TPTP Problem File: SLH0577^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Universal_Hash_Families/0033_Preliminary_Results/prob_00013_000298__18383540_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1538 ( 727 unt; 262 typ;   0 def)
%            Number of atoms       : 3407 (1847 equ;   0 cnn)
%            Maximal formula atoms :    9 (   2 avg)
%            Number of connectives : 9708 ( 418   ~;  10   |; 207   &;8024   @)
%                                         (   0 <=>;1049  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   5 avg)
%            Number of types       :   34 (  33 usr)
%            Number of type conns  : 1357 (1357   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  232 ( 229 usr;  39 con; 0-4 aty)
%            Number of variables   : 3668 ( 713   ^;2844   !; 111   ?;3668   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 14:43:16.267
%------------------------------------------------------------------------------
% Could-be-implicit typings (33)
thf(ty_n_t__Set__Oset_I_062_It__Extended____Real__Oereal_Mt__Extended____Real__Oereal_J_J,type,
    set_Ex2354994561656779803_ereal: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    set_se4580700918925141924nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J_J,type,
    set_Ex70502500924464887real_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Extended____Real__Oereal_J_J,type,
    set_na7152043825411390613_ereal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Real__Oereal_Mt__Nat__Onat_J_J,type,
    set_Ex8414784459666926319al_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    set_Ex3793607809372303086nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Extended____Real__Oereal_J_J,type,
    set_se6634062954251873166_ereal: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__b_Mt__Extended____Real__Oereal_J_J,type,
    set_b_Extended_ereal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Real__Oereal_Mtf__b_J_J,type,
    set_Extended_ereal_b: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Real__Oereal_M_Eo_J_J,type,
    set_Extended_ereal_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
    extend8495563244428889912nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Real__Oereal_J,type,
    set_Extended_ereal: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__b_Mt__Nat__Onat_J_J,type,
    set_b_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mtf__b_J_J,type,
    set_nat_b: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_Eo_J_J,type,
    set_nat_o: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__c_J_J,type,
    set_set_c: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    set_set_b: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__b_Mtf__b_J_J,type,
    set_b_b: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    set_set_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__c_M_Eo_J_J,type,
    set_c_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__b_M_Eo_J_J,type,
    set_b_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_Eo_M_Eo_J_J,type,
    set_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Extended____Real__Oereal,type,
    extended_ereal: $tType ).

thf(ty_n_t__Set__Oset_Itf__c_J,type,
    set_c: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__c,type,
    c: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (229)
thf(sy_c_Complete__Lattices_OInf__class_OInf_001_062_I_Eo_M_Eo_J,type,
    complete_Inf_Inf_o_o: set_o_o > $o > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J,type,
    comple2110304272711893406real_o: set_Ex70502500924464887real_o > extend8495563244428889912nnreal > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001_062_It__Extended____Real__Oereal_M_Eo_J,type,
    comple5376498136088350824real_o: set_Extended_ereal_o > extended_ereal > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001_062_It__Nat__Onat_M_Eo_J,type,
    comple6214475593288795910_nat_o: set_nat_o > nat > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001_062_Itf__b_M_Eo_J,type,
    complete_Inf_Inf_b_o: set_b_o > b > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001_062_Itf__c_M_Eo_J,type,
    complete_Inf_Inf_c_o: set_c_o > c > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001_Eo,type,
    complete_Inf_Inf_o: set_o > $o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple7330758040695736817nnreal: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Extended____Real__Oereal,type,
    comple3556804143462414037_ereal: set_Extended_ereal > extended_ereal ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Nat__Onat,type,
    complete_Inf_Inf_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_I_Eo_J,type,
    comple3063163877087187839_set_o: set_set_o > set_o ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    comple5724520875574609319nnreal: set_se4580700918925141924nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    comple4418415374894819509_ereal: set_se6634062954251873166_ereal > set_Extended_ereal ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_Itf__b_J,type,
    comple6135023382983342438_set_b: set_set_b > set_b ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_Itf__c_J,type,
    comple6135023387286571239_set_c: set_set_c > set_c ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_I_Eo_M_Eo_J,type,
    complete_Sup_Sup_o_o: set_o_o > $o > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J,type,
    comple5476927491321936772real_o: set_Ex70502500924464887real_o > extend8495563244428889912nnreal > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__Extended____Real__Oereal_M_Eo_J,type,
    comple8551942733113566466real_o: set_Extended_ereal_o > extended_ereal > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__Nat__Onat_M_Eo_J,type,
    comple8317665133742190828_nat_o: set_nat_o > nat > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_Itf__b_M_Eo_J,type,
    complete_Sup_Sup_b_o: set_b_o > b > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_Itf__c_M_Eo_J,type,
    complete_Sup_Sup_c_o: set_c_o > c > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_Eo,type,
    complete_Sup_Sup_o: set_o > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple6814414086264997003nnreal: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Extended____Real__Oereal,type,
    comple8415311339701865915_ereal: set_Extended_ereal > extended_ereal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_I_Eo_J,type,
    comple90263536869209701_set_o: set_set_o > set_o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    comple4226387801268262977nnreal: set_se4580700918925141924nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    comple4319282863272126363_ereal: set_se6634062954251873166_ereal > set_Extended_ereal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_Itf__b_J,type,
    comple2307003614231284044_set_b: set_set_b > set_b ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_Itf__c_J,type,
    comple2307003618534512845_set_c: set_set_c > set_c ).

thf(sy_c_Extended__Nat_Oinfinity__class_Oinfinity_001t__Extended____Real__Oereal,type,
    extend1530274965995635425_ereal: extended_ereal ).

thf(sy_c_Fun_Omonotone__on_001t__Nat__Onat_001t__Extended____Nonnegative____Real__Oennreal,type,
    monoto2291723841412853873nnreal: set_nat > ( nat > nat > $o ) > ( extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ) > ( nat > extend8495563244428889912nnreal ) > $o ).

thf(sy_c_Fun_Omonotone__on_001t__Nat__Onat_001t__Extended____Real__Oereal,type,
    monoto8452838292781035605_ereal: set_nat > ( nat > nat > $o ) > ( extended_ereal > extended_ereal > $o ) > ( nat > extended_ereal ) > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nonnegative____Real__Oennreal,type,
    minus_8429688780609304081nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Real__Oereal,type,
    minus_2816186181549245109_ereal: extended_ereal > extended_ereal > extended_ereal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_Eo_J,type,
    minus_minus_set_o: set_o > set_o > set_o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    minus_104578273773384135nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    minus_1264018925008434325_ereal: set_Extended_ereal > set_Extended_ereal > set_Extended_ereal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__b_J,type,
    minus_minus_set_b: set_b > set_b > set_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__c_J,type,
    minus_minus_set_c: set_c > set_c > set_c ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
    plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Real__Oereal,type,
    plus_p7876563987511257093_ereal: extended_ereal > extended_ereal > extended_ereal ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Extended____Real__Oereal,type,
    uminus27091377158695749_ereal: extended_ereal > extended_ereal ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    uminus5895154729394068773_ereal: set_Extended_ereal > set_Extended_ereal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
    zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Real__Oereal,type,
    zero_z2744965634713055877_ereal: extended_ereal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001_Eo,type,
    inf_inf_o: $o > $o > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Extended____Nonnegative____Real__Oennreal,type,
    inf_in7439215052339218890nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Extended____Real__Oereal,type,
    inf_in2794916579150040252_ereal: extended_ereal > extended_ereal > extended_ereal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_Eo_J,type,
    inf_inf_set_o: set_o > set_o > set_o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    inf_in3368558534146122112nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    inf_in2779415704524776092_ereal: set_Extended_ereal > set_Extended_ereal > set_Extended_ereal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__b_J,type,
    inf_inf_set_b: set_b > set_b > set_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__c_J,type,
    inf_inf_set_c: set_c > set_c > set_c ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_I_Eo_M_Eo_J,type,
    bot_bot_o_o: $o > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J,type,
    bot_bo412624608084785539real_o: extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Extended____Real__Oereal_M_Eo_J,type,
    bot_bo5519581617326455619real_o: extended_ereal > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__b_M_Eo_J,type,
    bot_bot_b_o: b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__c_M_Eo_J,type,
    bot_bot_c_o: c > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_Eo,type,
    bot_bot_o: $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nonnegative____Real__Oennreal,type,
    bot_bo841427958541957580nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Real__Oereal,type,
    bot_bo2710585358178759738_ereal: extended_ereal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_Eo_J,type,
    bot_bot_set_o: set_o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    bot_bo4854962954004695426nnreal: set_Ex3793607809372303086nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    bot_bo8367695208629047834_ereal: set_Extended_ereal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    bot_bo2988155216863113784nnreal: set_se4580700918925141924nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Extended____Real__Oereal_J_J,type,
    bot_bo7400643019497942010_ereal: set_se6634062954251873166_ereal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__b_J,type,
    bot_bot_set_b: set_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__c_J,type,
    bot_bot_set_c: set_c ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Real__Oereal,type,
    ord_le1083603963089353582_ereal: extended_ereal > extended_ereal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    ord_le6787938422905777998nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    ord_le1644982726543182158_ereal: set_Extended_ereal > set_Extended_ereal > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_I_Eo_M_Eo_J,type,
    top_top_o_o: $o > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J,type,
    top_to5118619752887738471real_o: extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Extended____Real__Oereal_M_Eo_J,type,
    top_to6999531812125281119real_o: extended_ereal > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Nat__Onat_M_Eo_J,type,
    top_top_nat_o: nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_Itf__b_M_Eo_J,type,
    top_top_b_o: b > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_Itf__c_M_Eo_J,type,
    top_top_c_o: c > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_Eo,type,
    top_top_o: $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Nonnegative____Real__Oennreal,type,
    top_to1496364449551166952nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Real__Oereal,type,
    top_to6662034908053899550_ereal: extended_ereal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Extended____Real__Oereal_Mt__Extended____Real__Oereal_J_J,type,
    top_to908700840774984395_ereal: set_Ex2354994561656779803_ereal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Extended____Real__Oereal_Mt__Nat__Onat_J_J,type,
    top_to2398772004365740095al_nat: set_Ex8414784459666926319al_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Extended____Real__Oereal_Mtf__b_J_J,type,
    top_to5435482696333698940real_b: set_Extended_ereal_b ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Extended____Real__Oereal_J_J,type,
    top_to1136031370110204389_ereal: set_na7152043825411390613_ereal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    top_top_set_nat_nat: set_nat_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Nat__Onat_Mtf__b_J_J,type,
    top_top_set_nat_b: set_nat_b ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_Itf__b_Mt__Extended____Real__Oereal_J_J,type,
    top_to685074653192944346_ereal: set_b_Extended_ereal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_Itf__b_Mt__Nat__Onat_J_J,type,
    top_top_set_b_nat: set_b_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_Itf__b_Mtf__b_J_J,type,
    top_top_set_b_b: set_b_b ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    top_to7994903218803871134nnreal: set_Ex3793607809372303086nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    top_to5683747375963461374_ereal: set_Extended_ereal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    top_to3356475028079756884nnreal: set_se4580700918925141924nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Extended____Real__Oereal_J_J,type,
    top_to4757929550322229470_ereal: set_se6634062954251873166_ereal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    top_top_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_Itf__b_J,type,
    top_top_set_b: set_b ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_Itf__c_J,type,
    top_top_set_c: set_c ).

thf(sy_c_Set_OCollect_001_Eo,type,
    collect_o: ( $o > $o ) > set_o ).

thf(sy_c_Set_OCollect_001t__Extended____Nonnegative____Real__Oennreal,type,
    collec6648975593938027277nnreal: ( extend8495563244428889912nnreal > $o ) > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_OCollect_001t__Extended____Real__Oereal,type,
    collec5835592288176408249_ereal: ( extended_ereal > $o ) > set_Extended_ereal ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001tf__b,type,
    collect_b: ( b > $o ) > set_b ).

thf(sy_c_Set_OCollect_001tf__c,type,
    collect_c: ( c > $o ) > set_c ).

thf(sy_c_Set_Oimage_001_062_I_Eo_M_Eo_J_001t__Set__Oset_I_Eo_J,type,
    image_o_o_set_o: ( ( $o > $o ) > set_o ) > set_o_o > set_set_o ).

thf(sy_c_Set_Oimage_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    image_7529257491699830976nnreal: ( ( extend8495563244428889912nnreal > $o ) > set_Ex3793607809372303086nnreal ) > set_Ex70502500924464887real_o > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oimage_001_062_It__Extended____Real__Oereal_M_Eo_J_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_169545030887771000_ereal: ( ( extended_ereal > $o ) > set_Extended_ereal ) > set_Extended_ereal_o > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001_062_It__Extended____Real__Oereal_Mt__Extended____Real__Oereal_J_001_Eo,type,
    image_341501477734635180real_o: ( ( extended_ereal > extended_ereal ) > $o ) > set_Ex2354994561656779803_ereal > set_o ).

thf(sy_c_Set_Oimage_001_062_It__Extended____Real__Oereal_Mt__Nat__Onat_J_001_Eo,type,
    image_1537912518788876622_nat_o: ( ( extended_ereal > nat ) > $o ) > set_Ex8414784459666926319al_nat > set_o ).

thf(sy_c_Set_Oimage_001_062_It__Extended____Real__Oereal_Mtf__b_J_001_Eo,type,
    image_438845630295331515al_b_o: ( ( extended_ereal > b ) > $o ) > set_Extended_ereal_b > set_o ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_M_Eo_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_o_set_nat: ( ( nat > $o ) > set_nat ) > set_nat_o > set_set_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Extended____Real__Oereal_J_001_Eo,type,
    image_8272980733007922984real_o: ( ( nat > extended_ereal ) > $o ) > set_na7152043825411390613_ereal > set_o ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo,type,
    image_nat_nat_o: ( ( nat > nat ) > $o ) > set_nat_nat > set_o ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mtf__b_J_001_Eo,type,
    image_nat_b_o: ( ( nat > b ) > $o ) > set_nat_b > set_o ).

thf(sy_c_Set_Oimage_001_062_Itf__b_M_Eo_J_001t__Set__Oset_Itf__b_J,type,
    image_b_o_set_b: ( ( b > $o ) > set_b ) > set_b_o > set_set_b ).

thf(sy_c_Set_Oimage_001_062_Itf__b_Mt__Extended____Real__Oereal_J_001_Eo,type,
    image_8104747410577683677real_o: ( ( b > extended_ereal ) > $o ) > set_b_Extended_ereal > set_o ).

thf(sy_c_Set_Oimage_001_062_Itf__b_Mt__Nat__Onat_J_001_Eo,type,
    image_b_nat_o: ( ( b > nat ) > $o ) > set_b_nat > set_o ).

thf(sy_c_Set_Oimage_001_062_Itf__b_Mtf__b_J_001_Eo,type,
    image_b_b_o: ( ( b > b ) > $o ) > set_b_b > set_o ).

thf(sy_c_Set_Oimage_001_062_Itf__b_Mtf__b_J_001t__Extended____Real__Oereal,type,
    image_2440594391108767394_ereal: ( ( b > b ) > extended_ereal ) > set_b_b > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001_062_Itf__c_M_Eo_J_001t__Set__Oset_Itf__c_J,type,
    image_c_o_set_c: ( ( c > $o ) > set_c ) > set_c_o > set_set_c ).

thf(sy_c_Set_Oimage_001_Eo_001_Eo,type,
    image_o_o: ( $o > $o ) > set_o > set_o ).

thf(sy_c_Set_Oimage_001_Eo_001t__Extended____Nonnegative____Real__Oennreal,type,
    image_3342735880743421067nnreal: ( $o > extend8495563244428889912nnreal ) > set_o > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Oimage_001_Eo_001t__Extended____Real__Oereal,type,
    image_7729549296133164475_ereal: ( $o > extended_ereal ) > set_o > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001_Eo_001t__Nat__Onat,type,
    image_o_nat: ( $o > nat ) > set_o > set_nat ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_I_Eo_J,type,
    image_o_set_o: ( $o > set_o ) > set_o > set_set_o ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    image_1679811975146592321nnreal: ( $o > set_Ex3793607809372303086nnreal ) > set_o > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_6375117163256653723_ereal: ( $o > set_Extended_ereal ) > set_o > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_It__Nat__Onat_J,type,
    image_o_set_nat: ( $o > set_nat ) > set_o > set_set_nat ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_Itf__b_J,type,
    image_o_set_b: ( $o > set_b ) > set_o > set_set_b ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_Itf__c_J,type,
    image_o_set_c: ( $o > set_c ) > set_o > set_set_c ).

thf(sy_c_Set_Oimage_001_Eo_001tf__b,type,
    image_o_b: ( $o > b ) > set_o > set_b ).

thf(sy_c_Set_Oimage_001_Eo_001tf__c,type,
    image_o_c: ( $o > c ) > set_o > set_c ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001_Eo,type,
    image_3162942742313426073real_o: ( extend8495563244428889912nnreal > $o ) > set_Ex3793607809372303086nnreal > set_o ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    image_8394674774369097847nnreal: ( extend8495563244428889912nnreal > extend8495563244428889912nnreal ) > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Extended____Real__Oereal,type,
    image_6393943237584228047_ereal: ( extend8495563244428889912nnreal > extended_ereal ) > set_Ex3793607809372303086nnreal > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_I_Eo_J,type,
    image_4514577626304257913_set_o: ( extend8495563244428889912nnreal > set_o ) > set_Ex3793607809372303086nnreal > set_set_o ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    image_205196257943321645nnreal: ( extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal ) > set_Ex3793607809372303086nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_5929344197358196911_ereal: ( extend8495563244428889912nnreal > set_Extended_ereal ) > set_Ex3793607809372303086nnreal > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_It__Nat__Onat_J,type,
    image_2869339492569777349et_nat: ( extend8495563244428889912nnreal > set_nat ) > set_Ex3793607809372303086nnreal > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Extended____Nonnegative____Real__Oennreal_001tf__b,type,
    image_7862617044475835264real_b: ( extend8495563244428889912nnreal > b ) > set_Ex3793607809372303086nnreal > set_b ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001_Eo,type,
    image_951975095941678543real_o: ( extended_ereal > $o ) > set_Extended_ereal > set_o ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Extended____Nonnegative____Real__Oennreal,type,
    image_8614087454967683265nnreal: ( extended_ereal > extend8495563244428889912nnreal ) > set_Extended_ereal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Extended____Real__Oereal,type,
    image_6042159593519690757_ereal: ( extended_ereal > extended_ereal ) > set_Extended_ereal > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Nat__Onat,type,
    image_7659842161140344153al_nat: ( extended_ereal > nat ) > set_Extended_ereal > set_nat ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Set__Oset_I_Eo_J,type,
    image_2973972673614065839_set_o: ( extended_ereal > set_o ) > set_Extended_ereal > set_set_o ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    image_6588766411312125047nnreal: ( extended_ereal > set_Ex3793607809372303086nnreal ) > set_Extended_ereal > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_5562094264469218789_ereal: ( extended_ereal > set_Extended_ereal ) > set_Extended_ereal > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Set__Oset_It__Nat__Onat_J,type,
    image_3090908713637162255et_nat: ( extended_ereal > set_nat ) > set_Extended_ereal > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Set__Oset_Itf__b_J,type,
    image_1981423240844246678_set_b: ( extended_ereal > set_b ) > set_Extended_ereal > set_set_b ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001t__Set__Oset_Itf__c_J,type,
    image_1981423245147475479_set_c: ( extended_ereal > set_c ) > set_Extended_ereal > set_set_c ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001tf__b,type,
    image_3724615099042636214real_b: ( extended_ereal > b ) > set_Extended_ereal > set_b ).

thf(sy_c_Set_Oimage_001t__Extended____Real__Oereal_001tf__c,type,
    image_3724615099042636215real_c: ( extended_ereal > c ) > set_Extended_ereal > set_c ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_Eo,type,
    image_nat_o: ( nat > $o ) > set_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Extended____Nonnegative____Real__Oennreal,type,
    image_8459861568512453903nnreal: ( nat > extend8495563244428889912nnreal ) > set_nat > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Extended____Real__Oereal,type,
    image_4309273772856505399_ereal: ( nat > extended_ereal ) > set_nat > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_I_Eo_J,type,
    image_nat_set_o: ( nat > set_o ) > set_nat > set_set_o ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    image_3394822847079329989nnreal: ( nat > set_Ex3793607809372303086nnreal ) > set_nat > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_305533323056406039_ereal: ( nat > set_Extended_ereal ) > set_nat > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_Itf__b_J,type,
    image_nat_set_b: ( nat > set_b ) > set_nat > set_set_b ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_Itf__c_J,type,
    image_nat_set_c: ( nat > set_c ) > set_nat > set_set_c ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001tf__b,type,
    image_nat_b: ( nat > b ) > set_nat > set_b ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001tf__c,type,
    image_nat_c: ( nat > c ) > set_nat > set_c ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_Eo_J_001_062_I_Eo_M_Eo_J,type,
    image_set_o_o_o: ( set_o > $o > $o ) > set_set_o > set_o_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_Eo_J_001_Eo,type,
    image_set_o_o: ( set_o > $o ) > set_set_o > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J,type,
    image_8646621328128423522real_o: ( set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal > $o ) > set_se4580700918925141924nnreal > set_Ex70502500924464887real_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001_Eo,type,
    image_2954085599833420643real_o: ( set_Ex3793607809372303086nnreal > $o ) > set_se4580700918925141924nnreal > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Extended____Real__Oereal_J_001_062_It__Extended____Real__Oereal_M_Eo_J,type,
    image_6529656333506721048real_o: ( set_Extended_ereal > extended_ereal > $o ) > set_se6634062954251873166_ereal > set_Extended_ereal_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Extended____Real__Oereal_J_001_Eo,type,
    image_1946622920212178927real_o: ( set_Extended_ereal > $o ) > set_se6634062954251873166_ereal > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Extended____Real__Oereal_J_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_6293272304431515653_ereal: ( set_Extended_ereal > set_Extended_ereal ) > set_se6634062954251873166_ereal > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001_062_It__Nat__Onat_M_Eo_J,type,
    image_set_nat_nat_o: ( set_nat > nat > $o ) > set_set_nat > set_nat_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001_Eo,type,
    image_set_nat_o: ( set_nat > $o ) > set_set_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    image_2240520088648803451nnreal: ( set_nat > set_Ex3793607809372303086nnreal ) > set_set_nat > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_8825259783980156129_ereal: ( set_nat > set_Extended_ereal ) > set_set_nat > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001_062_Itf__b_M_Eo_J,type,
    image_set_b_b_o: ( set_b > b > $o ) > set_set_b > set_b_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001_Eo,type,
    image_set_b_o: ( set_b > $o ) > set_set_b > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001t__Set__Oset_I_Eo_J,type,
    image_set_b_set_o: ( set_b > set_o ) > set_set_b > set_set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_1305302568177716884_ereal: ( set_b > set_Extended_ereal ) > set_set_b > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001t__Set__Oset_Itf__b_J,type,
    image_set_b_set_b: ( set_b > set_b ) > set_set_b > set_set_b ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001t__Set__Oset_Itf__c_J,type,
    image_set_b_set_c: ( set_b > set_c ) > set_set_b > set_set_c ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__c_J_001_062_Itf__c_M_Eo_J,type,
    image_set_c_c_o: ( set_c > c > $o ) > set_set_c > set_c_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__c_J_001_Eo,type,
    image_set_c_o: ( set_c > $o ) > set_set_c > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__c_J_001t__Set__Oset_Itf__b_J,type,
    image_set_c_set_b: ( set_c > set_b ) > set_set_c > set_set_b ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__c_J_001t__Set__Oset_Itf__c_J,type,
    image_set_c_set_c: ( set_c > set_c ) > set_set_c > set_set_c ).

thf(sy_c_Set_Oimage_001tf__b_001_Eo,type,
    image_b_o: ( b > $o ) > set_b > set_o ).

thf(sy_c_Set_Oimage_001tf__b_001t__Extended____Real__Oereal,type,
    image_5319725110001000852_ereal: ( b > extended_ereal ) > set_b > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001tf__b_001t__Nat__Onat,type,
    image_b_nat: ( b > nat ) > set_b > set_nat ).

thf(sy_c_Set_Oimage_001tf__b_001t__Set__Oset_I_Eo_J,type,
    image_b_set_o: ( b > set_o ) > set_b > set_set_o ).

thf(sy_c_Set_Oimage_001tf__b_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    image_8773349707370420084_ereal: ( b > set_Extended_ereal ) > set_b > set_se6634062954251873166_ereal ).

thf(sy_c_Set_Oimage_001tf__b_001t__Set__Oset_It__Nat__Onat_J,type,
    image_b_set_nat: ( b > set_nat ) > set_b > set_set_nat ).

thf(sy_c_Set_Oimage_001tf__b_001t__Set__Oset_Itf__b_J,type,
    image_b_set_b: ( b > set_b ) > set_b > set_set_b ).

thf(sy_c_Set_Oimage_001tf__b_001tf__b,type,
    image_b_b: ( b > b ) > set_b > set_b ).

thf(sy_c_Set_Oimage_001tf__b_001tf__c,type,
    image_b_c: ( b > c ) > set_b > set_c ).

thf(sy_c_Set_Oimage_001tf__c_001_Eo,type,
    image_c_o: ( c > $o ) > set_c > set_o ).

thf(sy_c_Set_Oimage_001tf__c_001t__Extended____Real__Oereal,type,
    image_2233968868011006291_ereal: ( c > extended_ereal ) > set_c > set_Extended_ereal ).

thf(sy_c_Set_Oimage_001tf__c_001t__Set__Oset_I_Eo_J,type,
    image_c_set_o: ( c > set_o ) > set_c > set_set_o ).

thf(sy_c_Set_Oimage_001tf__c_001tf__b,type,
    image_c_b: ( c > b ) > set_c > set_b ).

thf(sy_c_Set_Oimage_001tf__c_001tf__c,type,
    image_c_c: ( c > c ) > set_c > set_c ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Extended____Nonnegative____Real__Oennreal,type,
    member7908768830364227535nnreal: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_member_001t__Extended____Real__Oereal,type,
    member2350847679896131959_ereal: extended_ereal > set_Extended_ereal > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_I_Eo_J,type,
    member_set_o: set_o > set_set_o > $o ).

thf(sy_c_member_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    member603777416030116741nnreal: set_Ex3793607809372303086nnreal > set_se4580700918925141924nnreal > $o ).

thf(sy_c_member_001t__Set__Oset_It__Extended____Real__Oereal_J,type,
    member5519481007471526743_ereal: set_Extended_ereal > set_se6634062954251873166_ereal > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__b_J,type,
    member_set_b: set_b > set_set_b > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__c_J,type,
    member_set_c: set_c > set_set_c > $o ).

thf(sy_c_member_001tf__b,type,
    member_b: b > set_b > $o ).

thf(sy_c_member_001tf__c,type,
    member_c: c > set_c > $o ).

thf(sy_v_P,type,
    p: a > $o ).

thf(sy_v_f,type,
    f: a > b ).

thf(sy_v_g,type,
    g: a > c ).

thf(sy_v_h,type,
    h: c > b ).

% Relevant facts (1275)
thf(fact_0_assms,axiom,
    ! [X: a] :
      ( ( p @ X )
     => ( ( f @ X )
        = ( h @ ( g @ X ) ) ) ) ).

% assms
thf(fact_1_image__ident,axiom,
    ! [Y: set_c] :
      ( ( image_c_c
        @ ^ [X2: c] : X2
        @ Y )
      = Y ) ).

% image_ident
thf(fact_2_image__ident,axiom,
    ! [Y: set_b] :
      ( ( image_b_b
        @ ^ [X2: b] : X2
        @ Y )
      = Y ) ).

% image_ident
thf(fact_3_image__ident,axiom,
    ! [Y: set_Extended_ereal] :
      ( ( image_6042159593519690757_ereal
        @ ^ [X2: extended_ereal] : X2
        @ Y )
      = Y ) ).

% image_ident
thf(fact_4_image__eqI,axiom,
    ! [B: b,F: c > b,X: c,A: set_c] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_c @ X @ A )
       => ( member_b @ B @ ( image_c_b @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_5_image__eqI,axiom,
    ! [B: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal,X: nat,A: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A )
       => ( member7908768830364227535nnreal @ B @ ( image_8459861568512453903nnreal @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_6_image__eqI,axiom,
    ! [B: extended_ereal,F: nat > extended_ereal,X: nat,A: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A )
       => ( member2350847679896131959_ereal @ B @ ( image_4309273772856505399_ereal @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_7_image__eqI,axiom,
    ! [B: $o,F: $o > $o,X: $o,A: set_o] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_o @ X @ A )
       => ( member_o @ B @ ( image_o_o @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_8_image__eqI,axiom,
    ! [B: extended_ereal,F: $o > extended_ereal,X: $o,A: set_o] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_o @ X @ A )
       => ( member2350847679896131959_ereal @ B @ ( image_7729549296133164475_ereal @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_9_image__eqI,axiom,
    ! [B: $o,F: extended_ereal > $o,X: extended_ereal,A: set_Extended_ereal] :
      ( ( B
        = ( F @ X ) )
     => ( ( member2350847679896131959_ereal @ X @ A )
       => ( member_o @ B @ ( image_951975095941678543real_o @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_10_image__eqI,axiom,
    ! [B: extended_ereal,F: extended_ereal > extended_ereal,X: extended_ereal,A: set_Extended_ereal] :
      ( ( B
        = ( F @ X ) )
     => ( ( member2350847679896131959_ereal @ X @ A )
       => ( member2350847679896131959_ereal @ B @ ( image_6042159593519690757_ereal @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_11_image__eqI,axiom,
    ! [B: nat,F: $o > nat,X: $o,A: set_o] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_o @ X @ A )
       => ( member_nat @ B @ ( image_o_nat @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_12_image__eqI,axiom,
    ! [B: extend8495563244428889912nnreal,F: $o > extend8495563244428889912nnreal,X: $o,A: set_o] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_o @ X @ A )
       => ( member7908768830364227535nnreal @ B @ ( image_3342735880743421067nnreal @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_13_image__eqI,axiom,
    ! [B: c,F: $o > c,X: $o,A: set_o] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_o @ X @ A )
       => ( member_c @ B @ ( image_o_c @ F @ A ) ) ) ) ).

% image_eqI
thf(fact_14_Setcompr__eq__image,axiom,
    ! [F: nat > extended_ereal,A: set_nat] :
      ( ( collec5835592288176408249_ereal
        @ ^ [Uu: extended_ereal] :
          ? [X2: nat] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member_nat @ X2 @ A ) ) )
      = ( image_4309273772856505399_ereal @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_15_Setcompr__eq__image,axiom,
    ! [F: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( collec6648975593938027277nnreal
        @ ^ [Uu: extend8495563244428889912nnreal] :
          ? [X2: nat] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member_nat @ X2 @ A ) ) )
      = ( image_8459861568512453903nnreal @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_16_Setcompr__eq__image,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( collec5835592288176408249_ereal
        @ ^ [Uu: extended_ereal] :
          ? [X2: extended_ereal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member2350847679896131959_ereal @ X2 @ A ) ) )
      = ( image_6042159593519690757_ereal @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_17_Setcompr__eq__image,axiom,
    ! [F: c > b,A: set_c] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: c] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member_c @ X2 @ A ) ) )
      = ( image_c_b @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_18_Setcompr__eq__image,axiom,
    ! [F: $o > b,A: set_o] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: $o] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member_o @ X2 @ A ) ) )
      = ( image_o_b @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_19_Setcompr__eq__image,axiom,
    ! [F: extended_ereal > b,A: set_Extended_ereal] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: extended_ereal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member2350847679896131959_ereal @ X2 @ A ) ) )
      = ( image_3724615099042636214real_b @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_20_Setcompr__eq__image,axiom,
    ! [F: $o > c,A: set_o] :
      ( ( collect_c
        @ ^ [Uu: c] :
          ? [X2: $o] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member_o @ X2 @ A ) ) )
      = ( image_o_c @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_21_Setcompr__eq__image,axiom,
    ! [F: extended_ereal > c,A: set_Extended_ereal] :
      ( ( collect_c
        @ ^ [Uu: c] :
          ? [X2: extended_ereal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member2350847679896131959_ereal @ X2 @ A ) ) )
      = ( image_3724615099042636215real_c @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_22_Setcompr__eq__image,axiom,
    ! [F: nat > b,A: set_nat] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: nat] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member_nat @ X2 @ A ) ) )
      = ( image_nat_b @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_23_Setcompr__eq__image,axiom,
    ! [F: extend8495563244428889912nnreal > b,A: set_Ex3793607809372303086nnreal] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: extend8495563244428889912nnreal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( member7908768830364227535nnreal @ X2 @ A ) ) )
      = ( image_7862617044475835264real_b @ F @ A ) ) ).

% Setcompr_eq_image
thf(fact_24_setcompr__eq__image,axiom,
    ! [F: nat > extended_ereal,P: nat > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [Uu: extended_ereal] :
          ? [X2: nat] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_4309273772856505399_ereal @ F @ ( collect_nat @ P ) ) ) ).

% setcompr_eq_image
thf(fact_25_setcompr__eq__image,axiom,
    ! [F: extended_ereal > extended_ereal,P: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [Uu: extended_ereal] :
          ? [X2: extended_ereal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_6042159593519690757_ereal @ F @ ( collec5835592288176408249_ereal @ P ) ) ) ).

% setcompr_eq_image
thf(fact_26_setcompr__eq__image,axiom,
    ! [F: nat > extend8495563244428889912nnreal,P: nat > $o] :
      ( ( collec6648975593938027277nnreal
        @ ^ [Uu: extend8495563244428889912nnreal] :
          ? [X2: nat] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_8459861568512453903nnreal @ F @ ( collect_nat @ P ) ) ) ).

% setcompr_eq_image
thf(fact_27_setcompr__eq__image,axiom,
    ! [F: b > b,P: b > $o] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: b] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_b_b @ F @ ( collect_b @ P ) ) ) ).

% setcompr_eq_image
thf(fact_28_setcompr__eq__image,axiom,
    ! [F: c > b,P: c > $o] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: c] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_c_b @ F @ ( collect_c @ P ) ) ) ).

% setcompr_eq_image
thf(fact_29_setcompr__eq__image,axiom,
    ! [F: b > c,P: b > $o] :
      ( ( collect_c
        @ ^ [Uu: c] :
          ? [X2: b] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_b_c @ F @ ( collect_b @ P ) ) ) ).

% setcompr_eq_image
thf(fact_30_setcompr__eq__image,axiom,
    ! [F: c > c,P: c > $o] :
      ( ( collect_c
        @ ^ [Uu: c] :
          ? [X2: c] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_c_c @ F @ ( collect_c @ P ) ) ) ).

% setcompr_eq_image
thf(fact_31_setcompr__eq__image,axiom,
    ! [F: extended_ereal > b,P: extended_ereal > $o] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: extended_ereal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_3724615099042636214real_b @ F @ ( collec5835592288176408249_ereal @ P ) ) ) ).

% setcompr_eq_image
thf(fact_32_setcompr__eq__image,axiom,
    ! [F: extend8495563244428889912nnreal > b,P: extend8495563244428889912nnreal > $o] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: extend8495563244428889912nnreal] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_7862617044475835264real_b @ F @ ( collec6648975593938027277nnreal @ P ) ) ) ).

% setcompr_eq_image
thf(fact_33_setcompr__eq__image,axiom,
    ! [F: nat > b,P: nat > $o] :
      ( ( collect_b
        @ ^ [Uu: b] :
          ? [X2: nat] :
            ( ( Uu
              = ( F @ X2 ) )
            & ( P @ X2 ) ) )
      = ( image_nat_b @ F @ ( collect_nat @ P ) ) ) ).

% setcompr_eq_image
thf(fact_34_Inf_OINF__identity__eq,axiom,
    ! [Inf: set_c > c,A: set_c] :
      ( ( Inf
        @ ( image_c_c
          @ ^ [X2: c] : X2
          @ A ) )
      = ( Inf @ A ) ) ).

% Inf.INF_identity_eq
thf(fact_35_Inf_OINF__identity__eq,axiom,
    ! [Inf: set_b > b,A: set_b] :
      ( ( Inf
        @ ( image_b_b
          @ ^ [X2: b] : X2
          @ A ) )
      = ( Inf @ A ) ) ).

% Inf.INF_identity_eq
thf(fact_36_Inf_OINF__identity__eq,axiom,
    ! [Inf: set_Extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( Inf
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : X2
          @ A ) )
      = ( Inf @ A ) ) ).

% Inf.INF_identity_eq
thf(fact_37_Sup_OSUP__identity__eq,axiom,
    ! [Sup: set_c > c,A: set_c] :
      ( ( Sup
        @ ( image_c_c
          @ ^ [X2: c] : X2
          @ A ) )
      = ( Sup @ A ) ) ).

% Sup.SUP_identity_eq
thf(fact_38_Sup_OSUP__identity__eq,axiom,
    ! [Sup: set_b > b,A: set_b] :
      ( ( Sup
        @ ( image_b_b
          @ ^ [X2: b] : X2
          @ A ) )
      = ( Sup @ A ) ) ).

% Sup.SUP_identity_eq
thf(fact_39_Sup_OSUP__identity__eq,axiom,
    ! [Sup: set_Extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( Sup
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : X2
          @ A ) )
      = ( Sup @ A ) ) ).

% Sup.SUP_identity_eq
thf(fact_40_imageE,axiom,
    ! [B: b,F: c > b,A: set_c] :
      ( ( member_b @ B @ ( image_c_b @ F @ A ) )
     => ~ ! [X3: c] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_c @ X3 @ A ) ) ) ).

% imageE
thf(fact_41_imageE,axiom,
    ! [B: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( member7908768830364227535nnreal @ B @ ( image_8459861568512453903nnreal @ F @ A ) )
     => ~ ! [X3: nat] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_nat @ X3 @ A ) ) ) ).

% imageE
thf(fact_42_imageE,axiom,
    ! [B: $o,F: $o > $o,A: set_o] :
      ( ( member_o @ B @ ( image_o_o @ F @ A ) )
     => ~ ! [X3: $o] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_o @ X3 @ A ) ) ) ).

% imageE
thf(fact_43_imageE,axiom,
    ! [B: $o,F: extended_ereal > $o,A: set_Extended_ereal] :
      ( ( member_o @ B @ ( image_951975095941678543real_o @ F @ A ) )
     => ~ ! [X3: extended_ereal] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member2350847679896131959_ereal @ X3 @ A ) ) ) ).

% imageE
thf(fact_44_imageE,axiom,
    ! [B: extended_ereal,F: nat > extended_ereal,A: set_nat] :
      ( ( member2350847679896131959_ereal @ B @ ( image_4309273772856505399_ereal @ F @ A ) )
     => ~ ! [X3: nat] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_nat @ X3 @ A ) ) ) ).

% imageE
thf(fact_45_imageE,axiom,
    ! [B: extended_ereal,F: $o > extended_ereal,A: set_o] :
      ( ( member2350847679896131959_ereal @ B @ ( image_7729549296133164475_ereal @ F @ A ) )
     => ~ ! [X3: $o] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_o @ X3 @ A ) ) ) ).

% imageE
thf(fact_46_imageE,axiom,
    ! [B: extended_ereal,F: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ B @ ( image_6042159593519690757_ereal @ F @ A ) )
     => ~ ! [X3: extended_ereal] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member2350847679896131959_ereal @ X3 @ A ) ) ) ).

% imageE
thf(fact_47_imageE,axiom,
    ! [B: $o,F: nat > $o,A: set_nat] :
      ( ( member_o @ B @ ( image_nat_o @ F @ A ) )
     => ~ ! [X3: nat] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_nat @ X3 @ A ) ) ) ).

% imageE
thf(fact_48_imageE,axiom,
    ! [B: $o,F: extend8495563244428889912nnreal > $o,A: set_Ex3793607809372303086nnreal] :
      ( ( member_o @ B @ ( image_3162942742313426073real_o @ F @ A ) )
     => ~ ! [X3: extend8495563244428889912nnreal] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member7908768830364227535nnreal @ X3 @ A ) ) ) ).

% imageE
thf(fact_49_imageE,axiom,
    ! [B: $o,F: c > $o,A: set_c] :
      ( ( member_o @ B @ ( image_c_o @ F @ A ) )
     => ~ ! [X3: c] :
            ( ( B
              = ( F @ X3 ) )
           => ~ ( member_c @ X3 @ A ) ) ) ).

% imageE
thf(fact_50_image__image,axiom,
    ! [F: b > b,G: c > b,A: set_c] :
      ( ( image_b_b @ F @ ( image_c_b @ G @ A ) )
      = ( image_c_b
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_51_image__image,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal,G: nat > extended_ereal,A: set_nat] :
      ( ( image_8614087454967683265nnreal @ F @ ( image_4309273772856505399_ereal @ G @ A ) )
      = ( image_8459861568512453903nnreal
        @ ^ [X2: nat] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_52_image__image,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal,G: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( image_6393943237584228047_ereal @ F @ ( image_8459861568512453903nnreal @ G @ A ) )
      = ( image_4309273772856505399_ereal
        @ ^ [X2: nat] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_53_image__image,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,G: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( image_8394674774369097847nnreal @ F @ ( image_8459861568512453903nnreal @ G @ A ) )
      = ( image_8459861568512453903nnreal
        @ ^ [X2: nat] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_54_image__image,axiom,
    ! [F: c > b,G: c > c,A: set_c] :
      ( ( image_c_b @ F @ ( image_c_c @ G @ A ) )
      = ( image_c_b
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_55_image__image,axiom,
    ! [F: nat > extended_ereal,G: nat > nat,A: set_nat] :
      ( ( image_4309273772856505399_ereal @ F @ ( image_nat_nat @ G @ A ) )
      = ( image_4309273772856505399_ereal
        @ ^ [X2: nat] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_56_image__image,axiom,
    ! [F: nat > extended_ereal,G: extended_ereal > nat,A: set_Extended_ereal] :
      ( ( image_4309273772856505399_ereal @ F @ ( image_7659842161140344153al_nat @ G @ A ) )
      = ( image_6042159593519690757_ereal
        @ ^ [X2: extended_ereal] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_57_image__image,axiom,
    ! [F: extended_ereal > extended_ereal,G: nat > extended_ereal,A: set_nat] :
      ( ( image_6042159593519690757_ereal @ F @ ( image_4309273772856505399_ereal @ G @ A ) )
      = ( image_4309273772856505399_ereal
        @ ^ [X2: nat] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_58_image__image,axiom,
    ! [F: extended_ereal > extended_ereal,G: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( image_6042159593519690757_ereal @ F @ ( image_6042159593519690757_ereal @ G @ A ) )
      = ( image_6042159593519690757_ereal
        @ ^ [X2: extended_ereal] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_59_image__image,axiom,
    ! [F: nat > extend8495563244428889912nnreal,G: nat > nat,A: set_nat] :
      ( ( image_8459861568512453903nnreal @ F @ ( image_nat_nat @ G @ A ) )
      = ( image_8459861568512453903nnreal
        @ ^ [X2: nat] : ( F @ ( G @ X2 ) )
        @ A ) ) ).

