ [X: nat] : ( plus_plus_nat @ ( F2 @ X ) @ ( G @ X ) )
          @ ( topolo8926549440605965083ds_nat @ ( plus_plus_nat @ A @ B ) )
          @ F ) ) ) ).

% tendsto_add
thf(fact_1125_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_1126_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_1127_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_1128_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_1129_int__ops_I8_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(8)
thf(fact_1130_real__of__nat__div4,axiom,
    ! [N: nat,X3: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X3 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X3 ) ) ) ).

% real_of_nat_div4
thf(fact_1131_div__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_1132_div__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_1133_d__nom__i__nom,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( minus_minus_real @ one_one_real @ ( divide_divide_real @ ( d_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) )
        = ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).

% d_nom_i_nom
thf(fact_1134_div__by__Suc__0,axiom,
    ! [M2: nat] :
      ( ( divide_divide_nat @ M2 @ ( suc @ zero_zero_nat ) )
      = M2 ) ).

% div_by_Suc_0
thf(fact_1135_div__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( divide_divide_nat @ M2 @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1136_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A3: real,B2: real,C4: real] :
            ( ( P @ A3 @ B2 )
           => ( ( P @ B2 @ C4 )
             => ( ( ord_less_eq_real @ A3 @ B2 )
               => ( ( ord_less_eq_real @ B2 @ C4 )
                 => ( P @ A3 @ C4 ) ) ) ) )
       => ( ! [X4: real] :
              ( ( ord_less_eq_real @ A @ X4 )
             => ( ( ord_less_eq_real @ X4 @ B )
               => ? [D3: real] :
                    ( ( ord_less_real @ zero_zero_real @ D3 )
                    & ! [A3: real,B2: real] :
                        ( ( ( ord_less_eq_real @ A3 @ X4 )
                          & ( ord_less_eq_real @ X4 @ B2 )
                          & ( ord_less_real @ ( minus_minus_real @ B2 @ A3 ) @ D3 ) )
                       => ( P @ A3 @ B2 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_1137_div__le__mono,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_1138_div__le__dividend,axiom,
    ! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N ) @ M2 ) ).

% div_le_dividend
thf(fact_1139_zdiv__int,axiom,
    ! [M2: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M2 @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% zdiv_int
thf(fact_1140_real__of__nat__div2,axiom,
    ! [N: nat,X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X3 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X3 ) ) ) ) ).

% real_of_nat_div2
thf(fact_1141_real__of__nat__div3,axiom,
    ! [N: nat,X3: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X3 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X3 ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_1142_nested__sequence__unique,axiom,
    ! [F2: nat > real,G: nat > real] :
      ( ! [N4: nat] : ( ord_less_eq_real @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ! [N4: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N4 ) ) @ ( G @ N4 ) )
       => ( ! [N4: nat] : ( ord_less_eq_real @ ( F2 @ N4 ) @ ( G @ N4 ) )
         => ( ( filterlim_nat_real
              @ ^ [N2: nat] : ( minus_minus_real @ ( F2 @ N2 ) @ ( G @ N2 ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L2: real] :
                ( ! [N7: nat] : ( ord_less_eq_real @ ( F2 @ N7 ) @ L2 )
                & ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat )
                & ! [N7: nat] : ( ord_less_eq_real @ L2 @ ( G @ N7 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_1143_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( divide_divide_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M2 @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1144_Suc__div__le__mono,axiom,
    ! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N ) @ ( divide_divide_nat @ ( suc @ M2 ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_1145_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_1146_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_1147_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_1148_interest_Od__nom__i__nom,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( minus_minus_real @ one_one_real @ ( divide_divide_real @ ( d_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) )
          = ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ) ).

% interest.d_nom_i_nom
thf(fact_1149_div__le__mono2,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ord_less_eq_nat @ M2 @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M2 ) ) ) ) ).

% div_le_mono2
thf(fact_1150_div__greater__zero__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M2 @ N ) )
      = ( ( ord_less_eq_nat @ N @ M2 )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_1151_div__eq__dividend__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ( divide_divide_nat @ M2 @ N )
          = M2 )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_1152_div__less__dividend,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( divide_divide_nat @ M2 @ N ) @ M2 ) ) ) ).

% div_less_dividend
thf(fact_1153_int__div__less__self,axiom,
    ! [X3: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X3 )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X3 @ K ) @ X3 ) ) ) ).

% int_div_less_self
thf(fact_1154_zdiv__mono1,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_1155_zdiv__mono2,axiom,
    ! [A: int,B5: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B5 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_1156_zdiv__eq__0__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( divide_divide_int @ I @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_1157_zdiv__mono1__neg,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_1158_zdiv__mono2__neg,axiom,
    ! [A: int,B5: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B5 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_1159_div__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
      = ( ( K = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_1160_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_1161_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_1162_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
        = ( ord_less_eq_int @ K @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_1163_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_1164_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_1165_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_1166_a_H_H__calc,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i != zero_zero_real )
       => ( ( ann_due @ i @ M2 @ N )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ i ) @ N ) ) @ ( d_nom @ i @ M2 ) ) ) ) ) ).

