TPTP Problem File: SLH0752^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Actuarial_Mathematics/0001_Interest/prob_00537_022171__12940772_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1347 ( 598 unt; 72 typ; 0 def)
% Number of atoms : 3300 (1359 equ; 0 cnn)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 10370 ( 210 ~; 64 |; 137 &;8756 @)
% ( 0 <=>;1203 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 6 avg)
% Number of types : 8 ( 7 usr)
% Number of type conns : 275 ( 275 >; 0 *; 0 +; 0 <<)
% Number of symbols : 68 ( 65 usr; 12 con; 0-3 aty)
% Number of variables : 3030 ( 121 ^;2862 !; 47 ?;3030 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 15:14:01.605
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
filter_real: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
filter_nat: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Int__Oint_J,type,
filter_int: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (65)
thf(sy_c_Elementary__Metric__Spaces_Oinfdist_001t__Real__Oreal,type,
elemen474008666683226335t_real: real > set_real > real ).
thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
at_top_nat: filter_nat ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Int__Oint,type,
filterlim_nat_int: ( nat > int ) > filter_int > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Nat__Onat,type,
filterlim_real_nat: ( real > nat ) > filter_nat > filter_real > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_HOL_OUniq_001t__Nat__Onat,type,
uniq_nat: ( nat > $o ) > $o ).
thf(sy_c_HOL_OUniq_001t__Real__Oreal,type,
uniq_real: ( real > $o ) > $o ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Interest_Oacc,type,
acc: real > nat > nat > real ).
thf(sy_c_Interest_Oacc__cont,type,
acc_cont: real > real > real ).
thf(sy_c_Interest_Oacc__due,type,
acc_due: real > nat > nat > real ).
thf(sy_c_Interest_Oann,type,
ann: real > nat > nat > real ).
thf(sy_c_Interest_Oann__cont,type,
ann_cont: real > real > real ).
thf(sy_c_Interest_Oann__due,type,
ann_due: real > nat > nat > real ).
thf(sy_c_Interest_Od__nom,type,
d_nom: real > nat > real ).
thf(sy_c_Interest_Oi__force,type,
i_force: real > real ).
thf(sy_c_Interest_Oi__nom,type,
i_nom: real > nat > real ).
thf(sy_c_Interest_Ointerest,type,
interest: real > $o ).
thf(sy_c_Interest_Ov__pres,type,
v_pres: real > real ).
thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
at_infinity_real: filter_real ).
thf(sy_c_Linear__Algebra_Oinfnorm_001t__Real__Oreal,type,
linear_infnorm_real: real > real ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
ord_le4104064031414453916r_real: filter_real > filter_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Int__Oint,type,
topolo8924058970096914807ds_int: int > filter_int ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Nat__Onat,type,
topolo8926549440605965083ds_nat: nat > filter_nat ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
topolo2815343760600316023s_real: real > filter_real ).
thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
powr_real: real > real > real ).
thf(sy_v_i,type,
i: real ).
thf(sy_v_n,type,
n: nat ).
% Relevant facts (1271)
thf(fact_0_interest__axioms,axiom,
interest @ i ).
% interest_axioms
thf(fact_1_lim__m__a,axiom,
! [N: nat] :
( filterlim_nat_real
@ ^ [M: nat] : ( ann @ i @ M @ N )
@ ( topolo2815343760600316023s_real @ ( ann_cont @ i @ ( semiri5074537144036343181t_real @ N ) ) )
@ at_top_nat ) ).
% lim_m_a
thf(fact_2_tendsto__const,axiom,
! [K: nat,F: filter_nat] :
( filterlim_nat_nat
@ ^ [X: nat] : K
@ ( topolo8926549440605965083ds_nat @ K )
@ F ) ).
% tendsto_const
thf(fact_3_tendsto__const,axiom,
! [K: real,F: filter_nat] :
( filterlim_nat_real
@ ^ [X: nat] : K
@ ( topolo2815343760600316023s_real @ K )
@ F ) ).
% tendsto_const
thf(fact_4_LIMSEQ__const__iff,axiom,
! [K: nat,L: nat] :
( ( filterlim_nat_nat
@ ^ [N2: nat] : K
@ ( topolo8926549440605965083ds_nat @ L )
@ at_top_nat )
= ( K = L ) ) ).
% LIMSEQ_const_iff
thf(fact_5_LIMSEQ__const__iff,axiom,
! [K: real,L: real] :
( ( filterlim_nat_real
@ ^ [N2: nat] : K
@ ( topolo2815343760600316023s_real @ L )
@ at_top_nat )
= ( K = L ) ) ).
% LIMSEQ_const_iff
thf(fact_6_LIMSEQ__unique,axiom,
! [X2: nat > nat,A: nat,B: nat] :
( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ A ) @ at_top_nat )
=> ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ B ) @ at_top_nat )
=> ( A = B ) ) ) ).
% LIMSEQ_unique
thf(fact_7_LIMSEQ__unique,axiom,
! [X2: nat > real,A: real,B: real] :
( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ A ) @ at_top_nat )
=> ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ B ) @ at_top_nat )
=> ( A = B ) ) ) ).
% LIMSEQ_unique
thf(fact_8_of__nat__eq__iff,axiom,
! [M2: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M2 )
= ( semiri5074537144036343181t_real @ N ) )
= ( M2 = N ) ) ).
% of_nat_eq_iff
thf(fact_9_of__nat__eq__iff,axiom,
! [M2: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= ( semiri1314217659103216013at_int @ N ) )
= ( M2 = N ) ) ).
% of_nat_eq_iff
thf(fact_10_tendsto__eq__rhs,axiom,
! [F2: nat > nat,X3: nat,F: filter_nat,Y: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ F )
=> ( ( X3 = Y )
=> ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ Y ) @ F ) ) ) ).
% tendsto_eq_rhs
thf(fact_11_tendsto__eq__rhs,axiom,
! [F2: nat > real,X3: real,F: filter_nat,Y: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ X3 ) @ F )
=> ( ( X3 = Y )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ Y ) @ F ) ) ) ).
% tendsto_eq_rhs
thf(fact_12_tendsto__cong__limit,axiom,
! [F2: nat > nat,L: nat,F: filter_nat,K: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ F )
=> ( ( K = L )
=> ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ K ) @ F ) ) ) ).
% tendsto_cong_limit
thf(fact_13_tendsto__cong__limit,axiom,
! [F2: nat > real,L: real,F: filter_nat,K: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F )
=> ( ( K = L )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ K ) @ F ) ) ) ).
% tendsto_cong_limit
thf(fact_14_lim__d__nom,axiom,
filterlim_nat_real @ ( d_nom @ i ) @ ( topolo2815343760600316023s_real @ ( i_force @ i ) ) @ at_top_nat ).
% lim_d_nom
thf(fact_15_lim__i__nom,axiom,
filterlim_nat_real @ ( i_nom @ i ) @ ( topolo2815343760600316023s_real @ ( i_force @ i ) ) @ at_top_nat ).
% lim_i_nom
thf(fact_16_filterlim__ident,axiom,
! [F: filter_nat] :
( filterlim_nat_nat
@ ^ [X: nat] : X
@ F
@ F ) ).
% filterlim_ident
thf(fact_17_filterlim__compose,axiom,
! [G: real > real,F3: filter_real,F22: filter_real,F2: nat > real,F1: filter_nat] :
( ( filterlim_real_real @ G @ F3 @ F22 )
=> ( ( filterlim_nat_real @ F2 @ F22 @ F1 )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( G @ ( F2 @ X ) )
@ F3
@ F1 ) ) ) ).
% filterlim_compose
thf(fact_18_filterlim__compose,axiom,
! [G: real > nat,F3: filter_nat,F22: filter_real,F2: nat > real,F1: filter_nat] :
( ( filterlim_real_nat @ G @ F3 @ F22 )
=> ( ( filterlim_nat_real @ F2 @ F22 @ F1 )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( G @ ( F2 @ X ) )
@ F3
@ F1 ) ) ) ).
% filterlim_compose
thf(fact_19_filterlim__compose,axiom,
! [G: nat > real,F3: filter_real,F22: filter_nat,F2: nat > nat,F1: filter_nat] :
( ( filterlim_nat_real @ G @ F3 @ F22 )
=> ( ( filterlim_nat_nat @ F2 @ F22 @ F1 )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( G @ ( F2 @ X ) )
@ F3
@ F1 ) ) ) ).
% filterlim_compose
thf(fact_20_filterlim__compose,axiom,
! [G: nat > nat,F3: filter_nat,F22: filter_nat,F2: nat > nat,F1: filter_nat] :
( ( filterlim_nat_nat @ G @ F3 @ F22 )
=> ( ( filterlim_nat_nat @ F2 @ F22 @ F1 )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( G @ ( F2 @ X ) )
@ F3
@ F1 ) ) ) ).
% filterlim_compose
thf(fact_21_interest_Olim__m__a,axiom,
! [I: real,N: nat] :
( ( interest @ I )
=> ( filterlim_nat_real
@ ^ [M: nat] : ( ann @ I @ M @ N )
@ ( topolo2815343760600316023s_real @ ( ann_cont @ I @ ( semiri5074537144036343181t_real @ N ) ) )
@ at_top_nat ) ) ).
% interest.lim_m_a
thf(fact_22_interest_Olim__i__nom,axiom,
! [I: real] :
( ( interest @ I )
=> ( filterlim_nat_real @ ( i_nom @ I ) @ ( topolo2815343760600316023s_real @ ( i_force @ I ) ) @ at_top_nat ) ) ).
% interest.lim_i_nom
thf(fact_23_interest_Olim__d__nom,axiom,
! [I: real] :
( ( interest @ I )
=> ( filterlim_nat_real @ ( d_nom @ I ) @ ( topolo2815343760600316023s_real @ ( i_force @ I ) ) @ at_top_nat ) ) ).
% interest.lim_d_nom
thf(fact_24_delta__0__iff__i__0,axiom,
( ( ( i_force @ i )
= zero_zero_real )
= ( i = zero_zero_real ) ) ).
% delta_0_iff_i_0
thf(fact_25_LIMSEQ__Uniq,axiom,
! [X2: nat > real] :
( uniq_real
@ ^ [L2: real] : ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ).
% LIMSEQ_Uniq
thf(fact_26_LIMSEQ__Uniq,axiom,
! [X2: nat > nat] :
( uniq_nat
@ ^ [L2: nat] : ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ L2 ) @ at_top_nat ) ) ).
% LIMSEQ_Uniq
thf(fact_27_i__nom__1,axiom,
( ( i_nom @ i @ one_one_nat )
= i ) ).
% i_nom_1
thf(fact_28_tendsto__infdist,axiom,
! [F2: nat > real,L: real,F: filter_nat,A2: set_real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( elemen474008666683226335t_real @ ( F2 @ X ) @ A2 )
@ ( topolo2815343760600316023s_real @ ( elemen474008666683226335t_real @ L @ A2 ) )
@ F ) ) ).
% tendsto_infdist
thf(fact_29_tendsto__infnorm,axiom,
! [F2: nat > real,A: real,F: filter_nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( linear_infnorm_real @ ( F2 @ X ) )
@ ( topolo2815343760600316023s_real @ ( linear_infnorm_real @ A ) )
@ F ) ) ).
% tendsto_infnorm
thf(fact_30_LIMSEQ__ignore__initial__segment,axiom,
! [F2: nat > real,A: real,K: nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ at_top_nat )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
@ ( topolo2815343760600316023s_real @ A )
@ at_top_nat ) ) ).
% LIMSEQ_ignore_initial_segment
thf(fact_31_LIMSEQ__ignore__initial__segment,axiom,
! [F2: nat > nat,A: nat,K: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ at_top_nat )
=> ( filterlim_nat_nat
@ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
@ ( topolo8926549440605965083ds_nat @ A )
@ at_top_nat ) ) ).
% LIMSEQ_ignore_initial_segment
thf(fact_32_LIMSEQ__offset,axiom,
! [F2: nat > real,K: nat,A: real] :
( ( filterlim_nat_real
@ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
@ ( topolo2815343760600316023s_real @ A )
@ at_top_nat )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ at_top_nat ) ) ).
% LIMSEQ_offset
thf(fact_33_LIMSEQ__offset,axiom,
! [F2: nat > nat,K: nat,A: nat] :
( ( filterlim_nat_nat
@ ^ [N2: nat] : ( F2 @ ( plus_plus_nat @ N2 @ K ) )
@ ( topolo8926549440605965083ds_nat @ A )
@ at_top_nat )
=> ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ at_top_nat ) ) ).
% LIMSEQ_offset
thf(fact_34_seq__offset__neg,axiom,
! [F2: nat > real,L: real,K: nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
=> ( filterlim_nat_real
@ ^ [I2: nat] : ( F2 @ ( minus_minus_nat @ I2 @ K ) )
@ ( topolo2815343760600316023s_real @ L )
@ at_top_nat ) ) ).
% seq_offset_neg
thf(fact_35_seq__offset__neg,axiom,
! [F2: nat > nat,L: nat,K: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
=> ( filterlim_nat_nat
@ ^ [I2: nat] : ( F2 @ ( minus_minus_nat @ I2 @ K ) )
@ ( topolo8926549440605965083ds_nat @ L )
@ at_top_nat ) ) ).