% image_image
thf(fact_60_Compr__image__eq,axiom,
    ! [F: nat > extend8495563244428889912nnreal,A: set_nat,P: extend8495563244428889912nnreal > $o] :
      ( ( collec6648975593938027277nnreal
        @ ^ [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ ( image_8459861568512453903nnreal @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_8459861568512453903nnreal @ F
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_61_Compr__image__eq,axiom,
    ! [F: $o > $o,A: set_o,P: $o > $o] :
      ( ( collect_o
        @ ^ [X2: $o] :
            ( ( member_o @ X2 @ ( image_o_o @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_o_o @ F
        @ ( collect_o
          @ ^ [X2: $o] :
              ( ( member_o @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_62_Compr__image__eq,axiom,
    ! [F: extended_ereal > $o,A: set_Extended_ereal,P: $o > $o] :
      ( ( collect_o
        @ ^ [X2: $o] :
            ( ( member_o @ X2 @ ( image_951975095941678543real_o @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_951975095941678543real_o @ F
        @ ( collec5835592288176408249_ereal
          @ ^ [X2: extended_ereal] :
              ( ( member2350847679896131959_ereal @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_63_Compr__image__eq,axiom,
    ! [F: nat > extended_ereal,A: set_nat,P: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ ( image_4309273772856505399_ereal @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_4309273772856505399_ereal @ F
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_64_Compr__image__eq,axiom,
    ! [F: $o > extended_ereal,A: set_o,P: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ ( image_7729549296133164475_ereal @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_7729549296133164475_ereal @ F
        @ ( collect_o
          @ ^ [X2: $o] :
              ( ( member_o @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_65_Compr__image__eq,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,P: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ ( image_6042159593519690757_ereal @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_6042159593519690757_ereal @ F
        @ ( collec5835592288176408249_ereal
          @ ^ [X2: extended_ereal] :
              ( ( member2350847679896131959_ereal @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_66_Compr__image__eq,axiom,
    ! [F: b > $o,A: set_b,P: $o > $o] :
      ( ( collect_o
        @ ^ [X2: $o] :
            ( ( member_o @ X2 @ ( image_b_o @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_b_o @ F
        @ ( collect_b
          @ ^ [X2: b] :
              ( ( member_b @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_67_Compr__image__eq,axiom,
    ! [F: b > extended_ereal,A: set_b,P: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ ( image_5319725110001000852_ereal @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_5319725110001000852_ereal @ F
        @ ( collect_b
          @ ^ [X2: b] :
              ( ( member_b @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_68_Compr__image__eq,axiom,
    ! [F: c > $o,A: set_c,P: $o > $o] :
      ( ( collect_o
        @ ^ [X2: $o] :
            ( ( member_o @ X2 @ ( image_c_o @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_c_o @ F
        @ ( collect_c
          @ ^ [X2: c] :
              ( ( member_c @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_69_Compr__image__eq,axiom,
    ! [F: c > extended_ereal,A: set_c,P: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ ( image_2233968868011006291_ereal @ F @ A ) )
            & ( P @ X2 ) ) )
      = ( image_2233968868011006291_ereal @ F
        @ ( collect_c
          @ ^ [X2: c] :
              ( ( member_c @ X2 @ A )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_70_Inf_OINF__cong,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal,C: extended_ereal > extended_ereal,D: extended_ereal > extended_ereal,Inf: set_Extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_6042159593519690757_ereal @ C @ A ) )
          = ( Inf @ ( image_6042159593519690757_ereal @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_71_Inf_OINF__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > extended_ereal,D: nat > extended_ereal,Inf: set_Extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_4309273772856505399_ereal @ C @ A ) )
          = ( Inf @ ( image_4309273772856505399_ereal @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_72_Inf_OINF__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > extend8495563244428889912nnreal,D: nat > extend8495563244428889912nnreal,Inf: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_8459861568512453903nnreal @ C @ A ) )
          = ( Inf @ ( image_8459861568512453903nnreal @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_73_Inf_OINF__cong,axiom,
    ! [A: set_c,B2: set_c,C: c > b,D: c > b,Inf: set_b > b] :
      ( ( A = B2 )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_c_b @ C @ A ) )
          = ( Inf @ ( image_c_b @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_74_Inf_OINF__cong,axiom,
    ! [A: set_c,B2: set_c,C: c > c,D: c > c,Inf: set_c > c] :
      ( ( A = B2 )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_c_c @ C @ A ) )
          = ( Inf @ ( image_c_c @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_75_Inf_OINF__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > extended_ereal,D: b > extended_ereal,Inf: set_Extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_5319725110001000852_ereal @ C @ A ) )
          = ( Inf @ ( image_5319725110001000852_ereal @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_76_Inf_OINF__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > $o,D: b > $o,Inf: set_o > $o] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_b_o @ C @ A ) )
          = ( Inf @ ( image_b_o @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_77_Inf_OINF__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > c,D: b > c,Inf: set_c > c] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_b_c @ C @ A ) )
          = ( Inf @ ( image_b_c @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_78_Inf_OINF__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > b,D: b > b,Inf: set_b > b] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Inf @ ( image_b_b @ C @ A ) )
          = ( Inf @ ( image_b_b @ D @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_79_Sup_OSUP__cong,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal,C: extended_ereal > extended_ereal,D: extended_ereal > extended_ereal,Sup: set_Extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_6042159593519690757_ereal @ C @ A ) )
          = ( Sup @ ( image_6042159593519690757_ereal @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_80_Sup_OSUP__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > extended_ereal,D: nat > extended_ereal,Sup: set_Extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_4309273772856505399_ereal @ C @ A ) )
          = ( Sup @ ( image_4309273772856505399_ereal @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_81_Sup_OSUP__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > extend8495563244428889912nnreal,D: nat > extend8495563244428889912nnreal,Sup: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_8459861568512453903nnreal @ C @ A ) )
          = ( Sup @ ( image_8459861568512453903nnreal @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_82_Sup_OSUP__cong,axiom,
    ! [A: set_c,B2: set_c,C: c > b,D: c > b,Sup: set_b > b] :
      ( ( A = B2 )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_c_b @ C @ A ) )
          = ( Sup @ ( image_c_b @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_83_Sup_OSUP__cong,axiom,
    ! [A: set_c,B2: set_c,C: c > c,D: c > c,Sup: set_c > c] :
      ( ( A = B2 )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_c_c @ C @ A ) )
          = ( Sup @ ( image_c_c @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_84_Sup_OSUP__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > extended_ereal,D: b > extended_ereal,Sup: set_Extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_5319725110001000852_ereal @ C @ A ) )
          = ( Sup @ ( image_5319725110001000852_ereal @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_85_Sup_OSUP__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > $o,D: b > $o,Sup: set_o > $o] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_b_o @ C @ A ) )
          = ( Sup @ ( image_b_o @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_86_Sup_OSUP__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > c,D: b > c,Sup: set_c > c] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_b_c @ C @ A ) )
          = ( Sup @ ( image_b_c @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_87_Sup_OSUP__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > b,D: b > b,Sup: set_b > b] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( Sup @ ( image_b_b @ C @ A ) )
          = ( Sup @ ( image_b_b @ D @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_88_imageI,axiom,
    ! [X: $o,A: set_o,F: $o > $o] :
      ( ( member_o @ X @ A )
     => ( member_o @ ( F @ X ) @ ( image_o_o @ F @ A ) ) ) ).

% imageI
thf(fact_89_imageI,axiom,
    ! [X: $o,A: set_o,F: $o > extended_ereal] :
      ( ( member_o @ X @ A )
     => ( member2350847679896131959_ereal @ ( F @ X ) @ ( image_7729549296133164475_ereal @ F @ A ) ) ) ).

% imageI
thf(fact_90_imageI,axiom,
    ! [X: $o,A: set_o,F: $o > nat] :
      ( ( member_o @ X @ A )
     => ( member_nat @ ( F @ X ) @ ( image_o_nat @ F @ A ) ) ) ).

% imageI
thf(fact_91_imageI,axiom,
    ! [X: $o,A: set_o,F: $o > extend8495563244428889912nnreal] :
      ( ( member_o @ X @ A )
     => ( member7908768830364227535nnreal @ ( F @ X ) @ ( image_3342735880743421067nnreal @ F @ A ) ) ) ).

% imageI
thf(fact_92_imageI,axiom,
    ! [X: $o,A: set_o,F: $o > c] :
      ( ( member_o @ X @ A )
     => ( member_c @ ( F @ X ) @ ( image_o_c @ F @ A ) ) ) ).

% imageI
thf(fact_93_imageI,axiom,
    ! [X: $o,A: set_o,F: $o > b] :
      ( ( member_o @ X @ A )
     => ( member_b @ ( F @ X ) @ ( image_o_b @ F @ A ) ) ) ).

% imageI
thf(fact_94_imageI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,F: extended_ereal > $o] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( member_o @ ( F @ X ) @ ( image_951975095941678543real_o @ F @ A ) ) ) ).

% imageI
thf(fact_95_imageI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,F: extended_ereal > extended_ereal] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( member2350847679896131959_ereal @ ( F @ X ) @ ( image_6042159593519690757_ereal @ F @ A ) ) ) ).

% imageI
thf(fact_96_imageI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,F: extended_ereal > nat] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( member_nat @ ( F @ X ) @ ( image_7659842161140344153al_nat @ F @ A ) ) ) ).

% imageI
thf(fact_97_imageI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( member7908768830364227535nnreal @ ( F @ X ) @ ( image_8614087454967683265nnreal @ F @ A ) ) ) ).

% imageI
thf(fact_98_rev__image__eqI,axiom,
    ! [X: $o,A: set_o,B: $o,F: $o > $o] :
      ( ( member_o @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member_o @ B @ ( image_o_o @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_99_rev__image__eqI,axiom,
    ! [X: $o,A: set_o,B: extended_ereal,F: $o > extended_ereal] :
      ( ( member_o @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member2350847679896131959_ereal @ B @ ( image_7729549296133164475_ereal @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_100_rev__image__eqI,axiom,
    ! [X: $o,A: set_o,B: nat,F: $o > nat] :
      ( ( member_o @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member_nat @ B @ ( image_o_nat @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_101_rev__image__eqI,axiom,
    ! [X: $o,A: set_o,B: extend8495563244428889912nnreal,F: $o > extend8495563244428889912nnreal] :
      ( ( member_o @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member7908768830364227535nnreal @ B @ ( image_3342735880743421067nnreal @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_102_rev__image__eqI,axiom,
    ! [X: $o,A: set_o,B: c,F: $o > c] :
      ( ( member_o @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member_c @ B @ ( image_o_c @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_103_rev__image__eqI,axiom,
    ! [X: $o,A: set_o,B: b,F: $o > b] :
      ( ( member_o @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member_b @ B @ ( image_o_b @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_104_rev__image__eqI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,B: $o,F: extended_ereal > $o] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member_o @ B @ ( image_951975095941678543real_o @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_105_rev__image__eqI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,B: extended_ereal,F: extended_ereal > extended_ereal] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member2350847679896131959_ereal @ B @ ( image_6042159593519690757_ereal @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_106_rev__image__eqI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,B: nat,F: extended_ereal > nat] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member_nat @ B @ ( image_7659842161140344153al_nat @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_107_rev__image__eqI,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,B: extend8495563244428889912nnreal,F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( member2350847679896131959_ereal @ X @ A )
     => ( ( B
          = ( F @ X ) )
       => ( member7908768830364227535nnreal @ B @ ( image_8614087454967683265nnreal @ F @ A ) ) ) ) ).

% rev_image_eqI
thf(fact_108_ball__imageD,axiom,
    ! [F: c > b,A: set_c,P: b > $o] :
      ( ! [X3: b] :
          ( ( member_b @ X3 @ ( image_c_b @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: c] :
          ( ( member_c @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_109_ball__imageD,axiom,
    ! [F: nat > extended_ereal,A: set_nat,P: extended_ereal > $o] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ ( image_4309273772856505399_ereal @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: nat] :
          ( ( member_nat @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_110_ball__imageD,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,P: extended_ereal > $o] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ ( image_6042159593519690757_ereal @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_111_ball__imageD,axiom,
    ! [F: nat > extend8495563244428889912nnreal,A: set_nat,P: extend8495563244428889912nnreal > $o] :
      ( ! [X3: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X3 @ ( image_8459861568512453903nnreal @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: nat] :
          ( ( member_nat @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_112_ball__imageD,axiom,
    ! [F: c > c,A: set_c,P: c > $o] :
      ( ! [X3: c] :
          ( ( member_c @ X3 @ ( image_c_c @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: c] :
          ( ( member_c @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_113_ball__imageD,axiom,
    ! [F: b > extended_ereal,A: set_b,P: extended_ereal > $o] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ ( image_5319725110001000852_ereal @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: b] :
          ( ( member_b @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_114_ball__imageD,axiom,
    ! [F: b > $o,A: set_b,P: $o > $o] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ ( image_b_o @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: b] :
          ( ( member_b @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_115_ball__imageD,axiom,
    ! [F: b > c,A: set_b,P: c > $o] :
      ( ! [X3: c] :
          ( ( member_c @ X3 @ ( image_b_c @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: b] :
          ( ( member_b @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_116_ball__imageD,axiom,
    ! [F: b > b,A: set_b,P: b > $o] :
      ( ! [X3: b] :
          ( ( member_b @ X3 @ ( image_b_b @ F @ A ) )
         => ( P @ X3 ) )
     => ! [X4: b] :
          ( ( member_b @ X4 @ A )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_117_image__cong,axiom,
    ! [M: set_Extended_ereal,N: set_Extended_ereal,F: extended_ereal > extended_ereal,G: extended_ereal > extended_ereal] :
      ( ( M = N )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_6042159593519690757_ereal @ F @ M )
          = ( image_6042159593519690757_ereal @ G @ N ) ) ) ) ).

% image_cong
thf(fact_118_image__cong,axiom,
    ! [M: set_nat,N: set_nat,F: nat > extended_ereal,G: nat > extended_ereal] :
      ( ( M = N )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_4309273772856505399_ereal @ F @ M )
          = ( image_4309273772856505399_ereal @ G @ N ) ) ) ) ).

% image_cong
thf(fact_119_image__cong,axiom,
    ! [M: set_nat,N: set_nat,F: nat > extend8495563244428889912nnreal,G: nat > extend8495563244428889912nnreal] :
      ( ( M = N )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_8459861568512453903nnreal @ F @ M )
          = ( image_8459861568512453903nnreal @ G @ N ) ) ) ) ).

% image_cong
thf(fact_120_image__cong,axiom,
    ! [M: set_c,N: set_c,F: c > b,G: c > b] :
      ( ( M = N )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_c_b @ F @ M )
          = ( image_c_b @ G @ N ) ) ) ) ).

% image_cong
thf(fact_121_image__cong,axiom,
    ! [M: set_c,N: set_c,F: c > c,G: c > c] :
      ( ( M = N )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_c_c @ F @ M )
          = ( image_c_c @ G @ N ) ) ) ) ).

% image_cong
thf(fact_122_image__cong,axiom,
    ! [M: set_b,N: set_b,F: b > extended_ereal,G: b > extended_ereal] :
      ( ( M = N )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_5319725110001000852_ereal @ F @ M )
          = ( image_5319725110001000852_ereal @ G @ N ) ) ) ) ).

% image_cong
thf(fact_123_image__cong,axiom,
    ! [M: set_b,N: set_b,F: b > $o,G: b > $o] :
      ( ( M = N )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_b_o @ F @ M )
          = ( image_b_o @ G @ N ) ) ) ) ).

% image_cong
thf(fact_124_image__cong,axiom,
    ! [M: set_b,N: set_b,F: b > c,G: b > c] :
      ( ( M = N )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_b_c @ F @ M )
          = ( image_b_c @ G @ N ) ) ) ) ).

% image_cong
thf(fact_125_image__cong,axiom,
    ! [M: set_b,N: set_b,F: b > b,G: b > b] :
      ( ( M = N )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ N )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( image_b_b @ F @ M )
          = ( image_b_b @ G @ N ) ) ) ) ).

% image_cong
thf(fact_126_bex__imageD,axiom,
    ! [F: c > b,A: set_c,P: b > $o] :
      ( ? [X4: b] :
          ( ( member_b @ X4 @ ( image_c_b @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: c] :
          ( ( member_c @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_127_bex__imageD,axiom,
    ! [F: nat > extended_ereal,A: set_nat,P: extended_ereal > $o] :
      ( ? [X4: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X4 @ ( image_4309273772856505399_ereal @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: nat] :
          ( ( member_nat @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_128_bex__imageD,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,P: extended_ereal > $o] :
      ( ? [X4: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X4 @ ( image_6042159593519690757_ereal @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_129_bex__imageD,axiom,
    ! [F: nat > extend8495563244428889912nnreal,A: set_nat,P: extend8495563244428889912nnreal > $o] :
      ( ? [X4: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X4 @ ( image_8459861568512453903nnreal @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: nat] :
          ( ( member_nat @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_130_bex__imageD,axiom,
    ! [F: c > c,A: set_c,P: c > $o] :
      ( ? [X4: c] :
          ( ( member_c @ X4 @ ( image_c_c @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: c] :
          ( ( member_c @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_131_bex__imageD,axiom,
    ! [F: b > extended_ereal,A: set_b,P: extended_ereal > $o] :
      ( ? [X4: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X4 @ ( image_5319725110001000852_ereal @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: b] :
          ( ( member_b @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_132_bex__imageD,axiom,
    ! [F: b > $o,A: set_b,P: $o > $o] :
      ( ? [X4: $o] :
          ( ( member_o @ X4 @ ( image_b_o @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: b] :
          ( ( member_b @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_133_bex__imageD,axiom,
    ! [F: b > c,A: set_b,P: c > $o] :
      ( ? [X4: c] :
          ( ( member_c @ X4 @ ( image_b_c @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: b] :
          ( ( member_b @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_134_bex__imageD,axiom,
    ! [F: b > b,A: set_b,P: b > $o] :
      ( ? [X4: b] :
          ( ( member_b @ X4 @ ( image_b_b @ F @ A ) )
          & ( P @ X4 ) )
     => ? [X3: b] :
          ( ( member_b @ X3 @ A )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_135_image__iff,axiom,
    ! [Z: $o,F: b > $o,A: set_b] :
      ( ( member_o @ Z @ ( image_b_o @ F @ A ) )
      = ( ? [X2: b] :
            ( ( member_b @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_136_image__iff,axiom,
    ! [Z: extended_ereal,F: nat > extended_ereal,A: set_nat] :
      ( ( member2350847679896131959_ereal @ Z @ ( image_4309273772856505399_ereal @ F @ A ) )
      = ( ? [X2: nat] :
            ( ( member_nat @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_137_image__iff,axiom,
    ! [Z: extended_ereal,F: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ Z @ ( image_6042159593519690757_ereal @ F @ A ) )
      = ( ? [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_138_image__iff,axiom,
    ! [Z: extended_ereal,F: b > extended_ereal,A: set_b] :
      ( ( member2350847679896131959_ereal @ Z @ ( image_5319725110001000852_ereal @ F @ A ) )
      = ( ? [X2: b] :
            ( ( member_b @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_139_image__iff,axiom,
    ! [Z: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( member7908768830364227535nnreal @ Z @ ( image_8459861568512453903nnreal @ F @ A ) )
      = ( ? [X2: nat] :
            ( ( member_nat @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_140_image__iff,axiom,
    ! [Z: c,F: c > c,A: set_c] :
      ( ( member_c @ Z @ ( image_c_c @ F @ A ) )
      = ( ? [X2: c] :
            ( ( member_c @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_141_image__iff,axiom,
    ! [Z: c,F: b > c,A: set_b] :
      ( ( member_c @ Z @ ( image_b_c @ F @ A ) )
      = ( ? [X2: b] :
            ( ( member_b @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_142_image__iff,axiom,
    ! [Z: b,F: c > b,A: set_c] :
      ( ( member_b @ Z @ ( image_c_b @ F @ A ) )
      = ( ? [X2: c] :
            ( ( member_c @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_143_image__iff,axiom,
    ! [Z: b,F: b > b,A: set_b] :
      ( ( member_b @ Z @ ( image_b_b @ F @ A ) )
      = ( ? [X2: b] :
            ( ( member_b @ X2 @ A )
            & ( Z
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_144_full__SetCompr__eq,axiom,
    ! [F: c > b] :
      ( ( collect_b
        @ ^ [U: b] :
          ? [X2: c] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_c_b @ F @ top_top_set_c ) ) ).

% full_SetCompr_eq
thf(fact_145_full__SetCompr__eq,axiom,
    ! [F: b > b] :
      ( ( collect_b
        @ ^ [U: b] :
          ? [X2: b] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_b_b @ F @ top_top_set_b ) ) ).

% full_SetCompr_eq
thf(fact_146_full__SetCompr__eq,axiom,
    ! [F: c > c] :
      ( ( collect_c
        @ ^ [U: c] :
          ? [X2: c] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_c_c @ F @ top_top_set_c ) ) ).

% full_SetCompr_eq
thf(fact_147_full__SetCompr__eq,axiom,
    ! [F: b > c] :
      ( ( collect_c
        @ ^ [U: c] :
          ? [X2: b] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_b_c @ F @ top_top_set_b ) ) ).

% full_SetCompr_eq
thf(fact_148_full__SetCompr__eq,axiom,
    ! [F: b > extended_ereal] :
      ( ( collec5835592288176408249_ereal
        @ ^ [U: extended_ereal] :
          ? [X2: b] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_5319725110001000852_ereal @ F @ top_top_set_b ) ) ).

% full_SetCompr_eq
thf(fact_149_full__SetCompr__eq,axiom,
    ! [F: b > $o] :
      ( ( collect_o
        @ ^ [U: $o] :
          ? [X2: b] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_b_o @ F @ top_top_set_b ) ) ).

% full_SetCompr_eq
thf(fact_150_full__SetCompr__eq,axiom,
    ! [F: nat > b] :
      ( ( collect_b
        @ ^ [U: b] :
          ? [X2: nat] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_nat_b @ F @ top_top_set_nat ) ) ).

% full_SetCompr_eq
thf(fact_151_full__SetCompr__eq,axiom,
    ! [F: nat > c] :
      ( ( collect_c
        @ ^ [U: c] :
          ? [X2: nat] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_nat_c @ F @ top_top_set_nat ) ) ).

% full_SetCompr_eq
thf(fact_152_full__SetCompr__eq,axiom,
    ! [F: nat > extended_ereal] :
      ( ( collec5835592288176408249_ereal
        @ ^ [U: extended_ereal] :
          ? [X2: nat] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) ) ).

% full_SetCompr_eq
thf(fact_153_full__SetCompr__eq,axiom,
    ! [F: nat > extend8495563244428889912nnreal] :
      ( ( collec6648975593938027277nnreal
        @ ^ [U: extend8495563244428889912nnreal] :
          ? [X2: nat] :
            ( U
            = ( F @ X2 ) ) )
      = ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) ) ).

% full_SetCompr_eq
thf(fact_154_SUP__identity__eq,axiom,
    ! [A: set_o] :
      ( ( complete_Sup_Sup_o
        @ ( image_o_o
          @ ^ [X2: $o] : X2
          @ A ) )
      = ( complete_Sup_Sup_o @ A ) ) ).

% SUP_identity_eq
thf(fact_155_SUP__identity__eq,axiom,
    ! [A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : X2
          @ A ) )
      = ( comple8415311339701865915_ereal @ A ) ) ).

% SUP_identity_eq
thf(fact_156_SUP__identity__eq,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( comple6814414086264997003nnreal
        @ ( image_8394674774369097847nnreal
          @ ^ [X2: extend8495563244428889912nnreal] : X2
          @ A ) )
      = ( comple6814414086264997003nnreal @ A ) ) ).

% SUP_identity_eq
thf(fact_157_SUP__identity__eq,axiom,
    ! [A: set_nat] :
      ( ( complete_Sup_Sup_nat
        @ ( image_nat_nat
          @ ^ [X2: nat] : X2
          @ A ) )
      = ( complete_Sup_Sup_nat @ A ) ) ).

% SUP_identity_eq
thf(fact_158_INF__identity__eq,axiom,
    ! [A: set_o] :
      ( ( complete_Inf_Inf_o
        @ ( image_o_o
          @ ^ [X2: $o] : X2
          @ A ) )
      = ( complete_Inf_Inf_o @ A ) ) ).

% INF_identity_eq
thf(fact_159_INF__identity__eq,axiom,
    ! [A: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : X2
          @ A ) )
      = ( comple3556804143462414037_ereal @ A ) ) ).

% INF_identity_eq
thf(fact_160_INF__identity__eq,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( comple7330758040695736817nnreal
        @ ( image_8394674774369097847nnreal
          @ ^ [X2: extend8495563244428889912nnreal] : X2
          @ A ) )
      = ( comple7330758040695736817nnreal @ A ) ) ).

% INF_identity_eq
thf(fact_161_range__composition,axiom,
    ! [F: b > extended_ereal,G: c > b] :
      ( ( image_2233968868011006291_ereal
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ top_top_set_c )
      = ( image_5319725110001000852_ereal @ F @ ( image_c_b @ G @ top_top_set_c ) ) ) ).

% range_composition
thf(fact_162_range__composition,axiom,
    ! [F: b > $o,G: c > b] :
      ( ( image_c_o
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ top_top_set_c )
      = ( image_b_o @ F @ ( image_c_b @ G @ top_top_set_c ) ) ) ).

% range_composition
thf(fact_163_range__composition,axiom,
    ! [F: c > b,G: c > c] :
      ( ( image_c_b
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ top_top_set_c )
      = ( image_c_b @ F @ ( image_c_c @ G @ top_top_set_c ) ) ) ).

% range_composition
thf(fact_164_range__composition,axiom,
    ! [F: b > b,G: c > b] :
      ( ( image_c_b
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ top_top_set_c )
      = ( image_b_b @ F @ ( image_c_b @ G @ top_top_set_c ) ) ) ).

% range_composition
thf(fact_165_range__composition,axiom,
    ! [F: c > c,G: c > c] :
      ( ( image_c_c
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ top_top_set_c )
      = ( image_c_c @ F @ ( image_c_c @ G @ top_top_set_c ) ) ) ).

% range_composition
thf(fact_166_range__composition,axiom,
    ! [F: b > c,G: c > b] :
      ( ( image_c_c
        @ ^ [X2: c] : ( F @ ( G @ X2 ) )
        @ top_top_set_c )
      = ( image_b_c @ F @ ( image_c_b @ G @ top_top_set_c ) ) ) ).

% range_composition
thf(fact_167_range__composition,axiom,
    ! [F: $o > extended_ereal,G: b > $o] :
      ( ( image_5319725110001000852_ereal
        @ ^ [X2: b] : ( F @ ( G @ X2 ) )
        @ top_top_set_b )
      = ( image_7729549296133164475_ereal @ F @ ( image_b_o @ G @ top_top_set_b ) ) ) ).

% range_composition
thf(fact_168_range__composition,axiom,
    ! [F: c > extended_ereal,G: b > c] :
      ( ( image_5319725110001000852_ereal
        @ ^ [X2: b] : ( F @ ( G @ X2 ) )
        @ top_top_set_b )
      = ( image_2233968868011006291_ereal @ F @ ( image_b_c @ G @ top_top_set_b ) ) ) ).

% range_composition
thf(fact_169_range__composition,axiom,
    ! [F: nat > extended_ereal,G: b > nat] :
      ( ( image_5319725110001000852_ereal
        @ ^ [X2: b] : ( F @ ( G @ X2 ) )
        @ top_top_set_b )
      = ( image_4309273772856505399_ereal @ F @ ( image_b_nat @ G @ top_top_set_b ) ) ) ).

% range_composition
thf(fact_170_range__composition,axiom,
    ! [F: extended_ereal > extended_ereal,G: b > extended_ereal] :
      ( ( image_5319725110001000852_ereal
        @ ^ [X2: b] : ( F @ ( G @ X2 ) )
        @ top_top_set_b )
      = ( image_6042159593519690757_ereal @ F @ ( image_5319725110001000852_ereal @ G @ top_top_set_b ) ) ) ).

% range_composition
thf(fact_171_rangeE,axiom,
    ! [B: $o,F: b > $o] :
      ( ( member_o @ B @ ( image_b_o @ F @ top_top_set_b ) )
     => ~ ! [X3: b] :
            ( B
            = ( ~ ( F @ X3 ) ) ) ) ).

% rangeE
thf(fact_172_rangeE,axiom,
    ! [B: extended_ereal,F: b > extended_ereal] :
      ( ( member2350847679896131959_ereal @ B @ ( image_5319725110001000852_ereal @ F @ top_top_set_b ) )
     => ~ ! [X3: b] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_173_rangeE,axiom,
    ! [B: c,F: c > c] :
      ( ( member_c @ B @ ( image_c_c @ F @ top_top_set_c ) )
     => ~ ! [X3: c] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_174_rangeE,axiom,
    ! [B: c,F: b > c] :
      ( ( member_c @ B @ ( image_b_c @ F @ top_top_set_b ) )
     => ~ ! [X3: b] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_175_rangeE,axiom,
    ! [B: b,F: c > b] :
      ( ( member_b @ B @ ( image_c_b @ F @ top_top_set_c ) )
     => ~ ! [X3: c] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_176_rangeE,axiom,
    ! [B: b,F: b > b] :
      ( ( member_b @ B @ ( image_b_b @ F @ top_top_set_b ) )
     => ~ ! [X3: b] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_177_rangeE,axiom,
    ! [B: $o,F: nat > $o] :
      ( ( member_o @ B @ ( image_nat_o @ F @ top_top_set_nat ) )
     => ~ ! [X3: nat] :
            ( B
            = ( ~ ( F @ X3 ) ) ) ) ).

% rangeE
thf(fact_178_rangeE,axiom,
    ! [B: extended_ereal,F: nat > extended_ereal] :
      ( ( member2350847679896131959_ereal @ B @ ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) )
     => ~ ! [X3: nat] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_179_rangeE,axiom,
    ! [B: nat,F: nat > nat] :
      ( ( member_nat @ B @ ( image_nat_nat @ F @ top_top_set_nat ) )
     => ~ ! [X3: nat] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_180_rangeE,axiom,
    ! [B: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal] :
      ( ( member7908768830364227535nnreal @ B @ ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) )
     => ~ ! [X3: nat] :
            ( B
           != ( F @ X3 ) ) ) ).

% rangeE
thf(fact_181_image__is__empty,axiom,
    ! [F: c > b,A: set_c] :
      ( ( ( image_c_b @ F @ A )
        = bot_bot_set_b )
      = ( A = bot_bot_set_c ) ) ).

% image_is_empty
thf(fact_182_image__is__empty,axiom,
    ! [F: c > c,A: set_c] :
      ( ( ( image_c_c @ F @ A )
        = bot_bot_set_c )
      = ( A = bot_bot_set_c ) ) ).

% image_is_empty
thf(fact_183_image__is__empty,axiom,
    ! [F: b > $o,A: set_b] :
      ( ( ( image_b_o @ F @ A )
        = bot_bot_set_o )
      = ( A = bot_bot_set_b ) ) ).

% image_is_empty
thf(fact_184_image__is__empty,axiom,
    ! [F: b > c,A: set_b] :
      ( ( ( image_b_c @ F @ A )
        = bot_bot_set_c )
      = ( A = bot_bot_set_b ) ) ).

% image_is_empty
thf(fact_185_image__is__empty,axiom,
    ! [F: b > b,A: set_b] :
      ( ( ( image_b_b @ F @ A )
        = bot_bot_set_b )
      = ( A = bot_bot_set_b ) ) ).

% image_is_empty
thf(fact_186_image__is__empty,axiom,
    ! [F: b > extended_ereal,A: set_b] :
      ( ( ( image_5319725110001000852_ereal @ F @ A )
        = bot_bo8367695208629047834_ereal )
      = ( A = bot_bot_set_b ) ) ).

% image_is_empty
thf(fact_187_image__is__empty,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( ( image_6042159593519690757_ereal @ F @ A )
        = bot_bo8367695208629047834_ereal )
      = ( A = bot_bo8367695208629047834_ereal ) ) ).

% image_is_empty
thf(fact_188_image__is__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal,A: set_Ex3793607809372303086nnreal] :
      ( ( ( image_6393943237584228047_ereal @ F @ A )
        = bot_bo8367695208629047834_ereal )
      = ( A = bot_bo4854962954004695426nnreal ) ) ).

% image_is_empty
thf(fact_189_image__is__empty,axiom,
    ! [F: nat > extended_ereal,A: set_nat] :
      ( ( ( image_4309273772856505399_ereal @ F @ A )
        = bot_bo8367695208629047834_ereal )
      = ( A = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_190_image__is__empty,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal,A: set_Extended_ereal] :
      ( ( ( image_8614087454967683265nnreal @ F @ A )
        = bot_bo4854962954004695426nnreal )
      = ( A = bot_bo8367695208629047834_ereal ) ) ).

% image_is_empty
thf(fact_191_empty__is__image,axiom,
    ! [F: c > b,A: set_c] :
      ( ( bot_bot_set_b
        = ( image_c_b @ F @ A ) )
      = ( A = bot_bot_set_c ) ) ).

% empty_is_image
thf(fact_192_empty__is__image,axiom,
    ! [F: c > c,A: set_c] :
      ( ( bot_bot_set_c
        = ( image_c_c @ F @ A ) )
      = ( A = bot_bot_set_c ) ) ).

% empty_is_image
thf(fact_193_empty__is__image,axiom,
    ! [F: b > $o,A: set_b] :
      ( ( bot_bot_set_o
        = ( image_b_o @ F @ A ) )
      = ( A = bot_bot_set_b ) ) ).

% empty_is_image
thf(fact_194_empty__is__image,axiom,
    ! [F: b > c,A: set_b] :
      ( ( bot_bot_set_c
        = ( image_b_c @ F @ A ) )
      = ( A = bot_bot_set_b ) ) ).

% empty_is_image
thf(fact_195_empty__is__image,axiom,
    ! [F: b > b,A: set_b] :
      ( ( bot_bot_set_b
        = ( image_b_b @ F @ A ) )
      = ( A = bot_bot_set_b ) ) ).

% empty_is_image
thf(fact_196_empty__is__image,axiom,
    ! [F: b > extended_ereal,A: set_b] :
      ( ( bot_bo8367695208629047834_ereal
        = ( image_5319725110001000852_ereal @ F @ A ) )
      = ( A = bot_bot_set_b ) ) ).

% empty_is_image
thf(fact_197_empty__is__image,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( bot_bo8367695208629047834_ereal
        = ( image_6042159593519690757_ereal @ F @ A ) )
      = ( A = bot_bo8367695208629047834_ereal ) ) ).

% empty_is_image
thf(fact_198_empty__is__image,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal,A: set_Ex3793607809372303086nnreal] :
      ( ( bot_bo8367695208629047834_ereal
        = ( image_6393943237584228047_ereal @ F @ A ) )
      = ( A = bot_bo4854962954004695426nnreal ) ) ).

% empty_is_image
thf(fact_199_empty__is__image,axiom,
    ! [F: nat > extended_ereal,A: set_nat] :
      ( ( bot_bo8367695208629047834_ereal
        = ( image_4309273772856505399_ereal @ F @ A ) )
      = ( A = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_200_empty__is__image,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal,A: set_Extended_ereal] :
      ( ( bot_bo4854962954004695426nnreal
        = ( image_8614087454967683265nnreal @ F @ A ) )
      = ( A = bot_bo8367695208629047834_ereal ) ) ).

% empty_is_image
thf(fact_201_image__empty,axiom,
    ! [F: c > b] :
      ( ( image_c_b @ F @ bot_bot_set_c )
      = bot_bot_set_b ) ).

% image_empty
thf(fact_202_image__empty,axiom,
    ! [F: c > c] :
      ( ( image_c_c @ F @ bot_bot_set_c )
      = bot_bot_set_c ) ).

% image_empty
thf(fact_203_image__empty,axiom,
    ! [F: b > $o] :
      ( ( image_b_o @ F @ bot_bot_set_b )
      = bot_bot_set_o ) ).

% image_empty
thf(fact_204_image__empty,axiom,
    ! [F: b > c] :
      ( ( image_b_c @ F @ bot_bot_set_b )
      = bot_bot_set_c ) ).

% image_empty
thf(fact_205_image__empty,axiom,
    ! [F: b > b] :
      ( ( image_b_b @ F @ bot_bot_set_b )
      = bot_bot_set_b ) ).

% image_empty
thf(fact_206_image__empty,axiom,
    ! [F: b > extended_ereal] :
      ( ( image_5319725110001000852_ereal @ F @ bot_bot_set_b )
      = bot_bo8367695208629047834_ereal ) ).

% image_empty
thf(fact_207_image__empty,axiom,
    ! [F: extended_ereal > extended_ereal] :
      ( ( image_6042159593519690757_ereal @ F @ bot_bo8367695208629047834_ereal )
      = bot_bo8367695208629047834_ereal ) ).

% image_empty
thf(fact_208_image__empty,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( image_8614087454967683265nnreal @ F @ bot_bo8367695208629047834_ereal )
      = bot_bo4854962954004695426nnreal ) ).

% image_empty
thf(fact_209_image__empty,axiom,
    ! [F: extended_ereal > nat] :
      ( ( image_7659842161140344153al_nat @ F @ bot_bo8367695208629047834_ereal )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_210_image__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal] :
      ( ( image_6393943237584228047_ereal @ F @ bot_bo4854962954004695426nnreal )
      = bot_bo8367695208629047834_ereal ) ).

% image_empty
thf(fact_211_image__Union,axiom,
    ! [F: c > b,S: set_set_c] :
      ( ( image_c_b @ F @ ( comple2307003618534512845_set_c @ S ) )
      = ( comple2307003614231284044_set_b @ ( image_set_c_set_b @ ( image_c_b @ F ) @ S ) ) ) ).

% image_Union
thf(fact_212_image__Union,axiom,
    ! [F: nat > extended_ereal,S: set_set_nat] :
      ( ( image_4309273772856505399_ereal @ F @ ( comple7399068483239264473et_nat @ S ) )
      = ( comple4319282863272126363_ereal @ ( image_8825259783980156129_ereal @ ( image_4309273772856505399_ereal @ F ) @ S ) ) ) ).

% image_Union
thf(fact_213_image__Union,axiom,
    ! [F: extended_ereal > extended_ereal,S: set_se6634062954251873166_ereal] :
      ( ( image_6042159593519690757_ereal @ F @ ( comple4319282863272126363_ereal @ S ) )
      = ( comple4319282863272126363_ereal @ ( image_6293272304431515653_ereal @ ( image_6042159593519690757_ereal @ F ) @ S ) ) ) ).

% image_Union
thf(fact_214_image__Union,axiom,
    ! [F: nat > extend8495563244428889912nnreal,S: set_set_nat] :
      ( ( image_8459861568512453903nnreal @ F @ ( comple7399068483239264473et_nat @ S ) )
      = ( comple4226387801268262977nnreal @ ( image_2240520088648803451nnreal @ ( image_8459861568512453903nnreal @ F ) @ S ) ) ) ).

% image_Union
thf(fact_215_image__Union,axiom,
    ! [F: c > c,S: set_set_c] :
      ( ( image_c_c @ F @ ( comple2307003618534512845_set_c @ S ) )
      = ( comple2307003618534512845_set_c @ ( image_set_c_set_c @ ( image_c_c @ F ) @ S ) ) ) ).

% image_Union
thf(fact_216_image__Union,axiom,
    ! [F: b > extended_ereal,S: set_set_b] :
      ( ( image_5319725110001000852_ereal @ F @ ( comple2307003614231284044_set_b @ S ) )
      = ( comple4319282863272126363_ereal @ ( image_1305302568177716884_ereal @ ( image_5319725110001000852_ereal @ F ) @ S ) ) ) ).

% image_Union
thf(fact_217_image__Union,axiom,
    ! [F: b > $o,S: set_set_b] :
      ( ( image_b_o @ F @ ( comple2307003614231284044_set_b @ S ) )
      = ( comple90263536869209701_set_o @ ( image_set_b_set_o @ ( image_b_o @ F ) @ S ) ) ) ).

% image_Union
thf(fact_218_image__Union,axiom,
    ! [F: b > c,S: set_set_b] :
      ( ( image_b_c @ F @ ( comple2307003614231284044_set_b @ S ) )
      = ( comple2307003618534512845_set_c @ ( image_set_b_set_c @ ( image_b_c @ F ) @ S ) ) ) ).

% image_Union
thf(fact_219_image__Union,axiom,
    ! [F: b > b,S: set_set_b] :
      ( ( image_b_b @ F @ ( comple2307003614231284044_set_b @ S ) )
      = ( comple2307003614231284044_set_b @ ( image_set_b_set_b @ ( image_b_b @ F ) @ S ) ) ) ).

% image_Union
thf(fact_220_Inter__UNIV__conv_I2_J,axiom,
    ! [A: set_set_nat] :
      ( ( top_top_set_nat
        = ( comple7806235888213564991et_nat @ A ) )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = top_top_set_nat ) ) ) ) ).

% Inter_UNIV_conv(2)
thf(fact_221_Inter__UNIV__conv_I2_J,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( top_to5683747375963461374_ereal
        = ( comple4418415374894819509_ereal @ A ) )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = top_to5683747375963461374_ereal ) ) ) ) ).

% Inter_UNIV_conv(2)
thf(fact_222_Inter__UNIV__conv_I1_J,axiom,
    ! [A: set_set_nat] :
      ( ( ( comple7806235888213564991et_nat @ A )
        = top_top_set_nat )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = top_top_set_nat ) ) ) ) ).

% Inter_UNIV_conv(1)
thf(fact_223_Inter__UNIV__conv_I1_J,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( ( comple4418415374894819509_ereal @ A )
        = top_to5683747375963461374_ereal )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = top_to5683747375963461374_ereal ) ) ) ) ).

% Inter_UNIV_conv(1)
thf(fact_224_UNIV__I,axiom,
    ! [X: $o] : ( member_o @ X @ top_top_set_o ) ).

% UNIV_I
thf(fact_225_UNIV__I,axiom,
    ! [X: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X @ top_to7994903218803871134nnreal ) ).

% UNIV_I
thf(fact_226_UNIV__I,axiom,
    ! [X: c] : ( member_c @ X @ top_top_set_c ) ).

% UNIV_I
thf(fact_227_UNIV__I,axiom,
    ! [X: b] : ( member_b @ X @ top_top_set_b ) ).

% UNIV_I
thf(fact_228_UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% UNIV_I
thf(fact_229_UNIV__I,axiom,
    ! [X: extended_ereal] : ( member2350847679896131959_ereal @ X @ top_to5683747375963461374_ereal ) ).

% UNIV_I
thf(fact_230_empty__iff,axiom,
    ! [C2: $o] :
      ~ ( member_o @ C2 @ bot_bot_set_o ) ).

% empty_iff
thf(fact_231_empty__iff,axiom,
    ! [C2: c] :
      ~ ( member_c @ C2 @ bot_bot_set_c ) ).

% empty_iff
thf(fact_232_empty__iff,axiom,
    ! [C2: b] :
      ~ ( member_b @ C2 @ bot_bot_set_b ) ).

% empty_iff
thf(fact_233_empty__iff,axiom,
    ! [C2: extended_ereal] :
      ~ ( member2350847679896131959_ereal @ C2 @ bot_bo8367695208629047834_ereal ) ).

% empty_iff
thf(fact_234_empty__iff,axiom,
    ! [C2: extend8495563244428889912nnreal] :
      ~ ( member7908768830364227535nnreal @ C2 @ bot_bo4854962954004695426nnreal ) ).

% empty_iff
thf(fact_235_empty__iff,axiom,
    ! [C2: nat] :
      ~ ( member_nat @ C2 @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_236_all__not__in__conv,axiom,
    ! [A: set_o] :
      ( ( ! [X2: $o] :
            ~ ( member_o @ X2 @ A ) )
      = ( A = bot_bot_set_o ) ) ).

% all_not_in_conv
thf(fact_237_all__not__in__conv,axiom,
    ! [A: set_c] :
      ( ( ! [X2: c] :
            ~ ( member_c @ X2 @ A ) )
      = ( A = bot_bot_set_c ) ) ).

% all_not_in_conv
thf(fact_238_all__not__in__conv,axiom,
    ! [A: set_b] :
      ( ( ! [X2: b] :
            ~ ( member_b @ X2 @ A ) )
      = ( A = bot_bot_set_b ) ) ).

% all_not_in_conv
thf(fact_239_all__not__in__conv,axiom,
    ! [A: set_Extended_ereal] :
      ( ( ! [X2: extended_ereal] :
            ~ ( member2350847679896131959_ereal @ X2 @ A ) )
      = ( A = bot_bo8367695208629047834_ereal ) ) ).

% all_not_in_conv
thf(fact_240_all__not__in__conv,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( ! [X2: extend8495563244428889912nnreal] :
            ~ ( member7908768830364227535nnreal @ X2 @ A ) )
      = ( A = bot_bo4854962954004695426nnreal ) ) ).

% all_not_in_conv
thf(fact_241_all__not__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ! [X2: nat] :
            ~ ( member_nat @ X2 @ A ) )
      = ( A = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_242_Collect__empty__eq,axiom,
    ! [P: b > $o] :
      ( ( ( collect_b @ P )
        = bot_bot_set_b )
      = ( ! [X2: b] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_243_Collect__empty__eq,axiom,
    ! [P: c > $o] :
      ( ( ( collect_c @ P )
        = bot_bot_set_c )
      = ( ! [X2: c] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_244_Collect__empty__eq,axiom,
    ! [P: $o > $o] :
      ( ( ( collect_o @ P )
        = bot_bot_set_o )
      = ( ! [X2: $o] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_245_Collect__empty__eq,axiom,
    ! [P: extended_ereal > $o] :
      ( ( ( collec5835592288176408249_ereal @ P )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: extended_ereal] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_246_Collect__empty__eq,axiom,
    ! [P: extend8495563244428889912nnreal > $o] :
      ( ( ( collec6648975593938027277nnreal @ P )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_247_Collect__empty__eq,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_248_empty__Collect__eq,axiom,
    ! [P: b > $o] :
      ( ( bot_bot_set_b
        = ( collect_b @ P ) )
      = ( ! [X2: b] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_249_empty__Collect__eq,axiom,
    ! [P: c > $o] :
      ( ( bot_bot_set_c
        = ( collect_c @ P ) )
      = ( ! [X2: c] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_250_empty__Collect__eq,axiom,
    ! [P: $o > $o] :
      ( ( bot_bot_set_o
        = ( collect_o @ P ) )
      = ( ! [X2: $o] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_251_empty__Collect__eq,axiom,
    ! [P: extended_ereal > $o] :
      ( ( bot_bo8367695208629047834_ereal
        = ( collec5835592288176408249_ereal @ P ) )
      = ( ! [X2: extended_ereal] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_252_empty__Collect__eq,axiom,
    ! [P: extend8495563244428889912nnreal > $o] :
      ( ( bot_bo4854962954004695426nnreal
        = ( collec6648975593938027277nnreal @ P ) )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_253_empty__Collect__eq,axiom,
    ! [P: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P ) )
      = ( ! [X2: nat] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_254_UnionI,axiom,
    ! [X5: set_o,C: set_set_o,A: $o] :
      ( ( member_set_o @ X5 @ C )
     => ( ( member_o @ A @ X5 )
       => ( member_o @ A @ ( comple90263536869209701_set_o @ C ) ) ) ) ).

% UnionI
thf(fact_255_UnionI,axiom,
    ! [X5: set_Extended_ereal,C: set_se6634062954251873166_ereal,A: extended_ereal] :
      ( ( member5519481007471526743_ereal @ X5 @ C )
     => ( ( member2350847679896131959_ereal @ A @ X5 )
       => ( member2350847679896131959_ereal @ A @ ( comple4319282863272126363_ereal @ C ) ) ) ) ).

