TPTP Problem File: SLH0621^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : LP_Duality/0001_LP_Duality/prob_00228_010483__28836226_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1412 ( 540 unt; 141 typ;   0 def)
%            Number of atoms       : 3611 (1113 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 11849 ( 224   ~; 110   |; 159   &;9780   @)
%                                         (   0 <=>;1576  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   26 (   7 avg)
%            Number of types       :   17 (  16 usr)
%            Number of type conns  :  308 ( 308   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  128 ( 125 usr;  29 con; 0-4 aty)
%            Number of variables   : 3416 ( 181   ^;3185   !;  50   ?;3416   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 13:59:03.832
%------------------------------------------------------------------------------
% Could-be-implicit typings (16)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Matrix__Ovec_Itf__a_J_J_J,type,
    set_set_vec_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Matrix__Omat_Itf__a_J_J_J,type,
    set_set_mat_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    set_vec_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    set_mat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    set_vec_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    set_mat_a: $tType ).

thf(ty_n_t__Matrix__Ovec_It__Nat__Onat_J,type,
    vec_nat: $tType ).

thf(ty_n_t__Matrix__Omat_It__Nat__Onat_J,type,
    mat_nat: $tType ).

thf(ty_n_t__Polynomial__Opoly_Itf__a_J,type,
    poly_a: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Matrix__Ovec_Itf__a_J,type,
    vec_a: $tType ).

thf(ty_n_t__Matrix__Omat_Itf__a_J,type,
    mat_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (125)
thf(sy_c_Determinant_Odelete__index,type,
    delete_index: nat > nat > nat ).

thf(sy_c_Determinant_Opermutation__delete,type,
    permutation_delete: ( nat > nat ) > nat > nat > nat ).

thf(sy_c_Determinant_Opermutation__insert_001t__Nat__Onat,type,
    permut3695043542826343943rt_nat: nat > nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Matrix__Omat_Itf__a_J,type,
    minus_minus_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    minus_minus_vec_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Matrix__Ovec_Itf__a_J,type,
    minus_minus_vec_a: vec_a > vec_a > vec_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    minus_4757590266979429866_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    minus_6230920740010926198_vec_a: set_vec_a > set_vec_a > set_vec_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001tf__a,type,
    minus_minus_a: a > a > a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001tf__a,type,
    one_one_a: a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_It__Nat__Onat_J,type,
    plus_plus_mat_nat: mat_nat > mat_nat > mat_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_Itf__a_J,type,
    plus_plus_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    plus_plus_vec_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Ovec_Itf__a_J,type,
    plus_plus_vec_a: vec_a > vec_a > vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    plus_p2215855510709889632at_nat: set_mat_nat > set_mat_nat > set_mat_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    plus_plus_set_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    plus_p1963516127331757268ec_nat: set_vec_nat > set_vec_nat > set_vec_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    plus_plus_set_vec_a: set_vec_a > set_vec_a > set_vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
    plus_plus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Set__Oset_It__Matrix__Omat_Itf__a_J_J_J,type,
    plus_p8188135320652551888_mat_a: set_set_mat_a > set_set_mat_a > set_set_mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Set__Oset_It__Matrix__Ovec_Itf__a_J_J_J,type,
    plus_p5225466182533350236_vec_a: set_set_vec_a > set_set_vec_a > set_set_vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    plus_p4817606893110106565et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_Itf__a_J,type,
    plus_plus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001tf__a,type,
    plus_plus_a: a > a > a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Matrix__Omat_Itf__a_J,type,
    times_times_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001tf__a,type,
    times_times_a: a > a > a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Matrix__Omat_Itf__a_J,type,
    uminus_uminus_mat_a: mat_a > mat_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Matrix__Ovec_Itf__a_J,type,
    uminus_uminus_vec_a: vec_a > vec_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    uminus923453787958619552at_nat: set_mat_nat > set_mat_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    uminus1296375033039821146_mat_a: set_mat_a > set_mat_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    uminus671114404580487188ec_nat: set_vec_nat > set_vec_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    uminus2769705506071317478_vec_a: set_vec_a > set_vec_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001tf__a,type,
    uminus_uminus_a: a > a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001tf__a,type,
    zero_zero_a: a ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Matrix_Oappend__rows_001tf__a,type,
    append_rows_a: mat_a > mat_a > mat_a ).

thf(sy_c_Matrix_Oappend__vec_001t__Nat__Onat,type,
    append_vec_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Matrix_Oappend__vec_001tf__a,type,
    append_vec_a: vec_a > vec_a > vec_a ).

thf(sy_c_Matrix_Ocarrier__mat_001t__Nat__Onat,type,
    carrier_mat_nat: nat > nat > set_mat_nat ).

thf(sy_c_Matrix_Ocarrier__mat_001tf__a,type,
    carrier_mat_a: nat > nat > set_mat_a ).

thf(sy_c_Matrix_Ocarrier__vec_001t__Nat__Onat,type,
    carrier_vec_nat: nat > set_vec_nat ).

thf(sy_c_Matrix_Ocarrier__vec_001tf__a,type,
    carrier_vec_a: nat > set_vec_a ).

thf(sy_c_Matrix_Odim__vec_001tf__a,type,
    dim_vec_a: vec_a > nat ).

thf(sy_c_Matrix_Ofour__block__mat_001tf__a,type,
    four_block_mat_a: mat_a > mat_a > mat_a > mat_a > mat_a ).

thf(sy_c_Matrix_Omat__of__row_001tf__a,type,
    mat_of_row_a: vec_a > mat_a ).

thf(sy_c_Matrix_Omult__mat__vec_001t__Nat__Onat,type,
    mult_mat_vec_nat: mat_nat > vec_nat > vec_nat ).

thf(sy_c_Matrix_Omult__mat__vec_001tf__a,type,
    mult_mat_vec_a: mat_a > vec_a > vec_a ).

thf(sy_c_Matrix_Oone__mat_001tf__a,type,
    one_mat_a: nat > mat_a ).

thf(sy_c_Matrix_Oscalar__prod_001t__Nat__Onat,type,
    scalar_prod_nat: vec_nat > vec_nat > nat ).

thf(sy_c_Matrix_Oscalar__prod_001tf__a,type,
    scalar_prod_a: vec_a > vec_a > a ).

thf(sy_c_Matrix_Otranspose__mat_001t__Nat__Onat,type,
    transpose_mat_nat: mat_nat > mat_nat ).

thf(sy_c_Matrix_Otranspose__mat_001tf__a,type,
    transpose_mat_a: mat_a > mat_a ).

thf(sy_c_Matrix_Ovec__first_001t__Nat__Onat,type,
    vec_first_nat: vec_nat > nat > vec_nat ).

thf(sy_c_Matrix_Ovec__first_001tf__a,type,
    vec_first_a: vec_a > nat > vec_a ).

thf(sy_c_Matrix_Ovec__index_001tf__a,type,
    vec_index_a: vec_a > nat > a ).

thf(sy_c_Matrix_Ovec__last_001t__Nat__Onat,type,
    vec_last_nat: vec_nat > nat > vec_nat ).

thf(sy_c_Matrix_Ovec__last_001tf__a,type,
    vec_last_a: vec_a > nat > vec_a ).

thf(sy_c_Matrix_Ozero__mat_001tf__a,type,
    zero_mat_a: nat > nat > mat_a ).

thf(sy_c_Matrix_Ozero__vec_001t__Nat__Onat,type,
    zero_vec_nat: nat > vec_nat ).

thf(sy_c_Matrix_Ozero__vec_001tf__a,type,
    zero_vec_a: nat > vec_a ).

thf(sy_c_Matrix__Kernel_Ovardim_Ounpadl_001tf__a,type,
    matrix_unpadl_a: nat > vec_a > vec_a ).

thf(sy_c_Matrix__Kernel_Ovardim_Ounpadr_001tf__a,type,
    matrix_unpadr_a: nat > vec_a > vec_a ).

thf(sy_c_Missing__Matrix_Oappend__cols_001tf__a,type,
    missin386308114684349109cols_a: mat_a > mat_a > mat_a ).

thf(sy_c_Missing__Matrix_Omat__of__col_001tf__a,type,
    missing_mat_of_col_a: vec_a > mat_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Norms_Olinf__norm__vec_001tf__a,type,
    linf_norm_vec_a: vec_a > a ).

thf(sy_c_Norms_Onorm1_001tf__a,type,
    norm1_a: poly_a > a ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Matrix__Ovec_Itf__a_J,type,
    ord_less_vec_a: vec_a > vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    ord_less_set_mat_a: set_mat_a > set_mat_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    ord_less_set_vec_a: set_vec_a > set_vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001tf__a,type,
    ord_less_a: a > a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    ord_less_eq_vec_nat: vec_nat > vec_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Matrix__Ovec_Itf__a_J,type,
    ord_less_eq_vec_a: vec_a > vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    ord_le7789122042438455497at_nat: set_mat_nat > set_mat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    ord_le3318621148231462513_mat_a: set_mat_a > set_mat_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    ord_le7536782659060323133ec_nat: set_vec_nat > set_vec_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    ord_le4791951621262958845_vec_a: set_vec_a > set_vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__a,type,
    ord_less_eq_a: a > a > $o ).

thf(sy_c_Schur__Decomposition_Ovec__inv_001tf__a,type,
    schur_vec_inv_a: vec_a > vec_a ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_It__Nat__Onat_J,type,
    collect_mat_nat: ( mat_nat > $o ) > set_mat_nat ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_Itf__a_J,type,
    collect_mat_a: ( mat_a > $o ) > set_mat_a ).

thf(sy_c_Set_OCollect_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    collect_vec_nat: ( vec_nat > $o ) > set_vec_nat ).

thf(sy_c_Set_OCollect_001t__Matrix__Ovec_Itf__a_J,type,
    collect_vec_a: ( vec_a > $o ) > set_vec_a ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_member_001t__Matrix__Omat_It__Nat__Onat_J,type,
    member_mat_nat: mat_nat > set_mat_nat > $o ).

thf(sy_c_member_001t__Matrix__Omat_Itf__a_J,type,
    member_mat_a: mat_a > set_mat_a > $o ).

thf(sy_c_member_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    member_vec_nat: vec_nat > set_vec_nat > $o ).

thf(sy_c_member_001t__Matrix__Ovec_Itf__a_J,type,
    member_vec_a: vec_a > set_vec_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    member_set_mat_a: set_mat_a > set_set_mat_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    member_set_vec_a: set_vec_a > set_set_vec_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_A,type,
    a2: mat_a ).

thf(sy_v_L____,type,
    l: vec_a ).

thf(sy_v_M____,type,
    m: mat_a ).

thf(sy_v_M__last____,type,
    m_last: mat_a ).

thf(sy_v_M__low____,type,
    m_low: mat_a ).

thf(sy_v_M__up____,type,
    m_up: mat_a ).

thf(sy_v_b,type,
    b: vec_a ).

thf(sy_v_bc____,type,
    bc: vec_a ).

thf(sy_v_c,type,
    c: vec_a ).

thf(sy_v_n2__23_058ATP,type,
    n2_23_ATP: nat ).

thf(sy_v_nc,type,
    nc: nat ).

thf(sy_v_nr,type,
    nr: nat ).

thf(sy_v_t____,type,
    t: vec_a ).

thf(sy_v_u1____,type,
    u1: vec_a ).

thf(sy_v_u2____,type,
    u2: vec_a ).

thf(sy_v_u3____,type,
    u3: vec_a ).

thf(sy_v_u____,type,
    u: vec_a ).

thf(sy_v_ulv____,type,
    ulv: vec_a ).

thf(sy_v_v____,type,
    v: vec_a ).

thf(sy_v_vec1____,type,
    vec1: vec_a ).

thf(sy_v_vec2____,type,
    vec2: vec_a ).

thf(sy_v_vec3____,type,
    vec3: vec_a ).

thf(sy_v_w____,type,
    w: vec_a ).

% Relevant facts (1267)
thf(fact_0_u3id,axiom,
    ( u3
    = ( append_vec_a @ v @ w ) ) ).

% u3id
thf(fact_1_append__vec__eq,axiom,
    ! [V: vec_nat,N: nat,V2: vec_nat,W: vec_nat,W2: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V2 @ ( carrier_vec_nat @ N ) )
       => ( ( ( append_vec_nat @ V @ W )
            = ( append_vec_nat @ V2 @ W2 ) )
          = ( ( V = V2 )
            & ( W = W2 ) ) ) ) ) ).

% append_vec_eq
thf(fact_2_append__vec__eq,axiom,
    ! [V: vec_a,N: nat,V2: vec_a,W: vec_a,W2: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V2 @ ( carrier_vec_a @ N ) )
       => ( ( ( append_vec_a @ V @ W )
            = ( append_vec_a @ V2 @ W2 ) )
          = ( ( V = V2 )
            & ( W = W2 ) ) ) ) ) ).

% append_vec_eq
thf(fact_3_v,axiom,
    member_vec_a @ v @ ( carrier_vec_a @ nc ) ).

% v
thf(fact_4_w,axiom,
    member_vec_a @ w @ ( carrier_vec_a @ nc ) ).

% w
thf(fact_5_vec__first__append,axiom,
    ! [V: vec_nat,N: nat,W: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( vec_first_nat @ ( append_vec_nat @ V @ W ) @ N )
        = V ) ) ).

% vec_first_append
thf(fact_6_vec__first__append,axiom,
    ! [V: vec_a,N: nat,W: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( vec_first_a @ ( append_vec_a @ V @ W ) @ N )
        = V ) ) ).

% vec_first_append
thf(fact_7_append__carrier__vec,axiom,
    ! [V: vec_nat,N1: nat,W: vec_nat,N2: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N1 ) )
     => ( ( member_vec_nat @ W @ ( carrier_vec_nat @ N2 ) )
       => ( member_vec_nat @ ( append_vec_nat @ V @ W ) @ ( carrier_vec_nat @ ( plus_plus_nat @ N1 @ N2 ) ) ) ) ) ).

% append_carrier_vec
thf(fact_8_append__carrier__vec,axiom,
    ! [V: vec_a,N1: nat,W: vec_a,N2: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N1 ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N2 ) )
       => ( member_vec_a @ ( append_vec_a @ V @ W ) @ ( carrier_vec_a @ ( plus_plus_nat @ N1 @ N2 ) ) ) ) ) ).

% append_carrier_vec
thf(fact_9_b,axiom,
    member_vec_a @ b @ ( carrier_vec_a @ nr ) ).

% b
thf(fact_10_all__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_nat > $o] :
      ( ( ! [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ ( plus_plus_nat @ N @ M ) ) )
           => ( P @ X ) ) )
      = ( ! [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ N ) )
           => ! [Y: vec_nat] :
                ( ( member_vec_nat @ Y @ ( carrier_vec_nat @ M ) )
               => ( P @ ( append_vec_nat @ X @ Y ) ) ) ) ) ) ).

% all_vec_append
thf(fact_11_all__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_a > $o] :
      ( ( ! [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
           => ( P @ X ) ) )
      = ( ! [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ N ) )
           => ! [Y: vec_a] :
                ( ( member_vec_a @ Y @ ( carrier_vec_a @ M ) )
               => ( P @ ( append_vec_a @ X @ Y ) ) ) ) ) ) ).

% all_vec_append
thf(fact_12_exists__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_nat > $o] :
      ( ( ? [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ ( plus_plus_nat @ N @ M ) ) )
            & ( P @ X ) ) )
      = ( ? [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ N ) )
            & ? [Y: vec_nat] :
                ( ( member_vec_nat @ Y @ ( carrier_vec_nat @ M ) )
                & ( P @ ( append_vec_nat @ X @ Y ) ) ) ) ) ) ).

% exists_vec_append
thf(fact_13_exists__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_a > $o] :
      ( ( ? [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
            & ( P @ X ) ) )
      = ( ? [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ N ) )
            & ? [Y: vec_a] :
                ( ( member_vec_a @ Y @ ( carrier_vec_a @ M ) )
                & ( P @ ( append_vec_a @ X @ Y ) ) ) ) ) ) ).

% exists_vec_append
thf(fact_14_append__vec__le,axiom,
    ! [V: vec_nat,N: nat,W: vec_nat,V2: vec_nat,W2: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ W @ ( carrier_vec_nat @ N ) )
       => ( ( ord_less_eq_vec_nat @ ( append_vec_nat @ V @ V2 ) @ ( append_vec_nat @ W @ W2 ) )
          = ( ( ord_less_eq_vec_nat @ V @ W )
            & ( ord_less_eq_vec_nat @ V2 @ W2 ) ) ) ) ) ).

% append_vec_le
thf(fact_15_append__vec__le,axiom,
    ! [V: vec_a,N: nat,W: vec_a,V2: vec_a,W2: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
       => ( ( ord_less_eq_vec_a @ ( append_vec_a @ V @ V2 ) @ ( append_vec_a @ W @ W2 ) )
          = ( ( ord_less_eq_vec_a @ V @ W )
            & ( ord_less_eq_vec_a @ V2 @ W2 ) ) ) ) ) ).

% append_vec_le
thf(fact_16_append__vec__add,axiom,
    ! [V: vec_nat,N: nat,V2: vec_nat,W: vec_nat,M: nat,W2: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ W @ ( carrier_vec_nat @ M ) )
         => ( ( member_vec_nat @ W2 @ ( carrier_vec_nat @ M ) )
           => ( ( plus_plus_vec_nat @ ( append_vec_nat @ V @ W ) @ ( append_vec_nat @ V2 @ W2 ) )
              = ( append_vec_nat @ ( plus_plus_vec_nat @ V @ V2 ) @ ( plus_plus_vec_nat @ W @ W2 ) ) ) ) ) ) ) ).

% append_vec_add
thf(fact_17_append__vec__add,axiom,
    ! [V: vec_a,N: nat,V2: vec_a,W: vec_a,M: nat,W2: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ W @ ( carrier_vec_a @ M ) )
         => ( ( member_vec_a @ W2 @ ( carrier_vec_a @ M ) )
           => ( ( plus_plus_vec_a @ ( append_vec_a @ V @ W ) @ ( append_vec_a @ V2 @ W2 ) )
              = ( append_vec_a @ ( plus_plus_vec_a @ V @ V2 ) @ ( plus_plus_vec_a @ W @ W2 ) ) ) ) ) ) ) ).

% append_vec_add
thf(fact_18_vardim_Opadr__padl__eq,axiom,
    ! [V: vec_nat,N: nat,M: nat,U: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( ( append_vec_nat @ V @ ( zero_vec_nat @ M ) )
          = ( append_vec_nat @ ( zero_vec_nat @ N ) @ U ) )
        = ( ( V
            = ( zero_vec_nat @ N ) )
          & ( U
            = ( zero_vec_nat @ M ) ) ) ) ) ).

% vardim.padr_padl_eq
thf(fact_19_vardim_Opadr__padl__eq,axiom,
    ! [V: vec_a,N: nat,M: nat,U: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ( append_vec_a @ V @ ( zero_vec_a @ M ) )
          = ( append_vec_a @ ( zero_vec_a @ N ) @ U ) )
        = ( ( V
            = ( zero_vec_a @ N ) )
          & ( U
            = ( zero_vec_a @ M ) ) ) ) ) ).

% vardim.padr_padl_eq
thf(fact_20_ineqs_I3_J,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ nc ) @ v ).

% ineqs(3)
thf(fact_21_ineqs_I4_J,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ nc ) @ w ).

% ineqs(4)
thf(fact_22__092_060open_0620_092_060_094sub_062v_A_Inc_A_L_Anr_J_A_061_A0_092_060_094sub_062v_Anc_A_064_092_060_094sub_062v_A0_092_060_094sub_062v_Anr_092_060close_062,axiom,
    ( ( zero_vec_a @ ( plus_plus_nat @ nc @ nr ) )
    = ( append_vec_a @ ( zero_vec_a @ nc ) @ ( zero_vec_a @ nr ) ) ) ).

% \<open>0\<^sub>v (nc + nr) = 0\<^sub>v nc @\<^sub>v 0\<^sub>v nr\<close>
thf(fact_23_v__def,axiom,
    ( v
    = ( vec_first_a @ u3 @ nc ) ) ).

% v_def
thf(fact_24_u3,axiom,
    member_vec_a @ u3 @ ( carrier_vec_a @ ( plus_plus_nat @ nc @ nc ) ) ).

% u3
thf(fact_25_c,axiom,
    member_vec_a @ c @ ( carrier_vec_a @ nc ) ).

% c
thf(fact_26_assoc__add__vec,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat,V_3: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ V_3 @ ( carrier_vec_nat @ N ) )
         => ( ( plus_plus_vec_nat @ ( plus_plus_vec_nat @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_vec_nat @ V_1 @ ( plus_plus_vec_nat @ V_2 @ V_3 ) ) ) ) ) ) ).

% assoc_add_vec
thf(fact_27_assoc__add__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( plus_plus_vec_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_vec_a @ V_1 @ ( plus_plus_vec_a @ V_2 @ V_3 ) ) ) ) ) ) ).

% assoc_add_vec
thf(fact_28_left__zero__vec,axiom,
    ! [V: vec_nat,N: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( plus_plus_vec_nat @ ( zero_vec_nat @ N ) @ V )
        = V ) ) ).

% left_zero_vec
thf(fact_29_left__zero__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ ( zero_vec_a @ N ) @ V )
        = V ) ) ).

% left_zero_vec
thf(fact_30_right__zero__vec,axiom,
    ! [V: vec_nat,N: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( plus_plus_vec_nat @ V @ ( zero_vec_nat @ N ) )
        = V ) ) ).

% right_zero_vec
thf(fact_31_right__zero__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ V @ ( zero_vec_a @ N ) )
        = V ) ) ).

% right_zero_vec
thf(fact_32_add__inv__exists__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ? [X2: vec_a] :
          ( ( member_vec_a @ X2 @ ( carrier_vec_a @ N ) )
          & ( ( plus_plus_vec_a @ X2 @ V )
            = ( zero_vec_a @ N ) )
          & ( ( plus_plus_vec_a @ V @ X2 )
            = ( zero_vec_a @ N ) ) ) ) ).

% add_inv_exists_vec
thf(fact_33_zero__carrier__vec,axiom,
    ! [N: nat] : ( member_vec_nat @ ( zero_vec_nat @ N ) @ ( carrier_vec_nat @ N ) ) ).

% zero_carrier_vec
thf(fact_34_zero__carrier__vec,axiom,
    ! [N: nat] : ( member_vec_a @ ( zero_vec_a @ N ) @ ( carrier_vec_a @ N ) ) ).

% zero_carrier_vec
thf(fact_35_add__carrier__vec,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( member_vec_nat @ ( plus_plus_vec_nat @ V_1 @ V_2 ) @ ( carrier_vec_nat @ N ) ) ) ) ).

% add_carrier_vec
thf(fact_36_add__carrier__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( member_vec_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ ( carrier_vec_a @ N ) ) ) ) ).

% add_carrier_vec
thf(fact_37_comm__add__vec,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( plus_plus_vec_nat @ V_1 @ V_2 )
          = ( plus_plus_vec_nat @ V_2 @ V_1 ) ) ) ) ).

% comm_add_vec
thf(fact_38_comm__add__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( plus_plus_vec_a @ V_1 @ V_2 )
          = ( plus_plus_vec_a @ V_2 @ V_1 ) ) ) ) ).

% comm_add_vec
thf(fact_39_vec__first__carrier,axiom,
    ! [V: vec_nat,N: nat] : ( member_vec_nat @ ( vec_first_nat @ V @ N ) @ ( carrier_vec_nat @ N ) ) ).

% vec_first_carrier
thf(fact_40_vec__first__carrier,axiom,
    ! [V: vec_a,N: nat] : ( member_vec_a @ ( vec_first_a @ V @ N ) @ ( carrier_vec_a @ N ) ) ).

% vec_first_carrier
thf(fact_41_w__def,axiom,
    ( w
    = ( vec_last_a @ u3 @ nc ) ) ).

% w_def
thf(fact_42_id0,axiom,
    ( ( zero_vec_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) )
    = ( append_vec_nat @ ( append_vec_nat @ ( append_vec_nat @ ( zero_vec_nat @ nr ) @ ( zero_vec_nat @ one_one_nat ) ) @ ( append_vec_nat @ ( zero_vec_nat @ nc ) @ ( zero_vec_nat @ nc ) ) ) @ ( zero_vec_nat @ nr ) ) ) ).

% id0
thf(fact_43_id0,axiom,
    ( ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) )
    = ( append_vec_a @ ( append_vec_a @ ( append_vec_a @ ( zero_vec_a @ nr ) @ ( zero_vec_a @ one_one_nat ) ) @ ( append_vec_a @ ( zero_vec_a @ nc ) @ ( zero_vec_a @ nc ) ) ) @ ( zero_vec_a @ nr ) ) ) ).

% id0
thf(fact_44_u,axiom,
    member_vec_a @ u @ ( carrier_vec_a @ nr ) ).

% u
thf(fact_45_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_46_add__le__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_47_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_48_add__le__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_49_vec1,axiom,
    member_vec_a @ vec1 @ ( carrier_vec_a @ nc ) ).

% vec1
thf(fact_50_vec__first__last__append,axiom,
    ! [V: vec_nat,N: nat,M: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( append_vec_nat @ ( vec_first_nat @ V @ N ) @ ( vec_last_nat @ V @ M ) )
        = V ) ) ).

% vec_first_last_append
thf(fact_51_vec__first__last__append,axiom,
    ! [V: vec_a,N: nat,M: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( append_vec_a @ ( vec_first_a @ V @ N ) @ ( vec_last_a @ V @ M ) )
        = V ) ) ).

% vec_first_last_append
thf(fact_52_vec3,axiom,
    member_vec_a @ vec3 @ ( carrier_vec_a @ nr ) ).

% vec3
thf(fact_53_vec2,axiom,
    member_vec_a @ vec2 @ ( carrier_vec_a @ nr ) ).

% vec2
thf(fact_54_ineqs_I1_J,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ nr ) @ u ).

% ineqs(1)
thf(fact_55__C01_C,axiom,
    ( vec1
    = ( zero_vec_a @ nc ) ) ).

% "01"
thf(fact_56_bc,axiom,
    member_vec_a @ bc @ ( carrier_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) ).

% bc
thf(fact_57_add__right__cancel,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ( plus_plus_a @ B @ A )
        = ( plus_plus_a @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_58_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_59_add__left__cancel,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( plus_plus_a @ A @ B )
        = ( plus_plus_a @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_60_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_61_vec__first__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( vec_first_nat @ ( zero_vec_nat @ N ) @ M )
        = ( zero_vec_nat @ M ) ) ) ).

% vec_first_zero
thf(fact_62_vec__first__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( vec_first_a @ ( zero_vec_a @ N ) @ M )
        = ( zero_vec_a @ M ) ) ) ).

