TPTP Problem File: SLH0553^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Query_Optimization/0014_IKKBZ_Examples/prob_00091_003527__16016980_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1620 ( 592 unt; 337 typ;   0 def)
%            Number of atoms       : 3741 (1706 equ;   0 cnn)
%            Maximal formula atoms :   11 (   2 avg)
%            Number of connectives : 13264 ( 537   ~;  46   |; 504   &;10819   @)
%                                         (   0 <=>;1358  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   21 (   6 avg)
%            Number of types       :   39 (  38 usr)
%            Number of type conns  :  848 ( 848   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  302 ( 299 usr;  18 con; 0-5 aty)
%            Number of variables   : 3753 ( 187   ^;3169   !; 397   ?;3753   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:08:38.963
%------------------------------------------------------------------------------
% Could-be-implicit typings (38)
thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__List__Olist_Itf__b_J_J_J_J,type,
    produc272433356463431595list_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__List__Olist_Itf__b_J_J_J,type,
    produc8766925488660474953list_b: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__Product____Type__Oprod_Itf__a_Mtf__a_J_Mtf__b_Mt__Product____Type__Ounit_J,type,
    pre_pr2636440668751979308t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__Product____Type__Oprod_Itf__a_Mtf__a_J_Mtf__a_Mt__Product____Type__Ounit_J,type,
    pre_pr7908921069988166637t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_Mt__Product____Type__Ounit_J,type,
    pre_pr1927278062479000516t_unit: $tType ).

thf(ty_n_t__List__Olist_It__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_J,type,
    list_p1584440430088372499t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__b_Mt__List__Olist_Itf__a_J_Mt__Product____Type__Ounit_J,type,
    pre_pr7651200976661991615t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mt__List__Olist_Itf__a_J_Mt__Product____Type__Ounit_J,type,
    pre_pr3711252390037155390t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__List__Olist_Itf__a_J_Mtf__b_Mt__Product____Type__Ounit_J,type,
    pre_pr2882871181989701257t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__List__Olist_Itf__a_J_Mtf__a_Mt__Product____Type__Ounit_J,type,
    pre_pr8155351583225888586t_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_J,type,
    set_pr5411798346947241657t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__Set__Oset_Itf__a_J_Mtf__b_Mt__Product____Type__Ounit_J,type,
    pre_pr7598855865028783971t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_It__Set__Oset_Itf__a_J_Mtf__a_Mt__Product____Type__Ounit_J,type,
    pre_pr3647964229410195492t_unit: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__a_Mt__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mtf__a_J_J,type,
    produc7945266988514096265st_b_a: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__b_Mtf__b_Mt__Product____Type__Ounit_J,type,
    pre_pr7945120425549786372t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__b_Mtf__a_Mt__Product____Type__Ounit_J,type,
    pre_pr3994228789931197893t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    pre_pr7278220950009878019t_unit: $tType ).

thf(ty_n_t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__a_Mt__Product____Type__Ounit_J,type,
    pre_pr3327329314391289540t_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J_J,type,
    set_Pr4048851178543822343list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__List__Olist_Itf__b_J_J,type,
    produc3963297410138542439list_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J,type,
    produc9164743771328383783list_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mtf__a_J,type,
    produc1943741644644106336st_b_a: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    list_P1396940483166286381od_a_a: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    set_Product_prod_a_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    product_prod_a_a: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__b_J_J,type,
    list_list_b: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    list_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    set_list_a: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_Itf__a_J_J,type,
    list_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__List__Olist_Itf__b_J,type,
    list_b: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (299)
thf(sy_c_Arc__Walk_Opre__digraph_Oapath_001t__List__Olist_Itf__a_J_001tf__b,type,
    arc_pr85741862633711036st_a_b: pre_pr2882871181989701257t_unit > list_a > list_b > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oapath_001tf__a_001tf__b,type,
    arc_pre_apath_a_b: pre_pr7278220950009878019t_unit > a > list_b > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001t__List__Olist_Itf__a_J_001tf__a,type,
    arc_pr6214585750886380799st_a_a: pre_pr8155351583225888586t_unit > list_a > list_a > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001t__List__Olist_Itf__a_J_001tf__b,type,
    arc_pr6214585750886380800st_a_b: pre_pr2882871181989701257t_unit > list_a > list_b > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001t__Set__Oset_Itf__a_J_001tf__a,type,
    arc_pr441381926571271589et_a_a: pre_pr3647964229410195492t_unit > set_a > list_a > set_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001t__Set__Oset_Itf__a_J_001tf__b,type,
    arc_pr441381926571271590et_a_b: pre_pr7598855865028783971t_unit > set_a > list_b > set_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001tf__a_001t__List__Olist_Itf__a_J,type,
    arc_pr8103821506715646987list_a: pre_pr3711252390037155390t_unit > a > list_list_a > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001tf__a_001tf__a,type,
    arc_pre_awalk_a_a: pre_pr3327329314391289540t_unit > a > list_a > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001tf__a_001tf__b,type,
    arc_pre_awalk_a_b: pre_pr7278220950009878019t_unit > a > list_b > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001tf__b_001t__List__Olist_Itf__a_J,type,
    arc_pr368411507155669706list_a: pre_pr7651200976661991615t_unit > b > list_list_a > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001tf__b_001tf__a,type,
    arc_pre_awalk_b_a: pre_pr3994228789931197893t_unit > b > list_a > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk_001tf__b_001tf__b,type,
    arc_pre_awalk_b_b: pre_pr7945120425549786372t_unit > b > list_b > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    arc_pr5757367447804505021list_a: pre_pr1927278062479000516t_unit > list_a > list_list_a > list_list_a ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001t__List__Olist_Itf__a_J_001tf__a,type,
    arc_pr6350002437206376375st_a_a: pre_pr8155351583225888586t_unit > list_a > list_a > list_list_a ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001t__List__Olist_Itf__a_J_001tf__b,type,
    arc_pr6350002437206376376st_a_b: pre_pr2882871181989701257t_unit > list_a > list_b > list_list_a ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001tf__a_001t__List__Olist_Itf__a_J,type,
    arc_pr8239238193035642563list_a: pre_pr3711252390037155390t_unit > a > list_list_a > list_a ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001tf__a_001tf__a,type,
    arc_pr7493981781705774525ts_a_a: pre_pr3327329314391289540t_unit > a > list_a > list_a ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001tf__a_001tf__b,type,
    arc_pr7493981781705774526ts_a_b: pre_pr7278220950009878019t_unit > a > list_b > list_a ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001tf__b_001t__List__Olist_Itf__a_J,type,
    arc_pr503828193475665282list_a: pre_pr7651200976661991615t_unit > b > list_list_a > list_b ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001tf__b_001tf__a,type,
    arc_pr4706526199733098492ts_b_a: pre_pr3994228789931197893t_unit > b > list_a > list_b ).