% UnionI
thf(fact_256_UnionI,axiom,
    ! [X5: set_nat,C: set_set_nat,A: nat] :
      ( ( member_set_nat @ X5 @ C )
     => ( ( member_nat @ A @ X5 )
       => ( member_nat @ A @ ( comple7399068483239264473et_nat @ C ) ) ) ) ).

% UnionI
thf(fact_257_UnionI,axiom,
    ! [X5: set_Ex3793607809372303086nnreal,C: set_se4580700918925141924nnreal,A: extend8495563244428889912nnreal] :
      ( ( member603777416030116741nnreal @ X5 @ C )
     => ( ( member7908768830364227535nnreal @ A @ X5 )
       => ( member7908768830364227535nnreal @ A @ ( comple4226387801268262977nnreal @ C ) ) ) ) ).

% UnionI
thf(fact_258_UnionI,axiom,
    ! [X5: set_c,C: set_set_c,A: c] :
      ( ( member_set_c @ X5 @ C )
     => ( ( member_c @ A @ X5 )
       => ( member_c @ A @ ( comple2307003618534512845_set_c @ C ) ) ) ) ).

% UnionI
thf(fact_259_UnionI,axiom,
    ! [X5: set_b,C: set_set_b,A: b] :
      ( ( member_set_b @ X5 @ C )
     => ( ( member_b @ A @ X5 )
       => ( member_b @ A @ ( comple2307003614231284044_set_b @ C ) ) ) ) ).

% UnionI
thf(fact_260_Union__iff,axiom,
    ! [A: $o,C: set_set_o] :
      ( ( member_o @ A @ ( comple90263536869209701_set_o @ C ) )
      = ( ? [X2: set_o] :
            ( ( member_set_o @ X2 @ C )
            & ( member_o @ A @ X2 ) ) ) ) ).

% Union_iff
thf(fact_261_Union__iff,axiom,
    ! [A: extended_ereal,C: set_se6634062954251873166_ereal] :
      ( ( member2350847679896131959_ereal @ A @ ( comple4319282863272126363_ereal @ C ) )
      = ( ? [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ C )
            & ( member2350847679896131959_ereal @ A @ X2 ) ) ) ) ).

% Union_iff
thf(fact_262_Union__iff,axiom,
    ! [A: nat,C: set_set_nat] :
      ( ( member_nat @ A @ ( comple7399068483239264473et_nat @ C ) )
      = ( ? [X2: set_nat] :
            ( ( member_set_nat @ X2 @ C )
            & ( member_nat @ A @ X2 ) ) ) ) ).

% Union_iff
thf(fact_263_Union__iff,axiom,
    ! [A: extend8495563244428889912nnreal,C: set_se4580700918925141924nnreal] :
      ( ( member7908768830364227535nnreal @ A @ ( comple4226387801268262977nnreal @ C ) )
      = ( ? [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ C )
            & ( member7908768830364227535nnreal @ A @ X2 ) ) ) ) ).

% Union_iff
thf(fact_264_Union__iff,axiom,
    ! [A: c,C: set_set_c] :
      ( ( member_c @ A @ ( comple2307003618534512845_set_c @ C ) )
      = ( ? [X2: set_c] :
            ( ( member_set_c @ X2 @ C )
            & ( member_c @ A @ X2 ) ) ) ) ).

% Union_iff
thf(fact_265_Union__iff,axiom,
    ! [A: b,C: set_set_b] :
      ( ( member_b @ A @ ( comple2307003614231284044_set_b @ C ) )
      = ( ? [X2: set_b] :
            ( ( member_set_b @ X2 @ C )
            & ( member_b @ A @ X2 ) ) ) ) ).

% Union_iff
thf(fact_266_INT__I,axiom,
    ! [A: set_o,B: $o,B2: $o > set_o] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ( member_o @ B @ ( B2 @ X3 ) ) )
     => ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_o_set_o @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_267_INT__I,axiom,
    ! [A: set_o,B: extended_ereal,B2: $o > set_Extended_ereal] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ( member2350847679896131959_ereal @ B @ ( B2 @ X3 ) ) )
     => ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_6375117163256653723_ereal @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_268_INT__I,axiom,
    ! [A: set_o,B: nat,B2: $o > set_nat] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ( member_nat @ B @ ( B2 @ X3 ) ) )
     => ( member_nat @ B @ ( comple7806235888213564991et_nat @ ( image_o_set_nat @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_269_INT__I,axiom,
    ! [A: set_o,B: extend8495563244428889912nnreal,B2: $o > set_Ex3793607809372303086nnreal] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ( member7908768830364227535nnreal @ B @ ( B2 @ X3 ) ) )
     => ( member7908768830364227535nnreal @ B @ ( comple5724520875574609319nnreal @ ( image_1679811975146592321nnreal @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_270_INT__I,axiom,
    ! [A: set_o,B: c,B2: $o > set_c] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ( member_c @ B @ ( B2 @ X3 ) ) )
     => ( member_c @ B @ ( comple6135023387286571239_set_c @ ( image_o_set_c @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_271_INT__I,axiom,
    ! [A: set_o,B: b,B2: $o > set_b] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ( member_b @ B @ ( B2 @ X3 ) ) )
     => ( member_b @ B @ ( comple6135023382983342438_set_b @ ( image_o_set_b @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_272_INT__I,axiom,
    ! [A: set_Extended_ereal,B: $o,B2: extended_ereal > set_o] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ A )
         => ( member_o @ B @ ( B2 @ X3 ) ) )
     => ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_2973972673614065839_set_o @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_273_INT__I,axiom,
    ! [A: set_Extended_ereal,B: extended_ereal,B2: extended_ereal > set_Extended_ereal] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ A )
         => ( member2350847679896131959_ereal @ B @ ( B2 @ X3 ) ) )
     => ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_274_INT__I,axiom,
    ! [A: set_Extended_ereal,B: nat,B2: extended_ereal > set_nat] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ A )
         => ( member_nat @ B @ ( B2 @ X3 ) ) )
     => ( member_nat @ B @ ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_275_INT__I,axiom,
    ! [A: set_Extended_ereal,B: extend8495563244428889912nnreal,B2: extended_ereal > set_Ex3793607809372303086nnreal] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ A )
         => ( member7908768830364227535nnreal @ B @ ( B2 @ X3 ) ) )
     => ( member7908768830364227535nnreal @ B @ ( comple5724520875574609319nnreal @ ( image_6588766411312125047nnreal @ B2 @ A ) ) ) ) ).

% INT_I
thf(fact_276_mem__Collect__eq,axiom,
    ! [A2: b,P: b > $o] :
      ( ( member_b @ A2 @ ( collect_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_277_mem__Collect__eq,axiom,
    ! [A2: c,P: c > $o] :
      ( ( member_c @ A2 @ ( collect_c @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_278_mem__Collect__eq,axiom,
    ! [A2: extended_ereal,P: extended_ereal > $o] :
      ( ( member2350847679896131959_ereal @ A2 @ ( collec5835592288176408249_ereal @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_279_mem__Collect__eq,axiom,
    ! [A2: extend8495563244428889912nnreal,P: extend8495563244428889912nnreal > $o] :
      ( ( member7908768830364227535nnreal @ A2 @ ( collec6648975593938027277nnreal @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_280_mem__Collect__eq,axiom,
    ! [A2: nat,P: nat > $o] :
      ( ( member_nat @ A2 @ ( collect_nat @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_281_mem__Collect__eq,axiom,
    ! [A2: $o,P: $o > $o] :
      ( ( member_o @ A2 @ ( collect_o @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_282_Collect__mem__eq,axiom,
    ! [A: set_b] :
      ( ( collect_b
        @ ^ [X2: b] : ( member_b @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_283_Collect__mem__eq,axiom,
    ! [A: set_c] :
      ( ( collect_c
        @ ^ [X2: c] : ( member_c @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_284_Collect__mem__eq,axiom,
    ! [A: set_Extended_ereal] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_285_Collect__mem__eq,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( collec6648975593938027277nnreal
        @ ^ [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_286_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_287_Collect__mem__eq,axiom,
    ! [A: set_o] :
      ( ( collect_o
        @ ^ [X2: $o] : ( member_o @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_288_Collect__cong,axiom,
    ! [P: b > $o,Q: b > $o] :
      ( ! [X3: b] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_b @ P )
        = ( collect_b @ Q ) ) ) ).

% Collect_cong
thf(fact_289_Collect__cong,axiom,
    ! [P: c > $o,Q: c > $o] :
      ( ! [X3: c] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_c @ P )
        = ( collect_c @ Q ) ) ) ).

% Collect_cong
thf(fact_290_Collect__cong,axiom,
    ! [P: extended_ereal > $o,Q: extended_ereal > $o] :
      ( ! [X3: extended_ereal] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collec5835592288176408249_ereal @ P )
        = ( collec5835592288176408249_ereal @ Q ) ) ) ).

% Collect_cong
thf(fact_291_Collect__cong,axiom,
    ! [P: extend8495563244428889912nnreal > $o,Q: extend8495563244428889912nnreal > $o] :
      ( ! [X3: extend8495563244428889912nnreal] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collec6648975593938027277nnreal @ P )
        = ( collec6648975593938027277nnreal @ Q ) ) ) ).

% Collect_cong
thf(fact_292_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_293_Collect__cong,axiom,
    ! [P: $o > $o,Q: $o > $o] :
      ( ! [X3: $o] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_o @ P )
        = ( collect_o @ Q ) ) ) ).

% Collect_cong
thf(fact_294_Sup__bot__conv_I2_J,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( bot_bo8367695208629047834_ereal
        = ( comple4319282863272126363_ereal @ A ) )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = bot_bo8367695208629047834_ereal ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_295_Sup__bot__conv_I2_J,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( bot_bo4854962954004695426nnreal
        = ( comple4226387801268262977nnreal @ A ) )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ A )
           => ( X2 = bot_bo4854962954004695426nnreal ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_296_Sup__bot__conv_I2_J,axiom,
    ! [A: set_set_nat] :
      ( ( bot_bot_set_nat
        = ( comple7399068483239264473et_nat @ A ) )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = bot_bot_set_nat ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_297_Sup__bot__conv_I2_J,axiom,
    ! [A: set_o] :
      ( ( bot_bot_o
        = ( complete_Sup_Sup_o @ A ) )
      = ( ! [X2: $o] :
            ( ( member_o @ X2 @ A )
           => ( X2 = bot_bot_o ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_298_Sup__bot__conv_I2_J,axiom,
    ! [A: set_Extended_ereal] :
      ( ( bot_bo2710585358178759738_ereal
        = ( comple8415311339701865915_ereal @ A ) )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( X2 = bot_bo2710585358178759738_ereal ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_299_Sup__bot__conv_I2_J,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( bot_bo841427958541957580nnreal
        = ( comple6814414086264997003nnreal @ A ) )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ A )
           => ( X2 = bot_bo841427958541957580nnreal ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_300_Sup__bot__conv_I1_J,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( ( comple4319282863272126363_ereal @ A )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = bot_bo8367695208629047834_ereal ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_301_Sup__bot__conv_I1_J,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( ( comple4226387801268262977nnreal @ A )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ A )
           => ( X2 = bot_bo4854962954004695426nnreal ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_302_Sup__bot__conv_I1_J,axiom,
    ! [A: set_set_nat] :
      ( ( ( comple7399068483239264473et_nat @ A )
        = bot_bot_set_nat )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = bot_bot_set_nat ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_303_Sup__bot__conv_I1_J,axiom,
    ! [A: set_o] :
      ( ( ( complete_Sup_Sup_o @ A )
        = bot_bot_o )
      = ( ! [X2: $o] :
            ( ( member_o @ X2 @ A )
           => ( X2 = bot_bot_o ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_304_Sup__bot__conv_I1_J,axiom,
    ! [A: set_Extended_ereal] :
      ( ( ( comple8415311339701865915_ereal @ A )
        = bot_bo2710585358178759738_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( X2 = bot_bo2710585358178759738_ereal ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_305_Sup__bot__conv_I1_J,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( ( comple6814414086264997003nnreal @ A )
        = bot_bo841427958541957580nnreal )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ A )
           => ( X2 = bot_bo841427958541957580nnreal ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_306_Inf__top__conv_I2_J,axiom,
    ! [A: set_set_nat] :
      ( ( top_top_set_nat
        = ( comple7806235888213564991et_nat @ A ) )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = top_top_set_nat ) ) ) ) ).

% Inf_top_conv(2)
thf(fact_307_Inf__top__conv_I2_J,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( top_to5683747375963461374_ereal
        = ( comple4418415374894819509_ereal @ A ) )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = top_to5683747375963461374_ereal ) ) ) ) ).

% Inf_top_conv(2)
thf(fact_308_Inf__top__conv_I2_J,axiom,
    ! [A: set_o] :
      ( ( top_top_o
        = ( complete_Inf_Inf_o @ A ) )
      = ( ! [X2: $o] :
            ( ( member_o @ X2 @ A )
           => ( X2 = top_top_o ) ) ) ) ).

% Inf_top_conv(2)
thf(fact_309_Inf__top__conv_I2_J,axiom,
    ! [A: set_Extended_ereal] :
      ( ( top_to6662034908053899550_ereal
        = ( comple3556804143462414037_ereal @ A ) )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( X2 = top_to6662034908053899550_ereal ) ) ) ) ).

% Inf_top_conv(2)
thf(fact_310_Inf__top__conv_I2_J,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( top_to1496364449551166952nnreal
        = ( comple7330758040695736817nnreal @ A ) )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ A )
           => ( X2 = top_to1496364449551166952nnreal ) ) ) ) ).

% Inf_top_conv(2)
thf(fact_311_Inf__top__conv_I1_J,axiom,
    ! [A: set_set_nat] :
      ( ( ( comple7806235888213564991et_nat @ A )
        = top_top_set_nat )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = top_top_set_nat ) ) ) ) ).

% Inf_top_conv(1)
thf(fact_312_Inf__top__conv_I1_J,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( ( comple4418415374894819509_ereal @ A )
        = top_to5683747375963461374_ereal )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = top_to5683747375963461374_ereal ) ) ) ) ).

% Inf_top_conv(1)
thf(fact_313_Inf__top__conv_I1_J,axiom,
    ! [A: set_o] :
      ( ( ( complete_Inf_Inf_o @ A )
        = top_top_o )
      = ( ! [X2: $o] :
            ( ( member_o @ X2 @ A )
           => ( X2 = top_top_o ) ) ) ) ).

% Inf_top_conv(1)
thf(fact_314_Inf__top__conv_I1_J,axiom,
    ! [A: set_Extended_ereal] :
      ( ( ( comple3556804143462414037_ereal @ A )
        = top_to6662034908053899550_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( X2 = top_to6662034908053899550_ereal ) ) ) ) ).

% Inf_top_conv(1)
thf(fact_315_Inf__top__conv_I1_J,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( ( comple7330758040695736817nnreal @ A )
        = top_to1496364449551166952nnreal )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ A )
           => ( X2 = top_to1496364449551166952nnreal ) ) ) ) ).

% Inf_top_conv(1)
thf(fact_316_Collect__const,axiom,
    ! [P: $o] :
      ( ( P
       => ( ( collect_b
            @ ^ [S2: b] : P )
          = top_top_set_b ) )
      & ( ~ P
       => ( ( collect_b
            @ ^ [S2: b] : P )
          = bot_bot_set_b ) ) ) ).

% Collect_const
thf(fact_317_Collect__const,axiom,
    ! [P: $o] :
      ( ( P
       => ( ( collect_c
            @ ^ [S2: c] : P )
          = top_top_set_c ) )
      & ( ~ P
       => ( ( collect_c
            @ ^ [S2: c] : P )
          = bot_bot_set_c ) ) ) ).

% Collect_const
thf(fact_318_Collect__const,axiom,
    ! [P: $o] :
      ( ( P
       => ( ( collect_o
            @ ^ [S2: $o] : P )
          = top_top_set_o ) )
      & ( ~ P
       => ( ( collect_o
            @ ^ [S2: $o] : P )
          = bot_bot_set_o ) ) ) ).

% Collect_const
thf(fact_319_Collect__const,axiom,
    ! [P: $o] :
      ( ( P
       => ( ( collec6648975593938027277nnreal
            @ ^ [S2: extend8495563244428889912nnreal] : P )
          = top_to7994903218803871134nnreal ) )
      & ( ~ P
       => ( ( collec6648975593938027277nnreal
            @ ^ [S2: extend8495563244428889912nnreal] : P )
          = bot_bo4854962954004695426nnreal ) ) ) ).

% Collect_const
thf(fact_320_Collect__const,axiom,
    ! [P: $o] :
      ( ( P
       => ( ( collect_nat
            @ ^ [S2: nat] : P )
          = top_top_set_nat ) )
      & ( ~ P
       => ( ( collect_nat
            @ ^ [S2: nat] : P )
          = bot_bot_set_nat ) ) ) ).

% Collect_const
thf(fact_321_Collect__const,axiom,
    ! [P: $o] :
      ( ( P
       => ( ( collec5835592288176408249_ereal
            @ ^ [S2: extended_ereal] : P )
          = top_to5683747375963461374_ereal ) )
      & ( ~ P
       => ( ( collec5835592288176408249_ereal
            @ ^ [S2: extended_ereal] : P )
          = bot_bo8367695208629047834_ereal ) ) ) ).

% Collect_const
thf(fact_322_UN__I,axiom,
    ! [A2: $o,A: set_o,B: $o,B2: $o > set_o] :
      ( ( member_o @ A2 @ A )
     => ( ( member_o @ B @ ( B2 @ A2 ) )
       => ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_o_set_o @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_323_UN__I,axiom,
    ! [A2: $o,A: set_o,B: extended_ereal,B2: $o > set_Extended_ereal] :
      ( ( member_o @ A2 @ A )
     => ( ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) )
       => ( member2350847679896131959_ereal @ B @ ( comple4319282863272126363_ereal @ ( image_6375117163256653723_ereal @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_324_UN__I,axiom,
    ! [A2: $o,A: set_o,B: nat,B2: $o > set_nat] :
      ( ( member_o @ A2 @ A )
     => ( ( member_nat @ B @ ( B2 @ A2 ) )
       => ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_o_set_nat @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_325_UN__I,axiom,
    ! [A2: $o,A: set_o,B: extend8495563244428889912nnreal,B2: $o > set_Ex3793607809372303086nnreal] :
      ( ( member_o @ A2 @ A )
     => ( ( member7908768830364227535nnreal @ B @ ( B2 @ A2 ) )
       => ( member7908768830364227535nnreal @ B @ ( comple4226387801268262977nnreal @ ( image_1679811975146592321nnreal @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_326_UN__I,axiom,
    ! [A2: $o,A: set_o,B: c,B2: $o > set_c] :
      ( ( member_o @ A2 @ A )
     => ( ( member_c @ B @ ( B2 @ A2 ) )
       => ( member_c @ B @ ( comple2307003618534512845_set_c @ ( image_o_set_c @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_327_UN__I,axiom,
    ! [A2: $o,A: set_o,B: b,B2: $o > set_b] :
      ( ( member_o @ A2 @ A )
     => ( ( member_b @ B @ ( B2 @ A2 ) )
       => ( member_b @ B @ ( comple2307003614231284044_set_b @ ( image_o_set_b @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_328_UN__I,axiom,
    ! [A2: extended_ereal,A: set_Extended_ereal,B: $o,B2: extended_ereal > set_o] :
      ( ( member2350847679896131959_ereal @ A2 @ A )
     => ( ( member_o @ B @ ( B2 @ A2 ) )
       => ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_2973972673614065839_set_o @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_329_UN__I,axiom,
    ! [A2: extended_ereal,A: set_Extended_ereal,B: extended_ereal,B2: extended_ereal > set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ A2 @ A )
     => ( ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) )
       => ( member2350847679896131959_ereal @ B @ ( comple4319282863272126363_ereal @ ( image_5562094264469218789_ereal @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_330_UN__I,axiom,
    ! [A2: extended_ereal,A: set_Extended_ereal,B: nat,B2: extended_ereal > set_nat] :
      ( ( member2350847679896131959_ereal @ A2 @ A )
     => ( ( member_nat @ B @ ( B2 @ A2 ) )
       => ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_3090908713637162255et_nat @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_331_UN__I,axiom,
    ! [A2: extended_ereal,A: set_Extended_ereal,B: extend8495563244428889912nnreal,B2: extended_ereal > set_Ex3793607809372303086nnreal] :
      ( ( member2350847679896131959_ereal @ A2 @ A )
     => ( ( member7908768830364227535nnreal @ B @ ( B2 @ A2 ) )
       => ( member7908768830364227535nnreal @ B @ ( comple4226387801268262977nnreal @ ( image_6588766411312125047nnreal @ B2 @ A ) ) ) ) ) ).

% UN_I
thf(fact_332_Sup__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ top_top_set_set_nat )
    = top_top_set_nat ) ).

% Sup_UNIV
thf(fact_333_Sup__UNIV,axiom,
    ( ( comple4319282863272126363_ereal @ top_to4757929550322229470_ereal )
    = top_to5683747375963461374_ereal ) ).

% Sup_UNIV
thf(fact_334_Sup__UNIV,axiom,
    ( ( complete_Sup_Sup_o @ top_top_set_o )
    = top_top_o ) ).

% Sup_UNIV
thf(fact_335_Sup__UNIV,axiom,
    ( ( comple8415311339701865915_ereal @ top_to5683747375963461374_ereal )
    = top_to6662034908053899550_ereal ) ).

% Sup_UNIV
thf(fact_336_Sup__UNIV,axiom,
    ( ( comple6814414086264997003nnreal @ top_to7994903218803871134nnreal )
    = top_to1496364449551166952nnreal ) ).

% Sup_UNIV
thf(fact_337_Sup__empty,axiom,
    ( ( comple4319282863272126363_ereal @ bot_bo7400643019497942010_ereal )
    = bot_bo8367695208629047834_ereal ) ).

% Sup_empty
thf(fact_338_Sup__empty,axiom,
    ( ( comple4226387801268262977nnreal @ bot_bo2988155216863113784nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% Sup_empty
thf(fact_339_Sup__empty,axiom,
    ( ( comple7399068483239264473et_nat @ bot_bot_set_set_nat )
    = bot_bot_set_nat ) ).

% Sup_empty
thf(fact_340_Sup__empty,axiom,
    ( ( complete_Sup_Sup_o @ bot_bot_set_o )
    = bot_bot_o ) ).

% Sup_empty
thf(fact_341_Sup__empty,axiom,
    ( ( comple8415311339701865915_ereal @ bot_bo8367695208629047834_ereal )
    = bot_bo2710585358178759738_ereal ) ).

% Sup_empty
thf(fact_342_Sup__empty,axiom,
    ( ( comple6814414086264997003nnreal @ bot_bo4854962954004695426nnreal )
    = bot_bo841427958541957580nnreal ) ).

% Sup_empty
thf(fact_343_Inf__UNIV,axiom,
    ( ( comple4418415374894819509_ereal @ top_to4757929550322229470_ereal )
    = bot_bo8367695208629047834_ereal ) ).

% Inf_UNIV
thf(fact_344_Inf__UNIV,axiom,
    ( ( comple5724520875574609319nnreal @ top_to3356475028079756884nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% Inf_UNIV
thf(fact_345_Inf__UNIV,axiom,
    ( ( comple7806235888213564991et_nat @ top_top_set_set_nat )
    = bot_bot_set_nat ) ).

% Inf_UNIV
thf(fact_346_Inf__UNIV,axiom,
    ( ( complete_Inf_Inf_o @ top_top_set_o )
    = bot_bot_o ) ).

% Inf_UNIV
thf(fact_347_Inf__UNIV,axiom,
    ( ( comple3556804143462414037_ereal @ top_to5683747375963461374_ereal )
    = bot_bo2710585358178759738_ereal ) ).

% Inf_UNIV
thf(fact_348_Inf__UNIV,axiom,
    ( ( comple7330758040695736817nnreal @ top_to7994903218803871134nnreal )
    = bot_bo841427958541957580nnreal ) ).

% Inf_UNIV
thf(fact_349_Inf__empty,axiom,
    ( ( comple7806235888213564991et_nat @ bot_bot_set_set_nat )
    = top_top_set_nat ) ).

% Inf_empty
thf(fact_350_Inf__empty,axiom,
    ( ( comple4418415374894819509_ereal @ bot_bo7400643019497942010_ereal )
    = top_to5683747375963461374_ereal ) ).

% Inf_empty
thf(fact_351_Inf__empty,axiom,
    ( ( complete_Inf_Inf_o @ bot_bot_set_o )
    = top_top_o ) ).

% Inf_empty
thf(fact_352_Inf__empty,axiom,
    ( ( comple3556804143462414037_ereal @ bot_bo8367695208629047834_ereal )
    = top_to6662034908053899550_ereal ) ).

% Inf_empty
thf(fact_353_Inf__empty,axiom,
    ( ( comple7330758040695736817nnreal @ bot_bo4854962954004695426nnreal )
    = top_to1496364449551166952nnreal ) ).

% Inf_empty
thf(fact_354_SUP__bot__conv_I2_J,axiom,
    ! [B2: b > $o,A: set_b] :
      ( ( bot_bot_o
        = ( complete_Sup_Sup_o @ ( image_b_o @ B2 @ A ) ) )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bot_o ) ) ) ) ).

% SUP_bot_conv(2)
thf(fact_355_SUP__bot__conv_I2_J,axiom,
    ! [B2: nat > extended_ereal,A: set_nat] :
      ( ( bot_bo2710585358178759738_ereal
        = ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ B2 @ A ) ) )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% SUP_bot_conv(2)
thf(fact_356_SUP__bot__conv_I2_J,axiom,
    ! [B2: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( bot_bo2710585358178759738_ereal
        = ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ B2 @ A ) ) )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% SUP_bot_conv(2)
thf(fact_357_SUP__bot__conv_I2_J,axiom,
    ! [B2: b > extended_ereal,A: set_b] :
      ( ( bot_bo2710585358178759738_ereal
        = ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ B2 @ A ) ) )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% SUP_bot_conv(2)
thf(fact_358_SUP__bot__conv_I2_J,axiom,
    ! [B2: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( bot_bo841427958541957580nnreal
        = ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ B2 @ A ) ) )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo841427958541957580nnreal ) ) ) ) ).

% SUP_bot_conv(2)
thf(fact_359_SUP__bot__conv_I1_J,axiom,
    ! [B2: b > $o,A: set_b] :
      ( ( ( complete_Sup_Sup_o @ ( image_b_o @ B2 @ A ) )
        = bot_bot_o )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bot_o ) ) ) ) ).

% SUP_bot_conv(1)
thf(fact_360_SUP__bot__conv_I1_J,axiom,
    ! [B2: nat > extended_ereal,A: set_nat] :
      ( ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ B2 @ A ) )
        = bot_bo2710585358178759738_ereal )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% SUP_bot_conv(1)
thf(fact_361_SUP__bot__conv_I1_J,axiom,
    ! [B2: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ B2 @ A ) )
        = bot_bo2710585358178759738_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% SUP_bot_conv(1)
thf(fact_362_SUP__bot__conv_I1_J,axiom,
    ! [B2: b > extended_ereal,A: set_b] :
      ( ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ B2 @ A ) )
        = bot_bo2710585358178759738_ereal )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% SUP_bot_conv(1)
thf(fact_363_SUP__bot__conv_I1_J,axiom,
    ! [B2: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ B2 @ A ) )
        = bot_bo841427958541957580nnreal )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = bot_bo841427958541957580nnreal ) ) ) ) ).

% SUP_bot_conv(1)
thf(fact_364_SUP__bot,axiom,
    ! [A: set_b] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [X2: b] : bot_bot_o
          @ A ) )
      = bot_bot_o ) ).

% SUP_bot
thf(fact_365_SUP__bot,axiom,
    ! [A: set_nat] :
      ( ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [X2: nat] : bot_bo2710585358178759738_ereal
          @ A ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_bot
thf(fact_366_SUP__bot,axiom,
    ! [A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : bot_bo2710585358178759738_ereal
          @ A ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_bot
thf(fact_367_SUP__bot,axiom,
    ! [A: set_b] :
      ( ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [X2: b] : bot_bo2710585358178759738_ereal
          @ A ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_bot
thf(fact_368_SUP__bot,axiom,
    ! [A: set_nat] :
      ( ( comple6814414086264997003nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [X2: nat] : bot_bo841427958541957580nnreal
          @ A ) )
      = bot_bo841427958541957580nnreal ) ).

% SUP_bot
thf(fact_369_SUP__const,axiom,
    ! [A: set_b,F: $o] :
      ( ( A != bot_bot_set_b )
     => ( ( complete_Sup_Sup_o
          @ ( image_b_o
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_370_SUP__const,axiom,
    ! [A: set_Extended_ereal,F: $o] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( complete_Sup_Sup_o
          @ ( image_951975095941678543real_o
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_371_SUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: $o] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( complete_Sup_Sup_o
          @ ( image_3162942742313426073real_o
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_372_SUP__const,axiom,
    ! [A: set_nat,F: $o] :
      ( ( A != bot_bot_set_nat )
     => ( ( complete_Sup_Sup_o
          @ ( image_nat_o
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_373_SUP__const,axiom,
    ! [A: set_b,F: extended_ereal] :
      ( ( A != bot_bot_set_b )
     => ( ( comple8415311339701865915_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_374_SUP__const,axiom,
    ! [A: set_Extended_ereal,F: extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple8415311339701865915_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_375_SUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extended_ereal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple8415311339701865915_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_376_SUP__const,axiom,
    ! [A: set_nat,F: extended_ereal] :
      ( ( A != bot_bot_set_nat )
     => ( ( comple8415311339701865915_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_377_SUP__const,axiom,
    ! [A: set_Extended_ereal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple6814414086264997003nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_378_SUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple6814414086264997003nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% SUP_const
thf(fact_379_INT__constant,axiom,
    ! [A: set_Extended_ereal,C2: set_nat] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = top_top_set_nat ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INT_constant
thf(fact_380_INT__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: set_nat] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = top_top_set_nat ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INT_constant
thf(fact_381_INT__constant,axiom,
    ! [A: set_nat,C2: set_nat] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [Y2: nat] : C2
              @ A ) )
          = top_top_set_nat ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% INT_constant
thf(fact_382_INT__constant,axiom,
    ! [A: set_Extended_ereal,C2: set_Extended_ereal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INT_constant
thf(fact_383_INT__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: set_Extended_ereal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INT_constant
thf(fact_384_INT__constant,axiom,
    ! [A: set_nat,C2: set_Extended_ereal] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% INT_constant
thf(fact_385_INF__top__conv_I2_J,axiom,
    ! [B2: b > $o,A: set_b] :
      ( ( top_top_o
        = ( complete_Inf_Inf_o @ ( image_b_o @ B2 @ A ) ) )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_top_o ) ) ) ) ).

% INF_top_conv(2)
thf(fact_386_INF__top__conv_I2_J,axiom,
    ! [B2: nat > extended_ereal,A: set_nat] :
      ( ( top_to6662034908053899550_ereal
        = ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ B2 @ A ) ) )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to6662034908053899550_ereal ) ) ) ) ).

% INF_top_conv(2)
thf(fact_387_INF__top__conv_I2_J,axiom,
    ! [B2: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( top_to6662034908053899550_ereal
        = ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ B2 @ A ) ) )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to6662034908053899550_ereal ) ) ) ) ).

% INF_top_conv(2)
thf(fact_388_INF__top__conv_I2_J,axiom,
    ! [B2: b > extended_ereal,A: set_b] :
      ( ( top_to6662034908053899550_ereal
        = ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ B2 @ A ) ) )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to6662034908053899550_ereal ) ) ) ) ).

% INF_top_conv(2)
thf(fact_389_INF__top__conv_I2_J,axiom,
    ! [B2: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( top_to1496364449551166952nnreal
        = ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ B2 @ A ) ) )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to1496364449551166952nnreal ) ) ) ) ).

% INF_top_conv(2)
thf(fact_390_INF__top__conv_I1_J,axiom,
    ! [B2: b > $o,A: set_b] :
      ( ( ( complete_Inf_Inf_o @ ( image_b_o @ B2 @ A ) )
        = top_top_o )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_top_o ) ) ) ) ).

% INF_top_conv(1)
thf(fact_391_INF__top__conv_I1_J,axiom,
    ! [B2: nat > extended_ereal,A: set_nat] :
      ( ( ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ B2 @ A ) )
        = top_to6662034908053899550_ereal )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to6662034908053899550_ereal ) ) ) ) ).

% INF_top_conv(1)
thf(fact_392_INF__top__conv_I1_J,axiom,
    ! [B2: extended_ereal > extended_ereal,A: set_Extended_ereal] :
      ( ( ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ B2 @ A ) )
        = top_to6662034908053899550_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to6662034908053899550_ereal ) ) ) ) ).

% INF_top_conv(1)
thf(fact_393_INF__top__conv_I1_J,axiom,
    ! [B2: b > extended_ereal,A: set_b] :
      ( ( ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ B2 @ A ) )
        = top_to6662034908053899550_ereal )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to6662034908053899550_ereal ) ) ) ) ).

% INF_top_conv(1)
thf(fact_394_INF__top__conv_I1_J,axiom,
    ! [B2: nat > extend8495563244428889912nnreal,A: set_nat] :
      ( ( ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ B2 @ A ) )
        = top_to1496364449551166952nnreal )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ( ( B2 @ X2 )
              = top_to1496364449551166952nnreal ) ) ) ) ).

% INF_top_conv(1)
thf(fact_395_INF__top,axiom,
    ! [A: set_b] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [X2: b] : top_top_o
          @ A ) )
      = top_top_o ) ).

% INF_top
thf(fact_396_INF__top,axiom,
    ! [A: set_nat] :
      ( ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [X2: nat] : top_to6662034908053899550_ereal
          @ A ) )
      = top_to6662034908053899550_ereal ) ).

% INF_top
thf(fact_397_INF__top,axiom,
    ! [A: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : top_to6662034908053899550_ereal
          @ A ) )
      = top_to6662034908053899550_ereal ) ).

% INF_top
thf(fact_398_INF__top,axiom,
    ! [A: set_b] :
      ( ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [X2: b] : top_to6662034908053899550_ereal
          @ A ) )
      = top_to6662034908053899550_ereal ) ).

% INF_top
thf(fact_399_INF__top,axiom,
    ! [A: set_nat] :
      ( ( comple7330758040695736817nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [X2: nat] : top_to1496364449551166952nnreal
          @ A ) )
      = top_to1496364449551166952nnreal ) ).

% INF_top
thf(fact_400_INF__const,axiom,
    ! [A: set_b,F: $o] :
      ( ( A != bot_bot_set_b )
     => ( ( complete_Inf_Inf_o
          @ ( image_b_o
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_401_INF__const,axiom,
    ! [A: set_Extended_ereal,F: $o] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( complete_Inf_Inf_o
          @ ( image_951975095941678543real_o
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_402_INF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: $o] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( complete_Inf_Inf_o
          @ ( image_3162942742313426073real_o
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_403_INF__const,axiom,
    ! [A: set_nat,F: $o] :
      ( ( A != bot_bot_set_nat )
     => ( ( complete_Inf_Inf_o
          @ ( image_nat_o
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_404_INF__const,axiom,
    ! [A: set_b,F: extended_ereal] :
      ( ( A != bot_bot_set_b )
     => ( ( comple3556804143462414037_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_405_INF__const,axiom,
    ! [A: set_Extended_ereal,F: extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_406_INF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extended_ereal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_407_INF__const,axiom,
    ! [A: set_nat,F: extended_ereal] :
      ( ( A != bot_bot_set_nat )
     => ( ( comple3556804143462414037_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_408_INF__const,axiom,
    ! [A: set_Extended_ereal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_409_INF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% INF_const
thf(fact_410_UN__constant,axiom,
    ! [A: set_Extended_ereal,C2: set_Extended_ereal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple4319282863272126363_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = bot_bo8367695208629047834_ereal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple4319282863272126363_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_411_UN__constant,axiom,
    ! [A: set_Extended_ereal,C2: set_Ex3793607809372303086nnreal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple4226387801268262977nnreal
            @ ( image_6588766411312125047nnreal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = bot_bo4854962954004695426nnreal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple4226387801268262977nnreal
            @ ( image_6588766411312125047nnreal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_412_UN__constant,axiom,
    ! [A: set_Extended_ereal,C2: set_nat] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple7399068483239264473et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = bot_bot_set_nat ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple7399068483239264473et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_413_UN__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: set_Extended_ereal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple4319282863272126363_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = bot_bo8367695208629047834_ereal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple4319282863272126363_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_414_UN__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: set_Ex3793607809372303086nnreal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple4226387801268262977nnreal
            @ ( image_205196257943321645nnreal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = bot_bo4854962954004695426nnreal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple4226387801268262977nnreal
            @ ( image_205196257943321645nnreal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_415_UN__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: set_nat] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple7399068483239264473et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = bot_bot_set_nat ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple7399068483239264473et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_416_UN__constant,axiom,
    ! [A: set_nat,C2: set_Extended_ereal] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple4319282863272126363_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = bot_bo8367695208629047834_ereal ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple4319282863272126363_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_417_UN__constant,axiom,
    ! [A: set_nat,C2: set_Ex3793607809372303086nnreal] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple4226387801268262977nnreal
            @ ( image_3394822847079329989nnreal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = bot_bo4854962954004695426nnreal ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple4226387801268262977nnreal
            @ ( image_3394822847079329989nnreal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_418_UN__constant,axiom,
    ! [A: set_nat,C2: set_nat] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [Y2: nat] : C2
              @ A ) )
          = bot_bot_set_nat ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% UN_constant
thf(fact_419_INF__empty,axiom,
    ! [F: b > $o] :
      ( ( complete_Inf_Inf_o @ ( image_b_o @ F @ bot_bot_set_b ) )
      = top_top_o ) ).

% INF_empty
thf(fact_420_INF__empty,axiom,
    ! [F: extended_ereal > $o] :
      ( ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ F @ bot_bo8367695208629047834_ereal ) )
      = top_top_o ) ).

% INF_empty
thf(fact_421_INF__empty,axiom,
    ! [F: extend8495563244428889912nnreal > $o] :
      ( ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ F @ bot_bo4854962954004695426nnreal ) )
      = top_top_o ) ).

% INF_empty
thf(fact_422_INF__empty,axiom,
    ! [F: nat > $o] :
      ( ( complete_Inf_Inf_o @ ( image_nat_o @ F @ bot_bot_set_nat ) )
      = top_top_o ) ).

% INF_empty
thf(fact_423_INF__empty,axiom,
    ! [F: b > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ F @ bot_bot_set_b ) )
      = top_to6662034908053899550_ereal ) ).

% INF_empty
thf(fact_424_INF__empty,axiom,
    ! [F: extended_ereal > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ F @ bot_bo8367695208629047834_ereal ) )
      = top_to6662034908053899550_ereal ) ).

% INF_empty
thf(fact_425_INF__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ F @ bot_bo4854962954004695426nnreal ) )
      = top_to6662034908053899550_ereal ) ).

% INF_empty
thf(fact_426_INF__empty,axiom,
    ! [F: nat > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F @ bot_bot_set_nat ) )
      = top_to6662034908053899550_ereal ) ).

% INF_empty
thf(fact_427_INF__empty,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal @ ( image_8614087454967683265nnreal @ F @ bot_bo8367695208629047834_ereal ) )
      = top_to1496364449551166952nnreal ) ).

% INF_empty
thf(fact_428_INF__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal @ ( image_8394674774369097847nnreal @ F @ bot_bo4854962954004695426nnreal ) )
      = top_to1496364449551166952nnreal ) ).

% INF_empty
thf(fact_429_SUP__empty,axiom,
    ! [F: b > $o] :
      ( ( complete_Sup_Sup_o @ ( image_b_o @ F @ bot_bot_set_b ) )
      = bot_bot_o ) ).

% SUP_empty
thf(fact_430_SUP__empty,axiom,
    ! [F: extended_ereal > $o] :
      ( ( complete_Sup_Sup_o @ ( image_951975095941678543real_o @ F @ bot_bo8367695208629047834_ereal ) )
      = bot_bot_o ) ).

% SUP_empty
thf(fact_431_SUP__empty,axiom,
    ! [F: extend8495563244428889912nnreal > $o] :
      ( ( complete_Sup_Sup_o @ ( image_3162942742313426073real_o @ F @ bot_bo4854962954004695426nnreal ) )
      = bot_bot_o ) ).

% SUP_empty
thf(fact_432_SUP__empty,axiom,
    ! [F: nat > $o] :
      ( ( complete_Sup_Sup_o @ ( image_nat_o @ F @ bot_bot_set_nat ) )
      = bot_bot_o ) ).

% SUP_empty
thf(fact_433_SUP__empty,axiom,
    ! [F: b > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ bot_bot_set_b ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_empty
thf(fact_434_SUP__empty,axiom,
    ! [F: extended_ereal > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ bot_bo8367695208629047834_ereal ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_empty
thf(fact_435_SUP__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_6393943237584228047_ereal @ F @ bot_bo4854962954004695426nnreal ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_empty
thf(fact_436_SUP__empty,axiom,
    ! [F: nat > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ bot_bot_set_nat ) )
      = bot_bo2710585358178759738_ereal ) ).

% SUP_empty
thf(fact_437_SUP__empty,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( comple6814414086264997003nnreal @ ( image_8614087454967683265nnreal @ F @ bot_bo8367695208629047834_ereal ) )
      = bot_bo841427958541957580nnreal ) ).

% SUP_empty
thf(fact_438_SUP__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( comple6814414086264997003nnreal @ ( image_8394674774369097847nnreal @ F @ bot_bo4854962954004695426nnreal ) )
      = bot_bo841427958541957580nnreal ) ).

% SUP_empty
thf(fact_439_INF__constant,axiom,
    ! [C2: $o,A: set_b] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [Y2: b] : C2
          @ A ) )
      = ( ( ( A = bot_bot_set_b )
         => top_top_o )
        & ( ( A != bot_bot_set_b )
         => C2 ) ) ) ).

% INF_constant
thf(fact_440_INF__constant,axiom,
    ! [C2: $o,A: set_Extended_ereal] :
      ( ( complete_Inf_Inf_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] : C2
          @ A ) )
      = ( ( ( A = bot_bo8367695208629047834_ereal )
         => top_top_o )
        & ( ( A != bot_bo8367695208629047834_ereal )
         => C2 ) ) ) ).

% INF_constant
thf(fact_441_INF__constant,axiom,
    ! [C2: $o,A: set_Ex3793607809372303086nnreal] :
      ( ( complete_Inf_Inf_o
        @ ( image_3162942742313426073real_o
          @ ^ [Y2: extend8495563244428889912nnreal] : C2
          @ A ) )
      = ( ( ( A = bot_bo4854962954004695426nnreal )
         => top_top_o )
        & ( ( A != bot_bo4854962954004695426nnreal )
         => C2 ) ) ) ).

% INF_constant
thf(fact_442_INF__constant,axiom,
    ! [C2: $o,A: set_nat] :
      ( ( complete_Inf_Inf_o
        @ ( image_nat_o
          @ ^ [Y2: nat] : C2
          @ A ) )
      = ( ( ( A = bot_bot_set_nat )
         => top_top_o )
        & ( ( A != bot_bot_set_nat )
         => C2 ) ) ) ).

% INF_constant
thf(fact_443_INF__constant,axiom,
    ! [A: set_b,C2: extended_ereal] :
      ( ( ( A = bot_bot_set_b )
       => ( ( comple3556804143462414037_ereal
            @ ( image_5319725110001000852_ereal
              @ ^ [Y2: b] : C2
              @ A ) )
          = top_to6662034908053899550_ereal ) )
      & ( ( A != bot_bot_set_b )
       => ( ( comple3556804143462414037_ereal
            @ ( image_5319725110001000852_ereal
              @ ^ [Y2: b] : C2
              @ A ) )
          = C2 ) ) ) ).

% INF_constant
thf(fact_444_INF__constant,axiom,
    ! [A: set_Extended_ereal,C2: extended_ereal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple3556804143462414037_ereal
            @ ( image_6042159593519690757_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = top_to6662034908053899550_ereal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple3556804143462414037_ereal
            @ ( image_6042159593519690757_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INF_constant
thf(fact_445_INF__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extended_ereal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple3556804143462414037_ereal
            @ ( image_6393943237584228047_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = top_to6662034908053899550_ereal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple3556804143462414037_ereal
            @ ( image_6393943237584228047_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INF_constant
thf(fact_446_INF__constant,axiom,
    ! [A: set_nat,C2: extended_ereal] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple3556804143462414037_ereal
            @ ( image_4309273772856505399_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = top_to6662034908053899550_ereal ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple3556804143462414037_ereal
            @ ( image_4309273772856505399_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% INF_constant
thf(fact_447_INF__constant,axiom,
    ! [A: set_Extended_ereal,C2: extend8495563244428889912nnreal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple7330758040695736817nnreal
            @ ( image_8614087454967683265nnreal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = top_to1496364449551166952nnreal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple7330758040695736817nnreal
            @ ( image_8614087454967683265nnreal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INF_constant
thf(fact_448_INF__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple7330758040695736817nnreal
            @ ( image_8394674774369097847nnreal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = top_to1496364449551166952nnreal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple7330758040695736817nnreal
            @ ( image_8394674774369097847nnreal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% INF_constant
thf(fact_449_SUP__constant,axiom,
    ! [C2: $o,A: set_b] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [Y2: b] : C2
          @ A ) )
      = ( ( ( A = bot_bot_set_b )
         => bot_bot_o )
        & ( ( A != bot_bot_set_b )
         => C2 ) ) ) ).

