TPTP Problem File: SLH0611^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Youngs_Inequality/0000_Youngs/prob_00600_025461__13162018_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1360 ( 437 unt;  91 typ;   0 def)
%            Number of atoms       : 4459 ( 998 equ;   0 cnn)
%            Maximal formula atoms :   26 (   3 avg)
%            Number of connectives : 13515 ( 353   ~; 128   |; 253   &;10556   @)
%                                         (   0 <=>;2225  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   8 avg)
%            Number of types       :    7 (   6 usr)
%            Number of type conns  :  827 ( 827   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   88 (  85 usr;  13 con; 0-4 aty)
%            Number of variables   : 4116 ( 164   ^;3804   !; 148   ?;4116   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 16:31:36.892
%------------------------------------------------------------------------------
% Could-be-implicit typings (6)
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (85)
thf(sy_c_Elementary__Metric__Spaces_Odiameter_001t__Real__Oreal,type,
    elemen4332022982980038671r_real: set_real > real ).

thf(sy_c_Fun_Ocomp_001t__Real__Oreal_001t__Real__Oreal_001t__Real__Oreal,type,
    comp_real_real_real: ( real > real ) > ( real > real ) > real > real ).

thf(sy_c_Fun_Omonotone__on_001t__Int__Oint_001t__Int__Oint,type,
    monotone_on_int_int: set_int > ( int > int > $o ) > ( int > int > $o ) > ( int > int ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Int__Oint_001t__Nat__Onat,type,
    monotone_on_int_nat: set_int > ( int > int > $o ) > ( nat > nat > $o ) > ( int > nat ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Int__Oint_001t__Real__Oreal,type,
    monotone_on_int_real: set_int > ( int > int > $o ) > ( real > real > $o ) > ( int > real ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Nat__Onat_001t__Int__Oint,type,
    monotone_on_nat_int: set_nat > ( nat > nat > $o ) > ( int > int > $o ) > ( nat > int ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Nat__Onat_001t__Nat__Onat,type,
    monotone_on_nat_nat: set_nat > ( nat > nat > $o ) > ( nat > nat > $o ) > ( nat > nat ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Nat__Onat_001t__Real__Oreal,type,
    monotone_on_nat_real: set_nat > ( nat > nat > $o ) > ( real > real > $o ) > ( nat > real ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Real__Oreal_001t__Int__Oint,type,
    monotone_on_real_int: set_real > ( real > real > $o ) > ( int > int > $o ) > ( real > int ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Real__Oreal_001t__Nat__Onat,type,
    monotone_on_real_nat: set_real > ( real > real > $o ) > ( nat > nat > $o ) > ( real > nat ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Real__Oreal_001t__Real__Oreal,type,
    monoto4017252874604999745l_real: set_real > ( real > real > $o ) > ( real > real > $o ) > ( real > real ) > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Henstock__Kurzweil__Integration_Ohas__integral_001t__Real__Oreal_001t__Real__Oreal,type,
    hensto240673015341029504l_real: ( real > real ) > real > set_real > $o ).

thf(sy_c_Henstock__Kurzweil__Integration_Ointegrable__on_001t__Real__Oreal_001t__Real__Oreal,type,
    hensto5963834015518849588l_real: ( real > real ) > set_real > $o ).

thf(sy_c_Henstock__Kurzweil__Integration_Ointegral_001t__Real__Oreal_001t__Real__Oreal,type,
    hensto2714581292692559302l_real: set_real > ( real > real ) > real ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Real__Vector__Spaces_Obounded__linear__axioms_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V6471516012027840197l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
    real_V7735802525324610683m_real: real > real ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Real__Oreal,type,
    image_int_real: ( int > real ) > set_int > set_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Int__Oint,type,
    image_real_int: ( real > int ) > set_real > set_int ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Nat__Onat,type,
    image_real_nat: ( real > nat ) > set_real > set_nat ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Int__Oint,type,
    set_ord_atLeast_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
    set_ord_atLeast_real: real > set_real ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Int__Oint_001t__Int__Oint,type,
    topolo2178910747331673048nt_int: set_int > ( int > int ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Int__Oint_001t__Real__Oreal,type,
    topolo9130188401337238104t_real: set_int > ( int > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Int__Oint,type,
    topolo2284712892409288920al_int: set_real > ( real > int ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Nat__Onat,type,
    topolo2287203362918339196al_nat: set_real > ( real > nat ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ouniformly__continuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo8845477368217174713l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topology__Euclidean__Space_Ocbox_001t__Real__Oreal,type,
    topolo7804196973972690552x_real: real > real > set_real ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v__092_060delta_062____,type,
    delta: real ).

thf(sy_v__092_060epsilon_062____,type,
    epsilon: real ).

thf(sy_v_a,type,
    a: real ).

thf(sy_v_b,type,
    b: real ).

thf(sy_v_del____,type,
    del: real > real ).

thf(sy_v_f,type,
    f: real > real ).

thf(sy_v_f1____,type,
    f1: real > real ).

thf(sy_v_f2____,type,
    f2: real > real ).

thf(sy_v_g,type,
    g: real > real ).

thf(sy_v_g1____,type,
    g1: real > real ).

thf(sy_v_g2____,type,
    g2: real > real ).

thf(sy_v_lower____,type,
    lower: real > real ).

thf(sy_v_upper____,type,
    upper: real > real ).

thf(sy_v_y____,type,
    y: real ).

% Relevant facts (1265)
thf(fact_0_a,axiom,
    ord_less_eq_real @ zero_zero_real @ a ).

% a
thf(fact_1_f_I1_J,axiom,
    ( ( f @ zero_zero_real )
    = zero_zero_real ) ).

% f(1)
thf(fact_2_that,axiom,
    member_real @ y @ ( set_or1222579329274155063t_real @ zero_zero_real @ b ) ).

% that
thf(fact_3_f_I2_J,axiom,
    ( ( f @ a )
    = b ) ).

% f(2)
thf(fact_4__092_060open_062f_A_Ig2_Ay_J_A_092_060le_062_Ay_092_060close_062,axiom,
    ord_less_eq_real @ ( f @ ( g2 @ y ) ) @ y ).

% \<open>f (g2 y) \<le> y\<close>
thf(fact_5_g,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ a )
       => ( ( g @ ( f @ X ) )
          = X ) ) ) ).

% g
thf(fact_6__092_060open_0620_A_092_060le_062_Ab_092_060close_062,axiom,
    ord_less_eq_real @ zero_zero_real @ b ).

% \<open>0 \<le> b\<close>
thf(fact_7_f__iff_I2_J,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( f @ X ) @ ( f @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% f_iff(2)
thf(fact_8_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_9_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_10_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_11_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_12_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_13_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_14_g2,axiom,
    ! [Y: real] :
      ( ( member_real @ Y @ ( set_or1222579329274155063t_real @ zero_zero_real @ b ) )
     => ( member_real @ ( g2 @ Y ) @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) ) ) ).

% g2
thf(fact_15__092_060open_062_092_060delta_062_A_092_060le_062_Aa_092_060close_062,axiom,
    ord_less_eq_real @ delta @ a ).

% \<open>\<delta> \<le> a\<close>
thf(fact_16_f1__lower,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ a )
       => ( ord_less_eq_real @ ( f1 @ X ) @ ( f @ X ) ) ) ) ).

% f1_lower
thf(fact_17_f2__upper,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ a )
       => ( ord_less_eq_real @ ( f @ X ) @ ( f2 @ X ) ) ) ) ).

% f2_upper
thf(fact_18_complete__real,axiom,
    ! [S: set_real] :
      ( ? [X2: real] : ( member_real @ X2 @ S )
     => ( ? [Z: real] :
          ! [X3: real] :
            ( ( member_real @ X3 @ S )
           => ( ord_less_eq_real @ X3 @ Z ) )
       => ? [Y2: real] :
            ( ! [X2: real] :
                ( ( member_real @ X2 @ S )
               => ( ord_less_eq_real @ X2 @ Y2 ) )
            & ! [Z: real] :
                ( ! [X3: real] :
                    ( ( member_real @ X3 @ S )
                   => ( ord_less_eq_real @ X3 @ Z ) )
               => ( ord_less_eq_real @ Y2 @ Z ) ) ) ) ) ).

% complete_real
thf(fact_19_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_20_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_21_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_22_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_23_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_24_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_25_le__cases3,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ( ord_less_eq_real @ X @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_real @ Y @ X )
         => ~ ( ord_less_eq_real @ X @ Z2 ) )
       => ( ( ( ord_less_eq_real @ X @ Z2 )
           => ~ ( ord_less_eq_real @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_real @ Z2 @ Y )
             => ~ ( ord_less_eq_real @ Y @ X ) )
           => ( ( ( ord_less_eq_real @ Y @ Z2 )
               => ~ ( ord_less_eq_real @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_real @ Z2 @ X )
                 => ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_26_le__cases3,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_27_le__cases3,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ( ord_less_eq_int @ X @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_int @ Y @ X )
         => ~ ( ord_less_eq_int @ X @ Z2 ) )
       => ( ( ( ord_less_eq_int @ X @ Z2 )
           => ~ ( ord_less_eq_int @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_int @ Z2 @ Y )
             => ~ ( ord_less_eq_int @ Y @ X ) )
           => ( ( ( ord_less_eq_int @ Y @ Z2 )
               => ~ ( ord_less_eq_int @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_int @ Z2 @ X )
                 => ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_28_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
    = ( ^ [X4: real,Y4: real] :
          ( ( ord_less_eq_real @ X4 @ Y4 )
          & ( ord_less_eq_real @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_29_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_30_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_eq_int @ X4 @ Y4 )
          & ( ord_less_eq_int @ Y4 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_31_False,axiom,
    a != zero_zero_real ).

% False
thf(fact_32_g1,axiom,
    ! [Y: real] :
      ( ( member_real @ Y @ ( set_or1222579329274155063t_real @ zero_zero_real @ b ) )
     => ( member_real @ ( g1 @ Y ) @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) ) ) ).

% g1
thf(fact_33_order__antisym__conv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_34_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_35_order__antisym__conv,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_36_linorder__le__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_37_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_38_linorder__le__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_39_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_40_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_41_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_42_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_43_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_44_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_45_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_46_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_47_ord__le__eq__subst,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_48_ord__eq__le__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_49_ord__eq__le__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_50_ord__eq__le__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_51_ord__eq__le__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_52_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_53_ord__eq__le__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_54_ord__eq__le__subst,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_55_ord__eq__le__subst,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_56_ord__eq__le__subst,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_57_linorder__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_linear
thf(fact_58_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_59_linorder__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_linear
thf(fact_60_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_61_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_62_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_63_order__eq__refl,axiom,
    ! [X: real,Y: real] :
      ( ( X = Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_eq_refl
thf(fact_64_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_65_order__eq__refl,axiom,
    ! [X: int,Y: int] :
      ( ( X = Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_eq_refl
thf(fact_66_order__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_67_order__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_68_order__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_69_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_70_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_71_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_72_order__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_73_order__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_74_order__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_75_order__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_76_order__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_77_order__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_78_order__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_79_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_80_order__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_81_order__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_82_order__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_83_order__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_84_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
    = ( ^ [A2: real,B2: real] :
          ( ( ord_less_eq_real @ A2 @ B2 )
          & ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_85_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A2 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_86_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
    = ( ^ [A2: int,B2: int] :
          ( ( ord_less_eq_int @ A2 @ B2 )
          & ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_87_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_88_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_89_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_90_dual__order_Otrans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_91_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_92_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_93_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_94_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_95_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_96_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
    = ( ^ [A2: real,B2: real] :
          ( ( ord_less_eq_real @ B2 @ A2 )
          & ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_97_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A2 )
          & ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_98_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
    = ( ^ [A2: int,B2: int] :
          ( ( ord_less_eq_int @ B2 @ A2 )
          & ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_99_linorder__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: real,B3: real] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_100_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat,B3: nat] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_101_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B3: int] :
          ( ( ord_less_eq_int @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: int,B3: int] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_102_order__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_eq_real @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_103_order__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_eq_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_104_order__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_eq_int @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_105_order_Otrans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% order.trans
thf(fact_106_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_107_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_108_order__antisym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_109_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_110_order__antisym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_111_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_112_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_113_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_114_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_115_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_116_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_117_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_118_mem__Collect__eq,axiom,
    ! [A: int,P: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_119_Collect__mem__eq,axiom,
    ! [A4: set_real] :
      ( ( collect_real
        @ ^ [X4: real] : ( member_real @ X4 @ A4 ) )
      = A4 ) ).

% Collect_mem_eq
thf(fact_120_Collect__mem__eq,axiom,
    ! [A4: set_int] :
      ( ( collect_int
        @ ^ [X4: int] : ( member_int @ X4 @ A4 ) )
      = A4 ) ).

% Collect_mem_eq
thf(fact_121_fim,axiom,
    ( ( image_real_real @ f @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) )
    = ( set_or1222579329274155063t_real @ zero_zero_real @ b ) ) ).

% fim
thf(fact_122_atLeastatMost__subset__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( ( ord_less_eq_real @ C @ A )
          & ( ord_less_eq_real @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_123_atLeastatMost__subset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( ( ord_less_eq_nat @ C @ A )
          & ( ord_less_eq_nat @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_124_atLeastatMost__subset__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( ( ord_less_eq_int @ C @ A )
          & ( ord_less_eq_int @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_125_atLeastAtMost__iff,axiom,
    ! [I: real,L: real,U: real] :
      ( ( member_real @ I @ ( set_or1222579329274155063t_real @ L @ U ) )
      = ( ( ord_less_eq_real @ L @ I )
        & ( ord_less_eq_real @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_126_atLeastAtMost__iff,axiom,
    ! [I: nat,L: nat,U: nat] :
      ( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L @ U ) )
      = ( ( ord_less_eq_nat @ L @ I )
        & ( ord_less_eq_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_127_atLeastAtMost__iff,axiom,
    ! [I: int,L: int,U: int] :
      ( ( member_int @ I @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( ( ord_less_eq_int @ L @ I )
        & ( ord_less_eq_int @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_128_Icc__eq__Icc,axiom,
    ! [L: real,H: real,L2: real,H2: real] :
      ( ( ( set_or1222579329274155063t_real @ L @ H )
        = ( set_or1222579329274155063t_real @ L2 @ H2 ) )
      = ( ( ( L = L2 )
          & ( H = H2 ) )
        | ( ~ ( ord_less_eq_real @ L @ H )
          & ~ ( ord_less_eq_real @ L2 @ H2 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_129_Icc__eq__Icc,axiom,
    ! [L: nat,H: nat,L2: nat,H2: nat] :
      ( ( ( set_or1269000886237332187st_nat @ L @ H )
        = ( set_or1269000886237332187st_nat @ L2 @ H2 ) )
      = ( ( ( L = L2 )
          & ( H = H2 ) )
        | ( ~ ( ord_less_eq_nat @ L @ H )
          & ~ ( ord_less_eq_nat @ L2 @ H2 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_130_Icc__eq__Icc,axiom,
    ! [L: int,H: int,L2: int,H2: int] :
      ( ( ( set_or1266510415728281911st_int @ L @ H )
        = ( set_or1266510415728281911st_int @ L2 @ H2 ) )
      = ( ( ( L = L2 )
          & ( H = H2 ) )
        | ( ~ ( ord_less_eq_int @ L @ H )
          & ~ ( ord_less_eq_int @ L2 @ H2 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_131_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_132__092_060open_062continuous__on_A_1230_O_Ob_125_Ag_092_060close_062,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ zero_zero_real @ b ) @ g ).

% \<open>continuous_on {0..b} g\<close>
thf(fact_133_f2__def,axiom,
    ( f2
    = ( comp_real_real_real @ f @ upper ) ) ).

% f2_def
thf(fact_134_f1__def,axiom,
    ( f1
    = ( comp_real_real_real @ f @ lower ) ) ).

% f1_def
thf(fact_135__092_060open_062uniformly__continuous__on_A_1230_O_Oa_125_Af_092_060close_062,axiom,
    topolo8845477368217174713l_real @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) @ f ).

% \<open>uniformly_continuous_on {0..a} f\<close>
thf(fact_136_intgb__g,axiom,
    hensto5963834015518849588l_real @ g @ ( set_or1222579329274155063t_real @ zero_zero_real @ b ) ).

% intgb_g
thf(fact_137_cont__0a,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) @ f ).

% cont_0a
thf(fact_138_intgb__f,axiom,
    hensto5963834015518849588l_real @ f @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) ).

% intgb_f
thf(fact_139_cont,axiom,
    topolo5044208981011980120l_real @ ( set_ord_atLeast_real @ zero_zero_real ) @ f ).

% cont
thf(fact_140_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_141_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_142_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_143_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_144_continuous__image__closed__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ? [C2: real,D2: real] :
            ( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ C2 @ D2 ) )
            & ( ord_less_eq_real @ C2 @ D2 ) ) ) ) ).

% continuous_image_closed_interval
thf(fact_145_integrable__continuous__real,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
     => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% integrable_continuous_real
thf(fact_146_Henstock__Kurzweil__Integration_Ointegrable__combine,axiom,
    ! [A: real,C: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ C )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ C ) )
         => ( ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ C @ B ) )
           => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ) ) ) ).

% Henstock_Kurzweil_Integration.integrable_combine
thf(fact_147__092_060open_0620_A_060_A_092_060delta_062_092_060close_062,axiom,
    ord_less_real @ zero_zero_real @ delta ).

% \<open>0 < \<delta>\<close>
thf(fact_148_integrable__continuous__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
     => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% integrable_continuous_interval
thf(fact_149_integrable__on__subinterval,axiom,
    ! [F: real > real,S: set_real,A: real,B: real] :
      ( ( hensto5963834015518849588l_real @ F @ S )
     => ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ S )
       => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ) ).

% integrable_on_subinterval
thf(fact_150_continuous__on__compose,axiom,
    ! [S2: set_real,F: real > real,G: real > real] :
      ( ( topolo5044208981011980120l_real @ S2 @ F )
     => ( ( topolo5044208981011980120l_real @ ( image_real_real @ F @ S2 ) @ G )
       => ( topolo5044208981011980120l_real @ S2 @ ( comp_real_real_real @ G @ F ) ) ) ) ).

% continuous_on_compose
thf(fact_151_integrable__on__superset,axiom,
    ! [F: real > real,S: set_real,T: set_real] :
      ( ( hensto5963834015518849588l_real @ F @ S )
     => ( ! [X3: real] :
            ( ~ ( member_real @ X3 @ S )
           => ( ( F @ X3 )
              = zero_zero_real ) )
       => ( ( ord_less_eq_set_real @ S @ T )
         => ( hensto5963834015518849588l_real @ F @ T ) ) ) ) ).

% integrable_on_superset
thf(fact_152_IVT_H,axiom,
    ! [F: real > nat,A: real,Y: nat,B: real] :
      ( ( ord_less_eq_nat @ ( F @ A ) @ Y )
     => ( ( ord_less_eq_nat @ Y @ ( F @ B ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( topolo2287203362918339196al_nat @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
           => ? [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
                & ( ord_less_eq_real @ X3 @ B )
                & ( ( F @ X3 )
                  = Y ) ) ) ) ) ) ).

% IVT'
thf(fact_153_IVT_H,axiom,
    ! [F: real > int,A: real,Y: int,B: real] :
      ( ( ord_less_eq_int @ ( F @ A ) @ Y )
     => ( ( ord_less_eq_int @ Y @ ( F @ B ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( topolo2284712892409288920al_int @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
           => ? [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
                & ( ord_less_eq_real @ X3 @ B )
                & ( ( F @ X3 )
                  = Y ) ) ) ) ) ) ).

% IVT'
thf(fact_154_IVT_H,axiom,
    ! [F: real > real,A: real,Y: real,B: real] :
      ( ( ord_less_eq_real @ ( F @ A ) @ Y )
     => ( ( ord_less_eq_real @ Y @ ( F @ B ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
           => ? [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
                & ( ord_less_eq_real @ X3 @ B )
                & ( ( F @ X3 )
                  = Y ) ) ) ) ) ) ).

