TPTP Problem File: SLH0736^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Eval_FO/0005_Ailamazyan/prob_01614_060484__15728778_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1413 ( 691 unt; 145 typ; 0 def)
% Number of atoms : 3393 (1280 equ; 0 cnn)
% Maximal formula atoms : 18 ( 2 avg)
% Number of connectives : 9604 ( 386 ~; 59 |; 134 &;7630 @)
% ( 0 <=>;1395 =>; 0 <=; 0 <~>)
% Maximal formula depth : 29 ( 6 avg)
% Number of types : 18 ( 17 usr)
% Number of type conns : 480 ( 480 >; 0 *; 0 +; 0 <<)
% Number of symbols : 131 ( 128 usr; 21 con; 0-4 aty)
% Number of variables : 3222 ( 229 ^;2907 !; 86 ?;3222 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 13:06:33.330
%------------------------------------------------------------------------------
% Could-be-implicit typings (17)
thf(ty_n_t__List__Olist_It__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J_J,type,
list_l1586611297644397841_a_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J_J,type,
set_li8553678471444574443_a_nat: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
list_l4703314356710769291_a_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
set_li6526943997496501093_a_nat: $tType ).
thf(ty_n_t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
list_Sum_sum_a_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
set_Sum_sum_a_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Real__Oreal_J_J,type,
set_list_real: $tType ).
thf(ty_n_t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
sum_sum_a_nat: $tType ).
thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
option_nat: $tType ).
thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
list_real: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_Itf__a_J,type,
set_a: $tType ).
thf(ty_n_t__String__Ochar,type,
char: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (128)
thf(sy_c_Ailamazyan_Oad__agr__list_001tf__a_001t__Nat__Onat,type,
ad_agr_list_a_nat: set_a > list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o ).
thf(sy_c_Ailamazyan_Oadd__nth_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
add_nt4212672348507122516_a_nat: nat > sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_Ailamazyan_Ofo__nmlz_001tf__a,type,
fo_nmlz_a: set_a > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_Ailamazyan_Ofo__nmlz__rec_001tf__a,type,
fo_nmlz_rec_a: nat > ( sum_sum_a_nat > option_nat ) > set_a > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_Ailamazyan_Oid__map_001tf__a,type,
id_map_a: nat > sum_sum_a_nat > option_nat ).
thf(sy_c_Ailamazyan_Onall__tuples__rec_001tf__a,type,
nall_tuples_rec_a: set_a > nat > nat > set_li6526943997496501093_a_nat ).
thf(sy_c_Ailamazyan_Orem__nth_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
rem_nt658808235856662061_a_nat: nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
archim7802044766580827645g_real: real > int ).
thf(sy_c_BNF__Greatest__Fixpoint_OShift_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
bNF_Gr7276609778055257636_a_nat: set_li8553678471444574443_a_nat > list_Sum_sum_a_nat > set_li8553678471444574443_a_nat ).
thf(sy_c_BNF__Greatest__Fixpoint_OShift_001t__Real__Oreal,type,
bNF_Gr3712412480325189581t_real: set_list_real > real > set_list_real ).
thf(sy_c_BNF__Greatest__Fixpoint_OShift_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
bNF_Gr1229660863860170270_a_nat: set_li6526943997496501093_a_nat > sum_sum_a_nat > set_li6526943997496501093_a_nat ).
thf(sy_c_BNF__Greatest__Fixpoint_OSucc_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
bNF_Gr828430269543142304_a_nat: set_li8553678471444574443_a_nat > list_l4703314356710769291_a_nat > set_li6526943997496501093_a_nat ).
thf(sy_c_BNF__Greatest__Fixpoint_OSucc_001t__Real__Oreal,type,
bNF_Gr2087828336424606033c_real: set_list_real > list_real > set_real ).
thf(sy_c_BNF__Greatest__Fixpoint_OSucc_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
bNF_Gr5582227268375839130_a_nat: set_li6526943997496501093_a_nat > list_Sum_sum_a_nat > set_Sum_sum_a_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_M_Eo_J,type,
uminus4331925969656920193_nat_o: ( list_Sum_sum_a_nat > $o ) > list_Sum_sum_a_nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
uminus_uminus_real_o: ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
uminus2192744996606729052_a_nat: set_li6526943997496501093_a_nat > set_li6526943997496501093_a_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
uminus612125837232591019t_real: set_real > set_real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_HOL_Oundefined_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
undefi6325633994470778349_a_nat: list_Sum_sum_a_nat ).
thf(sy_c_HOL_Oundefined_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
undefi718397827653426791_a_nat: sum_sum_a_nat ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
if_lis4685338526944683083_a_nat: $o > list_Sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_If_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
if_Sum_sum_a_nat: $o > sum_sum_a_nat > sum_sum_a_nat > sum_sum_a_nat ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
ring_1_of_int_int: int > int ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_List_Oappend_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
append5415888156905520160_a_nat: list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Oappend_001t__Real__Oreal,type,
append_real: list_real > list_real > list_real ).
thf(sy_c_List_Oappend_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
append_Sum_sum_a_nat: list_Sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Oarg__min__list_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_001t__Int__Oint,type,
arg_mi6700288694081292423at_int: ( sum_sum_a_nat > int ) > list_Sum_sum_a_nat > sum_sum_a_nat ).
thf(sy_c_List_Oarg__min__list_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_001t__Nat__Onat,type,
arg_mi6702779164590342699at_nat: ( sum_sum_a_nat > nat ) > list_Sum_sum_a_nat > sum_sum_a_nat ).
thf(sy_c_List_Oarg__min__list_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_001t__Real__Oreal,type,
arg_mi3310826532295632775t_real: ( sum_sum_a_nat > real ) > list_Sum_sum_a_nat > sum_sum_a_nat ).
thf(sy_c_List_Obutlast_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
butlas5768530507476509265_a_nat: list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Oconcat_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
concat6944889260076905158_a_nat: list_l1586611297644397841_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Oconcat_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
concat_Sum_sum_a_nat: list_l4703314356710769291_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_OdropWhile_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
dropWh368498264657702054_a_nat: ( sum_sum_a_nat > $o ) > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Ogen__length_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
gen_le1340941697924381074_a_nat: nat > list_Sum_sum_a_nat > nat ).
thf(sy_c_List_Oinsert_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
insert_Sum_sum_a_nat: sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Olast_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
last_Sum_sum_a_nat: list_Sum_sum_a_nat > sum_sum_a_nat ).
thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
cons_l6604326339930385211_a_nat: list_Sum_sum_a_nat > list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Olist_OCons_001t__Real__Oreal,type,
cons_real: real > list_real > list_real ).
thf(sy_c_List_Olist_OCons_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
cons_Sum_sum_a_nat: sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
nil_li1906260230833442699_a_nat: list_l4703314356710769291_a_nat ).
thf(sy_c_List_Olist_ONil_001t__Real__Oreal,type,
nil_real: list_real ).
thf(sy_c_List_Olist_ONil_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
nil_Sum_sum_a_nat: list_Sum_sum_a_nat ).
thf(sy_c_List_Olist_Ocase__list_001t__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
case_l8396473456174167578_a_nat: list_l4703314356710769291_a_nat > ( sum_sum_a_nat > list_Sum_sum_a_nat > list_l4703314356710769291_a_nat ) > list_Sum_sum_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Olist_Ocase__list_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
case_l4306230254520888864_a_nat: list_Sum_sum_a_nat > ( sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat ) > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Olist_Omap_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_001t__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
map_li7363445039720430346_a_nat: ( list_Sum_sum_a_nat > list_l4703314356710769291_a_nat ) > list_l4703314356710769291_a_nat > list_l1586611297644397841_a_nat ).
thf(sy_c_List_Olist_Omap_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
map_li6507455427659069316_a_nat: ( list_Sum_sum_a_nat > list_Sum_sum_a_nat ) > list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Olist_Omap_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_001t__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
map_Su9164500608518484112_a_nat: ( sum_sum_a_nat > list_l4703314356710769291_a_nat ) > list_Sum_sum_a_nat > list_l1586611297644397841_a_nat ).
thf(sy_c_List_Olist_Omap_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
map_Su3479376915845212170_a_nat: ( sum_sum_a_nat > list_Sum_sum_a_nat ) > list_Sum_sum_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Olist_Omap_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
map_Su2790769393171190532_a_nat: ( sum_sum_a_nat > sum_sum_a_nat ) > list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_On__lists_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
n_list6375351914370498317_a_nat: nat > list_Sum_sum_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Onths_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
nths_Sum_sum_a_nat: list_Sum_sum_a_nat > set_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Oproduct__lists_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
produc2893206433618375022_a_nat: list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Oremdups__adj_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
remdup8712921452854877243_a_nat: list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Oremdups__adj__rel_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
remdup4248092976464397064_a_nat: list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o ).
thf(sy_c_List_Orotate1_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
rotate2765497868024679250_a_nat: list_Sum_sum_a_nat > list_Sum_sum_a_nat ).
thf(sy_c_List_Osubseqs_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
subseq8414445098004693972_a_nat: list_Sum_sum_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Otranspose_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
transp3407494602793885583_a_nat: list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat ).
thf(sy_c_List_Otranspose__rel_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
transp5153232018850850996_a_nat: list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat > $o ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
size_s5283204784079214577_a_nat: list_Sum_sum_a_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
size_size_char: char > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
size_s2581288809450988139_a_nat: sum_sum_a_nat > nat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
neg_nu6075765906172075777c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
none_nat: option_nat ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_M_Eo_J,type,
ord_le1063195477160961548_nat_o: ( list_Sum_sum_a_nat > $o ) > ( list_Sum_sum_a_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
ord_le5291801191193052689_a_nat: set_li6526943997496501093_a_nat > set_li6526943997496501093_a_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_M_Eo_J,type,
ord_le8737610411969296920_nat_o: ( list_Sum_sum_a_nat > $o ) > ( list_Sum_sum_a_nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
ord_le1147066620699065093_a_nat: set_li6526943997496501093_a_nat > set_li6526943997496501093_a_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Int__Oint,type,
order_Greatest_int: ( int > $o ) > int ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Real__Oreal,type,
order_Greatest_real: ( real > $o ) > real ).
thf(sy_c_Orderings_Oordering__top_001t__Nat__Onat,type,
ordering_top_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > nat > $o ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
collec7555443234367654128_a_nat: ( list_Sum_sum_a_nat > $o ) > set_li6526943997496501093_a_nat ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set_OCollect_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
collec7073057861543223018_a_nat: ( sum_sum_a_nat > $o ) > set_Sum_sum_a_nat ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_Sum__Type_OInr_001t__Nat__Onat_001tf__a,type,
sum_Inr_nat_a: nat > sum_sum_a_nat ).
thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
accp_l4010222820662054932_a_nat: ( list_l4703314356710769291_a_nat > list_l4703314356710769291_a_nat > $o ) > list_l4703314356710769291_a_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
accp_l5179987679515777422_a_nat: ( list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o ) > list_Sum_sum_a_nat > $o ).
thf(sy_c_member_001t__List__Olist_It__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_J,type,
member6656483030743143220_a_nat: list_l4703314356710769291_a_nat > set_li8553678471444574443_a_nat > $o ).
thf(sy_c_member_001t__List__Olist_It__Real__Oreal_J,type,
member_list_real: list_real > set_list_real > $o ).
thf(sy_c_member_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
member408289922725080238_a_nat: list_Sum_sum_a_nat > set_li6526943997496501093_a_nat > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_c_member_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
member_Sum_sum_a_nat: sum_sum_a_nat > set_Sum_sum_a_nat > $o ).
thf(sy_v_AD,type,
ad: set_a ).
thf(sy_v_b____,type,
b: nat ).
thf(sy_v_j,type,
j: nat ).
thf(sy_v_ja____,type,
ja: nat ).
thf(sy_v_x____,type,
x: sum_sum_a_nat ).
thf(sy_v_xs,type,
xs: list_Sum_sum_a_nat ).
thf(sy_v_xsa____,type,
xsa: list_Sum_sum_a_nat ).
% Relevant facts (1256)
thf(fact_0_nall__tuples__rec__length,axiom,
! [Xs: list_Sum_sum_a_nat,AD: set_a,I: nat,N: nat] :
( ( member408289922725080238_a_nat @ Xs @ ( nall_tuples_rec_a @ AD @ I @ N ) )
=> ( ( size_s5283204784079214577_a_nat @ Xs )
= N ) ) ).
% nall_tuples_rec_length
thf(fact_1_Inr,axiom,
( x
= ( sum_Inr_nat_a @ b ) ) ).
% Inr
thf(fact_2_list_Oinject,axiom,
! [X21: sum_sum_a_nat,X22: list_Sum_sum_a_nat,Y21: sum_sum_a_nat,Y22: list_Sum_sum_a_nat] :
( ( ( cons_Sum_sum_a_nat @ X21 @ X22 )
= ( cons_Sum_sum_a_nat @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X22 = Y22 ) ) ) ).
% list.inject
thf(fact_3_Cons_Oprems,axiom,
( ( fo_nmlz_rec_a @ ja @ ( id_map_a @ ja ) @ ad @ ( cons_Sum_sum_a_nat @ x @ xsa ) )
= ( cons_Sum_sum_a_nat @ x @ xsa ) ) ).
% Cons.prems
thf(fact_4_b__j,axiom,
ord_less_eq_nat @ b @ ja ).
% b_j
thf(fact_5_Cons_OIH,axiom,
! [J: nat] :
( ( ( fo_nmlz_rec_a @ J @ ( id_map_a @ J ) @ ad @ xsa )
= xsa )
=> ( member408289922725080238_a_nat @ xsa @ ( nall_tuples_rec_a @ ad @ J @ ( size_s5283204784079214577_a_nat @ xsa ) ) ) ) ).
% Cons.IH
thf(fact_6_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs2: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ Xs2 )
= N ) ).
% Ex_list_of_length
thf(fact_7_neq__if__length__neq,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
!= ( size_s5283204784079214577_a_nat @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_8_size__neq__size__imp__neq,axiom,
! [X: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( ( size_s5283204784079214577_a_nat @ X )
!= ( size_s5283204784079214577_a_nat @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_9_size__neq__size__imp__neq,axiom,
! [X: char,Y: char] :
( ( ( size_size_char @ X )
!= ( size_size_char @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_10_not__Cons__self2,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( cons_Sum_sum_a_nat @ X @ Xs )
!= Xs ) ).
% not_Cons_self2
thf(fact_11_assms,axiom,
( ( fo_nmlz_rec_a @ j @ ( id_map_a @ j ) @ ad @ xs )
= xs ) ).
% assms
thf(fact_12_fo__nmlz__length,axiom,
! [AD: set_a,Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( fo_nmlz_a @ AD @ Xs ) )
= ( size_s5283204784079214577_a_nat @ Xs ) ) ).
% fo_nmlz_length
thf(fact_13_ad__agr__list__length,axiom,
! [X2: set_a,Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ad_agr_list_a_nat @ X2 @ Xs @ Ys )
=> ( ( size_s5283204784079214577_a_nat @ Xs )
= ( size_s5283204784079214577_a_nat @ Ys ) ) ) ).
% ad_agr_list_length
thf(fact_14_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_15_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_16_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_17_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_18_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_19_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_20_nall__tuples__rec__fo__nmlz__rec__sound,axiom,
! [I: nat,J: nat,Xs: list_Sum_sum_a_nat,AD: set_a,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( member408289922725080238_a_nat @ Xs @ ( nall_tuples_rec_a @ AD @ I @ N ) )
=> ( ( fo_nmlz_rec_a @ J @ ( id_map_a @ J ) @ AD @ Xs )
= Xs ) ) ) ).
% nall_tuples_rec_fo_nmlz_rec_sound
thf(fact_21_impossible__Cons,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( ord_less_eq_nat @ ( size_s5283204784079214577_a_nat @ Xs ) @ ( size_s5283204784079214577_a_nat @ Ys ) )
=> ( Xs
!= ( cons_Sum_sum_a_nat @ X @ Ys ) ) ) ).
% impossible_Cons
thf(fact_22_fo__nmlz__rec__length,axiom,
! [I: nat,M: sum_sum_a_nat > option_nat,AD: set_a,Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( fo_nmlz_rec_a @ I @ M @ AD @ Xs ) )
= ( size_s5283204784079214577_a_nat @ Xs ) ) ).
% fo_nmlz_rec_length
thf(fact_23_sum_Oinject_I2_J,axiom,
! [X23: nat,Y23: nat] :
( ( ( sum_Inr_nat_a @ X23 )
= ( sum_Inr_nat_a @ Y23 ) )
= ( X23 = Y23 ) ) ).
% sum.inject(2)
thf(fact_24_old_Osum_Oinject_I2_J,axiom,
! [B: nat,B2: nat] :
( ( ( sum_Inr_nat_a @ B )
= ( sum_Inr_nat_a @ B2 ) )
= ( B = B2 ) ) ).
% old.sum.inject(2)
thf(fact_25_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_26_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_27_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_28_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_29_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_30_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_31_arg__min__list_Osimps_I2_J,axiom,
! [F: sum_sum_a_nat > nat,X: sum_sum_a_nat,Y: sum_sum_a_nat,Zs: list_Sum_sum_a_nat] :
( ( arg_mi6702779164590342699at_nat @ F @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) )
= ( if_Sum_sum_a_nat @ ( ord_less_eq_nat @ ( F @ X ) @ ( F @ ( arg_mi6702779164590342699at_nat @ F @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) ) ) @ X @ ( arg_mi6702779164590342699at_nat @ F @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) ) ) ).