% SUP_constant
thf(fact_450_SUP__constant,axiom,
    ! [C2: $o,A: set_Extended_ereal] :
      ( ( complete_Sup_Sup_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] : C2
          @ A ) )
      = ( ( ( A = bot_bo8367695208629047834_ereal )
         => bot_bot_o )
        & ( ( A != bot_bo8367695208629047834_ereal )
         => C2 ) ) ) ).

% SUP_constant
thf(fact_451_SUP__constant,axiom,
    ! [C2: $o,A: set_Ex3793607809372303086nnreal] :
      ( ( complete_Sup_Sup_o
        @ ( image_3162942742313426073real_o
          @ ^ [Y2: extend8495563244428889912nnreal] : C2
          @ A ) )
      = ( ( ( A = bot_bo4854962954004695426nnreal )
         => bot_bot_o )
        & ( ( A != bot_bo4854962954004695426nnreal )
         => C2 ) ) ) ).

% SUP_constant
thf(fact_452_SUP__constant,axiom,
    ! [C2: $o,A: set_nat] :
      ( ( complete_Sup_Sup_o
        @ ( image_nat_o
          @ ^ [Y2: nat] : C2
          @ A ) )
      = ( ( ( A = bot_bot_set_nat )
         => bot_bot_o )
        & ( ( A != bot_bot_set_nat )
         => C2 ) ) ) ).

% SUP_constant
thf(fact_453_SUP__constant,axiom,
    ! [A: set_b,C2: extended_ereal] :
      ( ( ( A = bot_bot_set_b )
       => ( ( comple8415311339701865915_ereal
            @ ( image_5319725110001000852_ereal
              @ ^ [Y2: b] : C2
              @ A ) )
          = bot_bo2710585358178759738_ereal ) )
      & ( ( A != bot_bot_set_b )
       => ( ( comple8415311339701865915_ereal
            @ ( image_5319725110001000852_ereal
              @ ^ [Y2: b] : C2
              @ A ) )
          = C2 ) ) ) ).

% SUP_constant
thf(fact_454_SUP__constant,axiom,
    ! [A: set_Extended_ereal,C2: extended_ereal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple8415311339701865915_ereal
            @ ( image_6042159593519690757_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = bot_bo2710585358178759738_ereal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple8415311339701865915_ereal
            @ ( image_6042159593519690757_ereal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% SUP_constant
thf(fact_455_SUP__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extended_ereal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple8415311339701865915_ereal
            @ ( image_6393943237584228047_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = bot_bo2710585358178759738_ereal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple8415311339701865915_ereal
            @ ( image_6393943237584228047_ereal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% SUP_constant
thf(fact_456_SUP__constant,axiom,
    ! [A: set_nat,C2: extended_ereal] :
      ( ( ( A = bot_bot_set_nat )
       => ( ( comple8415311339701865915_ereal
            @ ( image_4309273772856505399_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = bot_bo2710585358178759738_ereal ) )
      & ( ( A != bot_bot_set_nat )
       => ( ( comple8415311339701865915_ereal
            @ ( image_4309273772856505399_ereal
              @ ^ [Y2: nat] : C2
              @ A ) )
          = C2 ) ) ) ).

% SUP_constant
thf(fact_457_SUP__constant,axiom,
    ! [A: set_Extended_ereal,C2: extend8495563244428889912nnreal] :
      ( ( ( A = bot_bo8367695208629047834_ereal )
       => ( ( comple6814414086264997003nnreal
            @ ( image_8614087454967683265nnreal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = bot_bo841427958541957580nnreal ) )
      & ( ( A != bot_bo8367695208629047834_ereal )
       => ( ( comple6814414086264997003nnreal
            @ ( image_8614087454967683265nnreal
              @ ^ [Y2: extended_ereal] : C2
              @ A ) )
          = C2 ) ) ) ).

% SUP_constant
thf(fact_458_SUP__constant,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ( A = bot_bo4854962954004695426nnreal )
       => ( ( comple6814414086264997003nnreal
            @ ( image_8394674774369097847nnreal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = bot_bo841427958541957580nnreal ) )
      & ( ( A != bot_bo4854962954004695426nnreal )
       => ( ( comple6814414086264997003nnreal
            @ ( image_8394674774369097847nnreal
              @ ^ [Y2: extend8495563244428889912nnreal] : C2
              @ A ) )
          = C2 ) ) ) ).

% SUP_constant
thf(fact_459_emptyE,axiom,
    ! [A2: $o] :
      ~ ( member_o @ A2 @ bot_bot_set_o ) ).

% emptyE
thf(fact_460_emptyE,axiom,
    ! [A2: c] :
      ~ ( member_c @ A2 @ bot_bot_set_c ) ).

% emptyE
thf(fact_461_emptyE,axiom,
    ! [A2: b] :
      ~ ( member_b @ A2 @ bot_bot_set_b ) ).

% emptyE
thf(fact_462_emptyE,axiom,
    ! [A2: extended_ereal] :
      ~ ( member2350847679896131959_ereal @ A2 @ bot_bo8367695208629047834_ereal ) ).

% emptyE
thf(fact_463_emptyE,axiom,
    ! [A2: extend8495563244428889912nnreal] :
      ~ ( member7908768830364227535nnreal @ A2 @ bot_bo4854962954004695426nnreal ) ).

% emptyE
thf(fact_464_emptyE,axiom,
    ! [A2: nat] :
      ~ ( member_nat @ A2 @ bot_bot_set_nat ) ).

% emptyE
thf(fact_465_equals0D,axiom,
    ! [A: set_o,A2: $o] :
      ( ( A = bot_bot_set_o )
     => ~ ( member_o @ A2 @ A ) ) ).

% equals0D
thf(fact_466_equals0D,axiom,
    ! [A: set_c,A2: c] :
      ( ( A = bot_bot_set_c )
     => ~ ( member_c @ A2 @ A ) ) ).

% equals0D
thf(fact_467_equals0D,axiom,
    ! [A: set_b,A2: b] :
      ( ( A = bot_bot_set_b )
     => ~ ( member_b @ A2 @ A ) ) ).

% equals0D
thf(fact_468_equals0D,axiom,
    ! [A: set_Extended_ereal,A2: extended_ereal] :
      ( ( A = bot_bo8367695208629047834_ereal )
     => ~ ( member2350847679896131959_ereal @ A2 @ A ) ) ).

% equals0D
thf(fact_469_equals0D,axiom,
    ! [A: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( A = bot_bo4854962954004695426nnreal )
     => ~ ( member7908768830364227535nnreal @ A2 @ A ) ) ).

% equals0D
thf(fact_470_equals0D,axiom,
    ! [A: set_nat,A2: nat] :
      ( ( A = bot_bot_set_nat )
     => ~ ( member_nat @ A2 @ A ) ) ).

% equals0D
thf(fact_471_equals0I,axiom,
    ! [A: set_o] :
      ( ! [Y3: $o] :
          ~ ( member_o @ Y3 @ A )
     => ( A = bot_bot_set_o ) ) ).

% equals0I
thf(fact_472_equals0I,axiom,
    ! [A: set_c] :
      ( ! [Y3: c] :
          ~ ( member_c @ Y3 @ A )
     => ( A = bot_bot_set_c ) ) ).

% equals0I
thf(fact_473_equals0I,axiom,
    ! [A: set_b] :
      ( ! [Y3: b] :
          ~ ( member_b @ Y3 @ A )
     => ( A = bot_bot_set_b ) ) ).

% equals0I
thf(fact_474_equals0I,axiom,
    ! [A: set_Extended_ereal] :
      ( ! [Y3: extended_ereal] :
          ~ ( member2350847679896131959_ereal @ Y3 @ A )
     => ( A = bot_bo8367695208629047834_ereal ) ) ).

% equals0I
thf(fact_475_equals0I,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ! [Y3: extend8495563244428889912nnreal] :
          ~ ( member7908768830364227535nnreal @ Y3 @ A )
     => ( A = bot_bo4854962954004695426nnreal ) ) ).

% equals0I
thf(fact_476_equals0I,axiom,
    ! [A: set_nat] :
      ( ! [Y3: nat] :
          ~ ( member_nat @ Y3 @ A )
     => ( A = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_477_UNIV__eq__I,axiom,
    ! [A: set_o] :
      ( ! [X3: $o] : ( member_o @ X3 @ A )
     => ( top_top_set_o = A ) ) ).

% UNIV_eq_I
thf(fact_478_UNIV__eq__I,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ! [X3: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X3 @ A )
     => ( top_to7994903218803871134nnreal = A ) ) ).

% UNIV_eq_I
thf(fact_479_UNIV__eq__I,axiom,
    ! [A: set_c] :
      ( ! [X3: c] : ( member_c @ X3 @ A )
     => ( top_top_set_c = A ) ) ).

% UNIV_eq_I
thf(fact_480_UNIV__eq__I,axiom,
    ! [A: set_b] :
      ( ! [X3: b] : ( member_b @ X3 @ A )
     => ( top_top_set_b = A ) ) ).

% UNIV_eq_I
thf(fact_481_UNIV__eq__I,axiom,
    ! [A: set_nat] :
      ( ! [X3: nat] : ( member_nat @ X3 @ A )
     => ( top_top_set_nat = A ) ) ).

% UNIV_eq_I
thf(fact_482_UNIV__eq__I,axiom,
    ! [A: set_Extended_ereal] :
      ( ! [X3: extended_ereal] : ( member2350847679896131959_ereal @ X3 @ A )
     => ( top_to5683747375963461374_ereal = A ) ) ).

% UNIV_eq_I
thf(fact_483_ex__in__conv,axiom,
    ! [A: set_o] :
      ( ( ? [X2: $o] : ( member_o @ X2 @ A ) )
      = ( A != bot_bot_set_o ) ) ).

% ex_in_conv
thf(fact_484_ex__in__conv,axiom,
    ! [A: set_c] :
      ( ( ? [X2: c] : ( member_c @ X2 @ A ) )
      = ( A != bot_bot_set_c ) ) ).

% ex_in_conv
thf(fact_485_ex__in__conv,axiom,
    ! [A: set_b] :
      ( ( ? [X2: b] : ( member_b @ X2 @ A ) )
      = ( A != bot_bot_set_b ) ) ).

% ex_in_conv
thf(fact_486_ex__in__conv,axiom,
    ! [A: set_Extended_ereal] :
      ( ( ? [X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ A ) )
      = ( A != bot_bo8367695208629047834_ereal ) ) ).

% ex_in_conv
thf(fact_487_ex__in__conv,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( ? [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ A ) )
      = ( A != bot_bo4854962954004695426nnreal ) ) ).

% ex_in_conv
thf(fact_488_ex__in__conv,axiom,
    ! [A: set_nat] :
      ( ( ? [X2: nat] : ( member_nat @ X2 @ A ) )
      = ( A != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_489_UNIV__witness,axiom,
    ? [X3: $o] : ( member_o @ X3 @ top_top_set_o ) ).

% UNIV_witness
thf(fact_490_UNIV__witness,axiom,
    ? [X3: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X3 @ top_to7994903218803871134nnreal ) ).

% UNIV_witness
thf(fact_491_UNIV__witness,axiom,
    ? [X3: c] : ( member_c @ X3 @ top_top_set_c ) ).

% UNIV_witness
thf(fact_492_UNIV__witness,axiom,
    ? [X3: b] : ( member_b @ X3 @ top_top_set_b ) ).

% UNIV_witness
thf(fact_493_UNIV__witness,axiom,
    ? [X3: nat] : ( member_nat @ X3 @ top_top_set_nat ) ).

% UNIV_witness
thf(fact_494_UNIV__witness,axiom,
    ? [X3: extended_ereal] : ( member2350847679896131959_ereal @ X3 @ top_to5683747375963461374_ereal ) ).

% UNIV_witness
thf(fact_495_empty__not__UNIV,axiom,
    bot_bo4854962954004695426nnreal != top_to7994903218803871134nnreal ).

% empty_not_UNIV
thf(fact_496_empty__not__UNIV,axiom,
    bot_bot_set_nat != top_top_set_nat ).

% empty_not_UNIV
thf(fact_497_empty__not__UNIV,axiom,
    bot_bo8367695208629047834_ereal != top_to5683747375963461374_ereal ).

% empty_not_UNIV
thf(fact_498_UnionE,axiom,
    ! [A: $o,C: set_set_o] :
      ( ( member_o @ A @ ( comple90263536869209701_set_o @ C ) )
     => ~ ! [X6: set_o] :
            ( ( member_o @ A @ X6 )
           => ~ ( member_set_o @ X6 @ C ) ) ) ).

% UnionE
thf(fact_499_UnionE,axiom,
    ! [A: extended_ereal,C: set_se6634062954251873166_ereal] :
      ( ( member2350847679896131959_ereal @ A @ ( comple4319282863272126363_ereal @ C ) )
     => ~ ! [X6: set_Extended_ereal] :
            ( ( member2350847679896131959_ereal @ A @ X6 )
           => ~ ( member5519481007471526743_ereal @ X6 @ C ) ) ) ).

% UnionE
thf(fact_500_UnionE,axiom,
    ! [A: nat,C: set_set_nat] :
      ( ( member_nat @ A @ ( comple7399068483239264473et_nat @ C ) )
     => ~ ! [X6: set_nat] :
            ( ( member_nat @ A @ X6 )
           => ~ ( member_set_nat @ X6 @ C ) ) ) ).

% UnionE
thf(fact_501_UnionE,axiom,
    ! [A: extend8495563244428889912nnreal,C: set_se4580700918925141924nnreal] :
      ( ( member7908768830364227535nnreal @ A @ ( comple4226387801268262977nnreal @ C ) )
     => ~ ! [X6: set_Ex3793607809372303086nnreal] :
            ( ( member7908768830364227535nnreal @ A @ X6 )
           => ~ ( member603777416030116741nnreal @ X6 @ C ) ) ) ).

% UnionE
thf(fact_502_UnionE,axiom,
    ! [A: c,C: set_set_c] :
      ( ( member_c @ A @ ( comple2307003618534512845_set_c @ C ) )
     => ~ ! [X6: set_c] :
            ( ( member_c @ A @ X6 )
           => ~ ( member_set_c @ X6 @ C ) ) ) ).

% UnionE
thf(fact_503_UnionE,axiom,
    ! [A: b,C: set_set_b] :
      ( ( member_b @ A @ ( comple2307003614231284044_set_b @ C ) )
     => ~ ! [X6: set_b] :
            ( ( member_b @ A @ X6 )
           => ~ ( member_set_b @ X6 @ C ) ) ) ).

% UnionE
thf(fact_504_UN__empty,axiom,
    ! [B2: extended_ereal > set_Extended_ereal] :
      ( ( comple4319282863272126363_ereal @ ( image_5562094264469218789_ereal @ B2 @ bot_bo8367695208629047834_ereal ) )
      = bot_bo8367695208629047834_ereal ) ).

% UN_empty
thf(fact_505_UN__empty,axiom,
    ! [B2: extended_ereal > set_Ex3793607809372303086nnreal] :
      ( ( comple4226387801268262977nnreal @ ( image_6588766411312125047nnreal @ B2 @ bot_bo8367695208629047834_ereal ) )
      = bot_bo4854962954004695426nnreal ) ).

% UN_empty
thf(fact_506_UN__empty,axiom,
    ! [B2: extended_ereal > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_3090908713637162255et_nat @ B2 @ bot_bo8367695208629047834_ereal ) )
      = bot_bot_set_nat ) ).

% UN_empty
thf(fact_507_UN__empty,axiom,
    ! [B2: extend8495563244428889912nnreal > set_Extended_ereal] :
      ( ( comple4319282863272126363_ereal @ ( image_5929344197358196911_ereal @ B2 @ bot_bo4854962954004695426nnreal ) )
      = bot_bo8367695208629047834_ereal ) ).

% UN_empty
thf(fact_508_UN__empty,axiom,
    ! [B2: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal] :
      ( ( comple4226387801268262977nnreal @ ( image_205196257943321645nnreal @ B2 @ bot_bo4854962954004695426nnreal ) )
      = bot_bo4854962954004695426nnreal ) ).

% UN_empty
thf(fact_509_UN__empty,axiom,
    ! [B2: extend8495563244428889912nnreal > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_2869339492569777349et_nat @ B2 @ bot_bo4854962954004695426nnreal ) )
      = bot_bot_set_nat ) ).

% UN_empty
thf(fact_510_UN__empty,axiom,
    ! [B2: nat > set_Extended_ereal] :
      ( ( comple4319282863272126363_ereal @ ( image_305533323056406039_ereal @ B2 @ bot_bot_set_nat ) )
      = bot_bo8367695208629047834_ereal ) ).

% UN_empty
thf(fact_511_UN__empty,axiom,
    ! [B2: nat > set_Ex3793607809372303086nnreal] :
      ( ( comple4226387801268262977nnreal @ ( image_3394822847079329989nnreal @ B2 @ bot_bot_set_nat ) )
      = bot_bo4854962954004695426nnreal ) ).

% UN_empty
thf(fact_512_UN__empty,axiom,
    ! [B2: nat > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B2 @ bot_bot_set_nat ) )
      = bot_bot_set_nat ) ).

% UN_empty
thf(fact_513_INT__empty,axiom,
    ! [B2: extended_ereal > set_nat] :
      ( ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ B2 @ bot_bo8367695208629047834_ereal ) )
      = top_top_set_nat ) ).

% INT_empty
thf(fact_514_INT__empty,axiom,
    ! [B2: extend8495563244428889912nnreal > set_nat] :
      ( ( comple7806235888213564991et_nat @ ( image_2869339492569777349et_nat @ B2 @ bot_bo4854962954004695426nnreal ) )
      = top_top_set_nat ) ).

% INT_empty
thf(fact_515_INT__empty,axiom,
    ! [B2: nat > set_nat] :
      ( ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ B2 @ bot_bot_set_nat ) )
      = top_top_set_nat ) ).

% INT_empty
thf(fact_516_INT__empty,axiom,
    ! [B2: extended_ereal > set_Extended_ereal] :
      ( ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ B2 @ bot_bo8367695208629047834_ereal ) )
      = top_to5683747375963461374_ereal ) ).

% INT_empty
thf(fact_517_INT__empty,axiom,
    ! [B2: extend8495563244428889912nnreal > set_Extended_ereal] :
      ( ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ B2 @ bot_bo4854962954004695426nnreal ) )
      = top_to5683747375963461374_ereal ) ).

% INT_empty
thf(fact_518_INT__empty,axiom,
    ! [B2: nat > set_Extended_ereal] :
      ( ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ B2 @ bot_bot_set_nat ) )
      = top_to5683747375963461374_ereal ) ).

% INT_empty
thf(fact_519_Inter__UNIV,axiom,
    ( ( comple4418415374894819509_ereal @ top_to4757929550322229470_ereal )
    = bot_bo8367695208629047834_ereal ) ).

% Inter_UNIV
thf(fact_520_Inter__UNIV,axiom,
    ( ( comple5724520875574609319nnreal @ top_to3356475028079756884nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% Inter_UNIV
thf(fact_521_Inter__UNIV,axiom,
    ( ( comple7806235888213564991et_nat @ top_top_set_set_nat )
    = bot_bot_set_nat ) ).

% Inter_UNIV
thf(fact_522_Union__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ top_top_set_set_nat )
    = top_top_set_nat ) ).

% Union_UNIV
thf(fact_523_Union__UNIV,axiom,
    ( ( comple4319282863272126363_ereal @ top_to4757929550322229470_ereal )
    = top_to5683747375963461374_ereal ) ).

% Union_UNIV
thf(fact_524_Inter__empty,axiom,
    ( ( comple7806235888213564991et_nat @ bot_bot_set_set_nat )
    = top_top_set_nat ) ).

% Inter_empty
thf(fact_525_Inter__empty,axiom,
    ( ( comple4418415374894819509_ereal @ bot_bo7400643019497942010_ereal )
    = top_to5683747375963461374_ereal ) ).

% Inter_empty
thf(fact_526_Sup__set__def,axiom,
    ( comple2307003614231284044_set_b
    = ( ^ [A3: set_set_b] :
          ( collect_b
          @ ^ [X2: b] : ( complete_Sup_Sup_o @ ( image_set_b_o @ ( member_b @ X2 ) @ A3 ) ) ) ) ) ).

% Sup_set_def
thf(fact_527_Sup__set__def,axiom,
    ( comple2307003618534512845_set_c
    = ( ^ [A3: set_set_c] :
          ( collect_c
          @ ^ [X2: c] : ( complete_Sup_Sup_o @ ( image_set_c_o @ ( member_c @ X2 ) @ A3 ) ) ) ) ) ).

% Sup_set_def
thf(fact_528_Sup__set__def,axiom,
    ( comple4319282863272126363_ereal
    = ( ^ [A3: set_se6634062954251873166_ereal] :
          ( collec5835592288176408249_ereal
          @ ^ [X2: extended_ereal] : ( complete_Sup_Sup_o @ ( image_1946622920212178927real_o @ ( member2350847679896131959_ereal @ X2 ) @ A3 ) ) ) ) ) ).

% Sup_set_def
thf(fact_529_Sup__set__def,axiom,
    ( comple4226387801268262977nnreal
    = ( ^ [A3: set_se4580700918925141924nnreal] :
          ( collec6648975593938027277nnreal
          @ ^ [X2: extend8495563244428889912nnreal] : ( complete_Sup_Sup_o @ ( image_2954085599833420643real_o @ ( member7908768830364227535nnreal @ X2 ) @ A3 ) ) ) ) ) ).

% Sup_set_def
thf(fact_530_Sup__set__def,axiom,
    ( comple7399068483239264473et_nat
    = ( ^ [A3: set_set_nat] :
          ( collect_nat
          @ ^ [X2: nat] : ( complete_Sup_Sup_o @ ( image_set_nat_o @ ( member_nat @ X2 ) @ A3 ) ) ) ) ) ).

% Sup_set_def
thf(fact_531_Sup__set__def,axiom,
    ( comple90263536869209701_set_o
    = ( ^ [A3: set_set_o] :
          ( collect_o
          @ ^ [X2: $o] : ( complete_Sup_Sup_o @ ( image_set_o_o @ ( member_o @ X2 ) @ A3 ) ) ) ) ) ).

% Sup_set_def
thf(fact_532_Union__empty,axiom,
    ( ( comple4319282863272126363_ereal @ bot_bo7400643019497942010_ereal )
    = bot_bo8367695208629047834_ereal ) ).

% Union_empty
thf(fact_533_Union__empty,axiom,
    ( ( comple4226387801268262977nnreal @ bot_bo2988155216863113784nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% Union_empty
thf(fact_534_Union__empty,axiom,
    ( ( comple7399068483239264473et_nat @ bot_bot_set_set_nat )
    = bot_bot_set_nat ) ).

% Union_empty
thf(fact_535_Union__empty__conv,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( ( comple4319282863272126363_ereal @ A )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = bot_bo8367695208629047834_ereal ) ) ) ) ).

% Union_empty_conv
thf(fact_536_Union__empty__conv,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( ( comple4226387801268262977nnreal @ A )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ A )
           => ( X2 = bot_bo4854962954004695426nnreal ) ) ) ) ).

% Union_empty_conv
thf(fact_537_Union__empty__conv,axiom,
    ! [A: set_set_nat] :
      ( ( ( comple7399068483239264473et_nat @ A )
        = bot_bot_set_nat )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = bot_bot_set_nat ) ) ) ) ).

% Union_empty_conv
thf(fact_538_empty__Union__conv,axiom,
    ! [A: set_se6634062954251873166_ereal] :
      ( ( bot_bo8367695208629047834_ereal
        = ( comple4319282863272126363_ereal @ A ) )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ A )
           => ( X2 = bot_bo8367695208629047834_ereal ) ) ) ) ).

% empty_Union_conv
thf(fact_539_empty__Union__conv,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( bot_bo4854962954004695426nnreal
        = ( comple4226387801268262977nnreal @ A ) )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ A )
           => ( X2 = bot_bo4854962954004695426nnreal ) ) ) ) ).

% empty_Union_conv
thf(fact_540_empty__Union__conv,axiom,
    ! [A: set_set_nat] :
      ( ( bot_bot_set_nat
        = ( comple7399068483239264473et_nat @ A ) )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A )
           => ( X2 = bot_bot_set_nat ) ) ) ) ).

% empty_Union_conv
thf(fact_541_INF__eq__const,axiom,
    ! [I2: set_o,F: $o > $o,X: $o] :
      ( ( I2 != bot_bot_set_o )
     => ( ! [I3: $o] :
            ( ( member_o @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Inf_Inf_o @ ( image_o_o @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_542_INF__eq__const,axiom,
    ! [I2: set_c,F: c > $o,X: $o] :
      ( ( I2 != bot_bot_set_c )
     => ( ! [I3: c] :
            ( ( member_c @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Inf_Inf_o @ ( image_c_o @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_543_INF__eq__const,axiom,
    ! [I2: set_b,F: b > $o,X: $o] :
      ( ( I2 != bot_bot_set_b )
     => ( ! [I3: b] :
            ( ( member_b @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Inf_Inf_o @ ( image_b_o @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_544_INF__eq__const,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > $o,X: $o] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ! [I3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_545_INF__eq__const,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal > $o,X: $o] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ! [I3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_546_INF__eq__const,axiom,
    ! [I2: set_nat,F: nat > $o,X: $o] :
      ( ( I2 != bot_bot_set_nat )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Inf_Inf_o @ ( image_nat_o @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_547_INF__eq__const,axiom,
    ! [I2: set_o,F: $o > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_o )
     => ( ! [I3: $o] :
            ( ( member_o @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple3556804143462414037_ereal @ ( image_7729549296133164475_ereal @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_548_INF__eq__const,axiom,
    ! [I2: set_c,F: c > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_c )
     => ( ! [I3: c] :
            ( ( member_c @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple3556804143462414037_ereal @ ( image_2233968868011006291_ereal @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_549_INF__eq__const,axiom,
    ! [I2: set_b,F: b > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_b )
     => ( ! [I3: b] :
            ( ( member_b @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_550_INF__eq__const,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ! [I3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ F @ I2 ) )
          = X ) ) ) ).

% INF_eq_const
thf(fact_551_SUP__eq__const,axiom,
    ! [I2: set_o,F: $o > $o,X: $o] :
      ( ( I2 != bot_bot_set_o )
     => ( ! [I3: $o] :
            ( ( member_o @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Sup_Sup_o @ ( image_o_o @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_552_SUP__eq__const,axiom,
    ! [I2: set_c,F: c > $o,X: $o] :
      ( ( I2 != bot_bot_set_c )
     => ( ! [I3: c] :
            ( ( member_c @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Sup_Sup_o @ ( image_c_o @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_553_SUP__eq__const,axiom,
    ! [I2: set_b,F: b > $o,X: $o] :
      ( ( I2 != bot_bot_set_b )
     => ( ! [I3: b] :
            ( ( member_b @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Sup_Sup_o @ ( image_b_o @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_554_SUP__eq__const,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > $o,X: $o] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ! [I3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Sup_Sup_o @ ( image_951975095941678543real_o @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_555_SUP__eq__const,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal > $o,X: $o] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ! [I3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Sup_Sup_o @ ( image_3162942742313426073real_o @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_556_SUP__eq__const,axiom,
    ! [I2: set_nat,F: nat > $o,X: $o] :
      ( ( I2 != bot_bot_set_nat )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( complete_Sup_Sup_o @ ( image_nat_o @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_557_SUP__eq__const,axiom,
    ! [I2: set_o,F: $o > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_o )
     => ( ! [I3: $o] :
            ( ( member_o @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple8415311339701865915_ereal @ ( image_7729549296133164475_ereal @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_558_SUP__eq__const,axiom,
    ! [I2: set_c,F: c > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_c )
     => ( ! [I3: c] :
            ( ( member_c @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple8415311339701865915_ereal @ ( image_2233968868011006291_ereal @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_559_SUP__eq__const,axiom,
    ! [I2: set_b,F: b > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_b )
     => ( ! [I3: b] :
            ( ( member_b @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_560_SUP__eq__const,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ! [I3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ I3 @ I2 )
           => ( ( F @ I3 )
              = X ) )
       => ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ I2 ) )
          = X ) ) ) ).

% SUP_eq_const
thf(fact_561_INT__E,axiom,
    ! [B: $o,B2: $o > set_o,A: set_o,A2: $o] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_o_set_o @ B2 @ A ) ) )
     => ( ~ ( member_o @ B @ ( B2 @ A2 ) )
       => ~ ( member_o @ A2 @ A ) ) ) ).

% INT_E
thf(fact_562_INT__E,axiom,
    ! [B: $o,B2: extended_ereal > set_o,A: set_Extended_ereal,A2: extended_ereal] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_2973972673614065839_set_o @ B2 @ A ) ) )
     => ( ~ ( member_o @ B @ ( B2 @ A2 ) )
       => ~ ( member2350847679896131959_ereal @ A2 @ A ) ) ) ).

% INT_E
thf(fact_563_INT__E,axiom,
    ! [B: $o,B2: nat > set_o,A: set_nat,A2: nat] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_nat_set_o @ B2 @ A ) ) )
     => ( ~ ( member_o @ B @ ( B2 @ A2 ) )
       => ~ ( member_nat @ A2 @ A ) ) ) ).

% INT_E
thf(fact_564_INT__E,axiom,
    ! [B: $o,B2: extend8495563244428889912nnreal > set_o,A: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_4514577626304257913_set_o @ B2 @ A ) ) )
     => ( ~ ( member_o @ B @ ( B2 @ A2 ) )
       => ~ ( member7908768830364227535nnreal @ A2 @ A ) ) ) ).

% INT_E
thf(fact_565_INT__E,axiom,
    ! [B: $o,B2: c > set_o,A: set_c,A2: c] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_c_set_o @ B2 @ A ) ) )
     => ( ~ ( member_o @ B @ ( B2 @ A2 ) )
       => ~ ( member_c @ A2 @ A ) ) ) ).

% INT_E
thf(fact_566_INT__E,axiom,
    ! [B: $o,B2: b > set_o,A: set_b,A2: b] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_b_set_o @ B2 @ A ) ) )
     => ( ~ ( member_o @ B @ ( B2 @ A2 ) )
       => ~ ( member_b @ A2 @ A ) ) ) ).

% INT_E
thf(fact_567_INT__E,axiom,
    ! [B: extended_ereal,B2: $o > set_Extended_ereal,A: set_o,A2: $o] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_6375117163256653723_ereal @ B2 @ A ) ) )
     => ( ~ ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) )
       => ~ ( member_o @ A2 @ A ) ) ) ).

% INT_E
thf(fact_568_INT__E,axiom,
    ! [B: extended_ereal,B2: extended_ereal > set_Extended_ereal,A: set_Extended_ereal,A2: extended_ereal] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ B2 @ A ) ) )
     => ( ~ ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) )
       => ~ ( member2350847679896131959_ereal @ A2 @ A ) ) ) ).

% INT_E
thf(fact_569_INT__E,axiom,
    ! [B: extended_ereal,B2: nat > set_Extended_ereal,A: set_nat,A2: nat] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ B2 @ A ) ) )
     => ( ~ ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) )
       => ~ ( member_nat @ A2 @ A ) ) ) ).

% INT_E
thf(fact_570_INT__E,axiom,
    ! [B: extended_ereal,B2: extend8495563244428889912nnreal > set_Extended_ereal,A: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ B2 @ A ) ) )
     => ( ~ ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) )
       => ~ ( member7908768830364227535nnreal @ A2 @ A ) ) ) ).

% INT_E
thf(fact_571_INT__D,axiom,
    ! [B: $o,B2: $o > set_o,A: set_o,A2: $o] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_o_set_o @ B2 @ A ) ) )
     => ( ( member_o @ A2 @ A )
       => ( member_o @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_572_INT__D,axiom,
    ! [B: $o,B2: extended_ereal > set_o,A: set_Extended_ereal,A2: extended_ereal] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_2973972673614065839_set_o @ B2 @ A ) ) )
     => ( ( member2350847679896131959_ereal @ A2 @ A )
       => ( member_o @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_573_INT__D,axiom,
    ! [B: $o,B2: nat > set_o,A: set_nat,A2: nat] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_nat_set_o @ B2 @ A ) ) )
     => ( ( member_nat @ A2 @ A )
       => ( member_o @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_574_INT__D,axiom,
    ! [B: $o,B2: extend8495563244428889912nnreal > set_o,A: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_4514577626304257913_set_o @ B2 @ A ) ) )
     => ( ( member7908768830364227535nnreal @ A2 @ A )
       => ( member_o @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_575_INT__D,axiom,
    ! [B: $o,B2: c > set_o,A: set_c,A2: c] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_c_set_o @ B2 @ A ) ) )
     => ( ( member_c @ A2 @ A )
       => ( member_o @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_576_INT__D,axiom,
    ! [B: $o,B2: b > set_o,A: set_b,A2: b] :
      ( ( member_o @ B @ ( comple3063163877087187839_set_o @ ( image_b_set_o @ B2 @ A ) ) )
     => ( ( member_b @ A2 @ A )
       => ( member_o @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_577_INT__D,axiom,
    ! [B: extended_ereal,B2: $o > set_Extended_ereal,A: set_o,A2: $o] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_6375117163256653723_ereal @ B2 @ A ) ) )
     => ( ( member_o @ A2 @ A )
       => ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_578_INT__D,axiom,
    ! [B: extended_ereal,B2: extended_ereal > set_Extended_ereal,A: set_Extended_ereal,A2: extended_ereal] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ B2 @ A ) ) )
     => ( ( member2350847679896131959_ereal @ A2 @ A )
       => ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_579_INT__D,axiom,
    ! [B: extended_ereal,B2: nat > set_Extended_ereal,A: set_nat,A2: nat] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ B2 @ A ) ) )
     => ( ( member_nat @ A2 @ A )
       => ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_580_INT__D,axiom,
    ! [B: extended_ereal,B2: extend8495563244428889912nnreal > set_Extended_ereal,A: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ B2 @ A ) ) )
     => ( ( member7908768830364227535nnreal @ A2 @ A )
       => ( member2350847679896131959_ereal @ B @ ( B2 @ A2 ) ) ) ) ).

% INT_D
thf(fact_581_UN__E,axiom,
    ! [B: $o,B2: $o > set_o,A: set_o] :
      ( ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_o_set_o @ B2 @ A ) ) )
     => ~ ! [X3: $o] :
            ( ( member_o @ X3 @ A )
           => ~ ( member_o @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_582_UN__E,axiom,
    ! [B: $o,B2: extended_ereal > set_o,A: set_Extended_ereal] :
      ( ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_2973972673614065839_set_o @ B2 @ A ) ) )
     => ~ ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ A )
           => ~ ( member_o @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_583_UN__E,axiom,
    ! [B: $o,B2: nat > set_o,A: set_nat] :
      ( ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_nat_set_o @ B2 @ A ) ) )
     => ~ ! [X3: nat] :
            ( ( member_nat @ X3 @ A )
           => ~ ( member_o @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_584_UN__E,axiom,
    ! [B: $o,B2: extend8495563244428889912nnreal > set_o,A: set_Ex3793607809372303086nnreal] :
      ( ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_4514577626304257913_set_o @ B2 @ A ) ) )
     => ~ ! [X3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X3 @ A )
           => ~ ( member_o @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_585_UN__E,axiom,
    ! [B: $o,B2: c > set_o,A: set_c] :
      ( ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_c_set_o @ B2 @ A ) ) )
     => ~ ! [X3: c] :
            ( ( member_c @ X3 @ A )
           => ~ ( member_o @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_586_UN__E,axiom,
    ! [B: $o,B2: b > set_o,A: set_b] :
      ( ( member_o @ B @ ( comple90263536869209701_set_o @ ( image_b_set_o @ B2 @ A ) ) )
     => ~ ! [X3: b] :
            ( ( member_b @ X3 @ A )
           => ~ ( member_o @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_587_UN__E,axiom,
    ! [B: extended_ereal,B2: $o > set_Extended_ereal,A: set_o] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4319282863272126363_ereal @ ( image_6375117163256653723_ereal @ B2 @ A ) ) )
     => ~ ! [X3: $o] :
            ( ( member_o @ X3 @ A )
           => ~ ( member2350847679896131959_ereal @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_588_UN__E,axiom,
    ! [B: extended_ereal,B2: extended_ereal > set_Extended_ereal,A: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4319282863272126363_ereal @ ( image_5562094264469218789_ereal @ B2 @ A ) ) )
     => ~ ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ A )
           => ~ ( member2350847679896131959_ereal @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_589_UN__E,axiom,
    ! [B: extended_ereal,B2: nat > set_Extended_ereal,A: set_nat] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4319282863272126363_ereal @ ( image_305533323056406039_ereal @ B2 @ A ) ) )
     => ~ ! [X3: nat] :
            ( ( member_nat @ X3 @ A )
           => ~ ( member2350847679896131959_ereal @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_590_UN__E,axiom,
    ! [B: extended_ereal,B2: extend8495563244428889912nnreal > set_Extended_ereal,A: set_Ex3793607809372303086nnreal] :
      ( ( member2350847679896131959_ereal @ B @ ( comple4319282863272126363_ereal @ ( image_5929344197358196911_ereal @ B2 @ A ) ) )
     => ~ ! [X3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X3 @ A )
           => ~ ( member2350847679896131959_ereal @ B @ ( B2 @ X3 ) ) ) ) ).

% UN_E
thf(fact_591_UNIV__def,axiom,
    ( top_top_set_b
    = ( collect_b
      @ ^ [X2: b] : $true ) ) ).

% UNIV_def
thf(fact_592_UNIV__def,axiom,
    ( top_top_set_c
    = ( collect_c
      @ ^ [X2: c] : $true ) ) ).

% UNIV_def
thf(fact_593_UNIV__def,axiom,
    ( top_to7994903218803871134nnreal
    = ( collec6648975593938027277nnreal
      @ ^ [X2: extend8495563244428889912nnreal] : $true ) ) ).

% UNIV_def
thf(fact_594_UNIV__def,axiom,
    ( top_top_set_o
    = ( collect_o
      @ ^ [X2: $o] : $true ) ) ).

% UNIV_def
thf(fact_595_UNIV__def,axiom,
    ( top_top_set_nat
    = ( collect_nat
      @ ^ [X2: nat] : $true ) ) ).

% UNIV_def
thf(fact_596_UNIV__def,axiom,
    ( top_to5683747375963461374_ereal
    = ( collec5835592288176408249_ereal
      @ ^ [X2: extended_ereal] : $true ) ) ).

% UNIV_def
thf(fact_597_empty__def,axiom,
    ( bot_bot_set_b
    = ( collect_b
      @ ^ [X2: b] : $false ) ) ).

% empty_def
thf(fact_598_empty__def,axiom,
    ( bot_bot_set_c
    = ( collect_c
      @ ^ [X2: c] : $false ) ) ).

% empty_def
thf(fact_599_empty__def,axiom,
    ( bot_bot_set_o
    = ( collect_o
      @ ^ [X2: $o] : $false ) ) ).

% empty_def
thf(fact_600_empty__def,axiom,
    ( bot_bo8367695208629047834_ereal
    = ( collec5835592288176408249_ereal
      @ ^ [X2: extended_ereal] : $false ) ) ).

% empty_def
thf(fact_601_empty__def,axiom,
    ( bot_bo4854962954004695426nnreal
    = ( collec6648975593938027277nnreal
      @ ^ [X2: extend8495563244428889912nnreal] : $false ) ) ).

% empty_def
thf(fact_602_empty__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat
      @ ^ [X2: nat] : $false ) ) ).

% empty_def
thf(fact_603_SUP__UNION,axiom,
    ! [F: b > $o,G: b > set_b,A: set_b] :
      ( ( complete_Sup_Sup_o @ ( image_b_o @ F @ ( comple2307003614231284044_set_b @ ( image_b_set_b @ G @ A ) ) ) )
      = ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [Y2: b] : ( complete_Sup_Sup_o @ ( image_b_o @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_604_SUP__UNION,axiom,
    ! [F: nat > extended_ereal,G: nat > set_nat,A: set_nat] :
      ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [Y2: nat] : ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_605_SUP__UNION,axiom,
    ! [F: nat > extended_ereal,G: extended_ereal > set_nat,A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ ( comple7399068483239264473et_nat @ ( image_3090908713637162255et_nat @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [Y2: extended_ereal] : ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_606_SUP__UNION,axiom,
    ! [F: nat > extended_ereal,G: b > set_nat,A: set_b] :
      ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ ( comple7399068483239264473et_nat @ ( image_b_set_nat @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [Y2: b] : ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_607_SUP__UNION,axiom,
    ! [F: extended_ereal > extended_ereal,G: nat > set_Extended_ereal,A: set_nat] :
      ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ ( comple4319282863272126363_ereal @ ( image_305533323056406039_ereal @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [Y2: nat] : ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_608_SUP__UNION,axiom,
    ! [F: extended_ereal > extended_ereal,G: extended_ereal > set_Extended_ereal,A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ ( comple4319282863272126363_ereal @ ( image_5562094264469218789_ereal @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [Y2: extended_ereal] : ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_609_SUP__UNION,axiom,
    ! [F: extended_ereal > extended_ereal,G: b > set_Extended_ereal,A: set_b] :
      ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ ( comple4319282863272126363_ereal @ ( image_8773349707370420084_ereal @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [Y2: b] : ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_610_SUP__UNION,axiom,
    ! [F: b > extended_ereal,G: nat > set_b,A: set_nat] :
      ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ ( comple2307003614231284044_set_b @ ( image_nat_set_b @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [Y2: nat] : ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_611_SUP__UNION,axiom,
    ! [F: b > extended_ereal,G: extended_ereal > set_b,A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ ( comple2307003614231284044_set_b @ ( image_1981423240844246678_set_b @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [Y2: extended_ereal] : ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_612_SUP__UNION,axiom,
    ! [F: b > extended_ereal,G: b > set_b,A: set_b] :
      ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ ( comple2307003614231284044_set_b @ ( image_b_set_b @ G @ A ) ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [Y2: b] : ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ ( G @ Y2 ) ) )
          @ A ) ) ) ).

% SUP_UNION
thf(fact_613_Collect__ex__eq,axiom,
    ! [P: b > nat > $o] :
      ( ( collect_b
        @ ^ [X2: b] :
          ? [X7: nat] : ( P @ X2 @ X7 ) )
      = ( comple2307003614231284044_set_b
        @ ( image_nat_set_b
          @ ^ [Y2: nat] :
              ( collect_b
              @ ^ [X2: b] : ( P @ X2 @ Y2 ) )
          @ top_top_set_nat ) ) ) ).

% Collect_ex_eq
thf(fact_614_Collect__ex__eq,axiom,
    ! [P: c > nat > $o] :
      ( ( collect_c
        @ ^ [X2: c] :
          ? [X7: nat] : ( P @ X2 @ X7 ) )
      = ( comple2307003618534512845_set_c
        @ ( image_nat_set_c
          @ ^ [Y2: nat] :
              ( collect_c
              @ ^ [X2: c] : ( P @ X2 @ Y2 ) )
          @ top_top_set_nat ) ) ) ).

% Collect_ex_eq
thf(fact_615_Collect__ex__eq,axiom,
    ! [P: extended_ereal > nat > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
          ? [X7: nat] : ( P @ X2 @ X7 ) )
      = ( comple4319282863272126363_ereal
        @ ( image_305533323056406039_ereal
          @ ^ [Y2: nat] :
              ( collec5835592288176408249_ereal
              @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 ) )
          @ top_top_set_nat ) ) ) ).

% Collect_ex_eq
thf(fact_616_Collect__ex__eq,axiom,
    ! [P: extend8495563244428889912nnreal > nat > $o] :
      ( ( collec6648975593938027277nnreal
        @ ^ [X2: extend8495563244428889912nnreal] :
          ? [X7: nat] : ( P @ X2 @ X7 ) )
      = ( comple4226387801268262977nnreal
        @ ( image_3394822847079329989nnreal
          @ ^ [Y2: nat] :
              ( collec6648975593938027277nnreal
              @ ^ [X2: extend8495563244428889912nnreal] : ( P @ X2 @ Y2 ) )
          @ top_top_set_nat ) ) ) ).

% Collect_ex_eq
thf(fact_617_Collect__ex__eq,axiom,
    ! [P: nat > nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
          ? [X7: nat] : ( P @ X2 @ X7 ) )
      = ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [Y2: nat] :
              ( collect_nat
              @ ^ [X2: nat] : ( P @ X2 @ Y2 ) )
          @ top_top_set_nat ) ) ) ).

% Collect_ex_eq
thf(fact_618_Collect__ex__eq,axiom,
    ! [P: $o > nat > $o] :
      ( ( collect_o
        @ ^ [X2: $o] :
          ? [X7: nat] : ( P @ X2 @ X7 ) )
      = ( comple90263536869209701_set_o
        @ ( image_nat_set_o
          @ ^ [Y2: nat] :
              ( collect_o
              @ ^ [X2: $o] : ( P @ X2 @ Y2 ) )
          @ top_top_set_nat ) ) ) ).