% IVT'
thf(fact_155_IVT2_H,axiom,
    ! [F: real > nat,B: real,Y: nat,A: real] :
      ( ( ord_less_eq_nat @ ( F @ B ) @ Y )
     => ( ( ord_less_eq_nat @ Y @ ( F @ A ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( topolo2287203362918339196al_nat @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
           => ? [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
                & ( ord_less_eq_real @ X3 @ B )
                & ( ( F @ X3 )
                  = Y ) ) ) ) ) ) ).

% IVT2'
thf(fact_156_IVT2_H,axiom,
    ! [F: real > int,B: real,Y: int,A: real] :
      ( ( ord_less_eq_int @ ( F @ B ) @ Y )
     => ( ( ord_less_eq_int @ Y @ ( F @ A ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( topolo2284712892409288920al_int @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
           => ? [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
                & ( ord_less_eq_real @ X3 @ B )
                & ( ( F @ X3 )
                  = Y ) ) ) ) ) ) ).

% IVT2'
thf(fact_157_IVT2_H,axiom,
    ! [F: real > real,B: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ ( F @ B ) @ Y )
     => ( ( ord_less_eq_real @ Y @ ( F @ A ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
           => ? [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
                & ( ord_less_eq_real @ X3 @ B )
                & ( ( F @ X3 )
                  = Y ) ) ) ) ) ) ).

% IVT2'
thf(fact_158_invertible__fixpoint__property,axiom,
    ! [T2: set_int,I: int > real,S: set_real,R: real > int,G: int > int] :
      ( ( topolo9130188401337238104t_real @ T2 @ I )
     => ( ( ord_less_eq_set_real @ ( image_int_real @ I @ T2 ) @ S )
       => ( ( topolo2284712892409288920al_int @ S @ R )
         => ( ( ord_less_eq_set_int @ ( image_real_int @ R @ S ) @ T2 )
           => ( ! [Y2: int] :
                  ( ( member_int @ Y2 @ T2 )
                 => ( ( R @ ( I @ Y2 ) )
                    = Y2 ) )
             => ( ! [F2: real > real] :
                    ( ( topolo5044208981011980120l_real @ S @ F2 )
                   => ( ( ord_less_eq_set_real @ ( image_real_real @ F2 @ S ) @ S )
                     => ? [X2: real] :
                          ( ( member_real @ X2 @ S )
                          & ( ( F2 @ X2 )
                            = X2 ) ) ) )
               => ( ( topolo2178910747331673048nt_int @ T2 @ G )
                 => ( ( ord_less_eq_set_int @ ( image_int_int @ G @ T2 ) @ T2 )
                   => ~ ! [Y2: int] :
                          ( ( member_int @ Y2 @ T2 )
                         => ( ( G @ Y2 )
                           != Y2 ) ) ) ) ) ) ) ) ) ) ).

% invertible_fixpoint_property
thf(fact_159_invertible__fixpoint__property,axiom,
    ! [T2: set_real,I: real > real,S: set_real,R: real > real,G: real > real] :
      ( ( topolo5044208981011980120l_real @ T2 @ I )
     => ( ( ord_less_eq_set_real @ ( image_real_real @ I @ T2 ) @ S )
       => ( ( topolo5044208981011980120l_real @ S @ R )
         => ( ( ord_less_eq_set_real @ ( image_real_real @ R @ S ) @ T2 )
           => ( ! [Y2: real] :
                  ( ( member_real @ Y2 @ T2 )
                 => ( ( R @ ( I @ Y2 ) )
                    = Y2 ) )
             => ( ! [F2: real > real] :
                    ( ( topolo5044208981011980120l_real @ S @ F2 )
                   => ( ( ord_less_eq_set_real @ ( image_real_real @ F2 @ S ) @ S )
                     => ? [X2: real] :
                          ( ( member_real @ X2 @ S )
                          & ( ( F2 @ X2 )
                            = X2 ) ) ) )
               => ( ( topolo5044208981011980120l_real @ T2 @ G )
                 => ( ( ord_less_eq_set_real @ ( image_real_real @ G @ T2 ) @ T2 )
                   => ~ ! [Y2: real] :
                          ( ( member_real @ Y2 @ T2 )
                         => ( ( G @ Y2 )
                           != Y2 ) ) ) ) ) ) ) ) ) ) ).

% invertible_fixpoint_property
thf(fact_160__092_060open_0620_A_060_A_092_060epsilon_062_092_060close_062,axiom,
    ord_less_real @ zero_zero_real @ epsilon ).

% \<open>0 < \<epsilon>\<close>
thf(fact_161__092_060open_0620_A_060_Aa_092_060close_062,axiom,
    ord_less_real @ zero_zero_real @ a ).

% \<open>0 < a\<close>
thf(fact_162_atLeast__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( set_ord_atLeast_real @ X )
        = ( set_ord_atLeast_real @ Y ) )
      = ( X = Y ) ) ).

% atLeast_eq_iff
thf(fact_163_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_164_atLeast__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_atLeast_nat @ K ) )
      = ( ord_less_eq_nat @ K @ I ) ) ).

% atLeast_iff
thf(fact_165_atLeast__iff,axiom,
    ! [I: int,K: int] :
      ( ( member_int @ I @ ( set_ord_atLeast_int @ K ) )
      = ( ord_less_eq_int @ K @ I ) ) ).

% atLeast_iff
thf(fact_166_atLeast__iff,axiom,
    ! [I: real,K: real] :
      ( ( member_real @ I @ ( set_ord_atLeast_real @ K ) )
      = ( ord_less_eq_real @ K @ I ) ) ).

% atLeast_iff
thf(fact_167_atLeast__subset__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atLeast_nat @ X ) @ ( set_ord_atLeast_nat @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% atLeast_subset_iff
thf(fact_168_atLeast__subset__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atLeast_int @ X ) @ ( set_ord_atLeast_int @ Y ) )
      = ( ord_less_eq_int @ Y @ X ) ) ).

% atLeast_subset_iff
thf(fact_169_atLeast__subset__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_set_real @ ( set_ord_atLeast_real @ X ) @ ( set_ord_atLeast_real @ Y ) )
      = ( ord_less_eq_real @ Y @ X ) ) ).

% atLeast_subset_iff
thf(fact_170_Icc__subset__Ici__iff,axiom,
    ! [L: real,H: real,L2: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L @ H ) @ ( set_ord_atLeast_real @ L2 ) )
      = ( ~ ( ord_less_eq_real @ L @ H )
        | ( ord_less_eq_real @ L2 @ L ) ) ) ).

% Icc_subset_Ici_iff
thf(fact_171_Icc__subset__Ici__iff,axiom,
    ! [L: nat,H: nat,L2: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L @ H ) @ ( set_ord_atLeast_nat @ L2 ) )
      = ( ~ ( ord_less_eq_nat @ L @ H )
        | ( ord_less_eq_nat @ L2 @ L ) ) ) ).

% Icc_subset_Ici_iff
thf(fact_172_Icc__subset__Ici__iff,axiom,
    ! [L: int,H: int,L2: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L @ H ) @ ( set_ord_atLeast_int @ L2 ) )
      = ( ~ ( ord_less_eq_int @ L @ H )
        | ( ord_less_eq_int @ L2 @ L ) ) ) ).

% Icc_subset_Ici_iff
thf(fact_173_f__iff_I1_J,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( f @ X ) @ ( f @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% f_iff(1)
thf(fact_174_del__gt0,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ( ord_less_real @ zero_zero_real @ ( del @ E ) ) ) ).

% del_gt0
thf(fact_175_sm,axiom,
    monoto4017252874604999745l_real @ ( set_ord_atLeast_real @ zero_zero_real ) @ ord_less_real @ ord_less_real @ f ).

% sm
thf(fact_176_order__less__imp__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_177_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_178_order__less__imp__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_179_order__less__imp__not__eq2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_180_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_181_order__less__imp__not__eq2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_182_order__less__imp__not__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_183_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_184_order__less__imp__not__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_185_linorder__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
      | ( X = Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_186_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_187_linorder__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
      | ( X = Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_188_order__less__imp__triv,axiom,
    ! [X: real,Y: real,P: $o] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_189_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_190_order__less__imp__triv,axiom,
    ! [X: int,Y: int,P: $o] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_191_order__less__not__sym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_192_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_193_order__less__not__sym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_194_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_195_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_196_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_197_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_198_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_199_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_200_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_201_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_202_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_203_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_204_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_205_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_206_order__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_207_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_208_order__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_209_order__less__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_210_order__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_211_order__less__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_212_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_213_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_214_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_215_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_216_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_217_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_218_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_219_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_220_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_221_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_222_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_223_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_224_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_225_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_226_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_227_ord__eq__less__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_228_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_229_ord__eq__less__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_230_ord__eq__less__subst,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_231_ord__eq__less__subst,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_232_ord__eq__less__subst,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_233_order__less__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_234_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_235_order__less__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_236_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_237_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_238_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_239_linorder__neq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
      = ( ( ord_less_real @ X @ Y )
        | ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_240_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_241_linorder__neq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
      = ( ( ord_less_int @ X @ Y )
        | ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_242_order__less__asym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_asym
thf(fact_243_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_244_order__less__asym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_asym
thf(fact_245_linorder__neqE,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_246_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_247_linorder__neqE,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_248_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_249_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_250_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_251_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_252_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_253_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_254_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_255_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_256_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_257_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ( ord_less_real @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_258_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_259_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ( ord_less_int @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_260_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_261_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_262_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_263_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B3: real] :
          ( ( ord_less_real @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: real] : ( P @ A3 @ A3 )
       => ( ! [A3: real,B3: real] :
              ( ( P @ B3 @ A3 )
             => ( P @ A3 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_264_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B3: nat] :
              ( ( P @ B3 @ A3 )
             => ( P @ A3 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_265_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B3: int] :
          ( ( ord_less_int @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: int] : ( P @ A3 @ A3 )
       => ( ! [A3: int,B3: int] :
              ( ( P @ B3 @ A3 )
             => ( P @ A3 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_266_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N2: nat] :
          ( ( P3 @ N2 )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N2 )
             => ~ ( P3 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_267_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_268_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_269_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_270_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_271_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_272_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_273_linorder__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_274_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_275_linorder__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_276_antisym__conv3,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_real @ Y @ X )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_277_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_278_antisym__conv3,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_int @ Y @ X )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_279_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X3 )
             => ( P @ Y5 ) )
         => ( P @ X3 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_280_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_281_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_282_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_283_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_284_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_285_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_286_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_287_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_288_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_289_less__imp__neq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_290_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_291_less__imp__neq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_292_dense,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [Z4: real] :
          ( ( ord_less_real @ X @ Z4 )
          & ( ord_less_real @ Z4 @ Y ) ) ) ).

% dense
thf(fact_293_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_294_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_295_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_296_lt__ex,axiom,
    ! [X: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X ) ).

% lt_ex
thf(fact_297_lt__ex,axiom,
    ! [X: int] :
    ? [Y2: int] : ( ord_less_int @ Y2 @ X ) ).

% lt_ex
thf(fact_298_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_299_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_300_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_301_atLeastatMost__psubset__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
      = ( ( ~ ( ord_less_eq_real @ A @ B )
          | ( ( ord_less_eq_real @ C @ A )
            & ( ord_less_eq_real @ B @ D )
            & ( ( ord_less_real @ C @ A )
              | ( ord_less_real @ B @ D ) ) ) )
        & ( ord_less_eq_real @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_302_atLeastatMost__psubset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ( ~ ( ord_less_eq_nat @ A @ B )
          | ( ( ord_less_eq_nat @ C @ A )
            & ( ord_less_eq_nat @ B @ D )
            & ( ( ord_less_nat @ C @ A )
              | ( ord_less_nat @ B @ D ) ) ) )
        & ( ord_less_eq_nat @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_303_atLeastatMost__psubset__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ( ~ ( ord_less_eq_int @ A @ B )
          | ( ( ord_less_eq_int @ C @ A )
            & ( ord_less_eq_int @ B @ D )
            & ( ( ord_less_int @ C @ A )
              | ( ord_less_int @ B @ D ) ) ) )
        & ( ord_less_eq_int @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_304_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_305_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_306_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_307_linorder__le__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_308_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_309_linorder__le__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_310_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_311_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_312_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_313_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_314_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_315_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_316_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_317_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_318_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_319_order__less__le__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_320_order__less__le__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_321_order__less__le__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_322_order__less__le__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_323_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_324_order__less__le__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_325_order__less__le__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_326_order__less__le__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_327_order__less__le__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_328_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_329_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_330_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_331_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_332_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_333_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_334_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_335_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_336_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_337_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_338_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_339_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_340_order__le__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_341_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_342_order__le__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_343_order__le__less__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_344_order__le__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_345_order__le__less__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_346_order__less__le__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_347_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_348_order__less__le__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_349_order__le__less__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_350_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_351_order__le__less__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_352_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_353_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_354_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_355_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_356_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_357_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_358_order__less__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_359_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_360_order__less__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_361_linorder__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_not_less
thf(fact_362_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_363_linorder__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_not_less
thf(fact_364_linorder__not__le,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y ) )
      = ( ord_less_real @ Y @ X ) ) ).

% linorder_not_le
thf(fact_365_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_366_linorder__not__le,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y ) )
      = ( ord_less_int @ Y @ X ) ) ).

% linorder_not_le
thf(fact_367_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y4: real] :
          ( ( ord_less_eq_real @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_368_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_369_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_eq_int @ X4 @ Y4 )
          & ( X4 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_370_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y4: real] :
          ( ( ord_less_real @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_371_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_nat @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_372_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_int @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_373_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_374_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_375_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_376_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_377_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_378_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_379_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A2: real] :
          ( ( ord_less_eq_real @ B2 @ A2 )
          & ~ ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_380_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A2 )
          & ~ ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_381_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A2: int] :
          ( ( ord_less_eq_int @ B2 @ A2 )
          & ~ ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_382_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_383_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_384_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_385_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_386_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_387_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_388_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A2: real] :
          ( ( ord_less_eq_real @ B2 @ A2 )
          & ( A2 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_389_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A2 )
          & ( A2 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_390_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A2: int] :
          ( ( ord_less_eq_int @ B2 @ A2 )
          & ( A2 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_391_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A2: real] :
          ( ( ord_less_real @ B2 @ A2 )
          | ( A2 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_392_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A2: nat] :
          ( ( ord_less_nat @ B2 @ A2 )
          | ( A2 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_393_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A2: int] :
          ( ( ord_less_int @ B2 @ A2 )
          | ( A2 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_394_dense__le__bounded,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ! [W: real] :
            ( ( ord_less_real @ X @ W )
           => ( ( ord_less_real @ W @ Y )
             => ( ord_less_eq_real @ W @ Z2 ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_le_bounded
thf(fact_395_dense__ge__bounded,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ Z2 @ X )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z2 @ W )
           => ( ( ord_less_real @ W @ X )
             => ( ord_less_eq_real @ Y @ W ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_ge_bounded
thf(fact_396_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A2: real,B2: real] :
          ( ( ord_less_eq_real @ A2 @ B2 )
          & ~ ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).

% order.strict_iff_not
thf(fact_397_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A2 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% order.strict_iff_not
thf(fact_398_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A2: int,B2: int] :
          ( ( ord_less_eq_int @ A2 @ B2 )
          & ~ ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).

% order.strict_iff_not
thf(fact_399_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_400_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_401_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_402_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_403_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_404_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_405_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A2: real,B2: real] :
          ( ( ord_less_eq_real @ A2 @ B2 )
          & ( A2 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_406_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A2 @ B2 )
          & ( A2 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_407_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A2: int,B2: int] :
          ( ( ord_less_eq_int @ A2 @ B2 )
          & ( A2 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_408_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A2: real,B2: real] :
          ( ( ord_less_real @ A2 @ B2 )
          | ( A2 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_409_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A2: nat,B2: nat] :
          ( ( ord_less_nat @ A2 @ B2 )
          | ( A2 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_410_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A2: int,B2: int] :
          ( ( ord_less_int @ A2 @ B2 )
          | ( A2 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_411_not__le__imp__less,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y @ X )
     => ( ord_less_real @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_412_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_413_not__le__imp__less,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y @ X )
     => ( ord_less_int @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_414_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y4: real] :
          ( ( ord_less_eq_real @ X4 @ Y4 )
          & ~ ( ord_less_eq_real @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_415_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_416_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y4: int] :
          ( ( ord_less_eq_int @ X4 @ Y4 )
          & ~ ( ord_less_eq_int @ Y4 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_417_dense__le,axiom,
    ! [Y: real,Z2: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ X3 @ Y )
         => ( ord_less_eq_real @ X3 @ Z2 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_le
thf(fact_418_dense__ge,axiom,
    ! [Z2: real,Y: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ Z2 @ X3 )
         => ( ord_less_eq_real @ Y @ X3 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_ge
thf(fact_419_antisym__conv2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_420_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_421_antisym__conv2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_422_antisym__conv1,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_423_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_424_antisym__conv1,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_425_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_426_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_427_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_428_leI,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% leI
thf(fact_429_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_430_leI,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% leI
thf(fact_431_leD,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ~ ( ord_less_real @ X @ Y ) ) ).

% leD
thf(fact_432_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_433_leD,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ~ ( ord_less_int @ X @ Y ) ) ).

% leD
thf(fact_434_verit__comp__simplify1_I3_J,axiom,
    ! [B4: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B4 @ A5 ) )
      = ( ord_less_real @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_435_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A5 ) )
      = ( ord_less_nat @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_436_verit__comp__simplify1_I3_J,axiom,
    ! [B4: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B4 @ A5 ) )
      = ( ord_less_int @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_437_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_438_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_439_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_440_gr__implies__not__zero,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_441_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_442_not__Ici__eq__Icc,axiom,
    ! [L2: real,L: real,H: real] :
      ( ( set_ord_atLeast_real @ L2 )
     != ( set_or1222579329274155063t_real @ L @ H ) ) ).

% not_Ici_eq_Icc
thf(fact_443_not__Ici__eq__Icc,axiom,
    ! [L2: nat,L: nat,H: nat] :
      ( ( set_ord_atLeast_nat @ L2 )
     != ( set_or1269000886237332187st_nat @ L @ H ) ) ).

% not_Ici_eq_Icc
thf(fact_444_not__Ici__eq__Icc,axiom,
    ! [L2: int,L: int,H: int] :
      ( ( set_ord_atLeast_int @ L2 )
     != ( set_or1266510415728281911st_int @ L @ H ) ) ).

% not_Ici_eq_Icc
thf(fact_445_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y4: real] :
          ( ( ord_less_real @ X4 @ Y4 )
          | ( X4 = Y4 ) ) ) ) ).

% less_eq_real_def
thf(fact_446_not__Ici__le__Icc,axiom,
    ! [L: real,L2: real,H2: real] :
      ~ ( ord_less_eq_set_real @ ( set_ord_atLeast_real @ L ) @ ( set_or1222579329274155063t_real @ L2 @ H2 ) ) ).

% not_Ici_le_Icc
thf(fact_447_not__Ici__le__Icc,axiom,
    ! [L: nat,L2: nat,H2: nat] :
      ~ ( ord_less_eq_set_nat @ ( set_ord_atLeast_nat @ L ) @ ( set_or1269000886237332187st_nat @ L2 @ H2 ) ) ).

% not_Ici_le_Icc
thf(fact_448_not__Ici__le__Icc,axiom,
    ! [L: int,L2: int,H2: int] :
      ~ ( ord_less_eq_set_int @ ( set_ord_atLeast_int @ L ) @ ( set_or1266510415728281911st_int @ L2 @ H2 ) ) ).

% not_Ici_le_Icc
thf(fact_449_continuous__on__cong,axiom,
    ! [S2: set_real,T: set_real,F: real > real,G: real > real] :
      ( ( S2 = T )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ T )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( topolo5044208981011980120l_real @ S2 @ F )
          = ( topolo5044208981011980120l_real @ T @ G ) ) ) ) ).

% continuous_on_cong
thf(fact_450_integrable__eq,axiom,
    ! [F: real > real,S2: set_real,G: real > real] :
      ( ( hensto5963834015518849588l_real @ F @ S2 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ S2 )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( hensto5963834015518849588l_real @ G @ S2 ) ) ) ).

% integrable_eq
thf(fact_451_Henstock__Kurzweil__Integration_Ointegrable__cong,axiom,
    ! [A4: set_real,F: real > real,G: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A4 )
         => ( ( F @ X3 )
            = ( G @ X3 ) ) )
     => ( ( hensto5963834015518849588l_real @ F @ A4 )
        = ( hensto5963834015518849588l_real @ G @ A4 ) ) ) ).