% vec_first_zero
thf(fact_63_ulv0,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) @ ulv ).

% ulv0
thf(fact_64_one__reorient,axiom,
    ! [X3: a] :
      ( ( one_one_a = X3 )
      = ( X3 = one_one_a ) ) ).

% one_reorient
thf(fact_65_one__reorient,axiom,
    ! [X3: nat] :
      ( ( one_one_nat = X3 )
      = ( X3 = one_one_nat ) ) ).

% one_reorient
thf(fact_66_vec__last__carrier,axiom,
    ! [V: vec_nat,N: nat] : ( member_vec_nat @ ( vec_last_nat @ V @ N ) @ ( carrier_vec_nat @ N ) ) ).

% vec_last_carrier
thf(fact_67_vec__last__carrier,axiom,
    ! [V: vec_a,N: nat] : ( member_vec_a @ ( vec_last_a @ V @ N ) @ ( carrier_vec_a @ N ) ) ).

% vec_last_carrier
thf(fact_68_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_69_mem__Collect__eq,axiom,
    ! [A: vec_nat,P: vec_nat > $o] :
      ( ( member_vec_nat @ A @ ( collect_vec_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_70_mem__Collect__eq,axiom,
    ! [A: mat_nat,P: mat_nat > $o] :
      ( ( member_mat_nat @ A @ ( collect_mat_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_71_mem__Collect__eq,axiom,
    ! [A: vec_a,P: vec_a > $o] :
      ( ( member_vec_a @ A @ ( collect_vec_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_72_mem__Collect__eq,axiom,
    ! [A: mat_a,P: mat_a > $o] :
      ( ( member_mat_a @ A @ ( collect_mat_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_73_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_74_Collect__mem__eq,axiom,
    ! [A2: set_vec_nat] :
      ( ( collect_vec_nat
        @ ^ [X: vec_nat] : ( member_vec_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_75_Collect__mem__eq,axiom,
    ! [A2: set_mat_nat] :
      ( ( collect_mat_nat
        @ ^ [X: mat_nat] : ( member_mat_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_76_Collect__mem__eq,axiom,
    ! [A2: set_vec_a] :
      ( ( collect_vec_a
        @ ^ [X: vec_a] : ( member_vec_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_77_Collect__mem__eq,axiom,
    ! [A2: set_mat_a] :
      ( ( collect_mat_a
        @ ^ [X: mat_a] : ( member_mat_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_78_Collect__cong,axiom,
    ! [P: mat_a > $o,Q: mat_a > $o] :
      ( ! [X2: mat_a] :
          ( ( P @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect_mat_a @ P )
        = ( collect_mat_a @ Q ) ) ) ).

% Collect_cong
thf(fact_79_Collect__cong,axiom,
    ! [P: vec_a > $o,Q: vec_a > $o] :
      ( ! [X2: vec_a] :
          ( ( P @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect_vec_a @ P )
        = ( collect_vec_a @ Q ) ) ) ).

% Collect_cong
thf(fact_80_add__right__imp__eq,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ( plus_plus_a @ B @ A )
        = ( plus_plus_a @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_81_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_82_add__left__imp__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( plus_plus_a @ A @ B )
        = ( plus_plus_a @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_83_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_84_add_Oleft__commute,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( plus_plus_set_nat @ B @ ( plus_plus_set_nat @ A @ C ) )
      = ( plus_plus_set_nat @ A @ ( plus_plus_set_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_85_add_Oleft__commute,axiom,
    ! [B: a,A: a,C: a] :
      ( ( plus_plus_a @ B @ ( plus_plus_a @ A @ C ) )
      = ( plus_plus_a @ A @ ( plus_plus_a @ B @ C ) ) ) ).

% add.left_commute
thf(fact_86_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_87_add_Ocommute,axiom,
    ( plus_plus_set_nat
    = ( ^ [A3: set_nat,B2: set_nat] : ( plus_plus_set_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_88_add_Ocommute,axiom,
    ( plus_plus_a
    = ( ^ [A3: a,B2: a] : ( plus_plus_a @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_89_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_90_add_Oright__cancel,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ( plus_plus_a @ B @ A )
        = ( plus_plus_a @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_91_add_Oleft__cancel,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( plus_plus_a @ A @ B )
        = ( plus_plus_a @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_92_add_Oassoc,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( plus_plus_set_nat @ ( plus_plus_set_nat @ A @ B ) @ C )
      = ( plus_plus_set_nat @ A @ ( plus_plus_set_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_93_add_Oassoc,axiom,
    ! [A: a,B: a,C: a] :
      ( ( plus_plus_a @ ( plus_plus_a @ A @ B ) @ C )
      = ( plus_plus_a @ A @ ( plus_plus_a @ B @ C ) ) ) ).

% add.assoc
thf(fact_94_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_95_group__cancel_Oadd2,axiom,
    ! [B3: set_nat,K: set_nat,B: set_nat,A: set_nat] :
      ( ( B3
        = ( plus_plus_set_nat @ K @ B ) )
     => ( ( plus_plus_set_nat @ A @ B3 )
        = ( plus_plus_set_nat @ K @ ( plus_plus_set_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_96_group__cancel_Oadd2,axiom,
    ! [B3: a,K: a,B: a,A: a] :
      ( ( B3
        = ( plus_plus_a @ K @ B ) )
     => ( ( plus_plus_a @ A @ B3 )
        = ( plus_plus_a @ K @ ( plus_plus_a @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_97_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_98_group__cancel_Oadd1,axiom,
    ! [A2: set_nat,K: set_nat,A: set_nat,B: set_nat] :
      ( ( A2
        = ( plus_plus_set_nat @ K @ A ) )
     => ( ( plus_plus_set_nat @ A2 @ B )
        = ( plus_plus_set_nat @ K @ ( plus_plus_set_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_99_group__cancel_Oadd1,axiom,
    ! [A2: a,K: a,A: a,B: a] :
      ( ( A2
        = ( plus_plus_a @ K @ A ) )
     => ( ( plus_plus_a @ A2 @ B )
        = ( plus_plus_a @ K @ ( plus_plus_a @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_100_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_101_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_a @ I @ K )
        = ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_102_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_103_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( plus_plus_set_nat @ ( plus_plus_set_nat @ A @ B ) @ C )
      = ( plus_plus_set_nat @ A @ ( plus_plus_set_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_104_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: a,B: a,C: a] :
      ( ( plus_plus_a @ ( plus_plus_a @ A @ B ) @ C )
      = ( plus_plus_a @ A @ ( plus_plus_a @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_105_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_106_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_107_add__le__imp__le__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
     => ( ord_less_eq_a @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_108_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_109_add__le__imp__le__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
     => ( ord_less_eq_a @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_110_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
        ? [C2: nat] :
          ( B2
          = ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_111_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_112_add__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) ) ) ).

% add_right_mono
thf(fact_113_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_114_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_115_add__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) ) ) ).

% add_left_mono
thf(fact_116_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_117_add__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D ) ) ) ) ).

% add_mono
thf(fact_118_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_119_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_120_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_121_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( I = J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_122_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_123_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_124_u1,axiom,
    member_vec_a @ u1 @ ( carrier_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) ) ).

% u1
thf(fact_125_u3__def,axiom,
    ( u3
    = ( vec_last_a @ u1 @ ( plus_plus_nat @ nc @ nc ) ) ) ).

% u3_def
thf(fact_126_u__def,axiom,
    ( u
    = ( vec_first_a @ u2 @ nr ) ) ).

% u_def
thf(fact_127_u2,axiom,
    member_vec_a @ u2 @ ( carrier_vec_a @ ( plus_plus_nat @ nr @ one_one_nat ) ) ).

% u2
thf(fact_128_bc__def,axiom,
    ( bc
    = ( append_vec_a @ ( append_vec_a @ ( append_vec_a @ b @ ( zero_vec_a @ one_one_nat ) ) @ ( append_vec_a @ c @ ( uminus_uminus_vec_a @ c ) ) ) @ ( zero_vec_a @ nr ) ) ) ).

% bc_def
thf(fact_129_ulv,axiom,
    member_vec_a @ ulv @ ( carrier_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) ).

% ulv
thf(fact_130_ineqs_I2_J,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ one_one_nat ) @ l ).

% ineqs(2)
thf(fact_131__092_060open_062_I_I0_092_060_094sub_062v_Anr_A_064_092_060_094sub_062v_A0_092_060_094sub_062v_A1_J_A_064_092_060_094sub_062v_A0_092_060_094sub_062v_Anc_A_064_092_060_094sub_062v_A0_092_060_094sub_062v_Anc_J_A_064_092_060_094sub_062v_A0_092_060_094sub_062v_Anr_A_092_060le_062_A_I_Iu_A_064_092_060_094sub_062v_AL_J_A_064_092_060_094sub_062v_Av_A_064_092_060_094sub_062v_Aw_J_A_064_092_060_094sub_062v_At_092_060close_062,axiom,
    ord_less_eq_vec_a @ ( append_vec_a @ ( append_vec_a @ ( append_vec_a @ ( zero_vec_a @ nr ) @ ( zero_vec_a @ one_one_nat ) ) @ ( append_vec_a @ ( zero_vec_a @ nc ) @ ( zero_vec_a @ nc ) ) ) @ ( zero_vec_a @ nr ) ) @ ( append_vec_a @ ( append_vec_a @ ( append_vec_a @ u @ l ) @ ( append_vec_a @ v @ w ) ) @ t ) ).

% \<open>((0\<^sub>v nr @\<^sub>v 0\<^sub>v 1) @\<^sub>v 0\<^sub>v nc @\<^sub>v 0\<^sub>v nc) @\<^sub>v 0\<^sub>v nr \<le> ((u @\<^sub>v L) @\<^sub>v v @\<^sub>v w) @\<^sub>v t\<close>
thf(fact_132_ineqs_I5_J,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ nr ) @ t ).

% ineqs(5)
thf(fact_133__092_060open_0620_092_060_094sub_062v_Anr_A_092_060le_062_Au_A_092_060and_062_A0_092_060_094sub_062v_A1_A_092_060le_062_AL_A_092_060and_062_A0_092_060_094sub_062v_Anc_A_092_060le_062_Av_A_092_060and_062_A0_092_060_094sub_062v_Anc_A_092_060le_062_Aw_A_092_060and_062_A0_092_060_094sub_062v_Anr_A_092_060le_062_At_092_060close_062,axiom,
    ( ( ord_less_eq_vec_a @ ( zero_vec_a @ nr ) @ u )
    & ( ord_less_eq_vec_a @ ( zero_vec_a @ one_one_nat ) @ l )
    & ( ord_less_eq_vec_a @ ( zero_vec_a @ nc ) @ v )
    & ( ord_less_eq_vec_a @ ( zero_vec_a @ nc ) @ w )
    & ( ord_less_eq_vec_a @ ( zero_vec_a @ nr ) @ t ) ) ).

% \<open>0\<^sub>v nr \<le> u \<and> 0\<^sub>v 1 \<le> L \<and> 0\<^sub>v nc \<le> v \<and> 0\<^sub>v nc \<le> w \<and> 0\<^sub>v nr \<le> t\<close>
thf(fact_134_t23,axiom,
    ( t
    = ( plus_plus_vec_a @ vec2 @ vec3 ) ) ).

% t23
thf(fact_135_L,axiom,
    member_vec_a @ l @ ( carrier_vec_a @ one_one_nat ) ).

% L
thf(fact_136_neg__equal__iff__equal,axiom,
    ! [A: a,B: a] :
      ( ( ( uminus_uminus_a @ A )
        = ( uminus_uminus_a @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_137_add_Oinverse__inverse,axiom,
    ! [A: a] :
      ( ( uminus_uminus_a @ ( uminus_uminus_a @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_138_t,axiom,
    member_vec_a @ t @ ( carrier_vec_a @ nr ) ).

% t
thf(fact_139_uminus__uminus__vec,axiom,
    ! [V: vec_a] :
      ( ( uminus_uminus_vec_a @ ( uminus_uminus_vec_a @ V ) )
      = V ) ).

% uminus_uminus_vec
thf(fact_140_uminus__eq__vec,axiom,
    ! [V: vec_a,W: vec_a] :
      ( ( ( uminus_uminus_vec_a @ V )
        = ( uminus_uminus_vec_a @ W ) )
      = ( V = W ) ) ).

% uminus_eq_vec
thf(fact_141_L__def,axiom,
    ( l
    = ( vec_last_a @ u2 @ one_one_nat ) ) ).

% L_def
thf(fact_142_t__def,axiom,
    ( t
    = ( vec_last_a @ ulv @ nr ) ) ).

% t_def
thf(fact_143_ulvid,axiom,
    ( ulv
    = ( append_vec_a @ u1 @ t ) ) ).

% ulvid
thf(fact_144_u2id,axiom,
    ( u2
    = ( append_vec_a @ u @ l ) ) ).

% u2id
thf(fact_145_u1id,axiom,
    ( u1
    = ( append_vec_a @ u2 @ u3 ) ) ).

% u1id
thf(fact_146_neg__le__iff__le,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ B ) @ ( uminus_uminus_a @ A ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_147_add__minus__cancel,axiom,
    ! [A: a,B: a] :
      ( ( plus_plus_a @ A @ ( plus_plus_a @ ( uminus_uminus_a @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_148_minus__add__cancel,axiom,
    ! [A: a,B: a] :
      ( ( plus_plus_a @ ( uminus_uminus_a @ A ) @ ( plus_plus_a @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_149_minus__add__distrib,axiom,
    ! [A: a,B: a] :
      ( ( uminus_uminus_a @ ( plus_plus_a @ A @ B ) )
      = ( plus_plus_a @ ( uminus_uminus_a @ A ) @ ( uminus_uminus_a @ B ) ) ) ).

% minus_add_distrib
thf(fact_150_uminus__carrier__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ ( uminus_uminus_vec_a @ V ) @ ( carrier_vec_a @ N ) )
      = ( member_vec_a @ V @ ( carrier_vec_a @ N ) ) ) ).

% uminus_carrier_vec
thf(fact_151_uminus__zero__vec,axiom,
    ! [N: nat] :
      ( ( uminus_uminus_vec_a @ ( zero_vec_a @ N ) )
      = ( zero_vec_a @ N ) ) ).

% uminus_zero_vec
thf(fact_152_u2__def,axiom,
    ( u2
    = ( vec_first_a @ u1 @ ( plus_plus_nat @ nr @ one_one_nat ) ) ) ).

% u2_def
thf(fact_153_u1__def,axiom,
    ( u1
    = ( vec_first_a @ ulv @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) ) ) ).

% u1_def
thf(fact_154_uminus__l__inv__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ ( uminus_uminus_vec_a @ V ) @ V )
        = ( zero_vec_a @ N ) ) ) ).

% uminus_l_inv_vec
thf(fact_155_uminus__r__inv__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ V @ ( uminus_uminus_vec_a @ V ) )
        = ( zero_vec_a @ N ) ) ) ).

% uminus_r_inv_vec
thf(fact_156_minus__equation__iff,axiom,
    ! [A: a,B: a] :
      ( ( ( uminus_uminus_a @ A )
        = B )
      = ( ( uminus_uminus_a @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_157_equation__minus__iff,axiom,
    ! [A: a,B: a] :
      ( ( A
        = ( uminus_uminus_a @ B ) )
      = ( B
        = ( uminus_uminus_a @ A ) ) ) ).

% equation_minus_iff
thf(fact_158_le__minus__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( uminus_uminus_a @ B ) )
      = ( ord_less_eq_a @ B @ ( uminus_uminus_a @ A ) ) ) ).

% le_minus_iff
thf(fact_159_minus__le__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ A ) @ B )
      = ( ord_less_eq_a @ ( uminus_uminus_a @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_160_le__imp__neg__le,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( uminus_uminus_a @ B ) @ ( uminus_uminus_a @ A ) ) ) ).

% le_imp_neg_le
thf(fact_161_group__cancel_Oneg1,axiom,
    ! [A2: a,K: a,A: a] :
      ( ( A2
        = ( plus_plus_a @ K @ A ) )
     => ( ( uminus_uminus_a @ A2 )
        = ( plus_plus_a @ ( uminus_uminus_a @ K ) @ ( uminus_uminus_a @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_162_add_Oinverse__distrib__swap,axiom,
    ! [A: a,B: a] :
      ( ( uminus_uminus_a @ ( plus_plus_a @ A @ B ) )
      = ( plus_plus_a @ ( uminus_uminus_a @ B ) @ ( uminus_uminus_a @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_163_uminus__zero__vec__eq,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ( uminus_uminus_vec_a @ V )
          = ( zero_vec_a @ N ) )
        = ( V
          = ( zero_vec_a @ N ) ) ) ) ).

% uminus_zero_vec_eq
thf(fact_164__092_060open_062vec1_A_064_092_060_094sub_062v_Avec3_A_L_Avec2_A_N_At_A_061_A0_092_060_094sub_062v_A_Inc_A_L_Anr_J_092_060close_062,axiom,
    ( ( append_vec_a @ vec1 @ ( minus_minus_vec_a @ ( plus_plus_vec_a @ vec3 @ vec2 ) @ t ) )
    = ( zero_vec_a @ ( plus_plus_nat @ nc @ nr ) ) ) ).

% \<open>vec1 @\<^sub>v vec3 + vec2 - t = 0\<^sub>v (nc + nr)\<close>
thf(fact_165__092_060open_062vec1_A_064_092_060_094sub_062v_Avec3_A_L_A_I0_092_060_094sub_062v_Anc_A_064_092_060_094sub_062v_Avec2_J_A_L_A_I0_092_060_094sub_062v_Anc_A_064_092_060_094sub_062v_A_N_At_J_A_061_Avec1_A_064_092_060_094sub_062v_Avec3_A_L_Avec2_A_N_At_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ ( plus_plus_vec_a @ ( append_vec_a @ vec1 @ vec3 ) @ ( append_vec_a @ ( zero_vec_a @ nc ) @ vec2 ) ) @ ( append_vec_a @ ( zero_vec_a @ nc ) @ ( uminus_uminus_vec_a @ t ) ) )
    = ( append_vec_a @ vec1 @ ( minus_minus_vec_a @ ( plus_plus_vec_a @ vec3 @ vec2 ) @ t ) ) ) ).

% \<open>vec1 @\<^sub>v vec3 + (0\<^sub>v nc @\<^sub>v vec2) + (0\<^sub>v nc @\<^sub>v - t) = vec1 @\<^sub>v vec3 + vec2 - t\<close>
thf(fact_166__092_060open_062vec1_A_061_A0_092_060_094sub_062v_Anc_A_092_060and_062_Avec3_A_L_Avec2_A_N_At_A_061_A0_092_060_094sub_062v_Anr_092_060close_062,axiom,
    ( ( vec1
      = ( zero_vec_a @ nc ) )
    & ( ( minus_minus_vec_a @ ( plus_plus_vec_a @ vec3 @ vec2 ) @ t )
      = ( zero_vec_a @ nr ) ) ) ).

% \<open>vec1 = 0\<^sub>v nc \<and> vec3 + vec2 - t = 0\<^sub>v nr\<close>
thf(fact_167__092_060open_062vec3_A_L_Avec2_A_N_At_A_L_At_A_061_A0_092_060_094sub_062v_Anr_A_L_At_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ ( minus_minus_vec_a @ ( plus_plus_vec_a @ vec3 @ vec2 ) @ t ) @ t )
    = ( plus_plus_vec_a @ ( zero_vec_a @ nr ) @ t ) ) ).

% \<open>vec3 + vec2 - t + t = 0\<^sub>v nr + t\<close>
thf(fact_168__C02_C,axiom,
    ( ( minus_minus_vec_a @ ( plus_plus_vec_a @ vec3 @ vec2 ) @ t )
    = ( zero_vec_a @ nr ) ) ).

% "02"
thf(fact_169__092_060open_062vec3_A_L_Avec2_A_N_At_A_L_At_A_061_Avec2_A_L_Avec3_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ ( minus_minus_vec_a @ ( plus_plus_vec_a @ vec3 @ vec2 ) @ t ) @ t )
    = ( plus_plus_vec_a @ vec2 @ vec3 ) ) ).

% \<open>vec3 + vec2 - t + t = vec2 + vec3\<close>
thf(fact_170_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_171_compl__le__compl__iff,axiom,
    ! [X3: set_vec_a,Y2: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ ( uminus2769705506071317478_vec_a @ X3 ) @ ( uminus2769705506071317478_vec_a @ Y2 ) )
      = ( ord_le4791951621262958845_vec_a @ Y2 @ X3 ) ) ).

% compl_le_compl_iff
thf(fact_172_compl__le__compl__iff,axiom,
    ! [X3: set_mat_a,Y2: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ ( uminus1296375033039821146_mat_a @ X3 ) @ ( uminus1296375033039821146_mat_a @ Y2 ) )
      = ( ord_le3318621148231462513_mat_a @ Y2 @ X3 ) ) ).

% compl_le_compl_iff
thf(fact_173_compl__le__compl__iff,axiom,
    ! [X3: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X3 ) @ ( uminus5710092332889474511et_nat @ Y2 ) )
      = ( ord_less_eq_set_nat @ Y2 @ X3 ) ) ).

% compl_le_compl_iff
thf(fact_174_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_a @ ( uminus_uminus_a @ one_one_a ) @ one_one_a ).

% le_minus_one_simps(2)
thf(fact_175_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_a @ one_one_a @ ( uminus_uminus_a @ one_one_a ) ) ).

% le_minus_one_simps(4)
thf(fact_176_boolean__algebra__class_Oboolean__algebra_Ocompl__eq__compl__iff,axiom,
    ! [X3: set_mat_a,Y2: set_mat_a] :
      ( ( ( uminus1296375033039821146_mat_a @ X3 )
        = ( uminus1296375033039821146_mat_a @ Y2 ) )
      = ( X3 = Y2 ) ) ).

% boolean_algebra_class.boolean_algebra.compl_eq_compl_iff
thf(fact_177_boolean__algebra__class_Oboolean__algebra_Ocompl__eq__compl__iff,axiom,
    ! [X3: set_vec_a,Y2: set_vec_a] :
      ( ( ( uminus2769705506071317478_vec_a @ X3 )
        = ( uminus2769705506071317478_vec_a @ Y2 ) )
      = ( X3 = Y2 ) ) ).

% boolean_algebra_class.boolean_algebra.compl_eq_compl_iff
thf(fact_178_boolean__algebra__class_Oboolean__algebra_Odouble__compl,axiom,
    ! [X3: set_mat_a] :
      ( ( uminus1296375033039821146_mat_a @ ( uminus1296375033039821146_mat_a @ X3 ) )
      = X3 ) ).

% boolean_algebra_class.boolean_algebra.double_compl
thf(fact_179_boolean__algebra__class_Oboolean__algebra_Odouble__compl,axiom,
    ! [X3: set_vec_a] :
      ( ( uminus2769705506071317478_vec_a @ ( uminus2769705506071317478_vec_a @ X3 ) )
      = X3 ) ).

% boolean_algebra_class.boolean_algebra.double_compl
thf(fact_180_add__diff__cancel__right_H,axiom,
    ! [A: a,B: a] :
      ( ( minus_minus_a @ ( plus_plus_a @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_181_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_182_add__diff__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( minus_minus_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
      = ( minus_minus_a @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_183_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_184_add__diff__cancel__left_H,axiom,
    ! [A: a,B: a] :
      ( ( minus_minus_a @ ( plus_plus_a @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_185_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_186_add__diff__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( minus_minus_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
      = ( minus_minus_a @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_187_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_188_diff__add__cancel,axiom,
    ! [A: a,B: a] :
      ( ( plus_plus_a @ ( minus_minus_a @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_189_add__diff__cancel,axiom,
    ! [A: a,B: a] :
      ( ( minus_minus_a @ ( plus_plus_a @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_190_minus__diff__eq,axiom,
    ! [A: a,B: a] :
      ( ( uminus_uminus_a @ ( minus_minus_a @ A @ B ) )
      = ( minus_minus_a @ B @ A ) ) ).

% minus_diff_eq
thf(fact_191_diff__minus__eq__add,axiom,
    ! [A: a,B: a] :
      ( ( minus_minus_a @ A @ ( uminus_uminus_a @ B ) )
      = ( plus_plus_a @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_192_uminus__add__conv__diff,axiom,
    ! [A: a,B: a] :
      ( ( plus_plus_a @ ( uminus_uminus_a @ A ) @ B )
      = ( minus_minus_a @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_193_minus__cancel__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( minus_minus_vec_a @ V @ V )
        = ( zero_vec_a @ N ) ) ) ).

% minus_cancel_vec
thf(fact_194_minus__zero__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( minus_minus_vec_a @ V @ ( zero_vec_a @ N ) )
        = V ) ) ).

% minus_zero_vec
thf(fact_195_zero__minus__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( minus_minus_vec_a @ ( zero_vec_a @ N ) @ V )
        = ( uminus_uminus_vec_a @ V ) ) ) ).

% zero_minus_vec
thf(fact_196_diff__eq__diff__eq,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ( minus_minus_a @ A @ B )
        = ( minus_minus_a @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_197_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: a,C: a,B: a] :
      ( ( minus_minus_a @ ( minus_minus_a @ A @ C ) @ B )
      = ( minus_minus_a @ ( minus_minus_a @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_198_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_199_diff__eq__diff__less__eq,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ( minus_minus_a @ A @ B )
        = ( minus_minus_a @ C @ D ) )
     => ( ( ord_less_eq_a @ A @ B )
        = ( ord_less_eq_a @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_200_diff__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( minus_minus_a @ A @ C ) @ ( minus_minus_a @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_201_diff__left__mono,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ord_less_eq_a @ ( minus_minus_a @ C @ A ) @ ( minus_minus_a @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_202_diff__mono,axiom,
    ! [A: a,B: a,D: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ D @ C )
       => ( ord_less_eq_a @ ( minus_minus_a @ A @ C ) @ ( minus_minus_a @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_203_diff__diff__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( minus_minus_a @ ( minus_minus_a @ A @ B ) @ C )
      = ( minus_minus_a @ A @ ( plus_plus_a @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_204_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_205_add__implies__diff,axiom,
    ! [C: a,B: a,A: a] :
      ( ( ( plus_plus_a @ C @ B )
        = A )
     => ( C
        = ( minus_minus_a @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_206_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_207_diff__add__eq__diff__diff__swap,axiom,
    ! [A: a,B: a,C: a] :
      ( ( minus_minus_a @ A @ ( plus_plus_a @ B @ C ) )
      = ( minus_minus_a @ ( minus_minus_a @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_208_diff__add__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( plus_plus_a @ ( minus_minus_a @ A @ B ) @ C )
      = ( minus_minus_a @ ( plus_plus_a @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_209_diff__diff__eq2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( minus_minus_a @ A @ ( minus_minus_a @ B @ C ) )
      = ( minus_minus_a @ ( plus_plus_a @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_210_add__diff__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( plus_plus_a @ A @ ( minus_minus_a @ B @ C ) )
      = ( minus_minus_a @ ( plus_plus_a @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_211_eq__diff__eq,axiom,
    ! [A: a,C: a,B: a] :
      ( ( A
        = ( minus_minus_a @ C @ B ) )
      = ( ( plus_plus_a @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_212_diff__eq__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( minus_minus_a @ A @ B )
        = C )
      = ( A
        = ( plus_plus_a @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_213_group__cancel_Osub1,axiom,
    ! [A2: a,K: a,A: a,B: a] :
      ( ( A2
        = ( plus_plus_a @ K @ A ) )
     => ( ( minus_minus_a @ A2 @ B )
        = ( plus_plus_a @ K @ ( minus_minus_a @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_214_minus__diff__commute,axiom,
    ! [B: a,A: a] :
      ( ( minus_minus_a @ ( uminus_uminus_a @ B ) @ A )
      = ( minus_minus_a @ ( uminus_uminus_a @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_215_minus__carrier__vec,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( member_vec_nat @ ( minus_minus_vec_nat @ V_1 @ V_2 ) @ ( carrier_vec_nat @ N ) ) ) ) ).