thf(sy_c_Arc__Walk_Opre__digraph_Oawalk__verts_001tf__b_001tf__b,type,
    arc_pr4706526199733098493ts_b_b: pre_pr7945120425549786372t_unit > b > list_b > list_b ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001t__List__Olist_Itf__a_J_001tf__a,type,
    arc_pre_cas_list_a_a: pre_pr8155351583225888586t_unit > list_a > list_a > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001t__List__Olist_Itf__a_J_001tf__b,type,
    arc_pre_cas_list_a_b: pre_pr2882871181989701257t_unit > list_a > list_b > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001t__Set__Oset_Itf__a_J_001tf__a,type,
    arc_pre_cas_set_a_a: pre_pr3647964229410195492t_unit > set_a > list_a > set_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001t__Set__Oset_Itf__a_J_001tf__b,type,
    arc_pre_cas_set_a_b: pre_pr7598855865028783971t_unit > set_a > list_b > set_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001tf__a_001t__List__Olist_Itf__a_J,type,
    arc_pre_cas_a_list_a: pre_pr3711252390037155390t_unit > a > list_list_a > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001tf__a_001tf__a,type,
    arc_pre_cas_a_a: pre_pr3327329314391289540t_unit > a > list_a > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001tf__a_001tf__b,type,
    arc_pre_cas_a_b: pre_pr7278220950009878019t_unit > a > list_b > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001tf__b_001t__List__Olist_Itf__a_J,type,
    arc_pre_cas_b_list_a: pre_pr7651200976661991615t_unit > b > list_list_a > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001tf__b_001tf__a,type,
    arc_pre_cas_b_a: pre_pr3994228789931197893t_unit > b > list_a > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocas_001tf__b_001tf__b,type,
    arc_pre_cas_b_b: pre_pr7945120425549786372t_unit > b > list_b > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocycle_001t__List__Olist_Itf__a_J_001tf__b,type,
    arc_pr6335352977596618620st_a_b: pre_pr2882871181989701257t_unit > list_b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocycle_001tf__a_001tf__a,type,
    arc_pre_cycle_a_a: pre_pr3327329314391289540t_unit > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocycle_001tf__a_001tf__b,type,
    arc_pre_cycle_a_b: pre_pr7278220950009878019t_unit > list_b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocycle_001tf__b_001tf__a,type,
    arc_pre_cycle_b_a: pre_pr3994228789931197893t_unit > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Ocycle_001tf__b_001tf__b,type,
    arc_pre_cycle_b_b: pre_pr7945120425549786372t_unit > list_b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    arc_pr8660351327756884897list_a: pre_pr1927278062479000516t_unit > list_a > list_list_a > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001t__List__Olist_Itf__a_J_001tf__a,type,
    arc_pr7309874995902050715st_a_a: pre_pr8155351583225888586t_unit > list_a > list_a > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001t__List__Olist_Itf__a_J_001tf__b,type,
    arc_pr7309874995902050716st_a_b: pre_pr2882871181989701257t_unit > list_a > list_b > list_a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001tf__a_001t__List__Olist_Itf__a_J,type,
    arc_pr9199110751731316903list_a: pre_pr3711252390037155390t_unit > a > list_list_a > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001tf__a_001tf__a,type,
    arc_pre_trail_a_a: pre_pr3327329314391289540t_unit > a > list_a > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001tf__a_001tf__b,type,
    arc_pre_trail_a_b: pre_pr7278220950009878019t_unit > a > list_b > a > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001tf__b_001t__List__Olist_Itf__a_J,type,
    arc_pr1463700752171339622list_a: pre_pr7651200976661991615t_unit > b > list_list_a > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001tf__b_001tf__a,type,
    arc_pre_trail_b_a: pre_pr3994228789931197893t_unit > b > list_a > b > $o ).

thf(sy_c_Arc__Walk_Opre__digraph_Otrail_001tf__b_001tf__b,type,
    arc_pre_trail_b_b: pre_pr7945120425549786372t_unit > b > list_b > b > $o ).

thf(sy_c_Arc__Walk_Owf__digraph_Oawalk__cyc__decomp_001tf__a_001tf__b,type,
    arc_wf4740610840468824943mp_a_b: pre_pr7278220950009878019t_unit > list_b > produc8766925488660474953list_b ).

thf(sy_c_Arc__Walk_Owf__digraph_Oawalk__to__apath_001tf__a_001tf__b,type,
    arc_wf446166946845163101th_a_b: pre_pr7278220950009878019t_unit > list_b > list_b ).

thf(sy_c_Arc__Walk_Owf__digraph_Oclosed__w_001tf__a_001tf__b,type,
    arc_wf_closed_w_a_b: pre_pr7278220950009878019t_unit > list_b > $o ).

thf(sy_c_Arc__Walk_Owf__digraph_Ois__awalk__cyc__decomp_001tf__a_001tf__b,type,
    arc_wf7293661141070756729mp_a_b: pre_pr7278220950009878019t_unit > list_b > produc8766925488660474953list_b > $o ).

thf(sy_c_Bidirected__Digraph_Obidirected__digraph_001tf__a_001tf__b,type,
    bidire6463457107099887885ph_a_b: pre_pr7278220950009878019t_unit > ( b > b ) > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_Itf__a_J,type,
    comple2307003609928055243_set_a: set_set_a > set_a ).

thf(sy_c_Digraph_Oarc__to__ends_001tf__a_001tf__b,type,
    arc_to_ends_a_b: pre_pr7278220950009878019t_unit > b > product_prod_a_a ).