% arg_min_list.simps(2)
thf(fact_32_arg__min__list_Osimps_I2_J,axiom,
! [F: sum_sum_a_nat > int,X: sum_sum_a_nat,Y: sum_sum_a_nat,Zs: list_Sum_sum_a_nat] :
( ( arg_mi6700288694081292423at_int @ F @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) )
= ( if_Sum_sum_a_nat @ ( ord_less_eq_int @ ( F @ X ) @ ( F @ ( arg_mi6700288694081292423at_int @ F @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) ) ) @ X @ ( arg_mi6700288694081292423at_int @ F @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) ) ) ).
% arg_min_list.simps(2)
thf(fact_33_arg__min__list_Osimps_I2_J,axiom,
! [F: sum_sum_a_nat > real,X: sum_sum_a_nat,Y: sum_sum_a_nat,Zs: list_Sum_sum_a_nat] :
( ( arg_mi3310826532295632775t_real @ F @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) )
= ( if_Sum_sum_a_nat @ ( ord_less_eq_real @ ( F @ X ) @ ( F @ ( arg_mi3310826532295632775t_real @ F @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) ) ) @ X @ ( arg_mi3310826532295632775t_real @ F @ ( cons_Sum_sum_a_nat @ Y @ Zs ) ) ) ) ).
% arg_min_list.simps(2)
thf(fact_34_id__mapD_I1_J,axiom,
! [J: nat,I: nat] :
( ( ( id_map_a @ J @ ( sum_Inr_nat_a @ I ) )
= none_nat )
=> ( ord_less_eq_nat @ J @ I ) ) ).
% id_mapD(1)
thf(fact_35_Inr__inject,axiom,
! [X: nat,Y: nat] :
( ( ( sum_Inr_nat_a @ X )
= ( sum_Inr_nat_a @ Y ) )
=> ( X = Y ) ) ).
% Inr_inject
thf(fact_36_not__arg__cong__Inr,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ( sum_Inr_nat_a @ X )
!= ( sum_Inr_nat_a @ Y ) ) ) ).
% not_arg_cong_Inr
thf(fact_37_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M2: nat] :
( ( P @ X )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M2 ) )
=> ~ ! [M3: nat] :
( ( P @ M3 )
=> ~ ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M3 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_38_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_39_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_40_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_41_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_42_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_43_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_44_order__antisym__conv,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_45_order__antisym__conv,axiom,
! [Y: int,X: int] :
( ( ord_less_eq_int @ Y @ X )
=> ( ( ord_less_eq_int @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_46_order__antisym__conv,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ( ( ord_less_eq_real @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_47_linorder__le__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_48_linorder__le__cases,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_eq_int @ X @ Y )
=> ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_49_linorder__le__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_50_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_51_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_52_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_53_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_54_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_55_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_56_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_57_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_58_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_59_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_60_ord__eq__le__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_61_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_62_ord__eq__le__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_63_ord__eq__le__subst,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_64_ord__eq__le__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_65_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_66_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_67_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_68_linorder__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_linear
thf(fact_69_linorder__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
| ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_linear
thf(fact_70_linorder__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
| ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_linear
thf(fact_71_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_72_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_73_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_74_mem__Collect__eq,axiom,
! [A: list_Sum_sum_a_nat,P: list_Sum_sum_a_nat > $o] :
( ( member408289922725080238_a_nat @ A @ ( collec7555443234367654128_a_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_75_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_76_Collect__mem__eq,axiom,
! [A2: set_li6526943997496501093_a_nat] :
( ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_77_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X5: real] : ( member_real @ X5 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_78_order__eq__refl,axiom,
! [X: nat,Y: nat] :
( ( X = Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_79_order__eq__refl,axiom,
! [X: int,Y: int] :
( ( X = Y )
=> ( ord_less_eq_int @ X @ Y ) ) ).
% order_eq_refl
thf(fact_80_order__eq__refl,axiom,
! [X: real,Y: real] :
( ( X = Y )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% order_eq_refl
thf(fact_81_order__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_82_order__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_83_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_84_order__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_85_order__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_86_order__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_87_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_88_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_89_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_90_order__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_91_order__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_92_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_93_order__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_94_order__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_95_order__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_96_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_97_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_98_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_99_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_100_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ( ord_less_eq_int @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_101_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
& ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_102_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_103_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_104_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_105_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_106_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_107_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_108_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_109_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_110_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_111_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_112_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ( ord_less_eq_int @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_113_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ B3 @ A3 )
& ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_114_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_115_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_eq_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_116_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B4: real] :
( ( ord_less_eq_real @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: real,B4: real] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_117_order__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_eq_nat @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_118_order__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_eq_int @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_119_order__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_eq_real @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_120_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_121_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_122_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_123_order__antisym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_124_order__antisym,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_125_order__antisym,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_126_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_127_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_128_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_129_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_130_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_131_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_132_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [X5: nat,Y5: nat] :
( ( ord_less_eq_nat @ X5 @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X5 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_133_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [X5: int,Y5: int] :
( ( ord_less_eq_int @ X5 @ Y5 )
& ( ord_less_eq_int @ Y5 @ X5 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_134_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [X5: real,Y5: real] :
( ( ord_less_eq_real @ X5 @ Y5 )
& ( ord_less_eq_real @ Y5 @ X5 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_135_le__cases3,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( ord_less_eq_nat @ X @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_eq_nat @ X @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ X @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z2 @ X )
=> ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_136_le__cases3,axiom,
! [X: int,Y: int,Z2: int] :
( ( ( ord_less_eq_int @ X @ Y )
=> ~ ( ord_less_eq_int @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_int @ Y @ X )
=> ~ ( ord_less_eq_int @ X @ Z2 ) )
=> ( ( ( ord_less_eq_int @ X @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_int @ Z2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ X ) )
=> ( ( ( ord_less_eq_int @ Y @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_int @ Z2 @ X )
=> ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_137_le__cases3,axiom,
! [X: real,Y: real,Z2: real] :
( ( ( ord_less_eq_real @ X @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_real @ Y @ X )
=> ~ ( ord_less_eq_real @ X @ Z2 ) )
=> ( ( ( ord_less_eq_real @ X @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_real @ Z2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ X ) )
=> ( ( ( ord_less_eq_real @ Y @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_real @ Z2 @ X )
=> ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_138_fo__nmlz__def,axiom,
( fo_nmlz_a
= ( fo_nmlz_rec_a @ zero_zero_nat
@ ^ [X5: sum_sum_a_nat] : none_nat ) ) ).
% fo_nmlz_def
thf(fact_139_Shift__def,axiom,
( bNF_Gr1229660863860170270_a_nat
= ( ^ [Kl: set_li6526943997496501093_a_nat,K2: sum_sum_a_nat] :
( collec7555443234367654128_a_nat
@ ^ [Kl2: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ ( cons_Sum_sum_a_nat @ K2 @ Kl2 ) @ Kl ) ) ) ) ).
% Shift_def
thf(fact_140_Greatest__equality,axiom,
! [P: int > $o,X: int] :
( ( P @ X )
=> ( ! [Y2: int] :
( ( P @ Y2 )
=> ( ord_less_eq_int @ Y2 @ X ) )
=> ( ( order_Greatest_int @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_141_Greatest__equality,axiom,
! [P: real > $o,X: real] :
( ( P @ X )
=> ( ! [Y2: real] :
( ( P @ Y2 )
=> ( ord_less_eq_real @ Y2 @ X ) )
=> ( ( order_Greatest_real @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_142_Greatest__equality,axiom,
! [P: nat > $o,X: nat] :
( ( P @ X )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X ) )
=> ( ( order_Greatest_nat @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_143_GreatestI2__order,axiom,
! [P: int > $o,X: int,Q: int > $o] :
( ( P @ X )
=> ( ! [Y2: int] :
( ( P @ Y2 )
=> ( ord_less_eq_int @ Y2 @ X ) )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( ! [Y3: int] :
( ( P @ Y3 )
=> ( ord_less_eq_int @ Y3 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_Greatest_int @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_144_GreatestI2__order,axiom,
! [P: real > $o,X: real,Q: real > $o] :
( ( P @ X )
=> ( ! [Y2: real] :
( ( P @ Y2 )
=> ( ord_less_eq_real @ Y2 @ X ) )
=> ( ! [X3: real] :
( ( P @ X3 )
=> ( ! [Y3: real] :
( ( P @ Y3 )
=> ( ord_less_eq_real @ Y3 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_Greatest_real @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_145_GreatestI2__order,axiom,
! [P: nat > $o,X: nat,Q: nat > $o] :
( ( P @ X )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X ) )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_Greatest_nat @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_146_ShiftD,axiom,
! [Kl3: list_Sum_sum_a_nat,Kl4: set_li6526943997496501093_a_nat,K: sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ Kl3 @ ( bNF_Gr1229660863860170270_a_nat @ Kl4 @ K ) )
=> ( member408289922725080238_a_nat @ ( cons_Sum_sum_a_nat @ K @ Kl3 ) @ Kl4 ) ) ).
% ShiftD
thf(fact_147_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_148_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_149_subset__CollectI,axiom,
! [B5: set_li6526943997496501093_a_nat,A2: set_li6526943997496501093_a_nat,Q: list_Sum_sum_a_nat > $o,P: list_Sum_sum_a_nat > $o] :
( ( ord_le1147066620699065093_a_nat @ B5 @ A2 )
=> ( ! [X3: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X3 @ B5 )
=> ( ( Q @ X3 )
=> ( P @ X3 ) ) )
=> ( ord_le1147066620699065093_a_nat
@ ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ B5 )
& ( Q @ X5 ) ) )
@ ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ A2 )
& ( P @ X5 ) ) ) ) ) ) ).
% subset_CollectI
thf(fact_150_subset__CollectI,axiom,
! [B5: set_real,A2: set_real,Q: real > $o,P: real > $o] :
( ( ord_less_eq_set_real @ B5 @ A2 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ B5 )
=> ( ( Q @ X3 )
=> ( P @ X3 ) ) )
=> ( ord_less_eq_set_real
@ ( collect_real
@ ^ [X5: real] :
( ( member_real @ X5 @ B5 )
& ( Q @ X5 ) ) )
@ ( collect_real
@ ^ [X5: real] :
( ( member_real @ X5 @ A2 )
& ( P @ X5 ) ) ) ) ) ) ).
% subset_CollectI
thf(fact_151_subset__Collect__iff,axiom,
! [B5: set_li6526943997496501093_a_nat,A2: set_li6526943997496501093_a_nat,P: list_Sum_sum_a_nat > $o] :
( ( ord_le1147066620699065093_a_nat @ B5 @ A2 )
=> ( ( ord_le1147066620699065093_a_nat @ B5
@ ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ A2 )
& ( P @ X5 ) ) ) )
= ( ! [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ B5 )
=> ( P @ X5 ) ) ) ) ) ).
% subset_Collect_iff
thf(fact_152_subset__Collect__iff,axiom,
! [B5: set_real,A2: set_real,P: real > $o] :
( ( ord_less_eq_set_real @ B5 @ A2 )
=> ( ( ord_less_eq_set_real @ B5
@ ( collect_real
@ ^ [X5: real] :
( ( member_real @ X5 @ A2 )
& ( P @ X5 ) ) ) )
= ( ! [X5: real] :
( ( member_real @ X5 @ B5 )
=> ( P @ X5 ) ) ) ) ) ).
% subset_Collect_iff
thf(fact_153_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_154_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_155_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_156_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_157_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_158_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_159_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_1: nat] : ( P @ X_1 )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_160_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_161_subsetI,axiom,
! [A2: set_li6526943997496501093_a_nat,B5: set_li6526943997496501093_a_nat] :
( ! [X3: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X3 @ A2 )
=> ( member408289922725080238_a_nat @ X3 @ B5 ) )
=> ( ord_le1147066620699065093_a_nat @ A2 @ B5 ) ) ).
% subsetI
thf(fact_162_subsetI,axiom,
! [A2: set_real,B5: set_real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( member_real @ X3 @ B5 ) )
=> ( ord_less_eq_set_real @ A2 @ B5 ) ) ).
% subsetI
thf(fact_163_size__char__eq__0,axiom,
( size_size_char
= ( ^ [C2: char] : zero_zero_nat ) ) ).
% size_char_eq_0
thf(fact_164_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_165_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_166_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_167_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_168_Succ__Shift,axiom,
! [Kl4: set_li6526943997496501093_a_nat,K: sum_sum_a_nat,Kl3: list_Sum_sum_a_nat] :
( ( bNF_Gr5582227268375839130_a_nat @ ( bNF_Gr1229660863860170270_a_nat @ Kl4 @ K ) @ Kl3 )
= ( bNF_Gr5582227268375839130_a_nat @ Kl4 @ ( cons_Sum_sum_a_nat @ K @ Kl3 ) ) ) ).
% Succ_Shift
thf(fact_169_length__code,axiom,
( size_s5283204784079214577_a_nat
= ( gen_le1340941697924381074_a_nat @ zero_zero_nat ) ) ).
% length_code
thf(fact_170_Collect__subset,axiom,
! [A2: set_li6526943997496501093_a_nat,P: list_Sum_sum_a_nat > $o] :
( ord_le1147066620699065093_a_nat
@ ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ A2 )
& ( P @ X5 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_171_Collect__subset,axiom,
! [A2: set_real,P: real > $o] :
( ord_less_eq_set_real
@ ( collect_real
@ ^ [X5: real] :
( ( member_real @ X5 @ A2 )
& ( P @ X5 ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_172_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_173_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_174_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_175_subset__iff,axiom,
( ord_le1147066620699065093_a_nat
= ( ^ [A5: set_li6526943997496501093_a_nat,B6: set_li6526943997496501093_a_nat] :
! [T: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ T @ A5 )
=> ( member408289922725080238_a_nat @ T @ B6 ) ) ) ) ).
% subset_iff
thf(fact_176_subset__iff,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B6: set_real] :
! [T: real] :
( ( member_real @ T @ A5 )
=> ( member_real @ T @ B6 ) ) ) ) ).
% subset_iff
thf(fact_177_subset__eq,axiom,
( ord_le1147066620699065093_a_nat
= ( ^ [A5: set_li6526943997496501093_a_nat,B6: set_li6526943997496501093_a_nat] :
! [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ A5 )
=> ( member408289922725080238_a_nat @ X5 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_178_subset__eq,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B6: set_real] :
! [X5: real] :
( ( member_real @ X5 @ A5 )
=> ( member_real @ X5 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_179_subsetD,axiom,
! [A2: set_li6526943997496501093_a_nat,B5: set_li6526943997496501093_a_nat,C: list_Sum_sum_a_nat] :
( ( ord_le1147066620699065093_a_nat @ A2 @ B5 )
=> ( ( member408289922725080238_a_nat @ C @ A2 )
=> ( member408289922725080238_a_nat @ C @ B5 ) ) ) ).
% subsetD
thf(fact_180_subsetD,axiom,
! [A2: set_real,B5: set_real,C: real] :
( ( ord_less_eq_set_real @ A2 @ B5 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B5 ) ) ) ).
% subsetD
thf(fact_181_in__mono,axiom,
! [A2: set_li6526943997496501093_a_nat,B5: set_li6526943997496501093_a_nat,X: list_Sum_sum_a_nat] :
( ( ord_le1147066620699065093_a_nat @ A2 @ B5 )
=> ( ( member408289922725080238_a_nat @ X @ A2 )
=> ( member408289922725080238_a_nat @ X @ B5 ) ) ) ).
% in_mono
thf(fact_182_in__mono,axiom,
! [A2: set_real,B5: set_real,X: real] :
( ( ord_less_eq_set_real @ A2 @ B5 )
=> ( ( member_real @ X @ A2 )
=> ( member_real @ X @ B5 ) ) ) ).
% in_mono
thf(fact_183_less__eq__set__def,axiom,
( ord_le1147066620699065093_a_nat
= ( ^ [A5: set_li6526943997496501093_a_nat,B6: set_li6526943997496501093_a_nat] :
( ord_le8737610411969296920_nat_o
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ A5 )
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_184_less__eq__set__def,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B6: set_real] :
( ord_less_eq_real_o
@ ^ [X5: real] : ( member_real @ X5 @ A5 )
@ ^ [X5: real] : ( member_real @ X5 @ B6 ) ) ) ) ).
% less_eq_set_def
thf(fact_185_size_H__char__eq__0,axiom,
( size_char
= ( ^ [C2: char] : zero_zero_nat ) ) ).
% size'_char_eq_0
thf(fact_186_Collect__restrict,axiom,
! [X2: set_li6526943997496501093_a_nat,P: list_Sum_sum_a_nat > $o] :
( ord_le1147066620699065093_a_nat
@ ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ X2 )
& ( P @ X5 ) ) )
@ X2 ) ).
% Collect_restrict
thf(fact_187_Collect__restrict,axiom,
! [X2: set_real,P: real > $o] :
( ord_less_eq_set_real
@ ( collect_real
@ ^ [X5: real] :
( ( member_real @ X5 @ X2 )
& ( P @ X5 ) ) )
@ X2 ) ).
% Collect_restrict
thf(fact_188_prop__restrict,axiom,
! [X: list_Sum_sum_a_nat,Z3: set_li6526943997496501093_a_nat,X2: set_li6526943997496501093_a_nat,P: list_Sum_sum_a_nat > $o] :
( ( member408289922725080238_a_nat @ X @ Z3 )
=> ( ( ord_le1147066620699065093_a_nat @ Z3
@ ( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ X5 @ X2 )
& ( P @ X5 ) ) ) )
=> ( P @ X ) ) ) ).