% minus_carrier_vec
thf(fact_216_minus__carrier__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( member_vec_a @ ( minus_minus_vec_a @ V_1 @ V_2 ) @ ( carrier_vec_a @ N ) ) ) ) ).

% minus_carrier_vec
thf(fact_217_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_218_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_219_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_220_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_221_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_222_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_223_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_224_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_225_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_226_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_227_le__diff__eq,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( minus_minus_a @ C @ B ) )
      = ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_228_diff__le__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ ( minus_minus_a @ A @ B ) @ C )
      = ( ord_less_eq_a @ A @ ( plus_plus_a @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_229_group__cancel_Osub2,axiom,
    ! [B3: a,K: a,B: a,A: a] :
      ( ( B3
        = ( plus_plus_a @ K @ B ) )
     => ( ( minus_minus_a @ A @ B3 )
        = ( plus_plus_a @ ( uminus_uminus_a @ K ) @ ( minus_minus_a @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_230_diff__conv__add__uminus,axiom,
    ( minus_minus_a
    = ( ^ [A3: a,B2: a] : ( plus_plus_a @ A3 @ ( uminus_uminus_a @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_231_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_a
    = ( ^ [A3: a,B2: a] : ( plus_plus_a @ A3 @ ( uminus_uminus_a @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_232_add__diff__cancel__right__vec,axiom,
    ! [A: vec_nat,N: nat,B: vec_nat] :
      ( ( member_vec_nat @ A @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ B @ ( carrier_vec_nat @ N ) )
       => ( ( minus_minus_vec_nat @ ( plus_plus_vec_nat @ A @ B ) @ B )
          = A ) ) ) ).

% add_diff_cancel_right_vec
thf(fact_233_add__diff__cancel__right__vec,axiom,
    ! [A: vec_a,N: nat,B: vec_a] :
      ( ( member_vec_a @ A @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ N ) )
       => ( ( minus_minus_vec_a @ ( plus_plus_vec_a @ A @ B ) @ B )
          = A ) ) ) ).

% add_diff_cancel_right_vec
thf(fact_234_add__diff__eq__vec,axiom,
    ! [Y2: vec_a,N: nat,X3: vec_a,Z: vec_a] :
      ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ X3 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ Z @ ( carrier_vec_a @ N ) )
         => ( ( plus_plus_vec_a @ Y2 @ ( minus_minus_vec_a @ X3 @ Z ) )
            = ( minus_minus_vec_a @ ( plus_plus_vec_a @ Y2 @ X3 ) @ Z ) ) ) ) ) ).

% add_diff_eq_vec
thf(fact_235_minus__add__minus__vec,axiom,
    ! [U: vec_a,N: nat,V: vec_a,W: vec_a] :
      ( ( member_vec_a @ U @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
         => ( ( minus_minus_vec_a @ U @ ( plus_plus_vec_a @ V @ W ) )
            = ( minus_minus_vec_a @ ( minus_minus_vec_a @ U @ V ) @ W ) ) ) ) ) ).

% minus_add_minus_vec
thf(fact_236_is__num__normalize_I1_J,axiom,
    ! [A: a,B: a,C: a] :
      ( ( plus_plus_a @ ( plus_plus_a @ A @ B ) @ C )
      = ( plus_plus_a @ A @ ( plus_plus_a @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_237_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X2: nat] :
            ( ( P @ X2 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_238_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_239_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_240_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_241_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_242_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_243_uminus__add__minus__vec,axiom,
    ! [L: vec_a,N: nat,R: vec_a] :
      ( ( member_vec_a @ L @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ R @ ( carrier_vec_a @ N ) )
       => ( ( uminus_uminus_vec_a @ ( plus_plus_vec_a @ L @ R ) )
          = ( minus_minus_vec_a @ ( uminus_uminus_vec_a @ L ) @ R ) ) ) ) ).

% uminus_add_minus_vec
thf(fact_244_minus__add__uminus__vec,axiom,
    ! [V: vec_a,N: nat,W: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
       => ( ( minus_minus_vec_a @ V @ W )
          = ( plus_plus_vec_a @ V @ ( uminus_uminus_vec_a @ W ) ) ) ) ) ).

% minus_add_uminus_vec
thf(fact_245_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_246_le__numeral__extra_I4_J,axiom,
    ord_less_eq_a @ one_one_a @ one_one_a ).

% le_numeral_extra(4)
thf(fact_247_compl__le__swap2,axiom,
    ! [Y2: set_vec_a,X3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ ( uminus2769705506071317478_vec_a @ Y2 ) @ X3 )
     => ( ord_le4791951621262958845_vec_a @ ( uminus2769705506071317478_vec_a @ X3 ) @ Y2 ) ) ).

% compl_le_swap2
thf(fact_248_compl__le__swap2,axiom,
    ! [Y2: set_mat_a,X3: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ ( uminus1296375033039821146_mat_a @ Y2 ) @ X3 )
     => ( ord_le3318621148231462513_mat_a @ ( uminus1296375033039821146_mat_a @ X3 ) @ Y2 ) ) ).

% compl_le_swap2
thf(fact_249_compl__le__swap2,axiom,
    ! [Y2: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y2 ) @ X3 )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X3 ) @ Y2 ) ) ).

% compl_le_swap2
thf(fact_250_compl__le__swap1,axiom,
    ! [Y2: set_vec_a,X3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ Y2 @ ( uminus2769705506071317478_vec_a @ X3 ) )
     => ( ord_le4791951621262958845_vec_a @ X3 @ ( uminus2769705506071317478_vec_a @ Y2 ) ) ) ).

% compl_le_swap1
thf(fact_251_compl__le__swap1,axiom,
    ! [Y2: set_mat_a,X3: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ Y2 @ ( uminus1296375033039821146_mat_a @ X3 ) )
     => ( ord_le3318621148231462513_mat_a @ X3 @ ( uminus1296375033039821146_mat_a @ Y2 ) ) ) ).

% compl_le_swap1
thf(fact_252_compl__le__swap1,axiom,
    ! [Y2: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ ( uminus5710092332889474511et_nat @ X3 ) )
     => ( ord_less_eq_set_nat @ X3 @ ( uminus5710092332889474511et_nat @ Y2 ) ) ) ).

% compl_le_swap1
thf(fact_253_compl__mono,axiom,
    ! [X3: set_vec_a,Y2: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ X3 @ Y2 )
     => ( ord_le4791951621262958845_vec_a @ ( uminus2769705506071317478_vec_a @ Y2 ) @ ( uminus2769705506071317478_vec_a @ X3 ) ) ) ).

% compl_mono
thf(fact_254_compl__mono,axiom,
    ! [X3: set_mat_a,Y2: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ X3 @ Y2 )
     => ( ord_le3318621148231462513_mat_a @ ( uminus1296375033039821146_mat_a @ Y2 ) @ ( uminus1296375033039821146_mat_a @ X3 ) ) ) ).

% compl_mono
thf(fact_255_compl__mono,axiom,
    ! [X3: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y2 )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y2 ) @ ( uminus5710092332889474511et_nat @ X3 ) ) ) ).

% compl_mono
thf(fact_256_one__neq__neg__one,axiom,
    ( one_one_a
   != ( uminus_uminus_a @ one_one_a ) ) ).

% one_neq_neg_one
thf(fact_257_is__num__normalize_I8_J,axiom,
    ! [A: a,B: a] :
      ( ( uminus_uminus_a @ ( plus_plus_a @ A @ B ) )
      = ( plus_plus_a @ ( uminus_uminus_a @ B ) @ ( uminus_uminus_a @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_258_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_259_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_260_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_261_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_262_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_263_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N4: nat] :
          ( L
          = ( plus_plus_nat @ K @ N4 ) ) ) ).

% le_Suc_ex
thf(fact_264_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_265_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_266_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_267_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_268_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_269_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_270_le__add__diff__inverse2,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( plus_plus_a @ ( minus_minus_a @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_271_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_272_le__add__diff__inverse,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( plus_plus_a @ B @ ( minus_minus_a @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_273_class__ring_Ominus__eq,axiom,
    ( minus_minus_a
    = ( ^ [X: a,Y: a] : ( plus_plus_a @ X @ ( uminus_uminus_a @ Y ) ) ) ) ).

% class_ring.minus_eq
thf(fact_274_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_275_add__le__add__imp__diff__le,axiom,
    ! [I: a,K: a,N: a,J: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ N )
     => ( ( ord_less_eq_a @ N @ ( plus_plus_a @ J @ K ) )
       => ( ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ N )
         => ( ( ord_less_eq_a @ N @ ( plus_plus_a @ J @ K ) )
           => ( ord_less_eq_a @ ( minus_minus_a @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_276_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_277_add__le__imp__le__diff,axiom,
    ! [I: a,K: a,N: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ N )
     => ( ord_less_eq_a @ I @ ( minus_minus_a @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_278_sum__carrier__vec,axiom,
    ! [A2: set_vec_nat,N: nat,B3: set_vec_nat] :
      ( ( ord_le7536782659060323133ec_nat @ A2 @ ( carrier_vec_nat @ N ) )
     => ( ( ord_le7536782659060323133ec_nat @ B3 @ ( carrier_vec_nat @ N ) )
       => ( ord_le7536782659060323133ec_nat @ ( plus_p1963516127331757268ec_nat @ A2 @ B3 ) @ ( carrier_vec_nat @ N ) ) ) ) ).

% sum_carrier_vec
thf(fact_279_sum__carrier__vec,axiom,
    ! [A2: set_vec_a,N: nat,B3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ ( carrier_vec_a @ N ) )
     => ( ( ord_le4791951621262958845_vec_a @ B3 @ ( carrier_vec_a @ N ) )
       => ( ord_le4791951621262958845_vec_a @ ( plus_plus_set_vec_a @ A2 @ B3 ) @ ( carrier_vec_a @ N ) ) ) ) ).

% sum_carrier_vec
thf(fact_280_verit__minus__simplify_I4_J,axiom,
    ! [B: a] :
      ( ( uminus_uminus_a @ ( uminus_uminus_a @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_281_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_282_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_283_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_284_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_285_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_286_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_287_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_288_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_289_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_290_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_291_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_292_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_293_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_294_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_295_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_296_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_297_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_298_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_299_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_300_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_301_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_302_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_vec_a] : ( ord_le4791951621262958845_vec_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_303_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_mat_a] : ( ord_le3318621148231462513_mat_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_304_verit__comp__simplify1_I2_J,axiom,
    ! [A: vec_nat] : ( ord_less_eq_vec_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_305_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_306_verit__comp__simplify1_I2_J,axiom,
    ! [A: vec_a] : ( ord_less_eq_vec_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_307_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_308_verit__comp__simplify1_I2_J,axiom,
    ! [A: a] : ( ord_less_eq_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_309_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_310_verit__la__disequality,axiom,
    ! [A: a,B: a] :
      ( ( A = B )
      | ~ ( ord_less_eq_a @ A @ B )
      | ~ ( ord_less_eq_a @ B @ A ) ) ).

% verit_la_disequality
thf(fact_311_class__semiring_Oadd_Ofactors__equal,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( A = B )
     => ( ( C = D )
       => ( ( plus_plus_a @ A @ C )
          = ( plus_plus_a @ B @ D ) ) ) ) ).

% class_semiring.add.factors_equal
thf(fact_312_class__semiring_Oadd_Ofactors__equal,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( A = B )
     => ( ( C = D )
       => ( ( plus_plus_nat @ A @ C )
          = ( plus_plus_nat @ B @ D ) ) ) ) ).

% class_semiring.add.factors_equal
thf(fact_313_verit__negate__coefficient_I3_J,axiom,
    ! [A: a,B: a] :
      ( ( A = B )
     => ( ( uminus_uminus_a @ A )
        = ( uminus_uminus_a @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_314_assoc__add__vecset,axiom,
    ! [A2: set_vec_nat,N: nat,B3: set_vec_nat,C4: set_vec_nat] :
      ( ( ord_le7536782659060323133ec_nat @ A2 @ ( carrier_vec_nat @ N ) )
     => ( ( ord_le7536782659060323133ec_nat @ B3 @ ( carrier_vec_nat @ N ) )
       => ( ( ord_le7536782659060323133ec_nat @ C4 @ ( carrier_vec_nat @ N ) )
         => ( ( plus_p1963516127331757268ec_nat @ A2 @ ( plus_p1963516127331757268ec_nat @ B3 @ C4 ) )
            = ( plus_p1963516127331757268ec_nat @ ( plus_p1963516127331757268ec_nat @ A2 @ B3 ) @ C4 ) ) ) ) ) ).

% assoc_add_vecset
thf(fact_315_assoc__add__vecset,axiom,
    ! [A2: set_vec_a,N: nat,B3: set_vec_a,C4: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ ( carrier_vec_a @ N ) )
     => ( ( ord_le4791951621262958845_vec_a @ B3 @ ( carrier_vec_a @ N ) )
       => ( ( ord_le4791951621262958845_vec_a @ C4 @ ( carrier_vec_a @ N ) )
         => ( ( plus_plus_set_vec_a @ A2 @ ( plus_plus_set_vec_a @ B3 @ C4 ) )
            = ( plus_plus_set_vec_a @ ( plus_plus_set_vec_a @ A2 @ B3 ) @ C4 ) ) ) ) ) ).

% assoc_add_vecset
thf(fact_316_comm__add__vecset,axiom,
    ! [A2: set_vec_nat,N: nat,B3: set_vec_nat] :
      ( ( ord_le7536782659060323133ec_nat @ A2 @ ( carrier_vec_nat @ N ) )
     => ( ( ord_le7536782659060323133ec_nat @ B3 @ ( carrier_vec_nat @ N ) )
       => ( ( plus_p1963516127331757268ec_nat @ A2 @ B3 )
          = ( plus_p1963516127331757268ec_nat @ B3 @ A2 ) ) ) ) ).

% comm_add_vecset
thf(fact_317_comm__add__vecset,axiom,
    ! [A2: set_vec_a,N: nat,B3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ ( carrier_vec_a @ N ) )
     => ( ( ord_le4791951621262958845_vec_a @ B3 @ ( carrier_vec_a @ N ) )
       => ( ( plus_plus_set_vec_a @ A2 @ B3 )
          = ( plus_plus_set_vec_a @ B3 @ A2 ) ) ) ) ).

% comm_add_vecset
thf(fact_318_set__plus__mono2,axiom,
    ! [C4: set_vec_a,D2: set_vec_a,E: set_vec_a,F: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ C4 @ D2 )
     => ( ( ord_le4791951621262958845_vec_a @ E @ F )
       => ( ord_le4791951621262958845_vec_a @ ( plus_plus_set_vec_a @ C4 @ E ) @ ( plus_plus_set_vec_a @ D2 @ F ) ) ) ) ).

% set_plus_mono2
thf(fact_319_set__plus__mono2,axiom,
    ! [C4: set_mat_a,D2: set_mat_a,E: set_mat_a,F: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ C4 @ D2 )
     => ( ( ord_le3318621148231462513_mat_a @ E @ F )
       => ( ord_le3318621148231462513_mat_a @ ( plus_plus_set_mat_a @ C4 @ E ) @ ( plus_plus_set_mat_a @ D2 @ F ) ) ) ) ).

% set_plus_mono2
thf(fact_320_set__plus__mono2,axiom,
    ! [C4: set_nat,D2: set_nat,E: set_nat,F: set_nat] :
      ( ( ord_less_eq_set_nat @ C4 @ D2 )
     => ( ( ord_less_eq_set_nat @ E @ F )
       => ( ord_less_eq_set_nat @ ( plus_plus_set_nat @ C4 @ E ) @ ( plus_plus_set_nat @ D2 @ F ) ) ) ) ).

% set_plus_mono2
thf(fact_321_set__plus__intro,axiom,
    ! [A: vec_nat,C4: set_vec_nat,B: vec_nat,D2: set_vec_nat] :
      ( ( member_vec_nat @ A @ C4 )
     => ( ( member_vec_nat @ B @ D2 )
       => ( member_vec_nat @ ( plus_plus_vec_nat @ A @ B ) @ ( plus_p1963516127331757268ec_nat @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_322_set__plus__intro,axiom,
    ! [A: mat_nat,C4: set_mat_nat,B: mat_nat,D2: set_mat_nat] :
      ( ( member_mat_nat @ A @ C4 )
     => ( ( member_mat_nat @ B @ D2 )
       => ( member_mat_nat @ ( plus_plus_mat_nat @ A @ B ) @ ( plus_p2215855510709889632at_nat @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_323_set__plus__intro,axiom,
    ! [A: set_vec_a,C4: set_set_vec_a,B: set_vec_a,D2: set_set_vec_a] :
      ( ( member_set_vec_a @ A @ C4 )
     => ( ( member_set_vec_a @ B @ D2 )
       => ( member_set_vec_a @ ( plus_plus_set_vec_a @ A @ B ) @ ( plus_p5225466182533350236_vec_a @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_324_set__plus__intro,axiom,
    ! [A: set_mat_a,C4: set_set_mat_a,B: set_mat_a,D2: set_set_mat_a] :
      ( ( member_set_mat_a @ A @ C4 )
     => ( ( member_set_mat_a @ B @ D2 )
       => ( member_set_mat_a @ ( plus_plus_set_mat_a @ A @ B ) @ ( plus_p8188135320652551888_mat_a @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_325_set__plus__intro,axiom,
    ! [A: set_nat,C4: set_set_nat,B: set_nat,D2: set_set_nat] :
      ( ( member_set_nat @ A @ C4 )
     => ( ( member_set_nat @ B @ D2 )
       => ( member_set_nat @ ( plus_plus_set_nat @ A @ B ) @ ( plus_p4817606893110106565et_nat @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_326_set__plus__intro,axiom,
    ! [A: a,C4: set_a,B: a,D2: set_a] :
      ( ( member_a @ A @ C4 )
     => ( ( member_a @ B @ D2 )
       => ( member_a @ ( plus_plus_a @ A @ B ) @ ( plus_plus_set_a @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_327_set__plus__intro,axiom,
    ! [A: mat_a,C4: set_mat_a,B: mat_a,D2: set_mat_a] :
      ( ( member_mat_a @ A @ C4 )
     => ( ( member_mat_a @ B @ D2 )
       => ( member_mat_a @ ( plus_plus_mat_a @ A @ B ) @ ( plus_plus_set_mat_a @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_328_set__plus__intro,axiom,
    ! [A: nat,C4: set_nat,B: nat,D2: set_nat] :
      ( ( member_nat @ A @ C4 )
     => ( ( member_nat @ B @ D2 )
       => ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_329_set__plus__intro,axiom,
    ! [A: vec_a,C4: set_vec_a,B: vec_a,D2: set_vec_a] :
      ( ( member_vec_a @ A @ C4 )
     => ( ( member_vec_a @ B @ D2 )
       => ( member_vec_a @ ( plus_plus_vec_a @ A @ B ) @ ( plus_plus_set_vec_a @ C4 @ D2 ) ) ) ) ).

% set_plus_intro
thf(fact_330_Compl__anti__mono,axiom,
    ! [A2: set_vec_a,B3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ B3 )
     => ( ord_le4791951621262958845_vec_a @ ( uminus2769705506071317478_vec_a @ B3 ) @ ( uminus2769705506071317478_vec_a @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_331_Compl__anti__mono,axiom,
    ! [A2: set_mat_a,B3: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A2 @ B3 )
     => ( ord_le3318621148231462513_mat_a @ ( uminus1296375033039821146_mat_a @ B3 ) @ ( uminus1296375033039821146_mat_a @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_332_Compl__anti__mono,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ B3 ) @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_333_Compl__subset__Compl__iff,axiom,
    ! [A2: set_vec_a,B3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ ( uminus2769705506071317478_vec_a @ A2 ) @ ( uminus2769705506071317478_vec_a @ B3 ) )
      = ( ord_le4791951621262958845_vec_a @ B3 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_334_Compl__subset__Compl__iff,axiom,
    ! [A2: set_mat_a,B3: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ ( uminus1296375033039821146_mat_a @ A2 ) @ ( uminus1296375033039821146_mat_a @ B3 ) )
      = ( ord_le3318621148231462513_mat_a @ B3 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_335_Compl__subset__Compl__iff,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ A2 ) @ ( uminus5710092332889474511et_nat @ B3 ) )
      = ( ord_less_eq_set_nat @ B3 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_336_subset__antisym,axiom,
    ! [A2: set_vec_a,B3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ B3 )
     => ( ( ord_le4791951621262958845_vec_a @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_337_subset__antisym,axiom,
    ! [A2: set_mat_a,B3: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A2 @ B3 )
     => ( ( ord_le3318621148231462513_mat_a @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_338_subset__antisym,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_339_subsetI,axiom,
    ! [A2: set_vec_nat,B3: set_vec_nat] :
      ( ! [X2: vec_nat] :
          ( ( member_vec_nat @ X2 @ A2 )
         => ( member_vec_nat @ X2 @ B3 ) )
     => ( ord_le7536782659060323133ec_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_340_subsetI,axiom,
    ! [A2: set_mat_nat,B3: set_mat_nat] :
      ( ! [X2: mat_nat] :
          ( ( member_mat_nat @ X2 @ A2 )
         => ( member_mat_nat @ X2 @ B3 ) )
     => ( ord_le7789122042438455497at_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_341_subsetI,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A2 )
         => ( member_nat @ X2 @ B3 ) )
     => ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_342_subsetI,axiom,
    ! [A2: set_vec_a,B3: set_vec_a] :
      ( ! [X2: vec_a] :
          ( ( member_vec_a @ X2 @ A2 )
         => ( member_vec_a @ X2 @ B3 ) )
     => ( ord_le4791951621262958845_vec_a @ A2 @ B3 ) ) ).

% subsetI
thf(fact_343_subsetI,axiom,
    ! [A2: set_mat_a,B3: set_mat_a] :
      ( ! [X2: mat_a] :
          ( ( member_mat_a @ X2 @ A2 )
         => ( member_mat_a @ X2 @ B3 ) )
     => ( ord_le3318621148231462513_mat_a @ A2 @ B3 ) ) ).

% subsetI
thf(fact_344_order__refl,axiom,
    ! [X3: set_vec_a] : ( ord_le4791951621262958845_vec_a @ X3 @ X3 ) ).

% order_refl
thf(fact_345_order__refl,axiom,
    ! [X3: set_mat_a] : ( ord_le3318621148231462513_mat_a @ X3 @ X3 ) ).

% order_refl
thf(fact_346_order__refl,axiom,
    ! [X3: vec_nat] : ( ord_less_eq_vec_nat @ X3 @ X3 ) ).

% order_refl
thf(fact_347_order__refl,axiom,
    ! [X3: set_nat] : ( ord_less_eq_set_nat @ X3 @ X3 ) ).

% order_refl
thf(fact_348_order__refl,axiom,
    ! [X3: vec_a] : ( ord_less_eq_vec_a @ X3 @ X3 ) ).

% order_refl
thf(fact_349_order__refl,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ X3 @ X3 ) ).

% order_refl
thf(fact_350_order__refl,axiom,
    ! [X3: a] : ( ord_less_eq_a @ X3 @ X3 ) ).

% order_refl
thf(fact_351_dual__order_Orefl,axiom,
    ! [A: set_vec_a] : ( ord_le4791951621262958845_vec_a @ A @ A ) ).

% dual_order.refl
thf(fact_352_dual__order_Orefl,axiom,
    ! [A: set_mat_a] : ( ord_le3318621148231462513_mat_a @ A @ A ) ).

% dual_order.refl
thf(fact_353_dual__order_Orefl,axiom,
    ! [A: vec_nat] : ( ord_less_eq_vec_nat @ A @ A ) ).

% dual_order.refl
thf(fact_354_dual__order_Orefl,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% dual_order.refl
thf(fact_355_dual__order_Orefl,axiom,
    ! [A: vec_a] : ( ord_less_eq_vec_a @ A @ A ) ).

% dual_order.refl
thf(fact_356_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_357_dual__order_Orefl,axiom,
    ! [A: a] : ( ord_less_eq_a @ A @ A ) ).

% dual_order.refl
thf(fact_358_ComplI,axiom,
    ! [C: nat,A2: set_nat] :
      ( ~ ( member_nat @ C @ A2 )
     => ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).

% ComplI
thf(fact_359_ComplI,axiom,
    ! [C: vec_nat,A2: set_vec_nat] :
      ( ~ ( member_vec_nat @ C @ A2 )
     => ( member_vec_nat @ C @ ( uminus671114404580487188ec_nat @ A2 ) ) ) ).

% ComplI
thf(fact_360_ComplI,axiom,
    ! [C: mat_nat,A2: set_mat_nat] :
      ( ~ ( member_mat_nat @ C @ A2 )
     => ( member_mat_nat @ C @ ( uminus923453787958619552at_nat @ A2 ) ) ) ).

% ComplI
thf(fact_361_ComplI,axiom,
    ! [C: vec_a,A2: set_vec_a] :
      ( ~ ( member_vec_a @ C @ A2 )
     => ( member_vec_a @ C @ ( uminus2769705506071317478_vec_a @ A2 ) ) ) ).

% ComplI
thf(fact_362_ComplI,axiom,
    ! [C: mat_a,A2: set_mat_a] :
      ( ~ ( member_mat_a @ C @ A2 )
     => ( member_mat_a @ C @ ( uminus1296375033039821146_mat_a @ A2 ) ) ) ).

