TPTP Problem File: SLH0582^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : FOL_Seq_Calc3/0005_Semantics/prob_00063_002154__11831054_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1348 ( 607 unt;  80 typ;   0 def)
%            Number of atoms       : 3453 (1260 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 10624 ( 303   ~;  97   |; 177   &;8605   @)
%                                         (   0 <=>;1442  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   6 avg)
%            Number of types       :   13 (  12 usr)
%            Number of type conns  :  400 ( 400   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   71 (  68 usr;   9 con; 0-4 aty)
%            Number of variables   : 3386 ( 160   ^;3121   !; 105   ?;3386   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:24:46.980
%------------------------------------------------------------------------------
% Could-be-implicit typings (12)
thf(ty_n_t__List__Olist_It__Syntax__Otm_J,type,
    list_tm: $tType ).

thf(ty_n_t__List__Olist_It__Syntax__Ofm_J,type,
    list_fm: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Syntax__Otm,type,
    tm: $tType ).

thf(ty_n_t__Syntax__Ofm,type,
    fm: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (68)
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001t__Syntax__Otm,type,
    fun_upd_nat_tm: ( nat > tm ) > nat > tm > nat > tm ).

thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001tf__a,type,
    fun_upd_nat_a: ( nat > a ) > nat > a > nat > a ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001tf__a,type,
    if_a: $o > a > a > a ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
    semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
    semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Syntax__Ofm,type,
    size_size_fm: fm > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Syntax__Otm,type,
    size_size_tm: tm > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Semantics_Osemantics__fm_001t__Syntax__Otm,type,
    semantics_fm_tm: ( nat > tm ) > ( nat > list_tm > tm ) > ( nat > list_tm > $o ) > fm > $o ).

thf(sy_c_Semantics_Osemantics__fm_001tf__a,type,
    semantics_fm_a: ( nat > a ) > ( nat > list_a > a ) > ( nat > list_a > $o ) > fm > $o ).

thf(sy_c_Semantics_Osemantics__tm_001t__Syntax__Otm,type,
    semantics_tm_tm: ( nat > tm ) > ( nat > list_tm > tm ) > tm > tm ).

thf(sy_c_Semantics_Osemantics__tm_001tf__a,type,
    semantics_tm_a: ( nat > a ) > ( nat > list_a > a ) > tm > a ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_Syntax_Oadd__env_001t__Syntax__Otm,type,
    add_env_tm: tm > ( nat > tm ) > nat > tm ).

thf(sy_c_Syntax_Oadd__env_001tf__a,type,
    add_env_a: a > ( nat > a ) > nat > a ).

thf(sy_c_Syntax_Ofm_OImp,type,
    imp: fm > fm > fm ).

thf(sy_c_Syntax_Ofm_OUni,type,
    uni: fm > fm ).

thf(sy_c_Syntax_Ofm_Osize__fm,type,
    size_fm: fm > nat ).

thf(sy_c_Syntax_Ofresh,type,
    fresh: list_fm > nat ).

thf(sy_c_Syntax_Olift__tm,type,
    lift_tm: tm > tm ).

thf(sy_c_Syntax_Omax__list,type,
    max_list: list_nat > nat ).

thf(sy_c_Syntax_Osub__fm,type,
    sub_fm: ( nat > tm ) > fm > fm ).

thf(sy_c_Syntax_Osub__tm,type,
    sub_tm: ( nat > tm ) > tm > tm ).

thf(sy_c_Syntax_Otm_OVar,type,
    var: nat > tm ).

thf(sy_c_Syntax_Otm_Osize__tm,type,
    size_tm: tm > nat ).

thf(sy_c_Syntax_Ovars__fm,type,
    vars_fm: fm > list_nat ).

thf(sy_c_Syntax_Ovars__fms,type,
    vars_fms: list_fm > list_nat ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_v_Ea____,type,
    ea: nat > a ).

thf(sy_v_F,type,
    f: nat > list_a > a ).

thf(sy_v_G,type,
    g: nat > list_a > $o ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_pa____,type,
    pa: fm ).

thf(sy_v_x,type,
    x: a ).

% Relevant facts (1262)
thf(fact_0__092_060open_062_I_092_060lbrakk_062E_In_A_058_061_Ax_J_M_AF_M_AG_092_060rbrakk_062_A_I_092_060_094bold_062_092_060forall_062_Ap_J_A_061_A_092_060lbrakk_062E_M_AF_M_AG_092_060rbrakk_062_A_I_092_060_094bold_062_092_060forall_062_Ap_J_J_A_061_A_I_I_092_060forall_062y_O_A_092_060lbrakk_062y_A_092_060Zsemi_062_AE_In_A_058_061_Ax_J_M_AF_M_AG_092_060rbrakk_062_Ap_J_A_061_A_I_092_060forall_062y_O_A_092_060lbrakk_062y_A_092_060Zsemi_062_AE_M_AF_M_AG_092_060rbrakk_062_Ap_J_J_092_060close_062,axiom,
    ( ( ( semantics_fm_a @ ( fun_upd_nat_a @ ea @ na @ x ) @ f @ g @ ( uni @ pa ) )
      = ( semantics_fm_a @ ea @ f @ g @ ( uni @ pa ) ) )
    = ( ( ! [Y: a] : ( semantics_fm_a @ ( add_env_a @ Y @ ( fun_upd_nat_a @ ea @ na @ x ) ) @ f @ g @ pa ) )
      = ( ! [Y: a] : ( semantics_fm_a @ ( add_env_a @ Y @ ea ) @ f @ g @ pa ) ) ) ) ).

% \<open>(\<lbrakk>E(n := x), F, G\<rbrakk> (\<^bold>\<forall> p) = \<lbrakk>E, F, G\<rbrakk> (\<^bold>\<forall> p)) = ((\<forall>y. \<lbrakk>y \<Zsemi> E(n := x), F, G\<rbrakk> p) = (\<forall>y. \<lbrakk>y \<Zsemi> E, F, G\<rbrakk> p))\<close>
thf(fact_1_semantics__fm_Osimps_I4_J,axiom,
    ! [E: nat > tm,F: nat > list_tm > tm,G: nat > list_tm > $o,P: fm] :
      ( ( semantics_fm_tm @ E @ F @ G @ ( uni @ P ) )
      = ( ! [X: tm] : ( semantics_fm_tm @ ( add_env_tm @ X @ E ) @ F @ G @ P ) ) ) ).

% semantics_fm.simps(4)
thf(fact_2_semantics__fm_Osimps_I4_J,axiom,
    ! [E: nat > a,F: nat > list_a > a,G: nat > list_a > $o,P: fm] :
      ( ( semantics_fm_a @ E @ F @ G @ ( uni @ P ) )
      = ( ! [X: a] : ( semantics_fm_a @ ( add_env_a @ X @ E ) @ F @ G @ P ) ) ) ).

% semantics_fm.simps(4)
thf(fact_3_fm_Oinject_I3_J,axiom,
    ! [X4: fm,Y4: fm] :
      ( ( ( uni @ X4 )
        = ( uni @ Y4 ) )
      = ( X4 = Y4 ) ) ).

% fm.inject(3)
thf(fact_4_fun__upd__upd,axiom,
    ! [F2: nat > a,X2: nat,Y2: a,Z: a] :
      ( ( fun_upd_nat_a @ ( fun_upd_nat_a @ F2 @ X2 @ Y2 ) @ X2 @ Z )
      = ( fun_upd_nat_a @ F2 @ X2 @ Z ) ) ).

% fun_upd_upd
thf(fact_5_fun__upd__triv,axiom,
    ! [F2: nat > a,X2: nat] :
      ( ( fun_upd_nat_a @ F2 @ X2 @ ( F2 @ X2 ) )
      = F2 ) ).

% fun_upd_triv
thf(fact_6_fun__upd__apply,axiom,
    ( fun_upd_nat_a
    = ( ^ [F3: nat > a,X: nat,Y: a,Z2: nat] : ( if_a @ ( Z2 = X ) @ Y @ ( F3 @ Z2 ) ) ) ) ).

% fun_upd_apply
thf(fact_7_Uni_Ohyps,axiom,
    ! [N: nat,E: nat > a] :
      ( ( ord_less_nat @ ( max_list @ ( vars_fm @ pa ) ) @ N )
     => ( ( semantics_fm_a @ ( fun_upd_nat_a @ E @ N @ x ) @ f @ g @ pa )
        = ( semantics_fm_a @ E @ f @ g @ pa ) ) ) ).

% Uni.hyps
thf(fact_8_Uni_Oprems,axiom,
    ord_less_nat @ ( max_list @ ( vars_fm @ ( uni @ pa ) ) ) @ na ).

% Uni.prems
thf(fact_9_fun__upd__def,axiom,
    ( fun_upd_nat_a
    = ( ^ [F3: nat > a,A: nat,B: a,X: nat] : ( if_a @ ( X = A ) @ B @ ( F3 @ X ) ) ) ) ).

% fun_upd_def
thf(fact_10_fun__upd__eqD,axiom,
    ! [F2: nat > a,X2: nat,Y2: a,G2: nat > a,Z: a] :
      ( ( ( fun_upd_nat_a @ F2 @ X2 @ Y2 )
        = ( fun_upd_nat_a @ G2 @ X2 @ Z ) )
     => ( Y2 = Z ) ) ).

% fun_upd_eqD
thf(fact_11_fun__upd__idem,axiom,
    ! [F2: nat > a,X2: nat,Y2: a] :
      ( ( ( F2 @ X2 )
        = Y2 )
     => ( ( fun_upd_nat_a @ F2 @ X2 @ Y2 )
        = F2 ) ) ).

% fun_upd_idem
thf(fact_12_fun__upd__same,axiom,
    ! [F2: nat > a,X2: nat,Y2: a] :
      ( ( fun_upd_nat_a @ F2 @ X2 @ Y2 @ X2 )
      = Y2 ) ).

% fun_upd_same
thf(fact_13_fun__upd__other,axiom,
    ! [Z: nat,X2: nat,F2: nat > a,Y2: a] :
      ( ( Z != X2 )
     => ( ( fun_upd_nat_a @ F2 @ X2 @ Y2 @ Z )
        = ( F2 @ Z ) ) ) ).

% fun_upd_other
thf(fact_14_vars__fm_Osimps_I4_J,axiom,
    ! [P: fm] :
      ( ( vars_fm @ ( uni @ P ) )
      = ( vars_fm @ P ) ) ).

% vars_fm.simps(4)
thf(fact_15_fun__upd__idem__iff,axiom,
    ! [F2: nat > a,X2: nat,Y2: a] :
      ( ( ( fun_upd_nat_a @ F2 @ X2 @ Y2 )
        = F2 )
      = ( ( F2 @ X2 )
        = Y2 ) ) ).

% fun_upd_idem_iff
thf(fact_16_fun__upd__twist,axiom,
    ! [A2: nat,C: nat,M: nat > a,B2: a,D: a] :
      ( ( A2 != C )
     => ( ( fun_upd_nat_a @ ( fun_upd_nat_a @ M @ A2 @ B2 ) @ C @ D )
        = ( fun_upd_nat_a @ ( fun_upd_nat_a @ M @ C @ D ) @ A2 @ B2 ) ) ) ).

% fun_upd_twist
thf(fact_17_add__env__semantics,axiom,
    ! [E: nat > a,F: nat > list_a > a,T: tm,S: nat > tm,N: nat] :
      ( ( semantics_tm_a @ E @ F @ ( add_env_tm @ T @ S @ N ) )
      = ( add_env_a @ ( semantics_tm_a @ E @ F @ T )
        @ ^ [M2: nat] : ( semantics_tm_a @ E @ F @ ( S @ M2 ) )
        @ N ) ) ).

% add_env_semantics
thf(fact_18_add__env__semantics,axiom,
    ! [E: nat > tm,F: nat > list_tm > tm,T: tm,S: nat > tm,N: nat] :
      ( ( semantics_tm_tm @ E @ F @ ( add_env_tm @ T @ S @ N ) )
      = ( add_env_tm @ ( semantics_tm_tm @ E @ F @ T )
        @ ^ [M2: nat] : ( semantics_tm_tm @ E @ F @ ( S @ M2 ) )
        @ N ) ) ).

% add_env_semantics
thf(fact_19_add__upd__commute,axiom,
    ! [Y2: a,E: nat > a,N: nat,X2: a,M: nat] :
      ( ( add_env_a @ Y2 @ ( fun_upd_nat_a @ E @ N @ X2 ) @ M )
      = ( fun_upd_nat_a @ ( add_env_a @ Y2 @ E ) @ ( suc @ N ) @ X2 @ M ) ) ).

% add_upd_commute
thf(fact_20_add__upd__commute,axiom,
    ! [Y2: tm,E: nat > tm,N: nat,X2: tm,M: nat] :
      ( ( add_env_tm @ Y2 @ ( fun_upd_nat_tm @ E @ N @ X2 ) @ M )
      = ( fun_upd_nat_tm @ ( add_env_tm @ Y2 @ E ) @ ( suc @ N ) @ X2 @ M ) ) ).

% add_upd_commute
thf(fact_21_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_22_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_23_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_24_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_25_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_26_nat__less__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
             => ( P2 @ M3 ) )
         => ( P2 @ N2 ) )
     => ( P2 @ N ) ) ).

% nat_less_induct
thf(fact_27_infinite__descent,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P2 @ N2 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
              & ~ ( P2 @ M3 ) ) )
     => ( P2 @ N ) ) ).

% infinite_descent
thf(fact_28_linorder__neqE__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_29_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_30_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_31_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_32_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_33_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_34_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_35_Suc__inject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
     => ( X2 = Y2 ) ) ).

% Suc_inject
thf(fact_36_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_37_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] :
            ( ( J
              = ( suc @ I2 ) )
           => ( P2 @ I2 ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ( P2 @ ( suc @ I2 ) )
               => ( P2 @ I2 ) ) )
         => ( P2 @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_38_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] : ( P2 @ I2 @ ( suc @ I2 ) )
       => ( ! [I2: nat,J2: nat,K: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( ( ord_less_nat @ J2 @ K )
               => ( ( P2 @ I2 @ J2 )
                 => ( ( P2 @ J2 @ K )
                   => ( P2 @ I2 @ K ) ) ) ) )
         => ( P2 @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_39_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K2 )
       => ( ord_less_nat @ ( suc @ I ) @ K2 ) ) ) ).

% less_trans_Suc
thf(fact_40_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_41_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_42_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M4: nat] :
            ( ( M
              = ( suc @ M4 ) )
            & ( ord_less_nat @ N @ M4 ) ) ) ) ).

% Suc_less_eq2
thf(fact_43_All__less__Suc,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P2 @ I3 ) ) )
      = ( ( P2 @ N )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P2 @ I3 ) ) ) ) ).

% All_less_Suc
thf(fact_44_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_45_mem__Collect__eq,axiom,
    ! [A2: int,P2: int > $o] :
      ( ( member_int @ A2 @ ( collect_int @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
    ! [A3: set_int] :
      ( ( collect_int
        @ ^ [X: int] : ( member_int @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_47_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_48_Ex__less__Suc,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P2 @ I3 ) ) )
      = ( ( P2 @ N )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P2 @ I3 ) ) ) ) ).

% Ex_less_Suc
thf(fact_49_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_50_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_51_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_52_Suc__lessE,axiom,
    ! [I: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K2 )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K2
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_53_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_54_Nat_OlessE,axiom,
    ! [I: nat,K2: nat] :
      ( ( ord_less_nat @ I @ K2 )
     => ( ( K2
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K2
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_55_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > nat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_56_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > int,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
     => ( ( ord_less_int @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_57_lift__Suc__mono__less,axiom,
    ! [F2: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_58_lift__Suc__mono__less,axiom,
    ! [F2: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N3 )
       => ( ord_less_int @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_59_add__env_Osimps_I2_J,axiom,
    ! [T: a,S: nat > a,N: nat] :
      ( ( add_env_a @ T @ S @ ( suc @ N ) )
      = ( S @ N ) ) ).

% add_env.simps(2)
thf(fact_60_add__env_Osimps_I2_J,axiom,
    ! [T: tm,S: nat > tm,N: nat] :
      ( ( add_env_tm @ T @ S @ ( suc @ N ) )
      = ( S @ N ) ) ).

% add_env.simps(2)
thf(fact_61_pinf_I1_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z3 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z3 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z4 @ X5 )
           => ( ( ( P2 @ X5 )
                & ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_62_pinf_I1_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z3 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( ( P2 @ X5 )
                & ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_63_pinf_I2_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z3 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z3 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z4 @ X5 )
           => ( ( ( P2 @ X5 )
                | ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_64_pinf_I2_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z3 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z4 @ X5 )
           => ( ( ( P2 @ X5 )
                | ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_65_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_66_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(3)
thf(fact_67_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_68_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( X5 != T ) ) ).