% Collect_ex_eq
thf(fact_619_Collect__ex__eq,axiom,
    ! [P: b > extended_ereal > $o] :
      ( ( collect_b
        @ ^ [X2: b] :
          ? [X7: extended_ereal] : ( P @ X2 @ X7 ) )
      = ( comple2307003614231284044_set_b
        @ ( image_1981423240844246678_set_b
          @ ^ [Y2: extended_ereal] :
              ( collect_b
              @ ^ [X2: b] : ( P @ X2 @ Y2 ) )
          @ top_to5683747375963461374_ereal ) ) ) ).

% Collect_ex_eq
thf(fact_620_Collect__ex__eq,axiom,
    ! [P: c > extended_ereal > $o] :
      ( ( collect_c
        @ ^ [X2: c] :
          ? [X7: extended_ereal] : ( P @ X2 @ X7 ) )
      = ( comple2307003618534512845_set_c
        @ ( image_1981423245147475479_set_c
          @ ^ [Y2: extended_ereal] :
              ( collect_c
              @ ^ [X2: c] : ( P @ X2 @ Y2 ) )
          @ top_to5683747375963461374_ereal ) ) ) ).

% Collect_ex_eq
thf(fact_621_Collect__ex__eq,axiom,
    ! [P: extended_ereal > extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
          ? [X7: extended_ereal] : ( P @ X2 @ X7 ) )
      = ( comple4319282863272126363_ereal
        @ ( image_5562094264469218789_ereal
          @ ^ [Y2: extended_ereal] :
              ( collec5835592288176408249_ereal
              @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 ) )
          @ top_to5683747375963461374_ereal ) ) ) ).

% Collect_ex_eq
thf(fact_622_Collect__ex__eq,axiom,
    ! [P: extend8495563244428889912nnreal > extended_ereal > $o] :
      ( ( collec6648975593938027277nnreal
        @ ^ [X2: extend8495563244428889912nnreal] :
          ? [X7: extended_ereal] : ( P @ X2 @ X7 ) )
      = ( comple4226387801268262977nnreal
        @ ( image_6588766411312125047nnreal
          @ ^ [Y2: extended_ereal] :
              ( collec6648975593938027277nnreal
              @ ^ [X2: extend8495563244428889912nnreal] : ( P @ X2 @ Y2 ) )
          @ top_to5683747375963461374_ereal ) ) ) ).

% Collect_ex_eq
thf(fact_623_INF__cong,axiom,
    ! [A: set_o,B2: set_o,C: $o > $o,D: $o > $o] :
      ( ( A = B2 )
     => ( ! [X3: $o] :
            ( ( member_o @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Inf_Inf_o @ ( image_o_o @ C @ A ) )
          = ( complete_Inf_Inf_o @ ( image_o_o @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_624_INF__cong,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal,C: extended_ereal > $o,D: extended_ereal > $o] :
      ( ( A = B2 )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ C @ A ) )
          = ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_625_INF__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > $o,D: nat > $o] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Inf_Inf_o @ ( image_nat_o @ C @ A ) )
          = ( complete_Inf_Inf_o @ ( image_nat_o @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_626_INF__cong,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal,C: extend8495563244428889912nnreal > $o,D: extend8495563244428889912nnreal > $o] :
      ( ( A = B2 )
     => ( ! [X3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ C @ A ) )
          = ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_627_INF__cong,axiom,
    ! [A: set_c,B2: set_c,C: c > $o,D: c > $o] :
      ( ( A = B2 )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Inf_Inf_o @ ( image_c_o @ C @ A ) )
          = ( complete_Inf_Inf_o @ ( image_c_o @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_628_INF__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > $o,D: b > $o] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Inf_Inf_o @ ( image_b_o @ C @ A ) )
          = ( complete_Inf_Inf_o @ ( image_b_o @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_629_INF__cong,axiom,
    ! [A: set_o,B2: set_o,C: $o > extended_ereal,D: $o > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: $o] :
            ( ( member_o @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple3556804143462414037_ereal @ ( image_7729549296133164475_ereal @ C @ A ) )
          = ( comple3556804143462414037_ereal @ ( image_7729549296133164475_ereal @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_630_INF__cong,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal,C: extended_ereal > extended_ereal,D: extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ C @ A ) )
          = ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_631_INF__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > extended_ereal,D: nat > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ C @ A ) )
          = ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_632_INF__cong,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal,C: extend8495563244428889912nnreal > extended_ereal,D: extend8495563244428889912nnreal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ C @ A ) )
          = ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ D @ B2 ) ) ) ) ) ).

% INF_cong
thf(fact_633_SUP__cong,axiom,
    ! [A: set_o,B2: set_o,C: $o > $o,D: $o > $o] :
      ( ( A = B2 )
     => ( ! [X3: $o] :
            ( ( member_o @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_o_o @ C @ A ) )
          = ( complete_Sup_Sup_o @ ( image_o_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_634_SUP__cong,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal,C: extended_ereal > $o,D: extended_ereal > $o] :
      ( ( A = B2 )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_951975095941678543real_o @ C @ A ) )
          = ( complete_Sup_Sup_o @ ( image_951975095941678543real_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_635_SUP__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > $o,D: nat > $o] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_nat_o @ C @ A ) )
          = ( complete_Sup_Sup_o @ ( image_nat_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_636_SUP__cong,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal,C: extend8495563244428889912nnreal > $o,D: extend8495563244428889912nnreal > $o] :
      ( ( A = B2 )
     => ( ! [X3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_3162942742313426073real_o @ C @ A ) )
          = ( complete_Sup_Sup_o @ ( image_3162942742313426073real_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_637_SUP__cong,axiom,
    ! [A: set_c,B2: set_c,C: c > $o,D: c > $o] :
      ( ( A = B2 )
     => ( ! [X3: c] :
            ( ( member_c @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_c_o @ C @ A ) )
          = ( complete_Sup_Sup_o @ ( image_c_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_638_SUP__cong,axiom,
    ! [A: set_b,B2: set_b,C: b > $o,D: b > $o] :
      ( ( A = B2 )
     => ( ! [X3: b] :
            ( ( member_b @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( complete_Sup_Sup_o @ ( image_b_o @ C @ A ) )
          = ( complete_Sup_Sup_o @ ( image_b_o @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_639_SUP__cong,axiom,
    ! [A: set_o,B2: set_o,C: $o > extended_ereal,D: $o > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: $o] :
            ( ( member_o @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple8415311339701865915_ereal @ ( image_7729549296133164475_ereal @ C @ A ) )
          = ( comple8415311339701865915_ereal @ ( image_7729549296133164475_ereal @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_640_SUP__cong,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal,C: extended_ereal > extended_ereal,D: extended_ereal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ C @ A ) )
          = ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_641_SUP__cong,axiom,
    ! [A: set_nat,B2: set_nat,C: nat > extended_ereal,D: nat > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ C @ A ) )
          = ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_642_SUP__cong,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal,C: extend8495563244428889912nnreal > extended_ereal,D: extend8495563244428889912nnreal > extended_ereal] :
      ( ( A = B2 )
     => ( ! [X3: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X3 @ B2 )
           => ( ( C @ X3 )
              = ( D @ X3 ) ) )
       => ( ( comple8415311339701865915_ereal @ ( image_6393943237584228047_ereal @ C @ A ) )
          = ( comple8415311339701865915_ereal @ ( image_6393943237584228047_ereal @ D @ B2 ) ) ) ) ) ).

% SUP_cong
thf(fact_643_rangeI,axiom,
    ! [F: b > $o,X: b] : ( member_o @ ( F @ X ) @ ( image_b_o @ F @ top_top_set_b ) ) ).

% rangeI
thf(fact_644_rangeI,axiom,
    ! [F: b > extended_ereal,X: b] : ( member2350847679896131959_ereal @ ( F @ X ) @ ( image_5319725110001000852_ereal @ F @ top_top_set_b ) ) ).

% rangeI
thf(fact_645_rangeI,axiom,
    ! [F: c > c,X: c] : ( member_c @ ( F @ X ) @ ( image_c_c @ F @ top_top_set_c ) ) ).

% rangeI
thf(fact_646_rangeI,axiom,
    ! [F: b > c,X: b] : ( member_c @ ( F @ X ) @ ( image_b_c @ F @ top_top_set_b ) ) ).

% rangeI
thf(fact_647_rangeI,axiom,
    ! [F: c > b,X: c] : ( member_b @ ( F @ X ) @ ( image_c_b @ F @ top_top_set_c ) ) ).

% rangeI
thf(fact_648_rangeI,axiom,
    ! [F: b > b,X: b] : ( member_b @ ( F @ X ) @ ( image_b_b @ F @ top_top_set_b ) ) ).

% rangeI
thf(fact_649_rangeI,axiom,
    ! [F: nat > $o,X: nat] : ( member_o @ ( F @ X ) @ ( image_nat_o @ F @ top_top_set_nat ) ) ).

% rangeI
thf(fact_650_rangeI,axiom,
    ! [F: nat > extended_ereal,X: nat] : ( member2350847679896131959_ereal @ ( F @ X ) @ ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) ) ).

% rangeI
thf(fact_651_rangeI,axiom,
    ! [F: nat > nat,X: nat] : ( member_nat @ ( F @ X ) @ ( image_nat_nat @ F @ top_top_set_nat ) ) ).

% rangeI
thf(fact_652_rangeI,axiom,
    ! [F: nat > extend8495563244428889912nnreal,X: nat] : ( member7908768830364227535nnreal @ ( F @ X ) @ ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) ) ).

% rangeI
thf(fact_653_range__eqI,axiom,
    ! [B: $o,F: b > $o,X: b] :
      ( ( B
        = ( F @ X ) )
     => ( member_o @ B @ ( image_b_o @ F @ top_top_set_b ) ) ) ).

% range_eqI
thf(fact_654_range__eqI,axiom,
    ! [B: extended_ereal,F: b > extended_ereal,X: b] :
      ( ( B
        = ( F @ X ) )
     => ( member2350847679896131959_ereal @ B @ ( image_5319725110001000852_ereal @ F @ top_top_set_b ) ) ) ).

% range_eqI
thf(fact_655_range__eqI,axiom,
    ! [B: c,F: c > c,X: c] :
      ( ( B
        = ( F @ X ) )
     => ( member_c @ B @ ( image_c_c @ F @ top_top_set_c ) ) ) ).

% range_eqI
thf(fact_656_range__eqI,axiom,
    ! [B: c,F: b > c,X: b] :
      ( ( B
        = ( F @ X ) )
     => ( member_c @ B @ ( image_b_c @ F @ top_top_set_b ) ) ) ).

% range_eqI
thf(fact_657_range__eqI,axiom,
    ! [B: b,F: c > b,X: c] :
      ( ( B
        = ( F @ X ) )
     => ( member_b @ B @ ( image_c_b @ F @ top_top_set_c ) ) ) ).

% range_eqI
thf(fact_658_range__eqI,axiom,
    ! [B: b,F: b > b,X: b] :
      ( ( B
        = ( F @ X ) )
     => ( member_b @ B @ ( image_b_b @ F @ top_top_set_b ) ) ) ).

% range_eqI
thf(fact_659_range__eqI,axiom,
    ! [B: $o,F: nat > $o,X: nat] :
      ( ( B
        = ( F @ X ) )
     => ( member_o @ B @ ( image_nat_o @ F @ top_top_set_nat ) ) ) ).

% range_eqI
thf(fact_660_range__eqI,axiom,
    ! [B: extended_ereal,F: nat > extended_ereal,X: nat] :
      ( ( B
        = ( F @ X ) )
     => ( member2350847679896131959_ereal @ B @ ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) ) ) ).

% range_eqI
thf(fact_661_range__eqI,axiom,
    ! [B: nat,F: nat > nat,X: nat] :
      ( ( B
        = ( F @ X ) )
     => ( member_nat @ B @ ( image_nat_nat @ F @ top_top_set_nat ) ) ) ).

% range_eqI
thf(fact_662_range__eqI,axiom,
    ! [B: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal,X: nat] :
      ( ( B
        = ( F @ X ) )
     => ( member7908768830364227535nnreal @ B @ ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) ) ) ).

% range_eqI
thf(fact_663_INF__commute,axiom,
    ! [F: b > b > $o,B2: set_b,A: set_b] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [I: b] : ( complete_Inf_Inf_o @ ( image_b_o @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [J: b] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_664_INF__commute,axiom,
    ! [F: nat > nat > extended_ereal,B2: set_nat,A: set_nat] :
      ( ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [I: nat] : ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [J: nat] :
              ( comple3556804143462414037_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [I: nat] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_665_INF__commute,axiom,
    ! [F: nat > extended_ereal > extended_ereal,B2: set_Extended_ereal,A: set_nat] :
      ( ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [I: nat] : ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [J: extended_ereal] :
              ( comple3556804143462414037_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [I: nat] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_666_INF__commute,axiom,
    ! [F: nat > b > extended_ereal,B2: set_b,A: set_nat] :
      ( ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [I: nat] : ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [J: b] :
              ( comple3556804143462414037_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [I: nat] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_667_INF__commute,axiom,
    ! [F: extended_ereal > nat > extended_ereal,B2: set_nat,A: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [I: extended_ereal] : ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [J: nat] :
              ( comple3556804143462414037_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [I: extended_ereal] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_668_INF__commute,axiom,
    ! [F: extended_ereal > extended_ereal > extended_ereal,B2: set_Extended_ereal,A: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [I: extended_ereal] : ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [J: extended_ereal] :
              ( comple3556804143462414037_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [I: extended_ereal] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_669_INF__commute,axiom,
    ! [F: extended_ereal > b > extended_ereal,B2: set_b,A: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [I: extended_ereal] : ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [J: b] :
              ( comple3556804143462414037_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [I: extended_ereal] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_670_INF__commute,axiom,
    ! [F: b > nat > extended_ereal,B2: set_nat,A: set_b] :
      ( ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [I: b] : ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [J: nat] :
              ( comple3556804143462414037_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_671_INF__commute,axiom,
    ! [F: b > extended_ereal > extended_ereal,B2: set_Extended_ereal,A: set_b] :
      ( ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [I: b] : ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [J: extended_ereal] :
              ( comple3556804143462414037_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_672_INF__commute,axiom,
    ! [F: b > b > extended_ereal,B2: set_b,A: set_b] :
      ( ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [I: b] : ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [J: b] :
              ( comple3556804143462414037_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% INF_commute
thf(fact_673_SUP__commute,axiom,
    ! [F: b > b > $o,B2: set_b,A: set_b] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [I: b] : ( complete_Sup_Sup_o @ ( image_b_o @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [J: b] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_674_SUP__commute,axiom,
    ! [F: nat > nat > extended_ereal,B2: set_nat,A: set_nat] :
      ( ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [I: nat] : ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [J: nat] :
              ( comple8415311339701865915_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [I: nat] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_675_SUP__commute,axiom,
    ! [F: nat > extended_ereal > extended_ereal,B2: set_Extended_ereal,A: set_nat] :
      ( ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [I: nat] : ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [J: extended_ereal] :
              ( comple8415311339701865915_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [I: nat] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_676_SUP__commute,axiom,
    ! [F: nat > b > extended_ereal,B2: set_b,A: set_nat] :
      ( ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [I: nat] : ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [J: b] :
              ( comple8415311339701865915_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [I: nat] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_677_SUP__commute,axiom,
    ! [F: extended_ereal > nat > extended_ereal,B2: set_nat,A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [I: extended_ereal] : ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [J: nat] :
              ( comple8415311339701865915_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [I: extended_ereal] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_678_SUP__commute,axiom,
    ! [F: extended_ereal > extended_ereal > extended_ereal,B2: set_Extended_ereal,A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [I: extended_ereal] : ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [J: extended_ereal] :
              ( comple8415311339701865915_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [I: extended_ereal] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_679_SUP__commute,axiom,
    ! [F: extended_ereal > b > extended_ereal,B2: set_b,A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [I: extended_ereal] : ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [J: b] :
              ( comple8415311339701865915_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [I: extended_ereal] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_680_SUP__commute,axiom,
    ! [F: b > nat > extended_ereal,B2: set_nat,A: set_b] :
      ( ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [I: b] : ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [J: nat] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_681_SUP__commute,axiom,
    ! [F: b > extended_ereal > extended_ereal,B2: set_Extended_ereal,A: set_b] :
      ( ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [I: b] : ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [J: extended_ereal] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_682_SUP__commute,axiom,
    ! [F: b > b > extended_ereal,B2: set_b,A: set_b] :
      ( ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [I: b] : ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ ( F @ I ) @ B2 ) )
          @ A ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [J: b] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [I: b] : ( F @ I @ J )
                @ A ) )
          @ B2 ) ) ) ).

% SUP_commute
thf(fact_683_ccINF__empty,axiom,
    ! [F: b > $o] :
      ( ( complete_Inf_Inf_o @ ( image_b_o @ F @ bot_bot_set_b ) )
      = top_top_o ) ).

% ccINF_empty
thf(fact_684_ccINF__empty,axiom,
    ! [F: extended_ereal > $o] :
      ( ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ F @ bot_bo8367695208629047834_ereal ) )
      = top_top_o ) ).

% ccINF_empty
thf(fact_685_ccINF__empty,axiom,
    ! [F: extend8495563244428889912nnreal > $o] :
      ( ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ F @ bot_bo4854962954004695426nnreal ) )
      = top_top_o ) ).

% ccINF_empty
thf(fact_686_ccINF__empty,axiom,
    ! [F: nat > $o] :
      ( ( complete_Inf_Inf_o @ ( image_nat_o @ F @ bot_bot_set_nat ) )
      = top_top_o ) ).

% ccINF_empty
thf(fact_687_ccINF__empty,axiom,
    ! [F: b > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ F @ bot_bot_set_b ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_empty
thf(fact_688_ccINF__empty,axiom,
    ! [F: extended_ereal > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ F @ bot_bo8367695208629047834_ereal ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_empty
thf(fact_689_ccINF__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ F @ bot_bo4854962954004695426nnreal ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_empty
thf(fact_690_ccINF__empty,axiom,
    ! [F: nat > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F @ bot_bot_set_nat ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_empty
thf(fact_691_ccINF__empty,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal @ ( image_8614087454967683265nnreal @ F @ bot_bo8367695208629047834_ereal ) )
      = top_to1496364449551166952nnreal ) ).

% ccINF_empty
thf(fact_692_ccINF__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal @ ( image_8394674774369097847nnreal @ F @ bot_bo4854962954004695426nnreal ) )
      = top_to1496364449551166952nnreal ) ).

% ccINF_empty
thf(fact_693_ccSUP__empty,axiom,
    ! [F: b > $o] :
      ( ( complete_Sup_Sup_o @ ( image_b_o @ F @ bot_bot_set_b ) )
      = bot_bot_o ) ).

% ccSUP_empty
thf(fact_694_ccSUP__empty,axiom,
    ! [F: extended_ereal > $o] :
      ( ( complete_Sup_Sup_o @ ( image_951975095941678543real_o @ F @ bot_bo8367695208629047834_ereal ) )
      = bot_bot_o ) ).

% ccSUP_empty
thf(fact_695_ccSUP__empty,axiom,
    ! [F: extend8495563244428889912nnreal > $o] :
      ( ( complete_Sup_Sup_o @ ( image_3162942742313426073real_o @ F @ bot_bo4854962954004695426nnreal ) )
      = bot_bot_o ) ).

% ccSUP_empty
thf(fact_696_ccSUP__empty,axiom,
    ! [F: nat > $o] :
      ( ( complete_Sup_Sup_o @ ( image_nat_o @ F @ bot_bot_set_nat ) )
      = bot_bot_o ) ).

% ccSUP_empty
thf(fact_697_ccSUP__empty,axiom,
    ! [F: b > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ bot_bot_set_b ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_empty
thf(fact_698_ccSUP__empty,axiom,
    ! [F: extended_ereal > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ bot_bo8367695208629047834_ereal ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_empty
thf(fact_699_ccSUP__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_6393943237584228047_ereal @ F @ bot_bo4854962954004695426nnreal ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_empty
thf(fact_700_ccSUP__empty,axiom,
    ! [F: nat > extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ bot_bot_set_nat ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_empty
thf(fact_701_ccSUP__empty,axiom,
    ! [F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( comple6814414086264997003nnreal @ ( image_8614087454967683265nnreal @ F @ bot_bo8367695208629047834_ereal ) )
      = bot_bo841427958541957580nnreal ) ).

% ccSUP_empty
thf(fact_702_ccSUP__empty,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( comple6814414086264997003nnreal @ ( image_8394674774369097847nnreal @ F @ bot_bo4854962954004695426nnreal ) )
      = bot_bo841427958541957580nnreal ) ).

% ccSUP_empty
thf(fact_703_cINF__const,axiom,
    ! [A: set_b,C2: $o] :
      ( ( A != bot_bot_set_b )
     => ( ( complete_Inf_Inf_o
          @ ( image_b_o
            @ ^ [X2: b] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_704_cINF__const,axiom,
    ! [A: set_Extended_ereal,C2: $o] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( complete_Inf_Inf_o
          @ ( image_951975095941678543real_o
            @ ^ [X2: extended_ereal] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_705_cINF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: $o] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( complete_Inf_Inf_o
          @ ( image_3162942742313426073real_o
            @ ^ [X2: extend8495563244428889912nnreal] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_706_cINF__const,axiom,
    ! [A: set_nat,C2: $o] :
      ( ( A != bot_bot_set_nat )
     => ( ( complete_Inf_Inf_o
          @ ( image_nat_o
            @ ^ [X2: nat] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_707_cINF__const,axiom,
    ! [A: set_b,C2: extended_ereal] :
      ( ( A != bot_bot_set_b )
     => ( ( comple3556804143462414037_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [X2: b] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_708_cINF__const,axiom,
    ! [A: set_Extended_ereal,C2: extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [X2: extended_ereal] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_709_cINF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extended_ereal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [X2: extend8495563244428889912nnreal] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_710_cINF__const,axiom,
    ! [A: set_nat,C2: extended_ereal] :
      ( ( A != bot_bot_set_nat )
     => ( ( comple3556804143462414037_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [X2: nat] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_711_cINF__const,axiom,
    ! [A: set_Extended_ereal,C2: extend8495563244428889912nnreal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [X2: extended_ereal] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_712_cINF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extend8495563244428889912nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [X2: extend8495563244428889912nnreal] : C2
            @ A ) )
        = C2 ) ) ).

% cINF_const
thf(fact_713_ccINF__const,axiom,
    ! [A: set_b,F: $o] :
      ( ( A != bot_bot_set_b )
     => ( ( complete_Inf_Inf_o
          @ ( image_b_o
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_714_ccINF__const,axiom,
    ! [A: set_Extended_ereal,F: $o] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( complete_Inf_Inf_o
          @ ( image_951975095941678543real_o
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_715_ccINF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: $o] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( complete_Inf_Inf_o
          @ ( image_3162942742313426073real_o
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_716_ccINF__const,axiom,
    ! [A: set_nat,F: $o] :
      ( ( A != bot_bot_set_nat )
     => ( ( complete_Inf_Inf_o
          @ ( image_nat_o
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_717_ccINF__const,axiom,
    ! [A: set_b,F: extended_ereal] :
      ( ( A != bot_bot_set_b )
     => ( ( comple3556804143462414037_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_718_ccINF__const,axiom,
    ! [A: set_Extended_ereal,F: extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_719_ccINF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extended_ereal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_720_ccINF__const,axiom,
    ! [A: set_nat,F: extended_ereal] :
      ( ( A != bot_bot_set_nat )
     => ( ( comple3556804143462414037_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_721_ccINF__const,axiom,
    ! [A: set_Extended_ereal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_722_ccINF__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% ccINF_const
thf(fact_723_ccINF__top,axiom,
    ! [A: set_b] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [X2: b] : top_top_o
          @ A ) )
      = top_top_o ) ).

% ccINF_top
thf(fact_724_ccINF__top,axiom,
    ! [A: set_nat] :
      ( ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [X2: nat] : top_to6662034908053899550_ereal
          @ A ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_top
thf(fact_725_ccINF__top,axiom,
    ! [A: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : top_to6662034908053899550_ereal
          @ A ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_top
thf(fact_726_ccINF__top,axiom,
    ! [A: set_b] :
      ( ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [X2: b] : top_to6662034908053899550_ereal
          @ A ) )
      = top_to6662034908053899550_ereal ) ).

% ccINF_top
thf(fact_727_ccINF__top,axiom,
    ! [A: set_nat] :
      ( ( comple7330758040695736817nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [X2: nat] : top_to1496364449551166952nnreal
          @ A ) )
      = top_to1496364449551166952nnreal ) ).

% ccINF_top
thf(fact_728_ccSUP__const,axiom,
    ! [A: set_b,F: $o] :
      ( ( A != bot_bot_set_b )
     => ( ( complete_Sup_Sup_o
          @ ( image_b_o
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_729_ccSUP__const,axiom,
    ! [A: set_Extended_ereal,F: $o] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( complete_Sup_Sup_o
          @ ( image_951975095941678543real_o
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_730_ccSUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: $o] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( complete_Sup_Sup_o
          @ ( image_3162942742313426073real_o
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_731_ccSUP__const,axiom,
    ! [A: set_nat,F: $o] :
      ( ( A != bot_bot_set_nat )
     => ( ( complete_Sup_Sup_o
          @ ( image_nat_o
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_732_ccSUP__const,axiom,
    ! [A: set_b,F: extended_ereal] :
      ( ( A != bot_bot_set_b )
     => ( ( comple8415311339701865915_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [I: b] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_733_ccSUP__const,axiom,
    ! [A: set_Extended_ereal,F: extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple8415311339701865915_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_734_ccSUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extended_ereal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple8415311339701865915_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_735_ccSUP__const,axiom,
    ! [A: set_nat,F: extended_ereal] :
      ( ( A != bot_bot_set_nat )
     => ( ( comple8415311339701865915_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [I: nat] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_736_ccSUP__const,axiom,
    ! [A: set_Extended_ereal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple6814414086264997003nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [I: extended_ereal] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_737_ccSUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple6814414086264997003nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [I: extend8495563244428889912nnreal] : F
            @ A ) )
        = F ) ) ).

% ccSUP_const
thf(fact_738_cSUP__const,axiom,
    ! [A: set_b,C2: $o] :
      ( ( A != bot_bot_set_b )
     => ( ( complete_Sup_Sup_o
          @ ( image_b_o
            @ ^ [X2: b] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_739_cSUP__const,axiom,
    ! [A: set_Extended_ereal,C2: $o] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( complete_Sup_Sup_o
          @ ( image_951975095941678543real_o
            @ ^ [X2: extended_ereal] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_740_cSUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: $o] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( complete_Sup_Sup_o
          @ ( image_3162942742313426073real_o
            @ ^ [X2: extend8495563244428889912nnreal] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_741_cSUP__const,axiom,
    ! [A: set_nat,C2: $o] :
      ( ( A != bot_bot_set_nat )
     => ( ( complete_Sup_Sup_o
          @ ( image_nat_o
            @ ^ [X2: nat] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_742_cSUP__const,axiom,
    ! [A: set_b,C2: extended_ereal] :
      ( ( A != bot_bot_set_b )
     => ( ( comple8415311339701865915_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [X2: b] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_743_cSUP__const,axiom,
    ! [A: set_Extended_ereal,C2: extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple8415311339701865915_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [X2: extended_ereal] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_744_cSUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extended_ereal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple8415311339701865915_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [X2: extend8495563244428889912nnreal] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_745_cSUP__const,axiom,
    ! [A: set_nat,C2: extended_ereal] :
      ( ( A != bot_bot_set_nat )
     => ( ( comple8415311339701865915_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [X2: nat] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_746_cSUP__const,axiom,
    ! [A: set_Extended_ereal,C2: extend8495563244428889912nnreal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ( ( comple6814414086264997003nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [X2: extended_ereal] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_747_cSUP__const,axiom,
    ! [A: set_Ex3793607809372303086nnreal,C2: extend8495563244428889912nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ( ( comple6814414086264997003nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [X2: extend8495563244428889912nnreal] : C2
            @ A ) )
        = C2 ) ) ).

% cSUP_const
thf(fact_748_ccSUP__bot,axiom,
    ! [A: set_b] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [X2: b] : bot_bot_o
          @ A ) )
      = bot_bot_o ) ).

% ccSUP_bot
thf(fact_749_ccSUP__bot,axiom,
    ! [A: set_nat] :
      ( ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [X2: nat] : bot_bo2710585358178759738_ereal
          @ A ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_bot
thf(fact_750_ccSUP__bot,axiom,
    ! [A: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [X2: extended_ereal] : bot_bo2710585358178759738_ereal
          @ A ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_bot
thf(fact_751_ccSUP__bot,axiom,
    ! [A: set_b] :
      ( ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [X2: b] : bot_bo2710585358178759738_ereal
          @ A ) )
      = bot_bo2710585358178759738_ereal ) ).

% ccSUP_bot
thf(fact_752_ccSUP__bot,axiom,
    ! [A: set_nat] :
      ( ( comple6814414086264997003nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [X2: nat] : bot_bo841427958541957580nnreal
          @ A ) )
      = bot_bo841427958541957580nnreal ) ).

% ccSUP_bot
thf(fact_753_ccInf__empty,axiom,
    ( ( comple7806235888213564991et_nat @ bot_bot_set_set_nat )
    = top_top_set_nat ) ).

% ccInf_empty
thf(fact_754_ccInf__empty,axiom,
    ( ( comple4418415374894819509_ereal @ bot_bo7400643019497942010_ereal )
    = top_to5683747375963461374_ereal ) ).

% ccInf_empty
thf(fact_755_ccInf__empty,axiom,
    ( ( complete_Inf_Inf_o @ bot_bot_set_o )
    = top_top_o ) ).

% ccInf_empty
thf(fact_756_ccInf__empty,axiom,
    ( ( comple3556804143462414037_ereal @ bot_bo8367695208629047834_ereal )
    = top_to6662034908053899550_ereal ) ).

% ccInf_empty
thf(fact_757_ccInf__empty,axiom,
    ( ( comple7330758040695736817nnreal @ bot_bo4854962954004695426nnreal )
    = top_to1496364449551166952nnreal ) ).

% ccInf_empty
thf(fact_758_ccSup__empty,axiom,
    ( ( comple4319282863272126363_ereal @ bot_bo7400643019497942010_ereal )
    = bot_bo8367695208629047834_ereal ) ).

% ccSup_empty
thf(fact_759_ccSup__empty,axiom,
    ( ( comple4226387801268262977nnreal @ bot_bo2988155216863113784nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% ccSup_empty
thf(fact_760_ccSup__empty,axiom,
    ( ( comple7399068483239264473et_nat @ bot_bot_set_set_nat )
    = bot_bot_set_nat ) ).

% ccSup_empty
thf(fact_761_ccSup__empty,axiom,
    ( ( complete_Sup_Sup_o @ bot_bot_set_o )
    = bot_bot_o ) ).

% ccSup_empty
thf(fact_762_ccSup__empty,axiom,
    ( ( comple8415311339701865915_ereal @ bot_bo8367695208629047834_ereal )
    = bot_bo2710585358178759738_ereal ) ).

% ccSup_empty
thf(fact_763_ccSup__empty,axiom,
    ( ( comple6814414086264997003nnreal @ bot_bo4854962954004695426nnreal )
    = bot_bo841427958541957580nnreal ) ).

% ccSup_empty
thf(fact_764_INF__SUP,axiom,
    ! [P: b > b > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [Y2: b] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b ) )
      = ( complete_Sup_Sup_o
        @ ( image_b_b_o
          @ ^ [F2: b > b] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_b ) )
          @ top_top_set_b_b ) ) ) ).

% INF_SUP
thf(fact_765_INF__SUP,axiom,
    ! [P: b > nat > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_nat_o
          @ ^ [Y2: nat] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_nat ) )
      = ( complete_Sup_Sup_o
        @ ( image_nat_b_o
          @ ^ [F2: nat > b] :
              ( complete_Inf_Inf_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_nat ) )
          @ top_top_set_nat_b ) ) ) ).

% INF_SUP
thf(fact_766_INF__SUP,axiom,
    ! [P: b > extended_ereal > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_to5683747375963461374_ereal ) )
      = ( complete_Sup_Sup_o
        @ ( image_438845630295331515al_b_o
          @ ^ [F2: extended_ereal > b] :
              ( complete_Inf_Inf_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to5435482696333698940real_b ) ) ) ).

% INF_SUP
thf(fact_767_INF__SUP,axiom,
    ! [P: nat > b > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [Y2: b] :
              ( complete_Sup_Sup_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ X2 @ Y2 )
                @ top_top_set_nat ) )
          @ top_top_set_b ) )
      = ( complete_Sup_Sup_o
        @ ( image_b_nat_o
          @ ^ [F2: b > nat] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_b ) )
          @ top_top_set_b_nat ) ) ) ).

% INF_SUP
thf(fact_768_INF__SUP,axiom,
    ! [P: nat > nat > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_nat_o
          @ ^ [Y2: nat] :
              ( complete_Sup_Sup_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ X2 @ Y2 )
                @ top_top_set_nat ) )
          @ top_top_set_nat ) )
      = ( complete_Sup_Sup_o
        @ ( image_nat_nat_o
          @ ^ [F2: nat > nat] :
              ( complete_Inf_Inf_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_nat ) )
          @ top_top_set_nat_nat ) ) ) ).

% INF_SUP
thf(fact_769_INF__SUP,axiom,
    ! [P: nat > extended_ereal > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] :
              ( complete_Sup_Sup_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ X2 @ Y2 )
                @ top_top_set_nat ) )
          @ top_to5683747375963461374_ereal ) )
      = ( complete_Sup_Sup_o
        @ ( image_1537912518788876622_nat_o
          @ ^ [F2: extended_ereal > nat] :
              ( complete_Inf_Inf_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to2398772004365740095al_nat ) ) ) ).

% INF_SUP
thf(fact_770_INF__SUP,axiom,
    ! [P: extended_ereal > b > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [Y2: b] :
              ( complete_Sup_Sup_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_top_set_b ) )
      = ( complete_Sup_Sup_o
        @ ( image_8104747410577683677real_o
          @ ^ [F2: b > extended_ereal] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_b ) )
          @ top_to685074653192944346_ereal ) ) ) ).

% INF_SUP
thf(fact_771_INF__SUP,axiom,
    ! [P: extended_ereal > nat > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_nat_o
          @ ^ [Y2: nat] :
              ( complete_Sup_Sup_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_top_set_nat ) )
      = ( complete_Sup_Sup_o
        @ ( image_8272980733007922984real_o
          @ ^ [F2: nat > extended_ereal] :
              ( complete_Inf_Inf_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_nat ) )
          @ top_to1136031370110204389_ereal ) ) ) ).

% INF_SUP
thf(fact_772_INF__SUP,axiom,
    ! [P: extended_ereal > extended_ereal > $o] :
      ( ( complete_Inf_Inf_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] :
              ( complete_Sup_Sup_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to5683747375963461374_ereal ) )
      = ( complete_Sup_Sup_o
        @ ( image_341501477734635180real_o
          @ ^ [F2: extended_ereal > extended_ereal] :
              ( complete_Inf_Inf_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to908700840774984395_ereal ) ) ) ).

% INF_SUP
thf(fact_773_INF__SUP,axiom,
    ! [P: b > b > extended_ereal] :
      ( ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [Y2: b] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b ) )
      = ( comple8415311339701865915_ereal
        @ ( image_2440594391108767394_ereal
          @ ^ [F2: b > b] :
              ( comple3556804143462414037_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [X2: b] : ( P @ ( F2 @ X2 ) @ X2 )
                @ top_top_set_b ) )
          @ top_top_set_b_b ) ) ) ).

% INF_SUP
thf(fact_774_InterI,axiom,
    ! [C: set_set_o,A: $o] :
      ( ! [X6: set_o] :
          ( ( member_set_o @ X6 @ C )
         => ( member_o @ A @ X6 ) )
     => ( member_o @ A @ ( comple3063163877087187839_set_o @ C ) ) ) ).

% InterI
thf(fact_775_InterI,axiom,
    ! [C: set_se6634062954251873166_ereal,A: extended_ereal] :
      ( ! [X6: set_Extended_ereal] :
          ( ( member5519481007471526743_ereal @ X6 @ C )
         => ( member2350847679896131959_ereal @ A @ X6 ) )
     => ( member2350847679896131959_ereal @ A @ ( comple4418415374894819509_ereal @ C ) ) ) ).

% InterI
thf(fact_776_InterI,axiom,
    ! [C: set_set_nat,A: nat] :
      ( ! [X6: set_nat] :
          ( ( member_set_nat @ X6 @ C )
         => ( member_nat @ A @ X6 ) )
     => ( member_nat @ A @ ( comple7806235888213564991et_nat @ C ) ) ) ).

% InterI
thf(fact_777_InterI,axiom,
    ! [C: set_se4580700918925141924nnreal,A: extend8495563244428889912nnreal] :
      ( ! [X6: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ X6 @ C )
         => ( member7908768830364227535nnreal @ A @ X6 ) )
     => ( member7908768830364227535nnreal @ A @ ( comple5724520875574609319nnreal @ C ) ) ) ).

% InterI
thf(fact_778_InterI,axiom,
    ! [C: set_set_c,A: c] :
      ( ! [X6: set_c] :
          ( ( member_set_c @ X6 @ C )
         => ( member_c @ A @ X6 ) )
     => ( member_c @ A @ ( comple6135023387286571239_set_c @ C ) ) ) ).

% InterI
thf(fact_779_InterI,axiom,
    ! [C: set_set_b,A: b] :
      ( ! [X6: set_b] :
          ( ( member_set_b @ X6 @ C )
         => ( member_b @ A @ X6 ) )
     => ( member_b @ A @ ( comple6135023382983342438_set_b @ C ) ) ) ).

% InterI
thf(fact_780_Inter__iff,axiom,
    ! [A: $o,C: set_set_o] :
      ( ( member_o @ A @ ( comple3063163877087187839_set_o @ C ) )
      = ( ! [X2: set_o] :
            ( ( member_set_o @ X2 @ C )
           => ( member_o @ A @ X2 ) ) ) ) ).

% Inter_iff
thf(fact_781_Inter__iff,axiom,
    ! [A: extended_ereal,C: set_se6634062954251873166_ereal] :
      ( ( member2350847679896131959_ereal @ A @ ( comple4418415374894819509_ereal @ C ) )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ C )
           => ( member2350847679896131959_ereal @ A @ X2 ) ) ) ) ).

% Inter_iff
thf(fact_782_Inter__iff,axiom,
    ! [A: nat,C: set_set_nat] :
      ( ( member_nat @ A @ ( comple7806235888213564991et_nat @ C ) )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ C )
           => ( member_nat @ A @ X2 ) ) ) ) ).

% Inter_iff
thf(fact_783_Inter__iff,axiom,
    ! [A: extend8495563244428889912nnreal,C: set_se4580700918925141924nnreal] :
      ( ( member7908768830364227535nnreal @ A @ ( comple5724520875574609319nnreal @ C ) )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ C )
           => ( member7908768830364227535nnreal @ A @ X2 ) ) ) ) ).

% Inter_iff
thf(fact_784_Inter__iff,axiom,
    ! [A: c,C: set_set_c] :
      ( ( member_c @ A @ ( comple6135023387286571239_set_c @ C ) )
      = ( ! [X2: set_c] :
            ( ( member_set_c @ X2 @ C )
           => ( member_c @ A @ X2 ) ) ) ) ).

% Inter_iff
thf(fact_785_Inter__iff,axiom,
    ! [A: b,C: set_set_b] :
      ( ( member_b @ A @ ( comple6135023382983342438_set_b @ C ) )
      = ( ! [X2: set_b] :
            ( ( member_set_b @ X2 @ C )
           => ( member_b @ A @ X2 ) ) ) ) ).

% Inter_iff
thf(fact_786_InterD,axiom,
    ! [A: $o,C: set_set_o,X5: set_o] :
      ( ( member_o @ A @ ( comple3063163877087187839_set_o @ C ) )
     => ( ( member_set_o @ X5 @ C )
       => ( member_o @ A @ X5 ) ) ) ).

% InterD
thf(fact_787_InterD,axiom,
    ! [A: extended_ereal,C: set_se6634062954251873166_ereal,X5: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ A @ ( comple4418415374894819509_ereal @ C ) )
     => ( ( member5519481007471526743_ereal @ X5 @ C )
       => ( member2350847679896131959_ereal @ A @ X5 ) ) ) ).

% InterD
thf(fact_788_InterD,axiom,
    ! [A: nat,C: set_set_nat,X5: set_nat] :
      ( ( member_nat @ A @ ( comple7806235888213564991et_nat @ C ) )
     => ( ( member_set_nat @ X5 @ C )
       => ( member_nat @ A @ X5 ) ) ) ).

% InterD
thf(fact_789_InterD,axiom,
    ! [A: extend8495563244428889912nnreal,C: set_se4580700918925141924nnreal,X5: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ A @ ( comple5724520875574609319nnreal @ C ) )
     => ( ( member603777416030116741nnreal @ X5 @ C )
       => ( member7908768830364227535nnreal @ A @ X5 ) ) ) ).

% InterD
thf(fact_790_InterD,axiom,
    ! [A: c,C: set_set_c,X5: set_c] :
      ( ( member_c @ A @ ( comple6135023387286571239_set_c @ C ) )
     => ( ( member_set_c @ X5 @ C )
       => ( member_c @ A @ X5 ) ) ) ).

% InterD
thf(fact_791_InterD,axiom,
    ! [A: b,C: set_set_b,X5: set_b] :
      ( ( member_b @ A @ ( comple6135023382983342438_set_b @ C ) )
     => ( ( member_set_b @ X5 @ C )
       => ( member_b @ A @ X5 ) ) ) ).

% InterD
thf(fact_792_InterE,axiom,
    ! [A: $o,C: set_set_o,X5: set_o] :
      ( ( member_o @ A @ ( comple3063163877087187839_set_o @ C ) )
     => ( ( member_set_o @ X5 @ C )
       => ( member_o @ A @ X5 ) ) ) ).

% InterE
thf(fact_793_InterE,axiom,
    ! [A: extended_ereal,C: set_se6634062954251873166_ereal,X5: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ A @ ( comple4418415374894819509_ereal @ C ) )
     => ( ( member5519481007471526743_ereal @ X5 @ C )
       => ( member2350847679896131959_ereal @ A @ X5 ) ) ) ).

% InterE
thf(fact_794_InterE,axiom,
    ! [A: nat,C: set_set_nat,X5: set_nat] :
      ( ( member_nat @ A @ ( comple7806235888213564991et_nat @ C ) )
     => ( ( member_set_nat @ X5 @ C )
       => ( member_nat @ A @ X5 ) ) ) ).

% InterE
thf(fact_795_InterE,axiom,
    ! [A: extend8495563244428889912nnreal,C: set_se4580700918925141924nnreal,X5: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ A @ ( comple5724520875574609319nnreal @ C ) )
     => ( ( member603777416030116741nnreal @ X5 @ C )
       => ( member7908768830364227535nnreal @ A @ X5 ) ) ) ).

% InterE
thf(fact_796_InterE,axiom,
    ! [A: c,C: set_set_c,X5: set_c] :
      ( ( member_c @ A @ ( comple6135023387286571239_set_c @ C ) )
     => ( ( member_set_c @ X5 @ C )
       => ( member_c @ A @ X5 ) ) ) ).

% InterE
thf(fact_797_InterE,axiom,
    ! [A: b,C: set_set_b,X5: set_b] :
      ( ( member_b @ A @ ( comple6135023382983342438_set_b @ C ) )
     => ( ( member_set_b @ X5 @ C )
       => ( member_b @ A @ X5 ) ) ) ).

% InterE
thf(fact_798_Inf__set__def,axiom,
    ( comple6135023382983342438_set_b
    = ( ^ [A3: set_set_b] :
          ( collect_b
          @ ^ [X2: b] : ( complete_Inf_Inf_o @ ( image_set_b_o @ ( member_b @ X2 ) @ A3 ) ) ) ) ) ).

% Inf_set_def
thf(fact_799_Inf__set__def,axiom,
    ( comple6135023387286571239_set_c
    = ( ^ [A3: set_set_c] :
          ( collect_c
          @ ^ [X2: c] : ( complete_Inf_Inf_o @ ( image_set_c_o @ ( member_c @ X2 ) @ A3 ) ) ) ) ) ).

% Inf_set_def
thf(fact_800_Inf__set__def,axiom,
    ( comple4418415374894819509_ereal
    = ( ^ [A3: set_se6634062954251873166_ereal] :
          ( collec5835592288176408249_ereal
          @ ^ [X2: extended_ereal] : ( complete_Inf_Inf_o @ ( image_1946622920212178927real_o @ ( member2350847679896131959_ereal @ X2 ) @ A3 ) ) ) ) ) ).

% Inf_set_def
thf(fact_801_Inf__set__def,axiom,
    ( comple5724520875574609319nnreal
    = ( ^ [A3: set_se4580700918925141924nnreal] :
          ( collec6648975593938027277nnreal
          @ ^ [X2: extend8495563244428889912nnreal] : ( complete_Inf_Inf_o @ ( image_2954085599833420643real_o @ ( member7908768830364227535nnreal @ X2 ) @ A3 ) ) ) ) ) ).

% Inf_set_def
thf(fact_802_Inf__set__def,axiom,
    ( comple7806235888213564991et_nat
    = ( ^ [A3: set_set_nat] :
          ( collect_nat
          @ ^ [X2: nat] : ( complete_Inf_Inf_o @ ( image_set_nat_o @ ( member_nat @ X2 ) @ A3 ) ) ) ) ) ).