% ComplI
thf(fact_363_Compl__iff,axiom,
    ! [C: nat,A2: set_nat] :
      ( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
      = ( ~ ( member_nat @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_364_Compl__iff,axiom,
    ! [C: vec_nat,A2: set_vec_nat] :
      ( ( member_vec_nat @ C @ ( uminus671114404580487188ec_nat @ A2 ) )
      = ( ~ ( member_vec_nat @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_365_Compl__iff,axiom,
    ! [C: mat_nat,A2: set_mat_nat] :
      ( ( member_mat_nat @ C @ ( uminus923453787958619552at_nat @ A2 ) )
      = ( ~ ( member_mat_nat @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_366_Compl__iff,axiom,
    ! [C: vec_a,A2: set_vec_a] :
      ( ( member_vec_a @ C @ ( uminus2769705506071317478_vec_a @ A2 ) )
      = ( ~ ( member_vec_a @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_367_Compl__iff,axiom,
    ! [C: mat_a,A2: set_mat_a] :
      ( ( member_mat_a @ C @ ( uminus1296375033039821146_mat_a @ A2 ) )
      = ( ~ ( member_mat_a @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_368_Compl__eq__Compl__iff,axiom,
    ! [A2: set_mat_a,B3: set_mat_a] :
      ( ( ( uminus1296375033039821146_mat_a @ A2 )
        = ( uminus1296375033039821146_mat_a @ B3 ) )
      = ( A2 = B3 ) ) ).

% Compl_eq_Compl_iff
thf(fact_369_Compl__eq__Compl__iff,axiom,
    ! [A2: set_vec_a,B3: set_vec_a] :
      ( ( ( uminus2769705506071317478_vec_a @ A2 )
        = ( uminus2769705506071317478_vec_a @ B3 ) )
      = ( A2 = B3 ) ) ).

% Compl_eq_Compl_iff
thf(fact_370_ComplD,axiom,
    ! [C: nat,A2: set_nat] :
      ( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
     => ~ ( member_nat @ C @ A2 ) ) ).

% ComplD
thf(fact_371_ComplD,axiom,
    ! [C: vec_nat,A2: set_vec_nat] :
      ( ( member_vec_nat @ C @ ( uminus671114404580487188ec_nat @ A2 ) )
     => ~ ( member_vec_nat @ C @ A2 ) ) ).

% ComplD
thf(fact_372_ComplD,axiom,
    ! [C: mat_nat,A2: set_mat_nat] :
      ( ( member_mat_nat @ C @ ( uminus923453787958619552at_nat @ A2 ) )
     => ~ ( member_mat_nat @ C @ A2 ) ) ).

% ComplD
thf(fact_373_ComplD,axiom,
    ! [C: vec_a,A2: set_vec_a] :
      ( ( member_vec_a @ C @ ( uminus2769705506071317478_vec_a @ A2 ) )
     => ~ ( member_vec_a @ C @ A2 ) ) ).

% ComplD
thf(fact_374_ComplD,axiom,
    ! [C: mat_a,A2: set_mat_a] :
      ( ( member_mat_a @ C @ ( uminus1296375033039821146_mat_a @ A2 ) )
     => ~ ( member_mat_a @ C @ A2 ) ) ).

% ComplD
thf(fact_375_double__complement,axiom,
    ! [A2: set_mat_a] :
      ( ( uminus1296375033039821146_mat_a @ ( uminus1296375033039821146_mat_a @ A2 ) )
      = A2 ) ).

% double_complement
thf(fact_376_double__complement,axiom,
    ! [A2: set_vec_a] :
      ( ( uminus2769705506071317478_vec_a @ ( uminus2769705506071317478_vec_a @ A2 ) )
      = A2 ) ).

% double_complement
thf(fact_377_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_378_order__antisym__conv,axiom,
    ! [Y2: set_vec_a,X3: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ Y2 @ X3 )
     => ( ( ord_le4791951621262958845_vec_a @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_379_order__antisym__conv,axiom,
    ! [Y2: set_mat_a,X3: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ Y2 @ X3 )
     => ( ( ord_le3318621148231462513_mat_a @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_380_order__antisym__conv,axiom,
    ! [Y2: vec_nat,X3: vec_nat] :
      ( ( ord_less_eq_vec_nat @ Y2 @ X3 )
     => ( ( ord_less_eq_vec_nat @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_381_order__antisym__conv,axiom,
    ! [Y2: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ X3 )
     => ( ( ord_less_eq_set_nat @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_382_order__antisym__conv,axiom,
    ! [Y2: vec_a,X3: vec_a] :
      ( ( ord_less_eq_vec_a @ Y2 @ X3 )
     => ( ( ord_less_eq_vec_a @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_383_order__antisym__conv,axiom,
    ! [Y2: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X3 )
     => ( ( ord_less_eq_nat @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_384_order__antisym__conv,axiom,
    ! [Y2: a,X3: a] :
      ( ( ord_less_eq_a @ Y2 @ X3 )
     => ( ( ord_less_eq_a @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_385_linorder__le__cases,axiom,
    ! [X3: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X3 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X3 ) ) ).

% linorder_le_cases
thf(fact_386_linorder__le__cases,axiom,
    ! [X3: a,Y2: a] :
      ( ~ ( ord_less_eq_a @ X3 @ Y2 )
     => ( ord_less_eq_a @ Y2 @ X3 ) ) ).

% linorder_le_cases
thf(fact_387_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_388_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > a,C: a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_389_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F2: a > nat,C: nat] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_390_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F2: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_391_ord__le__eq__subst,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_392_ord__le__eq__subst,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_393_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_394_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F2: a > vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_395_ord__le__eq__subst,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_396_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F2: nat > vec_nat,C: vec_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F2 @ B )
          = C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_397_ord__eq__le__subst,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_398_ord__eq__le__subst,axiom,
    ! [A: a,F2: nat > a,B: nat,C: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_399_ord__eq__le__subst,axiom,
    ! [A: nat,F2: a > nat,B: a,C: a] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_400_ord__eq__le__subst,axiom,
    ! [A: a,F2: a > a,B: a,C: a] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_401_ord__eq__le__subst,axiom,
    ! [A: nat,F2: vec_a > nat,B: vec_a,C: vec_a] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_402_ord__eq__le__subst,axiom,
    ! [A: a,F2: vec_a > a,B: vec_a,C: vec_a] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_403_ord__eq__le__subst,axiom,
    ! [A: vec_a,F2: nat > vec_a,B: nat,C: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_404_ord__eq__le__subst,axiom,
    ! [A: vec_a,F2: a > vec_a,B: a,C: a] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_405_ord__eq__le__subst,axiom,
    ! [A: vec_a,F2: vec_a > vec_a,B: vec_a,C: vec_a] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_406_ord__eq__le__subst,axiom,
    ! [A: vec_nat,F2: nat > vec_nat,B: nat,C: nat] :
      ( ( A
        = ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_407_linorder__linear,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X3 ) ) ).

% linorder_linear
thf(fact_408_linorder__linear,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
      | ( ord_less_eq_a @ Y2 @ X3 ) ) ).

% linorder_linear
thf(fact_409_order__eq__refl,axiom,
    ! [X3: set_vec_a,Y2: set_vec_a] :
      ( ( X3 = Y2 )
     => ( ord_le4791951621262958845_vec_a @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_410_order__eq__refl,axiom,
    ! [X3: set_mat_a,Y2: set_mat_a] :
      ( ( X3 = Y2 )
     => ( ord_le3318621148231462513_mat_a @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_411_order__eq__refl,axiom,
    ! [X3: vec_nat,Y2: vec_nat] :
      ( ( X3 = Y2 )
     => ( ord_less_eq_vec_nat @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_412_order__eq__refl,axiom,
    ! [X3: set_nat,Y2: set_nat] :
      ( ( X3 = Y2 )
     => ( ord_less_eq_set_nat @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_413_order__eq__refl,axiom,
    ! [X3: vec_a,Y2: vec_a] :
      ( ( X3 = Y2 )
     => ( ord_less_eq_vec_a @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_414_order__eq__refl,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( X3 = Y2 )
     => ( ord_less_eq_nat @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_415_order__eq__refl,axiom,
    ! [X3: a,Y2: a] :
      ( ( X3 = Y2 )
     => ( ord_less_eq_a @ X3 @ Y2 ) ) ).

% order_eq_refl
thf(fact_416_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_417_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > a,C: a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_a @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_418_order__subst2,axiom,
    ! [A: a,B: a,F2: a > nat,C: nat] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_419_order__subst2,axiom,
    ! [A: a,B: a,F2: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ ( F2 @ B ) @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_420_order__subst2,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_421_order__subst2,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_a @ ( F2 @ B ) @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_422_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_423_order__subst2,axiom,
    ! [A: a,B: a,F2: a > vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_424_order__subst2,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_425_order__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > vec_nat,C: vec_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_vec_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_426_order__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_427_order__subst1,axiom,
    ! [A: nat,F2: a > nat,B: a,C: a] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_428_order__subst1,axiom,
    ! [A: a,F2: nat > a,B: nat,C: nat] :
      ( ( ord_less_eq_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_429_order__subst1,axiom,
    ! [A: a,F2: a > a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_430_order__subst1,axiom,
    ! [A: vec_a,F2: nat > vec_a,B: nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_431_order__subst1,axiom,
    ! [A: vec_a,F2: a > vec_a,B: a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_432_order__subst1,axiom,
    ! [A: nat,F2: vec_a > nat,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_433_order__subst1,axiom,
    ! [A: a,F2: vec_a > a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_434_order__subst1,axiom,
    ! [A: vec_a,F2: vec_a > vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_435_order__subst1,axiom,
    ! [A: nat,F2: vec_nat > nat,B: vec_nat,C: vec_nat] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_nat @ B @ C )
       => ( ! [X2: vec_nat,Y3: vec_nat] :
              ( ( ord_less_eq_vec_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_436_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_vec_a,Z2: set_vec_a] : ( Y5 = Z2 ) )
    = ( ^ [A3: set_vec_a,B2: set_vec_a] :
          ( ( ord_le4791951621262958845_vec_a @ A3 @ B2 )
          & ( ord_le4791951621262958845_vec_a @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_437_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_mat_a,Z2: set_mat_a] : ( Y5 = Z2 ) )
    = ( ^ [A3: set_mat_a,B2: set_mat_a] :
          ( ( ord_le3318621148231462513_mat_a @ A3 @ B2 )
          & ( ord_le3318621148231462513_mat_a @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_438_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: vec_nat,Z2: vec_nat] : ( Y5 = Z2 ) )
    = ( ^ [A3: vec_nat,B2: vec_nat] :
          ( ( ord_less_eq_vec_nat @ A3 @ B2 )
          & ( ord_less_eq_vec_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_439_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z2: set_nat] : ( Y5 = Z2 ) )
    = ( ^ [A3: set_nat,B2: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B2 )
          & ( ord_less_eq_set_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_440_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: vec_a,Z2: vec_a] : ( Y5 = Z2 ) )
    = ( ^ [A3: vec_a,B2: vec_a] :
          ( ( ord_less_eq_vec_a @ A3 @ B2 )
          & ( ord_less_eq_vec_a @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_441_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_442_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: a,Z2: a] : ( Y5 = Z2 ) )
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_eq_a @ A3 @ B2 )
          & ( ord_less_eq_a @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_443_antisym,axiom,
    ! [A: set_vec_a,B: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A @ B )
     => ( ( ord_le4791951621262958845_vec_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_444_antisym,axiom,
    ! [A: set_mat_a,B: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A @ B )
     => ( ( ord_le3318621148231462513_mat_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_445_antisym,axiom,
    ! [A: vec_nat,B: vec_nat] :
      ( ( ord_less_eq_vec_nat @ A @ B )
     => ( ( ord_less_eq_vec_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_446_antisym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_447_antisym,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_448_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_449_antisym,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_450_dual__order_Otrans,axiom,
    ! [B: set_vec_a,A: set_vec_a,C: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ B @ A )
     => ( ( ord_le4791951621262958845_vec_a @ C @ B )
       => ( ord_le4791951621262958845_vec_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_451_dual__order_Otrans,axiom,
    ! [B: set_mat_a,A: set_mat_a,C: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ B @ A )
     => ( ( ord_le3318621148231462513_mat_a @ C @ B )
       => ( ord_le3318621148231462513_mat_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_452_dual__order_Otrans,axiom,
    ! [B: vec_nat,A: vec_nat,C: vec_nat] :
      ( ( ord_less_eq_vec_nat @ B @ A )
     => ( ( ord_less_eq_vec_nat @ C @ B )
       => ( ord_less_eq_vec_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_453_dual__order_Otrans,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_eq_set_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_454_dual__order_Otrans,axiom,
    ! [B: vec_a,A: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ B @ A )
     => ( ( ord_less_eq_vec_a @ C @ B )
       => ( ord_less_eq_vec_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_455_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_456_dual__order_Otrans,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_eq_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_457_dual__order_Oantisym,axiom,
    ! [B: set_vec_a,A: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ B @ A )
     => ( ( ord_le4791951621262958845_vec_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_458_dual__order_Oantisym,axiom,
    ! [B: set_mat_a,A: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ B @ A )
     => ( ( ord_le3318621148231462513_mat_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_459_dual__order_Oantisym,axiom,
    ! [B: vec_nat,A: vec_nat] :
      ( ( ord_less_eq_vec_nat @ B @ A )
     => ( ( ord_less_eq_vec_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_460_dual__order_Oantisym,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_461_dual__order_Oantisym,axiom,
    ! [B: vec_a,A: vec_a] :
      ( ( ord_less_eq_vec_a @ B @ A )
     => ( ( ord_less_eq_vec_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_462_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_463_dual__order_Oantisym,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_464_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_vec_a,Z2: set_vec_a] : ( Y5 = Z2 ) )
    = ( ^ [A3: set_vec_a,B2: set_vec_a] :
          ( ( ord_le4791951621262958845_vec_a @ B2 @ A3 )
          & ( ord_le4791951621262958845_vec_a @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_465_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_mat_a,Z2: set_mat_a] : ( Y5 = Z2 ) )
    = ( ^ [A3: set_mat_a,B2: set_mat_a] :
          ( ( ord_le3318621148231462513_mat_a @ B2 @ A3 )
          & ( ord_le3318621148231462513_mat_a @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_466_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: vec_nat,Z2: vec_nat] : ( Y5 = Z2 ) )
    = ( ^ [A3: vec_nat,B2: vec_nat] :
          ( ( ord_less_eq_vec_nat @ B2 @ A3 )
          & ( ord_less_eq_vec_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_467_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z2: set_nat] : ( Y5 = Z2 ) )
    = ( ^ [A3: set_nat,B2: set_nat] :
          ( ( ord_less_eq_set_nat @ B2 @ A3 )
          & ( ord_less_eq_set_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_468_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: vec_a,Z2: vec_a] : ( Y5 = Z2 ) )
    = ( ^ [A3: vec_a,B2: vec_a] :
          ( ( ord_less_eq_vec_a @ B2 @ A3 )
          & ( ord_less_eq_vec_a @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_469_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_470_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: a,Z2: a] : ( Y5 = Z2 ) )
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_eq_a @ B2 @ A3 )
          & ( ord_less_eq_a @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_471_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat,B4: nat] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_472_linorder__wlog,axiom,
    ! [P: a > a > $o,A: a,B: a] :
      ( ! [A4: a,B4: a] :
          ( ( ord_less_eq_a @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: a,B4: a] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_473_order__trans,axiom,
    ! [X3: vec_nat,Y2: vec_nat,Z: vec_nat] :
      ( ( ord_less_eq_vec_nat @ X3 @ Y2 )
     => ( ( ord_less_eq_vec_nat @ Y2 @ Z )
       => ( ord_less_eq_vec_nat @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_474_order__trans,axiom,
    ! [X3: set_nat,Y2: set_nat,Z: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y2 )
     => ( ( ord_less_eq_set_nat @ Y2 @ Z )
       => ( ord_less_eq_set_nat @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_475_order__trans,axiom,
    ! [X3: vec_a,Y2: vec_a,Z: vec_a] :
      ( ( ord_less_eq_vec_a @ X3 @ Y2 )
     => ( ( ord_less_eq_vec_a @ Y2 @ Z )
       => ( ord_less_eq_vec_a @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_476_order__trans,axiom,
    ! [X3: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_eq_nat @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_477_order__trans,axiom,
    ! [X3: a,Y2: a,Z: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
     => ( ( ord_less_eq_a @ Y2 @ Z )
       => ( ord_less_eq_a @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_478_order_Otrans,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ord_less_eq_vec_a @ A @ C ) ) ) ).

% order.trans
thf(fact_479_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_480_order_Otrans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% order.trans
thf(fact_481_order__antisym,axiom,
    ! [X3: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_vec_a @ X3 @ Y2 )
     => ( ( ord_less_eq_vec_a @ Y2 @ X3 )
       => ( X3 = Y2 ) ) ) ).

% order_antisym
thf(fact_482_order__antisym,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X3 )
       => ( X3 = Y2 ) ) ) ).

% order_antisym
thf(fact_483_order__antisym,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
     => ( ( ord_less_eq_a @ Y2 @ X3 )
       => ( X3 = Y2 ) ) ) ).

% order_antisym
thf(fact_484_ord__le__eq__trans,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_vec_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_485_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_486_ord__le__eq__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_487_ord__eq__le__trans,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( A = B )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ord_less_eq_vec_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_488_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_489_ord__eq__le__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A = B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_490_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: vec_a,Z2: vec_a] : ( Y5 = Z2 ) )
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_eq_vec_a @ X @ Y )
          & ( ord_less_eq_vec_a @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_491_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_492_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: a,Z2: a] : ( Y5 = Z2 ) )
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_eq_a @ X @ Y )
          & ( ord_less_eq_a @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_493_le__cases3,axiom,
    ! [X3: nat,Y2: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X3 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X3 )
         => ~ ( ord_less_eq_nat @ X3 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X3 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X3 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X3 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X3 )
                 => ~ ( ord_less_eq_nat @ X3 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_494_le__cases3,axiom,
    ! [X3: a,Y2: a,Z: a] :
      ( ( ( ord_less_eq_a @ X3 @ Y2 )
       => ~ ( ord_less_eq_a @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_a @ Y2 @ X3 )
         => ~ ( ord_less_eq_a @ X3 @ Z ) )
       => ( ( ( ord_less_eq_a @ X3 @ Z )
           => ~ ( ord_less_eq_a @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_a @ Z @ Y2 )
             => ~ ( ord_less_eq_a @ Y2 @ X3 ) )
           => ( ( ( ord_less_eq_a @ Y2 @ Z )
               => ~ ( ord_less_eq_a @ Z @ X3 ) )
             => ~ ( ( ord_less_eq_a @ Z @ X3 )
                 => ~ ( ord_less_eq_a @ X3 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_495_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_496_nle__le,axiom,
    ! [A: a,B: a] :
      ( ( ~ ( ord_less_eq_a @ A @ B ) )
      = ( ( ord_less_eq_a @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_497_in__mono,axiom,
    ! [A2: set_vec_a,B3: set_vec_a,X3: vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ B3 )
     => ( ( member_vec_a @ X3 @ A2 )
       => ( member_vec_a @ X3 @ B3 ) ) ) ).

% in_mono
thf(fact_498_in__mono,axiom,
    ! [A2: set_mat_a,B3: set_mat_a,X3: mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A2 @ B3 )
     => ( ( member_mat_a @ X3 @ A2 )
       => ( member_mat_a @ X3 @ B3 ) ) ) ).

% in_mono
thf(fact_499_subsetD,axiom,
    ! [A2: set_vec_a,B3: set_vec_a,C: vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ B3 )
     => ( ( member_vec_a @ C @ A2 )
       => ( member_vec_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_500_subsetD,axiom,
    ! [A2: set_mat_a,B3: set_mat_a,C: mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A2 @ B3 )
     => ( ( member_mat_a @ C @ A2 )
       => ( member_mat_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_501_subset__eq,axiom,
    ( ord_le4791951621262958845_vec_a
    = ( ^ [A5: set_vec_a,B5: set_vec_a] :
        ! [X: vec_a] :
          ( ( member_vec_a @ X @ A5 )
         => ( member_vec_a @ X @ B5 ) ) ) ) ).

% subset_eq
thf(fact_502_subset__eq,axiom,
    ( ord_le3318621148231462513_mat_a
    = ( ^ [A5: set_mat_a,B5: set_mat_a] :
        ! [X: mat_a] :
          ( ( member_mat_a @ X @ A5 )
         => ( member_mat_a @ X @ B5 ) ) ) ) ).

% subset_eq
thf(fact_503_subset__iff,axiom,
    ( ord_le4791951621262958845_vec_a
    = ( ^ [A5: set_vec_a,B5: set_vec_a] :
        ! [T: vec_a] :
          ( ( member_vec_a @ T @ A5 )
         => ( member_vec_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_504_subset__iff,axiom,
    ( ord_le3318621148231462513_mat_a
    = ( ^ [A5: set_mat_a,B5: set_mat_a] :
        ! [T: mat_a] :
          ( ( member_mat_a @ T @ A5 )
         => ( member_mat_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_505_set__plus__elim,axiom,
    ! [X3: mat_a,A2: set_mat_a,B3: set_mat_a] :
      ( ( member_mat_a @ X3 @ ( plus_plus_set_mat_a @ A2 @ B3 ) )
     => ~ ! [A4: mat_a,B4: mat_a] :
            ( ( X3
              = ( plus_plus_mat_a @ A4 @ B4 ) )
           => ( ( member_mat_a @ A4 @ A2 )
             => ~ ( member_mat_a @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_506_set__plus__elim,axiom,
    ! [X3: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ X3 @ ( plus_plus_set_nat @ A2 @ B3 ) )
     => ~ ! [A4: nat,B4: nat] :
            ( ( X3
              = ( plus_plus_nat @ A4 @ B4 ) )
           => ( ( member_nat @ A4 @ A2 )
             => ~ ( member_nat @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_507_set__plus__elim,axiom,
    ! [X3: vec_a,A2: set_vec_a,B3: set_vec_a] :
      ( ( member_vec_a @ X3 @ ( plus_plus_set_vec_a @ A2 @ B3 ) )
     => ~ ! [A4: vec_a,B4: vec_a] :
            ( ( X3
              = ( plus_plus_vec_a @ A4 @ B4 ) )
           => ( ( member_vec_a @ A4 @ A2 )
             => ~ ( member_vec_a @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_508_primal,axiom,
    ? [X2: vec_a] :
      ( ( member_vec_a @ X2 @ ( carrier_vec_a @ nc ) )
      & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ a2 @ X2 ) @ b ) ) ).

% primal
thf(fact_509_vardim_Ounpadl__padl,axiom,
    ! [M: nat,V: vec_a] :
      ( ( matrix_unpadl_a @ M @ ( append_vec_a @ ( zero_vec_a @ M ) @ V ) )
      = V ) ).

% vardim.unpadl_padl
thf(fact_510_vardim_Ounpadr__padr,axiom,
    ! [M: nat,V: vec_a] :
      ( ( matrix_unpadr_a @ M @ ( append_vec_a @ V @ ( zero_vec_a @ M ) ) )
      = V ) ).

% vardim.unpadr_padr
thf(fact_511__092_060open_062vec1_A_L_Amat__of__col_Ac_A_K_092_060_094sub_062v_AL_A_061_Amat__of__col_Ac_A_K_092_060_094sub_062v_AL_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ vec1 @ ( mult_mat_vec_a @ ( missing_mat_of_col_a @ c ) @ l ) )
    = ( mult_mat_vec_a @ ( missing_mat_of_col_a @ c ) @ l ) ) ).

% \<open>vec1 + mat_of_col c *\<^sub>v L = mat_of_col c *\<^sub>v L\<close>
thf(fact_512_Diff__iff,axiom,
    ! [C: vec_a,A2: set_vec_a,B3: set_vec_a] :
      ( ( member_vec_a @ C @ ( minus_6230920740010926198_vec_a @ A2 @ B3 ) )
      = ( ( member_vec_a @ C @ A2 )
        & ~ ( member_vec_a @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_513_Diff__iff,axiom,
    ! [C: mat_a,A2: set_mat_a,B3: set_mat_a] :
      ( ( member_mat_a @ C @ ( minus_4757590266979429866_mat_a @ A2 @ B3 ) )
      = ( ( member_mat_a @ C @ A2 )
        & ~ ( member_mat_a @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_514_DiffI,axiom,
    ! [C: vec_a,A2: set_vec_a,B3: set_vec_a] :
      ( ( member_vec_a @ C @ A2 )
     => ( ~ ( member_vec_a @ C @ B3 )
       => ( member_vec_a @ C @ ( minus_6230920740010926198_vec_a @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_515_DiffI,axiom,
    ! [C: mat_a,A2: set_mat_a,B3: set_mat_a] :
      ( ( member_mat_a @ C @ A2 )
     => ( ~ ( member_mat_a @ C @ B3 )
       => ( member_mat_a @ C @ ( minus_4757590266979429866_mat_a @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_516_vec3__def,axiom,
    ( vec3
    = ( mult_mat_vec_a @ ( missing_mat_of_col_a @ b ) @ l ) ) ).

% vec3_def
thf(fact_517__092_060open_062A_A_K_092_060_094sub_062v_Av_A_L_A_N_AA_A_K_092_060_094sub_062v_Aw_A_061_Avec2_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ ( mult_mat_vec_a @ a2 @ v ) @ ( mult_mat_vec_a @ ( uminus_uminus_mat_a @ a2 ) @ w ) )
    = vec2 ) ).

% \<open>A *\<^sub>v v + - A *\<^sub>v w = vec2\<close>
thf(fact_518_vec2__def,axiom,
    ( vec2
    = ( mult_mat_vec_a @ a2 @ ( minus_minus_vec_a @ v @ w ) ) ) ).

% vec2_def
thf(fact_519_A,axiom,
    member_mat_a @ a2 @ ( carrier_mat_a @ nr @ nc ) ).

% A
thf(fact_520_dual,axiom,
    ? [Y3: vec_a] :
      ( ( ord_less_eq_vec_a @ ( zero_vec_a @ nr ) @ Y3 )
      & ( ( mult_mat_vec_a @ ( transpose_mat_a @ a2 ) @ Y3 )
        = c ) ) ).

% dual
thf(fact_521_DiffD2,axiom,
    ! [C: vec_a,A2: set_vec_a,B3: set_vec_a] :
      ( ( member_vec_a @ C @ ( minus_6230920740010926198_vec_a @ A2 @ B3 ) )
     => ~ ( member_vec_a @ C @ B3 ) ) ).

% DiffD2
thf(fact_522_DiffD2,axiom,
    ! [C: mat_a,A2: set_mat_a,B3: set_mat_a] :
      ( ( member_mat_a @ C @ ( minus_4757590266979429866_mat_a @ A2 @ B3 ) )
     => ~ ( member_mat_a @ C @ B3 ) ) ).