% pinf(4)
thf(fact_69_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ~ ( ord_less_nat @ X5 @ T ) ) ).

% pinf(5)
thf(fact_70_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ~ ( ord_less_int @ X5 @ T ) ) ).

% pinf(5)
thf(fact_71_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( ord_less_nat @ T @ X5 ) ) ).

% pinf(7)
thf(fact_72_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( ord_less_int @ T @ X5 ) ) ).

% pinf(7)
thf(fact_73_minf_I1_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z4 )
           => ( ( ( P2 @ X5 )
                & ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_74_minf_I1_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( ( P2 @ X5 )
                & ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                & ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(1)
thf(fact_75_minf_I2_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z3: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z4 )
           => ( ( ( P2 @ X5 )
                | ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_76_minf_I2_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z3: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z4: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z4 )
           => ( ( ( P2 @ X5 )
                | ( Q @ X5 ) )
              = ( ( P3 @ X5 )
                | ( Q2 @ X5 ) ) ) ) ) ) ).

% minf(2)
thf(fact_77_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_78_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(3)
thf(fact_79_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_80_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( X5 != T ) ) ).

% minf(4)
thf(fact_81_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( ord_less_nat @ X5 @ T ) ) ).

% minf(5)
thf(fact_82_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( ord_less_int @ X5 @ T ) ) ).

% minf(5)
thf(fact_83_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ~ ( ord_less_nat @ T @ X5 ) ) ).

% minf(7)
thf(fact_84_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ~ ( ord_less_int @ T @ X5 ) ) ).

% minf(7)
thf(fact_85_lift__lemma,axiom,
    ! [X2: a,E: nat > a,F: nat > list_a > a,T: tm] :
      ( ( semantics_tm_a @ ( add_env_a @ X2 @ E ) @ F @ ( lift_tm @ T ) )
      = ( semantics_tm_a @ E @ F @ T ) ) ).

% lift_lemma
thf(fact_86_lift__lemma,axiom,
    ! [X2: tm,E: nat > tm,F: nat > list_tm > tm,T: tm] :
      ( ( semantics_tm_tm @ ( add_env_tm @ X2 @ E ) @ F @ ( lift_tm @ T ) )
      = ( semantics_tm_tm @ E @ F @ T ) ) ).

% lift_lemma
thf(fact_87_sub__fm__semantics,axiom,
    ! [E: nat > a,F: nat > list_a > a,G: nat > list_a > $o,S: nat > tm,P: fm] :
      ( ( semantics_fm_a @ E @ F @ G @ ( sub_fm @ S @ P ) )
      = ( semantics_fm_a
        @ ^ [N4: nat] : ( semantics_tm_a @ E @ F @ ( S @ N4 ) )
        @ F
        @ G
        @ P ) ) ).

% sub_fm_semantics
thf(fact_88_sub__fm__semantics,axiom,
    ! [E: nat > tm,F: nat > list_tm > tm,G: nat > list_tm > $o,S: nat > tm,P: fm] :
      ( ( semantics_fm_tm @ E @ F @ G @ ( sub_fm @ S @ P ) )
      = ( semantics_fm_tm
        @ ^ [N4: nat] : ( semantics_tm_tm @ E @ F @ ( S @ N4 ) )
        @ F
        @ G
        @ P ) ) ).

% sub_fm_semantics
thf(fact_89_fresh__def,axiom,
    ( fresh
    = ( ^ [A4: list_fm] : ( suc @ ( max_list @ ( vars_fms @ A4 ) ) ) ) ) ).

% fresh_def
thf(fact_90_order__less__imp__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_91_order__less__imp__not__less,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_92_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_93_order__less__imp__not__eq2,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_94_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_95_order__less__imp__not__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_96_linorder__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_97_linorder__less__linear,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_int @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_98_order__less__imp__triv,axiom,
    ! [X2: nat,Y2: nat,P2: $o] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X2 )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_99_order__less__imp__triv,axiom,
    ! [X2: int,Y2: int,P2: $o] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_int @ Y2 @ X2 )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_100_order__less__not__sym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_101_order__less__not__sym,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_102_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_103_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_104_order__less__subst2,axiom,
    ! [A2: int,B2: int,F2: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_105_order__less__subst2,axiom,
    ! [A2: int,B2: int,F2: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_106_lt__ex,axiom,
    ! [X2: int] :
    ? [Y3: int] : ( ord_less_int @ Y3 @ X2 ) ).

% lt_ex
thf(fact_107_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_108_gt__ex,axiom,
    ! [X2: int] :
    ? [X_1: int] : ( ord_less_int @ X2 @ X_1 ) ).

% gt_ex
thf(fact_109_less__imp__neq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_110_less__imp__neq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_111_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_112_order_Oasym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order.asym
thf(fact_113_ord__eq__less__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_114_ord__eq__less__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_115_ord__less__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_116_ord__less__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_117_less__induct,axiom,
    ! [P2: nat > $o,A2: nat] :
      ( ! [X3: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X3 )
             => ( P2 @ Y5 ) )
         => ( P2 @ X3 ) )
     => ( P2 @ A2 ) ) ).

% less_induct
thf(fact_118_antisym__conv3,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_119_antisym__conv3,axiom,
    ! [Y2: int,X2: int] :
      ( ~ ( ord_less_int @ Y2 @ X2 )
     => ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_120_linorder__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_121_linorder__cases,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_int @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_122_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_123_dual__order_Oasym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ~ ( ord_less_int @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_124_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_125_dual__order_Oirrefl,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_126_exists__least__iff,axiom,
    ( ( ^ [P4: nat > $o] :
        ? [X6: nat] : ( P4 @ X6 ) )
    = ( ^ [P5: nat > $o] :
        ? [N4: nat] :
          ( ( P5 @ N4 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N4 )
             => ~ ( P5 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_127_linorder__less__wlog,axiom,
    ! [P2: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B3: nat] :
          ( ( ord_less_nat @ A5 @ B3 )
         => ( P2 @ A5 @ B3 ) )
     => ( ! [A5: nat] : ( P2 @ A5 @ A5 )
       => ( ! [A5: nat,B3: nat] :
              ( ( P2 @ B3 @ A5 )
             => ( P2 @ A5 @ B3 ) )
         => ( P2 @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_128_linorder__less__wlog,axiom,
    ! [P2: int > int > $o,A2: int,B2: int] :
      ( ! [A5: int,B3: int] :
          ( ( ord_less_int @ A5 @ B3 )
         => ( P2 @ A5 @ B3 ) )
     => ( ! [A5: int] : ( P2 @ A5 @ A5 )
       => ( ! [A5: int,B3: int] :
              ( ( P2 @ B3 @ A5 )
             => ( P2 @ A5 @ B3 ) )
         => ( P2 @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_129_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_130_order_Ostrict__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_131_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_132_not__less__iff__gr__or__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
      = ( ( ord_less_int @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_133_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_134_dual__order_Ostrict__trans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_135_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_136_order_Ostrict__implies__not__eq,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_137_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_138_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_139_linorder__neqE,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_140_linorder__neqE,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_int @ X2 @ Y2 )
       => ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_141_order__less__asym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_142_order__less__asym,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_143_linorder__neq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_nat @ X2 @ Y2 )
        | ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_144_linorder__neq__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 != Y2 )
      = ( ( ord_less_int @ X2 @ Y2 )
        | ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_145_order__less__asym_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_146_order__less__asym_H,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_147_order__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_148_order__less__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_149_ord__eq__less__subst,axiom,
    ! [A2: nat,F2: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_150_ord__eq__less__subst,axiom,
    ! [A2: int,F2: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_151_ord__eq__less__subst,axiom,
    ! [A2: nat,F2: int > nat,B2: int,C: int] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_152_ord__eq__less__subst,axiom,
    ! [A2: int,F2: int > int,B2: int,C: int] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_153_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_154_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F2: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_155_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F2: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_156_ord__less__eq__subst,axiom,
    ! [A2: int,B2: int,F2: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_157_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_158_order__less__irrefl,axiom,
    ! [X2: int] :
      ~ ( ord_less_int @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_159_order__less__subst1,axiom,
    ! [A2: nat,F2: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_160_order__less__subst1,axiom,
    ! [A2: nat,F2: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_161_order__less__subst1,axiom,
    ! [A2: int,F2: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_162_order__less__subst1,axiom,
    ! [A2: int,F2: int > int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_163_sub__fm_Osimps_I4_J,axiom,
    ! [S: nat > tm,P: fm] :
      ( ( sub_fm @ S @ ( uni @ P ) )
      = ( uni
        @ ( sub_fm
          @ ( add_env_tm @ ( var @ zero_zero_nat )
            @ ^ [N4: nat] : ( lift_tm @ ( S @ N4 ) ) )
          @ P ) ) ) ).

% sub_fm.simps(4)
thf(fact_164_verit__comp__simplify1_I1_J,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_165_verit__comp__simplify1_I1_J,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_166_linorder__neqE__linordered__idom,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_int @ X2 @ Y2 )
       => ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_167_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_168_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_169_tm_Oinject_I1_J,axiom,
    ! [X1: nat,Y1: nat] :
      ( ( ( var @ X1 )
        = ( var @ Y1 ) )
      = ( X1 = Y1 ) ) ).

% tm.inject(1)
thf(fact_170_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_171_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_172_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_173_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M5: nat] :
          ( N
          = ( suc @ M5 ) ) ) ).

% not0_implies_Suc
thf(fact_174_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_175_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_176_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_177_zero__induct,axiom,
    ! [P2: nat > $o,K2: nat] :
      ( ( P2 @ K2 )
     => ( ! [N2: nat] :
            ( ( P2 @ ( suc @ N2 ) )
           => ( P2 @ N2 ) )
       => ( P2 @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_178_diff__induct,axiom,
    ! [P2: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P2 @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P2 @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P2 @ X3 @ Y3 )
             => ( P2 @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P2 @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_179_nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P2 @ N2 )
           => ( P2 @ ( suc @ N2 ) ) )
       => ( P2 @ N ) ) ) ).

% nat_induct
thf(fact_180_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y2
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_181_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_182_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_183_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_184_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_185_infinite__descent0,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P2 @ N2 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N2 )
                  & ~ ( P2 @ M3 ) ) ) )
       => ( P2 @ N ) ) ) ).

% infinite_descent0
thf(fact_186_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_187_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_188_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_189_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_190_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_191_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_192_add__env_Osimps_I1_J,axiom,
    ! [T: a,S: nat > a] :
      ( ( add_env_a @ T @ S @ zero_zero_nat )
      = T ) ).

% add_env.simps(1)
thf(fact_193_add__env_Osimps_I1_J,axiom,
    ! [T: tm,S: nat > tm] :
      ( ( add_env_tm @ T @ S @ zero_zero_nat )
      = T ) ).

% add_env.simps(1)
thf(fact_194_Ex__less__Suc2,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P2 @ I3 ) ) )
      = ( ( P2 @ zero_zero_nat )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P2 @ ( suc @ I3 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_195_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M2: nat] :
            ( N
            = ( suc @ M2 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_196_All__less__Suc2,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P2 @ I3 ) ) )
      = ( ( P2 @ zero_zero_nat )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P2 @ ( suc @ I3 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_197_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M5: nat] :
          ( N
          = ( suc @ M5 ) ) ) ).

% gr0_implies_Suc
thf(fact_198_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_199_sub__tm_Osimps_I1_J,axiom,
    ! [S: nat > tm,N: nat] :
      ( ( sub_tm @ S @ ( var @ N ) )
      = ( S @ N ) ) ).

% sub_tm.simps(1)
thf(fact_200_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_201_tm_Osize__gen_I1_J,axiom,
    ! [X1: nat] :
      ( ( size_tm @ ( var @ X1 ) )
      = zero_zero_nat ) ).

% tm.size_gen(1)
thf(fact_202_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_203_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_204_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_205_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_206_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_207_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_208_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_209_zero__reorient,axiom,
    ! [X2: int] :
      ( ( zero_zero_int = X2 )
      = ( X2 = zero_zero_int ) ) ).

% zero_reorient
thf(fact_210_tm_Osize_I3_J,axiom,
    ! [X1: nat] :
      ( ( size_size_tm @ ( var @ X1 ) )
      = zero_zero_nat ) ).

% tm.size(3)
thf(fact_211_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_212_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_213_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_214_zero__natural_Orsp,axiom,
    zero_zero_nat = zero_zero_nat ).

% zero_natural.rsp
thf(fact_215_nat__induct__non__zero,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P2 @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P2 @ N2 )
               => ( P2 @ ( suc @ N2 ) ) ) )
         => ( P2 @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_216_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_217_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ A2 )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_218_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ A2 )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_219_diff__zero,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% diff_zero
thf(fact_220_diff__zero,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% diff_zero
thf(fact_221_zero__diff,axiom,
    ! [A2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_222_diff__0__right,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% diff_0_right
thf(fact_223_diff__self,axiom,
    ! [A2: int] :
      ( ( minus_minus_int @ A2 @ A2 )
      = zero_zero_int ) ).

% diff_self
thf(fact_224_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K2 ) ) ).

% Suc_diff_diff
thf(fact_225_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_226_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_227_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_228_diff__gt__0__iff__gt,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A2 @ B2 ) )
      = ( ord_less_int @ B2 @ A2 ) ) ).

% diff_gt_0_iff_gt
thf(fact_229_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_230_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_231_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_232_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_233_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_234_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_235_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_236_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_237_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_238_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_239_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_240_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_241_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_242_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_243_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_244_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_245_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_246_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_247_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_248_diff__eq__diff__eq,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A2 = B2 )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_249_diff__right__commute,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ C ) @ B2 )
      = ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ C ) ) ).

% diff_right_commute
thf(fact_250_diff__right__commute,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A2 @ C ) @ B2 )
      = ( minus_minus_int @ ( minus_minus_int @ A2 @ B2 ) @ C ) ) ).

% diff_right_commute
thf(fact_251_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_252_one__reorient,axiom,
    ! [X2: int] :
      ( ( one_one_int = X2 )
      = ( X2 = one_one_int ) ) ).

% one_reorient
thf(fact_253_diff__left__imp__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ A2 @ C ) )
     => ( B2 = C ) ) ).

% diff_left_imp_eq
thf(fact_254_diff__commute,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K2 )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K2 ) @ J ) ) ).

% diff_commute
thf(fact_255_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_256_size__neq__size__imp__neq,axiom,
    ! [X2: tm,Y2: tm] :
      ( ( ( size_size_tm @ X2 )
       != ( size_size_tm @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_257_size__neq__size__imp__neq,axiom,
    ! [X2: fm,Y2: fm] :
      ( ( ( size_size_fm @ X2 )
       != ( size_size_fm @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_258_size__neq__size__imp__neq,axiom,
    ! [X2: char,Y2: char] :
      ( ( ( size_size_char @ X2 )
       != ( size_size_char @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_259_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [A: int,B: int] :
          ( ( minus_minus_int @ A @ B )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_260_diff__strict__mono,axiom,
    ! [A2: int,B2: int,D: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_261_diff__eq__diff__less,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A2 @ B2 )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_262_diff__strict__left__mono,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ord_less_int @ ( minus_minus_int @ C @ A2 ) @ ( minus_minus_int @ C @ B2 ) ) ) ).

% diff_strict_left_mono
thf(fact_263_diff__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_264_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_265_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_266_zero__induct__lemma,axiom,
    ! [P2: nat > $o,K2: nat,I: nat] :
      ( ( P2 @ K2 )
     => ( ! [N2: nat] :
            ( ( P2 @ ( suc @ N2 ) )
           => ( P2 @ N2 ) )
       => ( P2 @ ( minus_minus_nat @ K2 @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_267_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_268_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_269_less__imp__diff__less,axiom,
    ! [J: nat,K2: nat,N: nat] :
      ( ( ord_less_nat @ J @ K2 )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K2 ) ) ).

% less_imp_diff_less
thf(fact_270_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_271_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_272_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_273_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_274_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_275_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_276_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_277_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_less_as_int
thf(fact_278_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_279_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_280_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_281_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_282_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A: int,B: int] : ( ord_less_int @ ( minus_minus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_283_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_284_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_285_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_286_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_287_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_288_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_289_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_290_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_291_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_292_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_293_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_294_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_295_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_296_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_297_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_298_zero__less__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K2
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_299_pos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ~ ! [N2: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_300_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_301_of__nat__code,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N4: nat] :
          ( semiri8422978514062236437ux_nat
          @ ^ [I3: nat] : ( plus_plus_nat @ I3 @ one_one_nat )
          @ N4
          @ zero_zero_nat ) ) ) ).