% Inf_set_def
thf(fact_803_Inf__set__def,axiom,
    ( comple3063163877087187839_set_o
    = ( ^ [A3: set_set_o] :
          ( collect_o
          @ ^ [X2: $o] : ( complete_Inf_Inf_o @ ( image_set_o_o @ ( member_o @ X2 ) @ A3 ) ) ) ) ) ).

% Inf_set_def
thf(fact_804_Sup__bool__def,axiom,
    ( complete_Sup_Sup_o
    = ( member_o @ $true ) ) ).

% Sup_bool_def
thf(fact_805_top__set__def,axiom,
    ( top_top_set_b
    = ( collect_b @ top_top_b_o ) ) ).

% top_set_def
thf(fact_806_top__set__def,axiom,
    ( top_top_set_c
    = ( collect_c @ top_top_c_o ) ) ).

% top_set_def
thf(fact_807_top__set__def,axiom,
    ( top_to7994903218803871134nnreal
    = ( collec6648975593938027277nnreal @ top_to5118619752887738471real_o ) ) ).

% top_set_def
thf(fact_808_top__set__def,axiom,
    ( top_top_set_o
    = ( collect_o @ top_top_o_o ) ) ).

% top_set_def
thf(fact_809_top__set__def,axiom,
    ( top_top_set_nat
    = ( collect_nat @ top_top_nat_o ) ) ).

% top_set_def
thf(fact_810_top__set__def,axiom,
    ( top_to5683747375963461374_ereal
    = ( collec5835592288176408249_ereal @ top_to6999531812125281119real_o ) ) ).

% top_set_def
thf(fact_811_bot__set__def,axiom,
    ( bot_bot_set_b
    = ( collect_b @ bot_bot_b_o ) ) ).

% bot_set_def
thf(fact_812_bot__set__def,axiom,
    ( bot_bot_set_c
    = ( collect_c @ bot_bot_c_o ) ) ).

% bot_set_def
thf(fact_813_bot__set__def,axiom,
    ( bot_bot_set_o
    = ( collect_o @ bot_bot_o_o ) ) ).

% bot_set_def
thf(fact_814_bot__set__def,axiom,
    ( bot_bo8367695208629047834_ereal
    = ( collec5835592288176408249_ereal @ bot_bo5519581617326455619real_o ) ) ).

% bot_set_def
thf(fact_815_bot__set__def,axiom,
    ( bot_bo4854962954004695426nnreal
    = ( collec6648975593938027277nnreal @ bot_bo412624608084785539real_o ) ) ).

% bot_set_def
thf(fact_816_bot__set__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat @ bot_bot_nat_o ) ) ).

% bot_set_def
thf(fact_817_wellorder__InfI,axiom,
    ! [K: nat,A: set_nat] :
      ( ( member_nat @ K @ A )
     => ( member_nat @ ( complete_Inf_Inf_nat @ A ) @ A ) ) ).

% wellorder_InfI
thf(fact_818_SUP__INF,axiom,
    ! [P: b > b > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [Y2: b] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b ) )
      = ( complete_Inf_Inf_o
        @ ( image_b_b_o
          @ ^ [X2: b > b] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [Y2: b] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b_b ) ) ) ).

% SUP_INF
thf(fact_819_SUP__INF,axiom,
    ! [P: b > nat > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_nat_o
          @ ^ [Y2: nat] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_nat ) )
      = ( complete_Inf_Inf_o
        @ ( image_nat_b_o
          @ ^ [X2: nat > b] :
              ( complete_Sup_Sup_o
              @ ( image_nat_o
                @ ^ [Y2: nat] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_nat ) )
          @ top_top_set_nat_b ) ) ) ).

% SUP_INF
thf(fact_820_SUP__INF,axiom,
    ! [P: b > extended_ereal > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] :
              ( complete_Inf_Inf_o
              @ ( image_b_o
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_to5683747375963461374_ereal ) )
      = ( complete_Inf_Inf_o
        @ ( image_438845630295331515al_b_o
          @ ^ [X2: extended_ereal > b] :
              ( complete_Sup_Sup_o
              @ ( image_951975095941678543real_o
                @ ^ [Y2: extended_ereal] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to5435482696333698940real_b ) ) ) ).

% SUP_INF
thf(fact_821_SUP__INF,axiom,
    ! [P: nat > b > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [Y2: b] :
              ( complete_Inf_Inf_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ X2 @ Y2 )
                @ top_top_set_nat ) )
          @ top_top_set_b ) )
      = ( complete_Inf_Inf_o
        @ ( image_b_nat_o
          @ ^ [X2: b > nat] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [Y2: b] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b_nat ) ) ) ).

% SUP_INF
thf(fact_822_SUP__INF,axiom,
    ! [P: nat > nat > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_nat_o
          @ ^ [Y2: nat] :
              ( complete_Inf_Inf_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ X2 @ Y2 )
                @ top_top_set_nat ) )
          @ top_top_set_nat ) )
      = ( complete_Inf_Inf_o
        @ ( image_nat_nat_o
          @ ^ [X2: nat > nat] :
              ( complete_Sup_Sup_o
              @ ( image_nat_o
                @ ^ [Y2: nat] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_nat ) )
          @ top_top_set_nat_nat ) ) ) ).

% SUP_INF
thf(fact_823_SUP__INF,axiom,
    ! [P: nat > extended_ereal > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] :
              ( complete_Inf_Inf_o
              @ ( image_nat_o
                @ ^ [X2: nat] : ( P @ X2 @ Y2 )
                @ top_top_set_nat ) )
          @ top_to5683747375963461374_ereal ) )
      = ( complete_Inf_Inf_o
        @ ( image_1537912518788876622_nat_o
          @ ^ [X2: extended_ereal > nat] :
              ( complete_Sup_Sup_o
              @ ( image_951975095941678543real_o
                @ ^ [Y2: extended_ereal] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to2398772004365740095al_nat ) ) ) ).

% SUP_INF
thf(fact_824_SUP__INF,axiom,
    ! [P: extended_ereal > b > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [Y2: b] :
              ( complete_Inf_Inf_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_top_set_b ) )
      = ( complete_Inf_Inf_o
        @ ( image_8104747410577683677real_o
          @ ^ [X2: b > extended_ereal] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [Y2: b] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_b ) )
          @ top_to685074653192944346_ereal ) ) ) ).

% SUP_INF
thf(fact_825_SUP__INF,axiom,
    ! [P: extended_ereal > nat > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_nat_o
          @ ^ [Y2: nat] :
              ( complete_Inf_Inf_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_top_set_nat ) )
      = ( complete_Inf_Inf_o
        @ ( image_8272980733007922984real_o
          @ ^ [X2: nat > extended_ereal] :
              ( complete_Sup_Sup_o
              @ ( image_nat_o
                @ ^ [Y2: nat] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_nat ) )
          @ top_to1136031370110204389_ereal ) ) ) ).

% SUP_INF
thf(fact_826_SUP__INF,axiom,
    ! [P: extended_ereal > extended_ereal > $o] :
      ( ( complete_Sup_Sup_o
        @ ( image_951975095941678543real_o
          @ ^ [Y2: extended_ereal] :
              ( complete_Inf_Inf_o
              @ ( image_951975095941678543real_o
                @ ^ [X2: extended_ereal] : ( P @ X2 @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to5683747375963461374_ereal ) )
      = ( complete_Inf_Inf_o
        @ ( image_341501477734635180real_o
          @ ^ [X2: extended_ereal > extended_ereal] :
              ( complete_Sup_Sup_o
              @ ( image_951975095941678543real_o
                @ ^ [Y2: extended_ereal] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_to5683747375963461374_ereal ) )
          @ top_to908700840774984395_ereal ) ) ) ).

% SUP_INF
thf(fact_827_SUP__INF,axiom,
    ! [P: b > b > extended_ereal] :
      ( ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [Y2: b] :
              ( comple3556804143462414037_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [X2: b] : ( P @ X2 @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b ) )
      = ( comple3556804143462414037_ereal
        @ ( image_2440594391108767394_ereal
          @ ^ [X2: b > b] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [Y2: b] : ( P @ ( X2 @ Y2 ) @ Y2 )
                @ top_top_set_b ) )
          @ top_top_set_b_b ) ) ) ).

% SUP_INF
thf(fact_828_iso__tuple__UNIV__I,axiom,
    ! [X: $o] : ( member_o @ X @ top_top_set_o ) ).

% iso_tuple_UNIV_I
thf(fact_829_iso__tuple__UNIV__I,axiom,
    ! [X: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X @ top_to7994903218803871134nnreal ) ).

% iso_tuple_UNIV_I
thf(fact_830_iso__tuple__UNIV__I,axiom,
    ! [X: c] : ( member_c @ X @ top_top_set_c ) ).

% iso_tuple_UNIV_I
thf(fact_831_iso__tuple__UNIV__I,axiom,
    ! [X: b] : ( member_b @ X @ top_top_set_b ) ).

% iso_tuple_UNIV_I
thf(fact_832_iso__tuple__UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% iso_tuple_UNIV_I
thf(fact_833_iso__tuple__UNIV__I,axiom,
    ! [X: extended_ereal] : ( member2350847679896131959_ereal @ X @ top_to5683747375963461374_ereal ) ).

% iso_tuple_UNIV_I
thf(fact_834_Inf__bool__def,axiom,
    ( complete_Inf_Inf_o
    = ( ^ [A3: set_o] :
          ~ ( member_o @ $false @ A3 ) ) ) ).

% Inf_bool_def
thf(fact_835_top__empty__eq,axiom,
    ( top_top_o_o
    = ( ^ [X2: $o] : ( member_o @ X2 @ top_top_set_o ) ) ) ).

% top_empty_eq
thf(fact_836_top__empty__eq,axiom,
    ( top_to5118619752887738471real_o
    = ( ^ [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ top_to7994903218803871134nnreal ) ) ) ).

% top_empty_eq
thf(fact_837_top__empty__eq,axiom,
    ( top_top_c_o
    = ( ^ [X2: c] : ( member_c @ X2 @ top_top_set_c ) ) ) ).

% top_empty_eq
thf(fact_838_top__empty__eq,axiom,
    ( top_top_b_o
    = ( ^ [X2: b] : ( member_b @ X2 @ top_top_set_b ) ) ) ).

% top_empty_eq
thf(fact_839_top__empty__eq,axiom,
    ( top_top_nat_o
    = ( ^ [X2: nat] : ( member_nat @ X2 @ top_top_set_nat ) ) ) ).

% top_empty_eq
thf(fact_840_top__empty__eq,axiom,
    ( top_to6999531812125281119real_o
    = ( ^ [X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ top_to5683747375963461374_ereal ) ) ) ).

% top_empty_eq
thf(fact_841_bot__empty__eq,axiom,
    ( bot_bot_o_o
    = ( ^ [X2: $o] : ( member_o @ X2 @ bot_bot_set_o ) ) ) ).

% bot_empty_eq
thf(fact_842_bot__empty__eq,axiom,
    ( bot_bot_c_o
    = ( ^ [X2: c] : ( member_c @ X2 @ bot_bot_set_c ) ) ) ).

% bot_empty_eq
thf(fact_843_bot__empty__eq,axiom,
    ( bot_bot_b_o
    = ( ^ [X2: b] : ( member_b @ X2 @ bot_bot_set_b ) ) ) ).

% bot_empty_eq
thf(fact_844_bot__empty__eq,axiom,
    ( bot_bo5519581617326455619real_o
    = ( ^ [X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ bot_bo8367695208629047834_ereal ) ) ) ).

% bot_empty_eq
thf(fact_845_bot__empty__eq,axiom,
    ( bot_bo412624608084785539real_o
    = ( ^ [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) ) ).

% bot_empty_eq
thf(fact_846_bot__empty__eq,axiom,
    ( bot_bot_nat_o
    = ( ^ [X2: nat] : ( member_nat @ X2 @ bot_bot_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_847_Sup__SUP__eq,axiom,
    ( complete_Sup_Sup_b_o
    = ( ^ [S3: set_b_o,X2: b] : ( member_b @ X2 @ ( comple2307003614231284044_set_b @ ( image_b_o_set_b @ collect_b @ S3 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_848_Sup__SUP__eq,axiom,
    ( complete_Sup_Sup_c_o
    = ( ^ [S3: set_c_o,X2: c] : ( member_c @ X2 @ ( comple2307003618534512845_set_c @ ( image_c_o_set_c @ collect_c @ S3 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_849_Sup__SUP__eq,axiom,
    ( comple8551942733113566466real_o
    = ( ^ [S3: set_Extended_ereal_o,X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ ( comple4319282863272126363_ereal @ ( image_169545030887771000_ereal @ collec5835592288176408249_ereal @ S3 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_850_Sup__SUP__eq,axiom,
    ( comple5476927491321936772real_o
    = ( ^ [S3: set_Ex70502500924464887real_o,X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ ( comple4226387801268262977nnreal @ ( image_7529257491699830976nnreal @ collec6648975593938027277nnreal @ S3 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_851_Sup__SUP__eq,axiom,
    ( comple8317665133742190828_nat_o
    = ( ^ [S3: set_nat_o,X2: nat] : ( member_nat @ X2 @ ( comple7399068483239264473et_nat @ ( image_nat_o_set_nat @ collect_nat @ S3 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_852_Sup__SUP__eq,axiom,
    ( complete_Sup_Sup_o_o
    = ( ^ [S3: set_o_o,X2: $o] : ( member_o @ X2 @ ( comple90263536869209701_set_o @ ( image_o_o_set_o @ collect_o @ S3 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_853_Inf__INT__eq,axiom,
    ( complete_Inf_Inf_b_o
    = ( ^ [S3: set_b_o,X2: b] : ( member_b @ X2 @ ( comple6135023382983342438_set_b @ ( image_b_o_set_b @ collect_b @ S3 ) ) ) ) ) ).

% Inf_INT_eq
thf(fact_854_Inf__INT__eq,axiom,
    ( complete_Inf_Inf_c_o
    = ( ^ [S3: set_c_o,X2: c] : ( member_c @ X2 @ ( comple6135023387286571239_set_c @ ( image_c_o_set_c @ collect_c @ S3 ) ) ) ) ) ).

% Inf_INT_eq
thf(fact_855_Inf__INT__eq,axiom,
    ( comple5376498136088350824real_o
    = ( ^ [S3: set_Extended_ereal_o,X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ ( comple4418415374894819509_ereal @ ( image_169545030887771000_ereal @ collec5835592288176408249_ereal @ S3 ) ) ) ) ) ).

% Inf_INT_eq
thf(fact_856_Inf__INT__eq,axiom,
    ( comple2110304272711893406real_o
    = ( ^ [S3: set_Ex70502500924464887real_o,X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ ( comple5724520875574609319nnreal @ ( image_7529257491699830976nnreal @ collec6648975593938027277nnreal @ S3 ) ) ) ) ) ).

% Inf_INT_eq
thf(fact_857_Inf__INT__eq,axiom,
    ( comple6214475593288795910_nat_o
    = ( ^ [S3: set_nat_o,X2: nat] : ( member_nat @ X2 @ ( comple7806235888213564991et_nat @ ( image_nat_o_set_nat @ collect_nat @ S3 ) ) ) ) ) ).

% Inf_INT_eq
thf(fact_858_Inf__INT__eq,axiom,
    ( complete_Inf_Inf_o_o
    = ( ^ [S3: set_o_o,X2: $o] : ( member_o @ X2 @ ( comple3063163877087187839_set_o @ ( image_o_o_set_o @ collect_o @ S3 ) ) ) ) ) ).

% Inf_INT_eq
thf(fact_859_SUP__Sup__eq,axiom,
    ! [S: set_set_o] :
      ( ( complete_Sup_Sup_o_o
        @ ( image_set_o_o_o
          @ ^ [I: set_o,X2: $o] : ( member_o @ X2 @ I )
          @ S ) )
      = ( ^ [X2: $o] : ( member_o @ X2 @ ( comple90263536869209701_set_o @ S ) ) ) ) ).

% SUP_Sup_eq
thf(fact_860_SUP__Sup__eq,axiom,
    ! [S: set_se6634062954251873166_ereal] :
      ( ( comple8551942733113566466real_o
        @ ( image_6529656333506721048real_o
          @ ^ [I: set_Extended_ereal,X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ I )
          @ S ) )
      = ( ^ [X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ ( comple4319282863272126363_ereal @ S ) ) ) ) ).

% SUP_Sup_eq
thf(fact_861_SUP__Sup__eq,axiom,
    ! [S: set_set_nat] :
      ( ( comple8317665133742190828_nat_o
        @ ( image_set_nat_nat_o
          @ ^ [I: set_nat,X2: nat] : ( member_nat @ X2 @ I )
          @ S ) )
      = ( ^ [X2: nat] : ( member_nat @ X2 @ ( comple7399068483239264473et_nat @ S ) ) ) ) ).

% SUP_Sup_eq
thf(fact_862_SUP__Sup__eq,axiom,
    ! [S: set_se4580700918925141924nnreal] :
      ( ( comple5476927491321936772real_o
        @ ( image_8646621328128423522real_o
          @ ^ [I: set_Ex3793607809372303086nnreal,X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ I )
          @ S ) )
      = ( ^ [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ ( comple4226387801268262977nnreal @ S ) ) ) ) ).

% SUP_Sup_eq
thf(fact_863_SUP__Sup__eq,axiom,
    ! [S: set_set_c] :
      ( ( complete_Sup_Sup_c_o
        @ ( image_set_c_c_o
          @ ^ [I: set_c,X2: c] : ( member_c @ X2 @ I )
          @ S ) )
      = ( ^ [X2: c] : ( member_c @ X2 @ ( comple2307003618534512845_set_c @ S ) ) ) ) ).

% SUP_Sup_eq
thf(fact_864_SUP__Sup__eq,axiom,
    ! [S: set_set_b] :
      ( ( complete_Sup_Sup_b_o
        @ ( image_set_b_b_o
          @ ^ [I: set_b,X2: b] : ( member_b @ X2 @ I )
          @ S ) )
      = ( ^ [X2: b] : ( member_b @ X2 @ ( comple2307003614231284044_set_b @ S ) ) ) ) ).

% SUP_Sup_eq
thf(fact_865_INF__Int__eq,axiom,
    ! [S: set_set_o] :
      ( ( complete_Inf_Inf_o_o
        @ ( image_set_o_o_o
          @ ^ [I: set_o,X2: $o] : ( member_o @ X2 @ I )
          @ S ) )
      = ( ^ [X2: $o] : ( member_o @ X2 @ ( comple3063163877087187839_set_o @ S ) ) ) ) ).

% INF_Int_eq
thf(fact_866_INF__Int__eq,axiom,
    ! [S: set_se6634062954251873166_ereal] :
      ( ( comple5376498136088350824real_o
        @ ( image_6529656333506721048real_o
          @ ^ [I: set_Extended_ereal,X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ I )
          @ S ) )
      = ( ^ [X2: extended_ereal] : ( member2350847679896131959_ereal @ X2 @ ( comple4418415374894819509_ereal @ S ) ) ) ) ).

% INF_Int_eq
thf(fact_867_INF__Int__eq,axiom,
    ! [S: set_set_nat] :
      ( ( comple6214475593288795910_nat_o
        @ ( image_set_nat_nat_o
          @ ^ [I: set_nat,X2: nat] : ( member_nat @ X2 @ I )
          @ S ) )
      = ( ^ [X2: nat] : ( member_nat @ X2 @ ( comple7806235888213564991et_nat @ S ) ) ) ) ).

% INF_Int_eq
thf(fact_868_INF__Int__eq,axiom,
    ! [S: set_se4580700918925141924nnreal] :
      ( ( comple2110304272711893406real_o
        @ ( image_8646621328128423522real_o
          @ ^ [I: set_Ex3793607809372303086nnreal,X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ I )
          @ S ) )
      = ( ^ [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ ( comple5724520875574609319nnreal @ S ) ) ) ) ).

% INF_Int_eq
thf(fact_869_INF__Int__eq,axiom,
    ! [S: set_set_c] :
      ( ( complete_Inf_Inf_c_o
        @ ( image_set_c_c_o
          @ ^ [I: set_c,X2: c] : ( member_c @ X2 @ I )
          @ S ) )
      = ( ^ [X2: c] : ( member_c @ X2 @ ( comple6135023387286571239_set_c @ S ) ) ) ) ).

% INF_Int_eq
thf(fact_870_INF__Int__eq,axiom,
    ! [S: set_set_b] :
      ( ( complete_Inf_Inf_b_o
        @ ( image_set_b_b_o
          @ ^ [I: set_b,X2: b] : ( member_b @ X2 @ I )
          @ S ) )
      = ( ^ [X2: b] : ( member_b @ X2 @ ( comple6135023382983342438_set_b @ S ) ) ) ) ).

% INF_Int_eq
thf(fact_871_Collect__empty__eq__bot,axiom,
    ! [P: b > $o] :
      ( ( ( collect_b @ P )
        = bot_bot_set_b )
      = ( P = bot_bot_b_o ) ) ).

% Collect_empty_eq_bot
thf(fact_872_Collect__empty__eq__bot,axiom,
    ! [P: c > $o] :
      ( ( ( collect_c @ P )
        = bot_bot_set_c )
      = ( P = bot_bot_c_o ) ) ).

% Collect_empty_eq_bot
thf(fact_873_Collect__empty__eq__bot,axiom,
    ! [P: $o > $o] :
      ( ( ( collect_o @ P )
        = bot_bot_set_o )
      = ( P = bot_bot_o_o ) ) ).

% Collect_empty_eq_bot
thf(fact_874_Collect__empty__eq__bot,axiom,
    ! [P: extended_ereal > $o] :
      ( ( ( collec5835592288176408249_ereal @ P )
        = bot_bo8367695208629047834_ereal )
      = ( P = bot_bo5519581617326455619real_o ) ) ).

% Collect_empty_eq_bot
thf(fact_875_Collect__empty__eq__bot,axiom,
    ! [P: extend8495563244428889912nnreal > $o] :
      ( ( ( collec6648975593938027277nnreal @ P )
        = bot_bo4854962954004695426nnreal )
      = ( P = bot_bo412624608084785539real_o ) ) ).

% Collect_empty_eq_bot
thf(fact_876_Collect__empty__eq__bot,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( P = bot_bot_nat_o ) ) ).

% Collect_empty_eq_bot
thf(fact_877_INT__simps_I4_J,axiom,
    ! [C: set_Extended_ereal,A: set_nat,B2: extended_ereal > set_nat] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( minus_minus_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( minus_minus_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( minus_minus_set_nat @ A @ ( comple7399068483239264473et_nat @ ( image_3090908713637162255et_nat @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(4)
thf(fact_878_INT__simps_I4_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_nat,B2: extend8495563244428889912nnreal > set_nat] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_minus_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_minus_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( minus_minus_set_nat @ A @ ( comple7399068483239264473et_nat @ ( image_2869339492569777349et_nat @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(4)
thf(fact_879_INT__simps_I4_J,axiom,
    ! [C: set_nat,A: set_nat,B2: nat > set_nat] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( minus_minus_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( minus_minus_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( minus_minus_set_nat @ A @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(4)
thf(fact_880_INT__simps_I4_J,axiom,
    ! [C: set_Extended_ereal,A: set_Extended_ereal,B2: extended_ereal > set_Extended_ereal] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( minus_1264018925008434325_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( minus_1264018925008434325_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( minus_1264018925008434325_ereal @ A @ ( comple4319282863272126363_ereal @ ( image_5562094264469218789_ereal @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(4)
thf(fact_881_INT__simps_I4_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_Extended_ereal,B2: extend8495563244428889912nnreal > set_Extended_ereal] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_1264018925008434325_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_1264018925008434325_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( minus_1264018925008434325_ereal @ A @ ( comple4319282863272126363_ereal @ ( image_5929344197358196911_ereal @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(4)
thf(fact_882_INT__simps_I4_J,axiom,
    ! [C: set_nat,A: set_Extended_ereal,B2: nat > set_Extended_ereal] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( minus_1264018925008434325_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( minus_1264018925008434325_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( minus_1264018925008434325_ereal @ A @ ( comple4319282863272126363_ereal @ ( image_305533323056406039_ereal @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(4)
thf(fact_883_surjD,axiom,
    ! [F: c > b,Y4: b] :
      ( ( ( image_c_b @ F @ top_top_set_c )
        = top_top_set_b )
     => ? [X3: c] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_884_surjD,axiom,
    ! [F: c > c,Y4: c] :
      ( ( ( image_c_c @ F @ top_top_set_c )
        = top_top_set_c )
     => ? [X3: c] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_885_surjD,axiom,
    ! [F: b > $o,Y4: $o] :
      ( ( ( image_b_o @ F @ top_top_set_b )
        = top_top_set_o )
     => ? [X3: b] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_886_surjD,axiom,
    ! [F: b > c,Y4: c] :
      ( ( ( image_b_c @ F @ top_top_set_b )
        = top_top_set_c )
     => ? [X3: b] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_887_surjD,axiom,
    ! [F: b > b,Y4: b] :
      ( ( ( image_b_b @ F @ top_top_set_b )
        = top_top_set_b )
     => ? [X3: b] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_888_surjD,axiom,
    ! [F: b > extended_ereal,Y4: extended_ereal] :
      ( ( ( image_5319725110001000852_ereal @ F @ top_top_set_b )
        = top_to5683747375963461374_ereal )
     => ? [X3: b] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_889_surjD,axiom,
    ! [F: nat > extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ( ( image_8459861568512453903nnreal @ F @ top_top_set_nat )
        = top_to7994903218803871134nnreal )
     => ? [X3: nat] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_890_surjD,axiom,
    ! [F: nat > nat,Y4: nat] :
      ( ( ( image_nat_nat @ F @ top_top_set_nat )
        = top_top_set_nat )
     => ? [X3: nat] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_891_surjD,axiom,
    ! [F: nat > extended_ereal,Y4: extended_ereal] :
      ( ( ( image_4309273772856505399_ereal @ F @ top_top_set_nat )
        = top_to5683747375963461374_ereal )
     => ? [X3: nat] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_892_surjD,axiom,
    ! [F: extended_ereal > nat,Y4: nat] :
      ( ( ( image_7659842161140344153al_nat @ F @ top_to5683747375963461374_ereal )
        = top_top_set_nat )
     => ? [X3: extended_ereal] :
          ( Y4
          = ( F @ X3 ) ) ) ).

% surjD
thf(fact_893_surjE,axiom,
    ! [F: c > b,Y4: b] :
      ( ( ( image_c_b @ F @ top_top_set_c )
        = top_top_set_b )
     => ~ ! [X3: c] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_894_surjE,axiom,
    ! [F: c > c,Y4: c] :
      ( ( ( image_c_c @ F @ top_top_set_c )
        = top_top_set_c )
     => ~ ! [X3: c] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_895_surjE,axiom,
    ! [F: b > $o,Y4: $o] :
      ( ( ( image_b_o @ F @ top_top_set_b )
        = top_top_set_o )
     => ~ ! [X3: b] :
            ( Y4
            = ( ~ ( F @ X3 ) ) ) ) ).

% surjE
thf(fact_896_surjE,axiom,
    ! [F: b > c,Y4: c] :
      ( ( ( image_b_c @ F @ top_top_set_b )
        = top_top_set_c )
     => ~ ! [X3: b] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_897_surjE,axiom,
    ! [F: b > b,Y4: b] :
      ( ( ( image_b_b @ F @ top_top_set_b )
        = top_top_set_b )
     => ~ ! [X3: b] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_898_surjE,axiom,
    ! [F: b > extended_ereal,Y4: extended_ereal] :
      ( ( ( image_5319725110001000852_ereal @ F @ top_top_set_b )
        = top_to5683747375963461374_ereal )
     => ~ ! [X3: b] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_899_surjE,axiom,
    ! [F: nat > extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ( ( image_8459861568512453903nnreal @ F @ top_top_set_nat )
        = top_to7994903218803871134nnreal )
     => ~ ! [X3: nat] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_900_surjE,axiom,
    ! [F: nat > nat,Y4: nat] :
      ( ( ( image_nat_nat @ F @ top_top_set_nat )
        = top_top_set_nat )
     => ~ ! [X3: nat] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_901_surjE,axiom,
    ! [F: nat > extended_ereal,Y4: extended_ereal] :
      ( ( ( image_4309273772856505399_ereal @ F @ top_top_set_nat )
        = top_to5683747375963461374_ereal )
     => ~ ! [X3: nat] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_902_surjE,axiom,
    ! [F: extended_ereal > nat,Y4: nat] :
      ( ( ( image_7659842161140344153al_nat @ F @ top_to5683747375963461374_ereal )
        = top_top_set_nat )
     => ~ ! [X3: extended_ereal] :
            ( Y4
           != ( F @ X3 ) ) ) ).

% surjE
thf(fact_903_surjI,axiom,
    ! [G: c > b,F: b > c] :
      ( ! [X3: b] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_c_b @ G @ top_top_set_c )
        = top_top_set_b ) ) ).

% surjI
thf(fact_904_surjI,axiom,
    ! [G: c > c,F: c > c] :
      ( ! [X3: c] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_c_c @ G @ top_top_set_c )
        = top_top_set_c ) ) ).

% surjI
thf(fact_905_surjI,axiom,
    ! [G: b > $o,F: $o > b] :
      ( ! [X3: $o] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_b_o @ G @ top_top_set_b )
        = top_top_set_o ) ) ).

% surjI
thf(fact_906_surjI,axiom,
    ! [G: b > c,F: c > b] :
      ( ! [X3: c] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_b_c @ G @ top_top_set_b )
        = top_top_set_c ) ) ).

% surjI
thf(fact_907_surjI,axiom,
    ! [G: b > b,F: b > b] :
      ( ! [X3: b] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_b_b @ G @ top_top_set_b )
        = top_top_set_b ) ) ).

% surjI
thf(fact_908_surjI,axiom,
    ! [G: b > extended_ereal,F: extended_ereal > b] :
      ( ! [X3: extended_ereal] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_5319725110001000852_ereal @ G @ top_top_set_b )
        = top_to5683747375963461374_ereal ) ) ).

% surjI
thf(fact_909_surjI,axiom,
    ! [G: nat > extend8495563244428889912nnreal,F: extend8495563244428889912nnreal > nat] :
      ( ! [X3: extend8495563244428889912nnreal] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_8459861568512453903nnreal @ G @ top_top_set_nat )
        = top_to7994903218803871134nnreal ) ) ).

% surjI
thf(fact_910_surjI,axiom,
    ! [G: nat > nat,F: nat > nat] :
      ( ! [X3: nat] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_nat_nat @ G @ top_top_set_nat )
        = top_top_set_nat ) ) ).

% surjI
thf(fact_911_surjI,axiom,
    ! [G: nat > extended_ereal,F: extended_ereal > nat] :
      ( ! [X3: extended_ereal] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_4309273772856505399_ereal @ G @ top_top_set_nat )
        = top_to5683747375963461374_ereal ) ) ).

% surjI
thf(fact_912_surjI,axiom,
    ! [G: extended_ereal > nat,F: nat > extended_ereal] :
      ( ! [X3: nat] :
          ( ( G @ ( F @ X3 ) )
          = X3 )
     => ( ( image_7659842161140344153al_nat @ G @ top_to5683747375963461374_ereal )
        = top_top_set_nat ) ) ).

% surjI
thf(fact_913_surj__def,axiom,
    ! [F: c > b] :
      ( ( ( image_c_b @ F @ top_top_set_c )
        = top_top_set_b )
      = ( ! [Y2: b] :
          ? [X2: c] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_914_surj__def,axiom,
    ! [F: c > c] :
      ( ( ( image_c_c @ F @ top_top_set_c )
        = top_top_set_c )
      = ( ! [Y2: c] :
          ? [X2: c] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_915_surj__def,axiom,
    ! [F: b > $o] :
      ( ( ( image_b_o @ F @ top_top_set_b )
        = top_top_set_o )
      = ( ! [Y2: $o] :
          ? [X2: b] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_916_surj__def,axiom,
    ! [F: b > c] :
      ( ( ( image_b_c @ F @ top_top_set_b )
        = top_top_set_c )
      = ( ! [Y2: c] :
          ? [X2: b] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_917_surj__def,axiom,
    ! [F: b > b] :
      ( ( ( image_b_b @ F @ top_top_set_b )
        = top_top_set_b )
      = ( ! [Y2: b] :
          ? [X2: b] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_918_surj__def,axiom,
    ! [F: b > extended_ereal] :
      ( ( ( image_5319725110001000852_ereal @ F @ top_top_set_b )
        = top_to5683747375963461374_ereal )
      = ( ! [Y2: extended_ereal] :
          ? [X2: b] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_919_surj__def,axiom,
    ! [F: nat > extend8495563244428889912nnreal] :
      ( ( ( image_8459861568512453903nnreal @ F @ top_top_set_nat )
        = top_to7994903218803871134nnreal )
      = ( ! [Y2: extend8495563244428889912nnreal] :
          ? [X2: nat] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_920_surj__def,axiom,
    ! [F: nat > nat] :
      ( ( ( image_nat_nat @ F @ top_top_set_nat )
        = top_top_set_nat )
      = ( ! [Y2: nat] :
          ? [X2: nat] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_921_surj__def,axiom,
    ! [F: nat > extended_ereal] :
      ( ( ( image_4309273772856505399_ereal @ F @ top_top_set_nat )
        = top_to5683747375963461374_ereal )
      = ( ! [Y2: extended_ereal] :
          ? [X2: nat] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_922_surj__def,axiom,
    ! [F: extended_ereal > nat] :
      ( ( ( image_7659842161140344153al_nat @ F @ top_to5683747375963461374_ereal )
        = top_top_set_nat )
      = ( ! [Y2: nat] :
          ? [X2: extended_ereal] :
            ( Y2
            = ( F @ X2 ) ) ) ) ).

% surj_def
thf(fact_923_INT__simps_I3_J,axiom,
    ! [C: set_Extended_ereal,A: extended_ereal > set_nat,B2: set_nat] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(3)
thf(fact_924_INT__simps_I3_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > set_nat,B2: set_nat] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_2869339492569777349et_nat @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(3)
thf(fact_925_INT__simps_I3_J,axiom,
    ! [C: set_nat,A: nat > set_nat,B2: set_nat] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(3)
thf(fact_926_INT__simps_I3_J,axiom,
    ! [C: set_Extended_ereal,A: extended_ereal > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(3)
thf(fact_927_INT__simps_I3_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(3)
thf(fact_928_INT__simps_I3_J,axiom,
    ! [C: set_nat,A: nat > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(3)
thf(fact_929_INT__simps_I2_J,axiom,
    ! [C: set_Extended_ereal,A: set_nat,B2: extended_ereal > set_nat] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( inf_inf_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( inf_inf_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( inf_inf_set_nat @ A @ ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(2)
thf(fact_930_INT__simps_I2_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_nat,B2: extend8495563244428889912nnreal > set_nat] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_inf_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_inf_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( inf_inf_set_nat @ A @ ( comple7806235888213564991et_nat @ ( image_2869339492569777349et_nat @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(2)
thf(fact_931_INT__simps_I2_J,axiom,
    ! [C: set_nat,A: set_nat,B2: nat > set_nat] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( inf_inf_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( inf_inf_set_nat @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( inf_inf_set_nat @ A @ ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(2)
thf(fact_932_INT__simps_I2_J,axiom,
    ! [C: set_Extended_ereal,A: set_Extended_ereal,B2: extended_ereal > set_Extended_ereal] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( inf_in2779415704524776092_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( inf_in2779415704524776092_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( inf_in2779415704524776092_ereal @ A @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(2)
thf(fact_933_INT__simps_I2_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_Extended_ereal,B2: extend8495563244428889912nnreal > set_Extended_ereal] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_in2779415704524776092_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_in2779415704524776092_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( inf_in2779415704524776092_ereal @ A @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(2)
thf(fact_934_INT__simps_I2_J,axiom,
    ! [C: set_nat,A: set_Extended_ereal,B2: nat > set_Extended_ereal] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( inf_in2779415704524776092_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( inf_in2779415704524776092_ereal @ A @ ( B2 @ X2 ) )
              @ C ) )
          = ( inf_in2779415704524776092_ereal @ A @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ B2 @ C ) ) ) ) ) ) ).

% INT_simps(2)
thf(fact_935_Int__iff,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A @ B2 ) )
      = ( ( member_o @ C2 @ A )
        & ( member_o @ C2 @ B2 ) ) ) ).

% Int_iff
thf(fact_936_Int__iff,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( inf_in2779415704524776092_ereal @ A @ B2 ) )
      = ( ( member2350847679896131959_ereal @ C2 @ A )
        & ( member2350847679896131959_ereal @ C2 @ B2 ) ) ) ).

% Int_iff
thf(fact_937_Int__iff,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A @ B2 ) )
      = ( ( member_nat @ C2 @ A )
        & ( member_nat @ C2 @ B2 ) ) ) ).

% Int_iff
thf(fact_938_Int__iff,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( inf_in3368558534146122112nnreal @ A @ B2 ) )
      = ( ( member7908768830364227535nnreal @ C2 @ A )
        & ( member7908768830364227535nnreal @ C2 @ B2 ) ) ) ).

% Int_iff
thf(fact_939_Int__iff,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A @ B2 ) )
      = ( ( member_c @ C2 @ A )
        & ( member_c @ C2 @ B2 ) ) ) ).

% Int_iff
thf(fact_940_Int__iff,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A @ B2 ) )
      = ( ( member_b @ C2 @ A )
        & ( member_b @ C2 @ B2 ) ) ) ).

% Int_iff
thf(fact_941_IntI,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ A )
     => ( ( member_o @ C2 @ B2 )
       => ( member_o @ C2 @ ( inf_inf_set_o @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_942_IntI,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ A )
     => ( ( member2350847679896131959_ereal @ C2 @ B2 )
       => ( member2350847679896131959_ereal @ C2 @ ( inf_in2779415704524776092_ereal @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_943_IntI,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ A )
     => ( ( member_nat @ C2 @ B2 )
       => ( member_nat @ C2 @ ( inf_inf_set_nat @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_944_IntI,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ A )
     => ( ( member7908768830364227535nnreal @ C2 @ B2 )
       => ( member7908768830364227535nnreal @ C2 @ ( inf_in3368558534146122112nnreal @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_945_IntI,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ A )
     => ( ( member_c @ C2 @ B2 )
       => ( member_c @ C2 @ ( inf_inf_set_c @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_946_IntI,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ A )
     => ( ( member_b @ C2 @ B2 )
       => ( member_b @ C2 @ ( inf_inf_set_b @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_947_Diff__iff,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A @ B2 ) )
      = ( ( member_o @ C2 @ A )
        & ~ ( member_o @ C2 @ B2 ) ) ) ).

% Diff_iff
thf(fact_948_Diff__iff,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( minus_1264018925008434325_ereal @ A @ B2 ) )
      = ( ( member2350847679896131959_ereal @ C2 @ A )
        & ~ ( member2350847679896131959_ereal @ C2 @ B2 ) ) ) ).

% Diff_iff
thf(fact_949_Diff__iff,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A @ B2 ) )
      = ( ( member_nat @ C2 @ A )
        & ~ ( member_nat @ C2 @ B2 ) ) ) ).

% Diff_iff
thf(fact_950_Diff__iff,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( minus_104578273773384135nnreal @ A @ B2 ) )
      = ( ( member7908768830364227535nnreal @ C2 @ A )
        & ~ ( member7908768830364227535nnreal @ C2 @ B2 ) ) ) ).

% Diff_iff
thf(fact_951_Diff__iff,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A @ B2 ) )
      = ( ( member_c @ C2 @ A )
        & ~ ( member_c @ C2 @ B2 ) ) ) ).

% Diff_iff
thf(fact_952_Diff__iff,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A @ B2 ) )
      = ( ( member_b @ C2 @ A )
        & ~ ( member_b @ C2 @ B2 ) ) ) ).

% Diff_iff
thf(fact_953_DiffI,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ A )
     => ( ~ ( member_o @ C2 @ B2 )
       => ( member_o @ C2 @ ( minus_minus_set_o @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_954_DiffI,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ A )
     => ( ~ ( member2350847679896131959_ereal @ C2 @ B2 )
       => ( member2350847679896131959_ereal @ C2 @ ( minus_1264018925008434325_ereal @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_955_DiffI,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ A )
     => ( ~ ( member_nat @ C2 @ B2 )
       => ( member_nat @ C2 @ ( minus_minus_set_nat @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_956_DiffI,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ A )
     => ( ~ ( member7908768830364227535nnreal @ C2 @ B2 )
       => ( member7908768830364227535nnreal @ C2 @ ( minus_104578273773384135nnreal @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_957_DiffI,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ A )
     => ( ~ ( member_c @ C2 @ B2 )
       => ( member_c @ C2 @ ( minus_minus_set_c @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_958_DiffI,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ A )
     => ( ~ ( member_b @ C2 @ B2 )
       => ( member_b @ C2 @ ( minus_minus_set_b @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_959_Int__UNIV,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A @ B2 )
        = top_top_set_nat )
      = ( ( A = top_top_set_nat )
        & ( B2 = top_top_set_nat ) ) ) ).

% Int_UNIV
thf(fact_960_Int__UNIV,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( inf_in2779415704524776092_ereal @ A @ B2 )
        = top_to5683747375963461374_ereal )
      = ( ( A = top_to5683747375963461374_ereal )
        & ( B2 = top_to5683747375963461374_ereal ) ) ) ).

% Int_UNIV
thf(fact_961_Diff__cancel,axiom,
    ! [A: set_Extended_ereal] :
      ( ( minus_1264018925008434325_ereal @ A @ A )
      = bot_bo8367695208629047834_ereal ) ).

% Diff_cancel
thf(fact_962_Diff__cancel,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( minus_104578273773384135nnreal @ A @ A )
      = bot_bo4854962954004695426nnreal ) ).

% Diff_cancel
thf(fact_963_Diff__cancel,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ A )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_964_empty__Diff,axiom,
    ! [A: set_Extended_ereal] :
      ( ( minus_1264018925008434325_ereal @ bot_bo8367695208629047834_ereal @ A )
      = bot_bo8367695208629047834_ereal ) ).

% empty_Diff
thf(fact_965_empty__Diff,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( minus_104578273773384135nnreal @ bot_bo4854962954004695426nnreal @ A )
      = bot_bo4854962954004695426nnreal ) ).

% empty_Diff
thf(fact_966_empty__Diff,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_967_Diff__empty,axiom,
    ! [A: set_Extended_ereal] :
      ( ( minus_1264018925008434325_ereal @ A @ bot_bo8367695208629047834_ereal )
      = A ) ).

% Diff_empty
thf(fact_968_Diff__empty,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( minus_104578273773384135nnreal @ A @ bot_bo4854962954004695426nnreal )
      = A ) ).

% Diff_empty
thf(fact_969_Diff__empty,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ bot_bot_set_nat )
      = A ) ).

% Diff_empty
thf(fact_970_Diff__UNIV,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( minus_104578273773384135nnreal @ A @ top_to7994903218803871134nnreal )
      = bot_bo4854962954004695426nnreal ) ).

% Diff_UNIV
thf(fact_971_Diff__UNIV,axiom,
    ! [A: set_nat] :
      ( ( minus_minus_set_nat @ A @ top_top_set_nat )
      = bot_bot_set_nat ) ).

% Diff_UNIV
thf(fact_972_Diff__UNIV,axiom,
    ! [A: set_Extended_ereal] :
      ( ( minus_1264018925008434325_ereal @ A @ top_to5683747375963461374_ereal )
      = bot_bo8367695208629047834_ereal ) ).

% Diff_UNIV
thf(fact_973_Diff__disjoint,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ A @ ( minus_1264018925008434325_ereal @ B2 @ A ) )
      = bot_bo8367695208629047834_ereal ) ).

% Diff_disjoint
thf(fact_974_Diff__disjoint,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ A @ ( minus_104578273773384135nnreal @ B2 @ A ) )
      = bot_bo4854962954004695426nnreal ) ).

% Diff_disjoint
thf(fact_975_Diff__disjoint,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( inf_inf_set_nat @ A @ ( minus_minus_set_nat @ B2 @ A ) )
      = bot_bot_set_nat ) ).

% Diff_disjoint
thf(fact_976_INT__simps_I1_J,axiom,
    ! [C: set_Extended_ereal,A: extended_ereal > set_nat,B2: set_nat] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( inf_inf_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( inf_inf_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( inf_inf_set_nat @ ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(1)
thf(fact_977_INT__simps_I1_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > set_nat,B2: set_nat] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_inf_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_inf_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( inf_inf_set_nat @ ( comple7806235888213564991et_nat @ ( image_2869339492569777349et_nat @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(1)
thf(fact_978_INT__simps_I1_J,axiom,
    ! [C: set_nat,A: nat > set_nat,B2: set_nat] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( inf_inf_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_top_set_nat ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( inf_inf_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( inf_inf_set_nat @ ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(1)
thf(fact_979_INT__simps_I1_J,axiom,
    ! [C: set_Extended_ereal,A: extended_ereal > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( inf_in2779415704524776092_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( inf_in2779415704524776092_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( inf_in2779415704524776092_ereal @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(1)
thf(fact_980_INT__simps_I1_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_in2779415704524776092_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( inf_in2779415704524776092_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( inf_in2779415704524776092_ereal @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(1)
thf(fact_981_INT__simps_I1_J,axiom,
    ! [C: set_nat,A: nat > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( inf_in2779415704524776092_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = top_to5683747375963461374_ereal ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( inf_in2779415704524776092_ereal @ ( A @ X2 ) @ B2 )
              @ C ) )
          = ( inf_in2779415704524776092_ereal @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ A @ C ) ) @ B2 ) ) ) ) ).