% DiffD2
thf(fact_523_DiffD1,axiom,
    ! [C: vec_a,A2: set_vec_a,B3: set_vec_a] :
      ( ( member_vec_a @ C @ ( minus_6230920740010926198_vec_a @ A2 @ B3 ) )
     => ( member_vec_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_524_DiffD1,axiom,
    ! [C: mat_a,A2: set_mat_a,B3: set_mat_a] :
      ( ( member_mat_a @ C @ ( minus_4757590266979429866_mat_a @ A2 @ B3 ) )
     => ( member_mat_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_525_DiffE,axiom,
    ! [C: vec_a,A2: set_vec_a,B3: set_vec_a] :
      ( ( member_vec_a @ C @ ( minus_6230920740010926198_vec_a @ A2 @ B3 ) )
     => ~ ( ( member_vec_a @ C @ A2 )
         => ( member_vec_a @ C @ B3 ) ) ) ).

% DiffE
thf(fact_526_DiffE,axiom,
    ! [C: mat_a,A2: set_mat_a,B3: set_mat_a] :
      ( ( member_mat_a @ C @ ( minus_4757590266979429866_mat_a @ A2 @ B3 ) )
     => ~ ( ( member_mat_a @ C @ A2 )
         => ( member_mat_a @ C @ B3 ) ) ) ).

% DiffE
thf(fact_527_vec1__def,axiom,
    ( vec1
    = ( plus_plus_vec_a @ ( mult_mat_vec_a @ ( transpose_mat_a @ a2 ) @ u ) @ ( mult_mat_vec_a @ ( missing_mat_of_col_a @ ( uminus_uminus_vec_a @ c ) ) @ l ) ) ) ).

% vec1_def
thf(fact_528__092_060open_062vec1_A_L_Amat__of__col_Ac_A_K_092_060_094sub_062v_AL_A_061_AA_092_060_094sup_062T_A_K_092_060_094sub_062v_Au_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ vec1 @ ( mult_mat_vec_a @ ( missing_mat_of_col_a @ c ) @ l ) )
    = ( mult_mat_vec_a @ ( transpose_mat_a @ a2 ) @ u ) ) ).

% \<open>vec1 + mat_of_col c *\<^sub>v L = A\<^sup>T *\<^sub>v u\<close>
thf(fact_529_As,axiom,
    ( ( mult_mat_vec_a @ ( transpose_mat_a @ a2 ) @ u )
    = ( mult_mat_vec_a @ ( missing_mat_of_col_a @ c ) @ l ) ) ).

% As
thf(fact_530__092_060open_0620_092_060_094sub_062m_Anc_Anc_A_K_092_060_094sub_062v_Av_A_L_A0_092_060_094sub_062m_Anc_Anc_A_K_092_060_094sub_062v_Aw_A_061_A0_092_060_094sub_062v_Anc_092_060close_062,axiom,
    ( ( plus_plus_vec_a @ ( mult_mat_vec_a @ ( zero_mat_a @ nc @ nc ) @ v ) @ ( mult_mat_vec_a @ ( zero_mat_a @ nc @ nc ) @ w ) )
    = ( zero_vec_a @ nc ) ) ).

% \<open>0\<^sub>m nc nc *\<^sub>v v + 0\<^sub>m nc nc *\<^sub>v w = 0\<^sub>v nc\<close>
thf(fact_531_Mulv,axiom,
    ( ( mult_mat_vec_a @ ( transpose_mat_a @ m ) @ ulv )
    = ( zero_vec_a @ ( plus_plus_nat @ nc @ nr ) ) ) ).

% Mulv
thf(fact_532__092_060open_062four__block__mat_A_I0_092_060_094sub_062m_Anc_Anc_J_A_I0_092_060_094sub_062m_Anc_Anc_J_AA_A_I_N_AA_J_A_K_092_060_094sub_062v_Au3_A_061_A_I0_092_060_094sub_062m_Anc_Anc_A_K_092_060_094sub_062v_Av_A_L_A0_092_060_094sub_062m_Anc_Anc_A_K_092_060_094sub_062v_Aw_J_A_064_092_060_094sub_062v_AA_A_K_092_060_094sub_062v_Av_A_L_A_N_AA_A_K_092_060_094sub_062v_Aw_092_060close_062,axiom,
    ( ( mult_mat_vec_a @ ( four_block_mat_a @ ( zero_mat_a @ nc @ nc ) @ ( zero_mat_a @ nc @ nc ) @ a2 @ ( uminus_uminus_mat_a @ a2 ) ) @ u3 )
    = ( append_vec_a @ ( plus_plus_vec_a @ ( mult_mat_vec_a @ ( zero_mat_a @ nc @ nc ) @ v ) @ ( mult_mat_vec_a @ ( zero_mat_a @ nc @ nc ) @ w ) ) @ ( plus_plus_vec_a @ ( mult_mat_vec_a @ a2 @ v ) @ ( mult_mat_vec_a @ ( uminus_uminus_mat_a @ a2 ) @ w ) ) ) ) ).

% \<open>four_block_mat (0\<^sub>m nc nc) (0\<^sub>m nc nc) A (- A) *\<^sub>v u3 = (0\<^sub>m nc nc *\<^sub>v v + 0\<^sub>m nc nc *\<^sub>v w) @\<^sub>v A *\<^sub>v v + - A *\<^sub>v w\<close>
thf(fact_533_assoc__add__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a,C4: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ Nr @ Nc ) )
         => ( ( plus_plus_mat_a @ ( plus_plus_mat_a @ A2 @ B3 ) @ C4 )
            = ( plus_plus_mat_a @ A2 @ ( plus_plus_mat_a @ B3 @ C4 ) ) ) ) ) ) ).

% assoc_add_mat
thf(fact_534_transpose__mat__eq,axiom,
    ! [A2: mat_a,B3: mat_a] :
      ( ( ( transpose_mat_a @ A2 )
        = ( transpose_mat_a @ B3 ) )
      = ( A2 = B3 ) ) ).

% transpose_mat_eq
thf(fact_535_Matrix_Otranspose__transpose,axiom,
    ! [A2: mat_a] :
      ( ( transpose_mat_a @ ( transpose_mat_a @ A2 ) )
      = A2 ) ).

% Matrix.transpose_transpose
thf(fact_536_uminus__eq__mat,axiom,
    ! [A2: mat_a,B3: mat_a] :
      ( ( ( uminus_uminus_mat_a @ A2 )
        = ( uminus_uminus_mat_a @ B3 ) )
      = ( A2 = B3 ) ) ).

% uminus_eq_mat
thf(fact_537_uminus__uminus__mat,axiom,
    ! [A2: mat_a] :
      ( ( uminus_uminus_mat_a @ ( uminus_uminus_mat_a @ A2 ) )
      = A2 ) ).

% uminus_uminus_mat
thf(fact_538_minus__r__inv__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( minus_minus_mat_a @ A2 @ A2 )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% minus_r_inv_mat
thf(fact_539_left__add__zero__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( plus_plus_mat_a @ ( zero_mat_a @ Nr @ Nc ) @ A2 )
        = A2 ) ) ).

% left_add_zero_mat
thf(fact_540_right__add__zero__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( plus_plus_mat_a @ A2 @ ( zero_mat_a @ Nr @ Nc ) )
        = A2 ) ) ).

% right_add_zero_mat
thf(fact_541_transpose__carrier__mat,axiom,
    ! [A2: mat_a,Nc: nat,Nr: nat] :
      ( ( member_mat_a @ ( transpose_mat_a @ A2 ) @ ( carrier_mat_a @ Nc @ Nr ) )
      = ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% transpose_carrier_mat
thf(fact_542_zero__transpose__mat,axiom,
    ! [N: nat,M: nat] :
      ( ( transpose_mat_a @ ( zero_mat_a @ N @ M ) )
      = ( zero_mat_a @ M @ N ) ) ).

% zero_transpose_mat
thf(fact_543_uminus__carrier__iff__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ ( uminus_uminus_mat_a @ A2 ) @ ( carrier_mat_a @ Nr @ Nc ) )
      = ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% uminus_carrier_iff_mat
thf(fact_544_M,axiom,
    member_mat_a @ m @ ( carrier_mat_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) @ ( plus_plus_nat @ nc @ nr ) ) ).

% M
thf(fact_545_four__block__zero__mat,axiom,
    ! [Nr1: nat,Nc1: nat,Nc2: nat,Nr2: nat] :
      ( ( four_block_mat_a @ ( zero_mat_a @ Nr1 @ Nc1 ) @ ( zero_mat_a @ Nr1 @ Nc2 ) @ ( zero_mat_a @ Nr2 @ Nc1 ) @ ( zero_mat_a @ Nr2 @ Nc2 ) )
      = ( zero_mat_a @ ( plus_plus_nat @ Nr1 @ Nr2 ) @ ( plus_plus_nat @ Nc1 @ Nc2 ) ) ) ).

% four_block_zero_mat
thf(fact_546_uminus__l__inv__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( plus_plus_mat_a @ ( uminus_uminus_mat_a @ A2 ) @ A2 )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% uminus_l_inv_mat
thf(fact_547_zero__mat__mult__vector,axiom,
    ! [X3: vec_a,Nc: nat,Nr: nat] :
      ( ( member_vec_a @ X3 @ ( carrier_vec_a @ Nc ) )
     => ( ( mult_mat_vec_a @ ( zero_mat_a @ Nr @ Nc ) @ X3 )
        = ( zero_vec_a @ Nr ) ) ) ).

% zero_mat_mult_vector
thf(fact_548__092_060open_062four__block__mat_AA_092_060_094sup_062T_A_Imat__of__col_A_I_N_Ac_J_J_A_I0_092_060_094sub_062m_Anr_Anr_J_A_Imat__of__col_Ab_J_A_K_092_060_094sub_062v_Au2_A_061_Avec1_A_064_092_060_094sub_062v_Avec3_092_060close_062,axiom,
    ( ( mult_mat_vec_a @ ( four_block_mat_a @ ( transpose_mat_a @ a2 ) @ ( missing_mat_of_col_a @ ( uminus_uminus_vec_a @ c ) ) @ ( zero_mat_a @ nr @ nr ) @ ( missing_mat_of_col_a @ b ) ) @ u2 )
    = ( append_vec_a @ vec1 @ vec3 ) ) ).

% \<open>four_block_mat A\<^sup>T (mat_of_col (- c)) (0\<^sub>m nr nr) (mat_of_col b) *\<^sub>v u2 = vec1 @\<^sub>v vec3\<close>
thf(fact_549_minus__add__minus__mat,axiom,
    ! [U: mat_a,Nr: nat,Nc: nat,V: mat_a,W: mat_a] :
      ( ( member_mat_a @ U @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ V @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_mat_a @ W @ ( carrier_mat_a @ Nr @ Nc ) )
         => ( ( minus_minus_mat_a @ U @ ( plus_plus_mat_a @ V @ W ) )
            = ( minus_minus_mat_a @ ( minus_minus_mat_a @ U @ V ) @ W ) ) ) ) ) ).

% minus_add_minus_mat
thf(fact_550_add__uminus__minus__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( plus_plus_mat_a @ A2 @ ( uminus_uminus_mat_a @ B3 ) )
          = ( minus_minus_mat_a @ A2 @ B3 ) ) ) ) ).

% add_uminus_minus_mat
thf(fact_551_minus__add__uminus__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( minus_minus_mat_a @ A2 @ B3 )
          = ( plus_plus_mat_a @ A2 @ ( uminus_uminus_mat_a @ B3 ) ) ) ) ) ).

% minus_add_uminus_mat
thf(fact_552_uminus__add__minus__mat,axiom,
    ! [L: mat_a,Nr: nat,Nc: nat,R: mat_a] :
      ( ( member_mat_a @ L @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ R @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( uminus_uminus_mat_a @ ( plus_plus_mat_a @ L @ R ) )
          = ( minus_minus_mat_a @ ( uminus_uminus_mat_a @ L ) @ R ) ) ) ) ).

% uminus_add_minus_mat
thf(fact_553_transpose__minus,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( transpose_mat_a @ ( minus_minus_mat_a @ A2 @ B3 ) )
          = ( minus_minus_mat_a @ ( transpose_mat_a @ A2 ) @ ( transpose_mat_a @ B3 ) ) ) ) ) ).

% transpose_minus
thf(fact_554_minus__carrier__mat,axiom,
    ! [B3: mat_a,Nr: nat,Nc: nat,A2: mat_a] :
      ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( minus_minus_mat_a @ A2 @ B3 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% minus_carrier_mat
thf(fact_555_zero__carrier__mat,axiom,
    ! [Nr: nat,Nc: nat] : ( member_mat_a @ ( zero_mat_a @ Nr @ Nc ) @ ( carrier_mat_a @ Nr @ Nc ) ) ).

% zero_carrier_mat
thf(fact_556_cong__four__block__mat,axiom,
    ! [A1: mat_a,B1: mat_a,A22: mat_a,B22: mat_a,A32: mat_a,B32: mat_a,A42: mat_a,B42: mat_a] :
      ( ( A1 = B1 )
     => ( ( A22 = B22 )
       => ( ( A32 = B32 )
         => ( ( A42 = B42 )
           => ( ( four_block_mat_a @ A1 @ A22 @ A32 @ A42 )
              = ( four_block_mat_a @ B1 @ B22 @ B32 @ B42 ) ) ) ) ) ) ).

% cong_four_block_mat
thf(fact_557_transpose__four__block__mat,axiom,
    ! [A2: mat_a,Nr1: nat,Nc1: nat,B3: mat_a,Nc2: nat,C4: mat_a,Nr2: nat,D2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D2 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( ( transpose_mat_a @ ( four_block_mat_a @ A2 @ B3 @ C4 @ D2 ) )
              = ( four_block_mat_a @ ( transpose_mat_a @ A2 ) @ ( transpose_mat_a @ C4 ) @ ( transpose_mat_a @ B3 ) @ ( transpose_mat_a @ D2 ) ) ) ) ) ) ) ).

% transpose_four_block_mat
thf(fact_558_comm__add__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( plus_plus_mat_a @ A2 @ B3 )
          = ( plus_plus_mat_a @ B3 @ A2 ) ) ) ) ).

% comm_add_mat
thf(fact_559_transpose__add,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( transpose_mat_a @ ( plus_plus_mat_a @ A2 @ B3 ) )
          = ( plus_plus_mat_a @ ( transpose_mat_a @ A2 ) @ ( transpose_mat_a @ B3 ) ) ) ) ) ).

% transpose_add
thf(fact_560_add__carrier__mat,axiom,
    ! [B3: mat_a,Nr: nat,Nc: nat,A2: mat_a] :
      ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( plus_plus_mat_a @ A2 @ B3 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% add_carrier_mat
thf(fact_561_add__four__block__mat,axiom,
    ! [A1: mat_a,Nr1: nat,Nc1: nat,B1: mat_a,Nc2: nat,C1: mat_a,Nr2: nat,D1: mat_a,A22: mat_a,B22: mat_a,C22: mat_a,D22: mat_a] :
      ( ( member_mat_a @ A1 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ B1 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
       => ( ( member_mat_a @ C1 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D1 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
             => ( ( member_mat_a @ B22 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
               => ( ( member_mat_a @ C22 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
                 => ( ( member_mat_a @ D22 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
                   => ( ( plus_plus_mat_a @ ( four_block_mat_a @ A1 @ B1 @ C1 @ D1 ) @ ( four_block_mat_a @ A22 @ B22 @ C22 @ D22 ) )
                      = ( four_block_mat_a @ ( plus_plus_mat_a @ A1 @ A22 ) @ ( plus_plus_mat_a @ B1 @ B22 ) @ ( plus_plus_mat_a @ C1 @ C22 ) @ ( plus_plus_mat_a @ D1 @ D22 ) ) ) ) ) ) ) ) ) ) ) ).

% add_four_block_mat
thf(fact_562_add__inv__exists__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ? [X2: mat_a] :
          ( ( member_mat_a @ X2 @ ( carrier_mat_a @ Nr @ Nc ) )
          & ( ( plus_plus_mat_a @ X2 @ A2 )
            = ( zero_mat_a @ Nr @ Nc ) )
          & ( ( plus_plus_mat_a @ A2 @ X2 )
            = ( zero_mat_a @ Nr @ Nc ) ) ) ) ).

% add_inv_exists_mat
thf(fact_563_four__block__carrier__mat,axiom,
    ! [A2: mat_a,Nr1: nat,Nc1: nat,D2: mat_a,Nr2: nat,Nc2: nat,B3: mat_a,C4: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ D2 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
       => ( member_mat_a @ ( four_block_mat_a @ A2 @ B3 @ C4 @ D2 ) @ ( carrier_mat_a @ ( plus_plus_nat @ Nr1 @ Nr2 ) @ ( plus_plus_nat @ Nc1 @ Nc2 ) ) ) ) ) ).

% four_block_carrier_mat
thf(fact_564_transpose__uminus,axiom,
    ! [A2: mat_a] :
      ( ( transpose_mat_a @ ( uminus_uminus_mat_a @ A2 ) )
      = ( uminus_uminus_mat_a @ ( transpose_mat_a @ A2 ) ) ) ).

% transpose_uminus
thf(fact_565_uminus__carrier__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( uminus_uminus_mat_a @ A2 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% uminus_carrier_mat
thf(fact_566_uminus__add__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( uminus_uminus_mat_a @ ( plus_plus_mat_a @ A2 @ B3 ) )
          = ( plus_plus_mat_a @ ( uminus_uminus_mat_a @ B3 ) @ ( uminus_uminus_mat_a @ A2 ) ) ) ) ) ).

% uminus_add_mat
thf(fact_567_mult__mat__vec__split,axiom,
    ! [A2: mat_a,N: nat,D2: mat_a,M: nat,A: vec_a,D: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ N ) )
     => ( ( member_mat_a @ D2 @ ( carrier_mat_a @ M @ M ) )
       => ( ( member_vec_a @ A @ ( carrier_vec_a @ N ) )
         => ( ( member_vec_a @ D @ ( carrier_vec_a @ M ) )
           => ( ( mult_mat_vec_a @ ( four_block_mat_a @ A2 @ ( zero_mat_a @ N @ M ) @ ( zero_mat_a @ M @ N ) @ D2 ) @ ( append_vec_a @ A @ D ) )
              = ( append_vec_a @ ( mult_mat_vec_a @ A2 @ A ) @ ( mult_mat_vec_a @ D2 @ D ) ) ) ) ) ) ) ).

% mult_mat_vec_split
thf(fact_568_four__block__mat__mult__vec,axiom,
    ! [A2: mat_a,Nr1: nat,Nc1: nat,B3: mat_a,Nc2: nat,C4: mat_a,Nr2: nat,D2: mat_a,A: vec_a,D: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D2 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( ( member_vec_a @ A @ ( carrier_vec_a @ Nc1 ) )
             => ( ( member_vec_a @ D @ ( carrier_vec_a @ Nc2 ) )
               => ( ( mult_mat_vec_a @ ( four_block_mat_a @ A2 @ B3 @ C4 @ D2 ) @ ( append_vec_a @ A @ D ) )
                  = ( append_vec_a @ ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ A ) @ ( mult_mat_vec_a @ B3 @ D ) ) @ ( plus_plus_vec_a @ ( mult_mat_vec_a @ C4 @ A ) @ ( mult_mat_vec_a @ D2 @ D ) ) ) ) ) ) ) ) ) ) ).

% four_block_mat_mult_vec
thf(fact_569_mult__mat__vec__carrier,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
       => ( member_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( carrier_vec_a @ Nr ) ) ) ) ).

% mult_mat_vec_carrier
thf(fact_570_add__mult__distrib__mat__vec,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ ( plus_plus_mat_a @ A2 @ B3 ) @ V )
            = ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( mult_mat_vec_a @ B3 @ V ) ) ) ) ) ) ).

% add_mult_distrib_mat_vec
thf(fact_571_mult__add__distrib__mat__vec,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V_1: vec_a,V_2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ Nc ) )
       => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ A2 @ ( plus_plus_vec_a @ V_1 @ V_2 ) )
            = ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ V_1 ) @ ( mult_mat_vec_a @ A2 @ V_2 ) ) ) ) ) ) ).

% mult_add_distrib_mat_vec
thf(fact_572_mult__minus__distrib__mat__vec,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V: vec_a,W: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
       => ( ( member_vec_a @ W @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ A2 @ ( minus_minus_vec_a @ V @ W ) )
            = ( minus_minus_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( mult_mat_vec_a @ A2 @ W ) ) ) ) ) ) ).

% mult_minus_distrib_mat_vec
thf(fact_573_minus__mult__distrib__mat__vec,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B3: mat_a,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ ( minus_minus_mat_a @ A2 @ B3 ) @ V )
            = ( minus_minus_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( mult_mat_vec_a @ B3 @ V ) ) ) ) ) ) ).

% minus_mult_distrib_mat_vec
thf(fact_574_M__last,axiom,
    member_mat_a @ m_last @ ( carrier_mat_a @ nr @ ( plus_plus_nat @ nc @ nr ) ) ).

% M_last
thf(fact_575__092_060open_062M__up_092_060_094sup_062T_A_061_Afour__block__mat_AA_092_060_094sup_062T_A_Imat__of__col_A_I_N_Ac_J_J_A_I0_092_060_094sub_062m_Anr_Anr_J_A_Imat__of__col_Ab_J_092_060close_062,axiom,
    ( ( transpose_mat_a @ m_up )
    = ( four_block_mat_a @ ( transpose_mat_a @ a2 ) @ ( missing_mat_of_col_a @ ( uminus_uminus_vec_a @ c ) ) @ ( zero_mat_a @ nr @ nr ) @ ( missing_mat_of_col_a @ b ) ) ) ).

% \<open>M_up\<^sup>T = four_block_mat A\<^sup>T (mat_of_col (- c)) (0\<^sub>m nr nr) (mat_of_col b)\<close>
thf(fact_576__092_060open_062M__low_092_060_094sup_062T_A_061_Afour__block__mat_A_I0_092_060_094sub_062m_Anc_Anc_J_A_I0_092_060_094sub_062m_Anc_Anc_J_AA_A_I_N_AA_J_092_060close_062,axiom,
    ( ( transpose_mat_a @ m_low )
    = ( four_block_mat_a @ ( zero_mat_a @ nc @ nc ) @ ( zero_mat_a @ nc @ nc ) @ a2 @ ( uminus_uminus_mat_a @ a2 ) ) ) ).

% \<open>M_low\<^sup>T = four_block_mat (0\<^sub>m nc nc) (0\<^sub>m nc nc) A (- A)\<close>
thf(fact_577_M__low__def,axiom,
    ( m_low
    = ( four_block_mat_a @ ( zero_mat_a @ nc @ nc ) @ ( transpose_mat_a @ a2 ) @ ( zero_mat_a @ nc @ nc ) @ ( uminus_uminus_mat_a @ ( transpose_mat_a @ a2 ) ) ) ) ).

% M_low_def
thf(fact_578_M__up,axiom,
    member_mat_a @ m_up @ ( carrier_mat_a @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nr ) ) ).

% M_up
thf(fact_579_M__low,axiom,
    member_mat_a @ m_low @ ( carrier_mat_a @ ( plus_plus_nat @ nc @ nc ) @ ( plus_plus_nat @ nc @ nr ) ) ).

% M_low
thf(fact_580__092_060open_062M_092_060_094sup_062T_A_K_092_060_094sub_062v_Aulv_A_061_A_IM__up_092_060_094sup_062T_A_064_092_060_094sub_062c_AM__low_092_060_094sup_062T_J_A_K_092_060_094sub_062v_Au1_A_L_AM__last_092_060_094sup_062T_A_K_092_060_094sub_062v_At_092_060close_062,axiom,
    ( ( mult_mat_vec_a @ ( transpose_mat_a @ m ) @ ulv )
    = ( plus_plus_vec_a @ ( mult_mat_vec_a @ ( missin386308114684349109cols_a @ ( transpose_mat_a @ m_up ) @ ( transpose_mat_a @ m_low ) ) @ u1 ) @ ( mult_mat_vec_a @ ( transpose_mat_a @ m_last ) @ t ) ) ) ).

% \<open>M\<^sup>T *\<^sub>v ulv = (M_up\<^sup>T @\<^sub>c M_low\<^sup>T) *\<^sub>v u1 + M_last\<^sup>T *\<^sub>v t\<close>
thf(fact_581__092_060open_062_IM__up_092_060_094sup_062T_A_064_092_060_094sub_062c_AM__low_092_060_094sup_062T_J_A_K_092_060_094sub_062v_Au1_A_061_AM__up_092_060_094sup_062T_A_K_092_060_094sub_062v_Au2_A_L_AM__low_092_060_094sup_062T_A_K_092_060_094sub_062v_Au3_092_060close_062,axiom,
    ( ( mult_mat_vec_a @ ( missin386308114684349109cols_a @ ( transpose_mat_a @ m_up ) @ ( transpose_mat_a @ m_low ) ) @ u1 )
    = ( plus_plus_vec_a @ ( mult_mat_vec_a @ ( transpose_mat_a @ m_up ) @ u2 ) @ ( mult_mat_vec_a @ ( transpose_mat_a @ m_low ) @ u3 ) ) ) ).

% \<open>(M_up\<^sup>T @\<^sub>c M_low\<^sup>T) *\<^sub>v u1 = M_up\<^sup>T *\<^sub>v u2 + M_low\<^sup>T *\<^sub>v u3\<close>
thf(fact_582_Mt,axiom,
    ( ( transpose_mat_a @ m )
    = ( missin386308114684349109cols_a @ ( missin386308114684349109cols_a @ ( transpose_mat_a @ m_up ) @ ( transpose_mat_a @ m_low ) ) @ ( transpose_mat_a @ m_last ) ) ) ).

% Mt
thf(fact_583_M__def,axiom,
    ( m
    = ( append_rows_a @ ( append_rows_a @ m_up @ m_low ) @ m_last ) ) ).

% M_def
thf(fact_584_M__up__def,axiom,
    ( m_up
    = ( four_block_mat_a @ a2 @ ( zero_mat_a @ nr @ nr ) @ ( mat_of_row_a @ ( uminus_uminus_vec_a @ c ) ) @ ( mat_of_row_a @ b ) ) ) ).

% M_up_def
thf(fact_585_carrier__append__rows,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B3: mat_a,Nr2: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( member_mat_a @ ( append_rows_a @ A2 @ B3 ) @ ( carrier_mat_a @ ( plus_plus_nat @ Nr1 @ Nr2 ) @ Nc ) ) ) ) ).

% carrier_append_rows
thf(fact_586_carrier__append__cols,axiom,
    ! [A2: mat_a,Nr: nat,Nc1: nat,B3: mat_a,Nc2: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc1 ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc2 ) )
       => ( member_mat_a @ ( missin386308114684349109cols_a @ A2 @ B3 ) @ ( carrier_mat_a @ Nr @ ( plus_plus_nat @ Nc1 @ Nc2 ) ) ) ) ) ).