% of_nat_code
thf(fact_302_of__nat__code,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N4: nat] :
          ( semiri8420488043553186161ux_int
          @ ^ [I3: int] : ( plus_plus_int @ I3 @ one_one_int )
          @ N4
          @ zero_zero_int ) ) ) ).

% of_nat_code
thf(fact_303_diff__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K3: nat] : K3
        @ ( minus_minus_nat @ M @ N ) ) ) ).

% diff_Suc
thf(fact_304_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M2: nat,N4: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N4 ) ) ) ) ) ).

% add_eq_if
thf(fact_305_lift__tm_Osimps_I1_J,axiom,
    ! [N: nat] :
      ( ( lift_tm @ ( var @ N ) )
      = ( var @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ).

% lift_tm.simps(1)
thf(fact_306_of__nat__zero__less__power__iff,axiom,
    ! [X2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_307_of__nat__zero__less__power__iff,axiom,
    ! [X2: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X2 ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_308_add__right__cancel,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_309_add__right__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_310_add__left__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_311_add__left__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_312_double__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( plus_plus_int @ A2 @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_313_add_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.right_neutral
thf(fact_314_add_Oright__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.right_neutral
thf(fact_315_double__zero__sym,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A2 @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_316_add__cancel__left__left,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_317_add__cancel__left__left,axiom,
    ! [B2: int,A2: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = A2 )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_318_add__cancel__left__right,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_319_add__cancel__left__right,axiom,
    ! [A2: int,B2: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = A2 )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_320_add__cancel__right__left,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( plus_plus_nat @ B2 @ A2 ) )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_321_add__cancel__right__left,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( plus_plus_int @ B2 @ A2 ) )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_322_add__cancel__right__right,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( plus_plus_nat @ A2 @ B2 ) )
      = ( B2 = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_323_add__cancel__right__right,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( plus_plus_int @ A2 @ B2 ) )
      = ( B2 = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_324_add__eq__0__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y2 )
        = zero_zero_nat )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_325_zero__eq__add__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X2 @ Y2 ) )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_326_add__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% add_0
thf(fact_327_add__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add_0
thf(fact_328_add__less__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_329_add__less__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_cancel_left
thf(fact_330_add__less__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_331_add__less__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_cancel_right
thf(fact_332_add__diff__cancel__right_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% add_diff_cancel_right'
thf(fact_333_add__diff__cancel__right_H,axiom,
    ! [A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% add_diff_cancel_right'
thf(fact_334_add__diff__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( minus_minus_nat @ A2 @ B2 ) ) ).

% add_diff_cancel_right
thf(fact_335_add__diff__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( minus_minus_int @ A2 @ B2 ) ) ).

% add_diff_cancel_right
thf(fact_336_add__diff__cancel__left_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ A2 )
      = B2 ) ).

% add_diff_cancel_left'
thf(fact_337_add__diff__cancel__left_H,axiom,
    ! [A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ A2 )
      = B2 ) ).

% add_diff_cancel_left'
thf(fact_338_add__diff__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( minus_minus_nat @ A2 @ B2 ) ) ).

% add_diff_cancel_left
thf(fact_339_add__diff__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( minus_minus_int @ A2 @ B2 ) ) ).

% add_diff_cancel_left
thf(fact_340_diff__add__cancel,axiom,
    ! [A2: int,B2: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% diff_add_cancel
thf(fact_341_add__diff__cancel,axiom,
    ! [A2: int,B2: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = A2 ) ).

% add_diff_cancel
thf(fact_342_nat__power__eq__Suc__0__iff,axiom,
    ! [X2: nat,M: nat] :
      ( ( ( power_power_nat @ X2 @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_343_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_344_nat__zero__less__power__iff,axiom,
    ! [X2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_345_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_346_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_347_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_348_nat__add__left__cancel__less,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_349_diff__diff__left,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K2 )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% diff_diff_left
thf(fact_350_add__less__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_351_add__less__same__cancel1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B2 @ A2 ) @ B2 )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_352_add__less__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_353_add__less__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_354_less__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_355_less__add__same__cancel1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ B2 ) )
      = ( ord_less_int @ zero_zero_int @ B2 ) ) ).

% less_add_same_cancel1
thf(fact_356_less__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_nat @ zero_zero_nat @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_357_less__add__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( plus_plus_int @ B2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ B2 ) ) ).

% less_add_same_cancel2
thf(fact_358_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_359_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_360_diff__add__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( minus_minus_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_361_power__inject__exp,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ( power_power_nat @ A2 @ M )
          = ( power_power_nat @ A2 @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_362_power__inject__exp,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ( power_power_int @ A2 @ M )
          = ( power_power_int @ A2 @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_363_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_364_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_365_power__Suc0__right,axiom,
    ! [A2: nat] :
      ( ( power_power_nat @ A2 @ ( suc @ zero_zero_nat ) )
      = A2 ) ).

% power_Suc0_right
thf(fact_366_power__Suc0__right,axiom,
    ! [A2: int] :
      ( ( power_power_int @ A2 @ ( suc @ zero_zero_nat ) )
      = A2 ) ).

% power_Suc0_right
thf(fact_367_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_368_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_369_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_370_power__strict__increasing__iff,axiom,
    ! [B2: nat,X2: nat,Y2: nat] :
      ( ( ord_less_nat @ one_one_nat @ B2 )
     => ( ( ord_less_nat @ ( power_power_nat @ B2 @ X2 ) @ ( power_power_nat @ B2 @ Y2 ) )
        = ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_371_power__strict__increasing__iff,axiom,
    ! [B2: int,X2: nat,Y2: nat] :
      ( ( ord_less_int @ one_one_int @ B2 )
     => ( ( ord_less_int @ ( power_power_int @ B2 @ X2 ) @ ( power_power_int @ B2 @ Y2 ) )
        = ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_372_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_373_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_374_power__eq__0__iff,axiom,
    ! [A2: nat,N: nat] :
      ( ( ( power_power_nat @ A2 @ N )
        = zero_zero_nat )
      = ( ( A2 = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_375_power__eq__0__iff,axiom,
    ! [A2: int,N: nat] :
      ( ( ( power_power_int @ A2 @ N )
        = zero_zero_int )
      = ( ( A2 = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_376_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X2: nat,B2: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B2 ) @ W ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ B2 @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_377_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X2: nat,B2: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B2 ) @ W ) )
      = ( ord_less_nat @ X2 @ ( power_power_nat @ B2 @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_378_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B2: nat,W: nat,X2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B2 ) @ W ) @ ( semiri1316708129612266289at_nat @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ B2 @ W ) @ X2 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_379_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B2: nat,W: nat,X2: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B2 ) @ W ) @ ( semiri1314217659103216013at_int @ X2 ) )
      = ( ord_less_nat @ ( power_power_nat @ B2 @ W ) @ X2 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_380_power__strict__decreasing__iff,axiom,
    ! [B2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B2 )
     => ( ( ord_less_nat @ B2 @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B2 @ M ) @ ( power_power_nat @ B2 @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_381_power__strict__decreasing__iff,axiom,
    ! [B2: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B2 )
     => ( ( ord_less_int @ B2 @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B2 @ M ) @ ( power_power_int @ B2 @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_382_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_383_zero__integer_Orsp,axiom,
    zero_zero_int = zero_zero_int ).

% zero_integer.rsp
thf(fact_384_minus__int__code_I1_J,axiom,
    ! [K2: int] :
      ( ( minus_minus_int @ K2 @ zero_zero_int )
      = K2 ) ).

% minus_int_code(1)
thf(fact_385_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_386_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z2: int] :
        ? [N4: nat] :
          ( Z2
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_387_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_388_int__ops_I4_J,axiom,
    ! [A2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_389_int__ops_I5_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(5)
thf(fact_390_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [A: nat,B: nat] :
          ( ( semiri1314217659103216013at_int @ A )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_391_int__if,axiom,
    ! [P2: $o,A2: nat,B2: nat] :
      ( ( P2
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P2 @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ A2 ) ) )
      & ( ~ P2
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P2 @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% int_if
thf(fact_392_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_393_add__right__imp__eq,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_394_add__right__imp__eq,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
     => ( B2 = C ) ) ).

% add_right_imp_eq
thf(fact_395_add__left__imp__eq,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_396_add__left__imp__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
     => ( B2 = C ) ) ).

% add_left_imp_eq
thf(fact_397_add_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( plus_plus_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_398_add_Oleft__commute,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( plus_plus_int @ B2 @ ( plus_plus_int @ A2 @ C ) )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add.left_commute
thf(fact_399_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A: nat,B: nat] : ( plus_plus_nat @ B @ A ) ) ) ).

% add.commute
thf(fact_400_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A: int,B: int] : ( plus_plus_int @ B @ A ) ) ) ).

% add.commute
thf(fact_401_add_Oright__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add.right_cancel
thf(fact_402_add_Oleft__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add.left_cancel
thf(fact_403_add_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_404_add_Oassoc,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add.assoc
thf(fact_405_group__cancel_Oadd2,axiom,
    ! [B4: nat,K2: nat,B2: nat,A2: nat] :
      ( ( B4
        = ( plus_plus_nat @ K2 @ B2 ) )
     => ( ( plus_plus_nat @ A2 @ B4 )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_406_group__cancel_Oadd2,axiom,
    ! [B4: int,K2: int,B2: int,A2: int] :
      ( ( B4
        = ( plus_plus_int @ K2 @ B2 ) )
     => ( ( plus_plus_int @ A2 @ B4 )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.add2
thf(fact_407_group__cancel_Oadd1,axiom,
    ! [A3: nat,K2: nat,A2: nat,B2: nat] :
      ( ( A3
        = ( plus_plus_nat @ K2 @ A2 ) )
     => ( ( plus_plus_nat @ A3 @ B2 )
        = ( plus_plus_nat @ K2 @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_408_group__cancel_Oadd1,axiom,
    ! [A3: int,K2: int,A2: int,B2: int] :
      ( ( A3
        = ( plus_plus_int @ K2 @ A2 ) )
     => ( ( plus_plus_int @ A3 @ B2 )
        = ( plus_plus_int @ K2 @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.add1
thf(fact_409_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I = J )
        & ( K2 = L ) )
     => ( ( plus_plus_nat @ I @ K2 )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_410_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( I = J )
        & ( K2 = L ) )
     => ( ( plus_plus_int @ I @ K2 )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_411_is__num__normalize_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_412_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_413_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_414_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_415_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_416_plus__int__code_I1_J,axiom,
    ! [K2: int] :
      ( ( plus_plus_int @ K2 @ zero_zero_int )
      = K2 ) ).

% plus_int_code(1)
thf(fact_417_power__not__zero,axiom,
    ! [A2: nat,N: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( power_power_nat @ A2 @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_418_power__not__zero,axiom,
    ! [A2: int,N: nat] :
      ( ( A2 != zero_zero_int )
     => ( ( power_power_int @ A2 @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_419_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X: int] : ( plus_plus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_420_nat_Ocase__distrib,axiom,
    ! [H: nat > nat,F1: nat,F22: nat > nat,Nat: nat] :
      ( ( H @ ( case_nat_nat @ F1 @ F22 @ Nat ) )
      = ( case_nat_nat @ ( H @ F1 )
        @ ^ [X: nat] : ( H @ ( F22 @ X ) )
        @ Nat ) ) ).

% nat.case_distrib
thf(fact_421_nat_Ocase__distrib,axiom,
    ! [H: nat > $o,F1: nat,F22: nat > nat,Nat: nat] :
      ( ( H @ ( case_nat_nat @ F1 @ F22 @ Nat ) )
      = ( case_nat_o @ ( H @ F1 )
        @ ^ [X: nat] : ( H @ ( F22 @ X ) )
        @ Nat ) ) ).

% nat.case_distrib
thf(fact_422_nat_Ocase__distrib,axiom,
    ! [H: $o > nat,F1: $o,F22: nat > $o,Nat: nat] :
      ( ( H @ ( case_nat_o @ F1 @ F22 @ Nat ) )
      = ( case_nat_nat @ ( H @ F1 )
        @ ^ [X: nat] : ( H @ ( F22 @ X ) )
        @ Nat ) ) ).

% nat.case_distrib
thf(fact_423_nat_Ocase__distrib,axiom,
    ! [H: $o > $o,F1: $o,F22: nat > $o,Nat: nat] :
      ( ( H @ ( case_nat_o @ F1 @ F22 @ Nat ) )
      = ( case_nat_o @ ( H @ F1 )
        @ ^ [X: nat] : ( H @ ( F22 @ X ) )
        @ Nat ) ) ).

% nat.case_distrib
thf(fact_424_add_Ogroup__left__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add.group_left_neutral
thf(fact_425_add_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% add.comm_neutral
thf(fact_426_add_Ocomm__neutral,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% add.comm_neutral
thf(fact_427_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_428_comm__monoid__add__class_Oadd__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% comm_monoid_add_class.add_0
thf(fact_429_verit__sum__simplify,axiom,
    ! [A2: nat] :
      ( ( plus_plus_nat @ A2 @ zero_zero_nat )
      = A2 ) ).

% verit_sum_simplify
thf(fact_430_verit__sum__simplify,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ A2 @ zero_zero_int )
      = A2 ) ).

% verit_sum_simplify
thf(fact_431_add__less__imp__less__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_432_add__less__imp__less__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
     => ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_imp_less_right
thf(fact_433_add__less__imp__less__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_nat @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_434_add__less__imp__less__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
     => ( ord_less_int @ A2 @ B2 ) ) ).

% add_less_imp_less_left
thf(fact_435_add__strict__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_436_add__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add_strict_right_mono
thf(fact_437_add__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_438_add__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) ) ) ).

% add_strict_left_mono
thf(fact_439_add__strict__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_440_add__strict__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_strict_mono
thf(fact_441_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K2 = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_442_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K2 = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_443_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_444_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_445_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_446_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_447_diff__diff__eq,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ C )
      = ( minus_minus_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% diff_diff_eq
thf(fact_448_diff__diff__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( minus_minus_int @ A2 @ ( plus_plus_int @ B2 @ C ) ) ) ).

% diff_diff_eq
thf(fact_449_add__implies__diff,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ( plus_plus_nat @ C @ B2 )
        = A2 )
     => ( C
        = ( minus_minus_nat @ A2 @ B2 ) ) ) ).

% add_implies_diff
thf(fact_450_add__implies__diff,axiom,
    ! [C: int,B2: int,A2: int] :
      ( ( ( plus_plus_int @ C @ B2 )
        = A2 )
     => ( C
        = ( minus_minus_int @ A2 @ B2 ) ) ) ).

% add_implies_diff
thf(fact_451_diff__add__eq__diff__diff__swap,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( minus_minus_int @ A2 @ ( plus_plus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A2 @ C ) @ B2 ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_452_diff__add__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ).

% diff_add_eq
thf(fact_453_diff__diff__eq2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( minus_minus_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ).

% diff_diff_eq2
thf(fact_454_add__diff__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( plus_plus_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ C ) ) ).

% add_diff_eq
thf(fact_455_eq__diff__eq,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( A2
        = ( minus_minus_int @ C @ B2 ) )
      = ( ( plus_plus_int @ A2 @ B2 )
        = C ) ) ).

% eq_diff_eq
thf(fact_456_diff__eq__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = C )
      = ( A2
        = ( plus_plus_int @ C @ B2 ) ) ) ).

% diff_eq_eq
thf(fact_457_group__cancel_Osub1,axiom,
    ! [A3: int,K2: int,A2: int,B2: int] :
      ( ( A3
        = ( plus_plus_int @ K2 @ A2 ) )
     => ( ( minus_minus_int @ A3 @ B2 )
        = ( plus_plus_int @ K2 @ ( minus_minus_int @ A2 @ B2 ) ) ) ) ).

% group_cancel.sub1
thf(fact_458_int__ops_I6_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A2 @ B2 ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A2 @ B2 ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% int_ops(6)
thf(fact_459_nat__arith_Osuc1,axiom,
    ! [A3: nat,K2: nat,A2: nat] :
      ( ( A3
        = ( plus_plus_nat @ K2 @ A2 ) )
     => ( ( suc @ A3 )
        = ( plus_plus_nat @ K2 @ ( suc @ A2 ) ) ) ) ).

% nat_arith.suc1
thf(fact_460_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_461_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_462_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_463_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_464_add__lessD1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K2 )
     => ( ord_less_nat @ I @ K2 ) ) ).

% add_lessD1
thf(fact_465_add__less__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K2 @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_466_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_467_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_468_add__less__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_less_mono1
thf(fact_469_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_470_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_471_less__add__eq__less,axiom,
    ! [K2: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K2 @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_472_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_473_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_474_diff__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K2 ) @ ( plus_plus_nat @ N @ K2 ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_475_Nat_Odiff__cancel,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_476_zero__less__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A2 @ N ) ) ) ).