% Henstock_Kurzweil_Integration.integrable_cong
thf(fact_452_continuous__on__subset,axiom,
    ! [S2: set_real,F: real > real,T: set_real] :
      ( ( topolo5044208981011980120l_real @ S2 @ F )
     => ( ( ord_less_eq_set_real @ T @ S2 )
       => ( topolo5044208981011980120l_real @ T @ F ) ) ) ).

% continuous_on_subset
thf(fact_453_uniformly__continuous__imp__continuous,axiom,
    ! [S2: set_real,F: real > real] :
      ( ( topolo8845477368217174713l_real @ S2 @ F )
     => ( topolo5044208981011980120l_real @ S2 @ F ) ) ).

% uniformly_continuous_imp_continuous
thf(fact_454_integrable__subinterval__real,axiom,
    ! [F: real > real,A: real,B: real,C: real,D: real] :
      ( ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ C @ D ) @ ( set_or1222579329274155063t_real @ A @ B ) )
       => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ C @ D ) ) ) ) ).

% integrable_subinterval_real
thf(fact_455_sm__0a,axiom,
    monoto4017252874604999745l_real @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) @ ord_less_real @ ord_less_real @ f ).

% sm_0a
thf(fact_456_comp__apply,axiom,
    ( comp_real_real_real
    = ( ^ [F3: real > real,G2: real > real,X4: real] : ( F3 @ ( G2 @ X4 ) ) ) ) ).

% comp_apply
thf(fact_457_subsetI,axiom,
    ! [A4: set_real,B5: set_real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A4 )
         => ( member_real @ X3 @ B5 ) )
     => ( ord_less_eq_set_real @ A4 @ B5 ) ) ).

% subsetI
thf(fact_458_subsetI,axiom,
    ! [A4: set_int,B5: set_int] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A4 )
         => ( member_int @ X3 @ B5 ) )
     => ( ord_less_eq_set_int @ A4 @ B5 ) ) ).

% subsetI
thf(fact_459_image__eqI,axiom,
    ! [B: real,F: real > real,X: real,A4: set_real] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_real @ X @ A4 )
       => ( member_real @ B @ ( image_real_real @ F @ A4 ) ) ) ) ).

% image_eqI
thf(fact_460_image__eqI,axiom,
    ! [B: int,F: real > int,X: real,A4: set_real] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_real @ X @ A4 )
       => ( member_int @ B @ ( image_real_int @ F @ A4 ) ) ) ) ).

% image_eqI
thf(fact_461_image__eqI,axiom,
    ! [B: real,F: int > real,X: int,A4: set_int] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_int @ X @ A4 )
       => ( member_real @ B @ ( image_int_real @ F @ A4 ) ) ) ) ).

% image_eqI
thf(fact_462_image__eqI,axiom,
    ! [B: int,F: int > int,X: int,A4: set_int] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_int @ X @ A4 )
       => ( member_int @ B @ ( image_int_int @ F @ A4 ) ) ) ) ).

% image_eqI
thf(fact_463_Inf_OINF__image,axiom,
    ! [Inf: set_real > real,G: real > real,F: real > real,A4: set_real] :
      ( ( Inf @ ( image_real_real @ G @ ( image_real_real @ F @ A4 ) ) )
      = ( Inf @ ( image_real_real @ ( comp_real_real_real @ G @ F ) @ A4 ) ) ) ).

% Inf.INF_image
thf(fact_464_Sup_OSUP__image,axiom,
    ! [Sup: set_real > real,G: real > real,F: real > real,A4: set_real] :
      ( ( Sup @ ( image_real_real @ G @ ( image_real_real @ F @ A4 ) ) )
      = ( Sup @ ( image_real_real @ ( comp_real_real_real @ G @ F ) @ A4 ) ) ) ).

% Sup.SUP_image
thf(fact_465_image__comp,axiom,
    ! [F: real > real,G: real > real,R: set_real] :
      ( ( image_real_real @ F @ ( image_real_real @ G @ R ) )
      = ( image_real_real @ ( comp_real_real_real @ F @ G ) @ R ) ) ).

% image_comp
thf(fact_466_image__eq__imp__comp,axiom,
    ! [F: real > real,A4: set_real,G: real > real,B5: set_real,H: real > real] :
      ( ( ( image_real_real @ F @ A4 )
        = ( image_real_real @ G @ B5 ) )
     => ( ( image_real_real @ ( comp_real_real_real @ H @ F ) @ A4 )
        = ( image_real_real @ ( comp_real_real_real @ H @ G ) @ B5 ) ) ) ).

% image_eq_imp_comp
thf(fact_467_seq__mono__lemma,axiom,
    ! [M2: nat,D: nat > real,E: nat > real] :
      ( ! [N3: nat] :
          ( ( ord_less_eq_nat @ M2 @ N3 )
         => ( ord_less_real @ ( D @ N3 ) @ ( E @ N3 ) ) )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ M2 @ N3 )
           => ( ord_less_eq_real @ ( E @ N3 ) @ ( E @ M2 ) ) )
       => ! [N4: nat] :
            ( ( ord_less_eq_nat @ M2 @ N4 )
           => ( ord_less_real @ ( D @ N4 ) @ ( E @ M2 ) ) ) ) ) ).

% seq_mono_lemma
thf(fact_468_ord_Ostrict__mono__onD,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > real,R: int,S2: int] :
      ( ( monotone_on_int_real @ A4 @ Less @ ord_less_real @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( Less @ R @ S2 )
           => ( ord_less_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.strict_mono_onD
thf(fact_469_ord_Ostrict__mono__onD,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > real,R: real,S2: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Less @ ord_less_real @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( Less @ R @ S2 )
           => ( ord_less_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.strict_mono_onD
thf(fact_470_ord_Ostrict__mono__onD,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > nat,R: real,S2: real] :
      ( ( monotone_on_real_nat @ A4 @ Less @ ord_less_nat @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( Less @ R @ S2 )
           => ( ord_less_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.strict_mono_onD
thf(fact_471_ord_Ostrict__mono__onD,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > nat,R: int,S2: int] :
      ( ( monotone_on_int_nat @ A4 @ Less @ ord_less_nat @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( Less @ R @ S2 )
           => ( ord_less_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.strict_mono_onD
thf(fact_472_ord_Ostrict__mono__onD,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > int,R: real,S2: real] :
      ( ( monotone_on_real_int @ A4 @ Less @ ord_less_int @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( Less @ R @ S2 )
           => ( ord_less_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.strict_mono_onD
thf(fact_473_ord_Ostrict__mono__onD,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > int,R: int,S2: int] :
      ( ( monotone_on_int_int @ A4 @ Less @ ord_less_int @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( Less @ R @ S2 )
           => ( ord_less_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.strict_mono_onD
thf(fact_474_ord_Ostrict__mono__onI,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > real] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( Less @ R2 @ S3 )
             => ( ord_less_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_real @ A4 @ Less @ ord_less_real @ F ) ) ).

% ord.strict_mono_onI
thf(fact_475_ord_Ostrict__mono__onI,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > real] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( Less @ R2 @ S3 )
             => ( ord_less_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monoto4017252874604999745l_real @ A4 @ Less @ ord_less_real @ F ) ) ).

% ord.strict_mono_onI
thf(fact_476_ord_Ostrict__mono__onI,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > nat] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( Less @ R2 @ S3 )
             => ( ord_less_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_nat @ A4 @ Less @ ord_less_nat @ F ) ) ).

% ord.strict_mono_onI
thf(fact_477_ord_Ostrict__mono__onI,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > nat] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( Less @ R2 @ S3 )
             => ( ord_less_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_nat @ A4 @ Less @ ord_less_nat @ F ) ) ).

% ord.strict_mono_onI
thf(fact_478_ord_Ostrict__mono__onI,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > int] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( Less @ R2 @ S3 )
             => ( ord_less_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_int @ A4 @ Less @ ord_less_int @ F ) ) ).

% ord.strict_mono_onI
thf(fact_479_ord_Ostrict__mono__onI,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > int] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( Less @ R2 @ S3 )
             => ( ord_less_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_int @ A4 @ Less @ ord_less_int @ F ) ) ).

% ord.strict_mono_onI
thf(fact_480_ord_Ostrict__mono__on__def,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > real] :
      ( ( monotone_on_int_real @ A4 @ Less @ ord_less_real @ F )
      = ( ! [R3: int,S4: int] :
            ( ( ( member_int @ R3 @ A4 )
              & ( member_int @ S4 @ A4 )
              & ( Less @ R3 @ S4 ) )
           => ( ord_less_real @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.strict_mono_on_def
thf(fact_481_ord_Ostrict__mono__on__def,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Less @ ord_less_real @ F )
      = ( ! [R3: real,S4: real] :
            ( ( ( member_real @ R3 @ A4 )
              & ( member_real @ S4 @ A4 )
              & ( Less @ R3 @ S4 ) )
           => ( ord_less_real @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.strict_mono_on_def
thf(fact_482_ord_Ostrict__mono__on__def,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > nat] :
      ( ( monotone_on_real_nat @ A4 @ Less @ ord_less_nat @ F )
      = ( ! [R3: real,S4: real] :
            ( ( ( member_real @ R3 @ A4 )
              & ( member_real @ S4 @ A4 )
              & ( Less @ R3 @ S4 ) )
           => ( ord_less_nat @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.strict_mono_on_def
thf(fact_483_ord_Ostrict__mono__on__def,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > nat] :
      ( ( monotone_on_int_nat @ A4 @ Less @ ord_less_nat @ F )
      = ( ! [R3: int,S4: int] :
            ( ( ( member_int @ R3 @ A4 )
              & ( member_int @ S4 @ A4 )
              & ( Less @ R3 @ S4 ) )
           => ( ord_less_nat @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.strict_mono_on_def
thf(fact_484_ord_Ostrict__mono__on__def,axiom,
    ! [A4: set_real,Less: real > real > $o,F: real > int] :
      ( ( monotone_on_real_int @ A4 @ Less @ ord_less_int @ F )
      = ( ! [R3: real,S4: real] :
            ( ( ( member_real @ R3 @ A4 )
              & ( member_real @ S4 @ A4 )
              & ( Less @ R3 @ S4 ) )
           => ( ord_less_int @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.strict_mono_on_def
thf(fact_485_ord_Ostrict__mono__on__def,axiom,
    ! [A4: set_int,Less: int > int > $o,F: int > int] :
      ( ( monotone_on_int_int @ A4 @ Less @ ord_less_int @ F )
      = ( ! [R3: int,S4: int] :
            ( ( ( member_int @ R3 @ A4 )
              & ( member_int @ S4 @ A4 )
              & ( Less @ R3 @ S4 ) )
           => ( ord_less_int @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.strict_mono_on_def
thf(fact_486_strict__mono__onD,axiom,
    ! [A4: set_real,F: real > real,R: real,S2: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_real @ ord_less_real @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( ord_less_real @ R @ S2 )
           => ( ord_less_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_487_strict__mono__onD,axiom,
    ! [A4: set_real,F: real > nat,R: real,S2: real] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_real @ ord_less_nat @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( ord_less_real @ R @ S2 )
           => ( ord_less_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_488_strict__mono__onD,axiom,
    ! [A4: set_real,F: real > int,R: real,S2: real] :
      ( ( monotone_on_real_int @ A4 @ ord_less_real @ ord_less_int @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( ord_less_real @ R @ S2 )
           => ( ord_less_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_489_strict__mono__onD,axiom,
    ! [A4: set_nat,F: nat > real,R: nat,S2: nat] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_nat @ ord_less_real @ F )
     => ( ( member_nat @ R @ A4 )
       => ( ( member_nat @ S2 @ A4 )
         => ( ( ord_less_nat @ R @ S2 )
           => ( ord_less_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_490_strict__mono__onD,axiom,
    ! [A4: set_nat,F: nat > nat,R: nat,S2: nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_nat @ ord_less_nat @ F )
     => ( ( member_nat @ R @ A4 )
       => ( ( member_nat @ S2 @ A4 )
         => ( ( ord_less_nat @ R @ S2 )
           => ( ord_less_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_491_strict__mono__onD,axiom,
    ! [A4: set_nat,F: nat > int,R: nat,S2: nat] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_nat @ ord_less_int @ F )
     => ( ( member_nat @ R @ A4 )
       => ( ( member_nat @ S2 @ A4 )
         => ( ( ord_less_nat @ R @ S2 )
           => ( ord_less_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_492_strict__mono__onD,axiom,
    ! [A4: set_int,F: int > real,R: int,S2: int] :
      ( ( monotone_on_int_real @ A4 @ ord_less_int @ ord_less_real @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( ord_less_int @ R @ S2 )
           => ( ord_less_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_493_strict__mono__onD,axiom,
    ! [A4: set_int,F: int > nat,R: int,S2: int] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_int @ ord_less_nat @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( ord_less_int @ R @ S2 )
           => ( ord_less_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_494_strict__mono__onD,axiom,
    ! [A4: set_int,F: int > int,R: int,S2: int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_int @ ord_less_int @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( ord_less_int @ R @ S2 )
           => ( ord_less_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% strict_mono_onD
thf(fact_495_strict__mono__onI,axiom,
    ! [A4: set_real,F: real > real] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( ord_less_real @ R2 @ S3 )
             => ( ord_less_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monoto4017252874604999745l_real @ A4 @ ord_less_real @ ord_less_real @ F ) ) ).

% strict_mono_onI
thf(fact_496_strict__mono__onI,axiom,
    ! [A4: set_real,F: real > nat] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( ord_less_real @ R2 @ S3 )
             => ( ord_less_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_nat @ A4 @ ord_less_real @ ord_less_nat @ F ) ) ).

% strict_mono_onI
thf(fact_497_strict__mono__onI,axiom,
    ! [A4: set_real,F: real > int] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( ord_less_real @ R2 @ S3 )
             => ( ord_less_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_int @ A4 @ ord_less_real @ ord_less_int @ F ) ) ).

% strict_mono_onI
thf(fact_498_strict__mono__onI,axiom,
    ! [A4: set_nat,F: nat > real] :
      ( ! [R2: nat,S3: nat] :
          ( ( member_nat @ R2 @ A4 )
         => ( ( member_nat @ S3 @ A4 )
           => ( ( ord_less_nat @ R2 @ S3 )
             => ( ord_less_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_nat_real @ A4 @ ord_less_nat @ ord_less_real @ F ) ) ).

% strict_mono_onI
thf(fact_499_strict__mono__onI,axiom,
    ! [A4: set_nat,F: nat > nat] :
      ( ! [R2: nat,S3: nat] :
          ( ( member_nat @ R2 @ A4 )
         => ( ( member_nat @ S3 @ A4 )
           => ( ( ord_less_nat @ R2 @ S3 )
             => ( ord_less_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_nat_nat @ A4 @ ord_less_nat @ ord_less_nat @ F ) ) ).

% strict_mono_onI
thf(fact_500_strict__mono__onI,axiom,
    ! [A4: set_nat,F: nat > int] :
      ( ! [R2: nat,S3: nat] :
          ( ( member_nat @ R2 @ A4 )
         => ( ( member_nat @ S3 @ A4 )
           => ( ( ord_less_nat @ R2 @ S3 )
             => ( ord_less_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_nat_int @ A4 @ ord_less_nat @ ord_less_int @ F ) ) ).

% strict_mono_onI
thf(fact_501_strict__mono__onI,axiom,
    ! [A4: set_int,F: int > real] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( ord_less_int @ R2 @ S3 )
             => ( ord_less_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_real @ A4 @ ord_less_int @ ord_less_real @ F ) ) ).

% strict_mono_onI
thf(fact_502_strict__mono__onI,axiom,
    ! [A4: set_int,F: int > nat] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( ord_less_int @ R2 @ S3 )
             => ( ord_less_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_nat @ A4 @ ord_less_int @ ord_less_nat @ F ) ) ).

% strict_mono_onI
thf(fact_503_strict__mono__onI,axiom,
    ! [A4: set_int,F: int > int] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( ord_less_int @ R2 @ S3 )
             => ( ord_less_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_int @ A4 @ ord_less_int @ ord_less_int @ F ) ) ).

% strict_mono_onI
thf(fact_504_psubsetD,axiom,
    ! [A4: set_real,B5: set_real,C: real] :
      ( ( ord_less_set_real @ A4 @ B5 )
     => ( ( member_real @ C @ A4 )
       => ( member_real @ C @ B5 ) ) ) ).

% psubsetD
thf(fact_505_psubsetD,axiom,
    ! [A4: set_int,B5: set_int,C: int] :
      ( ( ord_less_set_int @ A4 @ B5 )
     => ( ( member_int @ C @ A4 )
       => ( member_int @ C @ B5 ) ) ) ).

% psubsetD
thf(fact_506_strict__mono__on__eqD,axiom,
    ! [A4: set_real,F: real > real,X: real,Y: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_real @ ord_less_real @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_real @ X @ A4 )
         => ( ( member_real @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_507_strict__mono__on__eqD,axiom,
    ! [A4: set_real,F: real > nat,X: real,Y: real] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_real @ ord_less_nat @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_real @ X @ A4 )
         => ( ( member_real @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_508_strict__mono__on__eqD,axiom,
    ! [A4: set_real,F: real > int,X: real,Y: real] :
      ( ( monotone_on_real_int @ A4 @ ord_less_real @ ord_less_int @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_real @ X @ A4 )
         => ( ( member_real @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_509_strict__mono__on__eqD,axiom,
    ! [A4: set_nat,F: nat > real,X: nat,Y: nat] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_nat @ ord_less_real @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_nat @ X @ A4 )
         => ( ( member_nat @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_510_strict__mono__on__eqD,axiom,
    ! [A4: set_nat,F: nat > nat,X: nat,Y: nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_nat @ ord_less_nat @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_nat @ X @ A4 )
         => ( ( member_nat @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_511_strict__mono__on__eqD,axiom,
    ! [A4: set_nat,F: nat > int,X: nat,Y: nat] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_nat @ ord_less_int @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_nat @ X @ A4 )
         => ( ( member_nat @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_512_strict__mono__on__eqD,axiom,
    ! [A4: set_int,F: int > real,X: int,Y: int] :
      ( ( monotone_on_int_real @ A4 @ ord_less_int @ ord_less_real @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_int @ X @ A4 )
         => ( ( member_int @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_513_strict__mono__on__eqD,axiom,
    ! [A4: set_int,F: int > nat,X: int,Y: int] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_int @ ord_less_nat @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_int @ X @ A4 )
         => ( ( member_int @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_514_strict__mono__on__eqD,axiom,
    ! [A4: set_int,F: int > int,X: int,Y: int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_int @ ord_less_int @ F )
     => ( ( ( F @ X )
          = ( F @ Y ) )
       => ( ( member_int @ X @ A4 )
         => ( ( member_int @ Y @ A4 )
           => ( Y = X ) ) ) ) ) ).

% strict_mono_on_eqD
thf(fact_515_mono__onI,axiom,
    ! [A4: set_real,F: real > real] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( ord_less_eq_real @ R2 @ S3 )
             => ( ord_less_eq_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monoto4017252874604999745l_real @ A4 @ ord_less_eq_real @ ord_less_eq_real @ F ) ) ).

% mono_onI
thf(fact_516_mono__onI,axiom,
    ! [A4: set_real,F: real > nat] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( ord_less_eq_real @ R2 @ S3 )
             => ( ord_less_eq_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_nat @ A4 @ ord_less_eq_real @ ord_less_eq_nat @ F ) ) ).

% mono_onI
thf(fact_517_mono__onI,axiom,
    ! [A4: set_real,F: real > int] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( ord_less_eq_real @ R2 @ S3 )
             => ( ord_less_eq_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_int @ A4 @ ord_less_eq_real @ ord_less_eq_int @ F ) ) ).

% mono_onI
thf(fact_518_mono__onI,axiom,
    ! [A4: set_nat,F: nat > real] :
      ( ! [R2: nat,S3: nat] :
          ( ( member_nat @ R2 @ A4 )
         => ( ( member_nat @ S3 @ A4 )
           => ( ( ord_less_eq_nat @ R2 @ S3 )
             => ( ord_less_eq_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_nat_real @ A4 @ ord_less_eq_nat @ ord_less_eq_real @ F ) ) ).