% carrier_append_cols
thf(fact_587_mat__of__row__carrier_I1_J,axiom,
    ! [Y2: vec_a,N: nat] :
      ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ N ) )
     => ( member_mat_a @ ( mat_of_row_a @ Y2 ) @ ( carrier_mat_a @ one_one_nat @ N ) ) ) ).

% mat_of_row_carrier(1)
thf(fact_588_append__cols__def,axiom,
    ( missin386308114684349109cols_a
    = ( ^ [A5: mat_a,B5: mat_a] : ( transpose_mat_a @ ( append_rows_a @ ( transpose_mat_a @ A5 ) @ ( transpose_mat_a @ B5 ) ) ) ) ) ).

% append_cols_def
thf(fact_589_mat__of__row__uminus,axiom,
    ! [V: vec_a] :
      ( ( mat_of_row_a @ ( uminus_uminus_vec_a @ V ) )
      = ( uminus_uminus_mat_a @ ( mat_of_row_a @ V ) ) ) ).

% mat_of_row_uminus
thf(fact_590_mat__of__col__def,axiom,
    ( missing_mat_of_col_a
    = ( ^ [V3: vec_a] : ( transpose_mat_a @ ( mat_of_row_a @ V3 ) ) ) ) ).

% mat_of_col_def
thf(fact_591_mat__mult__append,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B3: mat_a,Nr2: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ ( append_rows_a @ A2 @ B3 ) @ V )
            = ( append_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( mult_mat_vec_a @ B3 @ V ) ) ) ) ) ) ).

% mat_mult_append
thf(fact_592_append__rows__le,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B3: mat_a,Nr2: nat,A: vec_a,V: vec_a,B: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( ( member_vec_a @ A @ ( carrier_vec_a @ Nr1 ) )
         => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
           => ( ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ ( append_rows_a @ A2 @ B3 ) @ V ) @ ( append_vec_a @ A @ B ) )
              = ( ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ A )
                & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ B3 @ V ) @ B ) ) ) ) ) ) ) ).

% append_rows_le
thf(fact_593_mat__mult__append__cols,axiom,
    ! [A2: mat_a,Nr: nat,Nc1: nat,B3: mat_a,Nc2: nat,V1: vec_a,V22: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc1 ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ Nc2 ) )
       => ( ( member_vec_a @ V1 @ ( carrier_vec_a @ Nc1 ) )
         => ( ( member_vec_a @ V22 @ ( carrier_vec_a @ Nc2 ) )
           => ( ( mult_mat_vec_a @ ( missin386308114684349109cols_a @ A2 @ B3 ) @ ( append_vec_a @ V1 @ V22 ) )
              = ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ V1 ) @ ( mult_mat_vec_a @ B3 @ V22 ) ) ) ) ) ) ) ).

% mat_mult_append_cols
thf(fact_594__092_060open_062_I0_092_060_094sub_062m_Anc_Anr_A_064_092_060_094sub_062r_A_N_A1_092_060_094sub_062m_Anr_J_A_K_092_060_094sub_062v_At_A_061_A0_092_060_094sub_062v_Anc_A_064_092_060_094sub_062v_A_N_At_092_060close_062,axiom,
    ( ( mult_mat_vec_a @ ( append_rows_a @ ( zero_mat_a @ nc @ nr ) @ ( uminus_uminus_mat_a @ ( one_mat_a @ nr ) ) ) @ t )
    = ( append_vec_a @ ( zero_vec_a @ nc ) @ ( uminus_uminus_vec_a @ t ) ) ) ).

% \<open>(0\<^sub>m nc nr @\<^sub>r - 1\<^sub>m nr) *\<^sub>v t = 0\<^sub>v nc @\<^sub>v - t\<close>
thf(fact_595__092_060open_062M__last_092_060_094sup_062T_A_061_A0_092_060_094sub_062m_Anc_Anr_A_064_092_060_094sub_062r_A_N_A1_092_060_094sub_062m_Anr_092_060close_062,axiom,
    ( ( transpose_mat_a @ m_last )
    = ( append_rows_a @ ( zero_mat_a @ nc @ nr ) @ ( uminus_uminus_mat_a @ ( one_mat_a @ nr ) ) ) ) ).

% \<open>M_last\<^sup>T = 0\<^sub>m nc nr @\<^sub>r - 1\<^sub>m nr\<close>
thf(fact_596_M__last__def,axiom,
    ( m_last
    = ( missin386308114684349109cols_a @ ( zero_mat_a @ nr @ nc ) @ ( uminus_uminus_mat_a @ ( one_mat_a @ nr ) ) ) ) ).

% M_last_def
thf(fact_597_mat__of__row__mult__append__rows,axiom,
    ! [Y1: vec_a,Nr1: nat,Y22: vec_a,Nr2: nat,A1: mat_a,Nc: nat,A22: mat_a] :
      ( ( member_vec_a @ Y1 @ ( carrier_vec_a @ Nr1 ) )
     => ( ( member_vec_a @ Y22 @ ( carrier_vec_a @ Nr2 ) )
       => ( ( member_mat_a @ A1 @ ( carrier_mat_a @ Nr1 @ Nc ) )
         => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ Nr2 @ Nc ) )
           => ( ( times_times_mat_a @ ( mat_of_row_a @ ( append_vec_a @ Y1 @ Y22 ) ) @ ( append_rows_a @ A1 @ A22 ) )
              = ( plus_plus_mat_a @ ( times_times_mat_a @ ( mat_of_row_a @ Y1 ) @ A1 ) @ ( times_times_mat_a @ ( mat_of_row_a @ Y22 ) @ A22 ) ) ) ) ) ) ) ).

% mat_of_row_mult_append_rows
thf(fact_598_unbounded__primal__solutions,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a,C: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( member_vec_a @ C @ ( carrier_vec_a @ Nc ) )
         => ( ! [V4: a] :
              ? [X4: vec_a] :
                ( ( member_vec_a @ X4 @ ( carrier_vec_a @ Nc ) )
                & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X4 ) @ B )
                & ( ord_less_eq_a @ V4 @ ( scalar_prod_a @ C @ X4 ) ) )
           => ~ ? [Y4: vec_a] :
                  ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y4 )
                  & ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y4 )
                    = C ) ) ) ) ) ) ).

% unbounded_primal_solutions
thf(fact_599_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_600_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_601_assoc__mult__mat,axiom,
    ! [A2: mat_a,N_1: nat,N_2: nat,B3: mat_a,N_3: nat,C4: mat_a,N_4: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N_1 @ N_2 ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ N_2 @ N_3 ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ N_3 @ N_4 ) )
         => ( ( times_times_mat_a @ ( times_times_mat_a @ A2 @ B3 ) @ C4 )
            = ( times_times_mat_a @ A2 @ ( times_times_mat_a @ B3 @ C4 ) ) ) ) ) ) ).

% assoc_mult_mat
thf(fact_602_transpose__one,axiom,
    ! [N: nat] :
      ( ( transpose_mat_a @ ( one_mat_a @ N ) )
      = ( one_mat_a @ N ) ) ).

% transpose_one
thf(fact_603_one__mult__mat__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( mult_mat_vec_a @ ( one_mat_a @ N ) @ V )
        = V ) ) ).

% one_mult_mat_vec
thf(fact_604_assoc__mult__mat__vec,axiom,
    ! [A2: mat_a,N_1: nat,N_2: nat,B3: mat_a,N_3: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N_1 @ N_2 ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ N_2 @ N_3 ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ N_3 ) )
         => ( ( mult_mat_vec_a @ ( times_times_mat_a @ A2 @ B3 ) @ V )
            = ( mult_mat_vec_a @ A2 @ ( mult_mat_vec_a @ B3 @ V ) ) ) ) ) ) ).

% assoc_mult_mat_vec
thf(fact_605_four__block__one__mat,axiom,
    ! [N1: nat,N2: nat] :
      ( ( four_block_mat_a @ ( one_mat_a @ N1 ) @ ( zero_mat_a @ N1 @ N2 ) @ ( zero_mat_a @ N2 @ N1 ) @ ( one_mat_a @ N2 ) )
      = ( one_mat_a @ ( plus_plus_nat @ N1 @ N2 ) ) ) ).

% four_block_one_mat
thf(fact_606_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_607_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_608_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_609_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_610_one__carrier__mat,axiom,
    ! [N: nat] : ( member_mat_a @ ( one_mat_a @ N ) @ ( carrier_mat_a @ N @ N ) ) ).

% one_carrier_mat
thf(fact_611_right__mult__one__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( times_times_mat_a @ A2 @ ( one_mat_a @ Nc ) )
        = A2 ) ) ).

% right_mult_one_mat
thf(fact_612_left__mult__one__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( times_times_mat_a @ ( one_mat_a @ Nr ) @ A2 )
        = A2 ) ) ).

% left_mult_one_mat
thf(fact_613_comm__scalar__prod,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( scalar_prod_a @ V_1 @ V_2 )
          = ( scalar_prod_a @ V_2 @ V_1 ) ) ) ) ).

% comm_scalar_prod
thf(fact_614_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_615_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_616_combine__common__factor,axiom,
    ! [A: nat,E2: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E2 ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E2 ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E2 ) @ C ) ) ).

% combine_common_factor
thf(fact_617_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_618_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_619_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_620_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_621_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_622_mult__carrier__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B3: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ N @ Nc ) )
       => ( member_mat_a @ ( times_times_mat_a @ A2 @ B3 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ) ).

% mult_carrier_mat
thf(fact_623_right__mult__zero__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( times_times_mat_a @ A2 @ ( zero_mat_a @ N @ Nc ) )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% right_mult_zero_mat
thf(fact_624_left__mult__zero__mat,axiom,
    ! [A2: mat_a,N: nat,Nc: nat,Nr: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ Nc ) )
     => ( ( times_times_mat_a @ ( zero_mat_a @ Nr @ N ) @ A2 )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% left_mult_zero_mat
thf(fact_625_transpose__mult,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B3: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ N @ Nc ) )
       => ( ( transpose_mat_a @ ( times_times_mat_a @ A2 @ B3 ) )
          = ( times_times_mat_a @ ( transpose_mat_a @ B3 ) @ ( transpose_mat_a @ A2 ) ) ) ) ) ).

% transpose_mult
thf(fact_626_mult__add__distrib__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B3: mat_a,Nc: nat,C4: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ N @ Nc ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ A2 @ ( plus_plus_mat_a @ B3 @ C4 ) )
            = ( plus_plus_mat_a @ ( times_times_mat_a @ A2 @ B3 ) @ ( times_times_mat_a @ A2 @ C4 ) ) ) ) ) ) ).

% mult_add_distrib_mat
thf(fact_627_add__mult__distrib__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B3: mat_a,C4: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ N ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ ( plus_plus_mat_a @ A2 @ B3 ) @ C4 )
            = ( plus_plus_mat_a @ ( times_times_mat_a @ A2 @ C4 ) @ ( times_times_mat_a @ B3 @ C4 ) ) ) ) ) ) ).

% add_mult_distrib_mat
thf(fact_628_mult__minus__distrib__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B3: mat_a,Nc: nat,C4: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ N @ Nc ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ A2 @ ( minus_minus_mat_a @ B3 @ C4 ) )
            = ( minus_minus_mat_a @ ( times_times_mat_a @ A2 @ B3 ) @ ( times_times_mat_a @ A2 @ C4 ) ) ) ) ) ) ).

% mult_minus_distrib_mat
thf(fact_629_minus__mult__distrib__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B3: mat_a,C4: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B3 @ ( carrier_mat_a @ Nr @ N ) )
       => ( ( member_mat_a @ C4 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ ( minus_minus_mat_a @ A2 @ B3 ) @ C4 )
            = ( minus_minus_mat_a @ ( times_times_mat_a @ A2 @ C4 ) @ ( times_times_mat_a @ B3 @ C4 ) ) ) ) ) ) ).

% minus_mult_distrib_mat
thf(fact_630_add__scalar__prod__distrib,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat,V_3: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ V_3 @ ( carrier_vec_nat @ N ) )
         => ( ( scalar_prod_nat @ ( plus_plus_vec_nat @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_nat @ ( scalar_prod_nat @ V_1 @ V_3 ) @ ( scalar_prod_nat @ V_2 @ V_3 ) ) ) ) ) ) ).

% add_scalar_prod_distrib
thf(fact_631_add__scalar__prod__distrib,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( scalar_prod_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_a @ ( scalar_prod_a @ V_1 @ V_3 ) @ ( scalar_prod_a @ V_2 @ V_3 ) ) ) ) ) ) ).

% add_scalar_prod_distrib
thf(fact_632_scalar__prod__add__distrib,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat,V_3: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ V_3 @ ( carrier_vec_nat @ N ) )
         => ( ( scalar_prod_nat @ V_1 @ ( plus_plus_vec_nat @ V_2 @ V_3 ) )
            = ( plus_plus_nat @ ( scalar_prod_nat @ V_1 @ V_2 ) @ ( scalar_prod_nat @ V_1 @ V_3 ) ) ) ) ) ) ).

% scalar_prod_add_distrib
thf(fact_633_scalar__prod__add__distrib,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( scalar_prod_a @ V_1 @ ( plus_plus_vec_a @ V_2 @ V_3 ) )
            = ( plus_plus_a @ ( scalar_prod_a @ V_1 @ V_2 ) @ ( scalar_prod_a @ V_1 @ V_3 ) ) ) ) ) ) ).

% scalar_prod_add_distrib
thf(fact_634_scalar__prod__append,axiom,
    ! [V1: vec_a,N1: nat,V22: vec_a,N2: nat,W1: vec_a,W22: vec_a] :
      ( ( member_vec_a @ V1 @ ( carrier_vec_a @ N1 ) )
     => ( ( member_vec_a @ V22 @ ( carrier_vec_a @ N2 ) )
       => ( ( member_vec_a @ W1 @ ( carrier_vec_a @ N1 ) )
         => ( ( member_vec_a @ W22 @ ( carrier_vec_a @ N2 ) )
           => ( ( scalar_prod_a @ ( append_vec_a @ V1 @ V22 ) @ ( append_vec_a @ W1 @ W22 ) )
              = ( plus_plus_a @ ( scalar_prod_a @ V1 @ W1 ) @ ( scalar_prod_a @ V22 @ W22 ) ) ) ) ) ) ) ).

% scalar_prod_append
thf(fact_635_scalar__prod__append,axiom,
    ! [V1: vec_nat,N1: nat,V22: vec_nat,N2: nat,W1: vec_nat,W22: vec_nat] :
      ( ( member_vec_nat @ V1 @ ( carrier_vec_nat @ N1 ) )
     => ( ( member_vec_nat @ V22 @ ( carrier_vec_nat @ N2 ) )
       => ( ( member_vec_nat @ W1 @ ( carrier_vec_nat @ N1 ) )
         => ( ( member_vec_nat @ W22 @ ( carrier_vec_nat @ N2 ) )
           => ( ( scalar_prod_nat @ ( append_vec_nat @ V1 @ V22 ) @ ( append_vec_nat @ W1 @ W22 ) )
              = ( plus_plus_nat @ ( scalar_prod_nat @ V1 @ W1 ) @ ( scalar_prod_nat @ V22 @ W22 ) ) ) ) ) ) ) ).

% scalar_prod_append
thf(fact_636_uminus__scalar__prod,axiom,
    ! [V: vec_a,N: nat,W: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
       => ( ( uminus_uminus_a @ ( scalar_prod_a @ V @ W ) )
          = ( scalar_prod_a @ ( uminus_uminus_vec_a @ V ) @ W ) ) ) ) ).

% uminus_scalar_prod
thf(fact_637_scalar__prod__minus__distrib,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( scalar_prod_a @ V_1 @ ( minus_minus_vec_a @ V_2 @ V_3 ) )
            = ( minus_minus_a @ ( scalar_prod_a @ V_1 @ V_2 ) @ ( scalar_prod_a @ V_1 @ V_3 ) ) ) ) ) ) ).

% scalar_prod_minus_distrib
thf(fact_638_minus__scalar__prod__distrib,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( scalar_prod_a @ ( minus_minus_vec_a @ V_1 @ V_2 ) @ V_3 )
            = ( minus_minus_a @ ( scalar_prod_a @ V_1 @ V_3 ) @ ( scalar_prod_a @ V_2 @ V_3 ) ) ) ) ) ) ).

% minus_scalar_prod_distrib
thf(fact_639_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: a,E2: a,C: a,B: a,D: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ A @ E2 ) @ C ) @ ( plus_plus_a @ ( times_times_a @ B @ E2 ) @ D ) )
      = ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ ( minus_minus_a @ A @ B ) @ E2 ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_640_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: a,E2: a,C: a,B: a,D: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ A @ E2 ) @ C ) @ ( plus_plus_a @ ( times_times_a @ B @ E2 ) @ D ) )
      = ( ord_less_eq_a @ C @ ( plus_plus_a @ ( times_times_a @ ( minus_minus_a @ B @ A ) @ E2 ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_641_mult__four__block__mat,axiom,
    ! [A1: mat_a,Nr1: nat,N1: nat,B1: mat_a,N2: nat,C1: mat_a,Nr2: nat,D1: mat_a,A22: mat_a,Nc1: nat,B22: mat_a,Nc2: nat,C22: mat_a,D22: mat_a] :
      ( ( member_mat_a @ A1 @ ( carrier_mat_a @ Nr1 @ N1 ) )
     => ( ( member_mat_a @ B1 @ ( carrier_mat_a @ Nr1 @ N2 ) )
       => ( ( member_mat_a @ C1 @ ( carrier_mat_a @ Nr2 @ N1 ) )
         => ( ( member_mat_a @ D1 @ ( carrier_mat_a @ Nr2 @ N2 ) )
           => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ N1 @ Nc1 ) )
             => ( ( member_mat_a @ B22 @ ( carrier_mat_a @ N1 @ Nc2 ) )
               => ( ( member_mat_a @ C22 @ ( carrier_mat_a @ N2 @ Nc1 ) )
                 => ( ( member_mat_a @ D22 @ ( carrier_mat_a @ N2 @ Nc2 ) )
                   => ( ( times_times_mat_a @ ( four_block_mat_a @ A1 @ B1 @ C1 @ D1 ) @ ( four_block_mat_a @ A22 @ B22 @ C22 @ D22 ) )
                      = ( four_block_mat_a @ ( plus_plus_mat_a @ ( times_times_mat_a @ A1 @ A22 ) @ ( times_times_mat_a @ B1 @ C22 ) ) @ ( plus_plus_mat_a @ ( times_times_mat_a @ A1 @ B22 ) @ ( times_times_mat_a @ B1 @ D22 ) ) @ ( plus_plus_mat_a @ ( times_times_mat_a @ C1 @ A22 ) @ ( times_times_mat_a @ D1 @ C22 ) ) @ ( plus_plus_mat_a @ ( times_times_mat_a @ C1 @ B22 ) @ ( times_times_mat_a @ D1 @ D22 ) ) ) ) ) ) ) ) ) ) ) ) ).

% mult_four_block_mat
thf(fact_642_transpose__vec__mult__scalar,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,X3: vec_a,Y2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ X3 @ ( carrier_vec_a @ Nc ) )
       => ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ Nr ) )
         => ( ( scalar_prod_a @ ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y2 ) @ X3 )
            = ( scalar_prod_a @ Y2 @ ( mult_mat_vec_a @ A2 @ X3 ) ) ) ) ) ) ).

% transpose_vec_mult_scalar
thf(fact_643_mult__mat__of__col,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
       => ( ( times_times_mat_a @ A2 @ ( missing_mat_of_col_a @ V ) )
          = ( missing_mat_of_col_a @ ( mult_mat_vec_a @ A2 @ V ) ) ) ) ) ).

% mult_mat_of_col
thf(fact_644_weak__duality__theorem,axiom,
    ! [A2: mat_nat,Nr: nat,Nc: nat,B: vec_nat,C: vec_nat,X3: vec_nat,Y2: vec_nat] :
      ( ( member_mat_nat @ A2 @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( member_vec_nat @ B @ ( carrier_vec_nat @ Nr ) )
       => ( ( member_vec_nat @ C @ ( carrier_vec_nat @ Nc ) )
         => ( ( member_vec_nat @ X3 @ ( carrier_vec_nat @ Nc ) )
           => ( ( ord_less_eq_vec_nat @ ( mult_mat_vec_nat @ A2 @ X3 ) @ B )
             => ( ( ord_less_eq_vec_nat @ ( zero_vec_nat @ Nr ) @ Y2 )
               => ( ( ( mult_mat_vec_nat @ ( transpose_mat_nat @ A2 ) @ Y2 )
                    = C )
                 => ( ord_less_eq_nat @ ( scalar_prod_nat @ C @ X3 ) @ ( scalar_prod_nat @ B @ Y2 ) ) ) ) ) ) ) ) ) ).

% weak_duality_theorem
thf(fact_645_weak__duality__theorem,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a,C: vec_a,X3: vec_a,Y2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( member_vec_a @ C @ ( carrier_vec_a @ Nc ) )
         => ( ( member_vec_a @ X3 @ ( carrier_vec_a @ Nc ) )
           => ( ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X3 ) @ B )
             => ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y2 )
               => ( ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y2 )
                    = C )
                 => ( ord_less_eq_a @ ( scalar_prod_a @ C @ X3 ) @ ( scalar_prod_a @ B @ Y2 ) ) ) ) ) ) ) ) ) ).

% weak_duality_theorem
thf(fact_646_unbounded__dual__solutions,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a,C: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( member_vec_a @ C @ ( carrier_vec_a @ Nc ) )
         => ( ! [V4: a] :
              ? [Y4: vec_a] :
                ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y4 )
                & ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y4 )
                  = C )
                & ( ord_less_eq_a @ ( scalar_prod_a @ B @ Y4 ) @ V4 ) )
           => ~ ? [X4: vec_a] :
                  ( ( member_vec_a @ X4 @ ( carrier_vec_a @ Nc ) )
                  & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X4 ) @ B ) ) ) ) ) ) ).

% unbounded_dual_solutions
thf(fact_647_gram__schmidt_OFarkas__Lemma,axiom,
    ! [A2: mat_a,N: nat,Nr: nat,B: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ Nr ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ N ) )
       => ( ( ? [X: vec_a] :
                ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ X )
                & ( ( mult_mat_vec_a @ A2 @ X )
                  = B ) ) )
          = ( ! [Y: vec_a] :
                ( ( member_vec_a @ Y @ ( carrier_vec_a @ N ) )
               => ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y ) )
                 => ( ord_less_eq_a @ zero_zero_a @ ( scalar_prod_a @ Y @ B ) ) ) ) ) ) ) ) ).

% gram_schmidt.Farkas_Lemma
thf(fact_648_gram__schmidt_OFarkas__Lemma_H,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( ? [X: vec_a] :
                ( ( member_vec_a @ X @ ( carrier_vec_a @ Nc ) )
                & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X ) @ B ) ) )
          = ( ! [Y: vec_a] :
                ( ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y )
                  & ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y )
                    = ( zero_vec_a @ Nc ) ) )
               => ( ord_less_eq_a @ zero_zero_a @ ( scalar_prod_a @ Y @ B ) ) ) ) ) ) ) ).

% gram_schmidt.Farkas_Lemma'
thf(fact_649_vec__inv,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( V
         != ( zero_vec_a @ N ) )
       => ( ( scalar_prod_a @ ( schur_vec_inv_a @ V ) @ V )
          = one_one_a ) ) ) ).

% vec_inv
thf(fact_650_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_651_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_652_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_653_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_654_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_655_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_656_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_657_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_658_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_659_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_660_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_661_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_662_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_663_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_664_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_665_zero__eq__add__iff__both__eq__0,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X3 @ Y2 ) )
      = ( ( X3 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_666_add__eq__0__iff__both__eq__0,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X3 @ Y2 )
        = zero_zero_nat )
      = ( ( X3 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_667_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_668_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_669_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_670_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_671_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_672_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_673_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_674_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_675_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_676_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_677_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ A @ A ) )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_678_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ A ) @ zero_zero_a )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_679_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_680_le__add__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( plus_plus_a @ B @ A ) )
      = ( ord_less_eq_a @ zero_zero_a @ B ) ) ).

% le_add_same_cancel2
thf(fact_681_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_682_le__add__same__cancel1,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( plus_plus_a @ A @ B ) )
      = ( ord_less_eq_a @ zero_zero_a @ B ) ) ).

% le_add_same_cancel1
thf(fact_683_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_684_add__le__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ B )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% add_le_same_cancel2
thf(fact_685_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_686_add__le__same__cancel1,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ B @ A ) @ B )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% add_le_same_cancel1
thf(fact_687_diff__ge__0__iff__ge,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( minus_minus_a @ A @ B ) )
      = ( ord_less_eq_a @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_688_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_689_neg__0__le__iff__le,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( uminus_uminus_a @ A ) )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% neg_0_le_iff_le
thf(fact_690_neg__le__0__iff__le,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ A ) @ zero_zero_a )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% neg_le_0_iff_le
thf(fact_691_less__eq__neg__nonpos,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ A @ ( uminus_uminus_a @ A ) )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% less_eq_neg_nonpos
thf(fact_692_neg__less__eq__nonneg,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ A ) @ A )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_693_scalar__prod__right__zero,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( scalar_prod_a @ V @ ( zero_vec_a @ N ) )
        = zero_zero_a ) ) ).

% scalar_prod_right_zero
thf(fact_694_scalar__prod__right__zero,axiom,
    ! [V: vec_nat,N: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( scalar_prod_nat @ V @ ( zero_vec_nat @ N ) )
        = zero_zero_nat ) ) ).

% scalar_prod_right_zero
thf(fact_695_scalar__prod__left__zero,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( scalar_prod_a @ ( zero_vec_a @ N ) @ V )
        = zero_zero_a ) ) ).

% scalar_prod_left_zero
thf(fact_696_scalar__prod__left__zero,axiom,
    ! [V: vec_nat,N: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( scalar_prod_nat @ ( zero_vec_nat @ N ) @ V )
        = zero_zero_nat ) ) ).

% scalar_prod_left_zero
thf(fact_697_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_698_zero__reorient,axiom,
    ! [X3: nat] :
      ( ( zero_zero_nat = X3 )
      = ( X3 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_699_vec__inv__closed,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( member_vec_a @ ( schur_vec_inv_a @ V ) @ ( carrier_vec_a @ N ) ) ) ).

% vec_inv_closed
thf(fact_700_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_701_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_702_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_703_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_704_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_705_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_706_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_707_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_708_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_709_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_710_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_711_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_712_le__numeral__extra_I3_J,axiom,
    ord_less_eq_a @ zero_zero_a @ zero_zero_a ).

% le_numeral_extra(3)
thf(fact_713_zero__le,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X3 ) ).