% seq_offset_neg
thf(fact_36_LIMSEQ__imp__Suc,axiom,
! [F2: nat > real,L: real] :
( ( filterlim_nat_real
@ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
@ ( topolo2815343760600316023s_real @ L )
@ at_top_nat )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ).
% LIMSEQ_imp_Suc
thf(fact_37_LIMSEQ__imp__Suc,axiom,
! [F2: nat > nat,L: nat] :
( ( filterlim_nat_nat
@ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
@ ( topolo8926549440605965083ds_nat @ L )
@ at_top_nat )
=> ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat ) ) ).
% LIMSEQ_imp_Suc
thf(fact_38_LIMSEQ__Suc,axiom,
! [F2: nat > real,L: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
@ ( topolo2815343760600316023s_real @ L )
@ at_top_nat ) ) ).
% LIMSEQ_Suc
thf(fact_39_LIMSEQ__Suc,axiom,
! [F2: nat > nat,L: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
=> ( filterlim_nat_nat
@ ^ [N2: nat] : ( F2 @ ( suc @ N2 ) )
@ ( topolo8926549440605965083ds_nat @ L )
@ at_top_nat ) ) ).
% LIMSEQ_Suc
thf(fact_40_lim__infinity__imp__sequentially,axiom,
! [F2: real > real,L: real] :
( ( filterlim_real_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_infinity_real )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( F2 @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ L )
@ at_top_nat ) ) ).
% lim_infinity_imp_sequentially
thf(fact_41_lim__infinity__imp__sequentially,axiom,
! [F2: real > nat,L: nat] :
( ( filterlim_real_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_infinity_real )
=> ( filterlim_nat_nat
@ ^ [N2: nat] : ( F2 @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo8926549440605965083ds_nat @ L )
@ at_top_nat ) ) ).
% lim_infinity_imp_sequentially
thf(fact_42_a_H_H__calc__i__0,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i = zero_zero_real )
=> ( ( ann_due @ i @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% a''_calc_i_0
thf(fact_43_nat_Oinject,axiom,
! [X22: nat,Y2: nat] :
( ( ( suc @ X22 )
= ( suc @ Y2 ) )
= ( X22 = Y2 ) ) ).
% nat.inject
thf(fact_44_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_45_i__nom__0__iff__i__0,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( ( i_nom @ i @ M2 )
= zero_zero_real )
= ( i = zero_zero_real ) ) ) ).
% i_nom_0_iff_i_0
thf(fact_46_d__nom__0__iff__i__0,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( ( d_nom @ i @ M2 )
= zero_zero_real )
= ( i = zero_zero_real ) ) ) ).
% d_nom_0_iff_i_0
thf(fact_47_a__calc__i__0,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i = zero_zero_real )
=> ( ( ann @ i @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% a_calc_i_0
thf(fact_48_add__is__0,axiom,
! [M2: nat,N: nat] :
( ( ( plus_plus_nat @ M2 @ N )
= zero_zero_nat )
= ( ( M2 = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_49_Nat_Oadd__0__right,axiom,
! [M2: nat] :
( ( plus_plus_nat @ M2 @ zero_zero_nat )
= M2 ) ).
% Nat.add_0_right
thf(fact_50_add__Suc__right,axiom,
! [M2: nat,N: nat] :
( ( plus_plus_nat @ M2 @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M2 @ N ) ) ) ).
% add_Suc_right
thf(fact_51_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_52_diff__self__eq__0,axiom,
! [M2: nat] :
( ( minus_minus_nat @ M2 @ M2 )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_53_diff__Suc__Suc,axiom,
! [M2: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N ) )
= ( minus_minus_nat @ M2 @ N ) ) ).
% diff_Suc_Suc
thf(fact_54_Suc__diff__diff,axiom,
! [M2: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_55_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_56_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri1316708129612266289at_nat @ M2 )
= zero_zero_nat )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_57_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri5074537144036343181t_real @ M2 )
= zero_zero_real )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_58_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= zero_zero_int )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_59_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_60_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_61_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_62_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_63_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_64_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_65_of__nat__add,axiom,
! [M2: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M2 @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_66_of__nat__add,axiom,
! [M2: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M2 @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_67_of__nat__add,axiom,
! [M2: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M2 @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_68_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_69_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_70_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_71_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_72_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_73_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_74_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_75_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_76_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_77_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_78_of__nat__Suc,axiom,
! [M2: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M2 ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M2 ) ) ) ).
% of_nat_Suc
thf(fact_79_of__nat__Suc,axiom,
! [M2: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M2 ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ).
% of_nat_Suc
thf(fact_80_of__nat__Suc,axiom,
! [M2: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M2 ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).
% of_nat_Suc
thf(fact_81_s_H_H__calc__i__0,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i = zero_zero_real )
=> ( ( acc_due @ i @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% s''_calc_i_0
thf(fact_82_s__calc__i__0,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i = zero_zero_real )
=> ( ( acc @ i @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% s_calc_i_0
thf(fact_83_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_84_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_85_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_86_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_87_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_88_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_89_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_90_minus__nat_Odiff__0,axiom,
! [M2: nat] :
( ( minus_minus_nat @ M2 @ zero_zero_nat )
= M2 ) ).
% minus_nat.diff_0
thf(fact_91_add__Suc,axiom,
! [M2: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M2 ) @ N )
= ( suc @ ( plus_plus_nat @ M2 @ N ) ) ) ).
% add_Suc
thf(fact_92_add__is__1,axiom,
! [M2: nat,N: nat] :
( ( ( plus_plus_nat @ M2 @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M2 = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_93_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M: nat,N2: nat] : ( if_nat @ ( M = zero_zero_nat ) @ N2 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ) ) ) ).
% add_eq_if
thf(fact_94_Suc__inject,axiom,
! [X3: nat,Y: nat] :
( ( ( suc @ X3 )
= ( suc @ Y ) )
=> ( X3 = Y ) ) ).
% Suc_inject
thf(fact_95_diff__add__0,axiom,
! [N: nat,M2: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M2 ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_96_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_97_one__is__add,axiom,
! [M2: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M2 @ N ) )
= ( ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M2 = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_98_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_99_Nat_Odiff__cancel,axiom,
! [K: nat,M2: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M2 @ N ) ) ).
% Nat.diff_cancel
thf(fact_100_diff__induct,axiom,
! [P: nat > nat > $o,M2: nat,N: nat] :
( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
=> ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
=> ( ! [X4: nat,Y3: nat] :
( ( P @ X4 @ Y3 )
=> ( P @ ( suc @ X4 ) @ ( suc @ Y3 ) ) )
=> ( P @ M2 @ N ) ) ) ) ).
% diff_induct
thf(fact_101_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_102_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_103_Suc__eq__plus1,axiom,
( suc
= ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_104_Suc__neq__Zero,axiom,
! [M2: nat] :
( ( suc @ M2 )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_105_Zero__neq__Suc,axiom,
! [M2: nat] :
( zero_zero_nat
!= ( suc @ M2 ) ) ).
% Zero_neq_Suc
thf(fact_106_Zero__not__Suc,axiom,
! [M2: nat] :
( zero_zero_nat
!= ( suc @ M2 ) ) ).
% Zero_not_Suc
thf(fact_107_diff__cancel2,axiom,
! [M2: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M2 @ N ) ) ).
% diff_cancel2
thf(fact_108_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_109_add__Suc__shift,axiom,
! [M2: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M2 ) @ N )
= ( plus_plus_nat @ M2 @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_110_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_111_add__eq__self__zero,axiom,
! [M2: nat,N: nat] :
( ( ( plus_plus_nat @ M2 @ N )
= M2 )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_112_diff__add__inverse,axiom,
! [N: nat,M2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M2 ) @ N )
= M2 ) ).
% diff_add_inverse
thf(fact_113_diffs0__imp__equal,axiom,
! [M2: nat,N: nat] :
( ( ( minus_minus_nat @ M2 @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M2 )
= zero_zero_nat )
=> ( M2 = N ) ) ) ).
% diffs0_imp_equal
thf(fact_114_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_115_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_116_diff__add__inverse2,axiom,
! [M2: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N ) @ N )
= M2 ) ).
% diff_add_inverse2
thf(fact_117_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_118_diff__Suc__eq__diff__pred,axiom,
! [M2: nat,N: nat] :
( ( minus_minus_nat @ M2 @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_119_infnorm__eq__0,axiom,
! [X3: real] :
( ( ( linear_infnorm_real @ X3 )
= zero_zero_real )
= ( X3 = zero_zero_real ) ) ).
% infnorm_eq_0
thf(fact_120_infnorm__sub,axiom,
! [X3: real,Y: real] :
( ( linear_infnorm_real @ ( minus_minus_real @ X3 @ Y ) )
= ( linear_infnorm_real @ ( minus_minus_real @ Y @ X3 ) ) ) ).
% infnorm_sub
thf(fact_121_infnorm__0,axiom,
( ( linear_infnorm_real @ zero_zero_real )
= zero_zero_real ) ).
% infnorm_0
thf(fact_122_eq__add__iff,axiom,
! [X3: real,Y: real] :
( ( X3
= ( plus_plus_real @ X3 @ Y ) )
= ( Y = zero_zero_real ) ) ).
% eq_add_iff
thf(fact_123_eq__add__iff,axiom,
! [X3: int,Y: int] :
( ( X3
= ( plus_plus_int @ X3 @ Y ) )
= ( Y = zero_zero_int ) ) ).
% eq_add_iff
thf(fact_124_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_125_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_126_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_127_LIM__zero,axiom,
! [F2: nat > real,L: real,F: filter_nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ L )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F ) ) ).
% LIM_zero
thf(fact_128_LIM__zero__iff,axiom,
! [F2: nat > real,L: real,F: filter_nat] :
( ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ L )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F )
= ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F ) ) ).
% LIM_zero_iff
thf(fact_129_Lim__transform,axiom,
! [G: nat > real,A: real,F: filter_nat,F2: nat > real] :
( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F ) ) ) ).
% Lim_transform
thf(fact_130_Lim__transform2,axiom,
! [F2: nat > real,A: real,F: filter_nat,G: nat > real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F )
=> ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ A ) @ F ) ) ) ).
% Lim_transform2
thf(fact_131_LIM__zero__cancel,axiom,
! [F2: nat > real,L: real,F: filter_nat] :
( ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ L )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F ) ) ).
% LIM_zero_cancel
thf(fact_132_Lim__transform__eq,axiom,
! [F2: nat > real,G: nat > real,F: filter_nat,A: real] :
( ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F )
=> ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
= ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ A ) @ F ) ) ) ).
% Lim_transform_eq
thf(fact_133_tendsto__add__zero,axiom,
! [F2: nat > real,F: filter_nat,G: nat > real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
=> ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( plus_plus_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F ) ) ) ).
% tendsto_add_zero
thf(fact_134_tendsto__add__zero,axiom,
! [F2: nat > nat,F: filter_nat,G: nat > nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ zero_zero_nat ) @ F )
=> ( ( filterlim_nat_nat @ G @ ( topolo8926549440605965083ds_nat @ zero_zero_nat ) @ F )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( plus_plus_nat @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo8926549440605965083ds_nat @ zero_zero_nat )
@ F ) ) ) ).
% tendsto_add_zero
thf(fact_135_tendsto__add__filterlim__at__infinity,axiom,
! [F2: nat > real,C: real,F: filter_nat,G: nat > real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ C ) @ F )
=> ( ( filterlim_nat_real @ G @ at_infinity_real @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( plus_plus_real @ ( F2 @ X ) @ ( G @ X ) )
@ at_infinity_real
@ F ) ) ) ).
% tendsto_add_filterlim_at_infinity
thf(fact_136_tendsto__add__filterlim__at__infinity_H,axiom,
! [F2: nat > real,F: filter_nat,G: nat > real,C: real] :
( ( filterlim_nat_real @ F2 @ at_infinity_real @ F )
=> ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ C ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( plus_plus_real @ ( F2 @ X ) @ ( G @ X ) )
@ at_infinity_real
@ F ) ) ) ).
% tendsto_add_filterlim_at_infinity'
thf(fact_137_filterlim__Suc,axiom,
filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).
% filterlim_Suc
thf(fact_138_interest_Oi__nom__0__iff__i__0,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( ( i_nom @ I @ M2 )
= zero_zero_real )
= ( I = zero_zero_real ) ) ) ) ).
% interest.i_nom_0_iff_i_0
thf(fact_139_interest_Od__nom__0__iff__i__0,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( ( d_nom @ I @ M2 )
= zero_zero_real )
= ( I = zero_zero_real ) ) ) ) ).
% interest.d_nom_0_iff_i_0
thf(fact_140_filterlim__minus__const__nat__at__top,axiom,
! [C: nat] :
( filterlim_nat_nat
@ ^ [N2: nat] : ( minus_minus_nat @ N2 @ C )
@ at_top_nat
@ at_top_nat ) ).
% filterlim_minus_const_nat_at_top
thf(fact_141_filterlim__add__const__nat__at__top,axiom,
! [C: nat] :
( filterlim_nat_nat
@ ^ [N2: nat] : ( plus_plus_nat @ N2 @ C )
@ at_top_nat
@ at_top_nat ) ).