thf(sy_c_Digraph_Oarcs__ends_001t__List__Olist_Itf__a_J_001tf__b,type,
    arcs_ends_list_a_b: pre_pr2882871181989701257t_unit > set_Pr4048851178543822343list_a ).

thf(sy_c_Digraph_Oarcs__ends_001tf__a_001tf__b,type,
    arcs_ends_a_b: pre_pr7278220950009878019t_unit > set_Product_prod_a_a ).

thf(sy_c_Digraph_Oin__arcs_001tf__a_001tf__b,type,
    in_arcs_a_b: pre_pr7278220950009878019t_unit > a > set_b ).

thf(sy_c_Digraph_Oloopfree__digraph_001tf__a_001tf__b,type,
    loopfree_digraph_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph_Onomulti__digraph_001tf__a_001tf__b,type,
    nomulti_digraph_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph_Oout__arcs_001tf__a_001tf__b,type,
    out_arcs_a_b: pre_pr7278220950009878019t_unit > a > set_b ).

thf(sy_c_Digraph_Opre__digraph_Oadd__arc_001tf__a_001tf__b,type,
    pre_add_arc_a_b: pre_pr7278220950009878019t_unit > b > pre_pr7278220950009878019t_unit ).

thf(sy_c_Digraph_Opre__digraph_Oadd__vert_001tf__a_001tf__b,type,
    pre_add_vert_a_b: pre_pr7278220950009878019t_unit > a > pre_pr7278220950009878019t_unit ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J_001t__Product____Type__Ounit,type,
    pre_ar3225631637072446488t_unit: pre_pr1927278062479000516t_unit > set_list_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001t__List__Olist_Itf__a_J_001tf__a_001t__Product____Type__Ounit,type,
    pre_ar8733286783787486494t_unit: pre_pr8155351583225888586t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001t__List__Olist_Itf__a_J_001tf__b_001t__Product____Type__Ounit,type,
    pre_ar3460806382551299165t_unit: pre_pr2882871181989701257t_unit > set_b ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001t__Set__Oset_Itf__a_J_001tf__a_001t__Product____Type__Ounit,type,
    pre_ar4979499625094109304t_unit: pre_pr3647964229410195492t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001t__Set__Oset_Itf__a_J_001tf__b_001t__Product____Type__Ounit,type,
    pre_ar8930391260712697783t_unit: pre_pr7598855865028783971t_unit > set_b ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001tf__a_001t__List__Olist_Itf__a_J_001t__Product____Type__Ounit,type,
    pre_ar4649202011430411538t_unit: pre_pr3711252390037155390t_unit > set_list_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001tf__a_001tf__a_001t__Product____Type__Ounit,type,
    pre_ar6668445444069714712t_unit: pre_pr3327329314391289540t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001tf__a_001tf__b_001t__Product____Type__Ounit,type,
    pre_ar1395965042833527383t_unit: pre_pr7278220950009878019t_unit > set_b ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001tf__b_001t__List__Olist_Itf__a_J_001t__Product____Type__Ounit,type,
    pre_ar405773122724138771t_unit: pre_pr7651200976661991615t_unit > set_list_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001tf__b_001tf__a_001t__Product____Type__Ounit,type,
    pre_ar2913695170082820505t_unit: pre_pr3994228789931197893t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Oarcs_001tf__b_001tf__b_001t__Product____Type__Ounit,type,
    pre_ar6864586805701408984t_unit: pre_pr7945120425549786372t_unit > set_b ).

thf(sy_c_Digraph_Opre__digraph_Odel__arc_001tf__a_001tf__b,type,
    pre_del_arc_a_b: pre_pr7278220950009878019t_unit > b > pre_pr7278220950009878019t_unit ).

thf(sy_c_Digraph_Opre__digraph_Odel__vert_001t__List__Olist_Itf__a_J_001tf__b,type,
    pre_de3896127371068354340st_a_b: pre_pr2882871181989701257t_unit > list_a > pre_pr2882871181989701257t_unit ).

thf(sy_c_Digraph_Opre__digraph_Odel__vert_001tf__a_001tf__b,type,
    pre_del_vert_a_b: pre_pr7278220950009878019t_unit > a > pre_pr7278220950009878019t_unit ).

thf(sy_c_Digraph_Opre__digraph_Ohead_001t__List__Olist_Itf__a_J_001tf__b_001t__Product____Type__Ounit,type,
    pre_he1293792728851071230t_unit: pre_pr2882871181989701257t_unit > b > list_a ).

thf(sy_c_Digraph_Opre__digraph_Ohead_001tf__a_001tf__a_001t__Product____Type__Ounit,type,
    pre_he1285395828689812537t_unit: pre_pr3327329314391289540t_unit > a > a ).

thf(sy_c_Digraph_Opre__digraph_Ohead_001tf__a_001tf__b_001t__Product____Type__Ounit,type,
    pre_he5236287464308401016t_unit: pre_pr7278220950009878019t_unit > b > a ).

thf(sy_c_Digraph_Opre__digraph_Ohead_001tf__b_001tf__a_001t__Product____Type__Ounit,type,
    pre_he6754017591557694138t_unit: pre_pr3994228789931197893t_unit > a > b ).

thf(sy_c_Digraph_Opre__digraph_Ohead_001tf__b_001tf__b_001t__Product____Type__Ounit,type,
    pre_he1481537190321506809t_unit: pre_pr7945120425549786372t_unit > b > b ).

thf(sy_c_Digraph_Opre__digraph_Otail_001t__List__Olist_Itf__a_J_001tf__b_001t__Product____Type__Ounit,type,
    pre_ta8437681634429857806t_unit: pre_pr2882871181989701257t_unit > b > list_a ).

thf(sy_c_Digraph_Opre__digraph_Otail_001tf__a_001tf__a_001t__Product____Type__Ounit,type,
    pre_ta980714981981074249t_unit: pre_pr3327329314391289540t_unit > a > a ).

thf(sy_c_Digraph_Opre__digraph_Otail_001tf__a_001tf__b_001t__Product____Type__Ounit,type,
    pre_ta4931606617599662728t_unit: pre_pr7278220950009878019t_unit > b > a ).

thf(sy_c_Digraph_Opre__digraph_Otail_001tf__b_001tf__a_001t__Product____Type__Ounit,type,
    pre_ta6449336744848955850t_unit: pre_pr3994228789931197893t_unit > a > b ).