% zero_le
thf(fact_714_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_715_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_716_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_717_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_718_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_719_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_720_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_721_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_722_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_723_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_724_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_725_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_726_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_727_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_728_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_729_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_730_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_731_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M2: nat,N3: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% mult_eq_if
thf(fact_732_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_733_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_a @ zero_zero_a @ one_one_a ).

% zero_less_one_class.zero_le_one
thf(fact_734_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_735_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_a @ zero_zero_a @ one_one_a ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_736_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_737_not__one__le__zero,axiom,
    ~ ( ord_less_eq_a @ one_one_a @ zero_zero_a ) ).

% not_one_le_zero
thf(fact_738_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_739_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_740_zero__le__mult__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ zero_zero_a @ B ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ B @ zero_zero_a ) ) ) ) ).

% zero_le_mult_iff
thf(fact_741_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_742_mult__nonneg__nonpos2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ B @ A ) @ zero_zero_a ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_743_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_744_mult__nonpos__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a ) ) ) ).

% mult_nonpos_nonneg
thf(fact_745_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_746_mult__nonneg__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a ) ) ) ).

% mult_nonneg_nonpos
thf(fact_747_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_748_mult__nonneg__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_749_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_750_split__mult__neg__le,axiom,
    ! [A: a,B: a] :
      ( ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ B @ zero_zero_a ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ zero_zero_a @ B ) ) )
     => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a ) ) ).

% split_mult_neg_le
thf(fact_751_mult__le__0__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ B @ zero_zero_a ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ zero_zero_a @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_752_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_753_mult__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_754_mult__right__mono__neg,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_755_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_756_mult__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_757_mult__nonpos__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_758_mult__left__mono__neg,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_759_split__mult__pos__le,axiom,
    ! [A: a,B: a] :
      ( ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ zero_zero_a @ B ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ B @ zero_zero_a ) ) )
     => ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_760_zero__le__square,axiom,
    ! [A: a] : ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ A ) ) ).

% zero_le_square
thf(fact_761_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_762_mult__mono_H,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_763_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_764_mult__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ( ord_less_eq_a @ zero_zero_a @ B )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_765_add__nonpos__eq__0__iff,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X3 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X3 @ Y2 )
            = zero_zero_nat )
          = ( ( X3 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_766_add__nonpos__eq__0__iff,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ X3 @ zero_zero_a )
     => ( ( ord_less_eq_a @ Y2 @ zero_zero_a )
       => ( ( ( plus_plus_a @ X3 @ Y2 )
            = zero_zero_a )
          = ( ( X3 = zero_zero_a )
            & ( Y2 = zero_zero_a ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_767_add__nonneg__eq__0__iff,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X3 @ Y2 )
            = zero_zero_nat )
          = ( ( X3 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_768_add__nonneg__eq__0__iff,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X3 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ( plus_plus_a @ X3 @ Y2 )
            = zero_zero_a )
          = ( ( X3 = zero_zero_a )
            & ( Y2 = zero_zero_a ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_769_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_770_add__nonpos__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ zero_zero_a ) ) ) ).

% add_nonpos_nonpos
thf(fact_771_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_772_add__nonneg__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_773_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_774_add__increasing2,axiom,
    ! [C: a,B: a,A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ C )
     => ( ( ord_less_eq_a @ B @ A )
       => ( ord_less_eq_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_775_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_776_add__decreasing2,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ C @ zero_zero_a )
     => ( ( ord_less_eq_a @ A @ B )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_777_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_778_add__increasing,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_779_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_780_add__decreasing,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_781_le__iff__diff__le__0,axiom,
    ( ord_less_eq_a
    = ( ^ [A3: a,B2: a] : ( ord_less_eq_a @ ( minus_minus_a @ A3 @ B2 ) @ zero_zero_a ) ) ) ).

% le_iff_diff_le_0
thf(fact_782_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_783_set__zero__plus2,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( member_nat @ zero_zero_nat @ A2 )
     => ( ord_less_eq_set_nat @ B3 @ ( plus_plus_set_nat @ A2 @ B3 ) ) ) ).

% set_zero_plus2
thf(fact_784_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_785_mult__left__le,axiom,
    ! [C: a,A: a] :
      ( ( ord_less_eq_a @ C @ one_one_a )
     => ( ( ord_less_eq_a @ zero_zero_a @ A )
       => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_786_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_787_mult__le__one,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ one_one_a )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ( ord_less_eq_a @ B @ one_one_a )
         => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ one_one_a ) ) ) ) ).

% mult_le_one
thf(fact_788_mult__right__le__one__le,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X3 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_eq_a @ Y2 @ one_one_a )
         => ( ord_less_eq_a @ ( times_times_a @ X3 @ Y2 ) @ X3 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_789_mult__left__le__one__le,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X3 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_eq_a @ Y2 @ one_one_a )
         => ( ord_less_eq_a @ ( times_times_a @ Y2 @ X3 ) @ X3 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_790_sum__squares__ge__zero,axiom,
    ! [X3: a,Y2: a] : ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ ( times_times_a @ X3 @ X3 ) @ ( times_times_a @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_791_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_a @ zero_zero_a @ ( uminus_uminus_a @ one_one_a ) ) ).

% le_minus_one_simps(3)
thf(fact_792_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_a @ ( uminus_uminus_a @ one_one_a ) @ zero_zero_a ).

% le_minus_one_simps(1)
thf(fact_793_convex__bound__le,axiom,
    ! [X3: a,A: a,Y2: a,U: a,V: a] :
      ( ( ord_less_eq_a @ X3 @ A )
     => ( ( ord_less_eq_a @ Y2 @ A )
       => ( ( ord_less_eq_a @ zero_zero_a @ U )
         => ( ( ord_less_eq_a @ zero_zero_a @ V )
           => ( ( ( plus_plus_a @ U @ V )
                = one_one_a )
             => ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ U @ X3 ) @ ( times_times_a @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_794_sum__squares__le__zero__iff,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ X3 @ X3 ) @ ( times_times_a @ Y2 @ Y2 ) ) @ zero_zero_a )
      = ( ( X3 = zero_zero_a )
        & ( Y2 = zero_zero_a ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_795_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_796_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_797_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_798_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_799_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_800_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_801_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_802_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_803_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_804_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_805_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_806_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_807_scalar__prod__ge__0,axiom,
    ! [X3: vec_a] : ( ord_less_eq_a @ zero_zero_a @ ( scalar_prod_a @ X3 @ X3 ) ) ).

% scalar_prod_ge_0
thf(fact_808_mult__hom_Ohom__add__eq__zero,axiom,
    ! [X3: nat,Y2: nat,C: nat] :
      ( ( ( plus_plus_nat @ X3 @ Y2 )
        = zero_zero_nat )
     => ( ( plus_plus_nat @ ( times_times_nat @ C @ X3 ) @ ( times_times_nat @ C @ Y2 ) )
        = zero_zero_nat ) ) ).

% mult_hom.hom_add_eq_zero
thf(fact_809_mult__hom_Ohom__add,axiom,
    ! [C: nat,X3: nat,Y2: nat] :
      ( ( times_times_nat @ C @ ( plus_plus_nat @ X3 @ Y2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ C @ X3 ) @ ( times_times_nat @ C @ Y2 ) ) ) ).

% mult_hom.hom_add
thf(fact_810_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_811_square__lesseq__square,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X3 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_eq_a @ ( times_times_a @ X3 @ X3 ) @ ( times_times_a @ Y2 @ Y2 ) )
          = ( ord_less_eq_a @ X3 @ Y2 ) ) ) ) ).

% square_lesseq_square
thf(fact_812_less__eq__fract__respect,axiom,
    ! [B: a,B6: a,D: a,D3: a,A: a,A6: a,C: a,C5: a] :
      ( ( B != zero_zero_a )
     => ( ( B6 != zero_zero_a )
       => ( ( D != zero_zero_a )
         => ( ( D3 != zero_zero_a )
           => ( ( ( times_times_a @ A @ B6 )
                = ( times_times_a @ A6 @ B ) )
             => ( ( ( times_times_a @ C @ D3 )
                  = ( times_times_a @ C5 @ D ) )
               => ( ( ord_less_eq_a @ ( times_times_a @ ( times_times_a @ A @ D ) @ ( times_times_a @ B @ D ) ) @ ( times_times_a @ ( times_times_a @ C @ B ) @ ( times_times_a @ B @ D ) ) )
                  = ( ord_less_eq_a @ ( times_times_a @ ( times_times_a @ A6 @ D3 ) @ ( times_times_a @ B6 @ D3 ) ) @ ( times_times_a @ ( times_times_a @ C5 @ B6 ) @ ( times_times_a @ B6 @ D3 ) ) ) ) ) ) ) ) ) ) ).

% less_eq_fract_respect
thf(fact_813_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_814_crossproduct__eq,axiom,
    ! [W: nat,Y2: nat,X3: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y2 ) @ ( times_times_nat @ X3 @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X3 @ Y2 ) ) )
      = ( ( W = X3 )
        | ( Y2 = Z ) ) ) ).

% crossproduct_eq
thf(fact_815_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_816_norm1__ge__0,axiom,
    ! [F2: poly_a] : ( ord_less_eq_a @ zero_zero_a @ ( norm1_a @ F2 ) ) ).

% norm1_ge_0
thf(fact_817_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P @ A4 @ B4 )
          = ( P @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ A4 @ B4 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_818_linf__norm__vec__eq__0,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ( linf_norm_vec_a @ V )
          = zero_zero_a )
        = ( V
          = ( zero_vec_a @ N ) ) ) ) ).

% linf_norm_vec_eq_0
thf(fact_819_linf__norm__vec__ge__0,axiom,
    ! [V: vec_a] : ( ord_less_eq_a @ zero_zero_a @ ( linf_norm_vec_a @ V ) ) ).

% linf_norm_vec_ge_0
thf(fact_820_linf__norm__zero__vec,axiom,
    ! [N: nat] :
      ( ( linf_norm_vec_a @ ( zero_vec_a @ N ) )
      = zero_zero_a ) ).

% linf_norm_zero_vec
thf(fact_821_linf__norm__vec__greater__0,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ord_less_a @ zero_zero_a @ ( linf_norm_vec_a @ V ) )
        = ( V
         != ( zero_vec_a @ N ) ) ) ) ).

% linf_norm_vec_greater_0
thf(fact_822_mat__of__row__carrier_I2_J,axiom,
    ! [Y2: vec_a,N: nat] :
      ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ N ) )
     => ( member_mat_a @ ( mat_of_row_a @ Y2 ) @ ( carrier_mat_a @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% mat_of_row_carrier(2)
thf(fact_823_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_824_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_825_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_826_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_827_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_828_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_829_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_830_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_831_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_832_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_833_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_834_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_835_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_836_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_837_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_838_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_839_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_840_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_841_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_842_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_843_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_844_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_845_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_846_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_847_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_848_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_849_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_850_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_851_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_852_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_853_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_854_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_855_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_856_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_857_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_858_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_859_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_860_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_861_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_862_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_863_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_864_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_865_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_866_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_867_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_868_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_869_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_870_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_871_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_872_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_873_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_874_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_875_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_876_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_877_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_878_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_879_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y2
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_880_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_881_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_882_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_883_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_884_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_885_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N4: nat] :
            ( ( P @ N4 )
           => ( P @ ( suc @ N4 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_886_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X2: nat] : ( P @ X2 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X2: nat,Y3: nat] :
              ( ( P @ X2 @ Y3 )
             => ( P @ ( suc @ X2 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_887_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N4: nat] :
            ( ( P @ ( suc @ N4 ) )
           => ( P @ N4 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_888_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_889_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_890_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_891_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M2: nat] :
            ( N
            = ( suc @ M2 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_892_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% gr0_implies_Suc
thf(fact_893_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_894_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% not0_implies_Suc
thf(fact_895_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N4 )
           => ( ~ ( P @ N4 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N4 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_896_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J2: nat] :
            ( ( M
              = ( suc @ J2 ) )
            & ( ord_less_nat @ J2 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_897_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N4 )
             => ( ( P @ N4 )
               => ( P @ ( suc @ N4 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_898_less__vec__def,axiom,
    ( ord_less_vec_a
    = ( ^ [V3: vec_a,W3: vec_a] :
          ( ( ord_less_eq_vec_a @ V3 @ W3 )
          & ~ ( ord_less_eq_vec_a @ W3 @ V3 ) ) ) ) ).

% less_vec_def
thf(fact_899_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q2: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).

% less_natE
thf(fact_900_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_901_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_902_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_903_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_904_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_905_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_906_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_907_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_908_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ I @ N4 )
             => ( ( ord_less_nat @ N4 @ J )
               => ( ( P @ N4 )
                 => ( P @ ( suc @ N4 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_909_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ I @ N4 )
             => ( ( ord_less_nat @ N4 @ J )
               => ( ( P @ ( suc @ N4 ) )
                 => ( P @ N4 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_910_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_911_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_912_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_913_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_914_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_915_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_916_lift__Suc__mono__less,axiom,
    ! [F2: nat > nat,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_nat @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_917_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > nat,N: nat,M: nat] :
      ( ! [N4: nat] : ( ord_less_nat @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_918_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J3: nat] :
              ( ( ord_less_nat @ I @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% Nat.lessE
thf(fact_919_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_920_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less_nat @ I @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_921_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_922_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_923_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_924_Suc__inject,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ( suc @ X3 )
        = ( suc @ Y2 ) )
     => ( X3 = Y2 ) ) ).

% Suc_inject
thf(fact_925_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P @ I3 ) ) )
      = ( ( P @ N )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P @ I3 ) ) ) ) ).

% Ex_less_Suc
thf(fact_926_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_927_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_928_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_929_Nat_OAll__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P @ I3 ) ) )
      = ( ( P @ N )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P @ I3 ) ) ) ) ).

% Nat.All_less_Suc
thf(fact_930_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M5: nat] :
            ( ( M
              = ( suc @ M5 ) )
            & ( ord_less_nat @ N @ M5 ) ) ) ) ).

% Suc_less_eq2
thf(fact_931_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_932_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_933_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_934_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I4: nat] : ( P @ I4 @ ( suc @ I4 ) )
       => ( ! [I4: nat,J3: nat,K3: nat] :
              ( ( ord_less_nat @ I4 @ J3 )
             => ( ( ord_less_nat @ J3 @ K3 )
               => ( ( P @ I4 @ J3 )
                 => ( ( P @ J3 @ K3 )
                   => ( P @ I4 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_935_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I4: nat] :
            ( ( J
              = ( suc @ I4 ) )
           => ( P @ I4 ) )
       => ( ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ J )
             => ( ( P @ ( suc @ I4 ) )
               => ( P @ I4 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_936_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_937_psubset__imp__ex__mem,axiom,
    ! [A2: set_vec_a,B3: set_vec_a] :
      ( ( ord_less_set_vec_a @ A2 @ B3 )
     => ? [B4: vec_a] : ( member_vec_a @ B4 @ ( minus_6230920740010926198_vec_a @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_938_psubset__imp__ex__mem,axiom,
    ! [A2: set_mat_a,B3: set_mat_a] :
      ( ( ord_less_set_mat_a @ A2 @ B3 )
     => ? [B4: mat_a] : ( member_mat_a @ B4 @ ( minus_4757590266979429866_mat_a @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_939_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_940_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_941_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_942_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_943_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_944_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_945_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_946_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_947_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M2 @ N3 )
          & ( M2 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_948_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_949_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N3: nat] :
          ( ( ord_less_nat @ M2 @ N3 )
          | ( M2 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_950_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_951_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_952_less__mono__imp__le__mono,axiom,
    ! [F2: nat > nat,I: nat,J: nat] :
      ( ! [I4: nat,J3: nat] :
          ( ( ord_less_nat @ I4 @ J3 )
         => ( ord_less_nat @ ( F2 @ I4 ) @ ( F2 @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_953_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_954_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_955_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_956_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_957_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_958_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_959_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_960_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_961_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M3: nat] :
          ( M6
          = ( suc @ M3 ) ) ) ).

% Suc_le_D
thf(fact_962_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_963_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_964_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_965_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N4 )
             => ( P @ M4 ) )
         => ( P @ N4 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_966_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
             => ( ( P @ N4 )
               => ( P @ ( suc @ N4 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_967_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X2: nat] : ( R2 @ X2 @ X2 )
       => ( ! [X2: nat,Y3: nat,Z3: nat] :
              ( ( R2 @ X2 @ Y3 )
             => ( ( R2 @ Y3 @ Z3 )
               => ( R2 @ X2 @ Z3 ) ) )
         => ( ! [N4: nat] : ( R2 @ N4 @ ( suc @ N4 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_968_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N4: nat] :
            ( ( P @ ( suc @ N4 ) )
           => ( P @ N4 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_969_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_970_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_971_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_972_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_973_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_974_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_975_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_976_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_977_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_978_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
      = ( ord_less_nat @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_979_verit__comp__simplify1_I3_J,axiom,
    ! [B6: a,A6: a] :
      ( ( ~ ( ord_less_eq_a @ B6 @ A6 ) )
      = ( ord_less_a @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_980_leD,axiom,
    ! [Y2: vec_a,X3: vec_a] :
      ( ( ord_less_eq_vec_a @ Y2 @ X3 )
     => ~ ( ord_less_vec_a @ X3 @ Y2 ) ) ).

% leD
thf(fact_981_leD,axiom,
    ! [Y2: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X3 )
     => ~ ( ord_less_nat @ X3 @ Y2 ) ) ).

% leD
thf(fact_982_leD,axiom,
    ! [Y2: a,X3: a] :
      ( ( ord_less_eq_a @ Y2 @ X3 )
     => ~ ( ord_less_a @ X3 @ Y2 ) ) ).

% leD
thf(fact_983_leI,axiom,
    ! [X3: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X3 ) ) ).

% leI
thf(fact_984_leI,axiom,
    ! [X3: a,Y2: a] :
      ( ~ ( ord_less_a @ X3 @ Y2 )
     => ( ord_less_eq_a @ Y2 @ X3 ) ) ).

% leI
thf(fact_985_nless__le,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ~ ( ord_less_vec_a @ A @ B ) )
      = ( ~ ( ord_less_eq_vec_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_986_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_987_nless__le,axiom,
    ! [A: a,B: a] :
      ( ( ~ ( ord_less_a @ A @ B ) )
      = ( ~ ( ord_less_eq_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_988_antisym__conv1,axiom,
    ! [X3: vec_a,Y2: vec_a] :
      ( ~ ( ord_less_vec_a @ X3 @ Y2 )
     => ( ( ord_less_eq_vec_a @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_989_antisym__conv1,axiom,
    ! [X3: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y2 )
     => ( ( ord_less_eq_nat @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_990_antisym__conv1,axiom,
    ! [X3: a,Y2: a] :
      ( ~ ( ord_less_a @ X3 @ Y2 )
     => ( ( ord_less_eq_a @ X3 @ Y2 )
        = ( X3 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_991_antisym__conv2,axiom,
    ! [X3: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_vec_a @ X3 @ Y2 )
     => ( ( ~ ( ord_less_vec_a @ X3 @ Y2 ) )
        = ( X3 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_992_antisym__conv2,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X3 @ Y2 ) )
        = ( X3 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_993_antisym__conv2,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
     => ( ( ~ ( ord_less_a @ X3 @ Y2 ) )
        = ( X3 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_994_dense__ge,axiom,
    ! [Z: a,Y2: a] :
      ( ! [X2: a] :
          ( ( ord_less_a @ Z @ X2 )
         => ( ord_less_eq_a @ Y2 @ X2 ) )
     => ( ord_less_eq_a @ Y2 @ Z ) ) ).

% dense_ge
thf(fact_995_dense__le,axiom,
    ! [Y2: a,Z: a] :
      ( ! [X2: a] :
          ( ( ord_less_a @ X2 @ Y2 )
         => ( ord_less_eq_a @ X2 @ Z ) )
     => ( ord_less_eq_a @ Y2 @ Z ) ) ).

% dense_le
thf(fact_996_less__le__not__le,axiom,
    ( ord_less_vec_a
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_eq_vec_a @ X @ Y )
          & ~ ( ord_less_eq_vec_a @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_997_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_998_less__le__not__le,axiom,
    ( ord_less_a
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_eq_a @ X @ Y )
          & ~ ( ord_less_eq_a @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_999_not__le__imp__less,axiom,
    ! [Y2: nat,X3: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X3 )
     => ( ord_less_nat @ X3 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_1000_not__le__imp__less,axiom,
    ! [Y2: a,X3: a] :
      ( ~ ( ord_less_eq_a @ Y2 @ X3 )
     => ( ord_less_a @ X3 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_1001_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [A3: vec_a,B2: vec_a] :
          ( ( ord_less_vec_a @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1002_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1003_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_a
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_a @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1004_order_Ostrict__iff__order,axiom,
    ( ord_less_vec_a
    = ( ^ [A3: vec_a,B2: vec_a] :
          ( ( ord_less_eq_vec_a @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1005_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1006_order_Ostrict__iff__order,axiom,
    ( ord_less_a
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_eq_a @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1007_order_Ostrict__trans1,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_vec_a @ B @ C )
       => ( ord_less_vec_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1008_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1009_order_Ostrict__trans1,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ B @ C )
       => ( ord_less_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1010_order_Ostrict__trans2,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ord_less_vec_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1011_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1012_order_Ostrict__trans2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1013_order_Ostrict__iff__not,axiom,
    ( ord_less_vec_a
    = ( ^ [A3: vec_a,B2: vec_a] :
          ( ( ord_less_eq_vec_a @ A3 @ B2 )
          & ~ ( ord_less_eq_vec_a @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1014_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1015_order_Ostrict__iff__not,axiom,
    ( ord_less_a
    = ( ^ [A3: a,B2: a] :
          ( ( ord_less_eq_a @ A3 @ B2 )
          & ~ ( ord_less_eq_a @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1016_dense__ge__bounded,axiom,
    ! [Z: a,X3: a,Y2: a] :
      ( ( ord_less_a @ Z @ X3 )
     => ( ! [W4: a] :
            ( ( ord_less_a @ Z @ W4 )
           => ( ( ord_less_a @ W4 @ X3 )
             => ( ord_less_eq_a @ Y2 @ W4 ) ) )
       => ( ord_less_eq_a @ Y2 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_1017_dense__le__bounded,axiom,
    ! [X3: a,Y2: a,Z: a] :
      ( ( ord_less_a @ X3 @ Y2 )
     => ( ! [W4: a] :
            ( ( ord_less_a @ X3 @ W4 )
           => ( ( ord_less_a @ W4 @ Y2 )
             => ( ord_less_eq_a @ W4 @ Z ) ) )
       => ( ord_less_eq_a @ Y2 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_1018_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [B2: vec_a,A3: vec_a] :
          ( ( ord_less_vec_a @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1019_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_nat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1020_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_a
    = ( ^ [B2: a,A3: a] :
          ( ( ord_less_a @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1021_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_vec_a
    = ( ^ [B2: vec_a,A3: vec_a] :
          ( ( ord_less_eq_vec_a @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1022_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1023_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_a
    = ( ^ [B2: a,A3: a] :
          ( ( ord_less_eq_a @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1024_dual__order_Ostrict__trans1,axiom,
    ! [B: vec_a,A: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ B @ A )
     => ( ( ord_less_vec_a @ C @ B )
       => ( ord_less_vec_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1025_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1026_dual__order_Ostrict__trans1,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_a @ C @ B )
       => ( ord_less_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1027_dual__order_Ostrict__trans2,axiom,
    ! [B: vec_a,A: vec_a,C: vec_a] :
      ( ( ord_less_vec_a @ B @ A )
     => ( ( ord_less_eq_vec_a @ C @ B )
       => ( ord_less_vec_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1028_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1029_dual__order_Ostrict__trans2,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1030_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_vec_a
    = ( ^ [B2: vec_a,A3: vec_a] :
          ( ( ord_less_eq_vec_a @ B2 @ A3 )
          & ~ ( ord_less_eq_vec_a @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1031_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1032_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_a
    = ( ^ [B2: a,A3: a] :
          ( ( ord_less_eq_a @ B2 @ A3 )
          & ~ ( ord_less_eq_a @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1033_order_Ostrict__implies__order,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ord_less_vec_a @ A @ B )
     => ( ord_less_eq_vec_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1034_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1035_order_Ostrict__implies__order,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ A @ B )
     => ( ord_less_eq_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1036_dual__order_Ostrict__implies__order,axiom,
    ! [B: vec_a,A: vec_a] :
      ( ( ord_less_vec_a @ B @ A )
     => ( ord_less_eq_vec_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1037_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1038_dual__order_Ostrict__implies__order,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_a @ B @ A )
     => ( ord_less_eq_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1039_order__le__less,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_vec_a @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_1040_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_nat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_1041_order__le__less,axiom,
    ( ord_less_eq_a
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_a @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_1042_order__less__le,axiom,
    ( ord_less_vec_a
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_eq_vec_a @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_1043_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_1044_order__less__le,axiom,
    ( ord_less_a
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_eq_a @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_1045_linorder__not__le,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X3 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X3 ) ) ).

% linorder_not_le
thf(fact_1046_linorder__not__le,axiom,
    ! [X3: a,Y2: a] :
      ( ( ~ ( ord_less_eq_a @ X3 @ Y2 ) )
      = ( ord_less_a @ Y2 @ X3 ) ) ).

% linorder_not_le
thf(fact_1047_linorder__not__less,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X3 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X3 ) ) ).

% linorder_not_less
thf(fact_1048_linorder__not__less,axiom,
    ! [X3: a,Y2: a] :
      ( ( ~ ( ord_less_a @ X3 @ Y2 ) )
      = ( ord_less_eq_a @ Y2 @ X3 ) ) ).