% prop_restrict
thf(fact_189_prop__restrict,axiom,
! [X: real,Z3: set_real,X2: set_real,P: real > $o] :
( ( member_real @ X @ Z3 )
=> ( ( ord_less_eq_set_real @ Z3
@ ( collect_real
@ ^ [X5: real] :
( ( member_real @ X5 @ X2 )
& ( P @ X5 ) ) ) )
=> ( P @ X ) ) ) ).
% prop_restrict
thf(fact_190_pred__subset__eq,axiom,
! [R: set_li6526943997496501093_a_nat,S: set_li6526943997496501093_a_nat] :
( ( ord_le8737610411969296920_nat_o
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ R )
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ S ) )
= ( ord_le1147066620699065093_a_nat @ R @ S ) ) ).
% pred_subset_eq
thf(fact_191_pred__subset__eq,axiom,
! [R: set_real,S: set_real] :
( ( ord_less_eq_real_o
@ ^ [X5: real] : ( member_real @ X5 @ R )
@ ^ [X5: real] : ( member_real @ X5 @ S ) )
= ( ord_less_eq_set_real @ R @ S ) ) ).
% pred_subset_eq
thf(fact_192_empty__Shift,axiom,
! [Kl4: set_li8553678471444574443_a_nat,K: list_Sum_sum_a_nat] :
( ( member6656483030743143220_a_nat @ nil_li1906260230833442699_a_nat @ Kl4 )
=> ( ( member408289922725080238_a_nat @ K @ ( bNF_Gr828430269543142304_a_nat @ Kl4 @ nil_li1906260230833442699_a_nat ) )
=> ( member6656483030743143220_a_nat @ nil_li1906260230833442699_a_nat @ ( bNF_Gr7276609778055257636_a_nat @ Kl4 @ K ) ) ) ) ).
% empty_Shift
thf(fact_193_empty__Shift,axiom,
! [Kl4: set_list_real,K: real] :
( ( member_list_real @ nil_real @ Kl4 )
=> ( ( member_real @ K @ ( bNF_Gr2087828336424606033c_real @ Kl4 @ nil_real ) )
=> ( member_list_real @ nil_real @ ( bNF_Gr3712412480325189581t_real @ Kl4 @ K ) ) ) ) ).
% empty_Shift
thf(fact_194_empty__Shift,axiom,
! [Kl4: set_li6526943997496501093_a_nat,K: sum_sum_a_nat] :
( ( member408289922725080238_a_nat @ nil_Sum_sum_a_nat @ Kl4 )
=> ( ( member_Sum_sum_a_nat @ K @ ( bNF_Gr5582227268375839130_a_nat @ Kl4 @ nil_Sum_sum_a_nat ) )
=> ( member408289922725080238_a_nat @ nil_Sum_sum_a_nat @ ( bNF_Gr1229660863860170270_a_nat @ Kl4 @ K ) ) ) ) ).
% empty_Shift
thf(fact_195_add__nth_Osimps_I1_J,axiom,
! [A: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( add_nt4212672348507122516_a_nat @ zero_zero_nat @ A @ Xs )
= ( cons_Sum_sum_a_nat @ A @ Xs ) ) ).
% add_nth.simps(1)
thf(fact_196_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_197_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_198_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_199_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_200_nat_Oinject,axiom,
! [X23: nat,Y23: nat] :
( ( ( suc @ X23 )
= ( suc @ Y23 ) )
= ( X23 = Y23 ) ) ).
% nat.inject
thf(fact_201_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_202_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_203_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_204_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_205_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_206_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_207_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_208_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_209_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_210_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_211_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_212_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_213_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_214_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_215_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_216_length__0__conv,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
= zero_zero_nat )
= ( Xs = nil_Sum_sum_a_nat ) ) ).
% length_0_conv
thf(fact_217_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_218_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_219_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_220_transpose_Ocases,axiom,
! [X: list_l4703314356710769291_a_nat] :
( ( X != nil_li1906260230833442699_a_nat )
=> ( ! [Xss: list_l4703314356710769291_a_nat] :
( X
!= ( cons_l6604326339930385211_a_nat @ nil_Sum_sum_a_nat @ Xss ) )
=> ~ ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Xss: list_l4703314356710769291_a_nat] :
( X
!= ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ Xss ) ) ) ) ).
% transpose.cases
thf(fact_221_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_222_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_223_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_224_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_225_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_226_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_227_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_228_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_229_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_230_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
=> ( ! [Y2: nat] : ( P @ zero_zero_nat @ ( suc @ Y2 ) )
=> ( ! [X3: nat,Y2: nat] :
( ( P @ X3 @ Y2 )
=> ( P @ ( suc @ X3 ) @ ( suc @ Y2 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_231_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_232_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_233_nat_OdiscI,axiom,
! [Nat: nat,X23: nat] :
( ( Nat
= ( suc @ X23 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_234_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_235_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_236_nat_Odistinct_I1_J,axiom,
! [X23: nat] :
( zero_zero_nat
!= ( suc @ X23 ) ) ).
% nat.distinct(1)
thf(fact_237_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_238_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_239_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_240_Suc__le__D,axiom,
! [N: nat,M4: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
=> ? [M3: nat] :
( M4
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_241_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_242_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_243_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_244_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M5: nat] :
( ( ord_less_eq_nat @ ( suc @ M5 ) @ N2 )
=> ( P @ M5 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_245_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_246_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X3: nat] : ( R @ X3 @ X3 )
=> ( ! [X3: nat,Y2: nat,Z4: nat] :
( ( R @ X3 @ Y2 )
=> ( ( R @ Y2 @ Z4 )
=> ( R @ X3 @ Z4 ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_247_list__nonempty__induct,axiom,
! [Xs: list_Sum_sum_a_nat,P: list_Sum_sum_a_nat > $o] :
( ( Xs != nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat] : ( P @ ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( Xs2 != nil_Sum_sum_a_nat )
=> ( ( P @ Xs2 )
=> ( P @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% list_nonempty_induct
thf(fact_248_list__induct2_H,axiom,
! [P: list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o,Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( P @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] : ( P @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ nil_Sum_sum_a_nat )
=> ( ! [Y2: sum_sum_a_nat,Ys2: list_Sum_sum_a_nat] : ( P @ nil_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ Y2 @ Ys2 ) )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Y2: sum_sum_a_nat,Ys2: list_Sum_sum_a_nat] :
( ( P @ Xs2 @ Ys2 )
=> ( P @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ ( cons_Sum_sum_a_nat @ Y2 @ Ys2 ) ) )
=> ( P @ Xs @ Ys ) ) ) ) ) ).
% list_induct2'
thf(fact_249_neq__Nil__conv,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( Xs != nil_Sum_sum_a_nat )
= ( ? [Y5: sum_sum_a_nat,Ys3: list_Sum_sum_a_nat] :
( Xs
= ( cons_Sum_sum_a_nat @ Y5 @ Ys3 ) ) ) ) ).
% neq_Nil_conv
thf(fact_250_list_Oexhaust,axiom,
! [Y: list_Sum_sum_a_nat] :
( ( Y != nil_Sum_sum_a_nat )
=> ~ ! [X212: sum_sum_a_nat,X222: list_Sum_sum_a_nat] :
( Y
!= ( cons_Sum_sum_a_nat @ X212 @ X222 ) ) ) ).
% list.exhaust
thf(fact_251_list_OdiscI,axiom,
! [List: list_Sum_sum_a_nat,X21: sum_sum_a_nat,X22: list_Sum_sum_a_nat] :
( ( List
= ( cons_Sum_sum_a_nat @ X21 @ X22 ) )
=> ( List != nil_Sum_sum_a_nat ) ) ).
% list.discI
thf(fact_252_list_Odistinct_I1_J,axiom,
! [X21: sum_sum_a_nat,X22: list_Sum_sum_a_nat] :
( nil_Sum_sum_a_nat
!= ( cons_Sum_sum_a_nat @ X21 @ X22 ) ) ).
% list.distinct(1)
thf(fact_253_add__nth__length,axiom,
! [I: nat,Zs: list_Sum_sum_a_nat,Z2: sum_sum_a_nat] :
( ( ord_less_eq_nat @ I @ ( size_s5283204784079214577_a_nat @ Zs ) )
=> ( ( size_s5283204784079214577_a_nat @ ( add_nt4212672348507122516_a_nat @ I @ Z2 @ Zs ) )
= ( suc @ ( size_s5283204784079214577_a_nat @ Zs ) ) ) ) ).
% add_nth_length
thf(fact_254_fo__nmlz__rec_Osimps_I1_J,axiom,
! [I: nat,M: sum_sum_a_nat > option_nat,AD: set_a] :
( ( fo_nmlz_rec_a @ I @ M @ AD @ nil_Sum_sum_a_nat )
= nil_Sum_sum_a_nat ) ).
% fo_nmlz_rec.simps(1)
thf(fact_255_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_leq_as_int
thf(fact_256_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_257_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_258_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_259_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_260_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_261_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_262_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_263_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_264_lift__Suc__mono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_265_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_266_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_267_lift__Suc__antimono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_268_length__Suc__conv,axiom,
! [Xs: list_Sum_sum_a_nat,N: nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( suc @ N ) )
= ( ? [Y5: sum_sum_a_nat,Ys3: list_Sum_sum_a_nat] :
( ( Xs
= ( cons_Sum_sum_a_nat @ Y5 @ Ys3 ) )
& ( ( size_s5283204784079214577_a_nat @ Ys3 )
= N ) ) ) ) ).
% length_Suc_conv
thf(fact_269_Suc__length__conv,axiom,
! [N: nat,Xs: list_Sum_sum_a_nat] :
( ( ( suc @ N )
= ( size_s5283204784079214577_a_nat @ Xs ) )
= ( ? [Y5: sum_sum_a_nat,Ys3: list_Sum_sum_a_nat] :
( ( Xs
= ( cons_Sum_sum_a_nat @ Y5 @ Ys3 ) )
& ( ( size_s5283204784079214577_a_nat @ Ys3 )
= N ) ) ) ) ).
% Suc_length_conv
thf(fact_270_length__Cons,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( suc @ ( size_s5283204784079214577_a_nat @ Xs ) ) ) ).
% length_Cons
thf(fact_271_list__induct4,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,Zs: list_Sum_sum_a_nat,Ws: list_Sum_sum_a_nat,P: list_Sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( size_s5283204784079214577_a_nat @ Ys ) )
=> ( ( ( size_s5283204784079214577_a_nat @ Ys )
= ( size_s5283204784079214577_a_nat @ Zs ) )
=> ( ( ( size_s5283204784079214577_a_nat @ Zs )
= ( size_s5283204784079214577_a_nat @ Ws ) )
=> ( ( P @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Y2: sum_sum_a_nat,Ys2: list_Sum_sum_a_nat,Z4: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat,W: sum_sum_a_nat,Ws2: list_Sum_sum_a_nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs2 )
= ( size_s5283204784079214577_a_nat @ Ys2 ) )
=> ( ( ( size_s5283204784079214577_a_nat @ Ys2 )
= ( size_s5283204784079214577_a_nat @ Zs2 ) )
=> ( ( ( size_s5283204784079214577_a_nat @ Zs2 )
= ( size_s5283204784079214577_a_nat @ Ws2 ) )
=> ( ( P @ Xs2 @ Ys2 @ Zs2 @ Ws2 )
=> ( P @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ ( cons_Sum_sum_a_nat @ Y2 @ Ys2 ) @ ( cons_Sum_sum_a_nat @ Z4 @ Zs2 ) @ ( cons_Sum_sum_a_nat @ W @ Ws2 ) ) ) ) ) )
=> ( P @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).
% list_induct4
thf(fact_272_list__induct3,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,Zs: list_Sum_sum_a_nat,P: list_Sum_sum_a_nat > list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( size_s5283204784079214577_a_nat @ Ys ) )
=> ( ( ( size_s5283204784079214577_a_nat @ Ys )
= ( size_s5283204784079214577_a_nat @ Zs ) )
=> ( ( P @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Y2: sum_sum_a_nat,Ys2: list_Sum_sum_a_nat,Z4: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs2 )
= ( size_s5283204784079214577_a_nat @ Ys2 ) )
=> ( ( ( size_s5283204784079214577_a_nat @ Ys2 )
= ( size_s5283204784079214577_a_nat @ Zs2 ) )
=> ( ( P @ Xs2 @ Ys2 @ Zs2 )
=> ( P @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ ( cons_Sum_sum_a_nat @ Y2 @ Ys2 ) @ ( cons_Sum_sum_a_nat @ Z4 @ Zs2 ) ) ) ) )
=> ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).
% list_induct3
thf(fact_273_list__induct2,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,P: list_Sum_sum_a_nat > list_Sum_sum_a_nat > $o] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( size_s5283204784079214577_a_nat @ Ys ) )
=> ( ( P @ nil_Sum_sum_a_nat @ nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Y2: sum_sum_a_nat,Ys2: list_Sum_sum_a_nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs2 )
= ( size_s5283204784079214577_a_nat @ Ys2 ) )
=> ( ( P @ Xs2 @ Ys2 )
=> ( P @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ ( cons_Sum_sum_a_nat @ Y2 @ Ys2 ) ) ) )
=> ( P @ Xs @ Ys ) ) ) ) ).
% list_induct2
thf(fact_274_gen__length__code_I2_J,axiom,
! [N: nat,X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( gen_le1340941697924381074_a_nat @ N @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( gen_le1340941697924381074_a_nat @ ( suc @ N ) @ Xs ) ) ).
% gen_length_code(2)
thf(fact_275_Suc__le__length__iff,axiom,
! [N: nat,Xs: list_Sum_sum_a_nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( size_s5283204784079214577_a_nat @ Xs ) )
= ( ? [X5: sum_sum_a_nat,Ys3: list_Sum_sum_a_nat] :
( ( Xs
= ( cons_Sum_sum_a_nat @ X5 @ Ys3 ) )
& ( ord_less_eq_nat @ N @ ( size_s5283204784079214577_a_nat @ Ys3 ) ) ) ) ) ).
% Suc_le_length_iff
thf(fact_276_sum_Osize_I4_J,axiom,
! [X23: nat] :
( ( size_s2581288809450988139_a_nat @ ( sum_Inr_nat_a @ X23 ) )
= ( suc @ zero_zero_nat ) ) ).
% sum.size(4)
thf(fact_277_length__nth__simps_I1_J,axiom,
( ( size_s5283204784079214577_a_nat @ nil_Sum_sum_a_nat )
= zero_zero_nat ) ).
% length_nth_simps(1)
thf(fact_278_length__nth__simps_I2_J,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( suc @ ( size_s5283204784079214577_a_nat @ Xs ) ) ) ).
% length_nth_simps(2)
thf(fact_279_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N2: nat] :
( ~ ( P @ N2 )
& ( P @ ( suc @ N2 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_280_real__arch__simple,axiom,
! [X: real] :
? [N2: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% real_arch_simple
thf(fact_281_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_282_nat__int__comparison_I1_J,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_283_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_284_wlog__le,axiom,
! [P: nat > nat > $o,B: nat,A: nat] :
( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
=> ( P @ B4 @ A4 ) )
=> ( ! [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ B @ A ) ) ) ).
% wlog_le
thf(fact_285_wlog__le,axiom,
! [P: int > int > $o,B: int,A: int] :
( ! [A4: int,B4: int] :
( ( P @ A4 @ B4 )
=> ( P @ B4 @ A4 ) )
=> ( ! [A4: int,B4: int] :
( ( ord_less_eq_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ B @ A ) ) ) ).
% wlog_le
thf(fact_286_wlog__le,axiom,
! [P: real > real > $o,B: real,A: real] :
( ! [A4: real,B4: real] :
( ( P @ A4 @ B4 )
=> ( P @ B4 @ A4 ) )
=> ( ! [A4: real,B4: real] :
( ( ord_less_eq_real @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ B @ A ) ) ) ).
% wlog_le
thf(fact_287_proper__intrvl_Oexhaustive_Ocases,axiom,
! [X: list_Sum_sum_a_nat] :
( ( X != nil_Sum_sum_a_nat )
=> ~ ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( X
!= ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) ) ) ).
% proper_intrvl.exhaustive.cases
thf(fact_288_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_289_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_290_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_291_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_292_imp__le__cong,axiom,
! [X: int,X6: int,P: $o,P2: $o] :
( ( X = X6 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> ( P = P2 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> P2 ) ) ) ) ).
% imp_le_cong
thf(fact_293_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_294_conj__le__cong,axiom,
! [X: int,X6: int,P: $o,P2: $o] :
( ( X = X6 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> ( P = P2 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X6 )
& P2 ) ) ) ) ).
% conj_le_cong
thf(fact_295_ord_Oremdups__sorted_Ocases,axiom,
! [X: list_Sum_sum_a_nat] :
( ( X != nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat] :
( X
!= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ~ ! [X3: sum_sum_a_nat,Y2: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( X
!= ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Xs2 ) ) ) ) ) ).