% INT_simps(1)
thf(fact_982_Int__Diff__disjoint,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ ( inf_in2779415704524776092_ereal @ A @ B2 ) @ ( minus_1264018925008434325_ereal @ A @ B2 ) )
      = bot_bo8367695208629047834_ereal ) ).

% Int_Diff_disjoint
thf(fact_983_Int__Diff__disjoint,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ ( inf_in3368558534146122112nnreal @ A @ B2 ) @ ( minus_104578273773384135nnreal @ A @ B2 ) )
      = bot_bo4854962954004695426nnreal ) ).

% Int_Diff_disjoint
thf(fact_984_Int__Diff__disjoint,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( inf_inf_set_nat @ ( inf_inf_set_nat @ A @ B2 ) @ ( minus_minus_set_nat @ A @ B2 ) )
      = bot_bot_set_nat ) ).

% Int_Diff_disjoint
thf(fact_985_Diff__triv,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( inf_in2779415704524776092_ereal @ A @ B2 )
        = bot_bo8367695208629047834_ereal )
     => ( ( minus_1264018925008434325_ereal @ A @ B2 )
        = A ) ) ).

% Diff_triv
thf(fact_986_Diff__triv,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ A @ B2 )
        = bot_bo4854962954004695426nnreal )
     => ( ( minus_104578273773384135nnreal @ A @ B2 )
        = A ) ) ).

% Diff_triv
thf(fact_987_Diff__triv,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A @ B2 )
        = bot_bot_set_nat )
     => ( ( minus_minus_set_nat @ A @ B2 )
        = A ) ) ).

% Diff_triv
thf(fact_988_DiffD2,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A @ B2 ) )
     => ~ ( member_o @ C2 @ B2 ) ) ).

% DiffD2
thf(fact_989_DiffD2,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( minus_1264018925008434325_ereal @ A @ B2 ) )
     => ~ ( member2350847679896131959_ereal @ C2 @ B2 ) ) ).

% DiffD2
thf(fact_990_DiffD2,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A @ B2 ) )
     => ~ ( member_nat @ C2 @ B2 ) ) ).

% DiffD2
thf(fact_991_DiffD2,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( minus_104578273773384135nnreal @ A @ B2 ) )
     => ~ ( member7908768830364227535nnreal @ C2 @ B2 ) ) ).

% DiffD2
thf(fact_992_DiffD2,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A @ B2 ) )
     => ~ ( member_c @ C2 @ B2 ) ) ).

% DiffD2
thf(fact_993_DiffD2,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A @ B2 ) )
     => ~ ( member_b @ C2 @ B2 ) ) ).

% DiffD2
thf(fact_994_DiffD1,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A @ B2 ) )
     => ( member_o @ C2 @ A ) ) ).

% DiffD1
thf(fact_995_DiffD1,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( minus_1264018925008434325_ereal @ A @ B2 ) )
     => ( member2350847679896131959_ereal @ C2 @ A ) ) ).

% DiffD1
thf(fact_996_DiffD1,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A @ B2 ) )
     => ( member_nat @ C2 @ A ) ) ).

% DiffD1
thf(fact_997_DiffD1,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( minus_104578273773384135nnreal @ A @ B2 ) )
     => ( member7908768830364227535nnreal @ C2 @ A ) ) ).

% DiffD1
thf(fact_998_DiffD1,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A @ B2 ) )
     => ( member_c @ C2 @ A ) ) ).

% DiffD1
thf(fact_999_DiffD1,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A @ B2 ) )
     => ( member_b @ C2 @ A ) ) ).

% DiffD1
thf(fact_1000_IntD2,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A @ B2 ) )
     => ( member_o @ C2 @ B2 ) ) ).

% IntD2
thf(fact_1001_IntD2,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( inf_in2779415704524776092_ereal @ A @ B2 ) )
     => ( member2350847679896131959_ereal @ C2 @ B2 ) ) ).

% IntD2
thf(fact_1002_IntD2,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A @ B2 ) )
     => ( member_nat @ C2 @ B2 ) ) ).

% IntD2
thf(fact_1003_IntD2,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( inf_in3368558534146122112nnreal @ A @ B2 ) )
     => ( member7908768830364227535nnreal @ C2 @ B2 ) ) ).

% IntD2
thf(fact_1004_IntD2,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A @ B2 ) )
     => ( member_c @ C2 @ B2 ) ) ).

% IntD2
thf(fact_1005_IntD2,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A @ B2 ) )
     => ( member_b @ C2 @ B2 ) ) ).

% IntD2
thf(fact_1006_IntD1,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A @ B2 ) )
     => ( member_o @ C2 @ A ) ) ).

% IntD1
thf(fact_1007_IntD1,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( inf_in2779415704524776092_ereal @ A @ B2 ) )
     => ( member2350847679896131959_ereal @ C2 @ A ) ) ).

% IntD1
thf(fact_1008_IntD1,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A @ B2 ) )
     => ( member_nat @ C2 @ A ) ) ).

% IntD1
thf(fact_1009_IntD1,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( inf_in3368558534146122112nnreal @ A @ B2 ) )
     => ( member7908768830364227535nnreal @ C2 @ A ) ) ).

% IntD1
thf(fact_1010_IntD1,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A @ B2 ) )
     => ( member_c @ C2 @ A ) ) ).

% IntD1
thf(fact_1011_IntD1,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A @ B2 ) )
     => ( member_b @ C2 @ A ) ) ).

% IntD1
thf(fact_1012_DiffE,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( minus_minus_set_o @ A @ B2 ) )
     => ~ ( ( member_o @ C2 @ A )
         => ( member_o @ C2 @ B2 ) ) ) ).

% DiffE
thf(fact_1013_DiffE,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( minus_1264018925008434325_ereal @ A @ B2 ) )
     => ~ ( ( member2350847679896131959_ereal @ C2 @ A )
         => ( member2350847679896131959_ereal @ C2 @ B2 ) ) ) ).

% DiffE
thf(fact_1014_DiffE,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A @ B2 ) )
     => ~ ( ( member_nat @ C2 @ A )
         => ( member_nat @ C2 @ B2 ) ) ) ).

% DiffE
thf(fact_1015_DiffE,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( minus_104578273773384135nnreal @ A @ B2 ) )
     => ~ ( ( member7908768830364227535nnreal @ C2 @ A )
         => ( member7908768830364227535nnreal @ C2 @ B2 ) ) ) ).

% DiffE
thf(fact_1016_DiffE,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( minus_minus_set_c @ A @ B2 ) )
     => ~ ( ( member_c @ C2 @ A )
         => ( member_c @ C2 @ B2 ) ) ) ).

% DiffE
thf(fact_1017_DiffE,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A @ B2 ) )
     => ~ ( ( member_b @ C2 @ A )
         => ( member_b @ C2 @ B2 ) ) ) ).

% DiffE
thf(fact_1018_IntE,axiom,
    ! [C2: $o,A: set_o,B2: set_o] :
      ( ( member_o @ C2 @ ( inf_inf_set_o @ A @ B2 ) )
     => ~ ( ( member_o @ C2 @ A )
         => ~ ( member_o @ C2 @ B2 ) ) ) ).

% IntE
thf(fact_1019_IntE,axiom,
    ! [C2: extended_ereal,A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ C2 @ ( inf_in2779415704524776092_ereal @ A @ B2 ) )
     => ~ ( ( member2350847679896131959_ereal @ C2 @ A )
         => ~ ( member2350847679896131959_ereal @ C2 @ B2 ) ) ) ).

% IntE
thf(fact_1020_IntE,axiom,
    ! [C2: nat,A: set_nat,B2: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A @ B2 ) )
     => ~ ( ( member_nat @ C2 @ A )
         => ~ ( member_nat @ C2 @ B2 ) ) ) ).

% IntE
thf(fact_1021_IntE,axiom,
    ! [C2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C2 @ ( inf_in3368558534146122112nnreal @ A @ B2 ) )
     => ~ ( ( member7908768830364227535nnreal @ C2 @ A )
         => ~ ( member7908768830364227535nnreal @ C2 @ B2 ) ) ) ).

% IntE
thf(fact_1022_IntE,axiom,
    ! [C2: c,A: set_c,B2: set_c] :
      ( ( member_c @ C2 @ ( inf_inf_set_c @ A @ B2 ) )
     => ~ ( ( member_c @ C2 @ A )
         => ~ ( member_c @ C2 @ B2 ) ) ) ).

% IntE
thf(fact_1023_IntE,axiom,
    ! [C2: b,A: set_b,B2: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A @ B2 ) )
     => ~ ( ( member_b @ C2 @ A )
         => ~ ( member_b @ C2 @ B2 ) ) ) ).

% IntE
thf(fact_1024_set__diff__eq,axiom,
    ( minus_minus_set_b
    = ( ^ [A3: set_b,B3: set_b] :
          ( collect_b
          @ ^ [X2: b] :
              ( ( member_b @ X2 @ A3 )
              & ~ ( member_b @ X2 @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1025_set__diff__eq,axiom,
    ( minus_minus_set_c
    = ( ^ [A3: set_c,B3: set_c] :
          ( collect_c
          @ ^ [X2: c] :
              ( ( member_c @ X2 @ A3 )
              & ~ ( member_c @ X2 @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1026_set__diff__eq,axiom,
    ( minus_1264018925008434325_ereal
    = ( ^ [A3: set_Extended_ereal,B3: set_Extended_ereal] :
          ( collec5835592288176408249_ereal
          @ ^ [X2: extended_ereal] :
              ( ( member2350847679896131959_ereal @ X2 @ A3 )
              & ~ ( member2350847679896131959_ereal @ X2 @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1027_set__diff__eq,axiom,
    ( minus_104578273773384135nnreal
    = ( ^ [A3: set_Ex3793607809372303086nnreal,B3: set_Ex3793607809372303086nnreal] :
          ( collec6648975593938027277nnreal
          @ ^ [X2: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X2 @ A3 )
              & ~ ( member7908768830364227535nnreal @ X2 @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1028_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A3 )
              & ~ ( member_nat @ X2 @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1029_set__diff__eq,axiom,
    ( minus_minus_set_o
    = ( ^ [A3: set_o,B3: set_o] :
          ( collect_o
          @ ^ [X2: $o] :
              ( ( member_o @ X2 @ A3 )
              & ~ ( member_o @ X2 @ B3 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1030_Collect__conj__eq,axiom,
    ! [P: b > $o,Q: b > $o] :
      ( ( collect_b
        @ ^ [X2: b] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_inf_set_b @ ( collect_b @ P ) @ ( collect_b @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_1031_Collect__conj__eq,axiom,
    ! [P: c > $o,Q: c > $o] :
      ( ( collect_c
        @ ^ [X2: c] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_inf_set_c @ ( collect_c @ P ) @ ( collect_c @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_1032_Collect__conj__eq,axiom,
    ! [P: extended_ereal > $o,Q: extended_ereal > $o] :
      ( ( collec5835592288176408249_ereal
        @ ^ [X2: extended_ereal] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_in2779415704524776092_ereal @ ( collec5835592288176408249_ereal @ P ) @ ( collec5835592288176408249_ereal @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_1033_Collect__conj__eq,axiom,
    ! [P: extend8495563244428889912nnreal > $o,Q: extend8495563244428889912nnreal > $o] :
      ( ( collec6648975593938027277nnreal
        @ ^ [X2: extend8495563244428889912nnreal] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_in3368558534146122112nnreal @ ( collec6648975593938027277nnreal @ P ) @ ( collec6648975593938027277nnreal @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_1034_Collect__conj__eq,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_inf_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_1035_Collect__conj__eq,axiom,
    ! [P: $o > $o,Q: $o > $o] :
      ( ( collect_o
        @ ^ [X2: $o] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_inf_set_o @ ( collect_o @ P ) @ ( collect_o @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_1036_Int__Collect,axiom,
    ! [X: b,A: set_b,P: b > $o] :
      ( ( member_b @ X @ ( inf_inf_set_b @ A @ ( collect_b @ P ) ) )
      = ( ( member_b @ X @ A )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_1037_Int__Collect,axiom,
    ! [X: c,A: set_c,P: c > $o] :
      ( ( member_c @ X @ ( inf_inf_set_c @ A @ ( collect_c @ P ) ) )
      = ( ( member_c @ X @ A )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_1038_Int__Collect,axiom,
    ! [X: extended_ereal,A: set_Extended_ereal,P: extended_ereal > $o] :
      ( ( member2350847679896131959_ereal @ X @ ( inf_in2779415704524776092_ereal @ A @ ( collec5835592288176408249_ereal @ P ) ) )
      = ( ( member2350847679896131959_ereal @ X @ A )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_1039_Int__Collect,axiom,
    ! [X: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,P: extend8495563244428889912nnreal > $o] :
      ( ( member7908768830364227535nnreal @ X @ ( inf_in3368558534146122112nnreal @ A @ ( collec6648975593938027277nnreal @ P ) ) )
      = ( ( member7908768830364227535nnreal @ X @ A )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_1040_Int__Collect,axiom,
    ! [X: nat,A: set_nat,P: nat > $o] :
      ( ( member_nat @ X @ ( inf_inf_set_nat @ A @ ( collect_nat @ P ) ) )
      = ( ( member_nat @ X @ A )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_1041_Int__Collect,axiom,
    ! [X: $o,A: set_o,P: $o > $o] :
      ( ( member_o @ X @ ( inf_inf_set_o @ A @ ( collect_o @ P ) ) )
      = ( ( member_o @ X @ A )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_1042_Int__def,axiom,
    ( inf_inf_set_b
    = ( ^ [A3: set_b,B3: set_b] :
          ( collect_b
          @ ^ [X2: b] :
              ( ( member_b @ X2 @ A3 )
              & ( member_b @ X2 @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_1043_Int__def,axiom,
    ( inf_inf_set_c
    = ( ^ [A3: set_c,B3: set_c] :
          ( collect_c
          @ ^ [X2: c] :
              ( ( member_c @ X2 @ A3 )
              & ( member_c @ X2 @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_1044_Int__def,axiom,
    ( inf_in2779415704524776092_ereal
    = ( ^ [A3: set_Extended_ereal,B3: set_Extended_ereal] :
          ( collec5835592288176408249_ereal
          @ ^ [X2: extended_ereal] :
              ( ( member2350847679896131959_ereal @ X2 @ A3 )
              & ( member2350847679896131959_ereal @ X2 @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_1045_Int__def,axiom,
    ( inf_in3368558534146122112nnreal
    = ( ^ [A3: set_Ex3793607809372303086nnreal,B3: set_Ex3793607809372303086nnreal] :
          ( collec6648975593938027277nnreal
          @ ^ [X2: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X2 @ A3 )
              & ( member7908768830364227535nnreal @ X2 @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_1046_Int__def,axiom,
    ( inf_inf_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A3 )
              & ( member_nat @ X2 @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_1047_Int__def,axiom,
    ( inf_inf_set_o
    = ( ^ [A3: set_o,B3: set_o] :
          ( collect_o
          @ ^ [X2: $o] :
              ( ( member_o @ X2 @ A3 )
              & ( member_o @ X2 @ B3 ) ) ) ) ) ).

% Int_def
thf(fact_1048_Int__UNIV__right,axiom,
    ! [A: set_nat] :
      ( ( inf_inf_set_nat @ A @ top_top_set_nat )
      = A ) ).

% Int_UNIV_right
thf(fact_1049_Int__UNIV__right,axiom,
    ! [A: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ A @ top_to5683747375963461374_ereal )
      = A ) ).

% Int_UNIV_right
thf(fact_1050_Int__UNIV__left,axiom,
    ! [B2: set_nat] :
      ( ( inf_inf_set_nat @ top_top_set_nat @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_1051_Int__UNIV__left,axiom,
    ! [B2: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ top_to5683747375963461374_ereal @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_1052_disjoint__iff__not__equal,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( inf_in2779415704524776092_ereal @ A @ B2 )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ! [Y2: extended_ereal] :
                ( ( member2350847679896131959_ereal @ Y2 @ B2 )
               => ( X2 != Y2 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_1053_disjoint__iff__not__equal,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ A @ B2 )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ A )
           => ! [Y2: extend8495563244428889912nnreal] :
                ( ( member7908768830364227535nnreal @ Y2 @ B2 )
               => ( X2 != Y2 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_1054_disjoint__iff__not__equal,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A @ B2 )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ! [Y2: nat] :
                ( ( member_nat @ Y2 @ B2 )
               => ( X2 != Y2 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_1055_Int__empty__right,axiom,
    ! [A: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ A @ bot_bo8367695208629047834_ereal )
      = bot_bo8367695208629047834_ereal ) ).

% Int_empty_right
thf(fact_1056_Int__empty__right,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ A @ bot_bo4854962954004695426nnreal )
      = bot_bo4854962954004695426nnreal ) ).

% Int_empty_right
thf(fact_1057_Int__empty__right,axiom,
    ! [A: set_nat] :
      ( ( inf_inf_set_nat @ A @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% Int_empty_right
thf(fact_1058_Int__empty__left,axiom,
    ! [B2: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ bot_bo8367695208629047834_ereal @ B2 )
      = bot_bo8367695208629047834_ereal ) ).

% Int_empty_left
thf(fact_1059_Int__empty__left,axiom,
    ! [B2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ bot_bo4854962954004695426nnreal @ B2 )
      = bot_bo4854962954004695426nnreal ) ).

% Int_empty_left
thf(fact_1060_Int__empty__left,axiom,
    ! [B2: set_nat] :
      ( ( inf_inf_set_nat @ bot_bot_set_nat @ B2 )
      = bot_bot_set_nat ) ).

% Int_empty_left
thf(fact_1061_disjoint__iff,axiom,
    ! [A: set_o,B2: set_o] :
      ( ( ( inf_inf_set_o @ A @ B2 )
        = bot_bot_set_o )
      = ( ! [X2: $o] :
            ( ( member_o @ X2 @ A )
           => ~ ( member_o @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1062_disjoint__iff,axiom,
    ! [A: set_c,B2: set_c] :
      ( ( ( inf_inf_set_c @ A @ B2 )
        = bot_bot_set_c )
      = ( ! [X2: c] :
            ( ( member_c @ X2 @ A )
           => ~ ( member_c @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1063_disjoint__iff,axiom,
    ! [A: set_b,B2: set_b] :
      ( ( ( inf_inf_set_b @ A @ B2 )
        = bot_bot_set_b )
      = ( ! [X2: b] :
            ( ( member_b @ X2 @ A )
           => ~ ( member_b @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1064_disjoint__iff,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( inf_in2779415704524776092_ereal @ A @ B2 )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ A )
           => ~ ( member2350847679896131959_ereal @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1065_disjoint__iff,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ A @ B2 )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ A )
           => ~ ( member7908768830364227535nnreal @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1066_disjoint__iff,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A @ B2 )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A )
           => ~ ( member_nat @ X2 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1067_Int__emptyI,axiom,
    ! [A: set_o,B2: set_o] :
      ( ! [X3: $o] :
          ( ( member_o @ X3 @ A )
         => ~ ( member_o @ X3 @ B2 ) )
     => ( ( inf_inf_set_o @ A @ B2 )
        = bot_bot_set_o ) ) ).

% Int_emptyI
thf(fact_1068_Int__emptyI,axiom,
    ! [A: set_c,B2: set_c] :
      ( ! [X3: c] :
          ( ( member_c @ X3 @ A )
         => ~ ( member_c @ X3 @ B2 ) )
     => ( ( inf_inf_set_c @ A @ B2 )
        = bot_bot_set_c ) ) ).

% Int_emptyI
thf(fact_1069_Int__emptyI,axiom,
    ! [A: set_b,B2: set_b] :
      ( ! [X3: b] :
          ( ( member_b @ X3 @ A )
         => ~ ( member_b @ X3 @ B2 ) )
     => ( ( inf_inf_set_b @ A @ B2 )
        = bot_bot_set_b ) ) ).

% Int_emptyI
thf(fact_1070_Int__emptyI,axiom,
    ! [A: set_Extended_ereal,B2: set_Extended_ereal] :
      ( ! [X3: extended_ereal] :
          ( ( member2350847679896131959_ereal @ X3 @ A )
         => ~ ( member2350847679896131959_ereal @ X3 @ B2 ) )
     => ( ( inf_in2779415704524776092_ereal @ A @ B2 )
        = bot_bo8367695208629047834_ereal ) ) ).

% Int_emptyI
thf(fact_1071_Int__emptyI,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ! [X3: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X3 @ A )
         => ~ ( member7908768830364227535nnreal @ X3 @ B2 ) )
     => ( ( inf_in3368558534146122112nnreal @ A @ B2 )
        = bot_bo4854962954004695426nnreal ) ) ).

% Int_emptyI
thf(fact_1072_Int__emptyI,axiom,
    ! [A: set_nat,B2: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A )
         => ~ ( member_nat @ X3 @ B2 ) )
     => ( ( inf_inf_set_nat @ A @ B2 )
        = bot_bot_set_nat ) ) ).

% Int_emptyI
thf(fact_1073_INF__UNIV__bool__expand,axiom,
    ! [A: $o > $o] :
      ( ( complete_Inf_Inf_o @ ( image_o_o @ A @ top_top_set_o ) )
      = ( inf_inf_o @ ( A @ $true ) @ ( A @ $false ) ) ) ).

% INF_UNIV_bool_expand
thf(fact_1074_INF__UNIV__bool__expand,axiom,
    ! [A: $o > extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_7729549296133164475_ereal @ A @ top_top_set_o ) )
      = ( inf_in2794916579150040252_ereal @ ( A @ $true ) @ ( A @ $false ) ) ) ).

% INF_UNIV_bool_expand
thf(fact_1075_INF__UNIV__bool__expand,axiom,
    ! [A: $o > extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal @ ( image_3342735880743421067nnreal @ A @ top_top_set_o ) )
      = ( inf_in7439215052339218890nnreal @ ( A @ $true ) @ ( A @ $false ) ) ) ).

% INF_UNIV_bool_expand
thf(fact_1076_inf__Sup,axiom,
    ! [A2: $o,B2: set_o] :
      ( ( inf_inf_o @ A2 @ ( complete_Sup_Sup_o @ B2 ) )
      = ( complete_Sup_Sup_o @ ( image_o_o @ ( inf_inf_o @ A2 ) @ B2 ) ) ) ).

% inf_Sup
thf(fact_1077_inf__Sup,axiom,
    ! [A2: extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ A2 @ ( comple8415311339701865915_ereal @ B2 ) )
      = ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ ( inf_in2794916579150040252_ereal @ A2 ) @ B2 ) ) ) ).

% inf_Sup
thf(fact_1078_inf__Sup,axiom,
    ! [A2: extend8495563244428889912nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in7439215052339218890nnreal @ A2 @ ( comple6814414086264997003nnreal @ B2 ) )
      = ( comple6814414086264997003nnreal @ ( image_8394674774369097847nnreal @ ( inf_in7439215052339218890nnreal @ A2 ) @ B2 ) ) ) ).

% inf_Sup
thf(fact_1079_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_se6634062954251873166_ereal,A2: set_Extended_ereal] :
      ( ( ( inf_in2779415704524776092_ereal @ ( comple4319282863272126363_ereal @ B2 ) @ A2 )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ B2 )
           => ( ( inf_in2779415704524776092_ereal @ X2 @ A2 )
              = bot_bo8367695208629047834_ereal ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1080_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_se4580700918925141924nnreal,A2: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ ( comple4226387801268262977nnreal @ B2 ) @ A2 )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ B2 )
           => ( ( inf_in3368558534146122112nnreal @ X2 @ A2 )
              = bot_bo4854962954004695426nnreal ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1081_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_set_nat,A2: set_nat] :
      ( ( ( inf_inf_set_nat @ ( comple7399068483239264473et_nat @ B2 ) @ A2 )
        = bot_bot_set_nat )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ B2 )
           => ( ( inf_inf_set_nat @ X2 @ A2 )
              = bot_bot_set_nat ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1082_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_o,A2: $o] :
      ( ( ( inf_inf_o @ ( complete_Sup_Sup_o @ B2 ) @ A2 )
        = bot_bot_o )
      = ( ! [X2: $o] :
            ( ( member_o @ X2 @ B2 )
           => ( ( inf_inf_o @ X2 @ A2 )
              = bot_bot_o ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1083_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_Extended_ereal,A2: extended_ereal] :
      ( ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ B2 ) @ A2 )
        = bot_bo2710585358178759738_ereal )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ B2 )
           => ( ( inf_in2794916579150040252_ereal @ X2 @ A2 )
              = bot_bo2710585358178759738_ereal ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1084_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( ( inf_in7439215052339218890nnreal @ ( comple6814414086264997003nnreal @ B2 ) @ A2 )
        = bot_bo841427958541957580nnreal )
      = ( ! [X2: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X2 @ B2 )
           => ( ( inf_in7439215052339218890nnreal @ X2 @ A2 )
              = bot_bo841427958541957580nnreal ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1085_Union__disjoint,axiom,
    ! [C: set_se6634062954251873166_ereal,A: set_Extended_ereal] :
      ( ( ( inf_in2779415704524776092_ereal @ ( comple4319282863272126363_ereal @ C ) @ A )
        = bot_bo8367695208629047834_ereal )
      = ( ! [X2: set_Extended_ereal] :
            ( ( member5519481007471526743_ereal @ X2 @ C )
           => ( ( inf_in2779415704524776092_ereal @ X2 @ A )
              = bot_bo8367695208629047834_ereal ) ) ) ) ).

% Union_disjoint
thf(fact_1086_Union__disjoint,axiom,
    ! [C: set_se4580700918925141924nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ ( comple4226387801268262977nnreal @ C ) @ A )
        = bot_bo4854962954004695426nnreal )
      = ( ! [X2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X2 @ C )
           => ( ( inf_in3368558534146122112nnreal @ X2 @ A )
              = bot_bo4854962954004695426nnreal ) ) ) ) ).

% Union_disjoint
thf(fact_1087_Union__disjoint,axiom,
    ! [C: set_set_nat,A: set_nat] :
      ( ( ( inf_inf_set_nat @ ( comple7399068483239264473et_nat @ C ) @ A )
        = bot_bot_set_nat )
      = ( ! [X2: set_nat] :
            ( ( member_set_nat @ X2 @ C )
           => ( ( inf_inf_set_nat @ X2 @ A )
              = bot_bot_set_nat ) ) ) ) ).

% Union_disjoint
thf(fact_1088_SUP__inf__distrib2,axiom,
    ! [F: b > $o,A: set_b,G: b > $o,B2: set_b] :
      ( ( inf_inf_o @ ( complete_Sup_Sup_o @ ( image_b_o @ F @ A ) ) @ ( complete_Sup_Sup_o @ ( image_b_o @ G @ B2 ) ) )
      = ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [A4: b] :
              ( complete_Sup_Sup_o
              @ ( image_b_o
                @ ^ [B4: b] : ( inf_inf_o @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1089_SUP__inf__distrib2,axiom,
    ! [F: nat > extended_ereal,A: set_nat,G: nat > extended_ereal,B2: set_nat] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [A4: nat] :
              ( comple8415311339701865915_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [B4: nat] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1090_SUP__inf__distrib2,axiom,
    ! [F: nat > extended_ereal,A: set_nat,G: extended_ereal > extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [A4: nat] :
              ( comple8415311339701865915_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [B4: extended_ereal] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1091_SUP__inf__distrib2,axiom,
    ! [F: nat > extended_ereal,A: set_nat,G: b > extended_ereal,B2: set_b] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [A4: nat] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [B4: b] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1092_SUP__inf__distrib2,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,G: nat > extended_ereal,B2: set_nat] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [A4: extended_ereal] :
              ( comple8415311339701865915_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [B4: nat] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1093_SUP__inf__distrib2,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,G: extended_ereal > extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [A4: extended_ereal] :
              ( comple8415311339701865915_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [B4: extended_ereal] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1094_SUP__inf__distrib2,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,G: b > extended_ereal,B2: set_b] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [A4: extended_ereal] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [B4: b] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1095_SUP__inf__distrib2,axiom,
    ! [F: b > extended_ereal,A: set_b,G: nat > extended_ereal,B2: set_nat] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [A4: b] :
              ( comple8415311339701865915_ereal
              @ ( image_4309273772856505399_ereal
                @ ^ [B4: nat] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1096_SUP__inf__distrib2,axiom,
    ! [F: b > extended_ereal,A: set_b,G: extended_ereal > extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [A4: b] :
              ( comple8415311339701865915_ereal
              @ ( image_6042159593519690757_ereal
                @ ^ [B4: extended_ereal] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1097_SUP__inf__distrib2,axiom,
    ! [F: b > extended_ereal,A: set_b,G: b > extended_ereal,B2: set_b] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ A ) ) @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ G @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [A4: b] :
              ( comple8415311339701865915_ereal
              @ ( image_5319725110001000852_ereal
                @ ^ [B4: b] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ B4 ) )
                @ B2 ) )
          @ A ) ) ) ).

% SUP_inf_distrib2
thf(fact_1098_inf__SUP,axiom,
    ! [A2: $o,F: b > $o,B2: set_b] :
      ( ( inf_inf_o @ A2 @ ( complete_Sup_Sup_o @ ( image_b_o @ F @ B2 ) ) )
      = ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [B4: b] : ( inf_inf_o @ A2 @ ( F @ B4 ) )
          @ B2 ) ) ) ).

% inf_SUP
thf(fact_1099_inf__SUP,axiom,
    ! [A2: extended_ereal,F: nat > extended_ereal,B2: set_nat] :
      ( ( inf_in2794916579150040252_ereal @ A2 @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [B4: nat] : ( inf_in2794916579150040252_ereal @ A2 @ ( F @ B4 ) )
          @ B2 ) ) ) ).

% inf_SUP
thf(fact_1100_inf__SUP,axiom,
    ! [A2: extended_ereal,F: extended_ereal > extended_ereal,B2: set_Extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ A2 @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [B4: extended_ereal] : ( inf_in2794916579150040252_ereal @ A2 @ ( F @ B4 ) )
          @ B2 ) ) ) ).

% inf_SUP
thf(fact_1101_inf__SUP,axiom,
    ! [A2: extended_ereal,F: b > extended_ereal,B2: set_b] :
      ( ( inf_in2794916579150040252_ereal @ A2 @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ B2 ) ) )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [B4: b] : ( inf_in2794916579150040252_ereal @ A2 @ ( F @ B4 ) )
          @ B2 ) ) ) ).

% inf_SUP
thf(fact_1102_inf__SUP,axiom,
    ! [A2: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal,B2: set_nat] :
      ( ( inf_in7439215052339218890nnreal @ A2 @ ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ F @ B2 ) ) )
      = ( comple6814414086264997003nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [B4: nat] : ( inf_in7439215052339218890nnreal @ A2 @ ( F @ B4 ) )
          @ B2 ) ) ) ).

% inf_SUP
thf(fact_1103_Sup__inf,axiom,
    ! [B2: set_o,A2: $o] :
      ( ( inf_inf_o @ ( complete_Sup_Sup_o @ B2 ) @ A2 )
      = ( complete_Sup_Sup_o
        @ ( image_o_o
          @ ^ [B4: $o] : ( inf_inf_o @ B4 @ A2 )
          @ B2 ) ) ) ).

% Sup_inf
thf(fact_1104_Sup__inf,axiom,
    ! [B2: set_Extended_ereal,A2: extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ B2 ) @ A2 )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [B4: extended_ereal] : ( inf_in2794916579150040252_ereal @ B4 @ A2 )
          @ B2 ) ) ) ).

% Sup_inf
thf(fact_1105_Sup__inf,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,A2: extend8495563244428889912nnreal] :
      ( ( inf_in7439215052339218890nnreal @ ( comple6814414086264997003nnreal @ B2 ) @ A2 )
      = ( comple6814414086264997003nnreal
        @ ( image_8394674774369097847nnreal
          @ ^ [B4: extend8495563244428889912nnreal] : ( inf_in7439215052339218890nnreal @ B4 @ A2 )
          @ B2 ) ) ) ).

% Sup_inf
thf(fact_1106_SUP__inf,axiom,
    ! [F: b > $o,B2: set_b,A2: $o] :
      ( ( inf_inf_o @ ( complete_Sup_Sup_o @ ( image_b_o @ F @ B2 ) ) @ A2 )
      = ( complete_Sup_Sup_o
        @ ( image_b_o
          @ ^ [B4: b] : ( inf_inf_o @ ( F @ B4 ) @ A2 )
          @ B2 ) ) ) ).

% SUP_inf
thf(fact_1107_SUP__inf,axiom,
    ! [F: nat > extended_ereal,B2: set_nat,A2: extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ B2 ) ) @ A2 )
      = ( comple8415311339701865915_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [B4: nat] : ( inf_in2794916579150040252_ereal @ ( F @ B4 ) @ A2 )
          @ B2 ) ) ) ).

% SUP_inf
thf(fact_1108_SUP__inf,axiom,
    ! [F: extended_ereal > extended_ereal,B2: set_Extended_ereal,A2: extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ F @ B2 ) ) @ A2 )
      = ( comple8415311339701865915_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [B4: extended_ereal] : ( inf_in2794916579150040252_ereal @ ( F @ B4 ) @ A2 )
          @ B2 ) ) ) ).

% SUP_inf
thf(fact_1109_SUP__inf,axiom,
    ! [F: b > extended_ereal,B2: set_b,A2: extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple8415311339701865915_ereal @ ( image_5319725110001000852_ereal @ F @ B2 ) ) @ A2 )
      = ( comple8415311339701865915_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [B4: b] : ( inf_in2794916579150040252_ereal @ ( F @ B4 ) @ A2 )
          @ B2 ) ) ) ).

% SUP_inf
thf(fact_1110_SUP__inf,axiom,
    ! [F: nat > extend8495563244428889912nnreal,B2: set_nat,A2: extend8495563244428889912nnreal] :
      ( ( inf_in7439215052339218890nnreal @ ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ F @ B2 ) ) @ A2 )
      = ( comple6814414086264997003nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [B4: nat] : ( inf_in7439215052339218890nnreal @ ( F @ B4 ) @ A2 )
          @ B2 ) ) ) ).

% SUP_inf
thf(fact_1111_INF__absorb,axiom,
    ! [K: $o,I2: set_o,A: $o > $o] :
      ( ( member_o @ K @ I2 )
     => ( ( inf_inf_o @ ( A @ K ) @ ( complete_Inf_Inf_o @ ( image_o_o @ A @ I2 ) ) )
        = ( complete_Inf_Inf_o @ ( image_o_o @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1112_INF__absorb,axiom,
    ! [K: extended_ereal,I2: set_Extended_ereal,A: extended_ereal > $o] :
      ( ( member2350847679896131959_ereal @ K @ I2 )
     => ( ( inf_inf_o @ ( A @ K ) @ ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ A @ I2 ) ) )
        = ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1113_INF__absorb,axiom,
    ! [K: nat,I2: set_nat,A: nat > $o] :
      ( ( member_nat @ K @ I2 )
     => ( ( inf_inf_o @ ( A @ K ) @ ( complete_Inf_Inf_o @ ( image_nat_o @ A @ I2 ) ) )
        = ( complete_Inf_Inf_o @ ( image_nat_o @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1114_INF__absorb,axiom,
    ! [K: extend8495563244428889912nnreal,I2: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > $o] :
      ( ( member7908768830364227535nnreal @ K @ I2 )
     => ( ( inf_inf_o @ ( A @ K ) @ ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ A @ I2 ) ) )
        = ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1115_INF__absorb,axiom,
    ! [K: c,I2: set_c,A: c > $o] :
      ( ( member_c @ K @ I2 )
     => ( ( inf_inf_o @ ( A @ K ) @ ( complete_Inf_Inf_o @ ( image_c_o @ A @ I2 ) ) )
        = ( complete_Inf_Inf_o @ ( image_c_o @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1116_INF__absorb,axiom,
    ! [K: b,I2: set_b,A: b > $o] :
      ( ( member_b @ K @ I2 )
     => ( ( inf_inf_o @ ( A @ K ) @ ( complete_Inf_Inf_o @ ( image_b_o @ A @ I2 ) ) )
        = ( complete_Inf_Inf_o @ ( image_b_o @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1117_INF__absorb,axiom,
    ! [K: $o,I2: set_o,A: $o > extended_ereal] :
      ( ( member_o @ K @ I2 )
     => ( ( inf_in2794916579150040252_ereal @ ( A @ K ) @ ( comple3556804143462414037_ereal @ ( image_7729549296133164475_ereal @ A @ I2 ) ) )
        = ( comple3556804143462414037_ereal @ ( image_7729549296133164475_ereal @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1118_INF__absorb,axiom,
    ! [K: extended_ereal,I2: set_Extended_ereal,A: extended_ereal > extended_ereal] :
      ( ( member2350847679896131959_ereal @ K @ I2 )
     => ( ( inf_in2794916579150040252_ereal @ ( A @ K ) @ ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ A @ I2 ) ) )
        = ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1119_INF__absorb,axiom,
    ! [K: nat,I2: set_nat,A: nat > extended_ereal] :
      ( ( member_nat @ K @ I2 )
     => ( ( inf_in2794916579150040252_ereal @ ( A @ K ) @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ A @ I2 ) ) )
        = ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1120_INF__absorb,axiom,
    ! [K: extend8495563244428889912nnreal,I2: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > extended_ereal] :
      ( ( member7908768830364227535nnreal @ K @ I2 )
     => ( ( inf_in2794916579150040252_ereal @ ( A @ K ) @ ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ A @ I2 ) ) )
        = ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ A @ I2 ) ) ) ) ).

% INF_absorb
thf(fact_1121_INF__inf__distrib,axiom,
    ! [F: b > $o,A: set_b,G: b > $o] :
      ( ( inf_inf_o @ ( complete_Inf_Inf_o @ ( image_b_o @ F @ A ) ) @ ( complete_Inf_Inf_o @ ( image_b_o @ G @ A ) ) )
      = ( complete_Inf_Inf_o
        @ ( image_b_o
          @ ^ [A4: b] : ( inf_inf_o @ ( F @ A4 ) @ ( G @ A4 ) )
          @ A ) ) ) ).

% INF_inf_distrib
thf(fact_1122_INF__inf__distrib,axiom,
    ! [F: nat > extended_ereal,A: set_nat,G: nat > extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F @ A ) ) @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ G @ A ) ) )
      = ( comple3556804143462414037_ereal
        @ ( image_4309273772856505399_ereal
          @ ^ [A4: nat] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ A4 ) )
          @ A ) ) ) ).

% INF_inf_distrib
thf(fact_1123_INF__inf__distrib,axiom,
    ! [F: extended_ereal > extended_ereal,A: set_Extended_ereal,G: extended_ereal > extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ F @ A ) ) @ ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ G @ A ) ) )
      = ( comple3556804143462414037_ereal
        @ ( image_6042159593519690757_ereal
          @ ^ [A4: extended_ereal] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ A4 ) )
          @ A ) ) ) ).

% INF_inf_distrib
thf(fact_1124_INF__inf__distrib,axiom,
    ! [F: b > extended_ereal,A: set_b,G: b > extended_ereal] :
      ( ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ F @ A ) ) @ ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ G @ A ) ) )
      = ( comple3556804143462414037_ereal
        @ ( image_5319725110001000852_ereal
          @ ^ [A4: b] : ( inf_in2794916579150040252_ereal @ ( F @ A4 ) @ ( G @ A4 ) )
          @ A ) ) ) ).

% INF_inf_distrib
thf(fact_1125_INF__inf__distrib,axiom,
    ! [F: nat > extend8495563244428889912nnreal,A: set_nat,G: nat > extend8495563244428889912nnreal] :
      ( ( inf_in7439215052339218890nnreal @ ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ F @ A ) ) @ ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ G @ A ) ) )
      = ( comple7330758040695736817nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [A4: nat] : ( inf_in7439215052339218890nnreal @ ( F @ A4 ) @ ( G @ A4 ) )
          @ A ) ) ) ).

% INF_inf_distrib
thf(fact_1126_INF__inf__const2,axiom,
    ! [I2: set_b,F: b > $o,X: $o] :
      ( ( I2 != bot_bot_set_b )
     => ( ( complete_Inf_Inf_o
          @ ( image_b_o
            @ ^ [I: b] : ( inf_inf_o @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_inf_o @ ( complete_Inf_Inf_o @ ( image_b_o @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1127_INF__inf__const2,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > $o,X: $o] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ( complete_Inf_Inf_o
          @ ( image_951975095941678543real_o
            @ ^ [I: extended_ereal] : ( inf_inf_o @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_inf_o @ ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1128_INF__inf__const2,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal > $o,X: $o] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ( complete_Inf_Inf_o
          @ ( image_3162942742313426073real_o
            @ ^ [I: extend8495563244428889912nnreal] : ( inf_inf_o @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_inf_o @ ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1129_INF__inf__const2,axiom,
    ! [I2: set_nat,F: nat > $o,X: $o] :
      ( ( I2 != bot_bot_set_nat )
     => ( ( complete_Inf_Inf_o
          @ ( image_nat_o
            @ ^ [I: nat] : ( inf_inf_o @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_inf_o @ ( complete_Inf_Inf_o @ ( image_nat_o @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1130_INF__inf__const2,axiom,
    ! [I2: set_b,F: b > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_b )
     => ( ( comple3556804143462414037_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [I: b] : ( inf_in2794916579150040252_ereal @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1131_INF__inf__const2,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [I: extended_ereal] : ( inf_in2794916579150040252_ereal @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1132_INF__inf__const2,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [I: extend8495563244428889912nnreal] : ( inf_in2794916579150040252_ereal @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1133_INF__inf__const2,axiom,
    ! [I2: set_nat,F: nat > extended_ereal,X: extended_ereal] :
      ( ( I2 != bot_bot_set_nat )
     => ( ( comple3556804143462414037_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [I: nat] : ( inf_in2794916579150040252_ereal @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1134_INF__inf__const2,axiom,
    ! [I2: set_Extended_ereal,F: extended_ereal > extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [I: extended_ereal] : ( inf_in7439215052339218890nnreal @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_in7439215052339218890nnreal @ ( comple7330758040695736817nnreal @ ( image_8614087454967683265nnreal @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1135_INF__inf__const2,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [I: extend8495563244428889912nnreal] : ( inf_in7439215052339218890nnreal @ ( F @ I ) @ X )
            @ I2 ) )
        = ( inf_in7439215052339218890nnreal @ ( comple7330758040695736817nnreal @ ( image_8394674774369097847nnreal @ F @ I2 ) ) @ X ) ) ) ).

% INF_inf_const2
thf(fact_1136_INF__inf__const1,axiom,
    ! [I2: set_b,X: $o,F: b > $o] :
      ( ( I2 != bot_bot_set_b )
     => ( ( complete_Inf_Inf_o
          @ ( image_b_o
            @ ^ [I: b] : ( inf_inf_o @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_inf_o @ X @ ( complete_Inf_Inf_o @ ( image_b_o @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1137_INF__inf__const1,axiom,
    ! [I2: set_Extended_ereal,X: $o,F: extended_ereal > $o] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ( complete_Inf_Inf_o
          @ ( image_951975095941678543real_o
            @ ^ [I: extended_ereal] : ( inf_inf_o @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_inf_o @ X @ ( complete_Inf_Inf_o @ ( image_951975095941678543real_o @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1138_INF__inf__const1,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,X: $o,F: extend8495563244428889912nnreal > $o] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ( complete_Inf_Inf_o
          @ ( image_3162942742313426073real_o
            @ ^ [I: extend8495563244428889912nnreal] : ( inf_inf_o @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_inf_o @ X @ ( complete_Inf_Inf_o @ ( image_3162942742313426073real_o @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1139_INF__inf__const1,axiom,
    ! [I2: set_nat,X: $o,F: nat > $o] :
      ( ( I2 != bot_bot_set_nat )
     => ( ( complete_Inf_Inf_o
          @ ( image_nat_o
            @ ^ [I: nat] : ( inf_inf_o @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_inf_o @ X @ ( complete_Inf_Inf_o @ ( image_nat_o @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1140_INF__inf__const1,axiom,
    ! [I2: set_b,X: extended_ereal,F: b > extended_ereal] :
      ( ( I2 != bot_bot_set_b )
     => ( ( comple3556804143462414037_ereal
          @ ( image_5319725110001000852_ereal
            @ ^ [I: b] : ( inf_in2794916579150040252_ereal @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ X @ ( comple3556804143462414037_ereal @ ( image_5319725110001000852_ereal @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1141_INF__inf__const1,axiom,
    ! [I2: set_Extended_ereal,X: extended_ereal,F: extended_ereal > extended_ereal] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6042159593519690757_ereal
            @ ^ [I: extended_ereal] : ( inf_in2794916579150040252_ereal @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ X @ ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1142_INF__inf__const1,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,X: extended_ereal,F: extend8495563244428889912nnreal > extended_ereal] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ( comple3556804143462414037_ereal
          @ ( image_6393943237584228047_ereal
            @ ^ [I: extend8495563244428889912nnreal] : ( inf_in2794916579150040252_ereal @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ X @ ( comple3556804143462414037_ereal @ ( image_6393943237584228047_ereal @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1143_INF__inf__const1,axiom,
    ! [I2: set_nat,X: extended_ereal,F: nat > extended_ereal] :
      ( ( I2 != bot_bot_set_nat )
     => ( ( comple3556804143462414037_ereal
          @ ( image_4309273772856505399_ereal
            @ ^ [I: nat] : ( inf_in2794916579150040252_ereal @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_in2794916579150040252_ereal @ X @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1144_INF__inf__const1,axiom,
    ! [I2: set_Extended_ereal,X: extend8495563244428889912nnreal,F: extended_ereal > extend8495563244428889912nnreal] :
      ( ( I2 != bot_bo8367695208629047834_ereal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8614087454967683265nnreal
            @ ^ [I: extended_ereal] : ( inf_in7439215052339218890nnreal @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_in7439215052339218890nnreal @ X @ ( comple7330758040695736817nnreal @ ( image_8614087454967683265nnreal @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1145_INF__inf__const1,axiom,
    ! [I2: set_Ex3793607809372303086nnreal,X: extend8495563244428889912nnreal,F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( I2 != bot_bo4854962954004695426nnreal )
     => ( ( comple7330758040695736817nnreal
          @ ( image_8394674774369097847nnreal
            @ ^ [I: extend8495563244428889912nnreal] : ( inf_in7439215052339218890nnreal @ X @ ( F @ I ) )
            @ I2 ) )
        = ( inf_in7439215052339218890nnreal @ X @ ( comple7330758040695736817nnreal @ ( image_8394674774369097847nnreal @ F @ I2 ) ) ) ) ) ).