% zero_less_power
thf(fact_477_zero__less__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A2 @ N ) ) ) ).

% zero_less_power
thf(fact_478_power__0,axiom,
    ! [A2: nat] :
      ( ( power_power_nat @ A2 @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_479_power__0,axiom,
    ! [A2: int] :
      ( ( power_power_int @ A2 @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_480_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_481_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_482_old_Onat_Osimps_I5_J,axiom,
    ! [F1: nat,F22: nat > nat,X22: nat] :
      ( ( case_nat_nat @ F1 @ F22 @ ( suc @ X22 ) )
      = ( F22 @ X22 ) ) ).

% old.nat.simps(5)
thf(fact_483_old_Onat_Osimps_I5_J,axiom,
    ! [F1: $o,F22: nat > $o,X22: nat] :
      ( ( case_nat_o @ F1 @ F22 @ ( suc @ X22 ) )
      = ( F22 @ X22 ) ) ).

% old.nat.simps(5)
thf(fact_484_old_Onat_Osimps_I4_J,axiom,
    ! [F1: nat,F22: nat > nat] :
      ( ( case_nat_nat @ F1 @ F22 @ zero_zero_nat )
      = F1 ) ).

% old.nat.simps(4)
thf(fact_485_old_Onat_Osimps_I4_J,axiom,
    ! [F1: $o,F22: nat > $o] :
      ( ( case_nat_o @ F1 @ F22 @ zero_zero_nat )
      = F1 ) ).

% old.nat.simps(4)
thf(fact_486_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_487_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_488_power__gt1,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_489_power__gt1,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A2 @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_490_power__less__imp__less__exp,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ord_less_nat @ ( power_power_nat @ A2 @ M ) @ ( power_power_nat @ A2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_491_power__less__imp__less__exp,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ord_less_int @ ( power_power_int @ A2 @ M ) @ ( power_power_int @ A2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_492_power__strict__increasing,axiom,
    ! [N: nat,N5: nat,A2: nat] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_nat @ one_one_nat @ A2 )
       => ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ A2 @ N5 ) ) ) ) ).

% power_strict_increasing
thf(fact_493_power__strict__increasing,axiom,
    ! [N: nat,N5: nat,A2: int] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_int @ one_one_int @ A2 )
       => ( ord_less_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ A2 @ N5 ) ) ) ) ).

% power_strict_increasing
thf(fact_494_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_495_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_496_add__neg__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_497_add__neg__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_498_add__pos__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_499_add__pos__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_pos_pos
thf(fact_500_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ! [C2: nat] :
            ( ( B2
              = ( plus_plus_nat @ A2 @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_501_pos__add__strict,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_502_pos__add__strict,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% pos_add_strict
thf(fact_503_add__less__zeroD,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X2 @ Y2 ) @ zero_zero_int )
     => ( ( ord_less_int @ X2 @ zero_zero_int )
        | ( ord_less_int @ Y2 @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_504_power__gt__expt,axiom,
    ! [N: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K2 @ ( power_power_nat @ N @ K2 ) ) ) ).

% power_gt_expt
thf(fact_505_add__mono1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( plus_plus_nat @ B2 @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_506_add__mono1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( plus_plus_int @ B2 @ one_one_int ) ) ) ).

% add_mono1
thf(fact_507_less__add__one,axiom,
    ! [A2: nat] : ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ one_one_nat ) ) ).

% less_add_one
thf(fact_508_less__add__one,axiom,
    ! [A2: int] : ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ one_one_int ) ) ).

% less_add_one
thf(fact_509_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A2: nat,B2: nat] :
      ( ~ ( ord_less_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ B2 @ ( minus_minus_nat @ A2 @ B2 ) )
        = A2 ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_510_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A2: int,B2: int] :
      ( ~ ( ord_less_int @ A2 @ B2 )
     => ( ( plus_plus_int @ B2 @ ( minus_minus_int @ A2 @ B2 ) )
        = A2 ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_511_less__diff__eq,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( minus_minus_int @ C @ B2 ) )
      = ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ C ) ) ).

% less_diff_eq
thf(fact_512_diff__less__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( ord_less_int @ A2 @ ( plus_plus_int @ C @ B2 ) ) ) ).

% diff_less_eq
thf(fact_513_fm_Osize_I8_J,axiom,
    ! [X4: fm] :
      ( ( size_size_fm @ ( uni @ X4 ) )
      = ( plus_plus_nat @ ( size_size_fm @ X4 ) @ ( suc @ zero_zero_nat ) ) ) ).

% fm.size(8)
thf(fact_514_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_515_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_516_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% less_imp_Suc_add
thf(fact_517_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( suc @ ( plus_plus_nat @ M2 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_518_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_519_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_520_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q3: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_521_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K )
          & ( ( plus_plus_nat @ I @ K )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_522_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_523_less__diff__conv,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ J ) ) ).

% less_diff_conv
thf(fact_524_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_525_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_526_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_527_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_528_power__Suc__less__one,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ A2 @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_529_power__Suc__less__one,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ A2 @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A2 @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_530_power__strict__decreasing,axiom,
    ! [N: nat,N5: nat,A2: nat] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_nat @ A2 @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A2 @ N5 ) @ ( power_power_nat @ A2 @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_531_power__strict__decreasing,axiom,
    ! [N: nat,N5: nat,A2: int] :
      ( ( ord_less_nat @ N @ N5 )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ( ord_less_int @ A2 @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A2 @ N5 ) @ ( power_power_int @ A2 @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_532_one__less__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A2 @ N ) ) ) ) ).

% one_less_power
thf(fact_533_one__less__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A2 @ N ) ) ) ) ).

% one_less_power
thf(fact_534_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_535_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_536_nat__diff__split,axiom,
    ! [P2: nat > $o,A2: nat,B2: nat] :
      ( ( P2 @ ( minus_minus_nat @ A2 @ B2 ) )
      = ( ( ( ord_less_nat @ A2 @ B2 )
         => ( P2 @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A2
              = ( plus_plus_nat @ B2 @ D2 ) )
           => ( P2 @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_537_nat__diff__split__asm,axiom,
    ! [P2: nat > $o,A2: nat,B2: nat] :
      ( ( P2 @ ( minus_minus_nat @ A2 @ B2 ) )
      = ( ~ ( ( ( ord_less_nat @ A2 @ B2 )
              & ~ ( P2 @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A2
                  = ( plus_plus_nat @ B2 @ D2 ) )
                & ~ ( P2 @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_538_Nitpick_Ocase__nat__unfold,axiom,
    ( case_nat_nat
    = ( ^ [X: nat,F3: nat > nat,N4: nat] : ( if_nat @ ( N4 = zero_zero_nat ) @ X @ ( F3 @ ( minus_minus_nat @ N4 @ one_one_nat ) ) ) ) ) ).

% Nitpick.case_nat_unfold
thf(fact_539_Nitpick_Ocase__nat__unfold,axiom,
    ( case_nat_o
    = ( ^ [X: $o,F3: nat > $o,N4: nat] :
          ( ( ( N4 = zero_zero_nat )
           => X )
          & ( ( N4 != zero_zero_nat )
           => ( F3 @ ( minus_minus_nat @ N4 @ one_one_nat ) ) ) ) ) ) ).

% Nitpick.case_nat_unfold
thf(fact_540_fm_Osize__gen_I4_J,axiom,
    ! [X4: fm] :
      ( ( size_fm @ ( uni @ X4 ) )
      = ( plus_plus_nat @ ( size_fm @ X4 ) @ ( suc @ zero_zero_nat ) ) ) ).

% fm.size_gen(4)
thf(fact_541_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C3: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_542_nat_Osplit__sels_I1_J,axiom,
    ! [P2: nat > $o,F1: nat,F22: nat > nat,Nat: nat] :
      ( ( P2 @ ( case_nat_nat @ F1 @ F22 @ Nat ) )
      = ( ( ( Nat = zero_zero_nat )
         => ( P2 @ F1 ) )
        & ( ( Nat
            = ( suc @ ( pred @ Nat ) ) )
         => ( P2 @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ).

% nat.split_sels(1)
thf(fact_543_nat_Osplit__sels_I1_J,axiom,
    ! [P2: $o > $o,F1: $o,F22: nat > $o,Nat: nat] :
      ( ( P2 @ ( case_nat_o @ F1 @ F22 @ Nat ) )
      = ( ( ( Nat = zero_zero_nat )
         => ( P2 @ F1 ) )
        & ( ( Nat
            = ( suc @ ( pred @ Nat ) ) )
         => ( P2 @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ).

% nat.split_sels(1)
thf(fact_544_nat_Osplit__sels_I2_J,axiom,
    ! [P2: nat > $o,F1: nat,F22: nat > nat,Nat: nat] :
      ( ( P2 @ ( case_nat_nat @ F1 @ F22 @ Nat ) )
      = ( ~ ( ( ( Nat = zero_zero_nat )
              & ~ ( P2 @ F1 ) )
            | ( ( Nat
                = ( suc @ ( pred @ Nat ) ) )
              & ~ ( P2 @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ) ).

% nat.split_sels(2)
thf(fact_545_nat_Osplit__sels_I2_J,axiom,
    ! [P2: $o > $o,F1: $o,F22: nat > $o,Nat: nat] :
      ( ( P2 @ ( case_nat_o @ F1 @ F22 @ Nat ) )
      = ( ~ ( ( ( Nat = zero_zero_nat )
              & ~ ( P2 @ F1 ) )
            | ( ( Nat
                = ( suc @ ( pred @ Nat ) ) )
              & ~ ( P2 @ ( F22 @ ( pred @ Nat ) ) ) ) ) ) ) ).

% nat.split_sels(2)
thf(fact_546_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X23: nat] : X23 ) ) ).

% pred_def
thf(fact_547_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_548_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_549_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C3: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_550_fm_Osize__gen_I3_J,axiom,
    ! [X31: fm,X32: fm] :
      ( ( size_fm @ ( imp @ X31 @ X32 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_fm @ X31 ) @ ( size_fm @ X32 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% fm.size_gen(3)
thf(fact_551_fm_Osize_I7_J,axiom,
    ! [X31: fm,X32: fm] :
      ( ( size_size_fm @ ( imp @ X31 @ X32 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_size_fm @ X31 ) @ ( size_size_fm @ X32 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% fm.size(7)
thf(fact_552_Euclid__induct,axiom,
    ! [P2: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B3: nat] :
          ( ( P2 @ A5 @ B3 )
          = ( P2 @ B3 @ A5 ) )
     => ( ! [A5: nat] : ( P2 @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B3: nat] :
              ( ( P2 @ A5 @ B3 )
             => ( P2 @ A5 @ ( plus_plus_nat @ A5 @ B3 ) ) )
         => ( P2 @ A2 @ B2 ) ) ) ) ).

% Euclid_induct
thf(fact_553_fm_Oinject_I2_J,axiom,
    ! [X31: fm,X32: fm,Y31: fm,Y32: fm] :
      ( ( ( imp @ X31 @ X32 )
        = ( imp @ Y31 @ Y32 ) )
      = ( ( X31 = Y31 )
        & ( X32 = Y32 ) ) ) ).

% fm.inject(2)
thf(fact_554_semantics__fm_Osimps_I3_J,axiom,
    ! [E: nat > a,F: nat > list_a > a,G: nat > list_a > $o,P: fm,Q4: fm] :
      ( ( semantics_fm_a @ E @ F @ G @ ( imp @ P @ Q4 ) )
      = ( ( semantics_fm_a @ E @ F @ G @ P )
       => ( semantics_fm_a @ E @ F @ G @ Q4 ) ) ) ).

% semantics_fm.simps(3)
thf(fact_555_semantics__fm_Osimps_I3_J,axiom,
    ! [E: nat > tm,F: nat > list_tm > tm,G: nat > list_tm > $o,P: fm,Q4: fm] :
      ( ( semantics_fm_tm @ E @ F @ G @ ( imp @ P @ Q4 ) )
      = ( ( semantics_fm_tm @ E @ F @ G @ P )
       => ( semantics_fm_tm @ E @ F @ G @ Q4 ) ) ) ).

% semantics_fm.simps(3)
thf(fact_556_fm_Odistinct_I11_J,axiom,
    ! [X31: fm,X32: fm,X4: fm] :
      ( ( imp @ X31 @ X32 )
     != ( uni @ X4 ) ) ).

% fm.distinct(11)
thf(fact_557_sub__fm_Osimps_I3_J,axiom,
    ! [S: nat > tm,P: fm,Q4: fm] :
      ( ( sub_fm @ S @ ( imp @ P @ Q4 ) )
      = ( imp @ ( sub_fm @ S @ P ) @ ( sub_fm @ S @ Q4 ) ) ) ).

% sub_fm.simps(3)
thf(fact_558_add__0__iff,axiom,
    ! [B2: nat,A2: nat] :
      ( ( B2
        = ( plus_plus_nat @ B2 @ A2 ) )
      = ( A2 = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_559_add__0__iff,axiom,
    ! [B2: int,A2: int] :
      ( ( B2
        = ( plus_plus_int @ B2 @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% add_0_iff
thf(fact_560_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X: int] : ( minus_minus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_561_one__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% one_less_nat_eq
thf(fact_562_zdiff__int__split,axiom,
    ! [P2: int > $o,X2: nat,Y2: nat] :
      ( ( P2 @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X2 @ Y2 ) ) )
      = ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ( P2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) )
        & ( ( ord_less_nat @ X2 @ Y2 )
         => ( P2 @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_563_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_564_order__refl,axiom,
    ! [X2: int] : ( ord_less_eq_int @ X2 @ X2 ) ).

% order_refl
thf(fact_565_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_566_dual__order_Orefl,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_567_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_568_add__le__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_569_add__le__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_570_add__le__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_571_add__le__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_572_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_573_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_574_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_575_nat__add__left__cancel__le,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K2 @ M ) @ ( plus_plus_nat @ K2 @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_576_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_577_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_578_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_579_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_580_le__add__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_581_le__add__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ B2 @ A2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ).

% le_add_same_cancel2
thf(fact_582_le__add__same__cancel1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_583_le__add__same__cancel1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( plus_plus_int @ A2 @ B2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ).

% le_add_same_cancel1
thf(fact_584_add__le__same__cancel2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_585_add__le__same__cancel2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ B2 )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_586_add__le__same__cancel1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_587_add__le__same__cancel1,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B2 @ A2 ) @ B2 )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_588_diff__ge__0__iff__ge,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A2 @ B2 ) )
      = ( ord_less_eq_int @ B2 @ A2 ) ) ).

% diff_ge_0_iff_ge
thf(fact_589_le__add__diff__inverse2,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A2 @ B2 ) @ B2 )
        = A2 ) ) ).

% le_add_diff_inverse2
thf(fact_590_le__add__diff__inverse2,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( plus_plus_int @ ( minus_minus_int @ A2 @ B2 ) @ B2 )
        = A2 ) ) ).

% le_add_diff_inverse2
thf(fact_591_le__add__diff__inverse,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( plus_plus_nat @ B2 @ ( minus_minus_nat @ A2 @ B2 ) )
        = A2 ) ) ).

% le_add_diff_inverse
thf(fact_592_le__add__diff__inverse,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( plus_plus_int @ B2 @ ( minus_minus_int @ A2 @ B2 ) )
        = A2 ) ) ).

% le_add_diff_inverse
thf(fact_593_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_594_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_595_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_596_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_597_Nat_Odiff__diff__right,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K2 ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_598_Nat_Oadd__diff__assoc2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K2 ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K2 ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_599_Nat_Oadd__diff__assoc,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K2 ) ) ) ).

% Nat.add_diff_assoc
thf(fact_600_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_601_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_602_diff__Suc__diff__eq1,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K2 ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K2 ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_603_diff__Suc__diff__eq2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K2 ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K2 @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_604_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_605_zless__nat__conj,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
      = ( ( ord_less_int @ zero_zero_int @ Z )
        & ( ord_less_int @ W @ Z ) ) ) ).

% zless_nat_conj
thf(fact_606_power__mono__iff,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B2 @ N ) )
            = ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ) ).

% power_mono_iff
thf(fact_607_power__mono__iff,axiom,
    ! [A2: int,B2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B2 @ N ) )
            = ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ) ).