% ord.remdups_sorted.cases
thf(fact_296_rem__nth_Oelims,axiom,
! [X: nat,Xa: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( ( rem_nt658808235856662061_a_nat @ X @ Xa )
= Y )
=> ( ( ( Xa = nil_Sum_sum_a_nat )
=> ( Y != nil_Sum_sum_a_nat ) )
=> ( ( ( X = zero_zero_nat )
=> ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) )
=> ( Y != Xs2 ) ) )
=> ~ ! [N2: nat] :
( ( X
= ( suc @ N2 ) )
=> ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) )
=> ( Y
!= ( cons_Sum_sum_a_nat @ X3 @ ( rem_nt658808235856662061_a_nat @ N2 @ Xs2 ) ) ) ) ) ) ) ) ).
% rem_nth.elims
thf(fact_297_rem__nth_Osimps_I2_J,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( rem_nt658808235856662061_a_nat @ zero_zero_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= Xs ) ).
% rem_nth.simps(2)
thf(fact_298_rem__nth_Osimps_I3_J,axiom,
! [N: nat,X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( rem_nt658808235856662061_a_nat @ ( suc @ N ) @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( cons_Sum_sum_a_nat @ X @ ( rem_nt658808235856662061_a_nat @ N @ Xs ) ) ) ).
% rem_nth.simps(3)
thf(fact_299_rem__nth__add__nth,axiom,
! [I: nat,Zs: list_Sum_sum_a_nat,Z2: sum_sum_a_nat] :
( ( ord_less_eq_nat @ I @ ( size_s5283204784079214577_a_nat @ Zs ) )
=> ( ( rem_nt658808235856662061_a_nat @ I @ ( add_nt4212672348507122516_a_nat @ I @ Z2 @ Zs ) )
= Zs ) ) ).
% rem_nth_add_nth
thf(fact_300_arg__min__list_Oelims,axiom,
! [X: sum_sum_a_nat > nat,Xa: list_Sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( ( arg_mi6702779164590342699at_nat @ X @ Xa )
= Y )
=> ( ! [X3: sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( Y != X3 ) )
=> ( ! [X3: sum_sum_a_nat,Y2: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) )
=> ( Y
!= ( if_Sum_sum_a_nat @ ( ord_less_eq_nat @ ( X @ X3 ) @ ( X @ ( arg_mi6702779164590342699at_nat @ X @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) ) ) @ X3 @ ( arg_mi6702779164590342699at_nat @ X @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) ) ) )
=> ~ ( ( Xa = nil_Sum_sum_a_nat )
=> ( Y != undefi718397827653426791_a_nat ) ) ) ) ) ).
% arg_min_list.elims
thf(fact_301_arg__min__list_Oelims,axiom,
! [X: sum_sum_a_nat > int,Xa: list_Sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( ( arg_mi6700288694081292423at_int @ X @ Xa )
= Y )
=> ( ! [X3: sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( Y != X3 ) )
=> ( ! [X3: sum_sum_a_nat,Y2: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) )
=> ( Y
!= ( if_Sum_sum_a_nat @ ( ord_less_eq_int @ ( X @ X3 ) @ ( X @ ( arg_mi6700288694081292423at_int @ X @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) ) ) @ X3 @ ( arg_mi6700288694081292423at_int @ X @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) ) ) )
=> ~ ( ( Xa = nil_Sum_sum_a_nat )
=> ( Y != undefi718397827653426791_a_nat ) ) ) ) ) ).
% arg_min_list.elims
thf(fact_302_arg__min__list_Oelims,axiom,
! [X: sum_sum_a_nat > real,Xa: list_Sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( ( arg_mi3310826532295632775t_real @ X @ Xa )
= Y )
=> ( ! [X3: sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( Y != X3 ) )
=> ( ! [X3: sum_sum_a_nat,Y2: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat] :
( ( Xa
= ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) )
=> ( Y
!= ( if_Sum_sum_a_nat @ ( ord_less_eq_real @ ( X @ X3 ) @ ( X @ ( arg_mi3310826532295632775t_real @ X @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) ) ) @ X3 @ ( arg_mi3310826532295632775t_real @ X @ ( cons_Sum_sum_a_nat @ Y2 @ Zs2 ) ) ) ) )
=> ~ ( ( Xa = nil_Sum_sum_a_nat )
=> ( Y != undefi718397827653426791_a_nat ) ) ) ) ) ).
% arg_min_list.elims
thf(fact_303_remdups__adj__length__ge1,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( Xs != nil_Sum_sum_a_nat )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( size_s5283204784079214577_a_nat @ ( remdup8712921452854877243_a_nat @ Xs ) ) ) ) ).
% remdups_adj_length_ge1
thf(fact_304_nths__singleton,axiom,
! [A2: set_nat,X: sum_sum_a_nat] :
( ( ( member_nat @ zero_zero_nat @ A2 )
=> ( ( nths_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) @ A2 )
= ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) )
& ( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ( nths_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) @ A2 )
= nil_Sum_sum_a_nat ) ) ) ).
% nths_singleton
thf(fact_305_of__int__le__0__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
= ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_306_of__int__le__0__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
= ( ord_less_eq_int @ Z2 @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_307_of__int__0__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_le_iff
thf(fact_308_of__int__0__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_le_iff
thf(fact_309_of__int__0,axiom,
( ( ring_1_of_int_int @ zero_zero_int )
= zero_zero_int ) ).
% of_int_0
thf(fact_310_of__int__0,axiom,
( ( ring_1_of_int_real @ zero_zero_int )
= zero_zero_real ) ).
% of_int_0
thf(fact_311_of__int__0__eq__iff,axiom,
! [Z2: int] :
( ( zero_zero_int
= ( ring_1_of_int_int @ Z2 ) )
= ( Z2 = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_312_of__int__0__eq__iff,axiom,
! [Z2: int] :
( ( zero_zero_real
= ( ring_1_of_int_real @ Z2 ) )
= ( Z2 = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_313_of__int__eq__0__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_int @ Z2 )
= zero_zero_int )
= ( Z2 = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_314_of__int__eq__0__iff,axiom,
! [Z2: int] :
( ( ( ring_1_of_int_real @ Z2 )
= zero_zero_real )
= ( Z2 = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_315_of__int__le__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ W2 ) @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% of_int_le_iff
thf(fact_316_of__int__le__iff,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ W2 ) @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% of_int_le_iff
thf(fact_317_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% of_int_of_nat_eq
thf(fact_318_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% of_int_of_nat_eq
thf(fact_319_ex__le__of__int,axiom,
! [X: real] :
? [Z4: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z4 ) ) ).
% ex_le_of_int
thf(fact_320_remdups__adj_Osimps_I3_J,axiom,
! [X: sum_sum_a_nat,Y: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( ( X = Y )
=> ( ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y @ Xs ) ) )
= ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) ) ) )
& ( ( X != Y )
=> ( ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y @ Xs ) ) )
= ( cons_Sum_sum_a_nat @ X @ ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ Y @ Xs ) ) ) ) ) ) ).
% remdups_adj.simps(3)
thf(fact_321_remdups__adj_Oelims,axiom,
! [X: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( ( remdup8712921452854877243_a_nat @ X )
= Y )
=> ( ( ( X = nil_Sum_sum_a_nat )
=> ( Y != nil_Sum_sum_a_nat ) )
=> ( ! [X3: sum_sum_a_nat] :
( ( X
= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( Y
!= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) ) )
=> ~ ! [X3: sum_sum_a_nat,Y2: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( X
= ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Xs2 ) ) )
=> ~ ( ( ( X3 = Y2 )
=> ( Y
= ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) ) ) )
& ( ( X3 != Y2 )
=> ( Y
= ( cons_Sum_sum_a_nat @ X3 @ ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ Y2 @ Xs2 ) ) ) ) ) ) ) ) ) ) ).
% remdups_adj.elims
thf(fact_322_remdups__adj_Osimps_I2_J,axiom,
! [X: sum_sum_a_nat] :
( ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) )
= ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) ).
% remdups_adj.simps(2)
thf(fact_323_remdups__adj__length,axiom,
! [Xs: list_Sum_sum_a_nat] : ( ord_less_eq_nat @ ( size_s5283204784079214577_a_nat @ ( remdup8712921452854877243_a_nat @ Xs ) ) @ ( size_s5283204784079214577_a_nat @ Xs ) ) ).
% remdups_adj_length
thf(fact_324_of__int__nonneg,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_nonneg
thf(fact_325_of__int__nonneg,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_nonneg
thf(fact_326_add__nth_Oelims,axiom,
! [X: nat,Xa: sum_sum_a_nat,Xb: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( ( add_nt4212672348507122516_a_nat @ X @ Xa @ Xb )
= Y )
=> ( ( ( X = zero_zero_nat )
=> ( Y
!= ( cons_Sum_sum_a_nat @ Xa @ Xb ) ) )
=> ~ ! [N2: nat] :
( ( X
= ( suc @ N2 ) )
=> ( Y
!= ( case_l4306230254520888864_a_nat @ undefi6325633994470778349_a_nat
@ ^ [X5: sum_sum_a_nat,Xs3: list_Sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ X5 @ ( add_nt4212672348507122516_a_nat @ N2 @ Xa @ Xs3 ) )
@ Xb ) ) ) ) ) ).
% add_nth.elims
thf(fact_327_nths__Cons,axiom,
! [X: sum_sum_a_nat,L: list_Sum_sum_a_nat,A2: set_nat] :
( ( nths_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ L ) @ A2 )
= ( append_Sum_sum_a_nat @ ( if_lis4685338526944683083_a_nat @ ( member_nat @ zero_zero_nat @ A2 ) @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) @ nil_Sum_sum_a_nat )
@ ( nths_Sum_sum_a_nat @ L
@ ( collect_nat
@ ^ [J2: nat] : ( member_nat @ ( suc @ J2 ) @ A2 ) ) ) ) ) ).
% nths_Cons
thf(fact_328_of__nat__nat,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_nat_nat
thf(fact_329_of__nat__nat,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri5074537144036343181t_real @ ( nat2 @ Z2 ) )
= ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_nat_nat
thf(fact_330_add__nth_Osimps_I2_J,axiom,
! [N: nat,A: sum_sum_a_nat,Zs: list_Sum_sum_a_nat] :
( ( add_nt4212672348507122516_a_nat @ ( suc @ N ) @ A @ Zs )
= ( case_l4306230254520888864_a_nat @ undefi6325633994470778349_a_nat
@ ^ [X5: sum_sum_a_nat,Xs3: list_Sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ X5 @ ( add_nt4212672348507122516_a_nat @ N @ A @ Xs3 ) )
@ Zs ) ) ).
% add_nth.simps(2)
thf(fact_331_ceiling__le__zero,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% ceiling_le_zero
thf(fact_332_insert__Nil,axiom,
! [X: sum_sum_a_nat] :
( ( insert_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat )
= ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) ).
% insert_Nil
thf(fact_333_append__eq__append__conv,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,Us: list_Sum_sum_a_nat,Vs: list_Sum_sum_a_nat] :
( ( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( size_s5283204784079214577_a_nat @ Ys ) )
| ( ( size_s5283204784079214577_a_nat @ Us )
= ( size_s5283204784079214577_a_nat @ Vs ) ) )
=> ( ( ( append_Sum_sum_a_nat @ Xs @ Us )
= ( append_Sum_sum_a_nat @ Ys @ Vs ) )
= ( ( Xs = Ys )
& ( Us = Vs ) ) ) ) ).
% append_eq_append_conv
thf(fact_334_nat__int,axiom,
! [N: nat] :
( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
= N ) ).
% nat_int
thf(fact_335_append1__eq__conv,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat,Ys: list_Sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) )
= ( append_Sum_sum_a_nat @ Ys @ ( cons_Sum_sum_a_nat @ Y @ nil_Sum_sum_a_nat ) ) )
= ( ( Xs = Ys )
& ( X = Y ) ) ) ).
% append1_eq_conv
thf(fact_336_ceiling__zero,axiom,
( ( archim7802044766580827645g_real @ zero_zero_real )
= zero_zero_int ) ).
% ceiling_zero
thf(fact_337_ceiling__of__nat,axiom,
! [N: nat] :
( ( archim7802044766580827645g_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% ceiling_of_nat
thf(fact_338_nat__le__0,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ Z2 @ zero_zero_int )
=> ( ( nat2 @ Z2 )
= zero_zero_nat ) ) ).
% nat_le_0
thf(fact_339_nat__0__iff,axiom,
! [I: int] :
( ( ( nat2 @ I )
= zero_zero_nat )
= ( ord_less_eq_int @ I @ zero_zero_int ) ) ).
% nat_0_iff
thf(fact_340_int__nat__eq,axiom,
! [Z2: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= Z2 ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= zero_zero_int ) ) ) ).
% int_nat_eq
thf(fact_341_of__nat__ceiling,axiom,
! [R2: real] : ( ord_less_eq_real @ R2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ R2 ) ) ) ) ).
% of_nat_ceiling
thf(fact_342_append__Cons,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( append_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) @ Ys )
= ( cons_Sum_sum_a_nat @ X @ ( append_Sum_sum_a_nat @ Xs @ Ys ) ) ) ).
% append_Cons
thf(fact_343_Cons__eq__appendI,axiom,
! [X: sum_sum_a_nat,Xs1: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Zs: list_Sum_sum_a_nat] :
( ( ( cons_Sum_sum_a_nat @ X @ Xs1 )
= Ys )
=> ( ( Xs
= ( append_Sum_sum_a_nat @ Xs1 @ Zs ) )
=> ( ( cons_Sum_sum_a_nat @ X @ Xs )
= ( append_Sum_sum_a_nat @ Ys @ Zs ) ) ) ) ).
% Cons_eq_appendI
thf(fact_344_ceiling__mono,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y ) @ ( archim7802044766580827645g_real @ X ) ) ) ).
% ceiling_mono
thf(fact_345_le__of__int__ceiling,axiom,
! [X: real] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ).
% le_of_int_ceiling
thf(fact_346_nat__zero__as__int,axiom,
( zero_zero_nat
= ( nat2 @ zero_zero_int ) ) ).
% nat_zero_as_int
thf(fact_347_rev__induct,axiom,
! [P: list_Sum_sum_a_nat > $o,Xs: list_Sum_sum_a_nat] :
( ( P @ nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( P @ Xs2 )
=> ( P @ ( append_Sum_sum_a_nat @ Xs2 @ ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) ) ) )
=> ( P @ Xs ) ) ) ).
% rev_induct
thf(fact_348_rev__exhaust,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( Xs != nil_Sum_sum_a_nat )
=> ~ ! [Ys2: list_Sum_sum_a_nat,Y2: sum_sum_a_nat] :
( Xs
!= ( append_Sum_sum_a_nat @ Ys2 @ ( cons_Sum_sum_a_nat @ Y2 @ nil_Sum_sum_a_nat ) ) ) ) ).
% rev_exhaust
thf(fact_349_Cons__eq__append__conv,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat,Zs: list_Sum_sum_a_nat] :
( ( ( cons_Sum_sum_a_nat @ X @ Xs )
= ( append_Sum_sum_a_nat @ Ys @ Zs ) )
= ( ( ( Ys = nil_Sum_sum_a_nat )
& ( ( cons_Sum_sum_a_nat @ X @ Xs )
= Zs ) )
| ? [Ys4: list_Sum_sum_a_nat] :
( ( ( cons_Sum_sum_a_nat @ X @ Ys4 )
= Ys )
& ( Xs
= ( append_Sum_sum_a_nat @ Ys4 @ Zs ) ) ) ) ) ).
% Cons_eq_append_conv
thf(fact_350_append__eq__Cons__conv,axiom,
! [Ys: list_Sum_sum_a_nat,Zs: list_Sum_sum_a_nat,X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( ( append_Sum_sum_a_nat @ Ys @ Zs )
= ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( ( ( Ys = nil_Sum_sum_a_nat )
& ( Zs
= ( cons_Sum_sum_a_nat @ X @ Xs ) ) )
| ? [Ys4: list_Sum_sum_a_nat] :
( ( Ys
= ( cons_Sum_sum_a_nat @ X @ Ys4 ) )
& ( ( append_Sum_sum_a_nat @ Ys4 @ Zs )
= Xs ) ) ) ) ).
% append_eq_Cons_conv
thf(fact_351_rev__nonempty__induct,axiom,
! [Xs: list_Sum_sum_a_nat,P: list_Sum_sum_a_nat > $o] :
( ( Xs != nil_Sum_sum_a_nat )
=> ( ! [X3: sum_sum_a_nat] : ( P @ ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( Xs2 != nil_Sum_sum_a_nat )
=> ( ( P @ Xs2 )
=> ( P @ ( append_Sum_sum_a_nat @ Xs2 @ ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) ) ) ) )
=> ( P @ Xs ) ) ) ) ).
% rev_nonempty_induct
thf(fact_352_nat__mono,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).
% nat_mono
thf(fact_353_ex__nat,axiom,
( ( ^ [P3: nat > $o] :
? [X7: nat] : ( P3 @ X7 ) )
= ( ^ [P4: nat > $o] :
? [X5: int] :
( ( ord_less_eq_int @ zero_zero_int @ X5 )
& ( P4 @ ( nat2 @ X5 ) ) ) ) ) ).
% ex_nat
thf(fact_354_all__nat,axiom,
( ( ^ [P3: nat > $o] :
! [X7: nat] : ( P3 @ X7 ) )
= ( ^ [P4: nat > $o] :
! [X5: int] :
( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> ( P4 @ ( nat2 @ X5 ) ) ) ) ) ).