% INF_inf_const1
thf(fact_1146_INT__extend__simps_I3_J,axiom,
    ! [C: set_Extended_ereal,A: extended_ereal > set_nat,B2: set_nat] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ A @ C ) ) @ B2 )
          = ( minus_minus_set_nat @ top_top_set_nat @ B2 ) ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_3090908713637162255et_nat @ A @ C ) ) @ B2 )
          = ( comple7806235888213564991et_nat
            @ ( image_3090908713637162255et_nat
              @ ^ [X2: extended_ereal] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) ) ) ) ) ).

% INT_extend_simps(3)
thf(fact_1147_INT__extend__simps_I3_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > set_nat,B2: set_nat] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_2869339492569777349et_nat @ A @ C ) ) @ B2 )
          = ( minus_minus_set_nat @ top_top_set_nat @ B2 ) ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_2869339492569777349et_nat @ A @ C ) ) @ B2 )
          = ( comple7806235888213564991et_nat
            @ ( image_2869339492569777349et_nat
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) ) ) ) ) ).

% INT_extend_simps(3)
thf(fact_1148_INT__extend__simps_I3_J,axiom,
    ! [C: set_nat,A: nat > set_nat,B2: set_nat] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ A @ C ) ) @ B2 )
          = ( minus_minus_set_nat @ top_top_set_nat @ B2 ) ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( minus_minus_set_nat @ ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ A @ C ) ) @ B2 )
          = ( comple7806235888213564991et_nat
            @ ( image_nat_set_nat
              @ ^ [X2: nat] : ( minus_minus_set_nat @ ( A @ X2 ) @ B2 )
              @ C ) ) ) ) ) ).

% INT_extend_simps(3)
thf(fact_1149_INT__extend__simps_I3_J,axiom,
    ! [C: set_Extended_ereal,A: extended_ereal > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bo8367695208629047834_ereal )
       => ( ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ A @ C ) ) @ B2 )
          = ( minus_1264018925008434325_ereal @ top_to5683747375963461374_ereal @ B2 ) ) )
      & ( ( C != bot_bo8367695208629047834_ereal )
       => ( ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_5562094264469218789_ereal @ A @ C ) ) @ B2 )
          = ( comple4418415374894819509_ereal
            @ ( image_5562094264469218789_ereal
              @ ^ [X2: extended_ereal] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) ) ) ) ) ).

% INT_extend_simps(3)
thf(fact_1150_INT__extend__simps_I3_J,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: extend8495563244428889912nnreal > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bo4854962954004695426nnreal )
       => ( ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ A @ C ) ) @ B2 )
          = ( minus_1264018925008434325_ereal @ top_to5683747375963461374_ereal @ B2 ) ) )
      & ( ( C != bot_bo4854962954004695426nnreal )
       => ( ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_5929344197358196911_ereal @ A @ C ) ) @ B2 )
          = ( comple4418415374894819509_ereal
            @ ( image_5929344197358196911_ereal
              @ ^ [X2: extend8495563244428889912nnreal] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) ) ) ) ) ).

% INT_extend_simps(3)
thf(fact_1151_INT__extend__simps_I3_J,axiom,
    ! [C: set_nat,A: nat > set_Extended_ereal,B2: set_Extended_ereal] :
      ( ( ( C = bot_bot_set_nat )
       => ( ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ A @ C ) ) @ B2 )
          = ( minus_1264018925008434325_ereal @ top_to5683747375963461374_ereal @ B2 ) ) )
      & ( ( C != bot_bot_set_nat )
       => ( ( minus_1264018925008434325_ereal @ ( comple4418415374894819509_ereal @ ( image_305533323056406039_ereal @ A @ C ) ) @ B2 )
          = ( comple4418415374894819509_ereal
            @ ( image_305533323056406039_ereal
              @ ^ [X2: nat] : ( minus_1264018925008434325_ereal @ ( A @ X2 ) @ B2 )
              @ C ) ) ) ) ) ).

% INT_extend_simps(3)
thf(fact_1152_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_Extended_ereal] :
      ( ( inf_in2779415704524776092_ereal @ X @ bot_bo8367695208629047834_ereal )
      = bot_bo8367695208629047834_ereal ) ).

% boolean_algebra.conj_zero_right
thf(fact_1153_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ X @ bot_bo4854962954004695426nnreal )
      = bot_bo4854962954004695426nnreal ) ).

% boolean_algebra.conj_zero_right
thf(fact_1154_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_nat] :
      ( ( inf_inf_set_nat @ X @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% boolean_algebra.conj_zero_right
thf(fact_1155_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ bot_bo4854962954004695426nnreal @ X )
      = bot_bo4854962954004695426nnreal ) ).

% boolean_algebra.conj_zero_left
thf(fact_1156_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_nat] :
      ( ( inf_inf_set_nat @ bot_bot_set_nat @ X )
      = bot_bot_set_nat ) ).

% boolean_algebra.conj_zero_left
thf(fact_1157_ereal__decseq__uminus,axiom,
    ! [F: nat > extended_ereal] :
      ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat
        @ ^ [X2: extended_ereal,Y2: extended_ereal] : ( ord_le1083603963089353582_ereal @ Y2 @ X2 )
        @ ^ [X2: nat] : ( uminus27091377158695749_ereal @ ( F @ X2 ) ) )
      = ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal @ F ) ) ).

% ereal_decseq_uminus
thf(fact_1158_ereal__incseq__uminus,axiom,
    ! [F: nat > extended_ereal] :
      ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal
        @ ^ [X2: nat] : ( uminus27091377158695749_ereal @ ( F @ X2 ) ) )
      = ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat
        @ ^ [X2: extended_ereal,Y2: extended_ereal] : ( ord_le1083603963089353582_ereal @ Y2 @ X2 )
        @ F ) ) ).

% ereal_incseq_uminus
thf(fact_1159_Inf__countable__INF,axiom,
    ! [A: set_Extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ? [F3: nat > extended_ereal] :
          ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat
            @ ^ [X2: extended_ereal,Y2: extended_ereal] : ( ord_le1083603963089353582_ereal @ Y2 @ X2 )
            @ F3 )
          & ( ord_le1644982726543182158_ereal @ ( image_4309273772856505399_ereal @ F3 @ top_top_set_nat ) @ A )
          & ( ( comple3556804143462414037_ereal @ A )
            = ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F3 @ top_top_set_nat ) ) ) ) ) ).

% Inf_countable_INF
thf(fact_1160_Sup__countable__SUP,axiom,
    ! [A: set_Extended_ereal] :
      ( ( A != bot_bo8367695208629047834_ereal )
     => ? [F3: nat > extended_ereal] :
          ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal @ F3 )
          & ( ord_le1644982726543182158_ereal @ ( image_4309273772856505399_ereal @ F3 @ top_top_set_nat ) @ A )
          & ( ( comple8415311339701865915_ereal @ A )
            = ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F3 @ top_top_set_nat ) ) ) ) ) ).

% Sup_countable_SUP
thf(fact_1161_ereal__Inf__uminus__image__eq,axiom,
    ! [S: set_Extended_ereal] :
      ( ( comple3556804143462414037_ereal @ ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ S ) )
      = ( uminus27091377158695749_ereal @ ( comple8415311339701865915_ereal @ S ) ) ) ).

% ereal_Inf_uminus_image_eq
thf(fact_1162_ereal__Sup__uminus__image__eq,axiom,
    ! [S: set_Extended_ereal] :
      ( ( comple8415311339701865915_ereal @ ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ S ) )
      = ( uminus27091377158695749_ereal @ ( comple3556804143462414037_ereal @ S ) ) ) ).

% ereal_Sup_uminus_image_eq
thf(fact_1163_ereal__range__uminus,axiom,
    ( ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ top_to5683747375963461374_ereal )
    = top_to5683747375963461374_ereal ) ).

% ereal_range_uminus
thf(fact_1164_ereal__minus__minus__image,axiom,
    ! [S: set_Extended_ereal] :
      ( ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ S ) )
      = S ) ).

% ereal_minus_minus_image
thf(fact_1165_ereal__uminus__complement,axiom,
    ! [S: set_Extended_ereal] :
      ( ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ ( uminus5895154729394068773_ereal @ S ) )
      = ( uminus5895154729394068773_ereal @ ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ S ) ) ) ).

% ereal_uminus_complement
thf(fact_1166_ereal__complete__uminus__eq,axiom,
    ! [S: set_Extended_ereal,X: extended_ereal] :
      ( ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ S ) )
           => ( ord_le1083603963089353582_ereal @ X2 @ X ) )
        & ! [Z2: extended_ereal] :
            ( ! [X2: extended_ereal] :
                ( ( member2350847679896131959_ereal @ X2 @ ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ S ) )
               => ( ord_le1083603963089353582_ereal @ X2 @ Z2 ) )
           => ( ord_le1083603963089353582_ereal @ X @ Z2 ) ) )
      = ( ! [X2: extended_ereal] :
            ( ( member2350847679896131959_ereal @ X2 @ S )
           => ( ord_le1083603963089353582_ereal @ ( uminus27091377158695749_ereal @ X ) @ X2 ) )
        & ! [Z2: extended_ereal] :
            ( ! [X2: extended_ereal] :
                ( ( member2350847679896131959_ereal @ X2 @ S )
               => ( ord_le1083603963089353582_ereal @ Z2 @ X2 ) )
           => ( ord_le1083603963089353582_ereal @ Z2 @ ( uminus27091377158695749_ereal @ X ) ) ) ) ) ).

% ereal_complete_uminus_eq
thf(fact_1167_ereal__image__uminus__shift,axiom,
    ! [X5: set_Extended_ereal,Y: set_Extended_ereal] :
      ( ( ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ X5 )
        = Y )
      = ( X5
        = ( image_6042159593519690757_ereal @ uminus27091377158695749_ereal @ Y ) ) ) ).

% ereal_image_uminus_shift
thf(fact_1168_ereal__minus__mono,axiom,
    ! [A: extended_ereal,B2: extended_ereal,D: extended_ereal,C: extended_ereal] :
      ( ( ord_le1083603963089353582_ereal @ A @ B2 )
     => ( ( ord_le1083603963089353582_ereal @ D @ C )
       => ( ord_le1083603963089353582_ereal @ ( minus_2816186181549245109_ereal @ A @ C ) @ ( minus_2816186181549245109_ereal @ B2 @ D ) ) ) ) ).

% ereal_minus_mono
thf(fact_1169_ennreal__Sup__countable__SUP,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ? [F3: nat > extend8495563244428889912nnreal] :
          ( ( monoto2291723841412853873nnreal @ top_top_set_nat @ ord_less_eq_nat @ ord_le3935885782089961368nnreal @ F3 )
          & ( ord_le6787938422905777998nnreal @ ( image_8459861568512453903nnreal @ F3 @ top_top_set_nat ) @ A )
          & ( ( comple6814414086264997003nnreal @ A )
            = ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ F3 @ top_top_set_nat ) ) ) ) ) ).

% ennreal_Sup_countable_SUP
thf(fact_1170_ennreal__Inf__countable__INF,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( A != bot_bo4854962954004695426nnreal )
     => ? [F3: nat > extend8495563244428889912nnreal] :
          ( ( monoto2291723841412853873nnreal @ top_top_set_nat @ ord_less_eq_nat
            @ ^ [X2: extend8495563244428889912nnreal,Y2: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ Y2 @ X2 )
            @ F3 )
          & ( ord_le6787938422905777998nnreal @ ( image_8459861568512453903nnreal @ F3 @ top_top_set_nat ) @ A )
          & ( ( comple7330758040695736817nnreal @ A )
            = ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ F3 @ top_top_set_nat ) ) ) ) ) ).

% ennreal_Inf_countable_INF
thf(fact_1171_diff__diff__cancel,axiom,
    ! [I4: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I4 @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I4 ) )
        = I4 ) ) ).

% diff_diff_cancel
thf(fact_1172_ennreal__minus__eq__top,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A2 @ B )
        = top_to1496364449551166952nnreal )
      = ( A2 = top_to1496364449551166952nnreal ) ) ).

% ennreal_minus_eq_top
thf(fact_1173_ennreal__top__minus,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ top_to1496364449551166952nnreal @ X )
      = top_to1496364449551166952nnreal ) ).

% ennreal_top_minus
thf(fact_1174_ennreal__minus__cancel__iff,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A2 @ B )
        = ( minus_8429688780609304081nnreal @ A2 @ C2 ) )
      = ( ( B = C2 )
        | ( ( ord_le3935885782089961368nnreal @ A2 @ B )
          & ( ord_le3935885782089961368nnreal @ A2 @ C2 ) )
        | ( A2 = top_to1496364449551166952nnreal ) ) ) ).

% ennreal_minus_cancel_iff
thf(fact_1175_ennreal__minus__cancel,axiom,
    ! [C2: extend8495563244428889912nnreal,A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( C2 != top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ A2 @ C2 )
       => ( ( ord_le3935885782089961368nnreal @ B @ C2 )
         => ( ( ( minus_8429688780609304081nnreal @ C2 @ A2 )
              = ( minus_8429688780609304081nnreal @ C2 @ B ) )
           => ( A2 = B ) ) ) ) ) ).

% ennreal_minus_cancel
thf(fact_1176_ennreal__minus__mono,axiom,
    ! [A2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal,D2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A2 @ C2 )
     => ( ( ord_le3935885782089961368nnreal @ D2 @ B )
       => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ ( minus_8429688780609304081nnreal @ C2 @ D2 ) ) ) ) ).

% ennreal_minus_mono
thf(fact_1177_ennreal__mono__minus,axiom,
    ! [C2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,A2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ C2 @ B )
     => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ ( minus_8429688780609304081nnreal @ A2 @ C2 ) ) ) ).

% ennreal_mono_minus
thf(fact_1178_diff__le__self__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ A2 ) ).

% diff_le_self_ennreal
thf(fact_1179_ennreal__diff__le__mono__left,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A2 @ B )
     => ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A2 @ C2 ) @ B ) ) ).

% ennreal_diff_le_mono_left
thf(fact_1180_neq__top__trans,axiom,
    ! [Y4: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( Y4 != top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ X @ Y4 )
       => ( X != top_to1496364449551166952nnreal ) ) ) ).

% neq_top_trans
thf(fact_1181_diff__diff__commute__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ C2 )
      = ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ A2 @ C2 ) @ B ) ) ).

% diff_diff_commute_ennreal
thf(fact_1182_diff__diff__commute__ereal,axiom,
    ! [X: extended_ereal,Y4: extended_ereal,Z: extended_ereal] :
      ( ( minus_2816186181549245109_ereal @ ( minus_2816186181549245109_ereal @ X @ Y4 ) @ Z )
      = ( minus_2816186181549245109_ereal @ ( minus_2816186181549245109_ereal @ X @ Z ) @ Y4 ) ) ).

% diff_diff_commute_ereal
thf(fact_1183_diff__commute,axiom,
    ! [I4: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J2 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I4 @ K ) @ J2 ) ) ).

% diff_commute
thf(fact_1184_diff__le__mono2,axiom,
    ! [M2: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).

% diff_le_mono2
thf(fact_1185_le__diff__iff_H,axiom,
    ! [A2: nat,C2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A2 @ C2 )
     => ( ( ord_less_eq_nat @ B @ C2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A2 ) @ ( minus_minus_nat @ C2 @ B ) )
          = ( ord_less_eq_nat @ B @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_1186_diff__le__self,axiom,
    ! [M2: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N2 ) @ M2 ) ).

% diff_le_self
thf(fact_1187_diff__le__mono,axiom,
    ! [M2: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).

% diff_le_mono
thf(fact_1188_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M2 @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1189_le__diff__iff,axiom,
    ! [K: nat,M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M2 @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_1190_eq__diff__iff,axiom,
    ! [K: nat,M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M2 @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M2 = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_1191_ennreal__SUP__add,axiom,
    ! [F: nat > extend8495563244428889912nnreal,G: nat > extend8495563244428889912nnreal] :
      ( ( monoto2291723841412853873nnreal @ top_top_set_nat @ ord_less_eq_nat @ ord_le3935885782089961368nnreal @ F )
     => ( ( monoto2291723841412853873nnreal @ top_top_set_nat @ ord_less_eq_nat @ ord_le3935885782089961368nnreal @ G )
       => ( ( comple6814414086264997003nnreal
            @ ( image_8459861568512453903nnreal
              @ ^ [I: nat] : ( plus_p1859984266308609217nnreal @ ( F @ I ) @ ( G @ I ) )
              @ top_top_set_nat ) )
          = ( plus_p1859984266308609217nnreal @ ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) ) @ ( comple6814414086264997003nnreal @ ( image_8459861568512453903nnreal @ G @ top_top_set_nat ) ) ) ) ) ) ).

% ennreal_SUP_add
thf(fact_1192_ereal__minus_I4_J,axiom,
    ! [X: extended_ereal] :
      ( ( minus_2816186181549245109_ereal @ extend1530274965995635425_ereal @ X )
      = extend1530274965995635425_ereal ) ).

% ereal_minus(4)
thf(fact_1193_ennreal__add__eq__top,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( plus_p1859984266308609217nnreal @ A2 @ B )
        = top_to1496364449551166952nnreal )
      = ( ( A2 = top_to1496364449551166952nnreal )
        | ( B = top_to1496364449551166952nnreal ) ) ) ).

% ennreal_add_eq_top
thf(fact_1194_add__top__left__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ top_to1496364449551166952nnreal @ X )
      = top_to1496364449551166952nnreal ) ).

% add_top_left_ennreal
thf(fact_1195_add__top__right__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( plus_p1859984266308609217nnreal @ X @ top_to1496364449551166952nnreal )
      = top_to1496364449551166952nnreal ) ).

% add_top_right_ennreal
thf(fact_1196_ereal__minus_I5_J,axiom,
    ( ( minus_2816186181549245109_ereal @ ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) @ extend1530274965995635425_ereal )
    = ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) ) ).

% ereal_minus(5)
thf(fact_1197_add__diff__eq__iff__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ( ( plus_p1859984266308609217nnreal @ X @ ( minus_8429688780609304081nnreal @ Y4 @ X ) )
        = Y4 )
      = ( ord_le3935885782089961368nnreal @ X @ Y4 ) ) ).

% add_diff_eq_iff_ennreal
thf(fact_1198_ennreal__add__diff__cancel__right,axiom,
    ! [Y4: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( Y4 != top_to1496364449551166952nnreal )
     => ( ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Y4 ) @ Y4 )
        = X ) ) ).

% ennreal_add_diff_cancel_right
thf(fact_1199_ennreal__add__diff__cancel__left,axiom,
    ! [Y4: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( Y4 != top_to1496364449551166952nnreal )
     => ( ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ Y4 @ X ) @ Y4 )
        = X ) ) ).

% ennreal_add_diff_cancel_left
thf(fact_1200_diff__add__eq__diff__diff__swap__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,Z: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ X @ ( plus_p1859984266308609217nnreal @ Y4 @ Z ) )
      = ( minus_8429688780609304081nnreal @ ( minus_8429688780609304081nnreal @ X @ Y4 ) @ Z ) ) ).

% diff_add_eq_diff_diff_swap_ennreal
thf(fact_1201_Sup__eq__PInfty,axiom,
    ! [S: set_Extended_ereal] :
      ( ( member2350847679896131959_ereal @ extend1530274965995635425_ereal @ S )
     => ( ( comple8415311339701865915_ereal @ S )
        = extend1530274965995635425_ereal ) ) ).

% Sup_eq_PInfty
thf(fact_1202_top__ereal__def,axiom,
    top_to6662034908053899550_ereal = extend1530274965995635425_ereal ).

% top_ereal_def
thf(fact_1203_add__diff__inverse__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ X @ Y4 )
     => ( ( plus_p1859984266308609217nnreal @ X @ ( minus_8429688780609304081nnreal @ Y4 @ X ) )
        = Y4 ) ) ).

% add_diff_inverse_ennreal
thf(fact_1204_diff__add__cancel__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A2 @ B )
     => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B @ A2 ) @ A2 )
        = B ) ) ).

% diff_add_cancel_ennreal
thf(fact_1205_diff__add__assoc2__ennreal,axiom,
    ! [B: extend8495563244428889912nnreal,A2: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ B @ A2 )
     => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ C2 )
        = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ A2 @ C2 ) @ B ) ) ) ).

% diff_add_assoc2_ennreal
thf(fact_1206_ennreal__diff__add__assoc,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A2 @ B )
     => ( ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ C2 @ B ) @ A2 )
        = ( plus_p1859984266308609217nnreal @ C2 @ ( minus_8429688780609304081nnreal @ B @ A2 ) ) ) ) ).

% ennreal_diff_add_assoc
thf(fact_1207_ennreal__ineq__diff__add,axiom,
    ! [B: extend8495563244428889912nnreal,A2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ B @ A2 )
     => ( A2
        = ( plus_p1859984266308609217nnreal @ B @ ( minus_8429688780609304081nnreal @ A2 @ B ) ) ) ) ).

% ennreal_ineq_diff_add
thf(fact_1208_diff__add__self__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( ord_le3935885782089961368nnreal @ A2 @ B )
       => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B @ A2 ) @ A2 )
          = B ) )
      & ( ~ ( ord_le3935885782089961368nnreal @ A2 @ B )
       => ( ( plus_p1859984266308609217nnreal @ ( minus_8429688780609304081nnreal @ B @ A2 ) @ A2 )
          = A2 ) ) ) ).

% diff_add_self_ennreal
thf(fact_1209_add__diff__self__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( ord_le3935885782089961368nnreal @ A2 @ B )
       => ( ( plus_p1859984266308609217nnreal @ A2 @ ( minus_8429688780609304081nnreal @ B @ A2 ) )
          = B ) )
      & ( ~ ( ord_le3935885782089961368nnreal @ A2 @ B )
       => ( ( plus_p1859984266308609217nnreal @ A2 @ ( minus_8429688780609304081nnreal @ B @ A2 ) )
          = A2 ) ) ) ).

% add_diff_self_ennreal
thf(fact_1210_add__diff__le__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ A2 @ B ) @ C2 ) @ ( plus_p1859984266308609217nnreal @ A2 @ ( minus_8429688780609304081nnreal @ B @ C2 ) ) ) ).

% add_diff_le_ennreal
thf(fact_1211_add__diff__eq__ennreal,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y4 )
     => ( ( plus_p1859984266308609217nnreal @ X @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
        = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Y4 ) @ Z ) ) ) ).

% add_diff_eq_ennreal
thf(fact_1212_diff__diff__ennreal_H,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y4 )
     => ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) @ X )
       => ( ( minus_8429688780609304081nnreal @ X @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
          = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Z ) @ Y4 ) ) ) ) ).

% diff_diff_ennreal'
thf(fact_1213_ennreal__minus__le__iff,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ C2 )
      = ( ( ord_le3935885782089961368nnreal @ A2 @ ( plus_p1859984266308609217nnreal @ B @ C2 ) )
        & ( ( ( A2 = top_to1496364449551166952nnreal )
            & ( B = top_to1496364449551166952nnreal ) )
         => ( C2 = top_to1496364449551166952nnreal ) ) ) ) ).

% ennreal_minus_le_iff
thf(fact_1214_ereal__minus__eq__PInfty__iff,axiom,
    ! [X: extended_ereal,Y4: extended_ereal] :
      ( ( ( minus_2816186181549245109_ereal @ X @ Y4 )
        = extend1530274965995635425_ereal )
      = ( ( Y4
          = ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
        | ( X = extend1530274965995635425_ereal ) ) ) ).

% ereal_minus_eq_PInfty_iff
thf(fact_1215_ereal__minus__eq__minus__iff,axiom,
    ! [A2: extended_ereal,B: extended_ereal,C2: extended_ereal] :
      ( ( ( minus_2816186181549245109_ereal @ A2 @ B )
        = ( minus_2816186181549245109_ereal @ A2 @ C2 ) )
      = ( ( B = C2 )
        | ( A2 = extend1530274965995635425_ereal )
        | ( ( A2
            = ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
          & ( B
           != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
          & ( C2
           != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) ) ) ) ) ).

% ereal_minus_eq_minus_iff
thf(fact_1216_ereal__minus__diff__eq,axiom,
    ! [X: extended_ereal,Y4: extended_ereal] :
      ( ( ( X = extend1530274965995635425_ereal )
       => ( Y4 != extend1530274965995635425_ereal ) )
     => ( ( ( X
            = ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
         => ( Y4
           != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) ) )
       => ( ( uminus27091377158695749_ereal @ ( minus_2816186181549245109_ereal @ X @ Y4 ) )
          = ( minus_2816186181549245109_ereal @ Y4 @ X ) ) ) ) ).

% ereal_minus_diff_eq
thf(fact_1217_INF__ennreal__add__const,axiom,
    ! [F: nat > extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [I: nat] : ( plus_p1859984266308609217nnreal @ ( F @ I ) @ C2 )
          @ top_top_set_nat ) )
      = ( plus_p1859984266308609217nnreal @ ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) ) @ C2 ) ) ).

% INF_ennreal_add_const
thf(fact_1218_INF__ennreal__const__add,axiom,
    ! [C2: extend8495563244428889912nnreal,F: nat > extend8495563244428889912nnreal] :
      ( ( comple7330758040695736817nnreal
        @ ( image_8459861568512453903nnreal
          @ ^ [I: nat] : ( plus_p1859984266308609217nnreal @ C2 @ ( F @ I ) )
          @ top_top_set_nat ) )
      = ( plus_p1859984266308609217nnreal @ C2 @ ( comple7330758040695736817nnreal @ ( image_8459861568512453903nnreal @ F @ top_top_set_nat ) ) ) ) ).

% INF_ennreal_const_add
thf(fact_1219_diff__diff__left,axiom,
    ! [I4: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J2 ) @ K )
      = ( minus_minus_nat @ I4 @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% diff_diff_left
thf(fact_1220_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J2: nat,I4: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( plus_plus_nat @ I4 @ ( minus_minus_nat @ J2 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I4 @ J2 ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1221_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J2: nat,I4: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I4 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I4 ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1222_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J2: nat,I4: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ I4 @ ( minus_minus_nat @ J2 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I4 @ K ) @ J2 ) ) ) ).

% Nat.diff_diff_right
thf(fact_1223_ereal__minus_I6_J,axiom,
    ! [X: extended_ereal,Y4: extended_ereal] :
      ( ( minus_2816186181549245109_ereal @ X @ ( uminus27091377158695749_ereal @ Y4 ) )
      = ( plus_p7876563987511257093_ereal @ X @ Y4 ) ) ).

% ereal_minus(6)
thf(fact_1224_ereal__diff__add__assoc2,axiom,
    ! [X: extended_ereal,Y4: extended_ereal,Z: extended_ereal] :
      ( ( minus_2816186181549245109_ereal @ ( plus_p7876563987511257093_ereal @ X @ Y4 ) @ Z )
      = ( plus_p7876563987511257093_ereal @ ( minus_2816186181549245109_ereal @ X @ Z ) @ Y4 ) ) ).

% ereal_diff_add_assoc2
thf(fact_1225_diff__add__eq__ereal,axiom,
    ! [A2: extended_ereal,B: extended_ereal,C2: extended_ereal] :
      ( ( plus_p7876563987511257093_ereal @ ( minus_2816186181549245109_ereal @ A2 @ B ) @ C2 )
      = ( minus_2816186181549245109_ereal @ ( plus_p7876563987511257093_ereal @ A2 @ C2 ) @ B ) ) ).

% diff_add_eq_ereal
thf(fact_1226_add__diff__eq__ereal,axiom,
    ! [X: extended_ereal,Y4: extended_ereal,Z: extended_ereal] :
      ( ( plus_p7876563987511257093_ereal @ X @ ( minus_2816186181549245109_ereal @ Y4 @ Z ) )
      = ( minus_2816186181549245109_ereal @ ( plus_p7876563987511257093_ereal @ X @ Y4 ) @ Z ) ) ).

% add_diff_eq_ereal
thf(fact_1227_Nat_Odiff__cancel,axiom,
    ! [K: nat,M2: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( minus_minus_nat @ M2 @ N2 ) ) ).

% Nat.diff_cancel
thf(fact_1228_diff__cancel2,axiom,
    ! [M2: nat,K: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N2 @ K ) )
      = ( minus_minus_nat @ M2 @ N2 ) ) ).

% diff_cancel2
thf(fact_1229_diff__add__inverse,axiom,
    ! [N2: nat,M2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M2 ) @ N2 )
      = M2 ) ).

% diff_add_inverse
thf(fact_1230_diff__add__inverse2,axiom,
    ! [M2: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N2 ) @ N2 )
      = M2 ) ).

% diff_add_inverse2
thf(fact_1231_le__diff__conv,axiom,
    ! [J2: nat,K: nat,I4: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J2 @ K ) @ I4 )
      = ( ord_less_eq_nat @ J2 @ ( plus_plus_nat @ I4 @ K ) ) ) ).

% le_diff_conv
thf(fact_1232_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J2: nat,I4: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( ord_less_eq_nat @ I4 @ ( minus_minus_nat @ J2 @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ K ) @ J2 ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1233_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J2: nat,I4: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I4 @ J2 ) @ K )
        = ( plus_plus_nat @ I4 @ ( minus_minus_nat @ J2 @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1234_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J2: nat,I4: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I4 ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I4 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1235_Nat_Ole__imp__diff__is__add,axiom,
    ! [I4: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I4 @ J2 )
     => ( ( ( minus_minus_nat @ J2 @ I4 )
          = K )
        = ( J2
          = ( plus_plus_nat @ K @ I4 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1236_minus__ereal__def,axiom,
    ( minus_2816186181549245109_ereal
    = ( ^ [X2: extended_ereal,Y2: extended_ereal] : ( plus_p7876563987511257093_ereal @ X2 @ ( uminus27091377158695749_ereal @ Y2 ) ) ) ) ).

% minus_ereal_def
thf(fact_1237_ereal__add__uminus__conv__diff,axiom,
    ! [X: extended_ereal,Y4: extended_ereal] :
      ( ( plus_p7876563987511257093_ereal @ ( uminus27091377158695749_ereal @ X ) @ Y4 )
      = ( minus_2816186181549245109_ereal @ Y4 @ X ) ) ).

% ereal_add_uminus_conv_diff
thf(fact_1238_ereal__ineq__diff__add,axiom,
    ! [B: extended_ereal,A2: extended_ereal] :
      ( ( B
       != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
     => ( ( ord_le1083603963089353582_ereal @ B @ A2 )
       => ( A2
          = ( plus_p7876563987511257093_ereal @ B @ ( minus_2816186181549245109_ereal @ A2 @ B ) ) ) ) ) ).

% ereal_ineq_diff_add
thf(fact_1239_INF__ereal__add,axiom,
    ! [F: nat > extended_ereal,G: nat > extended_ereal] :
      ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat
        @ ^ [X2: extended_ereal,Y2: extended_ereal] : ( ord_le1083603963089353582_ereal @ Y2 @ X2 )
        @ F )
     => ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat
          @ ^ [X2: extended_ereal,Y2: extended_ereal] : ( ord_le1083603963089353582_ereal @ Y2 @ X2 )
          @ G )
       => ( ! [I3: nat] :
              ( ( F @ I3 )
             != extend1530274965995635425_ereal )
         => ( ! [I3: nat] :
                ( ( G @ I3 )
               != extend1530274965995635425_ereal )
           => ( ( comple3556804143462414037_ereal
                @ ( image_4309273772856505399_ereal
                  @ ^ [I: nat] : ( plus_p7876563987511257093_ereal @ ( F @ I ) @ ( G @ I ) )
                  @ top_top_set_nat ) )
              = ( plus_p7876563987511257093_ereal @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) ) @ ( comple3556804143462414037_ereal @ ( image_4309273772856505399_ereal @ G @ top_top_set_nat ) ) ) ) ) ) ) ) ).

% INF_ereal_add
thf(fact_1240_SUP__ereal__add,axiom,
    ! [F: nat > extended_ereal,G: nat > extended_ereal] :
      ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal @ F )
     => ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal @ G )
       => ( ! [I3: nat] :
              ( ( F @ I3 )
             != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
         => ( ! [I3: nat] :
                ( ( G @ I3 )
               != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
           => ( ( comple8415311339701865915_ereal
                @ ( image_4309273772856505399_ereal
                  @ ^ [I: nat] : ( plus_p7876563987511257093_ereal @ ( F @ I ) @ ( G @ I ) )
                  @ top_top_set_nat ) )
              = ( plus_p7876563987511257093_ereal @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) ) @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ G @ top_top_set_nat ) ) ) ) ) ) ) ) ).

% SUP_ereal_add
thf(fact_1241_SUP__ereal__add__pos,axiom,
    ! [F: nat > extended_ereal,G: nat > extended_ereal] :
      ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal @ F )
     => ( ( monoto8452838292781035605_ereal @ top_top_set_nat @ ord_less_eq_nat @ ord_le1083603963089353582_ereal @ G )
       => ( ! [I3: nat] : ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( F @ I3 ) )
         => ( ! [I3: nat] : ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( G @ I3 ) )
           => ( ( comple8415311339701865915_ereal
                @ ( image_4309273772856505399_ereal
                  @ ^ [I: nat] : ( plus_p7876563987511257093_ereal @ ( F @ I ) @ ( G @ I ) )
                  @ top_top_set_nat ) )
              = ( plus_p7876563987511257093_ereal @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ F @ top_top_set_nat ) ) @ ( comple8415311339701865915_ereal @ ( image_4309273772856505399_ereal @ G @ top_top_set_nat ) ) ) ) ) ) ) ) ).

% SUP_ereal_add_pos
thf(fact_1242_ereal__minus_I7_J,axiom,
    ! [X: extended_ereal] :
      ( ( minus_2816186181549245109_ereal @ X @ zero_z2744965634713055877_ereal )
      = X ) ).

% ereal_minus(7)
thf(fact_1243_ereal__minus_I8_J,axiom,
    ! [X: extended_ereal] :
      ( ( minus_2816186181549245109_ereal @ zero_z2744965634713055877_ereal @ X )
      = ( uminus27091377158695749_ereal @ X ) ) ).

% ereal_minus(8)
thf(fact_1244_ereal__diff__le__mono__left,axiom,
    ! [X: extended_ereal,Z: extended_ereal,Y4: extended_ereal] :
      ( ( ord_le1083603963089353582_ereal @ X @ Z )
     => ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ Y4 )
       => ( ord_le1083603963089353582_ereal @ ( minus_2816186181549245109_ereal @ X @ Y4 ) @ Z ) ) ) ).

% ereal_diff_le_mono_left
thf(fact_1245_ereal__diff__positive,axiom,
    ! [A2: extended_ereal,B: extended_ereal] :
      ( ( ord_le1083603963089353582_ereal @ A2 @ B )
     => ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( minus_2816186181549245109_ereal @ B @ A2 ) ) ) ).

% ereal_diff_positive
thf(fact_1246_ereal__diff__le__self,axiom,
    ! [Y4: extended_ereal,X: extended_ereal] :
      ( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ Y4 )
     => ( ord_le1083603963089353582_ereal @ ( minus_2816186181549245109_ereal @ X @ Y4 ) @ X ) ) ).

% ereal_diff_le_self
thf(fact_1247_ereal__diff__nonpos,axiom,
    ! [A2: extended_ereal,B: extended_ereal] :
      ( ( ord_le1083603963089353582_ereal @ A2 @ B )
     => ( ( ( A2 = extend1530274965995635425_ereal )
         => ( B != extend1530274965995635425_ereal ) )
       => ( ( ( A2
              = ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) )
           => ( B
             != ( uminus27091377158695749_ereal @ extend1530274965995635425_ereal ) ) )
         => ( ord_le1083603963089353582_ereal @ ( minus_2816186181549245109_ereal @ A2 @ B ) @ zero_z2744965634713055877_ereal ) ) ) ) ).

% ereal_diff_nonpos
thf(fact_1248_diff__self__eq__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ M2 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1249_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1250_ennreal__minus__zero,axiom,
    ! [A2: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ A2 @ zero_z7100319975126383169nnreal )
      = A2 ) ).

% ennreal_minus_zero
thf(fact_1251_zero__minus__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal] :
      ( ( minus_8429688780609304081nnreal @ zero_z7100319975126383169nnreal @ A2 )
      = zero_z7100319975126383169nnreal ) ).

% zero_minus_ennreal
thf(fact_1252_diff__is__0__eq_H,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ( minus_minus_nat @ M2 @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1253_diff__is__0__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M2 @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% diff_is_0_eq
thf(fact_1254_ennreal__diff__self,axiom,
    ! [A2: extend8495563244428889912nnreal] :
      ( ( A2 != top_to1496364449551166952nnreal )
     => ( ( minus_8429688780609304081nnreal @ A2 @ A2 )
        = zero_z7100319975126383169nnreal ) ) ).

% ennreal_diff_self
thf(fact_1255_diff__add__0,axiom,
    ! [N2: nat,M2: nat] :
      ( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M2 ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1256_diffs0__imp__equal,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M2 @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M2 )
          = zero_zero_nat )
       => ( M2 = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_1257_minus__nat_Odiff__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% minus_nat.diff_0
thf(fact_1258_ennreal__zero__neq__top,axiom,
    zero_z7100319975126383169nnreal != top_to1496364449551166952nnreal ).

% ennreal_zero_neq_top
thf(fact_1259_ennreal__minus__eq__0,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A2 @ B )
        = zero_z7100319975126383169nnreal )
     => ( ord_le3935885782089961368nnreal @ A2 @ B ) ) ).

% ennreal_minus_eq_0
thf(fact_1260_minus__top__ennreal,axiom,
    ! [X: extend8495563244428889912nnreal] :
      ( ( ( X = top_to1496364449551166952nnreal )
       => ( ( minus_8429688780609304081nnreal @ X @ top_to1496364449551166952nnreal )
          = top_to1496364449551166952nnreal ) )
      & ( ( X != top_to1496364449551166952nnreal )
       => ( ( minus_8429688780609304081nnreal @ X @ top_to1496364449551166952nnreal )
          = zero_z7100319975126383169nnreal ) ) ) ).

% minus_top_ennreal
thf(fact_1261_diff__diff__ennreal_H_H,axiom,
    ! [Z: extend8495563244428889912nnreal,Y4: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ Z @ Y4 )
     => ( ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) @ X )
         => ( ( minus_8429688780609304081nnreal @ X @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
            = ( minus_8429688780609304081nnreal @ ( plus_p1859984266308609217nnreal @ X @ Z ) @ Y4 ) ) )
        & ( ~ ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) @ X )
         => ( ( minus_8429688780609304081nnreal @ X @ ( minus_8429688780609304081nnreal @ Y4 @ Z ) )
            = zero_z7100319975126383169nnreal ) ) ) ) ).

% diff_diff_ennreal''
thf(fact_1262_ennreal__le__minus__iff,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ A2 @ ( minus_8429688780609304081nnreal @ B @ C2 ) )
      = ( ( ord_le3935885782089961368nnreal @ ( plus_p1859984266308609217nnreal @ A2 @ C2 ) @ B )
        | ( ( A2 = zero_z7100319975126383169nnreal )
          & ( ord_le3935885782089961368nnreal @ B @ C2 ) ) ) ) ).

% ennreal_le_minus_iff
thf(fact_1263_Sup__nat__empty,axiom,
    ( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% Sup_nat_empty
thf(fact_1264_ennreal__add__less__top,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ ( plus_p1859984266308609217nnreal @ A2 @ B ) @ top_to1496364449551166952nnreal )
      = ( ( ord_le7381754540660121996nnreal @ A2 @ top_to1496364449551166952nnreal )
        & ( ord_le7381754540660121996nnreal @ B @ top_to1496364449551166952nnreal ) ) ) ).

% ennreal_add_less_top
thf(fact_1265_diff__gr0__ennreal,axiom,
    ! [B: extend8495563244428889912nnreal,A2: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ B @ A2 )
     => ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) ) ) ).

% diff_gr0_ennreal
thf(fact_1266_ennreal__zero__less__top,axiom,
    ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ top_to1496364449551166952nnreal ).

% ennreal_zero_less_top
thf(fact_1267_ennreal__between,axiom,
    ! [E: extend8495563244428889912nnreal,X: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ E )
     => ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ X )
       => ( ( ord_le7381754540660121996nnreal @ X @ top_to1496364449551166952nnreal )
         => ( ord_le7381754540660121996nnreal @ ( minus_8429688780609304081nnreal @ X @ E ) @ X ) ) ) ) ).

% ennreal_between
thf(fact_1268_ennreal__minus__pos__iff,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( ord_le7381754540660121996nnreal @ A2 @ top_to1496364449551166952nnreal )
        | ( ord_le7381754540660121996nnreal @ B @ top_to1496364449551166952nnreal ) )
     => ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) )
       => ( ord_le7381754540660121996nnreal @ B @ A2 ) ) ) ).

% ennreal_minus_pos_iff
thf(fact_1269_diff__gt__0__iff__gt__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) )
      = ( ( ( A2 = top_to1496364449551166952nnreal )
          & ( B = top_to1496364449551166952nnreal ) )
        | ( ord_le7381754540660121996nnreal @ B @ A2 ) ) ) ).

% diff_gt_0_iff_gt_ennreal
thf(fact_1270_diff__less__top__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ top_to1496364449551166952nnreal )
      = ( ord_le7381754540660121996nnreal @ A2 @ top_to1496364449551166952nnreal ) ) ).

% diff_less_top_ennreal
thf(fact_1271_ennreal__mono__minus__cancel,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal] :
      ( ( ord_le3935885782089961368nnreal @ ( minus_8429688780609304081nnreal @ A2 @ B ) @ ( minus_8429688780609304081nnreal @ A2 @ C2 ) )
     => ( ( ord_le7381754540660121996nnreal @ A2 @ top_to1496364449551166952nnreal )
       => ( ( ord_le3935885782089961368nnreal @ B @ A2 )
         => ( ( ord_le3935885782089961368nnreal @ C2 @ A2 )
           => ( ord_le3935885782089961368nnreal @ C2 @ B ) ) ) ) ) ).

% ennreal_mono_minus_cancel
thf(fact_1272_diff__eq__0__iff__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ( minus_8429688780609304081nnreal @ A2 @ B )
        = zero_z7100319975126383169nnreal )
      = ( ( ord_le7381754540660121996nnreal @ A2 @ top_to1496364449551166952nnreal )
        & ( ord_le3935885782089961368nnreal @ A2 @ B ) ) ) ).

% diff_eq_0_iff_ennreal
thf(fact_1273_diff__eq__0__ennreal,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le7381754540660121996nnreal @ A2 @ top_to1496364449551166952nnreal )
     => ( ( ord_le3935885782089961368nnreal @ A2 @ B )
       => ( ( minus_8429688780609304081nnreal @ A2 @ B )
          = zero_z7100319975126383169nnreal ) ) ) ).

% diff_eq_0_ennreal
thf(fact_1274_less__diff__eq__ennreal,axiom,
    ! [B: extend8495563244428889912nnreal,C2: extend8495563244428889912nnreal,A2: extend8495563244428889912nnreal] :
      ( ( ( ord_le7381754540660121996nnreal @ B @ top_to1496364449551166952nnreal )
        | ( ord_le7381754540660121996nnreal @ C2 @ top_to1496364449551166952nnreal ) )
     => ( ( ord_le7381754540660121996nnreal @ A2 @ ( minus_8429688780609304081nnreal @ B @ C2 ) )
        = ( ord_le7381754540660121996nnreal @ ( plus_p1859984266308609217nnreal @ A2 @ C2 ) @ B ) ) ) ).

% less_diff_eq_ennreal

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( collect_b
      @ ^ [Uu: b] :
        ? [X2: a] :
          ( ( Uu
            = ( f @ X2 ) )
          & ( p @ X2 ) ) )
    = ( image_c_b @ h
      @ ( collect_c
        @ ^ [Uu: c] :
          ? [X2: a] :
            ( ( Uu
              = ( g @ X2 ) )
            & ( p @ X2 ) ) ) ) ) ).

%------------------------------------------------------------------------------