% mono_onI
thf(fact_519_mono__onI,axiom,
    ! [A4: set_nat,F: nat > nat] :
      ( ! [R2: nat,S3: nat] :
          ( ( member_nat @ R2 @ A4 )
         => ( ( member_nat @ S3 @ A4 )
           => ( ( ord_less_eq_nat @ R2 @ S3 )
             => ( ord_less_eq_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_nat_nat @ A4 @ ord_less_eq_nat @ ord_less_eq_nat @ F ) ) ).

% mono_onI
thf(fact_520_mono__onI,axiom,
    ! [A4: set_nat,F: nat > int] :
      ( ! [R2: nat,S3: nat] :
          ( ( member_nat @ R2 @ A4 )
         => ( ( member_nat @ S3 @ A4 )
           => ( ( ord_less_eq_nat @ R2 @ S3 )
             => ( ord_less_eq_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_nat_int @ A4 @ ord_less_eq_nat @ ord_less_eq_int @ F ) ) ).

% mono_onI
thf(fact_521_mono__onI,axiom,
    ! [A4: set_int,F: int > real] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( ord_less_eq_int @ R2 @ S3 )
             => ( ord_less_eq_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_real @ A4 @ ord_less_eq_int @ ord_less_eq_real @ F ) ) ).

% mono_onI
thf(fact_522_mono__onI,axiom,
    ! [A4: set_int,F: int > nat] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( ord_less_eq_int @ R2 @ S3 )
             => ( ord_less_eq_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_nat @ A4 @ ord_less_eq_int @ ord_less_eq_nat @ F ) ) ).

% mono_onI
thf(fact_523_mono__onI,axiom,
    ! [A4: set_int,F: int > int] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( ord_less_eq_int @ R2 @ S3 )
             => ( ord_less_eq_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_int @ A4 @ ord_less_eq_int @ ord_less_eq_int @ F ) ) ).

% mono_onI
thf(fact_524_mono__onD,axiom,
    ! [A4: set_real,F: real > real,R: real,S2: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_eq_real @ ord_less_eq_real @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( ord_less_eq_real @ R @ S2 )
           => ( ord_less_eq_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_525_mono__onD,axiom,
    ! [A4: set_real,F: real > nat,R: real,S2: real] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_eq_real @ ord_less_eq_nat @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( ord_less_eq_real @ R @ S2 )
           => ( ord_less_eq_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_526_mono__onD,axiom,
    ! [A4: set_real,F: real > int,R: real,S2: real] :
      ( ( monotone_on_real_int @ A4 @ ord_less_eq_real @ ord_less_eq_int @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( ord_less_eq_real @ R @ S2 )
           => ( ord_less_eq_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_527_mono__onD,axiom,
    ! [A4: set_nat,F: nat > real,R: nat,S2: nat] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_eq_nat @ ord_less_eq_real @ F )
     => ( ( member_nat @ R @ A4 )
       => ( ( member_nat @ S2 @ A4 )
         => ( ( ord_less_eq_nat @ R @ S2 )
           => ( ord_less_eq_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_528_mono__onD,axiom,
    ! [A4: set_nat,F: nat > nat,R: nat,S2: nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_eq_nat @ ord_less_eq_nat @ F )
     => ( ( member_nat @ R @ A4 )
       => ( ( member_nat @ S2 @ A4 )
         => ( ( ord_less_eq_nat @ R @ S2 )
           => ( ord_less_eq_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_529_mono__onD,axiom,
    ! [A4: set_nat,F: nat > int,R: nat,S2: nat] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_eq_nat @ ord_less_eq_int @ F )
     => ( ( member_nat @ R @ A4 )
       => ( ( member_nat @ S2 @ A4 )
         => ( ( ord_less_eq_nat @ R @ S2 )
           => ( ord_less_eq_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_530_mono__onD,axiom,
    ! [A4: set_int,F: int > real,R: int,S2: int] :
      ( ( monotone_on_int_real @ A4 @ ord_less_eq_int @ ord_less_eq_real @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( ord_less_eq_int @ R @ S2 )
           => ( ord_less_eq_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_531_mono__onD,axiom,
    ! [A4: set_int,F: int > nat,R: int,S2: int] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_eq_int @ ord_less_eq_nat @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( ord_less_eq_int @ R @ S2 )
           => ( ord_less_eq_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_532_mono__onD,axiom,
    ! [A4: set_int,F: int > int,R: int,S2: int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_eq_int @ ord_less_eq_int @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( ord_less_eq_int @ R @ S2 )
           => ( ord_less_eq_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% mono_onD
thf(fact_533_ord_Omono__on__def,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > real] :
      ( ( monotone_on_int_real @ A4 @ Less_eq @ ord_less_eq_real @ F )
      = ( ! [R3: int,S4: int] :
            ( ( ( member_int @ R3 @ A4 )
              & ( member_int @ S4 @ A4 )
              & ( Less_eq @ R3 @ S4 ) )
           => ( ord_less_eq_real @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.mono_on_def
thf(fact_534_ord_Omono__on__def,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Less_eq @ ord_less_eq_real @ F )
      = ( ! [R3: real,S4: real] :
            ( ( ( member_real @ R3 @ A4 )
              & ( member_real @ S4 @ A4 )
              & ( Less_eq @ R3 @ S4 ) )
           => ( ord_less_eq_real @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.mono_on_def
thf(fact_535_ord_Omono__on__def,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > nat] :
      ( ( monotone_on_real_nat @ A4 @ Less_eq @ ord_less_eq_nat @ F )
      = ( ! [R3: real,S4: real] :
            ( ( ( member_real @ R3 @ A4 )
              & ( member_real @ S4 @ A4 )
              & ( Less_eq @ R3 @ S4 ) )
           => ( ord_less_eq_nat @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.mono_on_def
thf(fact_536_ord_Omono__on__def,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > nat] :
      ( ( monotone_on_int_nat @ A4 @ Less_eq @ ord_less_eq_nat @ F )
      = ( ! [R3: int,S4: int] :
            ( ( ( member_int @ R3 @ A4 )
              & ( member_int @ S4 @ A4 )
              & ( Less_eq @ R3 @ S4 ) )
           => ( ord_less_eq_nat @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.mono_on_def
thf(fact_537_ord_Omono__on__def,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > int] :
      ( ( monotone_on_real_int @ A4 @ Less_eq @ ord_less_eq_int @ F )
      = ( ! [R3: real,S4: real] :
            ( ( ( member_real @ R3 @ A4 )
              & ( member_real @ S4 @ A4 )
              & ( Less_eq @ R3 @ S4 ) )
           => ( ord_less_eq_int @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.mono_on_def
thf(fact_538_ord_Omono__on__def,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > int] :
      ( ( monotone_on_int_int @ A4 @ Less_eq @ ord_less_eq_int @ F )
      = ( ! [R3: int,S4: int] :
            ( ( ( member_int @ R3 @ A4 )
              & ( member_int @ S4 @ A4 )
              & ( Less_eq @ R3 @ S4 ) )
           => ( ord_less_eq_int @ ( F @ R3 ) @ ( F @ S4 ) ) ) ) ) ).

% ord.mono_on_def
thf(fact_539_ord_Omono__onI,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > real] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( Less_eq @ R2 @ S3 )
             => ( ord_less_eq_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_real @ A4 @ Less_eq @ ord_less_eq_real @ F ) ) ).

% ord.mono_onI
thf(fact_540_ord_Omono__onI,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > real] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( Less_eq @ R2 @ S3 )
             => ( ord_less_eq_real @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monoto4017252874604999745l_real @ A4 @ Less_eq @ ord_less_eq_real @ F ) ) ).

% ord.mono_onI
thf(fact_541_ord_Omono__onI,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > nat] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( Less_eq @ R2 @ S3 )
             => ( ord_less_eq_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_nat @ A4 @ Less_eq @ ord_less_eq_nat @ F ) ) ).

% ord.mono_onI
thf(fact_542_ord_Omono__onI,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > nat] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( Less_eq @ R2 @ S3 )
             => ( ord_less_eq_nat @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_nat @ A4 @ Less_eq @ ord_less_eq_nat @ F ) ) ).

% ord.mono_onI
thf(fact_543_ord_Omono__onI,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > int] :
      ( ! [R2: real,S3: real] :
          ( ( member_real @ R2 @ A4 )
         => ( ( member_real @ S3 @ A4 )
           => ( ( Less_eq @ R2 @ S3 )
             => ( ord_less_eq_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_real_int @ A4 @ Less_eq @ ord_less_eq_int @ F ) ) ).

% ord.mono_onI
thf(fact_544_ord_Omono__onI,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > int] :
      ( ! [R2: int,S3: int] :
          ( ( member_int @ R2 @ A4 )
         => ( ( member_int @ S3 @ A4 )
           => ( ( Less_eq @ R2 @ S3 )
             => ( ord_less_eq_int @ ( F @ R2 ) @ ( F @ S3 ) ) ) ) )
     => ( monotone_on_int_int @ A4 @ Less_eq @ ord_less_eq_int @ F ) ) ).

% ord.mono_onI
thf(fact_545_ord_Omono__onD,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > real,R: int,S2: int] :
      ( ( monotone_on_int_real @ A4 @ Less_eq @ ord_less_eq_real @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( Less_eq @ R @ S2 )
           => ( ord_less_eq_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.mono_onD
thf(fact_546_ord_Omono__onD,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > real,R: real,S2: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Less_eq @ ord_less_eq_real @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( Less_eq @ R @ S2 )
           => ( ord_less_eq_real @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.mono_onD
thf(fact_547_ord_Omono__onD,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > nat,R: real,S2: real] :
      ( ( monotone_on_real_nat @ A4 @ Less_eq @ ord_less_eq_nat @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( Less_eq @ R @ S2 )
           => ( ord_less_eq_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.mono_onD
thf(fact_548_ord_Omono__onD,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > nat,R: int,S2: int] :
      ( ( monotone_on_int_nat @ A4 @ Less_eq @ ord_less_eq_nat @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( Less_eq @ R @ S2 )
           => ( ord_less_eq_nat @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.mono_onD
thf(fact_549_ord_Omono__onD,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > int,R: real,S2: real] :
      ( ( monotone_on_real_int @ A4 @ Less_eq @ ord_less_eq_int @ F )
     => ( ( member_real @ R @ A4 )
       => ( ( member_real @ S2 @ A4 )
         => ( ( Less_eq @ R @ S2 )
           => ( ord_less_eq_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.mono_onD
thf(fact_550_ord_Omono__onD,axiom,
    ! [A4: set_int,Less_eq: int > int > $o,F: int > int,R: int,S2: int] :
      ( ( monotone_on_int_int @ A4 @ Less_eq @ ord_less_eq_int @ F )
     => ( ( member_int @ R @ A4 )
       => ( ( member_int @ S2 @ A4 )
         => ( ( Less_eq @ R @ S2 )
           => ( ord_less_eq_int @ ( F @ R ) @ ( F @ S2 ) ) ) ) ) ) ).

% ord.mono_onD
thf(fact_551_monotone__on__subset,axiom,
    ! [A4: set_real,Orda: real > real > $o,Ordb: real > real > $o,F: real > real,B5: set_real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Orda @ Ordb @ F )
     => ( ( ord_less_eq_set_real @ B5 @ A4 )
       => ( monoto4017252874604999745l_real @ B5 @ Orda @ Ordb @ F ) ) ) ).

% monotone_on_subset
thf(fact_552_monotone__on__def,axiom,
    ( monoto4017252874604999745l_real
    = ( ^ [A6: set_real,Orda2: real > real > $o,Ordb2: real > real > $o,F3: real > real] :
        ! [X4: real] :
          ( ( member_real @ X4 @ A6 )
         => ! [Y4: real] :
              ( ( member_real @ Y4 @ A6 )
             => ( ( Orda2 @ X4 @ Y4 )
               => ( Ordb2 @ ( F3 @ X4 ) @ ( F3 @ Y4 ) ) ) ) ) ) ) ).

% monotone_on_def
thf(fact_553_monotone__onI,axiom,
    ! [A4: set_real,Orda: real > real > $o,Ordb: real > real > $o,F: real > real] :
      ( ! [X3: real,Y2: real] :
          ( ( member_real @ X3 @ A4 )
         => ( ( member_real @ Y2 @ A4 )
           => ( ( Orda @ X3 @ Y2 )
             => ( Ordb @ ( F @ X3 ) @ ( F @ Y2 ) ) ) ) )
     => ( monoto4017252874604999745l_real @ A4 @ Orda @ Ordb @ F ) ) ).

% monotone_onI
thf(fact_554_monotone__onD,axiom,
    ! [A4: set_real,Orda: real > real > $o,Ordb: real > real > $o,F: real > real,X: real,Y: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Orda @ Ordb @ F )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( Orda @ X @ Y )
           => ( Ordb @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% monotone_onD
thf(fact_555_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M3: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M3 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X2: nat] :
                    ( ( P @ X2 )
                   => ( ord_less_eq_nat @ X2 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_556_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_real,F: real > real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_real @ ord_less_real @ F )
     => ( monoto4017252874604999745l_real @ A4 @ ord_less_eq_real @ ord_less_eq_real @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_557_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_real,F: real > nat] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_real @ ord_less_nat @ F )
     => ( monotone_on_real_nat @ A4 @ ord_less_eq_real @ ord_less_eq_nat @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_558_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_real,F: real > int] :
      ( ( monotone_on_real_int @ A4 @ ord_less_real @ ord_less_int @ F )
     => ( monotone_on_real_int @ A4 @ ord_less_eq_real @ ord_less_eq_int @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_559_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_nat,F: nat > real] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_nat @ ord_less_real @ F )
     => ( monotone_on_nat_real @ A4 @ ord_less_eq_nat @ ord_less_eq_real @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_560_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_nat,F: nat > nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_nat @ ord_less_nat @ F )
     => ( monotone_on_nat_nat @ A4 @ ord_less_eq_nat @ ord_less_eq_nat @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_561_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_nat,F: nat > int] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_nat @ ord_less_int @ F )
     => ( monotone_on_nat_int @ A4 @ ord_less_eq_nat @ ord_less_eq_int @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_562_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_int,F: int > real] :
      ( ( monotone_on_int_real @ A4 @ ord_less_int @ ord_less_real @ F )
     => ( monotone_on_int_real @ A4 @ ord_less_eq_int @ ord_less_eq_real @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_563_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_int,F: int > nat] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_int @ ord_less_nat @ F )
     => ( monotone_on_int_nat @ A4 @ ord_less_eq_int @ ord_less_eq_nat @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_564_strict__mono__on__imp__mono__on,axiom,
    ! [A4: set_int,F: int > int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_int @ ord_less_int @ F )
     => ( monotone_on_int_int @ A4 @ ord_less_eq_int @ ord_less_eq_int @ F ) ) ).

% strict_mono_on_imp_mono_on
thf(fact_565_strict__mono__on__leD,axiom,
    ! [A4: set_real,F: real > real,X: real,Y: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_real @ ord_less_real @ F )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( ord_less_eq_real @ X @ Y )
           => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_566_strict__mono__on__leD,axiom,
    ! [A4: set_real,F: real > nat,X: real,Y: real] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_real @ ord_less_nat @ F )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( ord_less_eq_real @ X @ Y )
           => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_567_strict__mono__on__leD,axiom,
    ! [A4: set_real,F: real > int,X: real,Y: real] :
      ( ( monotone_on_real_int @ A4 @ ord_less_real @ ord_less_int @ F )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( ord_less_eq_real @ X @ Y )
           => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_568_strict__mono__on__leD,axiom,
    ! [A4: set_nat,F: nat > real,X: nat,Y: nat] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_nat @ ord_less_real @ F )
     => ( ( member_nat @ X @ A4 )
       => ( ( member_nat @ Y @ A4 )
         => ( ( ord_less_eq_nat @ X @ Y )
           => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_569_strict__mono__on__leD,axiom,
    ! [A4: set_nat,F: nat > nat,X: nat,Y: nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_nat @ ord_less_nat @ F )
     => ( ( member_nat @ X @ A4 )
       => ( ( member_nat @ Y @ A4 )
         => ( ( ord_less_eq_nat @ X @ Y )
           => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_570_strict__mono__on__leD,axiom,
    ! [A4: set_nat,F: nat > int,X: nat,Y: nat] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_nat @ ord_less_int @ F )
     => ( ( member_nat @ X @ A4 )
       => ( ( member_nat @ Y @ A4 )
         => ( ( ord_less_eq_nat @ X @ Y )
           => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_571_strict__mono__on__leD,axiom,
    ! [A4: set_int,F: int > real,X: int,Y: int] :
      ( ( monotone_on_int_real @ A4 @ ord_less_int @ ord_less_real @ F )
     => ( ( member_int @ X @ A4 )
       => ( ( member_int @ Y @ A4 )
         => ( ( ord_less_eq_int @ X @ Y )
           => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_572_strict__mono__on__leD,axiom,
    ! [A4: set_int,F: int > nat,X: int,Y: int] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_int @ ord_less_nat @ F )
     => ( ( member_int @ X @ A4 )
       => ( ( member_int @ Y @ A4 )
         => ( ( ord_less_eq_int @ X @ Y )
           => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_573_strict__mono__on__leD,axiom,
    ! [A4: set_int,F: int > int,X: int,Y: int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_int @ ord_less_int @ F )
     => ( ( member_int @ X @ A4 )
       => ( ( member_int @ Y @ A4 )
         => ( ( ord_less_eq_int @ X @ Y )
           => ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ).

% strict_mono_on_leD
thf(fact_574_mono__on__greaterD,axiom,
    ! [A4: set_real,G: real > real,X: real,Y: real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_eq_real @ ord_less_eq_real @ G )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( ord_less_real @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_real @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_575_mono__on__greaterD,axiom,
    ! [A4: set_real,G: real > nat,X: real,Y: real] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_eq_real @ ord_less_eq_nat @ G )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( ord_less_nat @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_real @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_576_mono__on__greaterD,axiom,
    ! [A4: set_real,G: real > int,X: real,Y: real] :
      ( ( monotone_on_real_int @ A4 @ ord_less_eq_real @ ord_less_eq_int @ G )
     => ( ( member_real @ X @ A4 )
       => ( ( member_real @ Y @ A4 )
         => ( ( ord_less_int @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_real @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_577_mono__on__greaterD,axiom,
    ! [A4: set_nat,G: nat > real,X: nat,Y: nat] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_eq_nat @ ord_less_eq_real @ G )
     => ( ( member_nat @ X @ A4 )
       => ( ( member_nat @ Y @ A4 )
         => ( ( ord_less_real @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_nat @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_578_mono__on__greaterD,axiom,
    ! [A4: set_nat,G: nat > nat,X: nat,Y: nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_eq_nat @ ord_less_eq_nat @ G )
     => ( ( member_nat @ X @ A4 )
       => ( ( member_nat @ Y @ A4 )
         => ( ( ord_less_nat @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_nat @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_579_mono__on__greaterD,axiom,
    ! [A4: set_nat,G: nat > int,X: nat,Y: nat] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_eq_nat @ ord_less_eq_int @ G )
     => ( ( member_nat @ X @ A4 )
       => ( ( member_nat @ Y @ A4 )
         => ( ( ord_less_int @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_nat @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_580_mono__on__greaterD,axiom,
    ! [A4: set_int,G: int > real,X: int,Y: int] :
      ( ( monotone_on_int_real @ A4 @ ord_less_eq_int @ ord_less_eq_real @ G )
     => ( ( member_int @ X @ A4 )
       => ( ( member_int @ Y @ A4 )
         => ( ( ord_less_real @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_int @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_581_mono__on__greaterD,axiom,
    ! [A4: set_int,G: int > nat,X: int,Y: int] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_eq_int @ ord_less_eq_nat @ G )
     => ( ( member_int @ X @ A4 )
       => ( ( member_int @ Y @ A4 )
         => ( ( ord_less_nat @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_int @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_582_mono__on__greaterD,axiom,
    ! [A4: set_int,G: int > int,X: int,Y: int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_eq_int @ ord_less_eq_int @ G )
     => ( ( member_int @ X @ A4 )
       => ( ( member_int @ Y @ A4 )
         => ( ( ord_less_int @ ( G @ Y ) @ ( G @ X ) )
           => ( ord_less_int @ Y @ X ) ) ) ) ) ).