% all_nat
thf(fact_355_eq__nat__nat__iff,axiom,
! [Z2: int,Z5: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
=> ( ( ( nat2 @ Z2 )
= ( nat2 @ Z5 ) )
= ( Z2 = Z5 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_356_ceiling__le__iff,axiom,
! [X: real,Z2: int] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ Z2 )
= ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% ceiling_le_iff
thf(fact_357_same__length__different,axiom,
! [Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( Xs != Ys )
=> ( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( size_s5283204784079214577_a_nat @ Ys ) )
=> ? [Pre: list_Sum_sum_a_nat,X3: sum_sum_a_nat,Xs4: list_Sum_sum_a_nat,Y2: sum_sum_a_nat,Ys5: list_Sum_sum_a_nat] :
( ( X3 != Y2 )
& ( Xs
= ( append_Sum_sum_a_nat @ Pre @ ( append_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) @ Xs4 ) ) )
& ( Ys
= ( append_Sum_sum_a_nat @ Pre @ ( append_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ Y2 @ nil_Sum_sum_a_nat ) @ Ys5 ) ) ) ) ) ) ).
% same_length_different
thf(fact_358_nat__le__iff,axiom,
! [X: int,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
= ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% nat_le_iff
thf(fact_359_nat__0__le,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
= Z2 ) ) ).
% nat_0_le
thf(fact_360_int__eq__iff,axiom,
! [M: nat,Z2: int] :
( ( ( semiri1314217659103216013at_int @ M )
= Z2 )
= ( ( M
= ( nat2 @ Z2 ) )
& ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ) ).
% int_eq_iff
thf(fact_361_remdups__adj__append__two,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( remdup8712921452854877243_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y @ nil_Sum_sum_a_nat ) ) ) )
= ( append_Sum_sum_a_nat @ ( remdup8712921452854877243_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) ) @ ( if_lis4685338526944683083_a_nat @ ( X = Y ) @ nil_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ Y @ nil_Sum_sum_a_nat ) ) ) ) ).
% remdups_adj_append_two
thf(fact_362_SuccI,axiom,
! [Kl3: list_l4703314356710769291_a_nat,K: list_Sum_sum_a_nat,Kl4: set_li8553678471444574443_a_nat] :
( ( member6656483030743143220_a_nat @ ( append5415888156905520160_a_nat @ Kl3 @ ( cons_l6604326339930385211_a_nat @ K @ nil_li1906260230833442699_a_nat ) ) @ Kl4 )
=> ( member408289922725080238_a_nat @ K @ ( bNF_Gr828430269543142304_a_nat @ Kl4 @ Kl3 ) ) ) ).
% SuccI
thf(fact_363_SuccI,axiom,
! [Kl3: list_real,K: real,Kl4: set_list_real] :
( ( member_list_real @ ( append_real @ Kl3 @ ( cons_real @ K @ nil_real ) ) @ Kl4 )
=> ( member_real @ K @ ( bNF_Gr2087828336424606033c_real @ Kl4 @ Kl3 ) ) ) ).
% SuccI
thf(fact_364_SuccI,axiom,
! [Kl3: list_Sum_sum_a_nat,K: sum_sum_a_nat,Kl4: set_li6526943997496501093_a_nat] :
( ( member408289922725080238_a_nat @ ( append_Sum_sum_a_nat @ Kl3 @ ( cons_Sum_sum_a_nat @ K @ nil_Sum_sum_a_nat ) ) @ Kl4 )
=> ( member_Sum_sum_a_nat @ K @ ( bNF_Gr5582227268375839130_a_nat @ Kl4 @ Kl3 ) ) ) ).
% SuccI
thf(fact_365_SuccD,axiom,
! [K: list_Sum_sum_a_nat,Kl4: set_li8553678471444574443_a_nat,Kl3: list_l4703314356710769291_a_nat] :
( ( member408289922725080238_a_nat @ K @ ( bNF_Gr828430269543142304_a_nat @ Kl4 @ Kl3 ) )
=> ( member6656483030743143220_a_nat @ ( append5415888156905520160_a_nat @ Kl3 @ ( cons_l6604326339930385211_a_nat @ K @ nil_li1906260230833442699_a_nat ) ) @ Kl4 ) ) ).
% SuccD
thf(fact_366_SuccD,axiom,
! [K: real,Kl4: set_list_real,Kl3: list_real] :
( ( member_real @ K @ ( bNF_Gr2087828336424606033c_real @ Kl4 @ Kl3 ) )
=> ( member_list_real @ ( append_real @ Kl3 @ ( cons_real @ K @ nil_real ) ) @ Kl4 ) ) ).
% SuccD
thf(fact_367_SuccD,axiom,
! [K: sum_sum_a_nat,Kl4: set_li6526943997496501093_a_nat,Kl3: list_Sum_sum_a_nat] :
( ( member_Sum_sum_a_nat @ K @ ( bNF_Gr5582227268375839130_a_nat @ Kl4 @ Kl3 ) )
=> ( member408289922725080238_a_nat @ ( append_Sum_sum_a_nat @ Kl3 @ ( cons_Sum_sum_a_nat @ K @ nil_Sum_sum_a_nat ) ) @ Kl4 ) ) ).
% SuccD
thf(fact_368_Succ__def,axiom,
( bNF_Gr5582227268375839130_a_nat
= ( ^ [Kl: set_li6526943997496501093_a_nat,Kl2: list_Sum_sum_a_nat] :
( collec7073057861543223018_a_nat
@ ^ [K2: sum_sum_a_nat] : ( member408289922725080238_a_nat @ ( append_Sum_sum_a_nat @ Kl2 @ ( cons_Sum_sum_a_nat @ K2 @ nil_Sum_sum_a_nat ) ) @ Kl ) ) ) ) ).
% Succ_def
thf(fact_369_length__append__singleton,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) )
= ( suc @ ( size_s5283204784079214577_a_nat @ Xs ) ) ) ).
% length_append_singleton
thf(fact_370_length__Suc__conv__rev,axiom,
! [Xs: list_Sum_sum_a_nat,N: nat] :
( ( ( size_s5283204784079214577_a_nat @ Xs )
= ( suc @ N ) )
= ( ? [Y5: sum_sum_a_nat,Ys3: list_Sum_sum_a_nat] :
( ( Xs
= ( append_Sum_sum_a_nat @ Ys3 @ ( cons_Sum_sum_a_nat @ Y5 @ nil_Sum_sum_a_nat ) ) )
& ( ( size_s5283204784079214577_a_nat @ Ys3 )
= N ) ) ) ) ).
% length_Suc_conv_rev
thf(fact_371_nat__eq__iff,axiom,
! [W2: int,M: nat] :
( ( ( nat2 @ W2 )
= M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( W2
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff
thf(fact_372_nat__eq__iff2,axiom,
! [M: nat,W2: int] :
( ( M
= ( nat2 @ W2 ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( W2
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff2
thf(fact_373_le__nat__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
= ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).
% le_nat_iff
thf(fact_374_remdups__adj__Cons,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( case_l4306230254520888864_a_nat @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat )
@ ^ [Y5: sum_sum_a_nat,Xs3: list_Sum_sum_a_nat] : ( if_lis4685338526944683083_a_nat @ ( X = Y5 ) @ ( cons_Sum_sum_a_nat @ Y5 @ Xs3 ) @ ( cons_Sum_sum_a_nat @ X @ ( cons_Sum_sum_a_nat @ Y5 @ Xs3 ) ) )
@ ( remdup8712921452854877243_a_nat @ Xs ) ) ) ).
% remdups_adj_Cons
thf(fact_375_nat__ceiling__le__eq,axiom,
! [X: real,A: nat] :
( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
= ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).
% nat_ceiling_le_eq
thf(fact_376_ceiling__le,axiom,
! [X: real,A: int] :
( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ A ) ) ).
% ceiling_le
thf(fact_377_remdups__adj__append__dropWhile,axiom,
! [Xs: list_Sum_sum_a_nat,Y: sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( remdup8712921452854877243_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ Y @ Ys ) ) )
= ( append_Sum_sum_a_nat @ ( remdup8712921452854877243_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ Y @ nil_Sum_sum_a_nat ) ) )
@ ( remdup8712921452854877243_a_nat
@ ( dropWh368498264657702054_a_nat
@ ^ [X5: sum_sum_a_nat] : ( X5 = Y )
@ Ys ) ) ) ) ).
% remdups_adj_append_dropWhile
thf(fact_378_butlast__snoc,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( butlas5768530507476509265_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) )
= Xs ) ).
% butlast_snoc
thf(fact_379_complete__real,axiom,
! [S: set_real] :
( ? [X4: real] : ( member_real @ X4 @ S )
=> ( ? [Z6: real] :
! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ X3 @ Z6 ) )
=> ? [Y2: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S )
=> ( ord_less_eq_real @ X4 @ Y2 ) )
& ! [Z6: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ X3 @ Z6 ) )
=> ( ord_less_eq_real @ Y2 @ Z6 ) ) ) ) ) ).
% complete_real
thf(fact_380_dropWhile_Osimps_I2_J,axiom,
! [P: sum_sum_a_nat > $o,X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( ( P @ X )
=> ( ( dropWh368498264657702054_a_nat @ P @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( dropWh368498264657702054_a_nat @ P @ Xs ) ) )
& ( ~ ( P @ X )
=> ( ( dropWh368498264657702054_a_nat @ P @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( cons_Sum_sum_a_nat @ X @ Xs ) ) ) ) ).
% dropWhile.simps(2)
thf(fact_381_dropWhile__append3,axiom,
! [P: sum_sum_a_nat > $o,Y: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ~ ( P @ Y )
=> ( ( dropWh368498264657702054_a_nat @ P @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ Y @ Ys ) ) )
= ( append_Sum_sum_a_nat @ ( dropWh368498264657702054_a_nat @ P @ Xs ) @ ( cons_Sum_sum_a_nat @ Y @ Ys ) ) ) ) ).
% dropWhile_append3
thf(fact_382_length__dropWhile__le,axiom,
! [P: sum_sum_a_nat > $o,Xs: list_Sum_sum_a_nat] : ( ord_less_eq_nat @ ( size_s5283204784079214577_a_nat @ ( dropWh368498264657702054_a_nat @ P @ Xs ) ) @ ( size_s5283204784079214577_a_nat @ Xs ) ) ).
% length_dropWhile_le
thf(fact_383_butlast_Osimps_I2_J,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( ( Xs = nil_Sum_sum_a_nat )
=> ( ( butlas5768530507476509265_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= nil_Sum_sum_a_nat ) )
& ( ( Xs != nil_Sum_sum_a_nat )
=> ( ( butlas5768530507476509265_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( cons_Sum_sum_a_nat @ X @ ( butlas5768530507476509265_a_nat @ Xs ) ) ) ) ) ).
% butlast.simps(2)
thf(fact_384_remdups__adj__Cons_H,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( cons_Sum_sum_a_nat @ X
@ ( remdup8712921452854877243_a_nat
@ ( dropWh368498264657702054_a_nat
@ ^ [Y5: sum_sum_a_nat] : ( Y5 = X )
@ Xs ) ) ) ) ).
% remdups_adj_Cons'
thf(fact_385_real__nat__ceiling__ge,axiom,
! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_386_append__butlast__last__id,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( Xs != nil_Sum_sum_a_nat )
=> ( ( append_Sum_sum_a_nat @ ( butlas5768530507476509265_a_nat @ Xs ) @ ( cons_Sum_sum_a_nat @ ( last_Sum_sum_a_nat @ Xs ) @ nil_Sum_sum_a_nat ) )
= Xs ) ) ).
% append_butlast_last_id
thf(fact_387_snoc__eq__iff__butlast,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) )
= Ys )
= ( ( Ys != nil_Sum_sum_a_nat )
& ( ( butlas5768530507476509265_a_nat @ Ys )
= Xs )
& ( ( last_Sum_sum_a_nat @ Ys )
= X ) ) ) ).
% snoc_eq_iff_butlast
thf(fact_388_split__nat,axiom,
! [P: nat > $o,I: int] :
( ( P @ ( nat2 @ I ) )
= ( ! [N4: nat] :
( ( I
= ( semiri1314217659103216013at_int @ N4 ) )
=> ( P @ N4 ) )
& ( ( ord_less_int @ I @ zero_zero_int )
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_nat
thf(fact_389_nat__le__eq__zle,axiom,
! [W2: int,Z2: int] :
( ( ( ord_less_int @ zero_zero_int @ W2 )
| ( ord_less_eq_int @ zero_zero_int @ Z2 ) )
=> ( ( ord_less_eq_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ) ).
% nat_le_eq_zle
thf(fact_390_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_391_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_392_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_393_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_394_length__map,axiom,
! [F: sum_sum_a_nat > sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( map_Su2790769393171190532_a_nat @ F @ Xs ) )
= ( size_s5283204784079214577_a_nat @ Xs ) ) ).
% length_map
thf(fact_395_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_396_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_397_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_398_last__snoc,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( last_Sum_sum_a_nat @ ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) )
= X ) ).
% last_snoc
thf(fact_399_of__int__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_400_of__int__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z2 ) @ zero_zero_real )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_401_of__int__0__less__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_less_iff
thf(fact_402_of__int__0__less__iff,axiom,
! [Z2: int] :
( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% of_int_0_less_iff
thf(fact_403_zero__less__ceiling,axiom,
! [X: real] :
( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% zero_less_ceiling
thf(fact_404_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_405_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_406_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_407_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_408_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_409_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_410_map__eq__Cons__conv,axiom,
! [F: sum_sum_a_nat > sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Y: sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ( map_Su2790769393171190532_a_nat @ F @ Xs )
= ( cons_Sum_sum_a_nat @ Y @ Ys ) )
= ( ? [Z7: sum_sum_a_nat,Zs3: list_Sum_sum_a_nat] :
( ( Xs
= ( cons_Sum_sum_a_nat @ Z7 @ Zs3 ) )
& ( ( F @ Z7 )
= Y )
& ( ( map_Su2790769393171190532_a_nat @ F @ Zs3 )
= Ys ) ) ) ) ).
% map_eq_Cons_conv
thf(fact_411_Cons__eq__map__conv,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,F: sum_sum_a_nat > sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ( cons_Sum_sum_a_nat @ X @ Xs )
= ( map_Su2790769393171190532_a_nat @ F @ Ys ) )
= ( ? [Z7: sum_sum_a_nat,Zs3: list_Sum_sum_a_nat] :
( ( Ys
= ( cons_Sum_sum_a_nat @ Z7 @ Zs3 ) )
& ( X
= ( F @ Z7 ) )
& ( Xs
= ( map_Su2790769393171190532_a_nat @ F @ Zs3 ) ) ) ) ) ).
% Cons_eq_map_conv
thf(fact_412_map__eq__Cons__D,axiom,
! [F: sum_sum_a_nat > sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Y: sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ( map_Su2790769393171190532_a_nat @ F @ Xs )
= ( cons_Sum_sum_a_nat @ Y @ Ys ) )
=> ? [Z4: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat] :
( ( Xs
= ( cons_Sum_sum_a_nat @ Z4 @ Zs2 ) )
& ( ( F @ Z4 )
= Y )
& ( ( map_Su2790769393171190532_a_nat @ F @ Zs2 )
= Ys ) ) ) ).
% map_eq_Cons_D
thf(fact_413_Cons__eq__map__D,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,F: sum_sum_a_nat > sum_sum_a_nat,Ys: list_Sum_sum_a_nat] :
( ( ( cons_Sum_sum_a_nat @ X @ Xs )
= ( map_Su2790769393171190532_a_nat @ F @ Ys ) )
=> ? [Z4: sum_sum_a_nat,Zs2: list_Sum_sum_a_nat] :
( ( Ys
= ( cons_Sum_sum_a_nat @ Z4 @ Zs2 ) )
& ( X
= ( F @ Z4 ) )
& ( Xs
= ( map_Su2790769393171190532_a_nat @ F @ Zs2 ) ) ) ) ).
% Cons_eq_map_D
thf(fact_414_list_Osimps_I9_J,axiom,
! [F: sum_sum_a_nat > sum_sum_a_nat,X21: sum_sum_a_nat,X22: list_Sum_sum_a_nat] :
( ( map_Su2790769393171190532_a_nat @ F @ ( cons_Sum_sum_a_nat @ X21 @ X22 ) )
= ( cons_Sum_sum_a_nat @ ( F @ X21 ) @ ( map_Su2790769393171190532_a_nat @ F @ X22 ) ) ) ).
% list.simps(9)
thf(fact_415_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_416_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_417_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_418_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_419_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_420_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_421_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_422_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_423_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_424_lt__ex,axiom,
! [X: int] :
? [Y2: int] : ( ord_less_int @ Y2 @ X ) ).
% lt_ex
thf(fact_425_lt__ex,axiom,
! [X: real] :
? [Y2: real] : ( ord_less_real @ Y2 @ X ) ).
% lt_ex
thf(fact_426_gt__ex,axiom,
! [X: int] :
? [X_12: int] : ( ord_less_int @ X @ X_12 ) ).
% gt_ex
thf(fact_427_gt__ex,axiom,
! [X: nat] :
? [X_12: nat] : ( ord_less_nat @ X @ X_12 ) ).
% gt_ex
thf(fact_428_gt__ex,axiom,
! [X: real] :
? [X_12: real] : ( ord_less_real @ X @ X_12 ) ).
% gt_ex
thf(fact_429_dense,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ? [Z4: real] :
( ( ord_less_real @ X @ Z4 )
& ( ord_less_real @ Z4 @ Y ) ) ) ).