thf(sy_c_Digraph_Opre__digraph_Otail_001tf__b_001tf__b_001t__Product____Type__Ounit,type,
    pre_ta1176856343612768521t_unit: pre_pr7945120425549786372t_unit > b > b ).

thf(sy_c_Digraph_Opre__digraph_Overts_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J_001t__Product____Type__Ounit,type,
    pre_ve2103353244832951133t_unit: pre_pr1927278062479000516t_unit > set_list_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001t__List__Olist_Itf__a_J_001tf__a_001t__Product____Type__Ounit,type,
    pre_ve7102540449451629283t_unit: pre_pr8155351583225888586t_unit > set_list_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001t__List__Olist_Itf__a_J_001tf__b_001t__Product____Type__Ounit,type,
    pre_ve1830060048215441954t_unit: pre_pr2882871181989701257t_unit > set_list_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001t__Set__Oset_Itf__a_J_001tf__a_001t__Product____Type__Ounit,type,
    pre_ve2608818176351713469t_unit: pre_pr3647964229410195492t_unit > set_set_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001t__Set__Oset_Itf__a_J_001tf__b_001t__Product____Type__Ounit,type,
    pre_ve6559709811970301948t_unit: pre_pr7598855865028783971t_unit > set_set_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001tf__a_001t__List__Olist_Itf__a_J_001t__Product____Type__Ounit,type,
    pre_ve3018455677094554327t_unit: pre_pr3711252390037155390t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001tf__a_001tf__a_001t__Product____Type__Ounit,type,
    pre_ve5914862431884959581t_unit: pre_pr3327329314391289540t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001tf__a_001tf__b_001t__Product____Type__Ounit,type,
    pre_ve642382030648772252t_unit: pre_pr7278220950009878019t_unit > set_a ).

thf(sy_c_Digraph_Opre__digraph_Overts_001tf__b_001t__List__Olist_Itf__a_J_001t__Product____Type__Ounit,type,
    pre_ve7998398825243057368t_unit: pre_pr7651200976661991615t_unit > set_b ).

thf(sy_c_Digraph_Opre__digraph_Overts_001tf__b_001tf__a_001t__Product____Type__Ounit,type,
    pre_ve2160112157898065374t_unit: pre_pr3994228789931197893t_unit > set_b ).

thf(sy_c_Digraph_Opre__digraph_Overts_001tf__b_001tf__b_001t__Product____Type__Ounit,type,
    pre_ve6111003793516653853t_unit: pre_pr7945120425549786372t_unit > set_b ).

thf(sy_c_Digraph_Oreachable_001tf__a_001tf__b,type,
    reachable_a_b: pre_pr7278220950009878019t_unit > a > a > $o ).

thf(sy_c_Digraph_Osymmetric_001tf__a_001tf__b,type,
    symmetric_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph_Owf__digraph_Oarc_001tf__a_001tf__b,type,
    wf_arc_a_b: pre_pr7278220950009878019t_unit > b > product_prod_a_a > $o ).

thf(sy_c_Digraph__Component_Oconnected_001tf__a_001tf__b,type,
    digrap8783888973171253482ed_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph__Component_Oinduce__subgraph_001t__List__Olist_Itf__a_J_001tf__b,type,
    digrap21804061584661953st_a_b: pre_pr2882871181989701257t_unit > set_list_a > pre_pr2882871181989701257t_unit ).

thf(sy_c_Digraph__Component_Oinduce__subgraph_001tf__a_001tf__b,type,
    digrap7873285959652527175ph_a_b: pre_pr7278220950009878019t_unit > set_a > pre_pr7278220950009878019t_unit ).

thf(sy_c_Digraph__Component_Oinduced__subgraph_001tf__a_001tf__b,type,
    digrap5251062021860773499ph_a_b: pre_pr7278220950009878019t_unit > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph__Component_Opre__digraph_Oscc__of_001tf__a_001tf__b,type,
    digrap2937667069914300949of_a_b: pre_pr7278220950009878019t_unit > a > set_a ).

thf(sy_c_Digraph__Component_Opre__digraph_Osccs_001tf__a_001tf__b,type,
    digraph_pre_sccs_a_b: pre_pr7278220950009878019t_unit > set_pr5411798346947241657t_unit ).

thf(sy_c_Digraph__Component_Opre__digraph_Osccs__verts_001tf__a_001tf__b,type,
    digrap2871191568752656621ts_a_b: pre_pr7278220950009878019t_unit > set_set_a ).

thf(sy_c_Digraph__Component_Ospanning_001tf__a_001tf__b,type,
    digraph_spanning_a_b: pre_pr7278220950009878019t_unit > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph__Component_Ospanning__tree_001tf__a_001tf__b,type,
    digrap5718416180170401981ee_a_b: pre_pr7278220950009878019t_unit > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph__Component_Ostrongly__connected_001tf__a_001tf__b,type,
    digrap8691851296217657702ed_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Digraph__Component_Osubgraph_001tf__a_001tf__b,type,
    digraph_subgraph_a_b: pre_pr7278220950009878019t_unit > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Directed__Tree__Additions_Odirected__tree_Oto__list__tree_001tf__a_001tf__b,type,
    direct3773525127397338803ee_a_b: pre_pr7278220950009878019t_unit > pre_pr2882871181989701257t_unit ).

thf(sy_c_Euler_Opre__digraph_Oarc__set__balanced_001tf__a_001tf__b,type,
    pre_ar5931435604406180204ed_a_b: pre_pr7278220950009878019t_unit > a > set_b > a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    pre_eu6772804086596076304list_a: pre_pr1927278062479000516t_unit > list_a > list_list_a > list_a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001t__List__Olist_Itf__a_J_001tf__a,type,
    pre_eu4033079881512885386st_a_a: pre_pr8155351583225888586t_unit > list_a > list_a > list_a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001t__List__Olist_Itf__a_J_001tf__b,type,
    pre_eu4033079881512885387st_a_b: pre_pr2882871181989701257t_unit > list_a > list_b > list_a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001tf__a_001t__List__Olist_Itf__a_J,type,
    pre_eu5922315637342151574list_a: pre_pr3711252390037155390t_unit > a > list_list_a > a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001tf__a_001tf__a,type,
    pre_euler_trail_a_a: pre_pr3327329314391289540t_unit > a > list_a > a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001tf__a_001tf__b,type,
    pre_euler_trail_a_b: pre_pr7278220950009878019t_unit > a > list_b > a > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001tf__b_001t__List__Olist_Itf__a_J,type,
    pre_eu7410277674636950101list_a: pre_pr7651200976661991615t_unit > b > list_list_a > b > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001tf__b_001tf__a,type,
    pre_euler_trail_b_a: pre_pr3994228789931197893t_unit > b > list_a > b > $o ).