% power_mono_iff
thf(fact_608_power__increasing__iff,axiom,
    ! [B2: nat,X2: nat,Y2: nat] :
      ( ( ord_less_nat @ one_one_nat @ B2 )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B2 @ X2 ) @ ( power_power_nat @ B2 @ Y2 ) )
        = ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_609_power__increasing__iff,axiom,
    ! [B2: int,X2: nat,Y2: nat] :
      ( ( ord_less_int @ one_one_int @ B2 )
     => ( ( ord_less_eq_int @ ( power_power_int @ B2 @ X2 ) @ ( power_power_int @ B2 @ Y2 ) )
        = ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_610_zero__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% zero_less_nat_eq
thf(fact_611_power__decreasing__iff,axiom,
    ! [B2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B2 )
     => ( ( ord_less_nat @ B2 @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B2 @ M ) @ ( power_power_nat @ B2 @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_612_power__decreasing__iff,axiom,
    ! [B2: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B2 )
     => ( ( ord_less_int @ B2 @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B2 @ M ) @ ( power_power_int @ B2 @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_613_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_614_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_615_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_616_nle__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_eq_int @ A2 @ B2 ) )
      = ( ( ord_less_eq_int @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_617_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_618_le__cases3,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ( ord_less_eq_int @ X2 @ Y2 )
       => ~ ( ord_less_eq_int @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_int @ Y2 @ X2 )
         => ~ ( ord_less_eq_int @ X2 @ Z ) )
       => ( ( ( ord_less_eq_int @ X2 @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_int @ Z @ Y2 )
             => ~ ( ord_less_eq_int @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_int @ Y2 @ Z )
               => ~ ( ord_less_eq_int @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_int @ Z @ X2 )
                 => ~ ( ord_less_eq_int @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_619_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_620_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ( ord_less_eq_int @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_621_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_622_ord__eq__le__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_623_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_624_ord__le__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_625_order__antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_626_order__antisym,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_627_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_628_order_Otrans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% order.trans
thf(fact_629_order__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_eq_nat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_630_order__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_eq_int @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_631_linorder__wlog,axiom,
    ! [P2: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A5 @ B3 )
         => ( P2 @ A5 @ B3 ) )
     => ( ! [A5: nat,B3: nat] :
            ( ( P2 @ B3 @ A5 )
           => ( P2 @ A5 @ B3 ) )
       => ( P2 @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_632_linorder__wlog,axiom,
    ! [P2: int > int > $o,A2: int,B2: int] :
      ( ! [A5: int,B3: int] :
          ( ( ord_less_eq_int @ A5 @ B3 )
         => ( P2 @ A5 @ B3 ) )
     => ( ! [A5: int,B3: int] :
            ( ( P2 @ B3 @ A5 )
           => ( P2 @ A5 @ B3 ) )
       => ( P2 @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_633_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_634_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [A: int,B: int] :
          ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_eq_int @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_635_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_636_dual__order_Oantisym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_637_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_638_dual__order_Otrans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_639_antisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_640_antisym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_641_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_642_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [A: int,B: int] :
          ( ( ord_less_eq_int @ A @ B )
          & ( ord_less_eq_int @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_643_order__subst1,axiom,
    ! [A2: nat,F2: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_644_order__subst1,axiom,
    ! [A2: nat,F2: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_645_order__subst1,axiom,
    ! [A2: int,F2: nat > int,B2: nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_646_order__subst1,axiom,
    ! [A2: int,F2: int > int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_subst1
thf(fact_647_order__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_648_order__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_649_order__subst2,axiom,
    ! [A2: int,B2: int,F2: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_650_order__subst2,axiom,
    ! [A2: int,B2: int,F2: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_651_order__eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_652_order__eq__refl,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_int @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_653_linorder__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_654_linorder__linear,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
      | ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_655_ord__eq__le__subst,axiom,
    ! [A2: nat,F2: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_656_ord__eq__le__subst,axiom,
    ! [A2: int,F2: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_657_ord__eq__le__subst,axiom,
    ! [A2: nat,F2: int > nat,B2: int,C: int] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_658_ord__eq__le__subst,axiom,
    ! [A2: int,F2: int > int,B2: int,C: int] :
      ( ( A2
        = ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_659_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_660_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F2: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_661_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F2: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_662_ord__le__eq__subst,axiom,
    ! [A2: int,B2: int,F2: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ( F2 @ B2 )
          = C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_663_linorder__le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_664_linorder__le__cases,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_eq_int @ X2 @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_665_order__antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_666_order__antisym__conv,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ Y2 @ X2 )
     => ( ( ord_less_eq_int @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_667_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_668_le__trans,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K2 )
       => ( ord_less_eq_nat @ I @ K2 ) ) ) ).

% le_trans
thf(fact_669_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_670_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_671_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_672_Nat_Oex__has__greatest__nat,axiom,
    ! [P2: nat > $o,K2: nat,B2: nat] :
      ( ( P2 @ K2 )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B2 ) )
       => ? [X3: nat] :
            ( ( P2 @ X3 )
            & ! [Y5: nat] :
                ( ( P2 @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_673_lift__Suc__mono__le,axiom,
    ! [F2: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_674_lift__Suc__mono__le,axiom,
    ! [F2: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F2 @ N2 ) @ ( F2 @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_int @ ( F2 @ N ) @ ( F2 @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_675_lift__Suc__antimono__le,axiom,
    ! [F2: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N2 ) ) @ ( F2 @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F2 @ N3 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_676_lift__Suc__antimono__le,axiom,
    ! [F2: nat > int,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F2 @ ( suc @ N2 ) ) @ ( F2 @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_int @ ( F2 @ N3 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_677_verit__comp__simplify1_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_678_verit__comp__simplify1_I2_J,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_679_verit__la__disequality,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_nat @ A2 @ B2 )
      | ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_680_verit__la__disequality,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_int @ A2 @ B2 )
      | ~ ( ord_less_eq_int @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_681_diff__eq__diff__less__eq,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A2 @ B2 )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A2 @ B2 )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_682_diff__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ C ) ) ) ).

% diff_right_mono
thf(fact_683_diff__left__mono,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A2 ) @ ( minus_minus_int @ C @ B2 ) ) ) ).

% diff_left_mono
thf(fact_684_diff__mono,axiom,
    ! [A2: int,B2: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B2 @ D ) ) ) ) ).

% diff_mono
thf(fact_685_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_686_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_687_add__le__imp__le__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_688_add__le__imp__le__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_imp_le_right
thf(fact_689_add__le__imp__le__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_690_add__le__imp__le__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_imp_le_left
thf(fact_691_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
        ? [C3: nat] :
          ( B
          = ( plus_plus_nat @ A @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_692_add__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_693_add__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) ) ) ).

% add_right_mono
thf(fact_694_less__eqE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ~ ! [C2: nat] :
            ( B2
           != ( plus_plus_nat @ A2 @ C2 ) ) ) ).

% less_eqE
thf(fact_695_add__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_696_add__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) ) ) ).

% add_left_mono
thf(fact_697_add__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_698_add__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_mono
thf(fact_699_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_700_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_701_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_702_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_703_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_704_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K2 = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_705_leD,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_706_leD,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ Y2 @ X2 )
     => ~ ( ord_less_int @ X2 @ Y2 ) ) ).

% leD
thf(fact_707_leI,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% leI
thf(fact_708_leI,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_int @ X2 @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% leI
thf(fact_709_nless__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_710_nless__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_int @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_int @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_711_antisym__conv1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_712_antisym__conv1,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_713_antisym__conv2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_714_antisym__conv2,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_715_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_716_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ~ ( ord_less_eq_int @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_717_not__le__imp__less,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ord_less_nat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_718_not__le__imp__less,axiom,
    ! [Y2: int,X2: int] :
      ( ~ ( ord_less_eq_int @ Y2 @ X2 )
     => ( ord_less_int @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_719_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_nat @ A @ B )
          | ( A = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_720_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A: int,B: int] :
          ( ( ord_less_int @ A @ B )
          | ( A = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_721_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ( A != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_722_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A: int,B: int] :
          ( ( ord_less_eq_int @ A @ B )
          & ( A != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_723_order_Ostrict__trans1,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_724_order_Ostrict__trans1,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_725_order_Ostrict__trans2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_726_order_Ostrict__trans2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_727_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ~ ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% order.strict_iff_not
thf(fact_728_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A: int,B: int] :
          ( ( ord_less_eq_int @ A @ B )
          & ~ ( ord_less_eq_int @ B @ A ) ) ) ) ).

% order.strict_iff_not
thf(fact_729_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B: nat,A: nat] :
          ( ( ord_less_nat @ B @ A )
          | ( A = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_730_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B: int,A: int] :
          ( ( ord_less_int @ B @ A )
          | ( A = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_731_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ( A != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_732_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B: int,A: int] :
          ( ( ord_less_eq_int @ B @ A )
          & ( A != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_733_dual__order_Ostrict__trans1,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_734_dual__order_Ostrict__trans1,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_735_dual__order_Ostrict__trans2,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_736_dual__order_Ostrict__trans2,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_737_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ~ ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_738_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B: int,A: int] :
          ( ( ord_less_eq_int @ B @ A )
          & ~ ( ord_less_eq_int @ A @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_739_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_740_order_Ostrict__implies__order,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_741_dual__order_Ostrict__implies__order,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_742_dual__order_Ostrict__implies__order,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ord_less_eq_int @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_743_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_nat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_744_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_int @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_745_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_746_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_747_linorder__not__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_748_linorder__not__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ~ ( ord_less_eq_int @ X2 @ Y2 ) )
      = ( ord_less_int @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_749_linorder__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_750_linorder__not__less,axiom,
    ! [X2: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
      = ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_751_order__less__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_752_order__less__imp__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ord_less_eq_int @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_753_order__le__neq__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_754_order__le__neq__trans,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_755_order__neq__le__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_756_order__neq__le__trans,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_757_order__le__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_758_order__le__less__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_759_order__less__le__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_760_order__less__le__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_761_order__le__less__subst1,axiom,
    ! [A2: nat,F2: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_762_order__le__less__subst1,axiom,
    ! [A2: nat,F2: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_763_order__le__less__subst1,axiom,
    ! [A2: int,F2: nat > int,B2: nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_764_order__le__less__subst1,axiom,
    ! [A2: int,F2: int > int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_765_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_766_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_767_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F2: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_768_order__le__less__subst2,axiom,
    ! [A2: int,B2: int,F2: int > int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_769_order__less__le__subst1,axiom,
    ! [A2: nat,F2: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_770_order__less__le__subst1,axiom,
    ! [A2: int,F2: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_771_order__less__le__subst1,axiom,
    ! [A2: nat,F2: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_772_order__less__le__subst1,axiom,
    ! [A2: int,F2: int > int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ ( F2 @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_eq_int @ X3 @ Y3 )
             => ( ord_less_eq_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ A2 @ ( F2 @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_773_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_774_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F2: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_nat @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_nat @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_775_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F2: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_776_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F2: int > int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F2 @ B2 ) @ C )
       => ( ! [X3: int,Y3: int] :
              ( ( ord_less_int @ X3 @ Y3 )
             => ( ord_less_int @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
         => ( ord_less_int @ ( F2 @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_777_linorder__le__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_778_linorder__le__less__linear,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
      | ( ord_less_int @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_779_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_780_order__le__imp__less__or__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_int @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_781_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X5 ) ) ).

% minf(8)
thf(fact_782_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X5 ) ) ).

% minf(8)
thf(fact_783_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ X5 @ Z4 )
     => ( ord_less_eq_nat @ X5 @ T ) ) ).

% minf(6)
thf(fact_784_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ X5 @ Z4 )
     => ( ord_less_eq_int @ X5 @ T ) ) ).

% minf(6)
thf(fact_785_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ( ord_less_eq_nat @ T @ X5 ) ) ).

% pinf(8)
thf(fact_786_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ( ord_less_eq_int @ T @ X5 ) ) ).

% pinf(8)
thf(fact_787_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X5: nat] :
      ( ( ord_less_nat @ Z4 @ X5 )
     => ~ ( ord_less_eq_nat @ X5 @ T ) ) ).

% pinf(6)
thf(fact_788_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X5: int] :
      ( ( ord_less_int @ Z4 @ X5 )
     => ~ ( ord_less_eq_int @ X5 @ T ) ) ).

% pinf(6)
thf(fact_789_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A6 ) )
      = ( ord_less_nat @ A6 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_790_verit__comp__simplify1_I3_J,axiom,
    ! [B5: int,A6: int] :
      ( ( ~ ( ord_less_eq_int @ B5 @ A6 ) )
      = ( ord_less_int @ A6 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_791_complete__interval,axiom,
    ! [A2: nat,B2: nat,P2: nat > $o] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( P2 @ A2 )
       => ( ~ ( P2 @ B2 )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A2 @ C2 )
              & ( ord_less_eq_nat @ C2 @ B2 )
              & ! [X5: nat] :
                  ( ( ( ord_less_eq_nat @ A2 @ X5 )
                    & ( ord_less_nat @ X5 @ C2 ) )
                 => ( P2 @ X5 ) )
              & ! [D3: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A2 @ X3 )
                        & ( ord_less_nat @ X3 @ D3 ) )
                     => ( P2 @ X3 ) )
                 => ( ord_less_eq_nat @ D3 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_792_complete__interval,axiom,
    ! [A2: int,B2: int,P2: int > $o] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( P2 @ A2 )
       => ( ~ ( P2 @ B2 )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A2 @ C2 )
              & ( ord_less_eq_int @ C2 @ B2 )
              & ! [X5: int] :
                  ( ( ( ord_less_eq_int @ A2 @ X5 )
                    & ( ord_less_int @ X5 @ C2 ) )
                 => ( P2 @ X5 ) )
              & ! [D3: int] :
                  ( ! [X3: int] :
                      ( ( ( ord_less_eq_int @ A2 @ X3 )
                        & ( ord_less_int @ X3 @ D3 ) )
                     => ( P2 @ X3 ) )
                 => ( ord_less_eq_int @ D3 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_793_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_794_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_795_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_796_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z4: nat] :
              ( ( R @ X3 @ Y3 )
             => ( ( R @ Y3 @ Z4 )
               => ( R @ X3 @ Z4 ) ) )
         => ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_797_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P2 @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P2 @ N2 )
               => ( P2 @ ( suc @ N2 ) ) ) )
         => ( P2 @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_798_full__nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
             => ( P2 @ M3 ) )
         => ( P2 @ N2 ) )
     => ( P2 @ N ) ) ).

% full_nat_induct
thf(fact_799_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_800_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_801_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_802_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M5: nat] :
          ( M6
          = ( suc @ M5 ) ) ) ).

% Suc_le_D
thf(fact_803_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_804_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_805_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_806_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_807_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_808_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_809_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_810_less__mono__imp__le__mono,axiom,
    ! [F2: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F2 @ I2 ) @ ( F2 @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_811_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_812_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_813_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N4: nat] :
          ( ( ord_less_nat @ M2 @ N4 )
          | ( M2 = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_814_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_815_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M2 @ N4 )
          & ( M2 != N4 ) ) ) ) ).

% nat_less_le
thf(fact_816_add__leE,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K2 @ N ) ) ) ).

% add_leE
thf(fact_817_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_818_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_819_add__leD1,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_820_add__leD2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K2 ) @ N )
     => ( ord_less_eq_nat @ K2 @ N ) ) ).

% add_leD2
thf(fact_821_le__Suc__ex,axiom,
    ! [K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ K2 @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K2 @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_822_add__le__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_823_add__le__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_le_mono1
thf(fact_824_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_825_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_826_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( plus_plus_nat @ M2 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_827_eq__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ( minus_minus_nat @ M @ K2 )
            = ( minus_minus_nat @ N @ K2 ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_828_le__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_829_Nat_Odiff__diff__eq,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_830_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_831_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_832_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B2 ) )
          = ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_833_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_834_power__decreasing,axiom,
    ! [N: nat,N5: nat,A2: nat] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N5 ) @ ( power_power_nat @ A2 @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_835_power__decreasing,axiom,
    ! [N: nat,N5: nat,A2: int] :
      ( ( ord_less_eq_nat @ N @ N5 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ A2 @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A2 @ N5 ) @ ( power_power_int @ A2 @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_836_power__le__imp__le__exp,axiom,
    ! [A2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A2 )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A2 @ M ) @ ( power_power_nat @ A2 @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_837_power__le__imp__le__exp,axiom,
    ! [A2: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A2 )
     => ( ( ord_less_eq_int @ ( power_power_int @ A2 @ M ) @ ( power_power_int @ A2 @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_838_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_839_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_840_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_841_add__nonpos__eq__0__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
       => ( ( ( plus_plus_int @ X2 @ Y2 )
            = zero_zero_int )
          = ( ( X2 = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_842_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_843_add__nonneg__eq__0__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ( plus_plus_int @ X2 @ Y2 )
            = zero_zero_int )
          = ( ( X2 = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_844_add__nonpos__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_845_add__nonpos__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_846_add__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_847_add__nonneg__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_848_add__increasing2,axiom,
    ! [C: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_849_add__increasing2,axiom,
    ! [C: int,B2: int,A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( ord_less_eq_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing2
thf(fact_850_add__decreasing2,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_851_add__decreasing2,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing2
thf(fact_852_add__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_853_add__increasing,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_increasing
thf(fact_854_add__decreasing,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_855_add__decreasing,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ B2 ) ) ) ).