% mono_on_greaterD
thf(fact_583_ord_Omono__on__subset,axiom,
    ! [A4: set_real,Less_eq: real > real > $o,F: real > real,B5: set_real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Less_eq @ ord_less_eq_real @ F )
     => ( ( ord_less_eq_set_real @ B5 @ A4 )
       => ( monoto4017252874604999745l_real @ B5 @ Less_eq @ ord_less_eq_real @ F ) ) ) ).

% ord.mono_on_subset
thf(fact_584_mono__on__subset,axiom,
    ! [A4: set_real,F: real > real,B5: set_real] :
      ( ( monoto4017252874604999745l_real @ A4 @ ord_less_eq_real @ ord_less_eq_real @ F )
     => ( ( ord_less_eq_set_real @ B5 @ A4 )
       => ( monoto4017252874604999745l_real @ B5 @ ord_less_eq_real @ ord_less_eq_real @ F ) ) ) ).

% mono_on_subset
thf(fact_585_mono__on__subset,axiom,
    ! [A4: set_real,F: real > nat,B5: set_real] :
      ( ( monotone_on_real_nat @ A4 @ ord_less_eq_real @ ord_less_eq_nat @ F )
     => ( ( ord_less_eq_set_real @ B5 @ A4 )
       => ( monotone_on_real_nat @ B5 @ ord_less_eq_real @ ord_less_eq_nat @ F ) ) ) ).

% mono_on_subset
thf(fact_586_mono__on__subset,axiom,
    ! [A4: set_real,F: real > int,B5: set_real] :
      ( ( monotone_on_real_int @ A4 @ ord_less_eq_real @ ord_less_eq_int @ F )
     => ( ( ord_less_eq_set_real @ B5 @ A4 )
       => ( monotone_on_real_int @ B5 @ ord_less_eq_real @ ord_less_eq_int @ F ) ) ) ).

% mono_on_subset
thf(fact_587_mono__on__subset,axiom,
    ! [A4: set_nat,F: nat > real,B5: set_nat] :
      ( ( monotone_on_nat_real @ A4 @ ord_less_eq_nat @ ord_less_eq_real @ F )
     => ( ( ord_less_eq_set_nat @ B5 @ A4 )
       => ( monotone_on_nat_real @ B5 @ ord_less_eq_nat @ ord_less_eq_real @ F ) ) ) ).

% mono_on_subset
thf(fact_588_mono__on__subset,axiom,
    ! [A4: set_nat,F: nat > nat,B5: set_nat] :
      ( ( monotone_on_nat_nat @ A4 @ ord_less_eq_nat @ ord_less_eq_nat @ F )
     => ( ( ord_less_eq_set_nat @ B5 @ A4 )
       => ( monotone_on_nat_nat @ B5 @ ord_less_eq_nat @ ord_less_eq_nat @ F ) ) ) ).

% mono_on_subset
thf(fact_589_mono__on__subset,axiom,
    ! [A4: set_nat,F: nat > int,B5: set_nat] :
      ( ( monotone_on_nat_int @ A4 @ ord_less_eq_nat @ ord_less_eq_int @ F )
     => ( ( ord_less_eq_set_nat @ B5 @ A4 )
       => ( monotone_on_nat_int @ B5 @ ord_less_eq_nat @ ord_less_eq_int @ F ) ) ) ).

% mono_on_subset
thf(fact_590_mono__on__subset,axiom,
    ! [A4: set_int,F: int > real,B5: set_int] :
      ( ( monotone_on_int_real @ A4 @ ord_less_eq_int @ ord_less_eq_real @ F )
     => ( ( ord_less_eq_set_int @ B5 @ A4 )
       => ( monotone_on_int_real @ B5 @ ord_less_eq_int @ ord_less_eq_real @ F ) ) ) ).

% mono_on_subset
thf(fact_591_mono__on__subset,axiom,
    ! [A4: set_int,F: int > nat,B5: set_int] :
      ( ( monotone_on_int_nat @ A4 @ ord_less_eq_int @ ord_less_eq_nat @ F )
     => ( ( ord_less_eq_set_int @ B5 @ A4 )
       => ( monotone_on_int_nat @ B5 @ ord_less_eq_int @ ord_less_eq_nat @ F ) ) ) ).

% mono_on_subset
thf(fact_592_mono__on__subset,axiom,
    ! [A4: set_int,F: int > int,B5: set_int] :
      ( ( monotone_on_int_int @ A4 @ ord_less_eq_int @ ord_less_eq_int @ F )
     => ( ( ord_less_eq_set_int @ B5 @ A4 )
       => ( monotone_on_int_int @ B5 @ ord_less_eq_int @ ord_less_eq_int @ F ) ) ) ).

% mono_on_subset
thf(fact_593_monotone__on__o,axiom,
    ! [A4: set_real,Orda: real > real > $o,Ordb: real > real > $o,F: real > real,B5: set_real,Ordc: real > real > $o,G: real > real] :
      ( ( monoto4017252874604999745l_real @ A4 @ Orda @ Ordb @ F )
     => ( ( monoto4017252874604999745l_real @ B5 @ Ordc @ Orda @ G )
       => ( ( ord_less_eq_set_real @ ( image_real_real @ G @ B5 ) @ A4 )
         => ( monoto4017252874604999745l_real @ B5 @ Ordc @ Ordb @ ( comp_real_real_real @ F @ G ) ) ) ) ) ).

% monotone_on_o
thf(fact_594_rev__image__eqI,axiom,
    ! [X: real,A4: set_real,B: real,F: real > real] :
      ( ( member_real @ X @ A4 )
     => ( ( B
          = ( F @ X ) )
       => ( member_real @ B @ ( image_real_real @ F @ A4 ) ) ) ) ).

% rev_image_eqI
thf(fact_595_rev__image__eqI,axiom,
    ! [X: real,A4: set_real,B: int,F: real > int] :
      ( ( member_real @ X @ A4 )
     => ( ( B
          = ( F @ X ) )
       => ( member_int @ B @ ( image_real_int @ F @ A4 ) ) ) ) ).

% rev_image_eqI
thf(fact_596_rev__image__eqI,axiom,
    ! [X: int,A4: set_int,B: real,F: int > real] :
      ( ( member_int @ X @ A4 )
     => ( ( B
          = ( F @ X ) )
       => ( member_real @ B @ ( image_int_real @ F @ A4 ) ) ) ) ).

% rev_image_eqI
thf(fact_597_rev__image__eqI,axiom,
    ! [X: int,A4: set_int,B: int,F: int > int] :
      ( ( member_int @ X @ A4 )
     => ( ( B
          = ( F @ X ) )
       => ( member_int @ B @ ( image_int_int @ F @ A4 ) ) ) ) ).

% rev_image_eqI
thf(fact_598_ball__imageD,axiom,
    ! [F: real > real,A4: set_real,P: real > $o] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ ( image_real_real @ F @ A4 ) )
         => ( P @ X3 ) )
     => ! [X2: real] :
          ( ( member_real @ X2 @ A4 )
         => ( P @ ( F @ X2 ) ) ) ) ).

% ball_imageD
thf(fact_599_image__cong,axiom,
    ! [M3: set_real,N5: set_real,F: real > real,G: real > real] :
      ( ( M3 = N5 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ N5 )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_real_real @ F @ M3 )
          = ( image_real_real @ G @ N5 ) ) ) ) ).

% image_cong
thf(fact_600_bex__imageD,axiom,
    ! [F: real > real,A4: set_real,P: real > $o] :
      ( ? [X2: real] :
          ( ( member_real @ X2 @ ( image_real_real @ F @ A4 ) )
          & ( P @ X2 ) )
     => ? [X3: real] :
          ( ( member_real @ X3 @ A4 )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_601_image__iff,axiom,
    ! [Z2: real,F: real > real,A4: set_real] :
      ( ( member_real @ Z2 @ ( image_real_real @ F @ A4 ) )
      = ( ? [X4: real] :
            ( ( member_real @ X4 @ A4 )
            & ( Z2
              = ( F @ X4 ) ) ) ) ) ).

% image_iff
thf(fact_602_imageI,axiom,
    ! [X: real,A4: set_real,F: real > real] :
      ( ( member_real @ X @ A4 )
     => ( member_real @ ( F @ X ) @ ( image_real_real @ F @ A4 ) ) ) ).

% imageI
thf(fact_603_imageI,axiom,
    ! [X: real,A4: set_real,F: real > int] :
      ( ( member_real @ X @ A4 )
     => ( member_int @ ( F @ X ) @ ( image_real_int @ F @ A4 ) ) ) ).

% imageI
thf(fact_604_imageI,axiom,
    ! [X: int,A4: set_int,F: int > real] :
      ( ( member_int @ X @ A4 )
     => ( member_real @ ( F @ X ) @ ( image_int_real @ F @ A4 ) ) ) ).

% imageI
thf(fact_605_imageI,axiom,
    ! [X: int,A4: set_int,F: int > int] :
      ( ( member_int @ X @ A4 )
     => ( member_int @ ( F @ X ) @ ( image_int_int @ F @ A4 ) ) ) ).

% imageI
thf(fact_606_Sup_OSUP__cong,axiom,
    ! [A4: set_real,B5: set_real,C3: real > real,D3: real > real,Sup: set_real > real] :
      ( ( A4 = B5 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ B5 )
           => ( ( C3 @ X3 )
              = ( D3 @ X3 ) ) )
       => ( ( Sup @ ( image_real_real @ C3 @ A4 ) )
          = ( Sup @ ( image_real_real @ D3 @ B5 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_607_Inf_OINF__cong,axiom,
    ! [A4: set_real,B5: set_real,C3: real > real,D3: real > real,Inf: set_real > real] :
      ( ( A4 = B5 )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ B5 )
           => ( ( C3 @ X3 )
              = ( D3 @ X3 ) ) )
       => ( ( Inf @ ( image_real_real @ C3 @ A4 ) )
          = ( Inf @ ( image_real_real @ D3 @ B5 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_608_in__mono,axiom,
    ! [A4: set_real,B5: set_real,X: real] :
      ( ( ord_less_eq_set_real @ A4 @ B5 )
     => ( ( member_real @ X @ A4 )
       => ( member_real @ X @ B5 ) ) ) ).

% in_mono
thf(fact_609_in__mono,axiom,
    ! [A4: set_int,B5: set_int,X: int] :
      ( ( ord_less_eq_set_int @ A4 @ B5 )
     => ( ( member_int @ X @ A4 )
       => ( member_int @ X @ B5 ) ) ) ).

% in_mono
thf(fact_610_subsetD,axiom,
    ! [A4: set_real,B5: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A4 @ B5 )
     => ( ( member_real @ C @ A4 )
       => ( member_real @ C @ B5 ) ) ) ).

% subsetD
thf(fact_611_subsetD,axiom,
    ! [A4: set_int,B5: set_int,C: int] :
      ( ( ord_less_eq_set_int @ A4 @ B5 )
     => ( ( member_int @ C @ A4 )
       => ( member_int @ C @ B5 ) ) ) ).

% subsetD
thf(fact_612_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
        ! [X4: real] :
          ( ( member_real @ X4 @ A6 )
         => ( member_real @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_613_subset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A6: set_int,B6: set_int] :
        ! [X4: int] :
          ( ( member_int @ X4 @ A6 )
         => ( member_int @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_614_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
        ! [T3: real] :
          ( ( member_real @ T3 @ A6 )
         => ( member_real @ T3 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_615_subset__iff,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A6: set_int,B6: set_int] :
        ! [T3: int] :
          ( ( member_int @ T3 @ A6 )
         => ( member_int @ T3 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_616_comp__eq__dest__lhs,axiom,
    ! [A: real > real,B: real > real,C: real > real,V: real] :
      ( ( ( comp_real_real_real @ A @ B )
        = C )
     => ( ( A @ ( B @ V ) )
        = ( C @ V ) ) ) ).

% comp_eq_dest_lhs
thf(fact_617_comp__eq__elim,axiom,
    ! [A: real > real,B: real > real,C: real > real,D: real > real] :
      ( ( ( comp_real_real_real @ A @ B )
        = ( comp_real_real_real @ C @ D ) )
     => ! [V2: real] :
          ( ( A @ ( B @ V2 ) )
          = ( C @ ( D @ V2 ) ) ) ) ).

% comp_eq_elim
thf(fact_618_comp__eq__dest,axiom,
    ! [A: real > real,B: real > real,C: real > real,D: real > real,V: real] :
      ( ( ( comp_real_real_real @ A @ B )
        = ( comp_real_real_real @ C @ D ) )
     => ( ( A @ ( B @ V ) )
        = ( C @ ( D @ V ) ) ) ) ).

% comp_eq_dest
thf(fact_619_comp__assoc,axiom,
    ! [F: real > real,G: real > real,H: real > real] :
      ( ( comp_real_real_real @ ( comp_real_real_real @ F @ G ) @ H )
      = ( comp_real_real_real @ F @ ( comp_real_real_real @ G @ H ) ) ) ).

% comp_assoc
thf(fact_620_comp__def,axiom,
    ( comp_real_real_real
    = ( ^ [F3: real > real,G2: real > real,X4: real] : ( F3 @ ( G2 @ X4 ) ) ) ) ).

% comp_def
thf(fact_621_strict__mono__image__endpoints,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( monoto4017252874604999745l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ord_less_real @ ord_less_real @ F )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
            = ( set_or1222579329274155063t_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ) ).

% strict_mono_image_endpoints
thf(fact_622_strict__mono__image__endpoints,axiom,
    ! [A: real,B: real,F: real > nat] :
      ( ( monotone_on_real_nat @ ( set_or1222579329274155063t_real @ A @ B ) @ ord_less_real @ ord_less_nat @ F )
     => ( ( topolo2287203362918339196al_nat @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( image_real_nat @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
            = ( set_or1269000886237332187st_nat @ ( F @ A ) @ ( F @ B ) ) ) ) ) ) ).

% strict_mono_image_endpoints
thf(fact_623_strict__mono__image__endpoints,axiom,
    ! [A: real,B: real,F: real > int] :
      ( ( monotone_on_real_int @ ( set_or1222579329274155063t_real @ A @ B ) @ ord_less_real @ ord_less_int @ F )
     => ( ( topolo2284712892409288920al_int @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ( image_real_int @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
            = ( set_or1266510415728281911st_int @ ( F @ A ) @ ( F @ B ) ) ) ) ) ) ).

% strict_mono_image_endpoints
thf(fact_624_strict__mono__continuous__invD,axiom,
    ! [A: real,F: real > real,G: real > real] :
      ( ( monoto4017252874604999745l_real @ ( set_ord_atLeast_real @ A ) @ ord_less_real @ ord_less_real @ F )
     => ( ( topolo5044208981011980120l_real @ ( set_ord_atLeast_real @ A ) @ F )
       => ( ( ( image_real_real @ F @ ( set_ord_atLeast_real @ A ) )
            = ( set_ord_atLeast_real @ ( F @ A ) ) )
         => ( ! [X3: real] :
                ( ( ord_less_eq_real @ A @ X3 )
               => ( ( G @ ( F @ X3 ) )
                  = X3 ) )
           => ( topolo5044208981011980120l_real @ ( set_ord_atLeast_real @ ( F @ A ) ) @ G ) ) ) ) ) ).

% strict_mono_continuous_invD
thf(fact_625_image__mono,axiom,
    ! [A4: set_real,B5: set_real,F: real > real] :
      ( ( ord_less_eq_set_real @ A4 @ B5 )
     => ( ord_less_eq_set_real @ ( image_real_real @ F @ A4 ) @ ( image_real_real @ F @ B5 ) ) ) ).

% image_mono
thf(fact_626_image__subsetI,axiom,
    ! [A4: set_real,F: real > real,B5: set_real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A4 )
         => ( member_real @ ( F @ X3 ) @ B5 ) )
     => ( ord_less_eq_set_real @ ( image_real_real @ F @ A4 ) @ B5 ) ) ).

% image_subsetI
thf(fact_627_image__subsetI,axiom,
    ! [A4: set_real,F: real > int,B5: set_int] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A4 )
         => ( member_int @ ( F @ X3 ) @ B5 ) )
     => ( ord_less_eq_set_int @ ( image_real_int @ F @ A4 ) @ B5 ) ) ).

% image_subsetI
thf(fact_628_image__subsetI,axiom,
    ! [A4: set_int,F: int > real,B5: set_real] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A4 )
         => ( member_real @ ( F @ X3 ) @ B5 ) )
     => ( ord_less_eq_set_real @ ( image_int_real @ F @ A4 ) @ B5 ) ) ).

% image_subsetI
thf(fact_629_image__subsetI,axiom,
    ! [A4: set_int,F: int > int,B5: set_int] :
      ( ! [X3: int] :
          ( ( member_int @ X3 @ A4 )
         => ( member_int @ ( F @ X3 ) @ B5 ) )
     => ( ord_less_eq_set_int @ ( image_int_int @ F @ A4 ) @ B5 ) ) ).

% image_subsetI
thf(fact_630_subset__imageE,axiom,
    ! [B5: set_real,F: real > real,A4: set_real] :
      ( ( ord_less_eq_set_real @ B5 @ ( image_real_real @ F @ A4 ) )
     => ~ ! [C4: set_real] :
            ( ( ord_less_eq_set_real @ C4 @ A4 )
           => ( B5
             != ( image_real_real @ F @ C4 ) ) ) ) ).

% subset_imageE
thf(fact_631_image__subset__iff,axiom,
    ! [F: real > real,A4: set_real,B5: set_real] :
      ( ( ord_less_eq_set_real @ ( image_real_real @ F @ A4 ) @ B5 )
      = ( ! [X4: real] :
            ( ( member_real @ X4 @ A4 )
           => ( member_real @ ( F @ X4 ) @ B5 ) ) ) ) ).

% image_subset_iff
thf(fact_632_subset__image__iff,axiom,
    ! [B5: set_real,F: real > real,A4: set_real] :
      ( ( ord_less_eq_set_real @ B5 @ ( image_real_real @ F @ A4 ) )
      = ( ? [AA: set_real] :
            ( ( ord_less_eq_set_real @ AA @ A4 )
            & ( B5
              = ( image_real_real @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_633_Equivalence__Measurable__On__Borel_Ointegrable__on__mono__on,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( monoto4017252874604999745l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ord_less_eq_real @ ord_less_eq_real @ F )
     => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% Equivalence_Measurable_On_Borel.integrable_on_mono_on
thf(fact_634_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_635_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_636_bgauge__existence__lemma,axiom,
    ! [S2: set_real,Q: real > real > $o] :
      ( ( ! [X4: real] :
            ( ( member_real @ X4 @ S2 )
           => ? [D4: real] :
                ( ( ord_less_real @ zero_zero_real @ D4 )
                & ( Q @ D4 @ X4 ) ) ) )
      = ( ! [X4: real] :
          ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ( ( member_real @ X4 @ S2 )
             => ( Q @ D4 @ X4 ) ) ) ) ) ).

% bgauge_existence_lemma
thf(fact_637_bgauge__existence__lemma,axiom,
    ! [S2: set_int,Q: real > int > $o] :
      ( ( ! [X4: int] :
            ( ( member_int @ X4 @ S2 )
           => ? [D4: real] :
                ( ( ord_less_real @ zero_zero_real @ D4 )
                & ( Q @ D4 @ X4 ) ) ) )
      = ( ! [X4: int] :
          ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ( ( member_int @ X4 @ S2 )
             => ( Q @ D4 @ X4 ) ) ) ) ) ).

% bgauge_existence_lemma
thf(fact_638_all__subset__image,axiom,
    ! [F: real > real,A4: set_real,P: set_real > $o] :
      ( ( ! [B6: set_real] :
            ( ( ord_less_eq_set_real @ B6 @ ( image_real_real @ F @ A4 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_real] :
            ( ( ord_less_eq_set_real @ B6 @ A4 )
           => ( P @ ( image_real_real @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_639_del,axiom,
    ! [X6: real,X: real,E: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X6 @ X ) ) @ ( del @ E ) )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ( ( member_real @ X @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) )
         => ( ( member_real @ X6 @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) )
           => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( f @ X6 ) @ ( f @ X ) ) ) @ E ) ) ) ) ) ).