thf(sy_c_Euler_Opre__digraph_Oeuler__trail_001tf__b_001tf__b,type,
    pre_euler_trail_b_b: pre_pr7945120425549786372t_unit > b > list_b > b > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__b,type,
    finite_finite_b: set_b > $o ).

thf(sy_c_Graph__Additions_Owf__digraph_Obranching__points_001tf__a_001tf__b,type,
    graph_4596510882073158607ts_a_b: pre_pr7278220950009878019t_unit > set_a ).

thf(sy_c_Graph__Additions_Owf__digraph_Ois__chain_001tf__a_001tf__b,type,
    graph_3890552050688490787in_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Graph__Additions_Owf__digraph_Ois__chain_H_001tf__a_001tf__b,type,
    graph_8150681439568091980in_a_b: pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Graph__Additions_Owf__digraph_Olast__branching__points_001tf__a_001tf__b,type,
    graph_1747835947655717337ts_a_b: pre_pr7278220950009878019t_unit > set_a ).

thf(sy_c_Graph__Additions_Owf__digraph_Olast__merging__points_001tf__a_001tf__b,type,
    graph_2659413520663303054ts_a_b: pre_pr7278220950009878019t_unit > set_a ).

thf(sy_c_Graph__Additions_Owf__digraph_Omerging__points_001tf__a_001tf__b,type,
    graph_2957805489637798020ts_a_b: pre_pr7278220950009878019t_unit > set_a ).

thf(sy_c_Graph__Definitions_Owf__digraph_Ok__neighborhood_001tf__a_001tf__b,type,
    graph_3921080825633621230od_a_b: pre_pr7278220950009878019t_unit > ( b > real ) > a > real > set_a ).

thf(sy_c_Graph__Definitions_Owf__digraph_Ounvisited__verts_001tf__a_001tf__b,type,
    graph_2016941059203891550ts_a_b: pre_pr7278220950009878019t_unit > a > set_a > set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_J,type,
    minus_3777555517894451474t_unit: set_pr5411798346947241657t_unit > set_pr5411798346947241657t_unit > set_pr5411798346947241657t_unit ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    minus_646659088055828811list_a: set_list_a > set_list_a > set_list_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    minus_6817036919807184750od_a_a: set_Product_prod_a_a > set_Product_prod_a_a > set_Product_prod_a_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__b_J,type,
    minus_minus_set_b: set_b > set_b > set_b ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Obefore2_001tf__a_001tf__b,type,
    iKKBZ_1040310085189658461e2_a_b: pre_pr7278220950009878019t_unit > list_a > list_a > $o ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Obefore_001tf__a_001tf__b,type,
    iKKBZ_7682935289300565975re_a_b: pre_pr7278220950009878019t_unit > list_a > list_a > $o ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Oforward_001tf__a_001tf__b,type,
    iKKBZ_4778857019735642799rd_a_b: pre_pr7278220950009878019t_unit > list_a > $o ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Oforward__arcs_001tf__a_001tf__b,type,
    iKKBZ_4180558001818622352cs_a_b: pre_pr7278220950009878019t_unit > list_a > $o ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Ono__back_001tf__a_001tf__b,type,
    iKKBZ_3684931046464919648ck_a_b: pre_pr7278220950009878019t_unit > list_a > $o ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Ono__back__arcs_001tf__a_001tf__b,type,
    iKKBZ_7773321254043928001cs_a_b: pre_pr7278220950009878019t_unit > list_a > $o ).

thf(sy_c_IKKBZ__Optimality_Odirected__tree_Oseq__conform_001tf__a_001tf__b,type,
    iKKBZ_4622586873178280511rm_a_b: pre_pr7278220950009878019t_unit > list_a > $o ).

thf(sy_c_If_001t__List__Olist_Itf__a_J,type,
    if_list_a: $o > list_a > list_a > list_a ).

thf(sy_c_If_001t__List__Olist_Itf__b_J,type,
    if_list_b: $o > list_b > list_b > list_b ).

thf(sy_c_Kuratowski_Opre__digraph_Ogen__iapath_001tf__a_001tf__b,type,
    pre_gen_iapath_a_b: pre_pr7278220950009878019t_unit > set_a > a > list_b > a > $o ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001t__List__Olist_Itf__a_J_001tf__a,type,
    pre_in4739640915595915414st_a_a: pre_pr8155351583225888586t_unit > list_a > list_list_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001t__List__Olist_Itf__a_J_001tf__b,type,
    pre_in4739640915595915415st_a_b: pre_pr2882871181989701257t_unit > list_b > list_list_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001t__Product____Type__Oprod_Itf__a_Mtf__a_J_001tf__a,type,
    pre_in7981346435028487987_a_a_a: pre_pr7908921069988166637t_unit > list_a > list_P1396940483166286381od_a_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001t__Product____Type__Oprod_Itf__a_Mtf__a_J_001tf__b,type,
    pre_in7981346435028487988_a_a_b: pre_pr2636440668751979308t_unit > list_b > list_P1396940483166286381od_a_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001t__Set__Oset_Itf__a_J_001tf__a,type,
    pre_in289353705076948156et_a_a: pre_pr3647964229410195492t_unit > list_a > list_set_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001t__Set__Oset_Itf__a_J_001tf__b,type,
    pre_in289353705076948157et_a_b: pre_pr7598855865028783971t_unit > list_b > list_set_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001tf__a_001tf__a,type,
    pre_inner_verts_a_a: pre_pr3327329314391289540t_unit > list_a > list_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001tf__a_001tf__b,type,
    pre_inner_verts_a_b: pre_pr7278220950009878019t_unit > list_b > list_a ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001tf__b_001tf__a,type,
    pre_inner_verts_b_a: pre_pr3994228789931197893t_unit > list_a > list_b ).