% add_decreasing
thf(fact_856_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_857_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_858_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_859_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_860_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_861_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_862_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_863_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_864_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K2 @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_865_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K2: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K2 @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K2 ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_866_add__le__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_867_add__le__less__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_868_add__less__le__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_869_add__less__le__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_870_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_871_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K2: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K2 ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K2 ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_872_add__le__add__imp__diff__le,axiom,
    ! [I: int,K2: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K2 ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K2 ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K2 ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_873_add__le__imp__le__diff,axiom,
    ! [I: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_874_add__le__imp__le__diff,axiom,
    ! [I: int,K2: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K2 ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K2 ) ) ) ).

% add_le_imp_le_diff
thf(fact_875_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ( ( minus_minus_nat @ B2 @ A2 )
            = C )
          = ( B2
            = ( plus_plus_nat @ C @ A2 ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_876_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ A2 @ ( minus_minus_nat @ B2 @ A2 ) )
        = B2 ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_877_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A2 ) @ B2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_878_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B2 @ C ) @ A2 )
        = ( plus_plus_nat @ ( minus_minus_nat @ B2 @ A2 ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_879_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B2 @ A2 ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B2 @ C ) @ A2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_880_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B2 ) @ A2 )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_881_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B2 ) @ A2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_882_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B2 @ A2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ B2 ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_883_le__add__diff,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B2 @ C ) @ A2 ) ) ) ).

% le_add_diff
thf(fact_884_diff__add,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B2 @ A2 ) @ A2 )
        = B2 ) ) ).

% diff_add
thf(fact_885_le__diff__eq,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( minus_minus_int @ C @ B2 ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A2 @ B2 ) @ C ) ) ).

% le_diff_eq
thf(fact_886_diff__le__eq,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( ord_less_eq_int @ A2 @ ( plus_plus_int @ C @ B2 ) ) ) ).

% diff_le_eq
thf(fact_887_zero__le__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A2 @ N ) ) ) ).

% zero_le_power
thf(fact_888_zero__le__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A2 @ N ) ) ) ).

% zero_le_power
thf(fact_889_power__mono,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B2 @ N ) ) ) ) ).

% power_mono
thf(fact_890_power__mono,axiom,
    ! [A2: int,B2: int,N: nat] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B2 @ N ) ) ) ) ).

% power_mono
thf(fact_891_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_892_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_893_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_894_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_895_dec__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P2 @ I )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P2 @ N2 )
                 => ( P2 @ ( suc @ N2 ) ) ) ) )
         => ( P2 @ J ) ) ) ) ).

% dec_induct
thf(fact_896_inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P2 @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P2 @ ( suc @ N2 ) )
                 => ( P2 @ N2 ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% inc_induct
thf(fact_897_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_898_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_899_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_900_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_901_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_902_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K: nat] :
            ( ( ord_less_eq_nat @ K @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ~ ( P2 @ I4 ) )
            & ( P2 @ K ) ) ) ) ).

% ex_least_nat_le
thf(fact_903_mono__nat__linear__lb,axiom,
    ! [F2: nat > nat,M: nat,K2: nat] :
      ( ! [M5: nat,N2: nat] :
          ( ( ord_less_nat @ M5 @ N2 )
         => ( ord_less_nat @ ( F2 @ M5 ) @ ( F2 @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F2 @ M ) @ K2 ) @ ( F2 @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_904_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_905_diff__less__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ A2 )
       => ( ord_less_nat @ ( minus_minus_nat @ A2 @ C ) @ ( minus_minus_nat @ B2 @ C ) ) ) ) ).

% diff_less_mono
thf(fact_906_less__diff__iff,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K2 @ M )
     => ( ( ord_less_eq_nat @ K2 @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K2 ) @ ( minus_minus_nat @ N @ K2 ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_907_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K2 )
        = ( J
          = ( plus_plus_nat @ K2 @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_908_Nat_Odiff__add__assoc2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K2 )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K2 ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_909_Nat_Odiff__add__assoc,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K2 )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K2 ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_910_Nat_Ole__diff__conv2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_911_le__diff__conv,axiom,
    ! [J: nat,K2: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K2 ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K2 ) ) ) ).

% le_diff_conv
thf(fact_912_nat__mono__iff,axiom,
    ! [Z: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_mono_iff
thf(fact_913_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).

% zless_nat_eq_int_zless
thf(fact_914_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_915_add__strict__increasing2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_916_add__strict__increasing2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_917_add__strict__increasing,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_918_add__strict__increasing,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_int @ B2 @ ( plus_plus_int @ A2 @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_919_add__pos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_920_add__pos__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_pos_nonneg
thf(fact_921_add__nonpos__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_922_add__nonpos__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_923_add__nonneg__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_924_add__nonneg__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B2 ) ) ) ) ).

% add_nonneg_pos
thf(fact_925_add__neg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_926_add__neg__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_927_power__less__imp__less__base,axiom,
    ! [A2: nat,N: nat,B2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B2 @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% power_less_imp_less_base
thf(fact_928_power__less__imp__less__base,axiom,
    ! [A2: int,N: nat,B2: int] :
      ( ( ord_less_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B2 @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% power_less_imp_less_base
thf(fact_929_power__le__one,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_930_power__le__one,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ A2 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_931_power__le__imp__le__base,axiom,
    ! [A2: nat,N: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) @ ( power_power_nat @ B2 @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ A2 @ B2 ) ) ) ).

% power_le_imp_le_base
thf(fact_932_power__le__imp__le__base,axiom,
    ! [A2: int,N: nat,B2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A2 @ ( suc @ N ) ) @ ( power_power_int @ B2 @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ A2 @ B2 ) ) ) ).

% power_le_imp_le_base
thf(fact_933_power__inject__base,axiom,
    ! [A2: nat,N: nat,B2: nat] :
      ( ( ( power_power_nat @ A2 @ ( suc @ N ) )
        = ( power_power_nat @ B2 @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( A2 = B2 ) ) ) ) ).

% power_inject_base
thf(fact_934_power__inject__base,axiom,
    ! [A2: int,N: nat,B2: int] :
      ( ( ( power_power_int @ A2 @ ( suc @ N ) )
        = ( power_power_int @ B2 @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
         => ( A2 = B2 ) ) ) ) ).

% power_inject_base
thf(fact_935_ex__least__nat__less,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K: nat] :
            ( ( ord_less_nat @ K @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K )
               => ~ ( P2 @ I4 ) )
            & ( P2 @ ( suc @ K ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_936_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).

% less_eq_nat.simps(2)
thf(fact_937_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_938_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% of_nat_diff
thf(fact_939_less__diff__conv2,axiom,
    ! [K2: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K2 @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K2 ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K2 ) ) ) ) ).

% less_diff_conv2
thf(fact_940_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_941_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A: nat,B: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_942_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A: nat,B: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_943_split__nat,axiom,
    ! [P2: nat > $o,I: int] :
      ( ( P2 @ ( nat2 @ I ) )
      = ( ! [N4: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N4 ) )
           => ( P2 @ N4 ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P2 @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_944_Suc__as__int,axiom,
    ( suc
    = ( ^ [A: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_945_power__Suc__le__self,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A2 @ ( suc @ N ) ) @ A2 ) ) ) ).

% power_Suc_le_self
thf(fact_946_power__Suc__le__self,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ A2 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A2 @ ( suc @ N ) ) @ A2 ) ) ) ).

% power_Suc_le_self
thf(fact_947_power__eq__iff__eq__base,axiom,
    ! [N: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( ( ( power_power_nat @ A2 @ N )
              = ( power_power_nat @ B2 @ N ) )
            = ( A2 = B2 ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_948_power__eq__iff__eq__base,axiom,
    ! [N: nat,A2: int,B2: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
         => ( ( ( power_power_int @ A2 @ N )
              = ( power_power_int @ B2 @ N ) )
            = ( A2 = B2 ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_949_power__eq__imp__eq__base,axiom,
    ! [A2: nat,N: nat,B2: nat] :
      ( ( ( power_power_nat @ A2 @ N )
        = ( power_power_nat @ B2 @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A2 = B2 ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_950_power__eq__imp__eq__base,axiom,
    ! [A2: int,N: nat,B2: int] :
      ( ( ( power_power_int @ A2 @ N )
        = ( power_power_int @ B2 @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A2 = B2 ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_951_self__le__power,axiom,
    ! [A2: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A2 @ ( power_power_nat @ A2 @ N ) ) ) ) ).

% self_le_power
thf(fact_952_self__le__power,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A2 @ ( power_power_int @ A2 @ N ) ) ) ) ).

% self_le_power
thf(fact_953_power__strict__mono,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A2 @ N ) @ ( power_power_nat @ B2 @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_954_power__strict__mono,axiom,
    ! [A2: int,B2: int,N: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A2 @ N ) @ ( power_power_int @ B2 @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_955_diff__nat__eq__if,axiom,
    ! [Z6: int,Z: int] :
      ( ( ( ord_less_int @ Z6 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
          = ( nat2 @ Z ) ) )
      & ( ~ ( ord_less_int @ Z6 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z6 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z6 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_956_nat__descend__induct,axiom,
    ! [N: nat,P2: nat > $o,M: nat] :
      ( ! [K: nat] :
          ( ( ord_less_nat @ N @ K )
         => ( P2 @ K ) )
     => ( ! [K: nat] :
            ( ( ord_less_eq_nat @ K @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K @ I4 )
                 => ( P2 @ I4 ) )
             => ( P2 @ K ) ) )
       => ( P2 @ M ) ) ) ).

% nat_descend_induct
thf(fact_957_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_958_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( suc @ ( nat2 @ Z ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_959_nat__0__iff,axiom,
    ! [I: int] :
      ( ( ( nat2 @ I )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_960_nat__le__0,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ Z )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_961_int__nat__eq,axiom,
    ! [Z: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = Z ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_962_verit__la__generic,axiom,
    ! [A2: int,X2: int] :
      ( ( ord_less_eq_int @ A2 @ X2 )
      | ( A2 = X2 )
      | ( ord_less_eq_int @ X2 @ A2 ) ) ).

% verit_la_generic
thf(fact_963_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_964_imp__le__cong,axiom,
    ! [X2: int,X7: int,P2: $o,P3: $o] :
      ( ( X2 = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P2 = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
           => P2 )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
           => P3 ) ) ) ) ).

% imp_le_cong
thf(fact_965_conj__le__cong,axiom,
    ! [X2: int,X7: int,P2: $o,P3: $o] :
      ( ( X2 = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P2 = P3 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
            & P2 )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
            & P3 ) ) ) ) ).

% conj_le_cong
thf(fact_966_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_967_zero__le__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ? [N2: nat] :
          ( K2
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_968_nonneg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ~ ! [N2: nat] :
            ( K2
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_969_eq__nat__nat__iff,axiom,
    ! [Z: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( ( nat2 @ Z )
            = ( nat2 @ Z6 ) )
          = ( Z = Z6 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_970_all__nat,axiom,
    ( ( ^ [P4: nat > $o] :
        ! [X6: nat] : ( P4 @ X6 ) )
    = ( ^ [P5: nat > $o] :
        ! [X: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( P5 @ ( nat2 @ X ) ) ) ) ) ).

% all_nat
thf(fact_971_ex__nat,axiom,
    ( ( ^ [P4: nat > $o] :
        ? [X6: nat] : ( P4 @ X6 ) )
    = ( ^ [P5: nat > $o] :
        ? [X: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X )
          & ( P5 @ ( nat2 @ X ) ) ) ) ) ).

% ex_nat
thf(fact_972_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_leq_as_int
thf(fact_973_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_974_nat__0__le,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
        = Z ) ) ).

% nat_0_le
thf(fact_975_int__eq__iff,axiom,
    ! [M: nat,Z: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z )
      = ( ( M
          = ( nat2 @ Z ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).

% int_eq_iff
thf(fact_976_nat__power__eq,axiom,
    ! [Z: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( power_power_int @ Z @ N ) )
        = ( power_power_nat @ ( nat2 @ Z ) @ N ) ) ) ).

% nat_power_eq
thf(fact_977_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_978_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_979_nat__less__eq__zless,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_less_eq_zless
thf(fact_980_nat__le__eq__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_eq_int @ W @ Z ) ) ) ).

% nat_le_eq_zle
thf(fact_981_le__nat__iff,axiom,
    ! [K2: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K2 ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K2 ) ) ) ).

% le_nat_iff
thf(fact_982_nat__add__distrib,axiom,
    ! [Z: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( nat2 @ ( plus_plus_int @ Z @ Z6 ) )
          = ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_983_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_984_nat__diff__distrib_H,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( nat2 @ ( minus_minus_int @ X2 @ Y2 ) )
          = ( minus_minus_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_985_nat__diff__distrib,axiom,
    ! [Z6: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
     => ( ( ord_less_eq_int @ Z6 @ Z )
       => ( ( nat2 @ ( minus_minus_int @ Z @ Z6 ) )
          = ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_986_nat0__intermed__int__val,axiom,
    ! [N: nat,F2: nat > int,K2: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F2 @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F2 @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F2 @ zero_zero_nat ) @ K2 )
       => ( ( ord_less_eq_int @ K2 @ ( F2 @ N ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
              & ( ( F2 @ I2 )
                = K2 ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_987_nat__ivt__aux,axiom,
    ! [N: nat,F2: nat > int,K2: int] :
      ( ! [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F2 @ ( suc @ I2 ) ) @ ( F2 @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F2 @ zero_zero_nat ) @ K2 )
       => ( ( ord_less_eq_int @ K2 @ ( F2 @ N ) )
         => ? [I2: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
              & ( ( F2 @ I2 )
                = K2 ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_988_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F2: nat > int,K2: int] :
      ( ! [I2: nat] :
          ( ( ( ord_less_eq_nat @ M @ I2 )
            & ( ord_less_nat @ I2 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F2 @ ( suc @ I2 ) ) @ ( F2 @ I2 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F2 @ M ) @ K2 )
         => ( ( ord_less_eq_int @ K2 @ ( F2 @ N ) )
           => ? [I2: nat] :
                ( ( ord_less_eq_nat @ M @ I2 )
                & ( ord_less_eq_nat @ I2 @ N )
                & ( ( F2 @ I2 )
                  = K2 ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_989_abs__idempotent,axiom,
    ! [A2: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A2 ) )
      = ( abs_abs_int @ A2 ) ) ).

% abs_idempotent
thf(fact_990_abs__abs,axiom,
    ! [A2: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A2 ) )
      = ( abs_abs_int @ A2 ) ) ).

% abs_abs
thf(fact_991_abs__0__eq,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_992_abs__eq__0,axiom,
    ! [A2: int] :
      ( ( ( abs_abs_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_993_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_994_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_995_abs__add__abs,axiom,
    ! [A2: int,B2: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_add_abs
thf(fact_996_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_997_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_998_abs__of__nonneg,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( abs_abs_int @ A2 )
        = A2 ) ) ).

% abs_of_nonneg
thf(fact_999_abs__le__self__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A2 ) @ A2 )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% abs_le_self_iff
thf(fact_1000_abs__le__zero__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A2 ) @ zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_1001_zero__less__abs__iff,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A2 ) )
      = ( A2 != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_1002_zabs__less__one__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
      = ( Z = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_1003_zero__less__power__abs__iff,axiom,
    ! [A2: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A2 ) @ N ) )
      = ( ( A2 != zero_zero_int )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_1004_abs__le__D1,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A2 ) @ B2 )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% abs_le_D1
thf(fact_1005_abs__ge__self,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ ( abs_abs_int @ A2 ) ) ).

% abs_ge_self
thf(fact_1006_abs__ge__zero,axiom,
    ! [A2: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A2 ) ) ).

% abs_ge_zero
thf(fact_1007_abs__of__pos,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( abs_abs_int @ A2 )
        = A2 ) ) ).

% abs_of_pos
thf(fact_1008_abs__not__less__zero,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A2 ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_1009_abs__triangle__ineq,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A2 @ B2 ) ) @ ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_triangle_ineq
thf(fact_1010_abs__triangle__ineq2,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) @ ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) ) ) ).

% abs_triangle_ineq2
thf(fact_1011_abs__triangle__ineq3,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) ) ) ).