% dense
thf(fact_430_less__imp__neq,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_431_less__imp__neq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_432_less__imp__neq,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_433_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_434_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_435_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_436_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_437_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_438_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_439_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_440_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_441_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_442_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X3: nat] :
( ! [Y3: nat] :
( ( ord_less_nat @ Y3 @ X3 )
=> ( P @ Y3 ) )
=> ( P @ X3 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_443_antisym__conv3,axiom,
! [Y: int,X: int] :
( ~ ( ord_less_int @ Y @ X )
=> ( ( ~ ( ord_less_int @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_444_antisym__conv3,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_nat @ Y @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_445_antisym__conv3,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_real @ Y @ X )
=> ( ( ~ ( ord_less_real @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_446_linorder__cases,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_447_linorder__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_448_linorder__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_449_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_450_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_451_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_452_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_453_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_454_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_455_exists__least__iff,axiom,
( ( ^ [P3: nat > $o] :
? [X7: nat] : ( P3 @ X7 ) )
= ( ^ [P4: nat > $o] :
? [N4: nat] :
( ( P4 @ N4 )
& ! [M6: nat] :
( ( ord_less_nat @ M6 @ N4 )
=> ~ ( P4 @ M6 ) ) ) ) ) ).
% exists_least_iff
thf(fact_456_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B4: int] :
( ( ord_less_int @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: int] : ( P @ A4 @ A4 )
=> ( ! [A4: int,B4: int] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_457_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( ord_less_nat @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ A4 )
=> ( ! [A4: nat,B4: nat] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_458_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B4: real] :
( ( ord_less_real @ A4 @ B4 )
=> ( P @ A4 @ B4 ) )
=> ( ! [A4: real] : ( P @ A4 @ A4 )
=> ( ! [A4: real,B4: real] :
( ( P @ B4 @ A4 )
=> ( P @ A4 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_459_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_460_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_461_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_462_not__less__iff__gr__or__eq,axiom,
! [X: int,Y: int] :
( ( ~ ( ord_less_int @ X @ Y ) )
= ( ( ord_less_int @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_463_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ( ord_less_nat @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_464_not__less__iff__gr__or__eq,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_real @ X @ Y ) )
= ( ( ord_less_real @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_465_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_466_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_467_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_468_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_469_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_470_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_471_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_472_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_473_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_474_linorder__neqE,axiom,
! [X: int,Y: int] :
( ( X != Y )
=> ( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_475_linorder__neqE,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_476_linorder__neqE,axiom,
! [X: real,Y: real] :
( ( X != Y )
=> ( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_477_order__less__asym,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ~ ( ord_less_int @ Y @ X ) ) ).
% order_less_asym
thf(fact_478_order__less__asym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_asym
thf(fact_479_order__less__asym,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ~ ( ord_less_real @ Y @ X ) ) ).
% order_less_asym
thf(fact_480_linorder__neq__iff,axiom,
! [X: int,Y: int] :
( ( X != Y )
= ( ( ord_less_int @ X @ Y )
| ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_481_linorder__neq__iff,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
= ( ( ord_less_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_482_linorder__neq__iff,axiom,
! [X: real,Y: real] :
( ( X != Y )
= ( ( ord_less_real @ X @ Y )
| ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_483_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_484_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_485_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_486_order__less__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_int @ X @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_487_order__less__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_488_order__less__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_real @ X @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_489_ord__eq__less__subst,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_490_ord__eq__less__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_491_ord__eq__less__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_492_ord__eq__less__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_493_ord__eq__less__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_494_ord__eq__less__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_495_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_496_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_497_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_498_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_499_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_500_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_501_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_502_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_503_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_504_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_505_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_506_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_507_order__less__irrefl,axiom,
! [X: int] :
~ ( ord_less_int @ X @ X ) ).
% order_less_irrefl
thf(fact_508_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_509_order__less__irrefl,axiom,
! [X: real] :
~ ( ord_less_real @ X @ X ) ).
% order_less_irrefl
thf(fact_510_order__less__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_511_order__less__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_512_order__less__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_513_order__less__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_514_order__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_515_order__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_516_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_517_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_518_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_519_order__less__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_520_order__less__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_521_order__less__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_522_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_523_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_524_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_525_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_526_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_527_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_528_order__less__not__sym,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ~ ( ord_less_int @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_529_order__less__not__sym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_530_order__less__not__sym,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ~ ( ord_less_real @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_531_order__less__imp__triv,axiom,
! [X: int,Y: int,P: $o] :
( ( ord_less_int @ X @ Y )
=> ( ( ord_less_int @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_532_order__less__imp__triv,axiom,
! [X: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_533_order__less__imp__triv,axiom,
! [X: real,Y: real,P: $o] :
( ( ord_less_real @ X @ Y )
=> ( ( ord_less_real @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_534_linorder__less__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
| ( X = Y )
| ( ord_less_int @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_535_linorder__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
| ( X = Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_536_linorder__less__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
| ( X = Y )
| ( ord_less_real @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_537_order__less__imp__not__eq,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_538_order__less__imp__not__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_539_order__less__imp__not__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_540_order__less__imp__not__eq2,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_541_order__less__imp__not__eq2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_542_order__less__imp__not__eq2,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_543_order__less__imp__not__less,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ~ ( ord_less_int @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_544_order__less__imp__not__less,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_545_order__less__imp__not__less,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ~ ( ord_less_real @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_546_order__le__imp__less__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_547_order__le__imp__less__or__eq,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_int @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_548_order__le__imp__less__or__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_549_linorder__le__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_550_linorder__le__less__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
| ( ord_less_int @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_551_linorder__le__less__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
| ( ord_less_real @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_552_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_553_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_554_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_555_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_556_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_557_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_558_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_559_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_560_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_561_order__less__le__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_562_order__less__le__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_563_order__less__le__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_564_order__less__le__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_565_order__less__le__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_566_order__less__le__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_567_order__less__le__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_568_order__less__le__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_569_order__less__le__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_570_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_571_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_572_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_eq_nat @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_573_order__le__less__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_574_order__le__less__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_575_order__le__less__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_eq_int @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_576_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_577_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_578_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_eq_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_579_order__le__less__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_580_order__le__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_581_order__le__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_582_order__le__less__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_583_order__le__less__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_584_order__le__less__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_585_order__le__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y2: int] :
( ( ord_less_int @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_586_order__le__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y2: nat] :
( ( ord_less_nat @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_587_order__le__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y2: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_588_order__less__le__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_589_order__less__le__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_590_order__less__le__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_591_order__le__less__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_592_order__le__less__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_593_order__le__less__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_594_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_595_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_596_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_597_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_598_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_599_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_600_order__less__imp__le,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_601_order__less__imp__le,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( ord_less_eq_int @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_602_order__less__imp__le,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_603_linorder__not__less,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_not_less
thf(fact_604_linorder__not__less,axiom,
! [X: int,Y: int] :
( ( ~ ( ord_less_int @ X @ Y ) )
= ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_not_less
thf(fact_605_linorder__not__less,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_real @ X @ Y ) )
= ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_not_less
thf(fact_606_linorder__not__le,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y ) )
= ( ord_less_nat @ Y @ X ) ) ).
% linorder_not_le
thf(fact_607_linorder__not__le,axiom,
! [X: int,Y: int] :
( ( ~ ( ord_less_eq_int @ X @ Y ) )
= ( ord_less_int @ Y @ X ) ) ).
% linorder_not_le
thf(fact_608_linorder__not__le,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_eq_real @ X @ Y ) )
= ( ord_less_real @ Y @ X ) ) ).
% linorder_not_le
thf(fact_609_order__less__le,axiom,
( ord_less_nat
= ( ^ [X5: nat,Y5: nat] :
( ( ord_less_eq_nat @ X5 @ Y5 )
& ( X5 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_610_order__less__le,axiom,
( ord_less_int
= ( ^ [X5: int,Y5: int] :
( ( ord_less_eq_int @ X5 @ Y5 )
& ( X5 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_611_order__less__le,axiom,
( ord_less_real
= ( ^ [X5: real,Y5: real] :
( ( ord_less_eq_real @ X5 @ Y5 )
& ( X5 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_612_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X5: nat,Y5: nat] :
( ( ord_less_nat @ X5 @ Y5 )
| ( X5 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_613_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X5: int,Y5: int] :
( ( ord_less_int @ X5 @ Y5 )
| ( X5 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_614_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X5: real,Y5: real] :
( ( ord_less_real @ X5 @ Y5 )
| ( X5 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_615_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_616_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_617_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_618_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_619_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_620_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_621_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_622_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B3: int,A3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ~ ( ord_less_eq_int @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_623_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B3: real,A3: real] :
( ( ord_less_eq_real @ B3 @ A3 )
& ~ ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_624_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_625_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_626_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_627_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_628_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_629_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_630_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_631_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B3: int,A3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_632_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B3: real,A3: real] :
( ( ord_less_eq_real @ B3 @ A3 )
& ( A3 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_633_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A3: nat] :
( ( ord_less_nat @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_634_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B3: int,A3: int] :
( ( ord_less_int @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_635_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B3: real,A3: real] :
( ( ord_less_real @ B3 @ A3 )
| ( A3 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_636_dense__le__bounded,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_real @ X @ Y )
=> ( ! [W: real] :
( ( ord_less_real @ X @ W )
=> ( ( ord_less_real @ W @ Y )
=> ( ord_less_eq_real @ W @ Z2 ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_637_dense__ge__bounded,axiom,
! [Z2: real,X: real,Y: real] :
( ( ord_less_real @ Z2 @ X )
=> ( ! [W: real] :
( ( ord_less_real @ Z2 @ W )
=> ( ( ord_less_real @ W @ X )
=> ( ord_less_eq_real @ Y @ W ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_638_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_639_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ~ ( ord_less_eq_int @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_640_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
& ~ ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_641_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_642_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_643_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_644_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_645_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_646_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_647_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_648_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_649_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_650_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_nat @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_651_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B3: int] :
( ( ord_less_int @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_652_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B3: real] :
( ( ord_less_real @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_653_not__le__imp__less,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y @ X )
=> ( ord_less_nat @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_654_not__le__imp__less,axiom,
! [Y: int,X: int] :
( ~ ( ord_less_eq_int @ Y @ X )
=> ( ord_less_int @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_655_not__le__imp__less,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_eq_real @ Y @ X )
=> ( ord_less_real @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_656_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X5: nat,Y5: nat] :
( ( ord_less_eq_nat @ X5 @ Y5 )
& ~ ( ord_less_eq_nat @ Y5 @ X5 ) ) ) ) ).
% less_le_not_le
thf(fact_657_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X5: int,Y5: int] :
( ( ord_less_eq_int @ X5 @ Y5 )
& ~ ( ord_less_eq_int @ Y5 @ X5 ) ) ) ) ).
% less_le_not_le
thf(fact_658_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X5: real,Y5: real] :
( ( ord_less_eq_real @ X5 @ Y5 )
& ~ ( ord_less_eq_real @ Y5 @ X5 ) ) ) ) ).
% less_le_not_le
thf(fact_659_dense__le,axiom,
! [Y: real,Z2: real] :
( ! [X3: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_eq_real @ X3 @ Z2 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_le
thf(fact_660_dense__ge,axiom,
! [Z2: real,Y: real] :
( ! [X3: real] :
( ( ord_less_real @ Z2 @ X3 )
=> ( ord_less_eq_real @ Y @ X3 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_ge
thf(fact_661_antisym__conv2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_662_antisym__conv2,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ~ ( ord_less_int @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_663_antisym__conv2,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ~ ( ord_less_real @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_664_antisym__conv1,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_665_antisym__conv1,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ( ord_less_eq_int @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_666_antisym__conv1,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ( ord_less_eq_real @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_667_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_668_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_669_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_670_leI,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% leI
thf(fact_671_leI,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_eq_int @ Y @ X ) ) ).
% leI
thf(fact_672_leI,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% leI
thf(fact_673_leD,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_nat @ X @ Y ) ) ).
% leD
thf(fact_674_leD,axiom,
! [Y: int,X: int] :
( ( ord_less_eq_int @ Y @ X )
=> ~ ( ord_less_int @ X @ Y ) ) ).
% leD
thf(fact_675_leD,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ~ ( ord_less_real @ X @ Y ) ) ).
% leD
thf(fact_676_verit__comp__simplify1_I3_J,axiom,
! [B2: nat,A6: nat] :
( ( ~ ( ord_less_eq_nat @ B2 @ A6 ) )
= ( ord_less_nat @ A6 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_677_verit__comp__simplify1_I3_J,axiom,
! [B2: int,A6: int] :
( ( ~ ( ord_less_eq_int @ B2 @ A6 ) )
= ( ord_less_int @ A6 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_678_verit__comp__simplify1_I3_J,axiom,
! [B2: real,A6: real] :
( ( ~ ( ord_less_eq_real @ B2 @ A6 ) )
= ( ord_less_real @ A6 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_679_pinf_I6_J,axiom,
! [T2: nat] :
? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ~ ( ord_less_eq_nat @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_680_pinf_I6_J,axiom,
! [T2: int] :
? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ~ ( ord_less_eq_int @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_681_pinf_I6_J,axiom,
! [T2: real] :
? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ~ ( ord_less_eq_real @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_682_pinf_I8_J,axiom,
! [T2: nat] :
? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ord_less_eq_nat @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_683_pinf_I8_J,axiom,
! [T2: int] :
? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ord_less_eq_int @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_684_pinf_I8_J,axiom,
! [T2: real] :
? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ord_less_eq_real @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_685_minf_I6_J,axiom,
! [T2: nat] :
? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ord_less_eq_nat @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_686_minf_I6_J,axiom,
! [T2: int] :
? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ord_less_eq_int @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_687_minf_I6_J,axiom,
! [T2: real] :
? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ord_less_eq_real @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_688_minf_I8_J,axiom,
! [T2: nat] :
? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ~ ( ord_less_eq_nat @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_689_minf_I8_J,axiom,
! [T2: int] :
? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ~ ( ord_less_eq_int @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_690_minf_I8_J,axiom,
! [T2: real] :
? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ~ ( ord_less_eq_real @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_691_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_692_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_693_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_694_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_695_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_696_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_697_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_698_field__lbound__gt__zero,axiom,
! [D1: real,D2: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ? [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
& ( ord_less_real @ E @ D1 )
& ( ord_less_real @ E @ D2 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_699_reals__Archimedean2,axiom,
! [X: real] :
? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% reals_Archimedean2
thf(fact_700_of__int__pos,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z2 ) ) ) ).
% of_int_pos
thf(fact_701_of__int__pos,axiom,
! [Z2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z2 ) ) ) ).
% of_int_pos
thf(fact_702_of__nat__less__of__int__iff,axiom,
! [N: nat,X: int] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).
% of_nat_less_of_int_iff
thf(fact_703_of__nat__less__of__int__iff,axiom,
! [N: nat,X: int] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).
% of_nat_less_of_int_iff
thf(fact_704_n__lists_Osimps_I2_J,axiom,
! [N: nat,Xs: list_Sum_sum_a_nat] :
( ( n_list6375351914370498317_a_nat @ ( suc @ N ) @ Xs )
= ( concat6944889260076905158_a_nat
@ ( map_li7363445039720430346_a_nat
@ ^ [Ys3: list_Sum_sum_a_nat] :
( map_Su3479376915845212170_a_nat
@ ^ [Y5: sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ Y5 @ Ys3 )
@ Xs )
@ ( n_list6375351914370498317_a_nat @ N @ Xs ) ) ) ) ).
% n_lists.simps(2)
thf(fact_705_product__lists_Osimps_I2_J,axiom,
! [Xs: list_Sum_sum_a_nat,Xss2: list_l4703314356710769291_a_nat] :
( ( produc2893206433618375022_a_nat @ ( cons_l6604326339930385211_a_nat @ Xs @ Xss2 ) )
= ( concat6944889260076905158_a_nat
@ ( map_Su9164500608518484112_a_nat
@ ^ [X5: sum_sum_a_nat] : ( map_li6507455427659069316_a_nat @ ( cons_Sum_sum_a_nat @ X5 ) @ ( produc2893206433618375022_a_nat @ Xss2 ) )
@ Xs ) ) ) ).
% product_lists.simps(2)
thf(fact_706_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_707_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_708_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_709_last_Osimps,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( ( Xs = nil_Sum_sum_a_nat )
=> ( ( last_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= X ) )
& ( ( Xs != nil_Sum_sum_a_nat )
=> ( ( last_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( last_Sum_sum_a_nat @ Xs ) ) ) ) ).
% last.simps
thf(fact_710_last__ConsL,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( Xs = nil_Sum_sum_a_nat )
=> ( ( last_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= X ) ) ).
% last_ConsL
thf(fact_711_last__ConsR,axiom,
! [Xs: list_Sum_sum_a_nat,X: sum_sum_a_nat] :
( ( Xs != nil_Sum_sum_a_nat )
=> ( ( last_Sum_sum_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( last_Sum_sum_a_nat @ Xs ) ) ) ).
% last_ConsR
thf(fact_712_subseqs_Osimps_I2_J,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( subseq8414445098004693972_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( append5415888156905520160_a_nat @ ( map_li6507455427659069316_a_nat @ ( cons_Sum_sum_a_nat @ X ) @ ( subseq8414445098004693972_a_nat @ Xs ) ) @ ( subseq8414445098004693972_a_nat @ Xs ) ) ) ).