thf(sy_c_Kuratowski_Opre__digraph_Oinner__verts_001tf__b_001tf__b,type,
    pre_inner_verts_b_b: pre_pr7945120425549786372t_unit > list_b > list_b ).

thf(sy_c_Kuratowski_Overts3_001tf__a_001tf__b,type,
    verts3_a_b: pre_pr7278220950009878019t_unit > set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_J,type,
    inf_in1092213268631476299t_unit: set_pr5411798346947241657t_unit > set_pr5411798346947241657t_unit > set_pr5411798346947241657t_unit ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    inf_inf_set_list_a: set_list_a > set_list_a > set_list_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    inf_in8905007599844390133od_a_a: set_Product_prod_a_a > set_Product_prod_a_a > set_Product_prod_a_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    inf_inf_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__b_J,type,
    inf_inf_set_b: set_b > set_b > set_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    sup_sup_set_list_a: set_list_a > set_list_a > set_list_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__b_J,type,
    sup_sup_set_b: set_b > set_b > set_b ).

thf(sy_c_List_Oappend_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    append1841976088027155496t_unit: list_p1584440430088372499t_unit > list_p1584440430088372499t_unit > list_p1584440430088372499t_unit ).

thf(sy_c_List_Oappend_001t__List__Olist_Itf__a_J,type,
    append_list_a: list_list_a > list_list_a > list_list_a ).

thf(sy_c_List_Oappend_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    append5335208819046833346od_a_a: list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_List_Oappend_001t__Set__Oset_Itf__a_J,type,
    append_set_a: list_set_a > list_set_a > list_set_a ).

thf(sy_c_List_Oappend_001tf__a,type,
    append_a: list_a > list_a > list_a ).

thf(sy_c_List_Oappend_001tf__b,type,
    append_b: list_b > list_b > list_b ).

thf(sy_c_List_Obutlast_001t__List__Olist_Itf__a_J,type,
    butlast_list_a: list_list_a > list_list_a ).

thf(sy_c_List_Obutlast_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    butlas8142365730073264249od_a_a: list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_List_Obutlast_001t__Set__Oset_Itf__a_J,type,
    butlast_set_a: list_set_a > list_set_a ).

thf(sy_c_List_Obutlast_001tf__a,type,
    butlast_a: list_a > list_a ).

thf(sy_c_List_Obutlast_001tf__b,type,
    butlast_b: list_b > list_b ).

thf(sy_c_List_Oconcat_001tf__a,type,
    concat_a: list_list_a > list_a ).

thf(sy_c_List_Odistinct_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    distin5038060903466274250t_unit: list_p1584440430088372499t_unit > $o ).

thf(sy_c_List_Odistinct_001t__List__Olist_Itf__a_J,type,
    distinct_list_a: list_list_a > $o ).

thf(sy_c_List_Odistinct_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    distin132333870042060960od_a_a: list_P1396940483166286381od_a_a > $o ).

thf(sy_c_List_Odistinct_001t__Set__Oset_Itf__a_J,type,
    distinct_set_a: list_set_a > $o ).

thf(sy_c_List_Odistinct_001tf__a,type,
    distinct_a: list_a > $o ).

thf(sy_c_List_Odistinct_001tf__b,type,
    distinct_b: list_b > $o ).

thf(sy_c_List_Olast_001t__List__Olist_Itf__a_J,type,
    last_list_a: list_list_a > list_a ).

thf(sy_c_List_Olast_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    last_P8790725268278465478od_a_a: list_P1396940483166286381od_a_a > product_prod_a_a ).

thf(sy_c_List_Olast_001t__Set__Oset_Itf__a_J,type,
    last_set_a: list_set_a > set_a ).

thf(sy_c_List_Olast_001tf__a,type,
    last_a: list_a > a ).

thf(sy_c_List_Olast_001tf__b,type,
    last_b: list_b > b ).

thf(sy_c_List_Olist_OCons_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    cons_p8564118325392489421t_unit: pre_pr7278220950009878019t_unit > list_p1584440430088372499t_unit > list_p1584440430088372499t_unit ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__a_J,type,
    cons_list_a: list_a > list_list_a > list_list_a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__b_J,type,
    cons_list_b: list_b > list_list_b > list_list_b ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    cons_P7316939126706565853od_a_a: product_prod_a_a > list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_List_Olist_OCons_001t__Set__Oset_Itf__a_J,type,
    cons_set_a: set_a > list_set_a > list_set_a ).

thf(sy_c_List_Olist_OCons_001tf__a,type,
    cons_a: a > list_a > list_a ).

thf(sy_c_List_Olist_OCons_001tf__b,type,
    cons_b: b > list_b > list_b ).

thf(sy_c_List_Olist_ONil_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    nil_pr1362588839662627709t_unit: list_p1584440430088372499t_unit ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__a_J,type,
    nil_list_a: list_list_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__b_J,type,
    nil_list_b: list_list_b ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    nil_Product_prod_a_a: list_P1396940483166286381od_a_a ).

thf(sy_c_List_Olist_ONil_001t__Set__Oset_Itf__a_J,type,
    nil_set_a: list_set_a ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Olist_ONil_001tf__b,type,
    nil_b: list_b ).

thf(sy_c_List_Olist_Ohd_001t__List__Olist_Itf__a_J,type,
    hd_list_a: list_list_a > list_a ).

thf(sy_c_List_Olist_Ohd_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    hd_Product_prod_a_a: list_P1396940483166286381od_a_a > product_prod_a_a ).

thf(sy_c_List_Olist_Ohd_001t__Set__Oset_Itf__a_J,type,
    hd_set_a: list_set_a > set_a ).

thf(sy_c_List_Olist_Ohd_001tf__a,type,
    hd_a: list_a > a ).

thf(sy_c_List_Olist_Ohd_001tf__b,type,
    hd_b: list_b > b ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    map_list_a_list_a: ( list_a > list_a ) > list_list_a > list_list_a ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    map_list_a_set_a: ( list_a > set_a ) > list_list_a > list_set_a ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_Itf__a_J_001tf__a,type,
    map_list_a_a: ( list_a > a ) > list_list_a > list_a ).