% abs_triangle_ineq3
thf(fact_1012_abs__triangle__ineq2__sym,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) @ ( abs_abs_int @ ( minus_minus_int @ B2 @ A2 ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_1013_abs__minus__commute,axiom,
    ! [A2: int,B2: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) )
      = ( abs_abs_int @ ( minus_minus_int @ B2 @ A2 ) ) ) ).

% abs_minus_commute
thf(fact_1014_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_1015_abs__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( abs_abs_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_1016_abs__triangle__ineq4,axiom,
    ! [A2: int,B2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A2 @ B2 ) ) @ ( plus_plus_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_triangle_ineq4
thf(fact_1017_abs__diff__triangle__ineq,axiom,
    ! [A2: int,B2: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A2 @ B2 ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A2 @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B2 @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_1018_abs__diff__le__iff,axiom,
    ! [X2: int,A2: int,R2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A2 ) ) @ R2 )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A2 @ R2 ) @ X2 )
        & ( ord_less_eq_int @ X2 @ ( plus_plus_int @ A2 @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_1019_zero__le__power__abs,axiom,
    ! [A2: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A2 ) @ N ) ) ).

% zero_le_power_abs
thf(fact_1020_abs__diff__less__iff,axiom,
    ! [X2: int,A2: int,R2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A2 ) ) @ R2 )
      = ( ( ord_less_int @ ( minus_minus_int @ A2 @ R2 ) @ X2 )
        & ( ord_less_int @ X2 @ ( plus_plus_int @ A2 @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_1021_abs__add__one__gt__zero,axiom,
    ! [X2: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_1022_decr__lemma,axiom,
    ! [D: int,X2: int,Z: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D ) ) @ Z ) ) ).

% decr_lemma
thf(fact_1023_incr__lemma,axiom,
    ! [D: int,Z: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z @ ( plus_plus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_1024_aset_I8_J,axiom,
    ! [D4: int,A3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ A3 )
                 => ( X5
                   != ( minus_minus_int @ Xb @ Xa ) ) ) )
         => ( ( ord_less_eq_int @ T @ X5 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X5 @ D4 ) ) ) ) ) ).

% aset(8)
thf(fact_1025_mult__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ( times_times_int @ A2 @ C )
        = ( times_times_int @ B2 @ C ) )
      = ( ( C = zero_zero_int )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_1026_mult__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ C )
        = ( times_times_nat @ B2 @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_right
thf(fact_1027_mult__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ( times_times_int @ C @ A2 )
        = ( times_times_int @ C @ B2 ) )
      = ( ( C = zero_zero_int )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_1028_mult__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ( times_times_nat @ C @ A2 )
        = ( times_times_nat @ C @ B2 ) )
      = ( ( C = zero_zero_nat )
        | ( A2 = B2 ) ) ) ).

% mult_cancel_left
thf(fact_1029_mult__eq__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ( times_times_int @ A2 @ B2 )
        = zero_zero_int )
      = ( ( A2 = zero_zero_int )
        | ( B2 = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_1030_mult__eq__0__iff,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
      = ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_1031_mult__zero__right,axiom,
    ! [A2: int] :
      ( ( times_times_int @ A2 @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_1032_mult__zero__right,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_1033_mult__zero__left,axiom,
    ! [A2: int] :
      ( ( times_times_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_1034_mult__zero__left,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_1035_mult_Oright__neutral,axiom,
    ! [A2: int] :
      ( ( times_times_int @ A2 @ one_one_int )
      = A2 ) ).

% mult.right_neutral
thf(fact_1036_mult_Oright__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.right_neutral
thf(fact_1037_mult__1,axiom,
    ! [A2: int] :
      ( ( times_times_int @ one_one_int @ A2 )
      = A2 ) ).

% mult_1
thf(fact_1038_mult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% mult_1
thf(fact_1039_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_1040_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_1041_abs__mult__self__eq,axiom,
    ! [A2: int] :
      ( ( times_times_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ A2 ) )
      = ( times_times_int @ A2 @ A2 ) ) ).

% abs_mult_self_eq
thf(fact_1042_mult__cancel__left1,axiom,
    ! [C: int,B2: int] :
      ( ( C
        = ( times_times_int @ C @ B2 ) )
      = ( ( C = zero_zero_int )
        | ( B2 = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_1043_mult__cancel__left2,axiom,
    ! [C: int,A2: int] :
      ( ( ( times_times_int @ C @ A2 )
        = C )
      = ( ( C = zero_zero_int )
        | ( A2 = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_1044_mult__cancel__right1,axiom,
    ! [C: int,B2: int] :
      ( ( C
        = ( times_times_int @ B2 @ C ) )
      = ( ( C = zero_zero_int )
        | ( B2 = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_1045_mult__cancel__right2,axiom,
    ! [A2: int,C: int] :
      ( ( ( times_times_int @ A2 @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A2 = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_1046_atLeastatMost__psubset__iff,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A2 @ B2 ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ( ~ ( ord_less_eq_int @ A2 @ B2 )
          | ( ( ord_less_eq_int @ C @ A2 )
            & ( ord_less_eq_int @ B2 @ D )
            & ( ( ord_less_int @ C @ A2 )
              | ( ord_less_int @ B2 @ D ) ) ) )
        & ( ord_less_eq_int @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_1047_atLeastatMost__psubset__iff,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A2 @ B2 ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ( ~ ( ord_less_eq_nat @ A2 @ B2 )
          | ( ( ord_less_eq_nat @ C @ A2 )
            & ( ord_less_eq_nat @ B2 @ D )
            & ( ( ord_less_nat @ C @ A2 )
              | ( ord_less_nat @ B2 @ D ) ) ) )
        & ( ord_less_eq_nat @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_1048_periodic__finite__ex,axiom,
    ! [D: int,P2: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K: int] :
            ( ( P2 @ X3 )
            = ( P2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D ) ) ) )
       => ( ( ? [X8: int] : ( P2 @ X8 ) )
          = ( ? [X: int] :
                ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
                & ( P2 @ X ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_1049_abs__mult,axiom,
    ! [A2: int,B2: int] :
      ( ( abs_abs_int @ ( times_times_int @ A2 @ B2 ) )
      = ( times_times_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) ) ).

% abs_mult
thf(fact_1050_mult__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1051_mult__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1052_mult__mono_H,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1053_mult__mono_H,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1054_zero__le__square,axiom,
    ! [A2: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ A2 ) ) ).

% zero_le_square
thf(fact_1055_split__mult__pos__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ).

% split_mult_pos_le
thf(fact_1056_mult__left__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_left_mono_neg
thf(fact_1057_mult__nonpos__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_1058_mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_1059_mult__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_left_mono
thf(fact_1060_mult__right__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_1061_mult__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1062_mult__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1063_mult__le__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) ) ) ) ).

% mult_le_0_iff
thf(fact_1064_split__mult__neg__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
          & ( ord_less_eq_nat @ B2 @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_1065_split__mult__neg__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_1066_mult__nonneg__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1067_mult__nonneg__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1068_mult__nonneg__nonpos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1069_mult__nonneg__nonpos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1070_mult__nonpos__nonneg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1071_mult__nonpos__nonneg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1072_mult__nonneg__nonpos2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1073_mult__nonneg__nonpos2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_eq_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B2 @ A2 ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1074_zero__le__mult__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A2 )
          & ( ord_less_eq_int @ zero_zero_int @ B2 ) )
        | ( ( ord_less_eq_int @ A2 @ zero_zero_int )
          & ( ord_less_eq_int @ B2 @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_1075_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1076_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1077_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1078_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1079_mult__less__cancel__right__disj,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A2 @ B2 ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B2 @ A2 ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_1080_mult__strict__right__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1081_mult__strict__right__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1082_mult__strict__right__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_1083_mult__less__cancel__left__disj,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A2 @ B2 ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B2 @ A2 ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_1084_mult__strict__left__mono,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1085_mult__strict__left__mono,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1086_mult__strict__left__mono__neg,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_1087_mult__less__cancel__left__pos,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
        = ( ord_less_int @ A2 @ B2 ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_1088_mult__less__cancel__left__neg,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
        = ( ord_less_int @ B2 @ A2 ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_1089_zero__less__mult__pos2,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B2 @ A2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ord_less_nat @ zero_zero_nat @ B2 ) ) ) ).

% zero_less_mult_pos2
thf(fact_1090_zero__less__mult__pos2,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B2 @ A2 ) )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ord_less_int @ zero_zero_int @ B2 ) ) ) ).

% zero_less_mult_pos2
thf(fact_1091_zero__less__mult__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A2 )
       => ( ord_less_nat @ zero_zero_nat @ B2 ) ) ) ).

% zero_less_mult_pos
thf(fact_1092_zero__less__mult__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) )
     => ( ( ord_less_int @ zero_zero_int @ A2 )
       => ( ord_less_int @ zero_zero_int @ B2 ) ) ) ).

% zero_less_mult_pos
thf(fact_1093_zero__less__mult__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A2 )
          & ( ord_less_int @ zero_zero_int @ B2 ) )
        | ( ( ord_less_int @ A2 @ zero_zero_int )
          & ( ord_less_int @ B2 @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_1094_mult__pos__neg2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B2 @ A2 ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_1095_mult__pos__neg2,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B2 @ A2 ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_1096_mult__pos__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B2 ) ) ) ) ).

% mult_pos_pos
thf(fact_1097_mult__pos__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_pos_pos
thf(fact_1098_mult__pos__neg,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A2 )
     => ( ( ord_less_nat @ B2 @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_1099_mult__pos__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_1100_mult__neg__pos,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B2 )
       => ( ord_less_nat @ ( times_times_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_1101_mult__neg__pos,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_1102_mult__less__0__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ A2 @ B2 ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A2 )
          & ( ord_less_int @ B2 @ zero_zero_int ) )
        | ( ( ord_less_int @ A2 @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B2 ) ) ) ) ).

% mult_less_0_iff
thf(fact_1103_not__square__less__zero,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ ( times_times_int @ A2 @ A2 ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_1104_mult__neg__neg,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B2 ) ) ) ) ).

% mult_neg_neg
thf(fact_1105_add__scale__eq__noteq,axiom,
    ! [R2: int,A2: int,B2: int,C: int,D: int] :
      ( ( R2 != zero_zero_int )
     => ( ( ( A2 = B2 )
          & ( C != D ) )
       => ( ( plus_plus_int @ A2 @ ( times_times_int @ R2 @ C ) )
         != ( plus_plus_int @ B2 @ ( times_times_int @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1106_add__scale__eq__noteq,axiom,
    ! [R2: nat,A2: nat,B2: nat,C: nat,D: nat] :
      ( ( R2 != zero_zero_nat )
     => ( ( ( A2 = B2 )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A2 @ ( times_times_nat @ R2 @ C ) )
         != ( plus_plus_nat @ B2 @ ( times_times_nat @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1107_sum__squares__eq__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) )
        = zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_1108_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1109_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1110_square__diff__square__factored,axiom,
    ! [X2: int,Y2: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) )
      = ( times_times_int @ ( plus_plus_int @ X2 @ Y2 ) @ ( minus_minus_int @ X2 @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_1111_eq__add__iff2,axiom,
    ! [A2: int,E2: int,C: int,B2: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A2 @ E2 ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B2 @ E2 ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B2 @ A2 ) @ E2 ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1112_eq__add__iff1,axiom,
    ! [A2: int,E2: int,C: int,B2: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A2 @ E2 ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B2 @ E2 ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A2 @ B2 ) @ E2 ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1113_mult__right__cancel,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A2 @ C )
          = ( times_times_int @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_1114_mult__right__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A2 @ C )
          = ( times_times_nat @ B2 @ C ) )
        = ( A2 = B2 ) ) ) ).

% mult_right_cancel
thf(fact_1115_mult__left__cancel,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A2 )
          = ( times_times_int @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_1116_mult__left__cancel,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A2 )
          = ( times_times_nat @ C @ B2 ) )
        = ( A2 = B2 ) ) ) ).

% mult_left_cancel
thf(fact_1117_no__zero__divisors,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 != zero_zero_int )
     => ( ( B2 != zero_zero_int )
       => ( ( times_times_int @ A2 @ B2 )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_1118_no__zero__divisors,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( B2 != zero_zero_nat )
       => ( ( times_times_nat @ A2 @ B2 )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_1119_divisors__zero,axiom,
    ! [A2: int,B2: int] :
      ( ( ( times_times_int @ A2 @ B2 )
        = zero_zero_int )
     => ( ( A2 = zero_zero_int )
        | ( B2 = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_1120_divisors__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
        = zero_zero_nat )
     => ( ( A2 = zero_zero_nat )
        | ( B2 = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_1121_mult__not__zero,axiom,
    ! [A2: int,B2: int] :
      ( ( ( times_times_int @ A2 @ B2 )
       != zero_zero_int )
     => ( ( A2 != zero_zero_int )
        & ( B2 != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_1122_mult__not__zero,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ( times_times_nat @ A2 @ B2 )
       != zero_zero_nat )
     => ( ( A2 != zero_zero_nat )
        & ( B2 != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_1123_ring__class_Oring__distribs_I2_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1124_ring__class_Oring__distribs_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( plus_plus_int @ B2 @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1125_comm__semiring__class_Odistrib,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1126_comm__semiring__class_Odistrib,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1127_distrib__left,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( plus_plus_int @ B2 @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% distrib_left
thf(fact_1128_distrib__left,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ A2 @ ( plus_plus_nat @ B2 @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) ) ) ).

% distrib_left
thf(fact_1129_distrib__right,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% distrib_right
thf(fact_1130_distrib__right,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) ) ) ).

% distrib_right
thf(fact_1131_combine__common__factor,axiom,
    ! [A2: int,E2: int,B2: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A2 @ E2 ) @ ( plus_plus_int @ ( times_times_int @ B2 @ E2 ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A2 @ B2 ) @ E2 ) @ C ) ) ).

% combine_common_factor
thf(fact_1132_combine__common__factor,axiom,
    ! [A2: nat,E2: nat,B2: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A2 @ E2 ) @ ( plus_plus_nat @ ( times_times_nat @ B2 @ E2 ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A2 @ B2 ) @ E2 ) @ C ) ) ).

% combine_common_factor
thf(fact_1133_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: int] :
      ( ( times_times_int @ one_one_int @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1134_comm__monoid__mult__class_Omult__1,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ one_one_nat @ A2 )
      = A2 ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1135_mult_Ocomm__neutral,axiom,
    ! [A2: int] :
      ( ( times_times_int @ A2 @ one_one_int )
      = A2 ) ).

% mult.comm_neutral
thf(fact_1136_mult_Ocomm__neutral,axiom,
    ! [A2: nat] :
      ( ( times_times_nat @ A2 @ one_one_nat )
      = A2 ) ).

% mult.comm_neutral
thf(fact_1137_inf__period_I2_J,axiom,
    ! [P2: int > $o,D4: int,Q: int > $o] :
      ( ! [X3: int,K: int] :
          ( ( P2 @ X3 )
          = ( P2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) )
     => ( ! [X3: int,K: int] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) )
       => ! [X5: int,K4: int] :
            ( ( ( P2 @ X5 )
              | ( Q @ X5 ) )
            = ( ( P2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D4 ) ) )
              | ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1138_inf__period_I1_J,axiom,
    ! [P2: int > $o,D4: int,Q: int > $o] :
      ( ! [X3: int,K: int] :
          ( ( P2 @ X3 )
          = ( P2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) )
     => ( ! [X3: int,K: int] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) )
       => ! [X5: int,K4: int] :
            ( ( ( P2 @ X5 )
              & ( Q @ X5 ) )
            = ( ( P2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D4 ) ) )
              & ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_1139_left__diff__distrib,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A2 @ B2 ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) ) ) ).

% left_diff_distrib
thf(fact_1140_right__diff__distrib,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% right_diff_distrib
thf(fact_1141_left__diff__distrib_H,axiom,
    ! [B2: int,C: int,A2: int] :
      ( ( times_times_int @ ( minus_minus_int @ B2 @ C ) @ A2 )
      = ( minus_minus_int @ ( times_times_int @ B2 @ A2 ) @ ( times_times_int @ C @ A2 ) ) ) ).

% left_diff_distrib'
thf(fact_1142_left__diff__distrib_H,axiom,
    ! [B2: nat,C: nat,A2: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B2 @ C ) @ A2 )
      = ( minus_minus_nat @ ( times_times_nat @ B2 @ A2 ) @ ( times_times_nat @ C @ A2 ) ) ) ).

% left_diff_distrib'
thf(fact_1143_right__diff__distrib_H,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ A2 @ ( minus_minus_int @ B2 @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A2 @ B2 ) @ ( times_times_int @ A2 @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1144_right__diff__distrib_H,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ A2 @ ( minus_minus_nat @ B2 @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A2 @ B2 ) @ ( times_times_nat @ A2 @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1145_mult_Oleft__commute,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( times_times_int @ B2 @ ( times_times_int @ A2 @ C ) )
      = ( times_times_int @ A2 @ ( times_times_int @ B2 @ C ) ) ) ).