% filterlim_add_const_nat_at_top
thf(fact_142_tendsto__diff,axiom,
! [F2: nat > real,A: real,F: filter_nat,G: nat > real,B: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ B ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ ( minus_minus_real @ A @ B ) )
@ F ) ) ) ).
% tendsto_diff
thf(fact_143_tendsto__add,axiom,
! [F2: nat > real,A: real,F: filter_nat,G: nat > real,B: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ B ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( plus_plus_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ ( plus_plus_real @ A @ B ) )
@ F ) ) ) ).
% tendsto_add
thf(fact_144_tendsto__add,axiom,
! [F2: nat > nat,A: nat,F: filter_nat,G: nat > nat,B: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ F )
=> ( ( filterlim_nat_nat @ G @ ( topolo8926549440605965083ds_nat @ B ) @ F )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( plus_plus_nat @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo8926549440605965083ds_nat @ ( plus_plus_nat @ A @ B ) )
@ F ) ) ) ).
% tendsto_add
thf(fact_145_tendsto__add__const__iff,axiom,
! [C: real,F2: nat > real,D: real,F: filter_nat] :
( ( filterlim_nat_real
@ ^ [X: nat] : ( plus_plus_real @ C @ ( F2 @ X ) )
@ ( topolo2815343760600316023s_real @ ( plus_plus_real @ C @ D ) )
@ F )
= ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ D ) @ F ) ) ).
% tendsto_add_const_iff
thf(fact_146_interest_Oa__calc__i__0,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I = zero_zero_real )
=> ( ( ann @ I @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% interest.a_calc_i_0
thf(fact_147_interest_Oa_H_H__calc__i__0,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I = zero_zero_real )
=> ( ( ann_due @ I @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% interest.a''_calc_i_0
thf(fact_148_filterlim__real__at__infinity__sequentially,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_infinity_real @ at_top_nat ).
% filterlim_real_at_infinity_sequentially
thf(fact_149_tendsto__of__nat,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_infinity_real @ at_top_nat ).
% tendsto_of_nat
thf(fact_150_filterlim__sequentially__Suc,axiom,
! [F2: nat > real,F: filter_real] :
( ( filterlim_nat_real
@ ^ [X: nat] : ( F2 @ ( suc @ X ) )
@ F
@ at_top_nat )
= ( filterlim_nat_real @ F2 @ F @ at_top_nat ) ) ).
% filterlim_sequentially_Suc
thf(fact_151_filterlim__sequentially__Suc,axiom,
! [F2: nat > nat,F: filter_nat] :
( ( filterlim_nat_nat
@ ^ [X: nat] : ( F2 @ ( suc @ X ) )
@ F
@ at_top_nat )
= ( filterlim_nat_nat @ F2 @ F @ at_top_nat ) ) ).
% filterlim_sequentially_Suc
thf(fact_152_interest_Oi__nom__1,axiom,
! [I: real] :
( ( interest @ I )
=> ( ( i_nom @ I @ one_one_nat )
= I ) ) ).
% interest.i_nom_1
thf(fact_153_interest_Odelta__0__iff__i__0,axiom,
! [I: real] :
( ( interest @ I )
=> ( ( ( i_force @ I )
= zero_zero_real )
= ( I = zero_zero_real ) ) ) ).
% interest.delta_0_iff_i_0
thf(fact_154_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_155_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_156_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_157_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_158_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_159_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_160_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_161_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_162_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_163_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_164_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_165_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_166_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_167_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_168_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_169_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_170_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_171_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_172_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_173_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_174_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_175_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_176_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_177_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_178_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_179_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_180_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_181_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_182_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_183_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_184_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_185_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_186_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_187_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_188_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_189_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_190_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_191_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_192_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_193_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_194_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_195_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_196_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_197_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_198_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_199_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_200_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_201_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_202_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_203_add__eq__0__iff__both__eq__0,axiom,
! [X3: nat,Y: nat] :
( ( ( plus_plus_nat @ X3 @ Y )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_204_zero__eq__add__iff__both__eq__0,axiom,
! [X3: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X3 @ Y ) )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_205_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_206_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_207_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_208_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_209_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_210_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_211_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_212_zero__reorient,axiom,
! [X3: real] :
( ( zero_zero_real = X3 )
= ( X3 = zero_zero_real ) ) ).
% zero_reorient
thf(fact_213_zero__reorient,axiom,
! [X3: nat] :
( ( zero_zero_nat = X3 )
= ( X3 = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_214_zero__reorient,axiom,
! [X3: int] :
( ( zero_zero_int = X3 )
= ( X3 = zero_zero_int ) ) ).
% zero_reorient
thf(fact_215_one__reorient,axiom,
! [X3: nat] :
( ( one_one_nat = X3 )
= ( X3 = one_one_nat ) ) ).
% one_reorient
thf(fact_216_one__reorient,axiom,
! [X3: real] :
( ( one_one_real = X3 )
= ( X3 = one_one_real ) ) ).
% one_reorient
thf(fact_217_one__reorient,axiom,
! [X3: int] :
( ( one_one_int = X3 )
= ( X3 = one_one_int ) ) ).
% one_reorient
thf(fact_218_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_219_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_220_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_221_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_222_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_223_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_224_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_225_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_226_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_227_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_228_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_229_group__cancel_Oadd2,axiom,
! [B2: nat,K: nat,B: nat,A: nat] :
( ( B2
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B2 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_230_group__cancel_Oadd2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B2 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_231_group__cancel_Oadd2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B2 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_232_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_233_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_234_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_235_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_236_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_237_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_238_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_239_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_240_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_241_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ B3 @ A3 ) ) ) ).
% add.commute
thf(fact_242_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_243_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_244_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_245_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_246_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_247_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_248_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_249_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_250_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_251_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_252_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_253_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_254_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_255_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_256_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_257_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_258_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_259_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_260_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_261_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_262_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_263_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_264_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [A3: real,B3: real] :
( ( minus_minus_real @ A3 @ B3 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_265_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( minus_minus_int @ A3 @ B3 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_266_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_267_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_268_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_269_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_270_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_271_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_272_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_273_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_274_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_275_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_276_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_277_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_278_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_279_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_280_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_281_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_282_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_283_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_284_diff__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_285_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_286_interest_Os__calc__i__0,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I = zero_zero_real )
=> ( ( acc @ I @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% interest.s_calc_i_0
thf(fact_287_interest_Os_H_H__calc__i__0,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I = zero_zero_real )
=> ( ( acc_due @ I @ M2 @ N )
= ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% interest.s''_calc_i_0
thf(fact_288_d__nom__i__nom,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( minus_minus_real @ one_one_real @ ( divide_divide_real @ ( d_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) )
= ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).
% d_nom_i_nom
thf(fact_289_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_290_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_291_Lim__null,axiom,
! [F2: nat > real,L: real,Net: filter_nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ Net )
= ( filterlim_nat_real
@ ^ [X: nat] : ( minus_minus_real @ ( F2 @ X ) @ L )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ Net ) ) ).
% Lim_null
thf(fact_292_d__nom__pos__iff__i__pos,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( ord_less_real @ zero_zero_real @ ( d_nom @ i @ M2 ) )
= ( ord_less_real @ zero_zero_real @ i ) ) ) ).
% d_nom_pos_iff_i_pos
thf(fact_293_i__nom__pos__iff__i__pos,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( ord_less_real @ zero_zero_real @ ( i_nom @ i @ M2 ) )
= ( ord_less_real @ zero_zero_real @ i ) ) ) ).
% i_nom_pos_iff_i_pos
thf(fact_294_a_H__calc__i__0,axiom,
! [N: real] :
( ( i = zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( ann_cont @ i @ N )
= N ) ) ) ).
% a'_calc_i_0
thf(fact_295_of__nat__code,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N2: nat] :
( semiri8422978514062236437ux_nat
@ ^ [I2: nat] : ( plus_plus_nat @ I2 @ one_one_nat )
@ N2
@ zero_zero_nat ) ) ) ).
% of_nat_code
thf(fact_296_of__nat__code,axiom,
( semiri5074537144036343181t_real
= ( ^ [N2: nat] :
( semiri7260567687927622513x_real
@ ^ [I2: real] : ( plus_plus_real @ I2 @ one_one_real )
@ N2
@ zero_zero_real ) ) ) ).
% of_nat_code
thf(fact_297_of__nat__code,axiom,
( semiri1314217659103216013at_int
= ( ^ [N2: nat] :
( semiri8420488043553186161ux_int
@ ^ [I2: int] : ( plus_plus_int @ I2 @ one_one_int )
@ N2
@ zero_zero_int ) ) ) ).
% of_nat_code
thf(fact_298_v__1__iff__i__0,axiom,
( ( ( v_pres @ i )
= one_one_real )
= ( i = zero_zero_real ) ) ).
% v_1_iff_i_0
thf(fact_299_v__pos,axiom,
ord_less_real @ zero_zero_real @ ( v_pres @ i ) ).
% v_pos
thf(fact_300_v__futr__pos,axiom,
ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ i ) ).
% v_futr_pos
thf(fact_301_v__lt__1__iff__i__pos,axiom,
( ( ord_less_real @ ( v_pres @ i ) @ one_one_real )
= ( ord_less_real @ zero_zero_real @ i ) ) ).
% v_lt_1_iff_i_pos
thf(fact_302_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_303_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_304_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_305_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_306_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_307_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_308_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_309_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_310_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_311_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_312_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_313_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_314_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_315_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_316_of__nat__le__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% of_nat_le_iff
thf(fact_317_of__nat__le__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% of_nat_le_iff
thf(fact_318_of__nat__le__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% of_nat_le_iff
thf(fact_319_of__nat__less__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% of_nat_less_iff
thf(fact_320_of__nat__less__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% of_nat_less_iff
thf(fact_321_of__nat__less__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% of_nat_less_iff
thf(fact_322_v__futr__m__pos,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ).
% v_futr_m_pos
thf(fact_323_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_324_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_325_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_326_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_327_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_328_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_329_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_330_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_331_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_332_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_333_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_334_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_335_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_336_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_337_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_338_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_339_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_340_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_341_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_342_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_343_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_344_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_345_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_346_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_347_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_348_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_349_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_350_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_351_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_352_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_353_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_354_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_355_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_356_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_357_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_358_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_359_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_360_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_361_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_362_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_363_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_364_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_365_tendsto__zero__divide__iff,axiom,
! [C: real,A: nat > real] :
( ( C != zero_zero_real )
=> ( ( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ ( A @ N2 ) @ C )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat )
= ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).
% tendsto_zero_divide_iff
thf(fact_366_s_H__calc__i__0,axiom,
! [N: real] :
( ( i = zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( acc_cont @ i @ N )
= N ) ) ) ).
% s'_calc_i_0
thf(fact_367_v__pres__def,axiom,
( v_pres
= ( ^ [I2: real] : ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).
% v_pres_def
thf(fact_368_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B4: real,C2: real] :
( ( P @ A4 @ B4 )
=> ( ( P @ B4 @ C2 )
=> ( ( ord_less_eq_real @ A4 @ B4 )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( P @ A4 @ C2 ) ) ) ) )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [A4: real,B4: real] :
( ( ( ord_less_eq_real @ A4 @ X4 )
& ( ord_less_eq_real @ X4 @ B4 )
& ( ord_less_real @ ( minus_minus_real @ B4 @ A4 ) @ D2 ) )
=> ( P @ A4 @ B4 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_369_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_370_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_371_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_372_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_373_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_374_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_375_add__mono__thms__linordered__field_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_376_add__mono__thms__linordered__field_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_377_add__mono__thms__linordered__field_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_378_add__mono__thms__linordered__field_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_379_add__mono__thms__linordered__field_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_380_add__mono__thms__linordered__field_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_381_lift__Suc__mono__less__iff,axiom,
! [F2: nat > real,N: nat,M2: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_real @ ( F2 @ N ) @ ( F2 @ M2 ) )
= ( ord_less_nat @ N @ M2 ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_382_lift__Suc__mono__less__iff,axiom,
! [F2: nat > int,N: nat,M2: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_int @ ( F2 @ N ) @ ( F2 @ M2 ) )
= ( ord_less_nat @ N @ M2 ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_383_lift__Suc__mono__less__iff,axiom,
! [F2: nat > nat,N: nat,M2: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ M2 ) )
= ( ord_less_nat @ N @ M2 ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_384_lift__Suc__mono__less,axiom,
! [F2: nat > real,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_real @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_385_lift__Suc__mono__less,axiom,
! [F2: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_int @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_386_lift__Suc__mono__less,axiom,
! [F2: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_387_less__imp__of__nat__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_388_less__imp__of__nat__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_389_less__imp__of__nat__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_390_of__nat__less__imp__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ).
% of_nat_less_imp_less
thf(fact_391_of__nat__less__imp__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ).
% of_nat_less_imp_less
thf(fact_392_of__nat__less__imp__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ).