thf(sy_c_List_Olist_Omap_001t__List__Olist_Itf__a_J_001tf__b,type,
    map_list_a_b: ( list_a > b ) > list_list_a > list_b ).

thf(sy_c_List_Olist_Omap_001t__Product____Type__Oprod_Itf__a_Mtf__a_J_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    map_Pr7904243085458786820od_a_a: ( product_prod_a_a > product_prod_a_a ) > list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_List_Olist_Omap_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    map_set_a_set_a: ( set_a > set_a ) > list_set_a > list_set_a ).

thf(sy_c_List_Olist_Omap_001tf__a_001t__List__Olist_Itf__a_J,type,
    map_a_list_a: ( a > list_a ) > list_a > list_list_a ).

thf(sy_c_List_Olist_Omap_001tf__a_001t__Set__Oset_Itf__a_J,type,
    map_a_set_a: ( a > set_a ) > list_a > list_set_a ).

thf(sy_c_List_Olist_Omap_001tf__a_001tf__a,type,
    map_a_a: ( a > a ) > list_a > list_a ).

thf(sy_c_List_Olist_Omap_001tf__a_001tf__b,type,
    map_a_b: ( a > b ) > list_a > list_b ).

thf(sy_c_List_Olist_Omap_001tf__b_001t__List__Olist_Itf__a_J,type,
    map_b_list_a: ( b > list_a ) > list_b > list_list_a ).

thf(sy_c_List_Olist_Omap_001tf__b_001tf__a,type,
    map_b_a: ( b > a ) > list_b > list_a ).

thf(sy_c_List_Olist_Omap_001tf__b_001tf__b,type,
    map_b_b: ( b > b ) > list_b > list_b ).

thf(sy_c_List_Olist_Oset_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    set_pr4006367424059803566t_unit: list_p1584440430088372499t_unit > set_pr5411798346947241657t_unit ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_Itf__a_J,type,
    set_list_a2: list_list_a > set_list_a ).

thf(sy_c_List_Olist_Oset_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    set_Product_prod_a_a2: list_P1396940483166286381od_a_a > set_Product_prod_a_a ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_Itf__a_J,type,
    set_set_a2: list_set_a > set_set_a ).

thf(sy_c_List_Olist_Oset_001tf__a,type,
    set_a2: list_a > set_a ).

thf(sy_c_List_Olist_Oset_001tf__b,type,
    set_b2: list_b > set_b ).

thf(sy_c_List_Olist_Otl_001t__List__Olist_Itf__a_J,type,
    tl_list_a: list_list_a > list_list_a ).

thf(sy_c_List_Olist_Otl_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    tl_Product_prod_a_a: list_P1396940483166286381od_a_a > list_P1396940483166286381od_a_a ).

thf(sy_c_List_Olist_Otl_001t__Set__Oset_Itf__a_J,type,
    tl_set_a: list_set_a > list_set_a ).

thf(sy_c_List_Olist_Otl_001tf__a,type,
    tl_a: list_a > list_a ).

thf(sy_c_List_Olist_Otl_001tf__b,type,
    tl_b: list_b > list_b ).

thf(sy_c_List_Orev_001t__List__Olist_Itf__a_J,type,
    rev_list_a: list_list_a > list_list_a ).

thf(sy_c_List_Orev_001tf__a,type,
    rev_a: list_a > list_a ).

thf(sy_c_List_Orev_001tf__b,type,
    rev_b: list_b > list_b ).

thf(sy_c_List_Otake_001tf__b,type,
    take_b: nat > list_b > list_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_J,type,
    bot_bo1839476491465656141t_unit: set_pr5411798346947241657t_unit ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    bot_bot_set_list_a: set_list_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    bot_bo3357376287454694259od_a_a: set_Product_prod_a_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__b_J,type,
    bot_bot_set_b: set_b ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_J,type,
    ord_le8200006823705900825t_unit: set_pr5411798346947241657t_unit > set_pr5411798346947241657t_unit > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    ord_le8861187494160871172list_a: set_list_a > set_list_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
    ord_le746702958409616551od_a_a: set_Product_prod_a_a > set_Product_prod_a_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__b_J,type,
    ord_less_eq_set_b: set_b > set_b > $o ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__a_J_001t__List__Olist_Itf__a_J,type,
    produc6837034575241423639list_a: list_a > list_a > produc9164743771328383783list_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__b_J_001t__List__Olist_Itf__b_J,type,
    produc1564554178308465111list_b: list_b > list_b > produc3963297410138542439list_b ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__b_J_001t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__List__Olist_Itf__b_J_J,type,
    produc305491333965050169list_b: list_b > produc3963297410138542439list_b > produc8766925488660474953list_b ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__b_J_001t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mt__List__Olist_Itf__b_J_J_J,type,
    produc7106373121284446491list_b: list_b > produc8766925488660474953list_b > produc272433356463431595list_b ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_Itf__b_J_001tf__a,type,
    produc4145578316043568848st_b_a: list_b > a > produc1943741644644106336st_b_a ).

thf(sy_c_Product__Type_OPair_001tf__a_001t__Product____Type__Oprod_It__List__Olist_Itf__b_J_Mtf__a_J,type,
    produc7119031474978700025st_b_a: a > produc1943741644644106336st_b_a > produc7945266988514096265st_b_a ).

thf(sy_c_Product__Type_OPair_001tf__a_001tf__a,type,
    product_Pair_a_a: a > a > product_prod_a_a ).

thf(sy_c_Set_OCollect_001t__List__Olist_Itf__a_J,type,
    collect_list_a: ( list_a > $o ) > set_list_a ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    collec3336397797384452498od_a_a: ( product_prod_a_a > $o ) > set_Product_prod_a_a ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
    collect_set_a: ( set_a > $o ) > set_set_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_OCollect_001tf__b,type,
    collect_b: ( b > $o ) > set_b ).

thf(sy_c_Set_Oimage_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J_001t__Set__Oset_Itf__a_J,type,
    image_7466199892558553556_set_a: ( pre_pr7278220950009878019t_unit > set_a ) > set_pr5411798346947241657t_unit > set_set_a ).