% subseqs.simps(2)
thf(fact_713_transpose_Osimps_I3_J,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Xss2: list_l4703314356710769291_a_nat] :
( ( transp3407494602793885583_a_nat @ ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) @ Xss2 ) )
= ( cons_l6604326339930385211_a_nat
@ ( cons_Sum_sum_a_nat @ X
@ ( concat_Sum_sum_a_nat
@ ( map_li6507455427659069316_a_nat
@ ( case_l4306230254520888864_a_nat @ nil_Sum_sum_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ H @ nil_Sum_sum_a_nat ) )
@ Xss2 ) ) )
@ ( transp3407494602793885583_a_nat
@ ( cons_l6604326339930385211_a_nat @ Xs
@ ( concat6944889260076905158_a_nat
@ ( map_li7363445039720430346_a_nat
@ ( case_l8396473456174167578_a_nat @ nil_li1906260230833442699_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_l6604326339930385211_a_nat @ T @ nil_li1906260230833442699_a_nat ) )
@ Xss2 ) ) ) ) ) ) ).
% transpose.simps(3)
thf(fact_714_transpose_Oelims,axiom,
! [X: list_l4703314356710769291_a_nat,Y: list_l4703314356710769291_a_nat] :
( ( ( transp3407494602793885583_a_nat @ X )
= Y )
=> ( ( ( X = nil_li1906260230833442699_a_nat )
=> ( Y != nil_li1906260230833442699_a_nat ) )
=> ( ! [Xss: list_l4703314356710769291_a_nat] :
( ( X
= ( cons_l6604326339930385211_a_nat @ nil_Sum_sum_a_nat @ Xss ) )
=> ( Y
!= ( transp3407494602793885583_a_nat @ Xss ) ) )
=> ~ ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Xss: list_l4703314356710769291_a_nat] :
( ( X
= ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ Xss ) )
=> ( Y
!= ( cons_l6604326339930385211_a_nat
@ ( cons_Sum_sum_a_nat @ X3
@ ( concat_Sum_sum_a_nat
@ ( map_li6507455427659069316_a_nat
@ ( case_l4306230254520888864_a_nat @ nil_Sum_sum_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ H @ nil_Sum_sum_a_nat ) )
@ Xss ) ) )
@ ( transp3407494602793885583_a_nat
@ ( cons_l6604326339930385211_a_nat @ Xs2
@ ( concat6944889260076905158_a_nat
@ ( map_li7363445039720430346_a_nat
@ ( case_l8396473456174167578_a_nat @ nil_li1906260230833442699_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_l6604326339930385211_a_nat @ T @ nil_li1906260230833442699_a_nat ) )
@ Xss ) ) ) ) ) ) ) ) ) ) ).
% transpose.elims
thf(fact_715_complete__interval,axiom,
! [A: nat,B: nat,P: nat > $o] :
( ( ord_less_nat @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C3: nat] :
( ( ord_less_eq_nat @ A @ C3 )
& ( ord_less_eq_nat @ C3 @ B )
& ! [X4: nat] :
( ( ( ord_less_eq_nat @ A @ X4 )
& ( ord_less_nat @ X4 @ C3 ) )
=> ( P @ X4 ) )
& ! [D: nat] :
( ! [X3: nat] :
( ( ( ord_less_eq_nat @ A @ X3 )
& ( ord_less_nat @ X3 @ D ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_nat @ D @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_716_complete__interval,axiom,
! [A: int,B: int,P: int > $o] :
( ( ord_less_int @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C3: int] :
( ( ord_less_eq_int @ A @ C3 )
& ( ord_less_eq_int @ C3 @ B )
& ! [X4: int] :
( ( ( ord_less_eq_int @ A @ X4 )
& ( ord_less_int @ X4 @ C3 ) )
=> ( P @ X4 ) )
& ! [D: int] :
( ! [X3: int] :
( ( ( ord_less_eq_int @ A @ X3 )
& ( ord_less_int @ X3 @ D ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_int @ D @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_717_complete__interval,axiom,
! [A: real,B: real,P: real > $o] :
( ( ord_less_real @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C3: real] :
( ( ord_less_eq_real @ A @ C3 )
& ( ord_less_eq_real @ C3 @ B )
& ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_real @ X4 @ C3 ) )
=> ( P @ X4 ) )
& ! [D: real] :
( ! [X3: real] :
( ( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_real @ X3 @ D ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_real @ D @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_718_nat__less__iff,axiom,
! [W2: int,M: nat] :
( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( ( ord_less_nat @ ( nat2 @ W2 ) @ M )
= ( ord_less_int @ W2 @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_719_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_720_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_721_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_722_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_723_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_724_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_725_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_726_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_727_length__greater__0__conv,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( ord_less_nat @ zero_zero_nat @ ( size_s5283204784079214577_a_nat @ Xs ) )
= ( Xs != nil_Sum_sum_a_nat ) ) ).
% length_greater_0_conv
thf(fact_728_zero__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z2 ) )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% zero_less_nat_eq
thf(fact_729_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_730_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_731_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_732_less__not__refl3,axiom,
! [S2: nat,T2: nat] :
( ( ord_less_nat @ S2 @ T2 )
=> ( S2 != T2 ) ) ).
% less_not_refl3
thf(fact_733_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_734_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M5: nat] :
( ( ord_less_nat @ M5 @ N2 )
=> ( P @ M5 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_735_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N2 )
& ~ ( P @ M5 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_736_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_737_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N2 )
& ~ ( P @ M5 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_738_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_739_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_740_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_741_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_742_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_743_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_744_forall__finite_I1_J,axiom,
! [P: nat > $o,I2: nat] :
( ( ord_less_nat @ I2 @ zero_zero_nat )
=> ( P @ I2 ) ) ).
% forall_finite(1)
thf(fact_745_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_746_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( P @ ( suc @ I3 ) )
=> ( P @ I3 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_747_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J3: nat,K3: nat] :
( ( ord_less_nat @ I3 @ J3 )
=> ( ( ord_less_nat @ J3 @ K3 )
=> ( ( P @ I3 @ J3 )
=> ( ( P @ J3 @ K3 )
=> ( P @ I3 @ K3 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_748_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_749_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_750_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_751_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M7: nat] :
( ( M
= ( suc @ M7 ) )
& ( ord_less_nat @ N @ M7 ) ) ) ) ).
% Suc_less_eq2
thf(fact_752_Nat_OAll__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N ) )
=> ( P @ I4 ) ) )
= ( ( P @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ N )
=> ( P @ I4 ) ) ) ) ).
% Nat.All_less_Suc
thf(fact_753_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_754_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_755_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N ) )
& ( P @ I4 ) ) )
= ( ( P @ N )
| ? [I4: nat] :
( ( ord_less_nat @ I4 @ N )
& ( P @ I4 ) ) ) ) ).
% Ex_less_Suc
thf(fact_756_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_757_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_758_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_759_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ).
% Suc_lessE
thf(fact_760_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_761_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ) ).
% Nat.lessE
thf(fact_762_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X5: real,Y5: real] :
( ( ord_less_real @ X5 @ Y5 )
| ( X5 = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_763_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M6: nat,N4: nat] :
( ( ord_less_eq_nat @ M6 @ N4 )
& ( M6 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_764_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_765_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N4: nat] :
( ( ord_less_nat @ M6 @ N4 )
| ( M6 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_766_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_767_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_768_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J3: nat] :
( ( ord_less_nat @ I3 @ J3 )
=> ( ord_less_nat @ ( F @ I3 ) @ ( F @ J3 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_769_length__induct,axiom,
! [P: list_Sum_sum_a_nat > $o,Xs: list_Sum_sum_a_nat] :
( ! [Xs2: list_Sum_sum_a_nat] :
( ! [Ys6: list_Sum_sum_a_nat] :
( ( ord_less_nat @ ( size_s5283204784079214577_a_nat @ Ys6 ) @ ( size_s5283204784079214577_a_nat @ Xs2 ) )
=> ( P @ Ys6 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_770_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N ) )
& ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I4: nat] :
( ( ord_less_nat @ I4 @ N )
& ( P @ ( suc @ I4 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_771_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M6: nat] :
( N
= ( suc @ M6 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_772_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N ) )
=> ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ N )
=> ( P @ ( suc @ I4 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_773_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_774_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J2: nat] :
( ( M
= ( suc @ J2 ) )
& ( ord_less_nat @ J2 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_775_forall__finite_I3_J,axiom,
! [X: nat,P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ ( suc @ X ) ) )
=> ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ X ) )
=> ( P @ ( suc @ I4 ) ) ) ) ) ).
% forall_finite(3)
thf(fact_776_forall__finite_I2_J,axiom,
! [P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ zero_zero_nat ) )
=> ( P @ I4 ) ) )
= ( P @ zero_zero_nat ) ) ).
% forall_finite(2)
thf(fact_777_Comparator__Generator_OAll__less__Suc,axiom,
! [X: nat,P: nat > $o] :
( ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ X ) )
=> ( P @ I4 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ X )
=> ( P @ ( suc @ I4 ) ) ) ) ) ).
% Comparator_Generator.All_less_Suc
thf(fact_778_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ K3 )
=> ~ ( P @ I2 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_779_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_780_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_781_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_782_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_783_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_784_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_785_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_786_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_787_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_788_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_789_nths__all,axiom,
! [Xs: list_Sum_sum_a_nat,I5: set_nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_s5283204784079214577_a_nat @ Xs ) )
=> ( member_nat @ I3 @ I5 ) )
=> ( ( nths_Sum_sum_a_nat @ Xs @ I5 )
= Xs ) ) ).
% nths_all
thf(fact_790_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_less_as_int
thf(fact_791_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ! [I2: nat] :
( ( ord_less_eq_nat @ I2 @ K3 )
=> ~ ( P @ I2 ) )
& ( P @ ( suc @ K3 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_792_zless__nat__eq__int__zless,axiom,
! [M: nat,Z2: int] :
( ( ord_less_nat @ M @ ( nat2 @ Z2 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z2 ) ) ).
% zless_nat_eq_int_zless
thf(fact_793_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_794_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% pos_int_cases
thf(fact_795_nat__less__eq__zless,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ W2 )
=> ( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
= ( ord_less_int @ W2 @ Z2 ) ) ) ).
% nat_less_eq_zless
thf(fact_796_transpose_Opsimps_I3_J,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat,Xss2: list_l4703314356710769291_a_nat] :
( ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) @ Xss2 ) )
=> ( ( transp3407494602793885583_a_nat @ ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) @ Xss2 ) )
= ( cons_l6604326339930385211_a_nat
@ ( cons_Sum_sum_a_nat @ X
@ ( concat_Sum_sum_a_nat
@ ( map_li6507455427659069316_a_nat
@ ( case_l4306230254520888864_a_nat @ nil_Sum_sum_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ H @ nil_Sum_sum_a_nat ) )
@ Xss2 ) ) )
@ ( transp3407494602793885583_a_nat
@ ( cons_l6604326339930385211_a_nat @ Xs
@ ( concat6944889260076905158_a_nat
@ ( map_li7363445039720430346_a_nat
@ ( case_l8396473456174167578_a_nat @ nil_li1906260230833442699_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_l6604326339930385211_a_nat @ T @ nil_li1906260230833442699_a_nat ) )
@ Xss2 ) ) ) ) ) ) ) ).
% transpose.psimps(3)
thf(fact_797_transpose_Opelims,axiom,
! [X: list_l4703314356710769291_a_nat,Y: list_l4703314356710769291_a_nat] :
( ( ( transp3407494602793885583_a_nat @ X )
= Y )
=> ( ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ X )
=> ( ( ( X = nil_li1906260230833442699_a_nat )
=> ( ( Y = nil_li1906260230833442699_a_nat )
=> ~ ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ nil_li1906260230833442699_a_nat ) ) )
=> ( ! [Xss: list_l4703314356710769291_a_nat] :
( ( X
= ( cons_l6604326339930385211_a_nat @ nil_Sum_sum_a_nat @ Xss ) )
=> ( ( Y
= ( transp3407494602793885583_a_nat @ Xss ) )
=> ~ ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ ( cons_l6604326339930385211_a_nat @ nil_Sum_sum_a_nat @ Xss ) ) ) )
=> ~ ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Xss: list_l4703314356710769291_a_nat] :
( ( X
= ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ Xss ) )
=> ( ( Y
= ( cons_l6604326339930385211_a_nat
@ ( cons_Sum_sum_a_nat @ X3
@ ( concat_Sum_sum_a_nat
@ ( map_li6507455427659069316_a_nat
@ ( case_l4306230254520888864_a_nat @ nil_Sum_sum_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_Sum_sum_a_nat @ H @ nil_Sum_sum_a_nat ) )
@ Xss ) ) )
@ ( transp3407494602793885583_a_nat
@ ( cons_l6604326339930385211_a_nat @ Xs2
@ ( concat6944889260076905158_a_nat
@ ( map_li7363445039720430346_a_nat
@ ( case_l8396473456174167578_a_nat @ nil_li1906260230833442699_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_l6604326339930385211_a_nat @ T @ nil_li1906260230833442699_a_nat ) )
@ Xss ) ) ) ) ) )
=> ~ ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ Xss ) ) ) ) ) ) ) ) ).
% transpose.pelims
thf(fact_798_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K3: nat] :
( ( ord_less_nat @ N @ K3 )
=> ( P @ K3 ) )
=> ( ! [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
=> ( ! [I2: nat] :
( ( ord_less_nat @ K3 @ I2 )
=> ( P @ I2 ) )
=> ( P @ K3 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_799_one__less__nat__eq,axiom,
! [Z2: int] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z2 ) )
= ( ord_less_int @ one_one_int @ Z2 ) ) ).
% one_less_nat_eq
thf(fact_800_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_801_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_802_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_803_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_804_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_805_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_806_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_807_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_808_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_809_nat__1,axiom,
( ( nat2 @ one_one_int )
= ( suc @ zero_zero_nat ) ) ).
% nat_1
thf(fact_810_of__int__le__1__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z2 ) @ one_one_int )
= ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_811_of__int__le__1__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real )
= ( ord_less_eq_int @ Z2 @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_812_of__int__1__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z2 ) )
= ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).
% of_int_1_le_iff
thf(fact_813_of__int__1__le__iff,axiom,
! [Z2: int] :
( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z2 ) )
= ( ord_less_eq_int @ one_one_int @ Z2 ) ) ).
% of_int_1_le_iff
thf(fact_814_ceiling__less__one,axiom,
! [X: real] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% ceiling_less_one
thf(fact_815_one__le__ceiling,axiom,
! [X: real] :
( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% one_le_ceiling
thf(fact_816_ceiling__le__one,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
= ( ord_less_eq_real @ X @ one_one_real ) ) ).
% ceiling_le_one
thf(fact_817_psubsetD,axiom,
! [A2: set_li6526943997496501093_a_nat,B5: set_li6526943997496501093_a_nat,C: list_Sum_sum_a_nat] :
( ( ord_le5291801191193052689_a_nat @ A2 @ B5 )
=> ( ( member408289922725080238_a_nat @ C @ A2 )
=> ( member408289922725080238_a_nat @ C @ B5 ) ) ) ).
% psubsetD
thf(fact_818_psubsetD,axiom,
! [A2: set_real,B5: set_real,C: real] :
( ( ord_less_set_real @ A2 @ B5 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B5 ) ) ) ).
% psubsetD
thf(fact_819_less__set__def,axiom,
( ord_le5291801191193052689_a_nat
= ( ^ [A5: set_li6526943997496501093_a_nat,B6: set_li6526943997496501093_a_nat] :
( ord_le1063195477160961548_nat_o
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ A5 )
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ B6 ) ) ) ) ).
% less_set_def
thf(fact_820_less__set__def,axiom,
( ord_less_set_real
= ( ^ [A5: set_real,B6: set_real] :
( ord_less_real_o
@ ^ [X5: real] : ( member_real @ X5 @ A5 )
@ ^ [X5: real] : ( member_real @ X5 @ B6 ) ) ) ) ).
% less_set_def
thf(fact_821_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_822_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_823_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_824_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_825_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_826_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_827_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_828_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_829_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_830_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_831_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_832_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_833_transpose_Opinduct,axiom,
! [A0: list_l4703314356710769291_a_nat,P: list_l4703314356710769291_a_nat > $o] :
( ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ A0 )
=> ( ( ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ nil_li1906260230833442699_a_nat )
=> ( P @ nil_li1906260230833442699_a_nat ) )
=> ( ! [Xss: list_l4703314356710769291_a_nat] :
( ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ ( cons_l6604326339930385211_a_nat @ nil_Sum_sum_a_nat @ Xss ) )
=> ( ( P @ Xss )
=> ( P @ ( cons_l6604326339930385211_a_nat @ nil_Sum_sum_a_nat @ Xss ) ) ) )
=> ( ! [X3: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat,Xss: list_l4703314356710769291_a_nat] :
( ( accp_l4010222820662054932_a_nat @ transp5153232018850850996_a_nat @ ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ Xss ) )
=> ( ( P
@ ( cons_l6604326339930385211_a_nat @ Xs2
@ ( concat6944889260076905158_a_nat
@ ( map_li7363445039720430346_a_nat
@ ( case_l8396473456174167578_a_nat @ nil_li1906260230833442699_a_nat
@ ^ [H: sum_sum_a_nat,T: list_Sum_sum_a_nat] : ( cons_l6604326339930385211_a_nat @ T @ nil_li1906260230833442699_a_nat ) )
@ Xss ) ) ) )
=> ( P @ ( cons_l6604326339930385211_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) @ Xss ) ) ) )
=> ( P @ A0 ) ) ) ) ) ).