% a''_calc
thf(fact_1167_a__calc,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i != zero_zero_real )
       => ( ( ann @ i @ M2 @ N )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ i ) @ N ) ) @ ( i_nom @ i @ M2 ) ) ) ) ) ).

% a_calc
thf(fact_1168_s_H_H__calc,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i != zero_zero_real )
       => ( ( acc_due @ i @ M2 @ N )
          = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ one_one_real ) @ ( d_nom @ i @ M2 ) ) ) ) ) ).

% s''_calc
thf(fact_1169_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1170_diff__self__eq__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ M2 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1171_diff__Suc__Suc,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% diff_Suc_Suc
thf(fact_1172_Suc__diff__diff,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1173_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1174_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1175_i__nom__eff,axiom,
    ! [M2: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ M2 )
        = ( plus_plus_real @ one_one_real @ i ) ) ) ).

% i_nom_eff
thf(fact_1176_s__calc,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( i != zero_zero_real )
       => ( ( acc @ i @ M2 @ N )
          = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ one_one_real ) @ ( i_nom @ i @ M2 ) ) ) ) ) ).

% s_calc
thf(fact_1177_diff__is__0__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% diff_is_0_eq
thf(fact_1178_diff__is__0__eq_H,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1179_zero__less__diff,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M2 ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% zero_less_diff
thf(fact_1180_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1181_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1182_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1183_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1184_zle__diff1__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
      = ( ord_less_int @ W2 @ Z2 ) ) ).

% zle_diff1_eq
thf(fact_1185_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1186_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1187_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1188_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1189_Nat_Odiff__cancel,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% Nat.diff_cancel
thf(fact_1190_diff__cancel2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% diff_cancel2
thf(fact_1191_diff__add__inverse,axiom,
    ! [N: nat,M2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M2 ) @ N )
      = M2 ) ).

% diff_add_inverse
thf(fact_1192_diff__add__inverse2,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N ) @ N )
      = M2 ) ).

% diff_add_inverse2
thf(fact_1193_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_1194_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_1195_int__diff__cases,axiom,
    ! [Z2: int] :
      ~ ! [M3: nat,N4: nat] :
          ( Z2
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N4 ) ) ) ).

% int_diff_cases
thf(fact_1196_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_1197_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1198_diff__less__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ord_less_nat @ M2 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).

% diff_less_mono2
thf(fact_1199_diff__le__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).

% diff_le_mono2
thf(fact_1200_le__diff__iff_H,axiom,
    ! [A: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_1201_diff__le__self,axiom,
    ! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ).

% diff_le_self
thf(fact_1202_diff__le__mono,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_1203_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M2 @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1204_le__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M2 @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1205_eq__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M2 @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M2 = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1206_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N4: nat] :
            ( ( P @ ( suc @ N4 ) )
           => ( P @ N4 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_1207_minus__nat_Odiff__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% minus_nat.diff_0
thf(fact_1208_diffs0__imp__equal,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M2 )
          = zero_zero_nat )
       => ( M2 = N ) ) ) ).

% diffs0_imp_equal
thf(fact_1209_zdiff__int__split,axiom,
    ! [P: int > $o,X3: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X3 @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X3 )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X3 @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_1210_real__arch__pow,axiom,
    ! [X3: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ? [N4: nat] : ( ord_less_real @ Y @ ( power_power_real @ X3 @ N4 ) ) ) ).

% real_arch_pow
thf(fact_1211_diff__less,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ) ) ).

% diff_less
thf(fact_1212_Suc__diff__le,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_eq_nat @ N @ M2 )
     => ( ( minus_minus_nat @ ( suc @ M2 ) @ N )
        = ( suc @ ( minus_minus_nat @ M2 @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1213_Suc__diff__Suc,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ N @ M2 )
     => ( ( suc @ ( minus_minus_nat @ M2 @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M2 @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1214_diff__less__Suc,axiom,
    ! [M2: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ ( suc @ M2 ) ) ).

% diff_less_Suc
thf(fact_1215_less__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M2 @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1216_diff__less__mono,axiom,
    ! [A: nat,B: nat,C2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C2 @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B @ C2 ) ) ) ) ).

% diff_less_mono
thf(fact_1217_diff__add__0,axiom,
    ! [N: nat,M2: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M2 ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1218_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1219_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1220_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1221_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1222_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1223_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1224_add__diff__inverse__nat,axiom,
    ! [M2: nat,N: nat] :
      ( ~ ( ord_less_nat @ M2 @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M2 @ N ) )
        = M2 ) ) ).

% add_diff_inverse_nat
thf(fact_1225_diff__Suc__eq__diff__pred,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ M2 @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1226_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct
thf(fact_1227_int__less__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_less_induct
thf(fact_1228_filterlim__minus__const__nat__at__top,axiom,
    ! [C2: nat] :
      ( filterlim_nat_nat
      @ ^ [N2: nat] : ( minus_minus_nat @ N2 @ C2 )
      @ at_top_nat
      @ at_top_nat ) ).