% del
thf(fact_640_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_641_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_642_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_643_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_644_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_645_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_646_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_647_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_648_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_649_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_650_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_651_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_652_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_653_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_654_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_655_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_656_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_657_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_658_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_659_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_660_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_661_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_662_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_663_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_664_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_665__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062del_O_A_092_060lbrakk_062_092_060And_062e_O_A0_A_060_Ae_A_092_060Longrightarrow_062_A0_A_060_Adel_Ae_059_A_092_060And_062e_Ax_Ax_H_O_A_092_060lbrakk_062_092_060bar_062x_H_A_N_Ax_092_060bar_062_A_060_Adel_Ae_059_A0_A_060_Ae_059_Ax_A_092_060in_062_A_1230_O_Oa_125_059_Ax_H_A_092_060in_062_A_1230_O_Oa_125_092_060rbrakk_062_A_092_060Longrightarrow_062_A_092_060bar_062f_Ax_H_A_N_Af_Ax_092_060bar_062_A_060_Ae_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [Del: real > real] :
        ( ! [E3: real] :
            ( ( ord_less_real @ zero_zero_real @ E3 )
           => ( ord_less_real @ zero_zero_real @ ( Del @ E3 ) ) )
       => ~ ! [E3: real,X2: real,X7: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X7 @ X2 ) ) @ ( Del @ E3 ) )
             => ( ( ord_less_real @ zero_zero_real @ E3 )
               => ( ( member_real @ X2 @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) )
                 => ( ( member_real @ X7 @ ( set_or1222579329274155063t_real @ zero_zero_real @ a ) )
                   => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( f @ X7 ) @ ( f @ X2 ) ) ) @ E3 ) ) ) ) ) ) ).

% \<open>\<And>thesis. (\<And>del. \<lbrakk>\<And>e. 0 < e \<Longrightarrow> 0 < del e; \<And>e x x'. \<lbrakk>\<bar>x' - x\<bar> < del e; 0 < e; x \<in> {0..a}; x' \<in> {0..a}\<rbrakk> \<Longrightarrow> \<bar>f x' - f x\<bar> < e\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_666_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_667_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_668_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_669_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_670_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_671_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_672_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_673_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_674_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_675_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_676_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_677_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_678_image__diff__atLeastAtMost,axiom,
    ! [D: real,A: real,B: real] :
      ( ( image_real_real @ ( minus_minus_real @ D ) @ ( set_or1222579329274155063t_real @ A @ B ) )
      = ( set_or1222579329274155063t_real @ ( minus_minus_real @ D @ B ) @ ( minus_minus_real @ D @ A ) ) ) ).

% image_diff_atLeastAtMost
thf(fact_679_image__diff__atLeastAtMost,axiom,
    ! [D: int,A: int,B: int] :
      ( ( image_int_int @ ( minus_minus_int @ D ) @ ( set_or1266510415728281911st_int @ A @ B ) )
      = ( set_or1266510415728281911st_int @ ( minus_minus_int @ D @ B ) @ ( minus_minus_int @ D @ A ) ) ) ).

% image_diff_atLeastAtMost
thf(fact_680_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_681_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_682_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_683_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_684_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_685_gr__implies__not0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_686_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M5: nat] :
                  ( ( ord_less_nat @ M5 @ N3 )
                  & ~ ( P @ M5 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_687_diff__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ A @ C ) )
     => ( B = C ) ) ).

% diff_left_imp_eq
thf(fact_688_diff__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ A @ C ) )
     => ( B = C ) ) ).

% diff_left_imp_eq
thf(fact_689_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_690_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_691_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_692_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_693_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_694_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_695_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_696_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_697_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_698_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_699_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_700_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_701_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_702_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_703_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_704_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_705_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_706_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_707_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_708_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_709_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_710_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_711_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_712_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_713_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_714_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
    = ( ^ [A2: real,B2: real] :
          ( ( minus_minus_real @ A2 @ B2 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_715_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
    = ( ^ [A2: int,B2: int] :
          ( ( minus_minus_int @ A2 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_716_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_717_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_718_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_719_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_720_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_721_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_722_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_723_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_724_continuous__on__op__minus,axiom,
    ! [S2: set_real,X: real] : ( topolo5044208981011980120l_real @ S2 @ ( minus_minus_real @ X ) ) ).

% continuous_on_op_minus
thf(fact_725_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_726_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_727_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_728_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_729_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_730_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_731_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A2: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_732_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_733_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A2: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_734_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A2: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_735_dense__eq0__I,axiom,
    ! [X: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E2 ) )
     => ( X = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_736_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A3: real,B3: real,C2: real] :
            ( ( P @ A3 @ B3 )
           => ( ( P @ B3 @ C2 )
             => ( ( ord_less_eq_real @ A3 @ B3 )
               => ( ( ord_less_eq_real @ B3 @ C2 )
                 => ( P @ A3 @ C2 ) ) ) ) )
       => ( ! [X3: real] :
              ( ( ord_less_eq_real @ A @ X3 )
             => ( ( ord_less_eq_real @ X3 @ B )
               => ? [D5: real] :
                    ( ( ord_less_real @ zero_zero_real @ D5 )
                    & ! [A3: real,B3: real] :
                        ( ( ( ord_less_eq_real @ A3 @ X3 )
                          & ( ord_less_eq_real @ X3 @ B3 )
                          & ( ord_less_real @ ( minus_minus_real @ B3 @ A3 ) @ D5 ) )
                       => ( P @ A3 @ B3 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_737_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_738_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_739_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_740_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_741_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_742_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_743_eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 = N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% eq_imp_le
thf(fact_744_le__antisym,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( ord_less_eq_nat @ N @ M2 )
       => ( M2 = N ) ) ) ).

% le_antisym
thf(fact_745_nat__le__linear,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
      | ( ord_less_eq_nat @ N @ M2 ) ) ).

% nat_le_linear
thf(fact_746_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_747_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_748_le__neq__implies__less,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( M2 != N )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% le_neq_implies_less
thf(fact_749_less__or__eq__imp__le,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( ord_less_nat @ M2 @ N )
        | ( M2 = N ) )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_or_eq_imp_le
thf(fact_750_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_nat @ M @ N2 )
          | ( M = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_751_less__imp__le__nat,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% less_imp_le_nat
thf(fact_752_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K2 )
               => ~ ( P @ I3 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_753_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M @ N2 )
          & ( M != N2 ) ) ) ) ).

% nat_less_le
thf(fact_754_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_755_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_756_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_757_lemma__interval,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [Y5: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D2 )
               => ( ( ord_less_eq_real @ A @ Y5 )
                  & ( ord_less_eq_real @ Y5 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_758_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_759_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_760_lemma__interval__lt,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D2: real] :
            ( ( ord_less_real @ zero_zero_real @ D2 )
            & ! [Y5: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D2 )
               => ( ( ord_less_real @ A @ Y5 )
                  & ( ord_less_real @ Y5 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_761_ge__iff__diff__ge__0,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A2: real] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A2 @ B2 ) ) ) ) ).

% ge_iff_diff_ge_0
thf(fact_762_ge__iff__diff__ge__0,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A2: int] : ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A2 @ B2 ) ) ) ) ).

% ge_iff_diff_ge_0
thf(fact_763_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_764_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_765_diff__self__eq__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ M2 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_766_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_767_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_768_diff__is__0__eq_H,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_769_diff__is__0__eq,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% diff_is_0_eq
thf(fact_770_zero__less__diff,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M2 ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% zero_less_diff
thf(fact_771_nat__neq__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2 != N )
      = ( ( ord_less_nat @ M2 @ N )
        | ( ord_less_nat @ N @ M2 ) ) ) ).

% nat_neq_iff
thf(fact_772_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_773_less__not__refl2,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ N @ M2 )
     => ( M2 != N ) ) ).

% less_not_refl2
thf(fact_774_less__not__refl3,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( S2 != T ) ) ).

% less_not_refl3
thf(fact_775_diff__less__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M2 @ N )
     => ( ( ord_less_nat @ M2 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).

% diff_less_mono2
thf(fact_776_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_777_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
             => ( P @ M5 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_778_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
              & ~ ( P @ M5 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_779_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_780_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_781_diffs0__imp__equal,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( minus_minus_nat @ M2 @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M2 )
          = zero_zero_nat )
       => ( M2 = N ) ) ) ).

% diffs0_imp_equal
thf(fact_782_minus__nat_Odiff__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% minus_nat.diff_0
thf(fact_783_diff__less,axiom,
    ! [N: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ) ) ).

% diff_less
thf(fact_784_eq__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M2 @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M2 = N ) ) ) ) ).

% eq_diff_iff
thf(fact_785_le__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M2 @ N ) ) ) ) ).

% le_diff_iff
thf(fact_786_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M2 @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_787_diff__le__mono,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_788_diff__le__self,axiom,
    ! [M2: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N ) @ M2 ) ).

% diff_le_self
thf(fact_789_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_790_diff__le__mono2,axiom,
    ! [M2: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).

% diff_le_mono2
thf(fact_791_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_792_less__diff__iff,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M2 @ N ) ) ) ) ).

% less_diff_iff
thf(fact_793_psubset__imp__ex__mem,axiom,
    ! [A4: set_real,B5: set_real] :
      ( ( ord_less_set_real @ A4 @ B5 )
     => ? [B3: real] : ( member_real @ B3 @ ( minus_minus_set_real @ B5 @ A4 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_794_psubset__imp__ex__mem,axiom,
    ! [A4: set_int,B5: set_int] :
      ( ( ord_less_set_int @ A4 @ B5 )
     => ? [B3: int] : ( member_int @ B3 @ ( minus_minus_set_int @ B5 @ A4 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_795_image__diff__subset,axiom,
    ! [F: real > real,A4: set_real,B5: set_real] : ( ord_less_eq_set_real @ ( minus_minus_set_real @ ( image_real_real @ F @ A4 ) @ ( image_real_real @ F @ B5 ) ) @ ( image_real_real @ F @ ( minus_minus_set_real @ A4 @ B5 ) ) ) ).

% image_diff_subset
thf(fact_796_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_797_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_798_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_799_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_800_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M2: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I3: nat] :
                  ( ( ord_less_nat @ K2 @ I3 )
                 => ( P @ I3 ) )
             => ( P @ K2 ) ) )
       => ( P @ M2 ) ) ) ).

% nat_descend_induct
thf(fact_801_all__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M: nat] :
            ( ( ord_less_eq_nat @ M @ N )
           => ( P @ M ) ) )
      = ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
           => ( P @ X4 ) ) ) ) ).

% all_nat_less
thf(fact_802_ex__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M: nat] :
            ( ( ord_less_eq_nat @ M @ N )
            & ( P @ M ) ) )
      = ( ? [X4: nat] :
            ( ( member_nat @ X4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
            & ( P @ X4 ) ) ) ) ).

% ex_nat_less
thf(fact_803_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ~ ( ord_less_eq_real @ T @ X2 ) ) ).

% minf(8)
thf(fact_804_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X2 ) ) ).

% minf(8)
thf(fact_805_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X2 ) ) ).

% minf(8)
thf(fact_806_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( ord_less_eq_real @ X2 @ T ) ) ).

% minf(6)
thf(fact_807_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( ord_less_eq_nat @ X2 @ T ) ) ).

% minf(6)
thf(fact_808_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( ord_less_eq_int @ X2 @ T ) ) ).

% minf(6)
thf(fact_809_Diff__iff,axiom,
    ! [C: real,A4: set_real,B5: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A4 @ B5 ) )
      = ( ( member_real @ C @ A4 )
        & ~ ( member_real @ C @ B5 ) ) ) ).

% Diff_iff
thf(fact_810_Diff__iff,axiom,
    ! [C: int,A4: set_int,B5: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A4 @ B5 ) )
      = ( ( member_int @ C @ A4 )
        & ~ ( member_int @ C @ B5 ) ) ) ).

% Diff_iff
thf(fact_811_DiffI,axiom,
    ! [C: real,A4: set_real,B5: set_real] :
      ( ( member_real @ C @ A4 )
     => ( ~ ( member_real @ C @ B5 )
       => ( member_real @ C @ ( minus_minus_set_real @ A4 @ B5 ) ) ) ) ).

% DiffI
thf(fact_812_DiffI,axiom,
    ! [C: int,A4: set_int,B5: set_int] :
      ( ( member_int @ C @ A4 )
     => ( ~ ( member_int @ C @ B5 )
       => ( member_int @ C @ ( minus_minus_set_int @ A4 @ B5 ) ) ) ) ).

% DiffI
thf(fact_813_DiffD2,axiom,
    ! [C: real,A4: set_real,B5: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A4 @ B5 ) )
     => ~ ( member_real @ C @ B5 ) ) ).

% DiffD2
thf(fact_814_DiffD2,axiom,
    ! [C: int,A4: set_int,B5: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A4 @ B5 ) )
     => ~ ( member_int @ C @ B5 ) ) ).

% DiffD2
thf(fact_815_DiffD1,axiom,
    ! [C: real,A4: set_real,B5: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A4 @ B5 ) )
     => ( member_real @ C @ A4 ) ) ).

% DiffD1
thf(fact_816_DiffD1,axiom,
    ! [C: int,A4: set_int,B5: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A4 @ B5 ) )
     => ( member_int @ C @ A4 ) ) ).

% DiffD1
thf(fact_817_DiffE,axiom,
    ! [C: real,A4: set_real,B5: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A4 @ B5 ) )
     => ~ ( ( member_real @ C @ A4 )
         => ( member_real @ C @ B5 ) ) ) ).

% DiffE
thf(fact_818_DiffE,axiom,
    ! [C: int,A4: set_int,B5: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A4 @ B5 ) )
     => ~ ( ( member_int @ C @ A4 )
         => ( member_int @ C @ B5 ) ) ) ).

% DiffE
thf(fact_819_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_820_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ~ ( ord_less_real @ T @ X2 ) ) ).

% minf(7)
thf(fact_821_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ~ ( ord_less_nat @ T @ X2 ) ) ).

% minf(7)
thf(fact_822_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ~ ( ord_less_int @ T @ X2 ) ) ).

% minf(7)
thf(fact_823_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( ord_less_real @ X2 @ T ) ) ).

% minf(5)
thf(fact_824_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( ord_less_nat @ X2 @ T ) ) ).

% minf(5)
thf(fact_825_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( ord_less_int @ X2 @ T ) ) ).

% minf(5)
thf(fact_826_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_827_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_828_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_829_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_830_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_831_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_832_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_833_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_834_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_835_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_836_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_837_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_838_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( ord_less_real @ T @ X2 ) ) ).

% pinf(7)
thf(fact_839_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( ord_less_nat @ T @ X2 ) ) ).

% pinf(7)
thf(fact_840_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( ord_less_int @ T @ X2 ) ) ).

% pinf(7)
thf(fact_841_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ~ ( ord_less_real @ X2 @ T ) ) ).

% pinf(5)
thf(fact_842_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ~ ( ord_less_nat @ X2 @ T ) ) ).

% pinf(5)
thf(fact_843_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ~ ( ord_less_int @ X2 @ T ) ) ).

% pinf(5)
thf(fact_844_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_845_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_846_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_847_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_848_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_849_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_850_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_851_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_852_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_853_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_854_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_855_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P4 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_856_comp__cong,axiom,
    ! [F: real > real,G: real > real,X: real,F4: real > real,G3: real > real,X6: real] :
      ( ( ( F @ ( G @ X ) )
        = ( F4 @ ( G3 @ X6 ) ) )
     => ( ( comp_real_real_real @ F @ G @ X )
        = ( comp_real_real_real @ F4 @ G3 @ X6 ) ) ) ).

% comp_cong
thf(fact_857_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ~ ( ord_less_eq_real @ X2 @ T ) ) ).

% pinf(6)
thf(fact_858_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ~ ( ord_less_eq_nat @ X2 @ T ) ) ).

% pinf(6)
thf(fact_859_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ~ ( ord_less_eq_int @ X2 @ T ) ) ).

% pinf(6)
thf(fact_860_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( ord_less_eq_real @ T @ X2 ) ) ).

% pinf(8)
thf(fact_861_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( ord_less_eq_nat @ T @ X2 ) ) ).

% pinf(8)
thf(fact_862_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( ord_less_eq_int @ T @ X2 ) ) ).

% pinf(8)
thf(fact_863_complete__interval,axiom,
    ! [A: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: real] :
              ( ( ord_less_eq_real @ A @ C2 )
              & ( ord_less_eq_real @ C2 @ B )
              & ! [X2: real] :
                  ( ( ( ord_less_eq_real @ A @ X2 )
                    & ( ord_less_real @ X2 @ C2 ) )
                 => ( P @ X2 ) )
              & ! [D5: real] :
                  ( ! [X3: real] :
                      ( ( ( ord_less_eq_real @ A @ X3 )
                        & ( ord_less_real @ X3 @ D5 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_real @ D5 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_864_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X2: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X2 )
                    & ( ord_less_nat @ X2 @ C2 ) )
                 => ( P @ X2 ) )
              & ! [D5: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X3 )
                        & ( ord_less_nat @ X3 @ D5 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D5 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_865_complete__interval,axiom,
    ! [A: int,B: int,P: int > $o] :
      ( ( ord_less_int @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A @ C2 )
              & ( ord_less_eq_int @ C2 @ B )
              & ! [X2: int] :
                  ( ( ( ord_less_eq_int @ A @ X2 )
                    & ( ord_less_int @ X2 @ C2 ) )
                 => ( P @ X2 ) )
              & ! [D5: int] :
                  ( ! [X3: int] :
                      ( ( ( ord_less_eq_int @ A @ X3 )
                        & ( ord_less_int @ X3 @ D5 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_int @ D5 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_866_eucl__less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y4: real] :
          ( ( ord_less_eq_real @ X4 @ Y4 )
          & ~ ( ord_less_eq_real @ Y4 @ X4 ) ) ) ) ).

% eucl_less_le_not_le
thf(fact_867_integrable__uniform__limit__real,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ? [G4: real > real] :
              ( ! [X3: real] :
                  ( ( member_real @ X3 @ ( set_or1222579329274155063t_real @ A @ B ) )
                 => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( F @ X3 ) @ ( G4 @ X3 ) ) ) @ E2 ) )
              & ( hensto5963834015518849588l_real @ G4 @ ( set_or1222579329274155063t_real @ A @ B ) ) ) )
     => ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% integrable_uniform_limit_real
thf(fact_868_integrable__straddle,axiom,
    ! [S2: set_real,F: real > real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ? [G4: real > real,H3: real > real,I3: real] :
              ( ( hensto240673015341029504l_real @ G4 @ I3 @ S2 )
              & ? [J3: real] :
                  ( ( hensto240673015341029504l_real @ H3 @ J3 @ S2 )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ I3 @ J3 ) ) @ E2 )
                  & ! [X3: real] :
                      ( ( member_real @ X3 @ S2 )
                     => ( ( ord_less_eq_real @ ( G4 @ X3 ) @ ( F @ X3 ) )
                        & ( ord_less_eq_real @ ( F @ X3 ) @ ( H3 @ X3 ) ) ) ) ) ) )
     => ( hensto5963834015518849588l_real @ F @ S2 ) ) ).

% integrable_straddle
thf(fact_869_image__mult__atLeastAtMost,axiom,
    ! [D: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ( image_real_real @ ( times_times_real @ D ) @ ( set_or1222579329274155063t_real @ A @ B ) )
        = ( set_or1222579329274155063t_real @ ( times_times_real @ D @ A ) @ ( times_times_real @ D @ B ) ) ) ) ).

% image_mult_atLeastAtMost
thf(fact_870_mult__cancel2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M2 @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M2 = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_871_mult__cancel1,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M2 )
        = ( times_times_nat @ K @ N ) )
      = ( ( M2 = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_872_mult__0__right,axiom,
    ! [M2: nat] :
      ( ( times_times_nat @ M2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_873_mult__is__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( times_times_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ( M2 = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_874_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_875_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_876_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_877_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_878_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_879_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_880_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_881_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_882_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_883_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_884_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_885_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_886_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_887_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_888_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_889_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_890_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_891_nat__0__less__mult__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M2 )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_892_mult__less__cancel2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M2 @ N ) ) ) ).

% mult_less_cancel2
thf(fact_893_mult__le__cancel2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M2 @ N ) ) ) ).

% mult_le_cancel2
thf(fact_894_integrable__on__def,axiom,
    ( hensto5963834015518849588l_real
    = ( ^ [F3: real > real,I4: set_real] :
        ? [Y4: real] : ( hensto240673015341029504l_real @ F3 @ Y4 @ I4 ) ) ) ).