% transpose.pinduct
thf(fact_834_remdups__adj_Opelims,axiom,
! [X: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( ( remdup8712921452854877243_a_nat @ X )
= Y )
=> ( ( accp_l5179987679515777422_a_nat @ remdup4248092976464397064_a_nat @ X )
=> ( ( ( X = nil_Sum_sum_a_nat )
=> ( ( Y = nil_Sum_sum_a_nat )
=> ~ ( accp_l5179987679515777422_a_nat @ remdup4248092976464397064_a_nat @ nil_Sum_sum_a_nat ) ) )
=> ( ! [X3: sum_sum_a_nat] :
( ( X
= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ( ( Y
= ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) )
=> ~ ( accp_l5179987679515777422_a_nat @ remdup4248092976464397064_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ nil_Sum_sum_a_nat ) ) ) )
=> ~ ! [X3: sum_sum_a_nat,Y2: sum_sum_a_nat,Xs2: list_Sum_sum_a_nat] :
( ( X
= ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Xs2 ) ) )
=> ( ( ( ( X3 = Y2 )
=> ( Y
= ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ Xs2 ) ) ) )
& ( ( X3 != Y2 )
=> ( Y
= ( cons_Sum_sum_a_nat @ X3 @ ( remdup8712921452854877243_a_nat @ ( cons_Sum_sum_a_nat @ Y2 @ Xs2 ) ) ) ) ) )
=> ~ ( accp_l5179987679515777422_a_nat @ remdup4248092976464397064_a_nat @ ( cons_Sum_sum_a_nat @ X3 @ ( cons_Sum_sum_a_nat @ Y2 @ Xs2 ) ) ) ) ) ) ) ) ) ).
% remdups_adj.pelims
thf(fact_835_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_836_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_837_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_838_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_839_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_840_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_841_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_842_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_843_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_844_nat__one__as__int,axiom,
( one_one_nat
= ( nat2 @ one_one_int ) ) ).
% nat_one_as_int
thf(fact_845_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_846_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_847_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_848_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_849_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_850_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_851_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_852_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_853_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_854_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_855_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_856_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_857_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_858_zero__le__ceiling,axiom,
! [X: real] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X ) ) ).
% zero_le_ceiling
thf(fact_859_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_860_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_861_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_862_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_863_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_864_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_865_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_866_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_867_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_868_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_869_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_870_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_871_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_872_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_873_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_874_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_875_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_876_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_877_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_878_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_879_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ M ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_880_negative__zle,axiom,
! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_881_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_882_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_883_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_884_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_885_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_886_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_887_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_888_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_889_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_890_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_891_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_892_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_893_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_894_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_895_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_896_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_897_negative__zless,axiom,
! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zless
thf(fact_898_nat__zminus__int,axiom,
! [N: nat] :
( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
= zero_zero_nat ) ).
% nat_zminus_int
thf(fact_899_ceiling__less__zero,axiom,
! [X: real] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
= ( ord_less_eq_real @ X @ ( uminus_uminus_real @ one_one_real ) ) ) ).
% ceiling_less_zero
thf(fact_900_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_901_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_902_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_903_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_904_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_905_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_906_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_907_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_908_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_909_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_910_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_911_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_912_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_913_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_914_int__cases2,axiom,
! [Z2: int] :
( ! [N2: nat] :
( Z2
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% int_cases2
thf(fact_915_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_916_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_917_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_918_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_919_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_920_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_921_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_922_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_923_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_924_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_925_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_926_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_927_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_928_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_929_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_930_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_931_int__cases,axiom,
! [Z2: int] :
( ! [N2: nat] :
( Z2
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).
% int_cases
thf(fact_932_int__of__nat__induct,axiom,
! [P: int > $o,Z2: int] :
( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
=> ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
=> ( P @ Z2 ) ) ) ).
% int_of_nat_induct
thf(fact_933_not__int__zless__negative,axiom,
! [N: nat,M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_934_of__int__of__nat,axiom,
( ring_1_of_int_int
= ( ^ [K2: int] : ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri1314217659103216013at_int @ ( nat2 @ K2 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_935_of__int__of__nat,axiom,
( ring_1_of_int_real
= ( ^ [K2: int] : ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( uminus_uminus_int @ K2 ) ) ) ) @ ( semiri5074537144036343181t_real @ ( nat2 @ K2 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_936_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(3)
thf(fact_937_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(3)
thf(fact_938_le__minus__one__simps_I1_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% le_minus_one_simps(1)
thf(fact_939_le__minus__one__simps_I1_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% le_minus_one_simps(1)
thf(fact_940_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_941_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_942_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_943_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_944_int__cases4,axiom,
! [M: int] :
( ! [N2: nat] :
( M
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% int_cases4
thf(fact_945_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_946_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_947_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% nonpos_int_cases
thf(fact_948_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% int_cases3
thf(fact_949_not__zle__0__negative,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).
% not_zle_0_negative
thf(fact_950_negD,axiom,
! [X: int] :
( ( ord_less_int @ X @ zero_zero_int )
=> ? [N2: nat] :
( X
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).
% negD
thf(fact_951_negative__zless__0,axiom,
! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).
% negative_zless_0
thf(fact_952_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% neg_int_cases
thf(fact_953_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_954_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6075765906172075777c_real @ zero_zero_real )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_dec_simps(2)
thf(fact_955_ComplI,axiom,
! [C: list_Sum_sum_a_nat,A2: set_li6526943997496501093_a_nat] :
( ~ ( member408289922725080238_a_nat @ C @ A2 )
=> ( member408289922725080238_a_nat @ C @ ( uminus2192744996606729052_a_nat @ A2 ) ) ) ).
% ComplI
thf(fact_956_ComplI,axiom,
! [C: real,A2: set_real] :
( ~ ( member_real @ C @ A2 )
=> ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) ) ) ).
% ComplI
thf(fact_957_Compl__iff,axiom,
! [C: list_Sum_sum_a_nat,A2: set_li6526943997496501093_a_nat] :
( ( member408289922725080238_a_nat @ C @ ( uminus2192744996606729052_a_nat @ A2 ) )
= ( ~ ( member408289922725080238_a_nat @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_958_Compl__iff,axiom,
! [C: real,A2: set_real] :
( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
= ( ~ ( member_real @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_959_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3811975205180677377ec_int @ one_one_int )
= one_one_int ) ).
% dbl_dec_simps(3)
thf(fact_960_Compl__eq,axiom,
( uminus2192744996606729052_a_nat
= ( ^ [A5: set_li6526943997496501093_a_nat] :
( collec7555443234367654128_a_nat
@ ^ [X5: list_Sum_sum_a_nat] :
~ ( member408289922725080238_a_nat @ X5 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_961_Compl__eq,axiom,
( uminus612125837232591019t_real
= ( ^ [A5: set_real] :
( collect_real
@ ^ [X5: real] :
~ ( member_real @ X5 @ A5 ) ) ) ) ).
% Compl_eq
thf(fact_962_ComplD,axiom,
! [C: list_Sum_sum_a_nat,A2: set_li6526943997496501093_a_nat] :
( ( member408289922725080238_a_nat @ C @ ( uminus2192744996606729052_a_nat @ A2 ) )
=> ~ ( member408289922725080238_a_nat @ C @ A2 ) ) ).
% ComplD
thf(fact_963_ComplD,axiom,
! [C: real,A2: set_real] :
( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
=> ~ ( member_real @ C @ A2 ) ) ).
% ComplD
thf(fact_964_uminus__set__def,axiom,
( uminus2192744996606729052_a_nat
= ( ^ [A5: set_li6526943997496501093_a_nat] :
( collec7555443234367654128_a_nat
@ ( uminus4331925969656920193_nat_o
@ ^ [X5: list_Sum_sum_a_nat] : ( member408289922725080238_a_nat @ X5 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_965_uminus__set__def,axiom,
( uminus612125837232591019t_real
= ( ^ [A5: set_real] :
( collect_real
@ ( uminus_uminus_real_o
@ ^ [X5: real] : ( member_real @ X5 @ A5 ) ) ) ) ) ).
% uminus_set_def
thf(fact_966_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_inc_simps(4)
thf(fact_967_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_inc_simps(4)
thf(fact_968_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_969_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_970_rotate1__length01,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( ord_less_eq_nat @ ( size_s5283204784079214577_a_nat @ Xs ) @ one_one_nat )
=> ( ( rotate2765497868024679250_a_nat @ Xs )
= Xs ) ) ).
% rotate1_length01
thf(fact_971_length__rotate1,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( rotate2765497868024679250_a_nat @ Xs ) )
= ( size_s5283204784079214577_a_nat @ Xs ) ) ).
% length_rotate1
thf(fact_972_rotate1_Osimps_I2_J,axiom,
! [X: sum_sum_a_nat,Xs: list_Sum_sum_a_nat] :
( ( rotate2765497868024679250_a_nat @ ( cons_Sum_sum_a_nat @ X @ Xs ) )
= ( append_Sum_sum_a_nat @ Xs @ ( cons_Sum_sum_a_nat @ X @ nil_Sum_sum_a_nat ) ) ) ).
% rotate1.simps(2)
thf(fact_973_bot__nat__0_Oordering__top__axioms,axiom,
( ordering_top_nat
@ ^ [X5: nat,Y5: nat] : ( ord_less_eq_nat @ Y5 @ X5 )
@ ^ [X5: nat,Y5: nat] : ( ord_less_nat @ Y5 @ X5 )
@ zero_zero_nat ) ).
% bot_nat_0.ordering_top_axioms
thf(fact_974_Suc__nat__eq__nat__zadd1,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ( suc @ ( nat2 @ Z2 ) )
= ( nat2 @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_975_le__ceiling__iff,axiom,
! [Z2: int,X: real] :
( ( ord_less_eq_int @ Z2 @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z2 ) @ one_one_real ) @ X ) ) ).
% le_ceiling_iff
thf(fact_976_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_977_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_978_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_979_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_980_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_981_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_982_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_983_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_984_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_985_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_986_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_987_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_988_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_989_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_990_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_991_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_992_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_993_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_994_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_995_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_996_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_997_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_998_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_999_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_1000_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_1001_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_1002_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_1003_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_1004_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_1005_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_1006_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_1007_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_1008_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_1009_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_1010_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_1011_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_1012_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_1013_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_1014_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_1015_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_1016_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_1017_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1018_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1019_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1020_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_1021_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_1022_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_1023_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_1024_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_1025_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_1026_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_1027_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_1028_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1029_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1030_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1031_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1032_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1033_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1034_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1035_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1036_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1037_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1038_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1039_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1040_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1041_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1042_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1043_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1044_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1045_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1046_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1047_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1048_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1049_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1050_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_1051_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_1052_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_1053_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_1054_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_1055_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_1056_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_1057_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_1058_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_1059_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_1060_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_1061_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_1062_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_1063_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1064_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_1065_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_1066_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_1067_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_1068_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_1069_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_1070_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_1071_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_1072_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_1073_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_1074_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_1075_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_1076_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_1077_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_1078_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_1079_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_1080_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_1081_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1082_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1083_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1084_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1085_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1086_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1087_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_1088_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_1089_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_1090_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_1091_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_1092_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_1093_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_1094_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_1095_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_1096_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_1097_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_1098_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_1099_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1100_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1101_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1102_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1103_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1104_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1105_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1106_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1107_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_1108_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_1109_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_1110_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_1111_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_1112_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_1113_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_1114_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_1115_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_1116_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_1117_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_1118_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_1119_diff__minus__eq__add,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
= ( plus_plus_real @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_1120_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_1121_uminus__add__conv__diff,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
= ( minus_minus_real @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_1122_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_1123_zle__diff1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_1124_length__butlast,axiom,
! [Xs: list_Sum_sum_a_nat] :
( ( size_s5283204784079214577_a_nat @ ( butlas5768530507476509265_a_nat @ Xs ) )
= ( minus_minus_nat @ ( size_s5283204784079214577_a_nat @ Xs ) @ one_one_nat ) ) ).
% length_butlast
thf(fact_1125_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_1126_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_1127_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_1128_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_1129_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_1130_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_1131_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).
% of_nat_Suc
thf(fact_1132_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% of_nat_Suc
thf(fact_1133_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).
% of_nat_Suc
thf(fact_1134_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_1135_zle__add1__eq__le,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_1136_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_1137_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_1138_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_1139_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_1140_group__cancel_Osub2,axiom,
! [B5: int,K: int,B: int,A: int] :
( ( B5
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B5 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_1141_group__cancel_Osub2,axiom,
! [B5: real,K: real,B: real,A: real] :
( ( B5
= ( plus_plus_real @ K @ B ) )
=> ( ( minus_minus_real @ A @ B5 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_1142_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_1143_diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B3 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_1144_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_1145_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_1146_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_1147_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_1148_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_1149_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B3 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_1150_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_1151_neg__eq__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_1152_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_1153_eq__neg__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_1154_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_1155_add_Oinverse__unique,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
=> ( ( uminus_uminus_real @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_1156_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_1157_ab__group__add__class_Oab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_group_add_class.ab_left_minus
thf(fact_1158_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_1159_add__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% add_eq_0_iff
thf(fact_1160_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_1161_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_1162_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_1163_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1164_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_1165_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_1166_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_1167_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_1168_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1169_add__le__imp__le__diff,axiom,
! [I: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1170_add__le__imp__le__diff,axiom,
! [I: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_1171_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1172_add__le__add__imp__diff__le,axiom,
! [I: int,K: int,N: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1173_add__le__add__imp__diff__le,axiom,
! [I: real,K: real,N: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_1174_diff__mono,axiom,
! [A: int,B: int,D3: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D3 @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D3 ) ) ) ) ).
% diff_mono
thf(fact_1175_diff__mono,axiom,
! [A: real,B: real,D3: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D3 @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D3 ) ) ) ) ).
% diff_mono
thf(fact_1176_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_1177_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_1178_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_1179_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_1180_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_1181_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_1182_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1183_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_1184_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_1185_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_1186_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_1187_nat__diff__distrib_H,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( nat2 @ ( minus_minus_int @ X @ Y ) )
= ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_1188_nat__diff__distrib,axiom,
! [Z5: int,Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z5 )
=> ( ( ord_less_eq_int @ Z5 @ Z2 )
=> ( ( nat2 @ ( minus_minus_int @ Z2 @ Z5 ) )
= ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z5 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_1189_int__minus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
= ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).
% int_minus
thf(fact_1190_nat__minus__as__int,axiom,
( minus_minus_nat
= ( ^ [A3: nat,B3: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_1191_int__diff__cases,axiom,
! [Z2: int] :
~ ! [M3: nat,N2: nat] :
( Z2
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_diff_cases
thf(fact_1192_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_1193_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_1194_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_1195_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_1196_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1197_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_1198_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
= ( ( ( ord_less_eq_nat @ Y @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
& ( ( ord_less_nat @ X @ Y )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_1199_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_1200_diff__nat__eq__if,axiom,
! [Z5: int,Z2: int] :
( ( ( ord_less_int @ Z5 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z5 ) )
= ( nat2 @ Z2 ) ) )
& ( ~ ( ord_less_int @ Z5 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z5 ) )
= ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z2 @ Z5 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z2 @ Z5 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_1201_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1202_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z7: int] :
? [N4: nat] :
( Z7
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_1203_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_1204_int__Suc,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).
% int_Suc
thf(fact_1205_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_1206_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W3: int,Z7: int] :
? [N4: nat] :
( Z7
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_1207_zless__imp__add1__zle,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_1208_add1__zle__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% add1_zle_eq
thf(fact_1209_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_1210_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_1211_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1212_Suc__as__int,axiom,
( suc
= ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).
% Suc_as_int
thf(fact_1213_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1214_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1215_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_1216_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1217_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_1218_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1219_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1220_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1221_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1222_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1223_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1224_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1225_real__0__le__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_le_add_iff
thf(fact_1226_real__add__le__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_1227_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_1228_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_1229_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1230_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q2: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).
% less_natE
thf(fact_1231_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_1232_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_1233_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M6: nat,N4: nat] :
? [K2: nat] :
( N4
= ( suc @ ( plus_plus_nat @ M6 @ K2 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_1234_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K3: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_1235_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_nat @ M3 @ N2 )
=> ( ord_less_nat @ ( F @ M3 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1236_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1237_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1238_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1239_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1240_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1241_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1242_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1243_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1244_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1245_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1246_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1247_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N4: nat] :
? [K2: nat] :
( N4
= ( plus_plus_nat @ M6 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1248_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1249_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1250_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1251_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1252_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_1253_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1254_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1255_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
% Helper facts (11)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_T,axiom,
! [X: sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( if_Sum_sum_a_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_T,axiom,
! [X: sum_sum_a_nat,Y: sum_sum_a_nat] :
( ( if_Sum_sum_a_nat @ $true @ X @ Y )
= X ) ).
thf(help_If_3_1_If_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_T,axiom,
! [X: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( if_lis4685338526944683083_a_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J_T,axiom,
! [X: list_Sum_sum_a_nat,Y: list_Sum_sum_a_nat] :
( ( if_lis4685338526944683083_a_nat @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
member408289922725080238_a_nat @ ( cons_Sum_sum_a_nat @ x @ xsa ) @ ( nall_tuples_rec_a @ ad @ ja @ ( size_s5283204784079214577_a_nat @ ( cons_Sum_sum_a_nat @ x @ xsa ) ) ) ).
%------------------------------------------------------------------------------