% mult.left_commute
thf(fact_1146_mult_Oleft__commute,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( times_times_nat @ B2 @ ( times_times_nat @ A2 @ C ) )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% mult.left_commute
thf(fact_1147_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A: int,B: int] : ( times_times_int @ B @ A ) ) ) ).

% mult.commute
thf(fact_1148_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A: nat,B: nat] : ( times_times_nat @ B @ A ) ) ) ).

% mult.commute
thf(fact_1149_mult_Oassoc,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A2 @ B2 ) @ C )
      = ( times_times_int @ A2 @ ( times_times_int @ B2 @ C ) ) ) ).

% mult.assoc
thf(fact_1150_mult_Oassoc,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% mult.assoc
thf(fact_1151_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A2 @ B2 ) @ C )
      = ( times_times_int @ A2 @ ( times_times_int @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1152_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A2 @ B2 ) @ C )
      = ( times_times_nat @ A2 @ ( times_times_nat @ B2 @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1153_times__int__code_I1_J,axiom,
    ! [K2: int] :
      ( ( times_times_int @ K2 @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_1154_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_1155_mult__of__nat__commute,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ Y2 )
      = ( times_times_nat @ Y2 @ ( semiri1316708129612266289at_nat @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_1156_mult__of__nat__commute,axiom,
    ! [X2: nat,Y2: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X2 ) @ Y2 )
      = ( times_times_int @ Y2 @ ( semiri1314217659103216013at_int @ X2 ) ) ) ).

% mult_of_nat_commute
thf(fact_1157_lambda__one,axiom,
    ( ( ^ [X: int] : X )
    = ( times_times_int @ one_one_int ) ) ).

% lambda_one
thf(fact_1158_lambda__one,axiom,
    ( ( ^ [X: nat] : X )
    = ( times_times_nat @ one_one_nat ) ) ).

% lambda_one
thf(fact_1159_lambda__zero,axiom,
    ( ( ^ [H2: int] : zero_zero_int )
    = ( times_times_int @ zero_zero_int ) ) ).

% lambda_zero
thf(fact_1160_lambda__zero,axiom,
    ( ( ^ [H2: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_1161_power__Suc2,axiom,
    ! [A2: int,N: nat] :
      ( ( power_power_int @ A2 @ ( suc @ N ) )
      = ( times_times_int @ ( power_power_int @ A2 @ N ) @ A2 ) ) ).

% power_Suc2
thf(fact_1162_power__Suc2,axiom,
    ! [A2: nat,N: nat] :
      ( ( power_power_nat @ A2 @ ( suc @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A2 @ N ) @ A2 ) ) ).

% power_Suc2
thf(fact_1163_power__Suc,axiom,
    ! [A2: int,N: nat] :
      ( ( power_power_int @ A2 @ ( suc @ N ) )
      = ( times_times_int @ A2 @ ( power_power_int @ A2 @ N ) ) ) ).

% power_Suc
thf(fact_1164_power__Suc,axiom,
    ! [A2: nat,N: nat] :
      ( ( power_power_nat @ A2 @ ( suc @ N ) )
      = ( times_times_nat @ A2 @ ( power_power_nat @ A2 @ N ) ) ) ).

% power_Suc
thf(fact_1165_abs__mult__less,axiom,
    ! [A2: int,C: int,B2: int,D: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A2 ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B2 ) @ D )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A2 ) @ ( abs_abs_int @ B2 ) ) @ ( times_times_int @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_1166_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K2: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K2 )
       => ( ord_less_int @ ( times_times_int @ K2 @ I ) @ ( times_times_int @ K2 @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_1167_cppi,axiom,
    ! [D4: int,P2: int > $o,P3: int > $o,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( P2 @ X3 )
              = ( P3 @ X3 ) ) )
       => ( ! [X3: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ A3 )
                     => ( X3
                       != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P2 @ X3 )
               => ( P2 @ ( plus_plus_int @ X3 @ D4 ) ) ) )
         => ( ! [X3: int,K: int] :
                ( ( P3 @ X3 )
                = ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) )
           => ( ( ? [X8: int] : ( P2 @ X8 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ( P3 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ A3 )
                        & ( P2 @ ( minus_minus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_1168_cpmi,axiom,
    ! [D4: int,P2: int > $o,P3: int > $o,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( P2 @ X3 )
              = ( P3 @ X3 ) ) )
       => ( ! [X3: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ B4 )
                     => ( X3
                       != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P2 @ X3 )
               => ( P2 @ ( minus_minus_int @ X3 @ D4 ) ) ) )
         => ( ! [X3: int,K: int] :
                ( ( P3 @ X3 )
                = ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) )
           => ( ( ? [X8: int] : ( P2 @ X8 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ( P3 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ B4 )
                        & ( P2 @ ( plus_plus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_1169_mult__less__le__imp__less,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_1170_mult__less__le__imp__less,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_1171_mult__le__less__imp__less,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_1172_mult__le__less__imp__less,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ A2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_1173_mult__right__le__imp__le,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A2 @ B2 ) ) ) ).

% mult_right_le_imp_le
thf(fact_1174_mult__right__le__imp__le,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A2 @ B2 ) ) ) ).

% mult_right_le_imp_le
thf(fact_1175_mult__left__le__imp__le,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A2 @ B2 ) ) ) ).

% mult_left_le_imp_le
thf(fact_1176_mult__left__le__imp__le,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A2 @ B2 ) ) ) ).

% mult_left_le_imp_le
thf(fact_1177_mult__le__cancel__left__pos,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
        = ( ord_less_eq_int @ A2 @ B2 ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_1178_mult__le__cancel__left__neg,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
        = ( ord_less_eq_int @ B2 @ A2 ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_1179_mult__less__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A2 @ B2 ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B2 @ A2 ) ) ) ) ).

% mult_less_cancel_right
thf(fact_1180_mult__strict__mono_H,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_1181_mult__strict__mono_H,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_1182_mult__right__less__imp__less,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% mult_right_less_imp_less
thf(fact_1183_mult__right__less__imp__less,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% mult_right_less_imp_less
thf(fact_1184_mult__less__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A2 @ B2 ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B2 @ A2 ) ) ) ) ).

% mult_less_cancel_left
thf(fact_1185_mult__strict__mono,axiom,
    ! [A2: nat,B2: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B2 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B2 @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_1186_mult__strict__mono,axiom,
    ! [A2: int,B2: int,C: int,D: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ B2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_1187_mult__left__less__imp__less,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B2 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% mult_left_less_imp_less
thf(fact_1188_mult__left__less__imp__less,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% mult_left_less_imp_less
thf(fact_1189_mult__le__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B2 @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A2 @ B2 ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).

% mult_le_cancel_right
thf(fact_1190_bset_I1_J,axiom,
    ! [D4: int,B4: set_int,P2: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B4 )
                 => ( X3
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P2 @ X3 )
           => ( P2 @ ( minus_minus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B4 )
                   => ( X3
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( minus_minus_int @ X3 @ D4 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( ( P2 @ X5 )
                & ( Q @ X5 ) )
             => ( ( P2 @ ( minus_minus_int @ X5 @ D4 ) )
                & ( Q @ ( minus_minus_int @ X5 @ D4 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_1191_bset_I2_J,axiom,
    ! [D4: int,B4: set_int,P2: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B4 )
                 => ( X3
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P2 @ X3 )
           => ( P2 @ ( minus_minus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B4 )
                   => ( X3
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( minus_minus_int @ X3 @ D4 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( ( P2 @ X5 )
                | ( Q @ X5 ) )
             => ( ( P2 @ ( minus_minus_int @ X5 @ D4 ) )
                | ( Q @ ( minus_minus_int @ X5 @ D4 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_1192_aset_I1_J,axiom,
    ! [D4: int,A3: set_int,P2: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A3 )
                 => ( X3
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P2 @ X3 )
           => ( P2 @ ( plus_plus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A3 )
                   => ( X3
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( plus_plus_int @ X3 @ D4 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( ( P2 @ X5 )
                & ( Q @ X5 ) )
             => ( ( P2 @ ( plus_plus_int @ X5 @ D4 ) )
                & ( Q @ ( plus_plus_int @ X5 @ D4 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_1193_aset_I2_J,axiom,
    ! [D4: int,A3: set_int,P2: int > $o,Q: int > $o] :
      ( ! [X3: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A3 )
                 => ( X3
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P2 @ X3 )
           => ( P2 @ ( plus_plus_int @ X3 @ D4 ) ) ) )
     => ( ! [X3: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A3 )
                   => ( X3
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X3 )
             => ( Q @ ( plus_plus_int @ X3 @ D4 ) ) ) )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( ( P2 @ X5 )
                | ( Q @ X5 ) )
             => ( ( P2 @ ( plus_plus_int @ X5 @ D4 ) )
                | ( Q @ ( plus_plus_int @ X5 @ D4 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_1194_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_1195_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P2: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K: int] :
            ( ( P1 @ X3 )
            = ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D ) ) ) )
       => ( ? [Z3: int] :
            ! [X3: int] :
              ( ( ord_less_int @ X3 @ Z3 )
             => ( ( P2 @ X3 )
                = ( P1 @ X3 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P2 @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_1196_plusinfinity,axiom,
    ! [D: int,P3: int > $o,P2: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K: int] :
            ( ( P3 @ X3 )
            = ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D ) ) ) )
       => ( ? [Z3: int] :
            ! [X3: int] :
              ( ( ord_less_int @ Z3 @ X3 )
             => ( ( P2 @ X3 )
                = ( P3 @ X3 ) ) )
         => ( ? [X_12: int] : ( P3 @ X_12 )
           => ? [X_1: int] : ( P2 @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_1197_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K2: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K2 ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K2 ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_1198_incr__mult__lemma,axiom,
    ! [D: int,P2: int > $o,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int] :
            ( ( P2 @ X3 )
           => ( P2 @ ( plus_plus_int @ X3 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K2 )
         => ! [X5: int] :
              ( ( P2 @ X5 )
             => ( P2 @ ( plus_plus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_1199_decr__mult__lemma,axiom,
    ! [D: int,P2: int > $o,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int] :
            ( ( P2 @ X3 )
           => ( P2 @ ( minus_minus_int @ X3 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K2 )
         => ! [X5: int] :
              ( ( P2 @ X5 )
             => ( P2 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_1200_bset_I3_J,axiom,
    ! [D4: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B4 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( X5 = T )
             => ( ( minus_minus_int @ X5 @ D4 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_1201_bset_I4_J,axiom,
    ! [D4: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ B4 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( X5 != T )
             => ( ( minus_minus_int @ X5 @ D4 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_1202_bset_I5_J,axiom,
    ! [D4: int,B4: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ B4 )
                 => ( X5
                   != ( plus_plus_int @ Xb @ Xa ) ) ) )
         => ( ( ord_less_int @ X5 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X5 @ D4 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_1203_bset_I7_J,axiom,
    ! [D4: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ B4 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( ord_less_int @ T @ X5 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X5 @ D4 ) ) ) ) ) ) ).

% bset(7)
thf(fact_1204_aset_I3_J,axiom,
    ! [D4: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A3 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( X5 = T )
             => ( ( plus_plus_int @ X5 @ D4 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_1205_aset_I4_J,axiom,
    ! [D4: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ A3 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( X5 != T )
             => ( ( plus_plus_int @ X5 @ D4 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_1206_aset_I5_J,axiom,
    ! [D4: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ T @ A3 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( ord_less_int @ X5 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X5 @ D4 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_1207_aset_I7_J,axiom,
    ! [D4: int,A3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ A3 )
                 => ( X5
                   != ( minus_minus_int @ Xb @ Xa ) ) ) )
         => ( ( ord_less_int @ T @ X5 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X5 @ D4 ) ) ) ) ) ).

% aset(7)
thf(fact_1208_bset_I6_J,axiom,
    ! [D4: int,B4: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
             => ! [Xb: int] :
                  ( ( member_int @ Xb @ B4 )
                 => ( X5
                   != ( plus_plus_int @ Xb @ Xa ) ) ) )
         => ( ( ord_less_eq_int @ X5 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X5 @ D4 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_1209_bset_I8_J,axiom,
    ! [D4: int,T: int,B4: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B4 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ B4 )
                   => ( X5
                     != ( plus_plus_int @ Xb @ Xa ) ) ) )
           => ( ( ord_less_eq_int @ T @ X5 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X5 @ D4 ) ) ) ) ) ) ).

% bset(8)
thf(fact_1210_aset_I6_J,axiom,
    ! [D4: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D4 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A3 )
       => ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
               => ! [Xb: int] :
                    ( ( member_int @ Xb @ A3 )
                   => ( X5
                     != ( minus_minus_int @ Xb @ Xa ) ) ) )
           => ( ( ord_less_eq_int @ X5 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X5 @ D4 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_1211_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1212_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1213_mult__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K2 @ M )
        = ( times_times_nat @ K2 @ N ) )
      = ( ( M = N )
        | ( K2 = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1214_mult__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K2 )
        = ( times_times_nat @ N @ K2 ) )
      = ( ( M = N )
        | ( K2 = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1215_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1216_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1217_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1218_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1219_mult__less__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1220_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1221_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1222_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_1223_mult__le__cancel2,axiom,
    ! [M: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1224_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K2 )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) ) ) ).

% add_mult_distrib
thf(fact_1225_add__mult__distrib2,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K2 @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1226_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K2: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K2 )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K2 ) @ ( times_times_nat @ N @ K2 ) ) ) ).

% diff_mult_distrib
thf(fact_1227_diff__mult__distrib2,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K2 @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_1228_Suc__mult__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K2 ) @ M )
        = ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_1229_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1230_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1231_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1232_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K2 @ I ) @ ( times_times_nat @ K2 @ J ) ) ) ).

% mult_le_mono2
thf(fact_1233_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K2 ) @ ( times_times_nat @ J @ K2 ) ) ) ).

% mult_le_mono1
thf(fact_1234_mult__le__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K2 ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1235_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1236_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1237_Suc__mult__less__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K2 ) @ M ) @ ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_1238_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_nat @ ( times_times_nat @ K2 @ I ) @ ( times_times_nat @ K2 @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1239_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_nat @ ( times_times_nat @ I @ K2 ) @ ( times_times_nat @ J @ K2 ) ) ) ) ).

% mult_less_mono1
thf(fact_1240_Suc__mult__le__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K2 ) @ M ) @ ( times_times_nat @ ( suc @ K2 ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1241_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1242_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1243_int__ops_I7_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A2 @ B2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(7)
thf(fact_1244_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_1245_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_1246_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_1247_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A: nat,B: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% nat_times_as_int
thf(fact_1248_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M2: nat,N4: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N4 @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N4 ) ) ) ) ) ).

% mult_eq_if
thf(fact_1249_nat__mult__distrib,axiom,
    ! [Z: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
        = ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ).

% nat_mult_distrib
thf(fact_1250_nat__mult__le__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1251_nat__mult__less__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K2 )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1252_nat__mult__eq__cancel__disj,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K2 @ M )
        = ( times_times_nat @ K2 @ N ) )
      = ( ( K2 = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1253_nat__mult__less__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ord_less_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_1254_nat__mult__eq__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ( times_times_nat @ K2 @ M )
          = ( times_times_nat @ K2 @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_1255_nat__mult__le__cancel1,axiom,
    ! [K2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K2 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K2 @ M ) @ ( times_times_nat @ K2 @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1256_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_1257_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1258_all__nat__less,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ M2 @ N )
           => ( P2 @ M2 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
           => ( P2 @ X ) ) ) ) ).

% all_nat_less
thf(fact_1259_ex__nat__less,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ? [M2: nat] :
            ( ( ord_less_eq_nat @ M2 @ N )
            & ( P2 @ M2 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
            & ( P2 @ X ) ) ) ) ).

% ex_nat_less
thf(fact_1260_fact__ge__Suc__0__nat,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_Suc_0_nat
thf(fact_1261_fact__less__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono_nat

% Helper facts (5)
thf(help_If_2_1_If_001tf__a_T,axiom,
    ! [X2: a,Y2: a] :
      ( ( if_a @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001tf__a_T,axiom,
    ! [X2: a,Y2: a] :
      ( ( if_a @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P2: $o] :
      ( ( P2 = $true )
      | ( P2 = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( if_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( if_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( semantics_fm_a @ ( fun_upd_nat_a @ ea @ na @ x ) @ f @ g @ ( uni @ pa ) )
    = ( semantics_fm_a @ ea @ f @ g @ ( uni @ pa ) ) ) ).

%------------------------------------------------------------------------------