% filterlim_minus_const_nat_at_top
thf(fact_1229_real__arch__pow__inv,axiom,
    ! [Y: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ? [N4: nat] : ( ord_less_real @ ( power_power_real @ X3 @ N4 ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_1230_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_1231_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D2 ) )
           => ( P @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_1232_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D2 ) )
                & ~ ( P @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1233_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1234_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_1235_monoseq__realpow,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X3 ) ) ) ) ).

% monoseq_realpow
thf(fact_1236_power__le__one__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
        = ( ( N = zero_zero_nat )
          | ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).

% power_le_one_iff
thf(fact_1237_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1238_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M2 ) @ N )
        = ( minus_minus_nat @ M2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1239_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M: nat,N2: nat] : ( if_nat @ ( M = zero_zero_nat ) @ N2 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ) ) ) ).

% add_eq_if
thf(fact_1240_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M: nat,N2: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M @ N2 )
            | ( N2 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).

% div_if
thf(fact_1241_le__div__geq,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ M2 )
       => ( ( divide_divide_nat @ M2 @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M2 @ N ) @ N ) ) ) ) ) ).

% le_div_geq
thf(fact_1242_div__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_1243_interest_Oi__nom__eff,axiom,
    ! [I: real,M2: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ M2 )
          = ( plus_plus_real @ one_one_real @ I ) ) ) ) ).

% interest.i_nom_eff
thf(fact_1244_LIMSEQ__realpow__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X3 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_1245_LIMSEQ__divide__realpow__zero,axiom,
    ! [X3: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( divide_divide_real @ A @ ( power_power_real @ X3 @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_1246_interest_Os__calc,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I != zero_zero_real )
         => ( ( acc @ I @ M2 @ N )
            = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ one_one_real ) @ ( i_nom @ I @ M2 ) ) ) ) ) ) ).

% interest.s_calc
thf(fact_1247_interest_Os_H_H__calc,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I != zero_zero_real )
         => ( ( acc_due @ I @ M2 @ N )
            = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ one_one_real ) @ ( d_nom @ I @ M2 ) ) ) ) ) ) ).

% interest.s''_calc
thf(fact_1248_interest_Oa__calc,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I != zero_zero_real )
         => ( ( ann @ I @ M2 @ N )
            = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ I ) @ N ) ) @ ( i_nom @ I @ M2 ) ) ) ) ) ) ).

% interest.a_calc
thf(fact_1249_interest_Oa_H_H__calc,axiom,
    ! [I: real,M2: nat,N: nat] :
      ( ( interest @ I )
     => ( ( M2 != zero_zero_nat )
       => ( ( I != zero_zero_real )
         => ( ( ann_due @ I @ M2 @ N )
            = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ I ) @ N ) ) @ ( d_nom @ I @ M2 ) ) ) ) ) ) ).

% interest.a''_calc
thf(fact_1250_nat__power__eq__Suc__0__iff,axiom,
    ! [X3: nat,M2: nat] :
      ( ( ( power_power_nat @ X3 @ M2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( M2 = zero_zero_nat )
        | ( X3
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_1251_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_1252_nat__zero__less__power__iff,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X3 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X3 )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1253_nat__power__less__imp__less,axiom,
    ! [I: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M2 ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_1254_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_1255_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_1256_int__power__div__base,axiom,
    ! [M2: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M2 ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_1257_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R2: real] :
          ( ( ord_less_real @ zero_zero_real @ R2 )
          & ( ( power_power_real @ R2 @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_1258_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ( ( power_power_real @ R2 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1259_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X4: real] :
            ( ( ord_less_real @ zero_zero_real @ X4 )
            & ( ( power_power_real @ X4 @ N )
              = A )
            & ! [Y5: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y5 )
                  & ( ( power_power_real @ Y5 @ N )
                    = A ) )
               => ( Y5 = X4 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1260_s_H_H__a_H_H,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( acc_due @ i @ M2 @ N )
        = ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ ( ann_due @ i @ M2 @ N ) ) ) ) ).

% s''_a''
thf(fact_1261_s__a,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != zero_zero_nat )
     => ( ( acc @ i @ M2 @ N )
        = ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ ( ann @ i @ M2 @ N ) ) ) ) ).

% s_a
thf(fact_1262_not__real__square__gt__zero,axiom,
    ! [X3: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X3 @ X3 ) ) )
      = ( X3 = zero_zero_real ) ) ).

% not_real_square_gt_zero

% Helper facts (5)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X3: nat,Y: nat] :
      ( ( if_nat @ $false @ X3 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X3: nat,Y: nat] :
      ( ( if_nat @ $true @ X3 @ Y )
      = X3 ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X3: real,Y: real] :
      ( ( if_real @ $false @ X3 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X3: real,Y: real] :
      ( ( if_real @ $true @ X3 @ Y )
      = X3 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( filterlim_nat_real
    @ ^ [M: nat] : ( acc_due @ i @ ( suc @ M ) @ n )
    @ ( topolo2815343760600316023s_real @ ( acc_cont @ i @ ( semiri5074537144036343181t_real @ n ) ) )
    @ at_top_nat ) ).

%------------------------------------------------------------------------------