% linorder_not_less
thf(fact_1049_order__less__imp__le,axiom,
    ! [X3: vec_a,Y2: vec_a] :
      ( ( ord_less_vec_a @ X3 @ Y2 )
     => ( ord_less_eq_vec_a @ X3 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_1050_order__less__imp__le,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_nat @ X3 @ Y2 )
     => ( ord_less_eq_nat @ X3 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_1051_order__less__imp__le,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_a @ X3 @ Y2 )
     => ( ord_less_eq_a @ X3 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_1052_order__le__neq__trans,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_vec_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1053_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1054_order__le__neq__trans,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1055_order__neq__le__trans,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( A != B )
     => ( ( ord_less_eq_vec_a @ A @ B )
       => ( ord_less_vec_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1056_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1057_order__neq__le__trans,axiom,
    ! [A: a,B: a] :
      ( ( A != B )
     => ( ( ord_less_eq_a @ A @ B )
       => ( ord_less_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1058_order__le__less__trans,axiom,
    ! [X3: vec_a,Y2: vec_a,Z: vec_a] :
      ( ( ord_less_eq_vec_a @ X3 @ Y2 )
     => ( ( ord_less_vec_a @ Y2 @ Z )
       => ( ord_less_vec_a @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1059_order__le__less__trans,axiom,
    ! [X3: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1060_order__le__less__trans,axiom,
    ! [X3: a,Y2: a,Z: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
     => ( ( ord_less_a @ Y2 @ Z )
       => ( ord_less_a @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1061_order__less__le__trans,axiom,
    ! [X3: vec_a,Y2: vec_a,Z: vec_a] :
      ( ( ord_less_vec_a @ X3 @ Y2 )
     => ( ( ord_less_eq_vec_a @ Y2 @ Z )
       => ( ord_less_vec_a @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1062_order__less__le__trans,axiom,
    ! [X3: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X3 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_nat @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1063_order__less__le__trans,axiom,
    ! [X3: a,Y2: a,Z: a] :
      ( ( ord_less_a @ X3 @ Y2 )
     => ( ( ord_less_eq_a @ Y2 @ Z )
       => ( ord_less_a @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1064_order__le__less__subst1,axiom,
    ! [A: vec_a,F2: nat > vec_a,B: nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_nat @ X2 @ Y3 )
             => ( ord_less_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1065_order__le__less__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_nat @ X2 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1066_order__le__less__subst1,axiom,
    ! [A: a,F2: nat > a,B: nat,C: nat] :
      ( ( ord_less_eq_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_nat @ X2 @ Y3 )
             => ( ord_less_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1067_order__le__less__subst2,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1068_order__le__less__subst2,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1069_order__le__less__subst2,axiom,
    ! [A: vec_a,B: vec_a,F2: vec_a > a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_a @ ( F2 @ B ) @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1070_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1071_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1072_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > a,C: a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_a @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1073_order__le__less__subst2,axiom,
    ! [A: a,B: a,F2: a > vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1074_order__le__less__subst2,axiom,
    ! [A: a,B: a,F2: a > nat,C: nat] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1075_order__le__less__subst2,axiom,
    ! [A: a,B: a,F2: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ ( F2 @ B ) @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1076_order__less__le__subst1,axiom,
    ! [A: vec_a,F2: vec_a > vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1077_order__less__le__subst1,axiom,
    ! [A: nat,F2: vec_a > nat,B: vec_a,C: vec_a] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1078_order__less__le__subst1,axiom,
    ! [A: a,F2: vec_a > a,B: vec_a,C: vec_a] :
      ( ( ord_less_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X2: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1079_order__less__le__subst1,axiom,
    ! [A: vec_a,F2: nat > vec_a,B: nat,C: nat] :
      ( ( ord_less_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1080_order__less__le__subst1,axiom,
    ! [A: nat,F2: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1081_order__less__le__subst1,axiom,
    ! [A: a,F2: nat > a,B: nat,C: nat] :
      ( ( ord_less_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1082_order__less__le__subst1,axiom,
    ! [A: vec_a,F2: a > vec_a,B: a,C: a] :
      ( ( ord_less_vec_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1083_order__less__le__subst1,axiom,
    ! [A: nat,F2: a > nat,B: a,C: a] :
      ( ( ord_less_nat @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1084_order__less__le__subst1,axiom,
    ! [A: a,F2: a > a,B: a,C: a] :
      ( ( ord_less_a @ A @ ( F2 @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X2: a,Y3: a] :
              ( ( ord_less_eq_a @ X2 @ Y3 )
             => ( ord_less_eq_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1085_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > vec_a,C: vec_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_nat @ X2 @ Y3 )
             => ( ord_less_vec_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1086_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_nat @ X2 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1087_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F2: nat > a,C: a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_a @ ( F2 @ B ) @ C )
       => ( ! [X2: nat,Y3: nat] :
              ( ( ord_less_nat @ X2 @ Y3 )
             => ( ord_less_a @ ( F2 @ X2 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_a @ ( F2 @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1088_linorder__le__less__linear,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
      | ( ord_less_nat @ Y2 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_1089_linorder__le__less__linear,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
      | ( ord_less_a @ Y2 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_1090_order__le__imp__less__or__eq,axiom,
    ! [X3: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_vec_a @ X3 @ Y2 )
     => ( ( ord_less_vec_a @ X3 @ Y2 )
        | ( X3 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1091_order__le__imp__less__or__eq,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y2 )
     => ( ( ord_less_nat @ X3 @ Y2 )
        | ( X3 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1092_order__le__imp__less__or__eq,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ X3 @ Y2 )
     => ( ( ord_less_a @ X3 @ Y2 )
        | ( X3 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1093_minf_I8_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z3 )
     => ~ ( ord_less_eq_nat @ T2 @ X4 ) ) ).

% minf(8)
thf(fact_1094_minf_I8_J,axiom,
    ! [T2: a] :
    ? [Z3: a] :
    ! [X4: a] :
      ( ( ord_less_a @ X4 @ Z3 )
     => ~ ( ord_less_eq_a @ T2 @ X4 ) ) ).

% minf(8)
thf(fact_1095_minf_I6_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ X4 @ Z3 )
     => ( ord_less_eq_nat @ X4 @ T2 ) ) ).

% minf(6)
thf(fact_1096_minf_I6_J,axiom,
    ! [T2: a] :
    ? [Z3: a] :
    ! [X4: a] :
      ( ( ord_less_a @ X4 @ Z3 )
     => ( ord_less_eq_a @ X4 @ T2 ) ) ).

% minf(6)
thf(fact_1097_pinf_I8_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z3 @ X4 )
     => ( ord_less_eq_nat @ T2 @ X4 ) ) ).

% pinf(8)
thf(fact_1098_pinf_I8_J,axiom,
    ! [T2: a] :
    ? [Z3: a] :
    ! [X4: a] :
      ( ( ord_less_a @ Z3 @ X4 )
     => ( ord_less_eq_a @ T2 @ X4 ) ) ).

% pinf(8)
thf(fact_1099_pinf_I6_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X4: nat] :
      ( ( ord_less_nat @ Z3 @ X4 )
     => ~ ( ord_less_eq_nat @ X4 @ T2 ) ) ).

% pinf(6)
thf(fact_1100_pinf_I6_J,axiom,
    ! [T2: a] :
    ? [Z3: a] :
    ! [X4: a] :
      ( ( ord_less_a @ Z3 @ X4 )
     => ~ ( ord_less_eq_a @ X4 @ T2 ) ) ).

% pinf(6)
thf(fact_1101_nonpos__linorder__cases,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ~ ( ord_less_nat @ A @ B )
         => ( ( A != B )
           => ( ord_less_nat @ B @ A ) ) ) ) ) ).

% nonpos_linorder_cases
thf(fact_1102_nonpos__linorder__cases,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ~ ( ord_less_a @ A @ B )
         => ( ( A != B )
           => ( ord_less_a @ B @ A ) ) ) ) ) ).

% nonpos_linorder_cases
thf(fact_1103_nonneg__linorder__cases,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ~ ( ord_less_nat @ A @ B )
         => ( ( A != B )
           => ( ord_less_nat @ B @ A ) ) ) ) ) ).

% nonneg_linorder_cases
thf(fact_1104_nonneg__linorder__cases,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ~ ( ord_less_a @ A @ B )
         => ( ( A != B )
           => ( ord_less_a @ B @ A ) ) ) ) ) ).

% nonneg_linorder_cases
thf(fact_1105_not__less__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ~ ( ord_less_nat @ B @ A ) )
          = ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% not_less_real
thf(fact_1106_not__less__real,axiom,
    ! [A: a,B: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ~ ( ord_less_a @ B @ A ) )
          = ( ord_less_eq_a @ A @ B ) ) ) ) ).

% not_less_real
thf(fact_1107_not__le__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ~ ( ord_less_eq_nat @ B @ A ) )
          = ( ord_less_nat @ A @ B ) ) ) ) ).

% not_le_real
thf(fact_1108_not__le__real,axiom,
    ! [A: a,B: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ~ ( ord_less_eq_a @ B @ A ) )
          = ( ord_less_a @ A @ B ) ) ) ) ).

% not_le_real
thf(fact_1109_zero__less__one__class_Ozero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_less_one
thf(fact_1110_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_1111_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_1112_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1113_linordered__semiring__strict__class_Omult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_right_mono
thf(fact_1114_linordered__semiring__strict__class_Omult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_left_mono
thf(fact_1115_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1116_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1117_linordered__semiring__strict__class_Omult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% linordered_semiring_strict_class.mult_pos_neg2
thf(fact_1118_linordered__semiring__strict__class_Omult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% linordered_semiring_strict_class.mult_pos_pos
thf(fact_1119_linordered__semiring__strict__class_Omult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% linordered_semiring_strict_class.mult_pos_neg
thf(fact_1120_linordered__semiring__strict__class_Omult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% linordered_semiring_strict_class.mult_neg_pos
thf(fact_1121_add__neg__pos__is__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat )
          | ( ( plus_plus_nat @ A @ B )
            = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ) ).

% add_neg_pos_is_real
thf(fact_1122_add__pos__neg__is__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat )
          | ( ( plus_plus_nat @ A @ B )
            = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ) ).

% add_pos_neg_is_real
thf(fact_1123_real__add__less__cancel__left__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
          = ( ord_less_nat @ A @ B ) ) ) ) ).

% real_add_less_cancel_left_pos
thf(fact_1124_real__add__less__cancel__right__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
          = ( ord_less_nat @ A @ B ) ) ) ) ).

% real_add_less_cancel_right_pos
thf(fact_1125_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_1126_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_1127_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_1128_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_1129_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1130_add__less__le__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ord_less_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1131_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1132_add__le__less__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ord_less_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1133_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1134_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_a @ I @ J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1135_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1136_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( ord_less_a @ K @ L ) )
     => ( ord_less_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1137_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1138_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_1139_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_1140_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_1141_lift__Suc__antimono__le,axiom,
    ! [F2: nat > vec_a,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_eq_vec_a @ ( F2 @ ( suc @ N4 ) ) @ ( F2 @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_vec_a @ ( F2 @ N5 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1142_lift__Suc__antimono__le,axiom,
    ! [F2: nat > nat,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N4 ) ) @ ( F2 @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F2 @ N5 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1143_lift__Suc__antimono__le,axiom,
    ! [F2: nat > a,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_eq_a @ ( F2 @ ( suc @ N4 ) ) @ ( F2 @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_a @ ( F2 @ N5 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1144_lift__Suc__mono__le,axiom,
    ! [F2: nat > vec_a,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_eq_vec_a @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_vec_a @ ( F2 @ N ) @ ( F2 @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1145_lift__Suc__mono__le,axiom,
    ! [F2: nat > nat,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1146_lift__Suc__mono__le,axiom,
    ! [F2: nat > a,N: nat,N5: nat] :
      ( ! [N4: nat] : ( ord_less_eq_a @ ( F2 @ N4 ) @ ( F2 @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_a @ ( F2 @ N ) @ ( F2 @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1147_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1148_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1149_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1150_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1151_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1152_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1153_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1154_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1155_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_1156_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1157_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1158_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1159_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1160_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1161_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1162_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1163_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1164_mono__nat__linear__lb,axiom,
    ! [F2: nat > nat,M: nat,K: nat] :
      ( ! [M3: nat,N4: nat] :
          ( ( ord_less_nat @ M3 @ N4 )
         => ( ord_less_nat @ ( F2 @ M3 ) @ ( F2 @ N4 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F2 @ M ) @ K ) @ ( F2 @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1165_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1166_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1167_real__mult__le__cancel__left__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ zero_zero_nat @ C )
         => ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_left_pos
thf(fact_1168_real__mult__le__cancel__left__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_a @ zero_zero_a @ C )
         => ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
            = ( ord_less_eq_a @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_left_pos
thf(fact_1169_real__mult__le__cancel__right__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ zero_zero_nat @ C )
         => ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_right_pos
thf(fact_1170_real__mult__le__cancel__right__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_a @ zero_zero_a @ C )
         => ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
            = ( ord_less_eq_a @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_right_pos
thf(fact_1171_mult__le__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_1172_mult__le__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_1173_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1174_mult__left__less__imp__less,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_a @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1175_linordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono
thf(fact_1176_linordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ( ord_less_a @ zero_zero_a @ B )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono
thf(fact_1177_mult__less__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_1178_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1179_mult__right__less__imp__less,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_a @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1180_linordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono'
thf(fact_1181_linordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono'
thf(fact_1182_mult__less__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_1183_mult__le__cancel__left__neg,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ C @ zero_zero_a )
     => ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
        = ( ord_less_eq_a @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_1184_mult__le__cancel__left__pos,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ zero_zero_a @ C )
     => ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
        = ( ord_less_eq_a @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_1185_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1186_mult__left__le__imp__le,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
     => ( ( ord_less_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1187_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1188_mult__right__le__imp__le,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
     => ( ( ord_less_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1189_linordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1190_linordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ( ord_less_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1191_linordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1192_linordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1193_square__less__square,axiom,
    ! [X3: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X3 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_a @ ( times_times_a @ X3 @ X3 ) @ ( times_times_a @ Y2 @ Y2 ) )
          = ( ord_less_a @ X3 @ Y2 ) ) ) ) ).

% square_less_square
thf(fact_1194_real__add__le__cancel__right__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
          = ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% real_add_le_cancel_right_pos
thf(fact_1195_real__add__le__cancel__right__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
          = ( ord_less_eq_a @ A @ B ) ) ) ) ).

% real_add_le_cancel_right_pos
thf(fact_1196_real__add__le__cancel__left__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% real_add_le_cancel_left_pos
thf(fact_1197_real__add__le__cancel__left__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
          = ( ord_less_eq_a @ A @ B ) ) ) ) ).

% real_add_le_cancel_left_pos
thf(fact_1198_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_1199_add__neg__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_a @ ( plus_plus_a @ A @ B ) @ zero_zero_a ) ) ) ).

% add_neg_nonpos
thf(fact_1200_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1201_add__nonneg__pos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_a @ zero_zero_a @ B )
       => ( ord_less_a @ zero_zero_a @ ( plus_plus_a @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1202_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_1203_add__nonpos__neg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_a @ B @ zero_zero_a )
       => ( ord_less_a @ ( plus_plus_a @ A @ B ) @ zero_zero_a ) ) ) ).

% add_nonpos_neg
thf(fact_1204_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1205_add__pos__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_a @ zero_zero_a @ ( plus_plus_a @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1206_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1207_add__strict__increasing,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1208_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1209_add__strict__increasing2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_a @ B @ C )
       => ( ord_less_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1210_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_1211_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D4: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D4 ) )
                & ~ ( P @ D4 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1212_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D4: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D4 ) )
           => ( P @ D4 ) ) ) ) ).

% nat_diff_split
thf(fact_1213_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1214_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1215_mult__less__cancel__right2,axiom,
    ! [A: a,C: a] :
      ( ( ord_less_a @ ( times_times_a @ A @ C ) @ C )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ one_one_a ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ one_one_a @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_1216_mult__less__cancel__right1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_a @ C @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ one_one_a @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ one_one_a ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_1217_mult__less__cancel__left2,axiom,
    ! [C: a,A: a] :
      ( ( ord_less_a @ ( times_times_a @ C @ A ) @ C )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ one_one_a ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ one_one_a @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_1218_mult__less__cancel__left1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_a @ C @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ one_one_a @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ one_one_a ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_1219_mult__le__cancel__right2,axiom,
    ! [A: a,C: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ C )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ one_one_a ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ one_one_a @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_1220_mult__le__cancel__right1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_eq_a @ C @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ one_one_a @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ one_one_a ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_1221_mult__le__cancel__left2,axiom,
    ! [C: a,A: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ C )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ one_one_a ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ one_one_a @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_1222_mult__le__cancel__left1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_eq_a @ C @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ one_one_a @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ one_one_a ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1223_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M2: nat,N3: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_1224_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_1225_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1226_convex__bound__lt,axiom,
    ! [X3: a,A: a,Y2: a,U: a,V: a] :
      ( ( ord_less_a @ X3 @ A )
     => ( ( ord_less_a @ Y2 @ A )
       => ( ( ord_less_eq_a @ zero_zero_a @ U )
         => ( ( ord_less_eq_a @ zero_zero_a @ V )
           => ( ( ( plus_plus_a @ U @ V )
                = one_one_a )
             => ( ord_less_a @ ( plus_plus_a @ ( times_times_a @ U @ X3 ) @ ( times_times_a @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_1227_field__le__mult__one__interval,axiom,
    ! [X3: a,Y2: a] :
      ( ! [Z3: a] :
          ( ( ord_less_a @ zero_zero_a @ Z3 )
         => ( ( ord_less_a @ Z3 @ one_one_a )
           => ( ord_less_eq_a @ ( times_times_a @ Z3 @ X3 ) @ Y2 ) ) )
     => ( ord_less_eq_a @ X3 @ Y2 ) ) ).

% field_le_mult_one_interval
thf(fact_1228_less__1__mult_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ one_one_nat @ B )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% less_1_mult'
thf(fact_1229_less__1__mult_H,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ one_one_a @ A )
     => ( ( ord_less_eq_a @ one_one_a @ B )
       => ( ord_less_a @ one_one_a @ ( times_times_a @ A @ B ) ) ) ) ).

% less_1_mult'
thf(fact_1230_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_1231_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_1232_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_1233_less__not__refl3,axiom,
    ! [S: nat,T2: nat] :
      ( ( ord_less_nat @ S @ T2 )
     => ( S != T2 ) ) ).

% less_not_refl3
thf(fact_1234_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_1235_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N4 )
             => ( P @ M4 ) )
         => ( P @ N4 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_1236_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ~ ( P @ N4 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N4 )
              & ~ ( P @ M4 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_1237_linorder__neqE__nat,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( X3 != Y2 )
     => ( ~ ( ord_less_nat @ X3 @ Y2 )
       => ( ord_less_nat @ Y2 @ X3 ) ) ) ).

% linorder_neqE_nat
thf(fact_1238_field__le__epsilon,axiom,
    ! [X3: a,Y2: a] :
      ( ! [E3: a] :
          ( ( ord_less_a @ zero_zero_a @ E3 )
         => ( ord_less_eq_a @ X3 @ ( plus_plus_a @ Y2 @ E3 ) ) )
     => ( ord_less_eq_a @ X3 @ Y2 ) ) ).

% field_le_epsilon
thf(fact_1239_mult__le__cancel__iff2,axiom,
    ! [Z: a,X3: a,Y2: a] :
      ( ( ord_less_a @ zero_zero_a @ Z )
     => ( ( ord_less_eq_a @ ( times_times_a @ Z @ X3 ) @ ( times_times_a @ Z @ Y2 ) )
        = ( ord_less_eq_a @ X3 @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_1240_mult__le__cancel__iff1,axiom,
    ! [Z: a,X3: a,Y2: a] :
      ( ( ord_less_a @ zero_zero_a @ Z )
     => ( ( ord_less_eq_a @ ( times_times_a @ X3 @ Z ) @ ( times_times_a @ Y2 @ Z ) )
        = ( ord_less_eq_a @ X3 @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_1241_ordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono
thf(fact_1242_ordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ( ord_less_a @ zero_zero_a @ B )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono
thf(fact_1243_ordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono'
thf(fact_1244_ordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono'
thf(fact_1245_ordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1246_ordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1247_ordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1248_ordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ C @ D )
       => ( ( ord_less_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1249_bounded__Max__nat,axiom,
    ! [P: nat > $o,X3: nat,M7: nat] :
      ( ( P @ X3 )
     => ( ! [X2: nat] :
            ( ( P @ X2 )
           => ( ord_less_eq_nat @ X2 @ M7 ) )
       => ~ ! [M3: nat] :
              ( ( P @ M3 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M3 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1250_permutation__insert__expand,axiom,
    ( permut3695043542826343943rt_nat
    = ( ^ [I3: nat,J2: nat,P2: nat > nat,I5: nat] : ( if_nat @ ( ord_less_nat @ I5 @ I3 ) @ ( if_nat @ ( ord_less_nat @ ( P2 @ I5 ) @ J2 ) @ ( P2 @ I5 ) @ ( suc @ ( P2 @ I5 ) ) ) @ ( if_nat @ ( I5 = I3 ) @ J2 @ ( if_nat @ ( ord_less_nat @ ( P2 @ ( minus_minus_nat @ I5 @ one_one_nat ) ) @ J2 ) @ ( P2 @ ( minus_minus_nat @ I5 @ one_one_nat ) ) @ ( suc @ ( P2 @ ( minus_minus_nat @ I5 @ one_one_nat ) ) ) ) ) ) ) ) ).

% permutation_insert_expand
thf(fact_1251_for__all__Suc,axiom,
    ! [P: nat > $o,I: nat] :
      ( ( P @ I )
     => ( ( ! [J2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ I ) @ J2 )
             => ( P @ J2 ) ) )
        = ( ! [J2: nat] :
              ( ( ord_less_eq_nat @ I @ J2 )
             => ( P @ J2 ) ) ) ) ) ).

% for_all_Suc
thf(fact_1252_delete__index__def,axiom,
    ( delete_index
    = ( ^ [I3: nat,I5: nat] : ( if_nat @ ( ord_less_nat @ I5 @ I3 ) @ I5 @ ( minus_minus_nat @ I5 @ ( suc @ zero_zero_nat ) ) ) ) ) ).

% delete_index_def
thf(fact_1253_permutation__delete__expand,axiom,
    ( permutation_delete
    = ( ^ [P2: nat > nat,I3: nat,J2: nat] : ( if_nat @ ( ord_less_nat @ ( P2 @ ( if_nat @ ( ord_less_nat @ J2 @ I3 ) @ J2 @ ( suc @ J2 ) ) ) @ ( P2 @ I3 ) ) @ ( P2 @ ( if_nat @ ( ord_less_nat @ J2 @ I3 ) @ J2 @ ( suc @ J2 ) ) ) @ ( minus_minus_nat @ ( P2 @ ( if_nat @ ( ord_less_nat @ J2 @ I3 ) @ J2 @ ( suc @ J2 ) ) ) @ ( suc @ zero_zero_nat ) ) ) ) ) ).

% permutation_delete_expand
thf(fact_1254_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K3 @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1255_inf__pigeonhole__principle,axiom,
    ! [N: nat,F2: nat > nat > $o] :
      ( ! [K3: nat] :
        ? [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
          & ( F2 @ K3 @ I2 ) )
     => ? [I4: nat] :
          ( ( ord_less_nat @ I4 @ N )
          & ! [K4: nat] :
            ? [K5: nat] :
              ( ( ord_less_eq_nat @ K4 @ K5 )
              & ( F2 @ K5 @ I4 ) ) ) ) ).

% inf_pigeonhole_principle
thf(fact_1256_diff__diff__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ M @ ( minus_minus_nat @ M @ N ) ) )
      = ( ( ord_less_nat @ I @ M )
        & ( ord_less_nat @ I @ N ) ) ) ).

% diff_diff_less
thf(fact_1257_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C3: nat] :
              ( ( ord_less_eq_nat @ A @ C3 )
              & ( ord_less_eq_nat @ C3 @ B )
              & ! [X4: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X4 )
                    & ( ord_less_nat @ X4 @ C3 ) )
                 => ( P @ X4 ) )
              & ! [D5: nat] :
                  ( ! [X2: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X2 )
                        & ( ord_less_nat @ X2 @ D5 ) )
                     => ( P @ X2 ) )
                 => ( ord_less_eq_nat @ D5 @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_1258__092_060open_062dim__vec_A_I0_092_060_094sub_062v_A_Inr_A_L_A1_A_L_A_Inc_A_L_Anc_J_A_L_Anr_J_J_A_061_Adim__vec_Aulv_A_092_060and_062_A_I_092_060forall_062i_060dim__vec_Aulv_O_A0_092_060_094sub_062v_A_Inr_A_L_A1_A_L_A_Inc_A_L_Anc_J_A_L_Anr_J_A_E_Ai_A_092_060le_062_Aulv_A_E_Ai_J_092_060close_062,axiom,
    ( ( ( dim_vec_a @ ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) )
      = ( dim_vec_a @ ulv ) )
    & ! [I2: nat] :
        ( ( ord_less_nat @ I2 @ ( dim_vec_a @ ulv ) )
       => ( ord_less_eq_a @ ( vec_index_a @ ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) @ I2 ) @ ( vec_index_a @ ulv @ I2 ) ) ) ) ).

% \<open>dim_vec (0\<^sub>v (nr + 1 + (nc + nc) + nr)) = dim_vec ulv \<and> (\<forall>i<dim_vec ulv. 0\<^sub>v (nr + 1 + (nc + nc) + nr) $ i \<le> ulv $ i)\<close>
thf(fact_1259_carrier__vecD,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( dim_vec_a @ V )
        = N ) ) ).

% carrier_vecD
thf(fact_1260_index__zero__vec_I2_J,axiom,
    ! [N: nat] :
      ( ( dim_vec_a @ ( zero_vec_a @ N ) )
      = N ) ).

% index_zero_vec(2)
thf(fact_1261_index__add__vec_I2_J,axiom,
    ! [V_1: vec_a,V_2: vec_a] :
      ( ( dim_vec_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) )
      = ( dim_vec_a @ V_2 ) ) ).

% index_add_vec(2)
thf(fact_1262_index__uminus__vec_I2_J,axiom,
    ! [V: vec_a] :
      ( ( dim_vec_a @ ( uminus_uminus_vec_a @ V ) )
      = ( dim_vec_a @ V ) ) ).

% index_uminus_vec(2)
thf(fact_1263_index__minus__vec_I2_J,axiom,
    ! [V_1: vec_a,V_2: vec_a] :
      ( ( dim_vec_a @ ( minus_minus_vec_a @ V_1 @ V_2 ) )
      = ( dim_vec_a @ V_2 ) ) ).

% index_minus_vec(2)
thf(fact_1264_dim__vec__first,axiom,
    ! [V: vec_a,N: nat] :
      ( ( dim_vec_a @ ( vec_first_a @ V @ N ) )
      = N ) ).

% dim_vec_first
thf(fact_1265_dim__vec__last,axiom,
    ! [V: vec_a,N: nat] :
      ( ( dim_vec_a @ ( vec_last_a @ V @ N ) )
      = N ) ).

% dim_vec_last
thf(fact_1266_vec__of__dim__0,axiom,
    ! [V: vec_a] :
      ( ( ( dim_vec_a @ V )
        = zero_zero_nat )
      = ( V
        = ( zero_vec_a @ zero_zero_nat ) ) ) ).

% vec_of_dim_0

% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( if_nat @ $false @ X3 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X3: nat,Y2: nat] :
      ( ( if_nat @ $true @ X3 @ Y2 )
      = X3 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    member_vec_a @ ( append_vec_a @ v @ w ) @ ( carrier_vec_a @ n2_23_ATP ) ).

%------------------------------------------------------------------------------