% integrable_on_def
thf(fact_895_has__integral__integrable,axiom,
    ! [F: real > real,I: real,S2: set_real] :
      ( ( hensto240673015341029504l_real @ F @ I @ S2 )
     => ( hensto5963834015518849588l_real @ F @ S2 ) ) ).

% has_integral_integrable
thf(fact_896_has__integral__eq,axiom,
    ! [S2: set_real,F: real > real,G: real > real,K: real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ S2 )
         => ( ( F @ X3 )
            = ( G @ X3 ) ) )
     => ( ( hensto240673015341029504l_real @ F @ K @ S2 )
       => ( hensto240673015341029504l_real @ G @ K @ S2 ) ) ) ).

% has_integral_eq
thf(fact_897_has__integral__cong,axiom,
    ! [S2: set_real,F: real > real,G: real > real,I: real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ S2 )
         => ( ( F @ X3 )
            = ( G @ X3 ) ) )
     => ( ( hensto240673015341029504l_real @ F @ I @ S2 )
        = ( hensto240673015341029504l_real @ G @ I @ S2 ) ) ) ).

% has_integral_cong
thf(fact_898_has__integral__eq__rhs,axiom,
    ! [F: real > real,J: real,S: set_real,I: real] :
      ( ( hensto240673015341029504l_real @ F @ J @ S )
     => ( ( I = J )
       => ( hensto240673015341029504l_real @ F @ I @ S ) ) ) ).

% has_integral_eq_rhs
thf(fact_899_has__integral__unique,axiom,
    ! [F: real > real,K1: real,I: set_real,K22: real] :
      ( ( hensto240673015341029504l_real @ F @ K1 @ I )
     => ( ( hensto240673015341029504l_real @ F @ K22 @ I )
       => ( K1 = K22 ) ) ) ).

% has_integral_unique
thf(fact_900_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_901_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_902_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_903_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_904_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_905_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_906_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A2: nat,B2: nat] : ( times_times_nat @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_907_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A2: real,B2: real] : ( times_times_real @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_908_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A2: int,B2: int] : ( times_times_int @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_909_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_910_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_911_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_912_has__integral__le,axiom,
    ! [F: real > real,I: real,S: set_real,G: real > real,J: real] :
      ( ( hensto240673015341029504l_real @ F @ I @ S )
     => ( ( hensto240673015341029504l_real @ G @ J @ S )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ S )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_eq_real @ I @ J ) ) ) ) ).

% has_integral_le
thf(fact_913_has__integral__is__0,axiom,
    ! [S: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ S )
         => ( ( F @ X3 )
            = zero_zero_real ) )
     => ( hensto240673015341029504l_real @ F @ zero_zero_real @ S ) ) ).

% has_integral_is_0
thf(fact_914_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_915_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_916_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_917_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_918_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_919_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_920_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_921_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_922_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_923_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_924_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_925_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_926_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_927_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_928_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_929_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_930_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_931_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_932_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_933_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_934_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_935_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_936_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_937_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_938_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_939_inf__period_I1_J,axiom,
    ! [P: real > $o,D3: real,Q2: real > $o] :
      ( ! [X3: real,K2: real] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
     => ( ! [X3: real,K2: real] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
       => ! [X2: real,K3: real] :
            ( ( ( P @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_940_inf__period_I1_J,axiom,
    ! [P: int > $o,D3: int,Q2: int > $o] :
      ( ! [X3: int,K2: int] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
     => ( ! [X3: int,K2: int] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ! [X2: int,K3: int] :
            ( ( ( P @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_941_inf__period_I2_J,axiom,
    ! [P: real > $o,D3: real,Q2: real > $o] :
      ( ! [X3: real,K2: real] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
     => ( ! [X3: real,K2: real] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
       => ! [X2: real,K3: real] :
            ( ( ( P @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_942_inf__period_I2_J,axiom,
    ! [P: int > $o,D3: int,Q2: int > $o] :
      ( ! [X3: int,K2: int] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
     => ( ! [X3: int,K2: int] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ! [X2: int,K3: int] :
            ( ( ( P @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_943_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_944_le__cube,axiom,
    ! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ) ).

% le_cube
thf(fact_945_le__square,axiom,
    ! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ).

% le_square
thf(fact_946_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_947_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_948_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_949_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_950_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_951_continuous__on__mult__const,axiom,
    ! [S2: set_real,C: real] : ( topolo5044208981011980120l_real @ S2 @ ( times_times_real @ C ) ) ).

% continuous_on_mult_const
thf(fact_952_diff__mult__distrib2,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M2 @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_953_diff__mult__distrib,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M2 @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_954_continuous__on__norm__id,axiom,
    ! [S: set_real] : ( topolo5044208981011980120l_real @ S @ real_V7735802525324610683m_real ) ).

% continuous_on_norm_id
thf(fact_955_has__integral__on__superset,axiom,
    ! [F: real > real,I: real,S: set_real,T2: set_real] :
      ( ( hensto240673015341029504l_real @ F @ I @ S )
     => ( ! [X3: real] :
            ( ~ ( member_real @ X3 @ S )
           => ( ( F @ X3 )
              = zero_zero_real ) )
       => ( ( ord_less_eq_set_real @ S @ T2 )
         => ( hensto240673015341029504l_real @ F @ I @ T2 ) ) ) ) ).

% has_integral_on_superset
thf(fact_956_has__integral__nonneg,axiom,
    ! [F: real > real,I: real,S: set_real] :
      ( ( hensto240673015341029504l_real @ F @ I @ S )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ I ) ) ) ).

% has_integral_nonneg
thf(fact_957_norm__imp__pos__and__ge,axiom,
    ! [X: real,N: real] :
      ( ( ( real_V7735802525324610683m_real @ X )
        = N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X ) )
        & ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ) ).

% norm_imp_pos_and_ge
thf(fact_958_mult__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_959_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_960_mult__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_961_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_962_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_963_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_964_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_965_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_966_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_967_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_968_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_969_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_970_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_971_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_972_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_973_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_974_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_975_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_976_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_977_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_978_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_979_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_980_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_981_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_982_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_983_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_984_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_985_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_986_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_987_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_988_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_989_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_990_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_991_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_992_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_993_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_994_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_995_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_996_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_997_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_998_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_999_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1000_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1001_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1002_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1003_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1004_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1005_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1006_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1007_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1008_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1009_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1010_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1011_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1012_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1013_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1014_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1015_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1016_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1017_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1018_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1019_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1020_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1021_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1022_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1023_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1024_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1025_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1026_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1027_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1028_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1029_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1030_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1031_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_1032_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_1033_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_1034_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1035_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1036_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1037_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_1038_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_1039_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_1040_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_1041_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_1042_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_1043_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1044_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_1045_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_1046_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_1047_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1048_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_1049_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_1050_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_1051_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1052_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1053_has__integral__subset__le,axiom,
    ! [S2: set_real,T: set_real,F: real > real,I: real,J: real] :
      ( ( ord_less_eq_set_real @ S2 @ T )
     => ( ( hensto240673015341029504l_real @ F @ I @ S2 )
       => ( ( hensto240673015341029504l_real @ F @ J @ T )
         => ( ! [X3: real] :
                ( ( member_real @ X3 @ T )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
           => ( ord_less_eq_real @ I @ J ) ) ) ) ) ).

% has_integral_subset_le
thf(fact_1054_norm__pths_I2_J,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
      = ( ~ ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ zero_zero_real ) ) ) ).

% norm_pths(2)
thf(fact_1055_norm__pths_I1_J,axiom,
    ( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
    = ( ^ [X4: real,Y4: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X4 @ Y4 ) ) @ zero_zero_real ) ) ) ).

% norm_pths(1)
thf(fact_1056_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_1057_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_1058_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_1059_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_1060_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_1061_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_1062_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1063_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1064_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1065_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1066_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1067_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1068_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_1069_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_1070_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_1071_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_1072_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_1073_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_1074_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_1075_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_1076_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_1077_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1078_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1079_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1080_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_1081_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_1082_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_1083_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_1084_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_1085_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1086_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1087_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1088_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_1089_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_1090_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_1091_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_1092_abs__mult__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ ( abs_abs_real @ Y ) @ X )
        = ( abs_abs_real @ ( times_times_real @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_1093_abs__mult__pos,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( times_times_int @ ( abs_abs_int @ Y ) @ X )
        = ( abs_abs_int @ ( times_times_int @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_1094_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_1095_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_1096_abs__mult__pos_H,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ X @ ( abs_abs_real @ Y ) )
        = ( abs_abs_real @ ( times_times_real @ X @ Y ) ) ) ) ).

% abs_mult_pos'
thf(fact_1097_abs__mult__pos_H,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( times_times_int @ X @ ( abs_abs_int @ Y ) )
        = ( abs_abs_int @ ( times_times_int @ X @ Y ) ) ) ) ).

% abs_mult_pos'
thf(fact_1098_ex__gt__or__lt,axiom,
    ! [A: real] :
    ? [B3: real] :
      ( ( ord_less_real @ A @ B3 )
      | ( ord_less_real @ B3 @ A ) ) ).

% ex_gt_or_lt
thf(fact_1099_zero__less__norm__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X ) )
      = ( X != zero_zero_real ) ) ).

% zero_less_norm_iff
thf(fact_1100_norm__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% norm_le_zero_iff
thf(fact_1101_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M2 @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1102_norm__eq__zero,axiom,
    ! [X: real] :
      ( ( ( real_V7735802525324610683m_real @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% norm_eq_zero
thf(fact_1103_norm__zero,axiom,
    ( ( real_V7735802525324610683m_real @ zero_zero_real )
    = zero_zero_real ) ).

% norm_zero
thf(fact_1104_abs__norm__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( real_V7735802525324610683m_real @ A ) )
      = ( real_V7735802525324610683m_real @ A ) ) ).

% abs_norm_cancel
thf(fact_1105_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M2 @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1106_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M2 )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M2 = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1107_real__norm__def,axiom,
    real_V7735802525324610683m_real = abs_abs_real ).

% real_norm_def
thf(fact_1108_antiderivative__integral__continuous,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
     => ~ ! [G5: real > real] :
            ~ ! [X2: real] :
                ( ( member_real @ X2 @ ( set_or1222579329274155063t_real @ A @ B ) )
               => ! [Xa: real] :
                    ( ( member_real @ Xa @ ( set_or1222579329274155063t_real @ A @ B ) )
                   => ( ( ord_less_eq_real @ X2 @ Xa )
                     => ( hensto240673015341029504l_real @ F @ ( minus_minus_real @ ( G5 @ Xa ) @ ( G5 @ X2 ) ) @ ( set_or1222579329274155063t_real @ X2 @ Xa ) ) ) ) ) ) ).

% antiderivative_integral_continuous
thf(fact_1109_norm__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) )
      = ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_1110_nat__mult__less__cancel1,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M2 @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_1111_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M2 )
          = ( times_times_nat @ K @ N ) )
        = ( M2 = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_1112_norm__mult__ineq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_1113_norm__mult__less,axiom,
    ! [X: real,R: real,Y: real,S2: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S2 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) ) @ ( times_times_real @ R @ S2 ) ) ) ) ).

% norm_mult_less
thf(fact_1114_norm__ge__zero,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X ) ) ).

% norm_ge_zero
thf(fact_1115_norm__not__less__zero,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real ) ).

% norm_not_less_zero
thf(fact_1116_nat__mult__le__cancel1,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M2 @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1117_norm__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_1118_norm__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_1119_continuous__on__real__range,axiom,
    ( topolo5044208981011980120l_real
    = ( ^ [S4: set_real,F3: real > real] :
        ! [X4: real] :
          ( ( member_real @ X4 @ S4 )
         => ! [E4: real] :
              ( ( ord_less_real @ zero_zero_real @ E4 )
             => ? [D4: real] :
                  ( ( ord_less_real @ zero_zero_real @ D4 )
                  & ! [Y4: real] :
                      ( ( member_real @ Y4 @ S4 )
                     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y4 @ X4 ) ) @ D4 )
                       => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( F3 @ Y4 ) @ ( F3 @ X4 ) ) ) @ E4 ) ) ) ) ) ) ) ) ).

% continuous_on_real_range
thf(fact_1120_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_1121_vector__space__over__itself_Oscale__eq__0__iff,axiom,
    ! [A: real,X: real] :
      ( ( ( times_times_real @ A @ X )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_eq_0_iff
thf(fact_1122_vector__space__over__itself_Oscale__zero__left,axiom,
    ! [X: real] :
      ( ( times_times_real @ zero_zero_real @ X )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_left
thf(fact_1123_vector__space__over__itself_Oscale__cancel__right,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ B @ X ) )
      = ( ( A = B )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_right
thf(fact_1124_vector__space__over__itself_Oscale__cancel__left,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ A @ Y ) )
      = ( ( X = Y )
        | ( A = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_left
thf(fact_1125_vector__space__over__itself_Oscale__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_right
thf(fact_1126_vector__space__over__itself_Oscale__right__imp__eq,axiom,
    ! [X: real,A: real,B: real] :
      ( ( X != zero_zero_real )
     => ( ( ( times_times_real @ A @ X )
          = ( times_times_real @ B @ X ) )
       => ( A = B ) ) ) ).

% vector_space_over_itself.scale_right_imp_eq
thf(fact_1127_vector__space__over__itself_Oscale__left__imp__eq,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( A != zero_zero_real )
     => ( ( ( times_times_real @ A @ X )
          = ( times_times_real @ A @ Y ) )
       => ( X = Y ) ) ) ).

% vector_space_over_itself.scale_left_imp_eq
thf(fact_1128_vector__space__over__itself_Oscale__left__diff__distrib,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ X )
      = ( minus_minus_real @ ( times_times_real @ A @ X ) @ ( times_times_real @ B @ X ) ) ) ).

% vector_space_over_itself.scale_left_diff_distrib
thf(fact_1129_vector__space__over__itself_Oscale__right__diff__distrib,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ A @ X ) @ ( times_times_real @ A @ Y ) ) ) ).

% vector_space_over_itself.scale_right_diff_distrib
thf(fact_1130_square__continuous,axiom,
    ! [E: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [D2: real] :
          ( ( ord_less_real @ zero_zero_real @ D2 )
          & ! [Y5: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ Y5 @ X ) ) @ D2 )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( times_times_real @ Y5 @ Y5 ) @ ( times_times_real @ X @ X ) ) ) @ E ) ) ) ) ).

% square_continuous
thf(fact_1131_mult__le__cancel__iff2,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ ( times_times_real @ Z2 @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_1132_mult__le__cancel__iff2,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z2 @ X ) @ ( times_times_int @ Z2 @ Y ) )
        = ( ord_less_eq_int @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_1133_mult__le__cancel__iff1,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_1134_mult__le__cancel__iff1,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
        = ( ord_less_eq_int @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_1135_vector__choose__size,axiom,
    ! [C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ~ ! [X3: real] :
            ( ( real_V7735802525324610683m_real @ X3 )
           != C ) ) ).

% vector_choose_size
thf(fact_1136_mult__less__iff1,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_1137_mult__less__iff1,axiom,
    ! [Z2: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
        = ( ord_less_int @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_1138_integrable__straddle__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ? [G4: real > real,H3: real > real,I3: real] :
              ( ( hensto240673015341029504l_real @ G4 @ I3 @ ( topolo7804196973972690552x_real @ A @ B ) )
              & ? [J3: real] :
                  ( ( hensto240673015341029504l_real @ H3 @ J3 @ ( topolo7804196973972690552x_real @ A @ B ) )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ I3 @ J3 ) ) @ E2 )
                  & ! [X3: real] :
                      ( ( member_real @ X3 @ ( topolo7804196973972690552x_real @ A @ B ) )
                     => ( ( ord_less_eq_real @ ( G4 @ X3 ) @ ( F @ X3 ) )
                        & ( ord_less_eq_real @ ( F @ X3 ) @ ( H3 @ X3 ) ) ) ) ) ) )
     => ( hensto5963834015518849588l_real @ F @ ( topolo7804196973972690552x_real @ A @ B ) ) ) ).

% integrable_straddle_interval
thf(fact_1139_indefinite__integral__continuous__left,axiom,
    ! [F: real > real,A: real,B: real,C: real,E: real] :
      ( ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( ( ord_less_real @ A @ C )
       => ( ( ord_less_eq_real @ C @ B )
         => ( ( ord_less_real @ zero_zero_real @ E )
           => ~ ! [D2: real] :
                  ( ( ord_less_real @ zero_zero_real @ D2 )
                 => ~ ! [T4: real] :
                        ( ( ( ord_less_real @ ( minus_minus_real @ C @ D2 ) @ T4 )
                          & ( ord_less_eq_real @ T4 @ C ) )
                       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ A @ C ) @ F ) @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ A @ T4 ) @ F ) ) ) @ E ) ) ) ) ) ) ) ).

% indefinite_integral_continuous_left
thf(fact_1140_bounded__linear__axioms__def,axiom,
    ( real_V6471516012027840197l_real
    = ( ^ [F3: real > real] :
        ? [K4: real] :
        ! [X4: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F3 @ X4 ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X4 ) @ K4 ) ) ) ) ).

% bounded_linear_axioms_def
thf(fact_1141_integrable__on__refl,axiom,
    ! [F: real > real,A: real] : ( hensto5963834015518849588l_real @ F @ ( topolo7804196973972690552x_real @ A @ A ) ) ).

% integrable_on_refl
thf(fact_1142_integral__unique,axiom,
    ! [F: real > real,Y: real,K: set_real] :
      ( ( hensto240673015341029504l_real @ F @ Y @ K )
     => ( ( hensto2714581292692559302l_real @ K @ F )
        = Y ) ) ).

% integral_unique
thf(fact_1143_integral__refl,axiom,
    ! [A: real,F: real > real] :
      ( ( hensto2714581292692559302l_real @ ( topolo7804196973972690552x_real @ A @ A ) @ F )
      = zero_zero_real ) ).

% integral_refl
thf(fact_1144_has__integral__refl_I1_J,axiom,
    ! [F: real > real,A: real] : ( hensto240673015341029504l_real @ F @ zero_zero_real @ ( topolo7804196973972690552x_real @ A @ A ) ) ).

% has_integral_refl(1)
thf(fact_1145_integrable__integral,axiom,
    ! [F: real > real,I: set_real] :
      ( ( hensto5963834015518849588l_real @ F @ I )
     => ( hensto240673015341029504l_real @ F @ ( hensto2714581292692559302l_real @ I @ F ) @ I ) ) ).

% integrable_integral
thf(fact_1146_Henstock__Kurzweil__Integration_Ointegral__cong,axiom,
    ! [S2: set_real,F: real > real,G: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ S2 )
         => ( ( F @ X3 )
            = ( G @ X3 ) ) )
     => ( ( hensto2714581292692559302l_real @ S2 @ F )
        = ( hensto2714581292692559302l_real @ S2 @ G ) ) ) ).

% Henstock_Kurzweil_Integration.integral_cong
thf(fact_1147_interval__cbox,axiom,
    set_or1222579329274155063t_real = topolo7804196973972690552x_real ).

% interval_cbox
thf(fact_1148_has__integral__unique__cbox,axiom,
    ! [F: real > real,K1: real,A: real,B: real,K22: real] :
      ( ( hensto240673015341029504l_real @ F @ K1 @ ( topolo7804196973972690552x_real @ A @ B ) )
     => ( ( hensto240673015341029504l_real @ F @ K22 @ ( topolo7804196973972690552x_real @ A @ B ) )
       => ( K1 = K22 ) ) ) ).

% has_integral_unique_cbox
thf(fact_1149_integral__eq__0__iff,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
     => ( ( ord_less_real @ A @ B )
       => ( ! [X3: real] :
              ( ( member_real @ X3 @ ( set_or1222579329274155063t_real @ A @ B ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
         => ( ( ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
              = zero_zero_real )
            = ( ! [X4: real] :
                  ( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
                 => ( ( F @ X4 )
                    = zero_zero_real ) ) ) ) ) ) ) ).

% integral_eq_0_iff
thf(fact_1150_box__real_I2_J,axiom,
    topolo7804196973972690552x_real = set_or1222579329274155063t_real ).