% of_nat_less_imp_less
thf(fact_393_lift__Suc__antimono__le,axiom,
! [F2: nat > real,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_real @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_394_lift__Suc__antimono__le,axiom,
! [F2: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_395_lift__Suc__antimono__le,axiom,
! [F2: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_396_lift__Suc__mono__le,axiom,
! [F2: nat > real,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_real @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_397_lift__Suc__mono__le,axiom,
! [F2: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_398_lift__Suc__mono__le,axiom,
! [F2: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_399_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_400_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_401_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_402_add__strict__increasing2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_403_add__strict__increasing2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_404_add__strict__increasing2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_405_add__strict__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_406_add__strict__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_407_add__strict__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_408_add__pos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_409_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_410_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_411_add__nonpos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_neg
thf(fact_412_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_413_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_414_add__nonneg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_415_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_416_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_417_add__neg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_nonpos
thf(fact_418_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_419_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_420_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_421_gr__implies__not__zero,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_422_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_423_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_424_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_425_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_426_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_427_zero__le,axiom,
! [X3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X3 ) ).
% zero_le
thf(fact_428_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_429_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_430_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_431_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_432_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_433_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_434_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_435_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_436_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_437_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_438_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_439_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_440_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_441_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_442_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_443_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_444_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_445_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_446_add__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_447_add__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_448_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_449_add__mono__thms__linordered__field_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( K = L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_450_add__mono__thms__linordered__field_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_451_add__mono__thms__linordered__field_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_452_add__mono__thms__linordered__field_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_453_add__mono__thms__linordered__field_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_454_add__mono__thms__linordered__field_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_455_add__mono__thms__linordered__field_I5_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_456_add__mono__thms__linordered__field_I5_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_457_add__mono__thms__linordered__field_I5_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_458_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_459_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_460_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_461_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_462_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_463_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_464_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_465_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_466_interest_Ov__pos,axiom,
! [I: real] :
( ( interest @ I )
=> ( ord_less_real @ zero_zero_real @ ( v_pres @ I ) ) ) ).
% interest.v_pos
thf(fact_467_interest_Ov__lt__1__iff__i__pos,axiom,
! [I: real] :
( ( interest @ I )
=> ( ( ord_less_real @ ( v_pres @ I ) @ one_one_real )
= ( ord_less_real @ zero_zero_real @ I ) ) ) ).
% interest.v_lt_1_iff_i_pos
thf(fact_468_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_469_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_470_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_471_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_472_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_473_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_474_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_475_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_476_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_477_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
? [C3: nat] :
( B3
= ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).
% le_iff_add
thf(fact_478_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_479_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_480_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_481_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C2: nat] :
( B
!= ( plus_plus_nat @ A @ C2 ) ) ) ).
% less_eqE
thf(fact_482_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_483_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_484_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_485_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_486_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_487_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_488_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_489_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_490_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_491_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_492_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_493_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_494_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_495_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_496_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_497_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_498_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_499_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_500_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_501_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_502_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_503_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_504_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_505_lim__mono,axiom,
! [N5: nat,X2: nat > int,Y5: nat > int,X3: int,Y: int] :
( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_int @ ( X2 @ N3 ) @ ( Y5 @ N3 ) ) )
=> ( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
=> ( ( filterlim_nat_int @ Y5 @ ( topolo8924058970096914807ds_int @ Y ) @ at_top_nat )
=> ( ord_less_eq_int @ X3 @ Y ) ) ) ) ).
% lim_mono
thf(fact_506_lim__mono,axiom,
! [N5: nat,X2: nat > real,Y5: nat > real,X3: real,Y: real] :
( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ ( X2 @ N3 ) @ ( Y5 @ N3 ) ) )
=> ( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
=> ( ( filterlim_nat_real @ Y5 @ ( topolo2815343760600316023s_real @ Y ) @ at_top_nat )
=> ( ord_less_eq_real @ X3 @ Y ) ) ) ) ).
% lim_mono
thf(fact_507_lim__mono,axiom,
! [N5: nat,X2: nat > nat,Y5: nat > nat,X3: nat,Y: nat] :
( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_nat @ ( X2 @ N3 ) @ ( Y5 @ N3 ) ) )
=> ( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
=> ( ( filterlim_nat_nat @ Y5 @ ( topolo8926549440605965083ds_nat @ Y ) @ at_top_nat )
=> ( ord_less_eq_nat @ X3 @ Y ) ) ) ) ).
% lim_mono
thf(fact_508_LIMSEQ__le,axiom,
! [X2: nat > int,X3: int,Y5: nat > int,Y: int] :
( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
=> ( ( filterlim_nat_int @ Y5 @ ( topolo8924058970096914807ds_int @ Y ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_int @ ( X2 @ N3 ) @ ( Y5 @ N3 ) ) )
=> ( ord_less_eq_int @ X3 @ Y ) ) ) ) ).
% LIMSEQ_le
thf(fact_509_LIMSEQ__le,axiom,
! [X2: nat > real,X3: real,Y5: nat > real,Y: real] :
( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
=> ( ( filterlim_nat_real @ Y5 @ ( topolo2815343760600316023s_real @ Y ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_real @ ( X2 @ N3 ) @ ( Y5 @ N3 ) ) )
=> ( ord_less_eq_real @ X3 @ Y ) ) ) ) ).
% LIMSEQ_le
thf(fact_510_LIMSEQ__le,axiom,
! [X2: nat > nat,X3: nat,Y5: nat > nat,Y: nat] :
( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
=> ( ( filterlim_nat_nat @ Y5 @ ( topolo8926549440605965083ds_nat @ Y ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_nat @ ( X2 @ N3 ) @ ( Y5 @ N3 ) ) )
=> ( ord_less_eq_nat @ X3 @ Y ) ) ) ) ).
% LIMSEQ_le
thf(fact_511_Lim__bounded,axiom,
! [F2: nat > int,L: int,M4: nat,C4: int] :
( ( filterlim_nat_int @ F2 @ ( topolo8924058970096914807ds_int @ L ) @ at_top_nat )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_int @ ( F2 @ N3 ) @ C4 ) )
=> ( ord_less_eq_int @ L @ C4 ) ) ) ).
% Lim_bounded
thf(fact_512_Lim__bounded,axiom,
! [F2: nat > real,L: real,M4: nat,C4: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_real @ ( F2 @ N3 ) @ C4 ) )
=> ( ord_less_eq_real @ L @ C4 ) ) ) ).
% Lim_bounded
thf(fact_513_Lim__bounded,axiom,
! [F2: nat > nat,L: nat,M4: nat,C4: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
=> ( ord_less_eq_nat @ ( F2 @ N3 ) @ C4 ) )
=> ( ord_less_eq_nat @ L @ C4 ) ) ) ).
% Lim_bounded
thf(fact_514_Lim__bounded2,axiom,
! [F2: nat > int,L: int,N5: nat,C4: int] :
( ( filterlim_nat_int @ F2 @ ( topolo8924058970096914807ds_int @ L ) @ at_top_nat )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_int @ C4 @ ( F2 @ N3 ) ) )
=> ( ord_less_eq_int @ C4 @ L ) ) ) ).
% Lim_bounded2
thf(fact_515_Lim__bounded2,axiom,
! [F2: nat > real,L: real,N5: nat,C4: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_real @ C4 @ ( F2 @ N3 ) ) )
=> ( ord_less_eq_real @ C4 @ L ) ) ) ).
% Lim_bounded2
thf(fact_516_Lim__bounded2,axiom,
! [F2: nat > nat,L: nat,N5: nat,C4: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ at_top_nat )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ N5 @ N3 )
=> ( ord_less_eq_nat @ C4 @ ( F2 @ N3 ) ) )
=> ( ord_less_eq_nat @ C4 @ L ) ) ) ).
% Lim_bounded2
thf(fact_517_LIMSEQ__le__const,axiom,
! [X2: nat > int,X3: int,A: int] :
( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_int @ A @ ( X2 @ N3 ) ) )
=> ( ord_less_eq_int @ A @ X3 ) ) ) ).
% LIMSEQ_le_const
thf(fact_518_LIMSEQ__le__const,axiom,
! [X2: nat > real,X3: real,A: real] :
( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_real @ A @ ( X2 @ N3 ) ) )
=> ( ord_less_eq_real @ A @ X3 ) ) ) ).
% LIMSEQ_le_const
thf(fact_519_LIMSEQ__le__const,axiom,
! [X2: nat > nat,X3: nat,A: nat] :
( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_nat @ A @ ( X2 @ N3 ) ) )
=> ( ord_less_eq_nat @ A @ X3 ) ) ) ).
% LIMSEQ_le_const
thf(fact_520_LIMSEQ__le__const2,axiom,
! [X2: nat > int,X3: int,A: int] :
( ( filterlim_nat_int @ X2 @ ( topolo8924058970096914807ds_int @ X3 ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_int @ ( X2 @ N3 ) @ A ) )
=> ( ord_less_eq_int @ X3 @ A ) ) ) ).
% LIMSEQ_le_const2
thf(fact_521_LIMSEQ__le__const2,axiom,
! [X2: nat > real,X3: real,A: real] :
( ( filterlim_nat_real @ X2 @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_real @ ( X2 @ N3 ) @ A ) )
=> ( ord_less_eq_real @ X3 @ A ) ) ) ).
% LIMSEQ_le_const2
thf(fact_522_LIMSEQ__le__const2,axiom,
! [X2: nat > nat,X3: nat,A: nat] :
( ( filterlim_nat_nat @ X2 @ ( topolo8926549440605965083ds_nat @ X3 ) @ at_top_nat )
=> ( ? [N6: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N6 @ N3 )
=> ( ord_less_eq_nat @ ( X2 @ N3 ) @ A ) )
=> ( ord_less_eq_nat @ X3 @ A ) ) ) ).
% LIMSEQ_le_const2
thf(fact_523_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_524_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_525_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_526_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_527_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_528_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_529_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C2: nat] :
( ( B
= ( plus_plus_nat @ A @ C2 ) )
=> ( C2 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_530_add__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_531_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_532_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_533_add__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_534_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_535_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_536_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A3: real,B3: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_537_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_538_less__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_539_less__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_540_diff__less__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_541_diff__less__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_542_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_543_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_544_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_545_add__nonpos__eq__0__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ( ( plus_plus_real @ X3 @ Y )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_546_add__nonpos__eq__0__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X3 @ Y )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_547_add__nonpos__eq__0__iff,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X3 @ Y )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_548_add__nonneg__eq__0__iff,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( plus_plus_real @ X3 @ Y )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_549_add__nonneg__eq__0__iff,axiom,
! [X3: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X3 @ Y )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_550_add__nonneg__eq__0__iff,axiom,
! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X3 @ Y )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_551_add__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_nonpos
thf(fact_552_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_553_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_554_add__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_555_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_556_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_557_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_558_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_559_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_560_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_561_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_562_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_563_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_564_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_565_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_566_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_567_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_568_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_569_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_570_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B3 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_571_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_572_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_573_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_574_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_575_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_576_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_577_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_578_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_579_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_580_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_581_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_582_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_583_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_584_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_585_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_586_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_587_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_588_interest_Ointro,axiom,
! [I: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I ) )
=> ( interest @ I ) ) ).
% interest.intro
thf(fact_589_interest_Ov__futr__pos,axiom,
! [I: real] :
( ( interest @ I )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I ) ) ) ).
% interest.v_futr_pos
thf(fact_590_interest__def,axiom,
( interest
= ( ^ [I2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).
% interest_def
thf(fact_591_infnorm__triangle,axiom,
! [X3: real,Y: real] : ( ord_less_eq_real @ ( linear_infnorm_real @ ( plus_plus_real @ X3 @ Y ) ) @ ( plus_plus_real @ ( linear_infnorm_real @ X3 ) @ ( linear_infnorm_real @ Y ) ) ) ).
% infnorm_triangle
thf(fact_592_interest_Ov__1__iff__i__0,axiom,
! [I: real] :
( ( interest @ I )
=> ( ( ( v_pres @ I )
= one_one_real )
= ( I = zero_zero_real ) ) ) ).
% interest.v_1_iff_i_0
thf(fact_593_interest_Ov__futr__m__pos,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).
% interest.v_futr_m_pos
thf(fact_594_approx__from__above__dense__linorder,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ? [U: nat > real] :
( ! [N7: nat] : ( ord_less_real @ X3 @ ( U @ N7 ) )
& ( filterlim_nat_real @ U @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat ) ) ) ).
% approx_from_above_dense_linorder
thf(fact_595_approx__from__below__dense__linorder,axiom,
! [Y: real,X3: real] :
( ( ord_less_real @ Y @ X3 )
=> ? [U: nat > real] :
( ! [N7: nat] : ( ord_less_real @ ( U @ N7 ) @ X3 )
& ( filterlim_nat_real @ U @ ( topolo2815343760600316023s_real @ X3 ) @ at_top_nat ) ) ) ).
% approx_from_below_dense_linorder
thf(fact_596_zadd__int__left,axiom,
! [M2: nat,N: nat,Z2: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M2 @ N ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_597_infnorm__pos__lt,axiom,
! [X3: real] :
( ( ord_less_real @ zero_zero_real @ ( linear_infnorm_real @ X3 ) )
= ( X3 != zero_zero_real ) ) ).
% infnorm_pos_lt
thf(fact_598_tendsto__divide,axiom,
! [F2: nat > real,A: real,F: filter_nat,G: nat > real,B: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ B ) @ F )
=> ( ( B != zero_zero_real )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( divide_divide_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ ( divide_divide_real @ A @ B ) )
@ F ) ) ) ) ).
% tendsto_divide
thf(fact_599_tendsto__divide__zero,axiom,
! [F2: nat > real,F: filter_nat,C: real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( divide_divide_real @ ( F2 @ X ) @ C )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F ) ) ).
% tendsto_divide_zero
thf(fact_600_d__nom__def,axiom,
( d_nom
= ( ^ [I2: real,M: nat] : ( divide_divide_real @ ( i_nom @ I2 @ M ) @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I2 @ M ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ).
% d_nom_def
thf(fact_601_interest_Oa_H__calc__i__0,axiom,
! [I: real,N: real] :
( ( interest @ I )
=> ( ( I = zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( ann_cont @ I @ N )
= N ) ) ) ) ).
% interest.a'_calc_i_0
thf(fact_602_tendsto__divide__0,axiom,
! [F2: nat > real,C: real,F: filter_nat,G: nat > real] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ C ) @ F )
=> ( ( filterlim_nat_real @ G @ at_infinity_real @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( divide_divide_real @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F ) ) ) ).
% tendsto_divide_0
thf(fact_603_interest_Oi__nom__pos__iff__i__pos,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( ord_less_real @ zero_zero_real @ ( i_nom @ I @ M2 ) )
= ( ord_less_real @ zero_zero_real @ I ) ) ) ) ).
% interest.i_nom_pos_iff_i_pos
thf(fact_604_interest_Od__nom__pos__iff__i__pos,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( ord_less_real @ zero_zero_real @ ( d_nom @ I @ M2 ) )
= ( ord_less_real @ zero_zero_real @ I ) ) ) ) ).
% interest.d_nom_pos_iff_i_pos
thf(fact_605_lim__const__over__n,axiom,
! [A: real] :
( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% lim_const_over_n
thf(fact_606_lim__inverse__n_H,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% lim_inverse_n'
thf(fact_607_nested__sequence__unique,axiom,
! [F2: nat > real,G: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N3 ) ) @ ( G @ N3 ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( F2 @ N3 ) @ ( G @ N3 ) )
=> ( ( filterlim_nat_real
@ ^ [N2: nat] : ( minus_minus_real @ ( F2 @ N2 ) @ ( G @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat )
=> ? [L3: real] :
( ! [N7: nat] : ( ord_less_eq_real @ ( F2 @ N7 ) @ L3 )
& ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L3 ) @ at_top_nat )
& ! [N7: nat] : ( ord_less_eq_real @ L3 @ ( G @ N7 ) )
& ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L3 ) @ at_top_nat ) ) ) ) ) ) ).
% nested_sequence_unique
thf(fact_608_interest_Od__nom__i__nom,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( minus_minus_real @ one_one_real @ ( divide_divide_real @ ( d_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) )
= ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ) ).
% interest.d_nom_i_nom
thf(fact_609_LIMSEQ__Suc__n__over__n,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ).
% LIMSEQ_Suc_n_over_n
thf(fact_610_LIMSEQ__n__over__Suc__n,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ).
% LIMSEQ_n_over_Suc_n
thf(fact_611_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_612_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_613_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_614_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_615_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_616_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_617_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_618_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_619_zle__add1__eq__le,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_620_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_621_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_622_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_623_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_624_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_625_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_626_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_627_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_628_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_629_Suc__le__mono,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M2 ) )
= ( ord_less_eq_nat @ N @ M2 ) ) ).
% Suc_le_mono
thf(fact_630_Suc__less__eq,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% Suc_less_eq
thf(fact_631_Suc__mono,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_632_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_633_nat__add__left__cancel__le,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_634_nat__add__left__cancel__less,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_635_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_636_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_637_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_638_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_639_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_640_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_641_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_642_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_643_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_644_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_645_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_646_add__gr__0,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M2 )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_647_diff__is__0__eq_H,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ( minus_minus_nat @ M2 @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_648_diff__is__0__eq,axiom,
! [M2: nat,N: nat] :
( ( ( minus_minus_nat @ M2 @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% diff_is_0_eq
thf(fact_649_zero__less__diff,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M2 ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% zero_less_diff
thf(fact_650_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_651_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_652_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_653_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_654_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_655_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_656_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_657_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_658_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_659_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_660_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_661_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_662_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W2: int,Z3: int] :
? [N2: nat] :
( Z3
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_663_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_664_int__diff__cases,axiom,
! [Z2: int] :
~ ! [M3: nat,N3: nat] :
( Z2
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% int_diff_cases
thf(fact_665_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% nonneg_int_cases
thf(fact_666_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_667_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_668_zless__imp__add1__zle,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_669_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_670_zless__add1__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W @ Z2 )
| ( W = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_671_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_672_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_673_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_674_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_675_add1__zle__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
= ( ord_less_int @ W @ Z2 ) ) ).
% add1_zle_eq
thf(fact_676_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_677_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_678_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_679_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_680_le__imp__less__Suc,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_681_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_682_less__Suc__eq__le,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% less_Suc_eq_le
thf(fact_683_le__less__Suc__eq,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M2 ) )
= ( N = M2 ) ) ) ).
% le_less_Suc_eq
thf(fact_684_Suc__le__lessD,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
=> ( ord_less_nat @ M2 @ N ) ) ).
% Suc_le_lessD
thf(fact_685_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_686_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_687_Suc__le__eq,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
= ( ord_less_nat @ M2 @ N ) ) ).
% Suc_le_eq
thf(fact_688_Suc__leI,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_eq_nat @ ( suc @ M2 ) @ N ) ) ).
% Suc_leI
thf(fact_689_mono__nat__linear__lb,axiom,
! [F2: nat > nat,M2: nat,K: nat] :
( ! [M3: nat,N3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ( ord_less_nat @ ( F2 @ M3 ) @ ( F2 @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F2 @ M2 ) @ K ) @ ( F2 @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_690_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_691_less__diff__iff,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M2 @ N ) ) ) ) ).
% less_diff_iff
thf(fact_692_zle__int,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% zle_int
thf(fact_693_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_694_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_695_eq__imp__le,axiom,
! [M2: nat,N: nat] :
( ( M2 = N )
=> ( ord_less_eq_nat @ M2 @ N ) ) ).
% eq_imp_le
thf(fact_696_int__int__eq,axiom,
! [M2: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= ( semiri1314217659103216013at_int @ N ) )
= ( M2 = N ) ) ).
% int_int_eq
thf(fact_697_le__antisym,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ( ord_less_eq_nat @ N @ M2 )
=> ( M2 = N ) ) ) ).
% le_antisym
thf(fact_698_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M: nat,N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
& ( M != N2 ) ) ) ) ).
% nat_less_le
thf(fact_699_nat__neq__iff,axiom,
! [M2: nat,N: nat] :
( ( M2 != N )
= ( ( ord_less_nat @ M2 @ N )
| ( ord_less_nat @ N @ M2 ) ) ) ).
% nat_neq_iff
thf(fact_700_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_701_nat__le__linear,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
| ( ord_less_eq_nat @ N @ M2 ) ) ).
% nat_le_linear
thf(fact_702_less__not__refl2,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ N @ M2 )
=> ( M2 != N ) ) ).
% less_not_refl2
thf(fact_703_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_704_less__imp__le__nat,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_eq_nat @ M2 @ N ) ) ).
% less_imp_le_nat
thf(fact_705_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_706_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M5: nat] :
( ( ord_less_nat @ M5 @ N3 )
=> ( P @ M5 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_707_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N3 )
& ~ ( P @ M5 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_708_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M: nat,N2: nat] :
( ( ord_less_nat @ M @ N2 )
| ( M = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_709_less__or__eq__imp__le,axiom,
! [M2: nat,N: nat] :
( ( ( ord_less_nat @ M2 @ N )
| ( M2 = N ) )
=> ( ord_less_eq_nat @ M2 @ N ) ) ).
% less_or_eq_imp_le
thf(fact_710_linorder__neqE__nat,axiom,
! [X3: nat,Y: nat] :
( ( X3 != Y )
=> ( ~ ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ Y @ X3 ) ) ) ).
% linorder_neqE_nat
thf(fact_711_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y6: nat] :
( ( P @ Y6 )
=> ( ord_less_eq_nat @ Y6 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_712_le__neq__implies__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ( M2 != N )
=> ( ord_less_nat @ M2 @ N ) ) ) ).
% le_neq_implies_less
thf(fact_713_less__mono__imp__le__mono,axiom,
! [F2: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ ( F2 @ I3 ) @ ( F2 @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_714_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_eq_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_715_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_716_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W2: int,Z3: int] :
? [N2: nat] :
( Z3
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_717_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N3 )
& ~ ( P @ M5 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_718_gr__implies__not0,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_719_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_720_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_721_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_722_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_723_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_724_filterlim__mono,axiom,
! [F2: nat > real,F22: filter_real,F1: filter_nat,F23: filter_real,F12: filter_nat] :
( ( filterlim_nat_real @ F2 @ F22 @ F1 )
=> ( ( ord_le4104064031414453916r_real @ F22 @ F23 )
=> ( ( ord_le2510731241096832064er_nat @ F12 @ F1 )
=> ( filterlim_nat_real @ F2 @ F23 @ F12 ) ) ) ) ).
% filterlim_mono
thf(fact_725_filterlim__mono,axiom,
! [F2: nat > nat,F22: filter_nat,F1: filter_nat,F23: filter_nat,F12: filter_nat] :
( ( filterlim_nat_nat @ F2 @ F22 @ F1 )
=> ( ( ord_le2510731241096832064er_nat @ F22 @ F23 )
=> ( ( ord_le2510731241096832064er_nat @ F12 @ F1 )
=> ( filterlim_nat_nat @ F2 @ F23 @ F12 ) ) ) ) ).
% filterlim_mono
thf(fact_726_not__less__less__Suc__eq,axiom,
! [N: nat,M2: nat] :
( ~ ( ord_less_nat @ N @ M2 )
=> ( ( ord_less_nat @ N @ ( suc @ M2 ) )
= ( N = M2 ) ) ) ).
% not_less_less_Suc_eq
thf(fact_727_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( P @ ( suc @ I3 ) )
=> ( P @ I3 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_728_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J2: nat,K2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ K2 )
=> ( ( P @ I3 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I3 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_729_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_730_Suc__less__SucD,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ).
% Suc_less_SucD
thf(fact_731_less__antisym,axiom,
! [N: nat,M2: nat] :
( ~ ( ord_less_nat @ N @ M2 )
=> ( ( ord_less_nat @ N @ ( suc @ M2 ) )
=> ( M2 = N ) ) ) ).
% less_antisym
thf(fact_732_Suc__less__eq2,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M2 )
= ( ? [M6: nat] :
( ( M2
= ( suc @ M6 ) )
& ( ord_less_nat @ N @ M6 ) ) ) ) ).
% Suc_less_eq2
thf(fact_733_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ I2 ) ) ) ) ).
% All_less_Suc
thf(fact_734_not__less__eq,axiom,
! [M2: nat,N: nat] :
( ( ~ ( ord_less_nat @ M2 @ N ) )
= ( ord_less_nat @ N @ ( suc @ M2 ) ) ) ).
% not_less_eq
thf(fact_735_less__Suc__eq,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N ) )
= ( ( ord_less_nat @ M2 @ N )
| ( M2 = N ) ) ) ).
% less_Suc_eq
thf(fact_736_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ N )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ I2 ) ) ) ) ).
% Ex_less_Suc
thf(fact_737_less__SucI,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ord_less_nat @ M2 @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_738_less__SucE,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M2 @ N )
=> ( M2 = N ) ) ) ).
% less_SucE
thf(fact_739_Suc__lessI,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ( ( suc @ M2 )
!= N )
=> ( ord_less_nat @ ( suc @ M2 ) @ N ) ) ) ).
% Suc_lessI
thf(fact_740_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_741_Suc__lessD,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ N )
=> ( ord_less_nat @ M2 @ N ) ) ).
% Suc_lessD
thf(fact_742_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_743_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_744_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_745_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_746_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_747_transitive__stepwise__le,axiom,
! [M2: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ! [X4: nat] : ( R @ X4 @ X4 )
=> ( ! [X4: nat,Y3: nat,Z4: nat] :
( ( R @ X4 @ Y3 )
=> ( ( R @ Y3 @ Z4 )
=> ( R @ X4 @ Z4 ) ) )
=> ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
=> ( R @ M2 @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_748_nat__induct__at__least,axiom,
! [M2: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ( P @ M2 )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M2 @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_749_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M5: nat] :
( ( ord_less_eq_nat @ ( suc @ M5 ) @ N3 )
=> ( P @ M5 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_750_not__less__eq__eq,axiom,
! [M2: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M2 @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M2 ) ) ).
% not_less_eq_eq
thf(fact_751_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_752_le__Suc__eq,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M2 @ N )
| ( M2
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_753_Suc__le__D,axiom,
! [N: nat,M7: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M7 )
=> ? [M3: nat] :
( M7
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_754_le__SucI,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ord_less_eq_nat @ M2 @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_755_le__SucE,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ M2 @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M2 @ N )
=> ( M2
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_756_Suc__leD,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N )
=> ( ord_less_eq_nat @ M2 @ N ) ) ).
% Suc_leD
thf(fact_757_less__add__eq__less,axiom,
! [K: nat,L: nat,M2: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M2 @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ) ).
% less_add_eq_less
thf(fact_758_trans__less__add2,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).
% trans_less_add2
thf(fact_759_trans__less__add1,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).