% box_real(2)
thf(fact_1151_mem__box__real_I2_J,axiom,
    ! [X: real,A: real,B: real] :
      ( ( member_real @ X @ ( topolo7804196973972690552x_real @ A @ B ) )
      = ( ( ord_less_eq_real @ A @ X )
        & ( ord_less_eq_real @ X @ B ) ) ) ).

% mem_box_real(2)
thf(fact_1152_Nat_Oadd__0__right,axiom,
    ! [M2: nat] :
      ( ( plus_plus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% Nat.add_0_right
thf(fact_1153_add__is__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( plus_plus_nat @ M2 @ N )
        = zero_zero_nat )
      = ( ( M2 = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1154_nat__add__left__cancel__le,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M2 @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1155_nat__add__left__cancel__less,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M2 @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_1156_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1157_add__gr__0,axiom,
    ! [M2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M2 )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1158_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1159_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1160_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1161_add__mult__distrib2,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M2 @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1162_add__mult__distrib,axiom,
    ! [M2: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M2 @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1163_add__eq__self__zero,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( plus_plus_nat @ M2 @ N )
        = M2 )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1164_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1165_add__leE,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M2 @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1166_le__add1,axiom,
    ! [N: nat,M2: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M2 ) ) ).

% le_add1
thf(fact_1167_le__add2,axiom,
    ! [N: nat,M2: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M2 @ N ) ) ).

% le_add2
thf(fact_1168_add__leD1,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
     => ( ord_less_eq_nat @ M2 @ N ) ) ).

% add_leD1
thf(fact_1169_add__leD2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1170_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_1171_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_1172_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_1173_trans__le__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_le_add1
thf(fact_1174_trans__le__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_le_add2
thf(fact_1175_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N2: nat] :
        ? [K5: nat] :
          ( N2
          = ( plus_plus_nat @ M @ K5 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1176_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_1177_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_1178_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_1179_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_1180_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_1181_trans__less__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_less_add1
thf(fact_1182_trans__less__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_less_add2
thf(fact_1183_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M2: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M2 @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M2 @ N ) ) ) ).

% less_add_eq_less
thf(fact_1184_diff__add__inverse2,axiom,
    ! [M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N ) @ N )
      = M2 ) ).

% diff_add_inverse2
thf(fact_1185_diff__add__inverse,axiom,
    ! [N: nat,M2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M2 ) @ N )
      = M2 ) ).

% diff_add_inverse
thf(fact_1186_diff__cancel2,axiom,
    ! [M2: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% diff_cancel2
thf(fact_1187_Nat_Odiff__cancel,axiom,
    ! [K: nat,M2: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M2 @ N ) ) ).

% Nat.diff_cancel
thf(fact_1188_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1189_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M2: nat,K: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M2 ) @ K ) @ ( F @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1190_diff__add__0,axiom,
    ! [N: nat,M2: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M2 ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1191_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1192_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1193_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1194_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1195_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1196_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1197_add__diff__inverse__nat,axiom,
    ! [M2: nat,N: nat] :
      ( ~ ( ord_less_nat @ M2 @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M2 @ N ) )
        = M2 ) ) ).

% add_diff_inverse_nat
thf(fact_1198_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D4: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D4 ) )
           => ( P @ D4 ) ) ) ) ).

% nat_diff_split
thf(fact_1199_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D4: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D4 ) )
                & ~ ( P @ D4 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1200_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1201_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_1202_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_1203_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_1204_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_1205_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M2
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_1206_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_1207_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1208_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M2: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_1209_sin__bound__lemma,axiom,
    ! [X: real,Y: real,U: real,V: real] :
      ( ( X = Y )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X @ U ) @ Y ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_1210_eq__diff__eq_H,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( X
        = ( minus_minus_real @ Y @ Z2 ) )
      = ( Y
        = ( plus_plus_real @ X @ Z2 ) ) ) ).

% eq_diff_eq'
thf(fact_1211_f2__near__f1,axiom,
    ( ord_less_real
    @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ zero_zero_real @ a )
      @ ^ [X4: real] : ( minus_minus_real @ ( f2 @ X4 ) @ ( f1 @ X4 ) ) )
    @ epsilon ) ).

% f2_near_f1
thf(fact_1212_diameter__closed__interval,axiom,
    ! [B: real,A: real] :
      ( ( ( ord_less_real @ B @ A )
       => ( ( elemen4332022982980038671r_real @ ( set_or1222579329274155063t_real @ A @ B ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_real @ B @ A )
       => ( ( elemen4332022982980038671r_real @ ( set_or1222579329274155063t_real @ A @ B ) )
          = ( minus_minus_real @ B @ A ) ) ) ) ).

% diameter_closed_interval
thf(fact_1213_ident__integrable__on,axiom,
    ! [A: real,B: real] :
      ( hensto5963834015518849588l_real
      @ ^ [X4: real] : X4
      @ ( set_or1222579329274155063t_real @ A @ B ) ) ).

% ident_integrable_on
thf(fact_1214_second__mean__value__theorem,axiom,
    ! [F: real > real,A: real,B: real,G: real > real] :
      ( ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ! [X3: real] :
              ( ( ord_less_eq_real @ A @ X3 )
             => ! [Y2: real] :
                  ( ( ord_less_eq_real @ X3 @ Y2 )
                 => ( ( ord_less_eq_real @ Y2 @ B )
                   => ( ord_less_eq_real @ ( G @ X3 ) @ ( G @ Y2 ) ) ) ) )
         => ~ ! [C2: real] :
                ( ( member_real @ C2 @ ( set_or1222579329274155063t_real @ A @ B ) )
               => ( ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ A @ B )
                    @ ^ [X4: real] : ( times_times_real @ ( G @ X4 ) @ ( F @ X4 ) ) )
                 != ( plus_plus_real @ ( times_times_real @ ( G @ A ) @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ A @ C2 ) @ F ) ) @ ( times_times_real @ ( G @ B ) @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ C2 @ B ) @ F ) ) ) ) ) ) ) ) ).

% second_mean_value_theorem
thf(fact_1215_second__mean__value__theorem__full,axiom,
    ! [F: real > real,A: real,B: real,G: real > real] :
      ( ( hensto5963834015518849588l_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ! [X3: real] :
              ( ( ord_less_eq_real @ A @ X3 )
             => ! [Y2: real] :
                  ( ( ord_less_eq_real @ X3 @ Y2 )
                 => ( ( ord_less_eq_real @ Y2 @ B )
                   => ( ord_less_eq_real @ ( G @ X3 ) @ ( G @ Y2 ) ) ) ) )
         => ~ ! [C2: real] :
                ( ( member_real @ C2 @ ( set_or1222579329274155063t_real @ A @ B ) )
               => ~ ( hensto240673015341029504l_real
                    @ ^ [X4: real] : ( times_times_real @ ( G @ X4 ) @ ( F @ X4 ) )
                    @ ( plus_plus_real @ ( times_times_real @ ( G @ A ) @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ A @ C2 ) @ F ) ) @ ( times_times_real @ ( G @ B ) @ ( hensto2714581292692559302l_real @ ( set_or1222579329274155063t_real @ C2 @ B ) @ F ) ) )
                    @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ) ) ) ).

% second_mean_value_theorem_full
thf(fact_1216_translate__scale__01,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( image_real_real
          @ ^ [X4: real] : ( plus_plus_real @ A @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ X4 ) )
          @ ( set_or1222579329274155063t_real @ zero_zero_real @ one_one_real ) )
        = ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% translate_scale_01
thf(fact_1217_sum__le__prod1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ B @ one_one_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ A @ B ) ) ) ) ) ).

% sum_le_prod1
thf(fact_1218_square__bound__lemma,axiom,
    ! [X: real] : ( ord_less_real @ X @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X ) @ ( plus_plus_real @ one_one_real @ X ) ) ) ).

% square_bound_lemma
thf(fact_1219_segment__bound__lemma,axiom,
    ! [B5: real,X: real,Y: real,U: real] :
      ( ( ord_less_eq_real @ B5 @ X )
     => ( ( ord_less_eq_real @ B5 @ Y )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ U @ one_one_real )
           => ( ord_less_eq_real @ B5 @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ one_one_real @ U ) @ X ) @ ( times_times_real @ U @ Y ) ) ) ) ) ) ) ).

% segment_bound_lemma
thf(fact_1220_nat__mult__eq__1__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( ( times_times_nat @ M2 @ N )
        = one_one_nat )
      = ( ( M2 = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1221_nat__1__eq__mult__iff,axiom,
    ! [M2: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M2 @ N ) )
      = ( ( M2 = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1222_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1223_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1224_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1225_mult__eq__self__implies__10,axiom,
    ! [M2: nat,N: nat] :
      ( ( M2
        = ( times_times_nat @ M2 @ N ) )
     => ( ( N = one_one_nat )
        | ( M2 = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1226_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
              & ( ( F @ I2 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_1227_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M: nat,N2: nat] : ( if_nat @ ( M = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ) ) ) ).

% mult_eq_if
thf(fact_1228_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q2: nat > $o] :
      ( ! [X3: nat > real] :
          ( ( P @ X3 )
         => ( P @ ( F @ X3 ) ) )
     => ( ! [X3: nat > real] :
            ( ( P @ X3 )
           => ! [I2: nat] :
                ( ( Q2 @ I2 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I2 ) )
                  & ( ord_less_eq_real @ ( X3 @ I2 ) @ one_one_real ) ) ) )
       => ? [L3: ( nat > real ) > nat > nat] :
            ( ! [X2: nat > real,I3: nat] : ( ord_less_eq_nat @ ( L3 @ X2 @ I3 ) @ one_one_nat )
            & ! [X2: nat > real,I3: nat] :
                ( ( ( P @ X2 )
                  & ( Q2 @ I3 )
                  & ( ( X2 @ I3 )
                    = zero_zero_real ) )
               => ( ( L3 @ X2 @ I3 )
                  = zero_zero_nat ) )
            & ! [X2: nat > real,I3: nat] :
                ( ( ( P @ X2 )
                  & ( Q2 @ I3 )
                  & ( ( X2 @ I3 )
                    = one_one_real ) )
               => ( ( L3 @ X2 @ I3 )
                  = one_one_nat ) )
            & ! [X2: nat > real,I3: nat] :
                ( ( ( P @ X2 )
                  & ( Q2 @ I3 )
                  & ( ( L3 @ X2 @ I3 )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X2 @ I3 ) @ ( F @ X2 @ I3 ) ) )
            & ! [X2: nat > real,I3: nat] :
                ( ( ( P @ X2 )
                  & ( Q2 @ I3 )
                  & ( ( L3 @ X2 @ I3 )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F @ X2 @ I3 ) @ ( X2 @ I3 ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_1229_kuhn__lemma,axiom,
    ! [P5: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ P5 )
     => ( ! [X3: nat > nat] :
            ( ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ N )
               => ( ord_less_eq_nat @ ( X3 @ I3 ) @ P5 ) )
           => ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ N )
               => ( ( ( Label @ X3 @ I2 )
                    = zero_zero_nat )
                  | ( ( Label @ X3 @ I2 )
                    = one_one_nat ) ) ) )
       => ( ! [X3: nat > nat] :
              ( ! [I3: nat] :
                  ( ( ord_less_nat @ I3 @ N )
                 => ( ord_less_eq_nat @ ( X3 @ I3 ) @ P5 ) )
             => ! [I2: nat] :
                  ( ( ord_less_nat @ I2 @ N )
                 => ( ( ( X3 @ I2 )
                      = zero_zero_nat )
                   => ( ( Label @ X3 @ I2 )
                      = zero_zero_nat ) ) ) )
         => ( ! [X3: nat > nat] :
                ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ N )
                   => ( ord_less_eq_nat @ ( X3 @ I3 ) @ P5 ) )
               => ! [I2: nat] :
                    ( ( ord_less_nat @ I2 @ N )
                   => ( ( ( X3 @ I2 )
                        = P5 )
                     => ( ( Label @ X3 @ I2 )
                        = one_one_nat ) ) ) )
           => ~ ! [Q4: nat > nat] :
                  ( ! [I3: nat] :
                      ( ( ord_less_nat @ I3 @ N )
                     => ( ord_less_nat @ ( Q4 @ I3 ) @ P5 ) )
                 => ~ ! [I3: nat] :
                        ( ( ord_less_nat @ I3 @ N )
                       => ? [R2: nat > nat] :
                            ( ! [J3: nat] :
                                ( ( ord_less_nat @ J3 @ N )
                               => ( ( ord_less_eq_nat @ ( Q4 @ J3 ) @ ( R2 @ J3 ) )
                                  & ( ord_less_eq_nat @ ( R2 @ J3 ) @ ( plus_plus_nat @ ( Q4 @ J3 ) @ one_one_nat ) ) ) )
                            & ? [S3: nat > nat] :
                                ( ! [J3: nat] :
                                    ( ( ord_less_nat @ J3 @ N )
                                   => ( ( ord_less_eq_nat @ ( Q4 @ J3 ) @ ( S3 @ J3 ) )
                                      & ( ord_less_eq_nat @ ( S3 @ J3 ) @ ( plus_plus_nat @ ( Q4 @ J3 ) @ one_one_nat ) ) ) )
                                & ( ( Label @ R2 @ I3 )
                                 != ( Label @ S3 @ I3 ) ) ) ) ) ) ) ) ) ) ).

% kuhn_lemma
thf(fact_1230_zle__add1__eq__le,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W2 @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_1231_zabs__less__one__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z2 ) @ one_one_int )
      = ( Z2 = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_1232_zle__diff1__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
      = ( ord_less_int @ W2 @ Z2 ) ) ).

% zle_diff1_eq
thf(fact_1233_abs__zmult__eq__1,axiom,
    ! [M2: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M2 @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M2 )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_1234_odd__nonzero,axiom,
    ! [Z2: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1235_incr__lemma,axiom,
    ! [D: int,Z2: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z2 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_1236_decr__lemma,axiom,
    ! [D: int,X: int,Z2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) @ Z2 ) ) ).

% decr_lemma
thf(fact_1237_cppi,axiom,
    ! [D3: int,P: int > $o,P4: int > $o,A4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z @ X3 )
           => ( ( P @ X3 )
              = ( P4 @ X3 ) ) )
       => ( ! [X3: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb: int] :
                      ( ( member_int @ Xb @ A4 )
                     => ( X3
                       != ( minus_minus_int @ Xb @ Xa ) ) ) )
             => ( ( P @ X3 )
               => ( P @ ( plus_plus_int @ X3 @ D3 ) ) ) )
         => ( ! [X3: int,K2: int] :
                ( ( P4 @ X3 )
                = ( P4 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
           => ( ( ? [X8: int] : ( P @ X8 ) )
              = ( ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P4 @ X4 ) )
                | ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y4: int] :
                        ( ( member_int @ Y4 @ A4 )
                        & ( P @ ( minus_minus_int @ Y4 @ X4 ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_1238_cpmi,axiom,
    ! [D3: int,P: int > $o,P4: int > $o,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z )
           => ( ( P @ X3 )
              = ( P4 @ X3 ) ) )
       => ( ! [X3: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb: int] :
                      ( ( member_int @ Xb @ B5 )
                     => ( X3
                       != ( plus_plus_int @ Xb @ Xa ) ) ) )
             => ( ( P @ X3 )
               => ( P @ ( minus_minus_int @ X3 @ D3 ) ) ) )
         => ( ! [X3: int,K2: int] :
                ( ( P4 @ X3 )
                = ( P4 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
           => ( ( ? [X8: int] : ( P @ X8 ) )
              = ( ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P4 @ X4 ) )
                | ? [X4: int] :
                    ( ( member_int @ X4 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y4: int] :
                        ( ( member_int @ Y4 @ B5 )
                        & ( P @ ( plus_plus_int @ Y4 @ X4 ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_1239_add1__zle__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W2 @ Z2 ) ) ).

% add1_zle_eq
thf(fact_1240_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_1241_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1242_zless__imp__add1__zle,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_1243_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I2: int] :
              ( ( ord_less_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_1244_zless__add1__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W2 @ Z2 )
        | ( W2 = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_1245_bset_I1_J,axiom,
    ! [D3: int,B5: set_int,P: int > $o,Q2: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ B5 )
                 => ( X3
                   != ( plus_plus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( minus_minus_int @ X3 @ D3 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B5 )
                   => ( X3
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( Q2 @ X3 )
             => ( Q2 @ ( minus_minus_int @ X3 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X2
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
             => ( ( P @ ( minus_minus_int @ X2 @ D3 ) )
                & ( Q2 @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_1246_bset_I2_J,axiom,
    ! [D3: int,B5: set_int,P: int > $o,Q2: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ B5 )
                 => ( X3
                   != ( plus_plus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( minus_minus_int @ X3 @ D3 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B5 )
                   => ( X3
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( Q2 @ X3 )
             => ( Q2 @ ( minus_minus_int @ X3 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X2
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
             => ( ( P @ ( minus_minus_int @ X2 @ D3 ) )
                | ( Q2 @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_1247_aset_I1_J,axiom,
    ! [D3: int,A4: set_int,P: int > $o,Q2: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ A4 )
                 => ( X3
                   != ( minus_minus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D3 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A4 )
                   => ( X3
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( Q2 @ X3 )
             => ( Q2 @ ( plus_plus_int @ X3 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A4 )
                   => ( X2
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ( P @ X2 )
                & ( Q2 @ X2 ) )
             => ( ( P @ ( plus_plus_int @ X2 @ D3 ) )
                & ( Q2 @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_1248_aset_I2_J,axiom,
    ! [D3: int,A4: set_int,P: int > $o,Q2: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ A4 )
                 => ( X3
                   != ( minus_minus_int @ Xb @ Xa ) ) ) )
         => ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D3 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A4 )
                   => ( X3
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( Q2 @ X3 )
             => ( Q2 @ ( plus_plus_int @ X3 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A4 )
                   => ( X2
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ( P @ X2 )
                | ( Q2 @ X2 ) )
             => ( ( P @ ( plus_plus_int @ X2 @ D3 ) )
                | ( Q2 @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_1249_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I2: int] :
            ( ( ord_less_eq_int @ K @ I2 )
           => ( ( P @ I2 )
             => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_1250_bset_I3_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B5 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X2
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( X2 = T )
             => ( ( minus_minus_int @ X2 @ D3 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_1251_bset_I4_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B5 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X2
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( X2 != T )
             => ( ( minus_minus_int @ X2 @ D3 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_1252_bset_I5_J,axiom,
    ! [D3: int,B5: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B5 )
                 => ( X2
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( ord_less_int @ X2 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_1253_bset_I6_J,axiom,
    ! [D3: int,B5: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B5 )
                 => ( X2
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( ord_less_eq_int @ X2 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_1254_bset_I7_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B5 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X2
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ord_less_int @ T @ X2 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ).

% bset(7)
thf(fact_1255_bset_I8_J,axiom,
    ! [D3: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B5 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X2
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X2 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ).

% bset(8)
thf(fact_1256_aset_I3_J,axiom,
    ! [D3: int,T: int,A4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A4 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A4 )
                   => ( X2
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( X2 = T )
             => ( ( plus_plus_int @ X2 @ D3 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_1257_aset_I4_J,axiom,
    ! [D3: int,T: int,A4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A4 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A4 )
                   => ( X2
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( X2 != T )
             => ( ( plus_plus_int @ X2 @ D3 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_1258_aset_I5_J,axiom,
    ! [D3: int,T: int,A4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A4 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A4 )
                   => ( X2
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ord_less_int @ X2 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_1259_aset_I6_J,axiom,
    ! [D3: int,T: int,A4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A4 )
       => ! [X2: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A4 )
                   => ( X2
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( ord_less_eq_int @ X2 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_1260_aset_I7_J,axiom,
    ! [D3: int,A4: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A4 )
                 => ( X2
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( ord_less_int @ T @ X2 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ).

% aset(7)
thf(fact_1261_aset_I8_J,axiom,
    ! [D3: int,A4: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A4 )
                 => ( X2
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X2 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ).

% aset(8)
thf(fact_1262_pos__zmult__eq__1__iff,axiom,
    ! [M2: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M2 )
     => ( ( ( times_times_int @ M2 @ N )
          = one_one_int )
        = ( ( M2 = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_1263_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_1264_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct

% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_eq_real @ ( f @ ( g2 @ y ) ) @ ( f @ ( g @ y ) ) ).

%------------------------------------------------------------------------------