% trans_less_add1
thf(fact_760_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_761_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_762_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_763_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_764_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_765_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M: nat,N2: nat] :
? [K3: nat] :
( N2
= ( plus_plus_nat @ M @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_766_trans__le__add2,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).
% trans_le_add2
thf(fact_767_trans__le__add1,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).
% trans_le_add1
thf(fact_768_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_769_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_770_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_771_add__leD2,axiom,
! [M2: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_772_add__leD1,axiom,
! [M2: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
=> ( ord_less_eq_nat @ M2 @ N ) ) ).
% add_leD1
thf(fact_773_le__add2,axiom,
! [N: nat,M2: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M2 @ N ) ) ).
% le_add2
thf(fact_774_le__add1,axiom,
! [N: nat,M2: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M2 ) ) ).
% le_add1
thf(fact_775_add__leE,axiom,
! [M2: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M2 @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_776_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_777_diff__less__mono2,axiom,
! [M2: nat,N: nat,L: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ( ord_less_nat @ M2 @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).
% diff_less_mono2
thf(fact_778_diff__le__mono2,axiom,
! [M2: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).
% diff_le_mono2
thf(fact_779_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_780_diff__le__self,axiom,
! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ).
% diff_le_self
thf(fact_781_diff__le__mono,axiom,
! [M2: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_782_Nat_Odiff__diff__eq,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M2 @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_783_le__diff__iff,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ) ) ).
% le_diff_iff
thf(fact_784_eq__diff__iff,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M2 @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M2 = N ) ) ) ) ).
% eq_diff_iff
thf(fact_785_less__Suc__eq__0__disj,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N ) )
= ( ( M2 = zero_zero_nat )
| ? [J3: nat] :
( ( M2
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_786_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_787_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ ( suc @ I2 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_788_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M: nat] :
( N
= ( suc @ M ) ) ) ) ).
% gr0_conv_Suc
thf(fact_789_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ ( suc @ I2 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_790_tendsto__mono,axiom,
! [F: filter_nat,F4: filter_nat,F2: nat > real,L: real] :
( ( ord_le2510731241096832064er_nat @ F @ F4 )
=> ( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F4 )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ F ) ) ) ).
% tendsto_mono
thf(fact_791_tendsto__mono,axiom,
! [F: filter_nat,F4: filter_nat,F2: nat > nat,L: nat] :
( ( ord_le2510731241096832064er_nat @ F @ F4 )
=> ( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ F4 )
=> ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ L ) @ F ) ) ) ).
% tendsto_mono
thf(fact_792_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_793_less__imp__Suc__add,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_794_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M: nat,N2: nat] :
? [K3: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_795_less__add__Suc2,axiom,
! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M2 @ I ) ) ) ).
% less_add_Suc2
thf(fact_796_less__add__Suc1,axiom,
! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M2 ) ) ) ).
% less_add_Suc1
thf(fact_797_less__natE,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ~ ! [Q: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M2 @ Q ) ) ) ) ).
% less_natE
thf(fact_798_diff__less,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ) ) ).
% diff_less
thf(fact_799_diff__less__Suc,axiom,
! [M2: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ ( suc @ M2 ) ) ).
% diff_less_Suc
thf(fact_800_Suc__diff__Suc,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ N @ M2 )
=> ( ( suc @ ( minus_minus_nat @ M2 @ ( suc @ N ) ) )
= ( minus_minus_nat @ M2 @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_801_Suc__diff__le,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq_nat @ N @ M2 )
=> ( ( minus_minus_nat @ ( suc @ M2 ) @ N )
= ( suc @ ( minus_minus_nat @ M2 @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_802_add__diff__inverse__nat,axiom,
! [M2: nat,N: nat] :
( ~ ( ord_less_nat @ M2 @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M2 @ N ) )
= M2 ) ) ).
% add_diff_inverse_nat
thf(fact_803_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_804_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_805_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_806_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_807_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_808_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_809_linordered__field__no__lb,axiom,
! [X5: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X5 ) ).
% linordered_field_no_lb
thf(fact_810_linordered__field__no__ub,axiom,
! [X5: real] :
? [X_1: real] : ( ord_less_real @ X5 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_811_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_812_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_813_of__nat__diff,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq_nat @ N @ M2 )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M2 @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_814_of__nat__diff,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq_nat @ N @ M2 )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M2 @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_815_of__nat__diff,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq_nat @ N @ M2 )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M2 @ N ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% of_nat_diff
thf(fact_816_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D3: nat] :
( ( A
= ( plus_plus_nat @ B @ D3 ) )
& ~ ( P @ D3 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_817_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D3: nat] :
( ( A
= ( plus_plus_nat @ B @ D3 ) )
=> ( P @ D3 ) ) ) ) ).
% nat_diff_split
thf(fact_818_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M2 ) @ N )
= ( minus_minus_nat @ M2 @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_819_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_820_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_821_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_822_interest_Os_H__calc__i__0,axiom,
! [I: real,N: real] :
( ( interest @ I )
=> ( ( I = zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( acc_cont @ I @ N )
= N ) ) ) ) ).
% interest.s'_calc_i_0
thf(fact_823_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_824_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_825_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_826_divide__nonneg__nonneg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_827_divide__nonneg__nonpos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_828_divide__nonpos__nonneg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_829_divide__nonpos__nonpos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_830_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_831_divide__neg__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_832_divide__neg__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_833_divide__pos__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_834_divide__pos__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_835_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_836_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_837_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_838_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_839_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_840_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_841_field__le__epsilon,axiom,
! [X3: real,Y: real] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ( ord_less_eq_real @ X3 @ ( plus_plus_real @ Y @ E ) ) )
=> ( ord_less_eq_real @ X3 @ Y ) ) ).
% field_le_epsilon
thf(fact_842_frac__le,axiom,
! [Y: real,X3: real,W: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_843_frac__less,axiom,
! [X3: real,Y: real,W: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z2 )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_844_frac__less2,axiom,
! [X3: real,Y: real,W: real,Z2: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ X3 @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_real @ W @ Z2 )
=> ( ord_less_real @ ( divide_divide_real @ X3 @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_845_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_846_divide__nonneg__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_847_divide__nonneg__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonneg_pos
thf(fact_848_divide__nonpos__neg,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y ) ) ) ) ).
% divide_nonpos_neg
thf(fact_849_divide__nonpos__pos,axiom,
! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_850_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_851_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_852_gt__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).
% gt_half_sum
thf(fact_853_less__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).
% less_half_sum
thf(fact_854_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_855_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_856_a_H_H__calc,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i != zero_zero_real )
=> ( ( ann_due @ i @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ i ) @ N ) ) @ ( d_nom @ i @ M2 ) ) ) ) ) ).
% a''_calc
thf(fact_857_increasing__LIMSEQ,axiom,
! [F2: nat > real,L: real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ! [N3: nat] : ( ord_less_eq_real @ ( F2 @ N3 ) @ L )
=> ( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [N7: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F2 @ N7 ) @ E ) ) )
=> ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_858_a__calc,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i != zero_zero_real )
=> ( ( ann @ i @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ i ) @ N ) ) @ ( i_nom @ i @ M2 ) ) ) ) ) ).
% a_calc
thf(fact_859_s_H_H__calc,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i != zero_zero_real )
=> ( ( acc_due @ i @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ one_one_real ) @ ( d_nom @ i @ M2 ) ) ) ) ) ).
% s''_calc
thf(fact_860_s__calc,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( i != zero_zero_real )
=> ( ( acc @ i @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ one_one_real ) @ ( i_nom @ i @ M2 ) ) ) ) ) ).
% s_calc
thf(fact_861_lim__1__over__n,axiom,
( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% lim_1_over_n
thf(fact_862_i__nom__eff,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ M2 )
= ( plus_plus_real @ one_one_real @ i ) ) ) ).
% i_nom_eff
thf(fact_863_zle__diff1__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z2 @ one_one_int ) )
= ( ord_less_int @ W @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_864_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_865_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_866_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_867_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_868_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_869_tendsto__power,axiom,
! [F2: nat > real,A: real,F: filter_nat,N: nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ A ) @ F )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( power_power_real @ ( F2 @ X ) @ N )
@ ( topolo2815343760600316023s_real @ ( power_power_real @ A @ N ) )
@ F ) ) ).
% tendsto_power
thf(fact_870_tendsto__power__strong,axiom,
! [F2: nat > int,A: int,F: filter_nat,G: nat > nat,B: nat] :
( ( filterlim_nat_int @ F2 @ ( topolo8924058970096914807ds_int @ A ) @ F )
=> ( ( filterlim_nat_nat @ G @ ( topolo8926549440605965083ds_nat @ B ) @ F )
=> ( filterlim_nat_int
@ ^ [X: nat] : ( power_power_int @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo8924058970096914807ds_int @ ( power_power_int @ A @ B ) )
@ F ) ) ) ).
% tendsto_power_strong
thf(fact_871_tendsto__power__strong,axiom,
! [F2: nat > nat,A: nat,F: filter_nat,G: nat > nat,B: nat] :
( ( filterlim_nat_nat @ F2 @ ( topolo8926549440605965083ds_nat @ A ) @ F )
=> ( ( filterlim_nat_nat @ G @ ( topolo8926549440605965083ds_nat @ B ) @ F )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( power_power_nat @ ( F2 @ X ) @ ( G @ X ) )
@ ( topolo8926549440605965083ds_nat @ ( power_power_nat @ A @ B ) )
@ F ) ) ) ).
% tendsto_power_strong
thf(fact_872_filterlim__power__at__infinity,axiom,
! [F2: nat > real,F: filter_nat,N: nat] :
( ( filterlim_nat_real @ F2 @ at_infinity_real @ F )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( power_power_real @ ( F2 @ X ) @ N )
@ at_infinity_real
@ F ) ) ) ).
% filterlim_power_at_infinity
thf(fact_873_tendsto__null__power,axiom,
! [F2: nat > real,F: filter_nat,N: nat] :
( ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( filterlim_nat_real
@ ^ [X: nat] : ( power_power_real @ ( F2 @ X ) @ N )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F ) ) ) ).
% tendsto_null_power
thf(fact_874_interest_Oi__nom__eff,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ M2 )
= ( plus_plus_real @ one_one_real @ I ) ) ) ) ).
% interest.i_nom_eff
thf(fact_875_LIMSEQ__realpow__zero,axiom,
! [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ X3 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_876_LIMSEQ__divide__realpow__zero,axiom,
! [X3: real,A: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( filterlim_nat_real
@ ^ [N2: nat] : ( divide_divide_real @ A @ ( power_power_real @ X3 @ N2 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_877_interest_Os__calc,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I != zero_zero_real )
=> ( ( acc @ I @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ one_one_real ) @ ( i_nom @ I @ M2 ) ) ) ) ) ) ).
% interest.s_calc
thf(fact_878_interest_Os_H_H__calc,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I != zero_zero_real )
=> ( ( acc_due @ I @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ one_one_real ) @ ( d_nom @ I @ M2 ) ) ) ) ) ) ).
% interest.s''_calc
thf(fact_879_interest_Oa__calc,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I != zero_zero_real )
=> ( ( ann @ I @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ I ) @ N ) ) @ ( i_nom @ I @ M2 ) ) ) ) ) ) ).
% interest.a_calc
thf(fact_880_interest_Oa_H_H__calc,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( I != zero_zero_real )
=> ( ( ann_due @ I @ M2 @ N )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( v_pres @ I ) @ N ) ) @ ( d_nom @ I @ M2 ) ) ) ) ) ) ).
% interest.a''_calc
thf(fact_881_power__tendsto__0__iff,axiom,
! [N: nat,F2: nat > real,F: filter_nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_nat_real
@ ^ [X: nat] : ( power_power_real @ ( F2 @ X ) @ N )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ F )
= ( filterlim_nat_real @ F2 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ F ) ) ) ).
% power_tendsto_0_iff
thf(fact_882_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_883_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X3 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_884_of__nat__zero__less__power__iff,axiom,
! [X3: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X3 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_885_power__decreasing__iff,axiom,
! [B: real,M2: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M2 ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_886_power__decreasing__iff,axiom,
! [B: int,M2: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M2 ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_887_power__decreasing__iff,axiom,
! [B: nat,M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M2 ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_888_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_889_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_890_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_891_nat__power__eq__Suc__0__iff,axiom,
! [X3: nat,M2: nat] :
( ( ( power_power_nat @ X3 @ M2 )
= ( suc @ zero_zero_nat ) )
= ( ( M2 = zero_zero_nat )
| ( X3
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_892_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_893_of__nat__power,axiom,
! [M2: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M2 @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ N ) ) ).
% of_nat_power
thf(fact_894_of__nat__power,axiom,
! [M2: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M2 @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M2 ) @ N ) ) ).
% of_nat_power
thf(fact_895_of__nat__power,axiom,
! [M2: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M2 @ N ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M2 ) @ N ) ) ).
% of_nat_power
thf(fact_896_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X3 ) )
= ( ( power_power_nat @ B @ W )
= X3 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_897_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
= ( semiri5074537144036343181t_real @ X3 ) )
= ( ( power_power_nat @ B @ W )
= X3 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_898_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X3 ) )
= ( ( power_power_nat @ B @ W )
= X3 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_899_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X3 )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X3
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_900_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X3 )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( X3
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_901_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X3 )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X3
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_902_nat__zero__less__power__iff,axiom,
! [X3: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X3 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_903_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_904_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_905_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_906_power__inject__exp,axiom,
! [A: real,M2: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M2 )
= ( power_power_real @ A @ N ) )
= ( M2 = N ) ) ) ).
% power_inject_exp
thf(fact_907_power__inject__exp,axiom,
! [A: int,M2: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M2 )
= ( power_power_int @ A @ N ) )
= ( M2 = N ) ) ) ).
% power_inject_exp
thf(fact_908_power__inject__exp,axiom,
! [A: nat,M2: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M2 )
= ( power_power_nat @ A @ N ) )
= ( M2 = N ) ) ) ).
% power_inject_exp
thf(fact_909_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_910_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_911_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_912_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_913_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_914_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_915_power__strict__increasing__iff,axiom,
! [B: real,X3: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_916_power__strict__increasing__iff,axiom,
! [B: int,X3: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_917_power__strict__increasing__iff,axiom,
! [B: nat,X3: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_nat @ X3 @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_918_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_919_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_920_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_921_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_922_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_923_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_924_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_925_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_926_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X3 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_927_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_928_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_929_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X3: nat,B: nat,W: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_930_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_931_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_932_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X3: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X3 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_933_power__increasing__iff,axiom,
! [B: real,X3: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_934_power__increasing__iff,axiom,
! [B: int,X3: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_935_power__increasing__iff,axiom,
! [B: nat,X3: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_eq_nat @ X3 @ Y ) ) ) ).
% power_increasing_iff
thf(fact_936_power__strict__decreasing__iff,axiom,
! [B: real,M2: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M2 ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_937_power__strict__decreasing__iff,axiom,
! [B: int,M2: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M2 ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_938_power__strict__decreasing__iff,axiom,
! [B: nat,M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M2 ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_939_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_940_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_941_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_942_nat__power__less__imp__less,axiom,
! [I: nat,M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M2 ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_943_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).
% nat_one_le_power
thf(fact_944_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_945_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_946_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_947_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_948_power__divide,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
= ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_divide
thf(fact_949_power__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono
thf(fact_950_power__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono
thf(fact_951_power__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_952_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_953_zero__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_power
thf(fact_954_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_955_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_956_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_957_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_958_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_959_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_960_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_961_power__one__over,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% power_one_over
thf(fact_962_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_963_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_964_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_965_power__less__imp__less__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_966_power__less__imp__less__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_967_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_968_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_969_power__le__one,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_970_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_971_power__inject__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_972_power__inject__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N ) )
= ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_973_power__inject__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_974_power__le__imp__le__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_975_power__le__imp__le__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_976_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_977_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_978_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_979_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_980_power__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_981_power__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_982_power__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_983_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_984_power__gt1,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_985_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_986_power__less__imp__less__exp,axiom,
! [A: real,M2: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M2 ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_987_power__less__imp__less__exp,axiom,
! [A: int,M2: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_988_power__less__imp__less__exp,axiom,
! [A: nat,M2: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M2 @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_989_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_990_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_991_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_992_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_993_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_994_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_995_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_996_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_997_power__Suc__le__self,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_998_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_999_power__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1000_power__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1001_power__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1002_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_1003_power__Suc__less__one,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_1004_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_1005_power__le__imp__le__exp,axiom,
! [A: real,M2: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M2 ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M2 @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_1006_power__le__imp__le__exp,axiom,
! [A: int,M2: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M2 @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_1007_power__le__imp__le__exp,axiom,
! [A: nat,M2: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M2 @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_1008_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1009_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1010_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1011_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1012_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1013_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1014_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1015_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1016_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1017_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_1018_self__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_1019_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_1020_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_1021_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_1022_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_1023_power__diff,axiom,
! [A: real,N: nat,M2: nat] :
( ( A != zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M2 )
=> ( ( power_power_real @ A @ ( minus_minus_nat @ M2 @ N ) )
= ( divide_divide_real @ ( power_power_real @ A @ M2 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_1024_power__diff,axiom,
! [A: int,N: nat,M2: nat] :
( ( A != zero_zero_int )
=> ( ( ord_less_eq_nat @ N @ M2 )
=> ( ( power_power_int @ A @ ( minus_minus_nat @ M2 @ N ) )
= ( divide_divide_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_1025_power__diff,axiom,
! [A: nat,N: nat,M2: nat] :
( ( A != zero_zero_nat )
=> ( ( ord_less_eq_nat @ N @ M2 )
=> ( ( power_power_nat @ A @ ( minus_minus_nat @ M2 @ N ) )
= ( divide_divide_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_1026_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1027_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ( power_power_real @ X4 @ N )
= A )
& ! [Y6: real] :
( ( ( ord_less_real @ zero_zero_real @ Y6 )
& ( ( power_power_real @ Y6 @ N )
= A ) )
=> ( Y6 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1028_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_1029_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_1030_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_1031_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_1032_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_1033_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_1034_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_1035_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_1036_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_1037_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_1038_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_1039_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_1040_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_1041_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_1042_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_1043_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_1044_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_1045_div__by__Suc__0,axiom,
! [M2: nat] :
( ( divide_divide_nat @ M2 @ ( suc @ zero_zero_nat ) )
= M2 ) ).
% div_by_Suc_0
thf(fact_1046_div__less,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ M2 @ N )
=> ( ( divide_divide_nat @ M2 @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_1047_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1048_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1049_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1050_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1051_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1052_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1053_linorder__neqE__linordered__idom,axiom,
! [X3: real,Y: real] :
( ( X3 != Y )
=> ( ~ ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ Y @ X3 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1054_linorder__neqE__linordered__idom,axiom,
! [X3: int,Y: int] :
( ( X3 != Y )
=> ( ~ ( ord_less_int @ X3 @ Y )
=> ( ord_less_int @ Y @ X3 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1055_div__le__mono,axiom,
! [M2: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_1056_div__le__dividend,axiom,
! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N ) @ M2 ) ).
% div_le_dividend
thf(fact_1057_zdiv__int,axiom,
! [M2: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M2 @ N ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% zdiv_int
thf(fact_1058_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_1059_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_1060_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_1061_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M2: nat,N: nat] :
( ( ( divide_divide_nat @ M2 @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M2 @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_1062_Suc__div__le__mono,axiom,
! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N ) @ ( divide_divide_nat @ ( suc @ M2 ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_1063_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_1064_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_1065_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_1066_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_1067_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_1068_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_1069_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1070_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1071_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1072_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_1073_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_1074_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_1075_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_1076_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_1077_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_1078_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_1079_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_1080_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_1081_add__less__zeroD,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X3 @ Y ) @ zero_zero_real )
=> ( ( ord_less_real @ X3 @ zero_zero_real )
| ( ord_less_real @ Y @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_1082_add__less__zeroD,axiom,
! [X3: int,Y: int] :
( ( ord_less_int @ ( plus_plus_int @ X3 @ Y ) @ zero_zero_int )
=> ( ( ord_less_int @ X3 @ zero_zero_int )
| ( ord_less_int @ Y @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_1083_add__le__add__imp__diff__le,axiom,
! [I: real,K: real,N: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1084_add__le__add__imp__diff__le,axiom,
! [I: int,K: int,N: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1085_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1086_add__le__imp__le__diff,axiom,
! [I: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1087_add__le__imp__le__diff,axiom,
! [I: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1088_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1089_add__mono1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).
% add_mono1
thf(fact_1090_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_1091_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_1092_less__add__one,axiom,
! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).
% less_add_one
thf(fact_1093_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_1094_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_1095_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: real,B: real] :
( ~ ( ord_less_real @ A @ B )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_1096_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: int,B: int] :
( ~ ( ord_less_int @ A @ B )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_1097_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ~ ( ord_less_nat @ A @ B )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_1098_div__le__mono2,axiom,
! [M2: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ( ord_less_eq_nat @ M2 @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M2 ) ) ) ) ).
% div_le_mono2
thf(fact_1099_div__greater__zero__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M2 @ N ) )
= ( ( ord_less_eq_nat @ N @ M2 )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_1100_div__less__dividend,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ord_less_nat @ ( divide_divide_nat @ M2 @ N ) @ M2 ) ) ) ).
% div_less_dividend
thf(fact_1101_div__eq__dividend__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ( ( divide_divide_nat @ M2 @ N )
= M2 )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_1102_int__div__less__self,axiom,
! [X3: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X3 )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X3 @ K ) @ X3 ) ) ) ).
% int_div_less_self
thf(fact_1103_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_1104_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_1105_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_1106_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
= ( ord_less_eq_int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_1107_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_1108_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_1109_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
= ( ( K = zero_zero_int )
| ( L = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_1110_zdiv__mono2__neg,axiom,
! [A: int,B5: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B5 )
=> ( ( ord_less_eq_int @ B5 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B5 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_1111_zdiv__mono1__neg,axiom,
! [A: int,A5: int,B: int] :
( ( ord_less_eq_int @ A @ A5 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_1112_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide_int @ I @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_1113_zdiv__mono2,axiom,
! [A: int,B5: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B5 )
=> ( ( ord_less_eq_int @ B5 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B5 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_1114_zdiv__mono1,axiom,
! [A: int,A5: int,B: int] :
( ( ord_less_eq_int @ A @ A5 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_1115_zero__less__two,axiom,
ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).
% zero_less_two
thf(fact_1116_zero__less__two,axiom,
ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).
% zero_less_two
thf(fact_1117_zero__less__two,axiom,
ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).
% zero_less_two
thf(fact_1118_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_1119_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_1120_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_1121_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_1122_div__if,axiom,
( divide_divide_nat
= ( ^ [M: nat,N2: nat] :
( if_nat
@ ( ( ord_less_nat @ M @ N2 )
| ( N2 = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).
% div_if
thf(fact_1123_le__div__geq,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ M2 )
=> ( ( divide_divide_nat @ M2 @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M2 @ N ) @ N ) ) ) ) ) ).
% le_div_geq
thf(fact_1124_power__diff__power__eq,axiom,
! [A: int,N: nat,M2: nat] :
( ( A != zero_zero_int )
=> ( ( ( ord_less_eq_nat @ N @ M2 )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N ) )
= ( power_power_int @ A @ ( minus_minus_nat @ M2 @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M2 )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M2 ) @ ( power_power_int @ A @ N ) )
= ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M2 ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_1125_power__diff__power__eq,axiom,
! [A: nat,N: nat,M2: nat] :
( ( A != zero_zero_nat )
=> ( ( ( ord_less_eq_nat @ N @ M2 )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N ) )
= ( power_power_nat @ A @ ( minus_minus_nat @ M2 @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M2 )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M2 ) @ ( power_power_nat @ A @ N ) )
= ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M2 ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_1126_int__power__div__base,axiom,
! [M2: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M2 ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_1127_div__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).
% div_pos_geq
thf(fact_1128_s_H_H__a_H_H,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( acc_due @ i @ M2 @ N )
= ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ ( ann_due @ i @ M2 @ N ) ) ) ) ).
% s''_a''
thf(fact_1129_s__a,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( acc @ i @ M2 @ N )
= ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ ( ann @ i @ M2 @ N ) ) ) ) ).
% s_a
thf(fact_1130_reals__power__lt__ex,axiom,
! [X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ one_one_real @ Y )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ord_less_real @ ( power_power_real @ ( divide_divide_real @ one_one_real @ Y ) @ K2 ) @ X3 ) ) ) ) ).
% reals_power_lt_ex
thf(fact_1131_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1132_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1133_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1134_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1135_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1136_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1137_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_1138_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_1139_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_1140_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_1141_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_1142_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_1143_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_1144_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_1145_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_1146_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_1147_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_1148_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_1149_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_1150_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_1151_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_1152_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_1153_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_1154_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_1155_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_1156_of__nat__mult,axiom,
! [M2: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M2 @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_1157_of__nat__mult,axiom,
! [M2: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M2 @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_1158_of__nat__mult,axiom,
! [M2: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M2 @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_1159_real__divide__square__eq,axiom,
! [R3: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R3 @ A ) @ ( times_times_real @ R3 @ R3 ) )
= ( divide_divide_real @ A @ R3 ) ) ).
% real_divide_square_eq
thf(fact_1160_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_1161_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_1162_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_1163_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_1164_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_1165_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_1166_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_1167_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_1168_sum__squares__eq__zero__iff,axiom,
! [X3: real,Y: real] :
( ( ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y @ Y ) )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1169_sum__squares__eq__zero__iff,axiom,
! [X3: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_1170_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1171_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1172_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1173_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1174_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1175_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1176_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_1177_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_1178_not__real__square__gt__zero,axiom,
! [X3: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X3 @ X3 ) ) )
= ( X3 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_1179_linear__plus__1__le__power,axiom,
! [X3: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X3 ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X3 @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_1180_interest_Os__a,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( acc @ I @ M2 @ N )
= ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ ( ann @ I @ M2 @ N ) ) ) ) ) ).
% interest.s_a
thf(fact_1181_interest_Os_H_H__a_H_H,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( acc_due @ I @ M2 @ N )
= ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ ( ann_due @ I @ M2 @ N ) ) ) ) ) ).
% interest.s''_a''
thf(fact_1182_s__s_H_H,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( acc @ i @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( v_pres @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( acc_due @ i @ M2 @ N ) ) ) ) ).
% s_s''
thf(fact_1183_a__a_H_H,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( ann @ i @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( v_pres @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( ann_due @ i @ M2 @ N ) ) ) ) ).
% a_a''
thf(fact_1184_mult__is__0,axiom,
! [M2: nat,N: nat] :
( ( ( times_times_nat @ M2 @ N )
= zero_zero_nat )
= ( ( M2 = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_1185_mult__0__right,axiom,
! [M2: nat] :
( ( times_times_nat @ M2 @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_1186_mult__cancel1,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N ) )
= ( ( M2 = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_1187_mult__cancel2,axiom,
! [M2: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M2 @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M2 = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_1188_nat__1__eq__mult__iff,axiom,
! [M2: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M2 @ N ) )
= ( ( M2 = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_1189_nat__mult__eq__1__iff,axiom,
! [M2: nat,N: nat] :
( ( ( times_times_nat @ M2 @ N )
= one_one_nat )
= ( ( M2 = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_1190_i__nom__i,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) )
= ( powr_real @ ( plus_plus_real @ one_one_real @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ).
% i_nom_i
thf(fact_1191_s_H__a_H,axiom,
! [N: real] :
( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( acc_cont @ i @ N )
= ( times_times_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ ( ann_cont @ i @ N ) ) ) ) ).
% s'_a'
thf(fact_1192_d__nom__v,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( d_nom @ i @ M2 )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( minus_minus_real @ one_one_real @ ( powr_real @ ( v_pres @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ) ).
% d_nom_v
thf(fact_1193_d__nom__i__nom__v,axiom,
! [M2: nat] :
( ( M2 != zero_zero_nat )
=> ( ( d_nom @ i @ M2 )
= ( times_times_real @ ( i_nom @ i @ M2 ) @ ( powr_real @ ( v_pres @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).
% d_nom_i_nom_v
thf(fact_1194_a_H_H__a,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( ann_due @ i @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( ann @ i @ M2 @ N ) ) ) ) ).
% a''_a
thf(fact_1195_s_H__calc,axiom,
! [N: real] :
( ( i != zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( acc_cont @ i @ N )
= ( divide_divide_real @ ( minus_minus_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ i ) @ N ) @ one_one_real ) @ ( i_force @ i ) ) ) ) ) ).
% s'_calc
thf(fact_1196_s_H_H__s,axiom,
! [M2: nat,N: nat] :
( ( M2 != zero_zero_nat )
=> ( ( acc_due @ i @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( acc @ i @ M2 @ N ) ) ) ) ).
% s''_s
thf(fact_1197_a_H__calc,axiom,
! [N: real] :
( ( i != zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( ann_cont @ i @ N )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( powr_real @ ( v_pres @ i ) @ N ) ) @ ( i_force @ i ) ) ) ) ) ).
% a'_calc
thf(fact_1198_mult__eq__1__iff,axiom,
! [M2: nat,N: nat] :
( ( ( times_times_nat @ M2 @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_1199_one__eq__mult__iff,axiom,
! [M2: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M2 @ N ) )
= ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_1200_mult__less__cancel2,axiom,
! [M2: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M2 @ N ) ) ) ).
% mult_less_cancel2
thf(fact_1201_nat__0__less__mult__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M2 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M2 )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_1202_mult__Suc__right,axiom,
! [M2: nat,N: nat] :
( ( times_times_nat @ M2 @ ( suc @ N ) )
= ( plus_plus_nat @ M2 @ ( times_times_nat @ M2 @ N ) ) ) ).
% mult_Suc_right
thf(fact_1203_one__le__mult__iff,axiom,
! [M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M2 @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M2 )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_1204_mult__le__cancel2,axiom,
! [M2: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M2 @ N ) ) ) ).
% mult_le_cancel2
thf(fact_1205_powr__eq__one__iff__gen,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ( powr_real @ A @ X3 )
= one_one_real )
= ( X3 = zero_zero_real ) ) ) ) ).
% powr_eq_one_iff_gen
thf(fact_1206_div__mult__self__is__m,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M2 @ N ) @ N )
= M2 ) ) ).
% div_mult_self_is_m
thf(fact_1207_div__mult__self1__is__m,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M2 ) @ N )
= M2 ) ) ).
% div_mult_self1_is_m
thf(fact_1208_div__mult2__eq,axiom,
! [M2: nat,N: nat,Q2: nat] :
( ( divide_divide_nat @ M2 @ ( times_times_nat @ N @ Q2 ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M2 @ N ) @ Q2 ) ) ).
% div_mult2_eq
thf(fact_1209_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1210_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_1211_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1212_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1213_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_1214_Suc__mult__cancel1,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M2 )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M2 = N ) ) ).
% Suc_mult_cancel1
thf(fact_1215_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_1216_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_1217_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_1218_le__square,axiom,
! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ).
% le_square
thf(fact_1219_le__cube,axiom,
! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ) ).
% le_cube
thf(fact_1220_add__mult__distrib,axiom,
! [M2: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M2 @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_1221_add__mult__distrib2,axiom,
! [K: nat,M2: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M2 @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1222_diff__mult__distrib,axiom,
! [M2: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M2 @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_1223_diff__mult__distrib2,axiom,
! [K: nat,M2: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M2 @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_1224_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_1225_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_1226_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_1227_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_1228_powr__less__cancel2,axiom,
! [A: real,X3: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X3 )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y @ A ) )
=> ( ord_less_real @ X3 @ Y ) ) ) ) ) ).
% powr_less_cancel2
thf(fact_1229_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_1230_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_1231_Suc__mult__le__cancel1,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M2 ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M2 @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_1232_Suc__mult__less__cancel1,axiom,
! [K: nat,M2: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M2 ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M2 @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_1233_mult__Suc,axiom,
! [M2: nat,N: nat] :
( ( times_times_nat @ ( suc @ M2 ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M2 @ N ) ) ) ).
% mult_Suc
thf(fact_1234_mult__eq__self__implies__10,axiom,
! [M2: nat,N: nat] :
( ( M2
= ( times_times_nat @ M2 @ N ) )
=> ( ( N = one_one_nat )
| ( M2 = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_1235_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1236_times__div__less__eq__dividend,axiom,
! [N: nat,M2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M2 @ N ) ) @ M2 ) ).
% times_div_less_eq_dividend
thf(fact_1237_div__times__less__eq__dividend,axiom,
! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M2 @ N ) @ N ) @ M2 ) ).
% div_times_less_eq_dividend
thf(fact_1238_less__mult__imp__div__less,axiom,
! [M2: nat,I: nat,N: nat] :
( ( ord_less_nat @ M2 @ ( times_times_nat @ I @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M2 @ N ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_1239_one__less__mult,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M2 @ N ) ) ) ) ).
% one_less_mult
thf(fact_1240_n__less__m__mult__n,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
=> ( ord_less_nat @ N @ ( times_times_nat @ M2 @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_1241_n__less__n__mult__m,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M2 ) ) ) ) ).
% n_less_n_mult_m
thf(fact_1242_div__less__iff__less__mult,axiom,
! [Q2: nat,M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M2 @ Q2 ) @ N )
= ( ord_less_nat @ M2 @ ( times_times_nat @ N @ Q2 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_1243_pos__zmult__eq__1__iff,axiom,
! [M2: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M2 )
=> ( ( ( times_times_int @ M2 @ N )
= one_one_int )
= ( ( M2 = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1244_zdiv__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% zdiv_zmult2_eq
thf(fact_1245_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M: nat,N2: nat] : ( if_nat @ ( M = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1246_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1247_less__eq__div__iff__mult__less__eq,axiom,
! [Q2: nat,M2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_eq_nat @ M2 @ ( divide_divide_nat @ N @ Q2 ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M2 @ Q2 ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_1248_div__nat__eqI,axiom,
! [N: nat,Q2: nat,M2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q2 ) @ M2 )
=> ( ( ord_less_nat @ M2 @ ( times_times_nat @ N @ ( suc @ Q2 ) ) )
=> ( ( divide_divide_nat @ M2 @ N )
= Q2 ) ) ) ).
% div_nat_eqI
thf(fact_1249_dividend__less__times__div,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M2 @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M2 @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_1250_dividend__less__div__times,axiom,
! [N: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M2 @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M2 @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_1251_split__div,axiom,
! [P: nat > $o,M2: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M2 @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I2: nat,J3: nat] :
( ( ( ord_less_nat @ J3 @ N )
& ( M2
= ( plus_plus_nat @ ( times_times_nat @ N @ I2 ) @ J3 ) ) )
=> ( P @ I2 ) ) ) ) ) ).
% split_div
thf(fact_1252_mult__nat__left__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).
% mult_nat_left_at_top
thf(fact_1253_mult__nat__right__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( times_times_nat @ X @ C )
@ at_top_nat
@ at_top_nat ) ) ).
% mult_nat_right_at_top
thf(fact_1254_split__div_H,axiom,
! [P: nat > $o,M2: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M2 @ N ) )
= ( ( ( N = zero_zero_nat )
& ( P @ zero_zero_nat ) )
| ? [Q3: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q3 ) @ M2 )
& ( ord_less_nat @ M2 @ ( times_times_nat @ N @ ( suc @ Q3 ) ) )
& ( P @ Q3 ) ) ) ) ).
% split_div'
thf(fact_1255_int__div__pos__eq,axiom,
! [A: int,B: int,Q2: int,R3: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R3 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R3 )
=> ( ( ord_less_int @ R3 @ B )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_pos_eq
thf(fact_1256_int__div__neg__eq,axiom,
! [A: int,B: int,Q2: int,R3: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R3 ) )
=> ( ( ord_less_eq_int @ R3 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R3 )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_neg_eq
thf(fact_1257_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I2: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ I2 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I2: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ I2 ) ) ) ) ) ).
% split_zdiv
thf(fact_1258_i__nom__def,axiom,
( i_nom
= ( ^ [I2: real,M: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( minus_minus_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ I2 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) @ one_one_real ) ) ) ) ).
% i_nom_def
thf(fact_1259_interest_Oi__nom__i,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) )
= ( powr_real @ ( plus_plus_real @ one_one_real @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).
% interest.i_nom_i
thf(fact_1260_interest_Os_H__a_H,axiom,
! [I: real,N: real] :
( ( interest @ I )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( acc_cont @ I @ N )
= ( times_times_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ ( ann_cont @ I @ N ) ) ) ) ) ).
% interest.s'_a'
thf(fact_1261_interest_Od__nom__v,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( d_nom @ I @ M2 )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( minus_minus_real @ one_one_real @ ( powr_real @ ( v_pres @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ) ) ).
% interest.d_nom_v
thf(fact_1262_interest_Od__nom__i__nom__v,axiom,
! [I: real,M2: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( d_nom @ I @ M2 )
= ( times_times_real @ ( i_nom @ I @ M2 ) @ ( powr_real @ ( v_pres @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ) ).
% interest.d_nom_i_nom_v
thf(fact_1263_interest_Oa_H_H__a,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( ann_due @ I @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( ann @ I @ M2 @ N ) ) ) ) ) ).
% interest.a''_a
thf(fact_1264_interest_Os_H__calc,axiom,
! [I: real,N: real] :
( ( interest @ I )
=> ( ( I != zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( acc_cont @ I @ N )
= ( divide_divide_real @ ( minus_minus_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ one_one_real ) @ ( i_force @ I ) ) ) ) ) ) ).
% interest.s'_calc
thf(fact_1265_interest_Os_H_H__s,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( acc_due @ I @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( acc @ I @ M2 @ N ) ) ) ) ) ).
% interest.s''_s
thf(fact_1266_interest_Oa_H__calc,axiom,
! [I: real,N: real] :
( ( interest @ I )
=> ( ( I != zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ N )
=> ( ( ann_cont @ I @ N )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( powr_real @ ( v_pres @ I ) @ N ) ) @ ( i_force @ I ) ) ) ) ) ) ).
% interest.a'_calc
thf(fact_1267_interest_Oa__a_H_H,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( ann @ I @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( v_pres @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( ann_due @ I @ M2 @ N ) ) ) ) ) ).
% interest.a_a''
thf(fact_1268_interest_Os__s_H_H,axiom,
! [I: real,M2: nat,N: nat] :
( ( interest @ I )
=> ( ( M2 != zero_zero_nat )
=> ( ( acc @ I @ M2 @ N )
= ( times_times_real @ ( powr_real @ ( v_pres @ I ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ ( acc_due @ I @ M2 @ N ) ) ) ) ) ).
% interest.s_s''
thf(fact_1269_powr__le__cancel__iff,axiom,
! [X3: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ( ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% powr_le_cancel_iff
thf(fact_1270_powr__eq__one__iff,axiom,
! [A: real,X3: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( powr_real @ A @ X3 )
= one_one_real )
= ( X3 = zero_zero_real ) ) ) ).
% powr_eq_one_iff
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X3: nat,Y: nat] :
( ( if_nat @ $false @ X3 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X3: nat,Y: nat] :
( ( if_nat @ $true @ X3 @ Y )
= X3 ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( filterlim_nat_real
@ ^ [M: nat] : ( ann_due @ i @ M @ n )
@ ( topolo2815343760600316023s_real @ ( ann_cont @ i @ ( semiri5074537144036343181t_real @ n ) ) )
@ at_top_nat ) ).
%------------------------------------------------------------------------------