thf(sy_c_Set_Oimage_001t__List__Olist_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    image_list_a_set_a: ( list_a > set_a ) > set_list_a > set_set_a ).

thf(sy_c_Set_Oimage_001t__List__Olist_Itf__a_J_001tf__a,type,
    image_list_a_a: ( list_a > a ) > set_list_a > set_a ).

thf(sy_c_Set_Oimage_001t__List__Olist_Itf__a_J_001tf__b,type,
    image_list_a_b: ( list_a > b ) > set_list_a > set_b ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    image_6801035452528096924t_unit: ( set_a > pre_pr7278220950009878019t_unit ) > set_set_a > set_pr5411798346947241657t_unit ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001tf__a,type,
    image_set_a_a: ( set_a > a ) > set_set_a > set_a ).

thf(sy_c_Set_Oimage_001tf__a_001t__List__Olist_Itf__a_J,type,
    image_a_list_a: ( a > list_a ) > set_a > set_list_a ).

thf(sy_c_Set_Oimage_001tf__a_001t__Set__Oset_Itf__a_J,type,
    image_a_set_a: ( a > set_a ) > set_a > set_set_a ).

thf(sy_c_Set_Oimage_001tf__a_001tf__a,type,
    image_a_a: ( a > a ) > set_a > set_a ).

thf(sy_c_Set_Oimage_001tf__a_001tf__b,type,
    image_a_b: ( a > b ) > set_a > set_b ).

thf(sy_c_Set_Oimage_001tf__b_001t__List__Olist_Itf__a_J,type,
    image_b_list_a: ( b > list_a ) > set_b > set_list_a ).

thf(sy_c_Set_Oimage_001tf__b_001t__Set__Oset_Itf__a_J,type,
    image_b_set_a: ( b > set_a ) > set_b > set_set_a ).

thf(sy_c_Set_Oimage_001tf__b_001tf__a,type,
    image_b_a: ( b > a ) > set_b > set_a ).

thf(sy_c_Set_Oimage_001tf__b_001tf__b,type,
    image_b_b: ( b > b ) > set_b > set_b ).

thf(sy_c_Set_Oinsert_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    insert6864688055023459379t_unit: pre_pr7278220950009878019t_unit > set_pr5411798346947241657t_unit > set_pr5411798346947241657t_unit ).

thf(sy_c_Set_Oinsert_001t__List__Olist_Itf__a_J,type,
    insert_list_a: list_a > set_list_a > set_list_a ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    insert4534936382041156343od_a_a: product_prod_a_a > set_Product_prod_a_a > set_Product_prod_a_a ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
    insert_set_a: set_a > set_set_a > set_set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Oinsert_001tf__b,type,
    insert_b: b > set_b > set_b ).

thf(sy_c_Shortest__Path_Owf__digraph_Omk__cycles__path_001tf__b,type,
    shorte6374615165232202367path_b: nat > list_b > list_b ).

thf(sy_c_Shortest__Path__Tree_Odirected__tree_001tf__a_001tf__b,type,
    shorte3810566709427824352ee_a_b: pre_pr7278220950009878019t_unit > a > $o ).

thf(sy_c_Shortest__Path__Tree_Opre__digraph_Oleaf_001tf__a_001tf__b,type,
    shorte1213025427933718126af_a_b: pre_pr7278220950009878019t_unit > a > $o ).

thf(sy_c_Shortest__Path__Tree_Osubgraph_001tf__a_001tf__b,type,
    shorte3657265928840388360ph_a_b: pre_pr7278220950009878019t_unit > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Stuff_ONOMATCH_001tf__a,type,
    nOMATCH_a: a > a > $o ).

thf(sy_c_Transitive__Closure_Otrancl_001tf__a,type,
    transitive_trancl_a: set_Product_prod_a_a > set_Product_prod_a_a ).

thf(sy_c_Vertex__Walk_Ovpath_001tf__a_001tf__b,type,
    vertex_vpath_a_b: list_a > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_Vertex__Walk_Ovwalk_001tf__a_001tf__b,type,
    vertex_vwalk_a_b: list_a > pre_pr7278220950009878019t_unit > $o ).

thf(sy_c_member_001t__Digraph__Opre____digraph__Opre____digraph____ext_Itf__a_Mtf__b_Mt__Product____Type__Ounit_J,type,
    member6939884229742472986t_unit: pre_pr7278220950009878019t_unit > set_pr5411798346947241657t_unit > $o ).

thf(sy_c_member_001t__List__Olist_Itf__a_J,type,
    member_list_a: list_a > set_list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__List__Olist_Itf__a_J_Mt__List__Olist_Itf__a_J_J,type,
    member8191768239178080336list_a: produc9164743771328383783list_a > set_Pr4048851178543822343list_a > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
    member1426531477525435216od_a_a: product_prod_a_a > set_Product_prod_a_a > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_c_member_001tf__b,type,
    member_b: b > set_b > $o ).

thf(sy_v_T,type,
    t: pre_pr7278220950009878019t_unit ).

thf(sy_v_x,type,
    x: a ).

thf(sy_v_xs,type,
    xs: list_a ).

% Relevant facts (1277)
thf(fact_0_forward__arcs__alt,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
      = ( iKKBZ_4180558001818622352cs_a_b @ t @ ( rev_a @ Xs ) ) ) ).

% forward_arcs_alt
thf(fact_1_hd__last__not__fwd__arcs,axiom,
    ! [X: a,Xs: list_a] :
      ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ X @ ( append_a @ Xs @ ( cons_a @ X @ nil_a ) ) ) ) ).

% hd_last_not_fwd_arcs
thf(fact_2_forward__arcs_Ocases,axiom,
    ! [X: list_a] :
      ( ( X != nil_a )
     => ( ! [X2: a] :
            ( X
           != ( cons_a @ X2 @ nil_a ) )
       => ~ ! [X2: a,V: a,Va: list_a] :
              ( X
             != ( cons_a @ X2 @ ( cons_a @ V @ Va ) ) ) ) ) ).

% forward_arcs.cases
thf(fact_3_no__back__arcs_Ocases,axiom,
    ! [X: list_a] :
      ( ( X != nil_a )
     => ~ ! [X2: a,Xs2: list_a] :
            ( X
           != ( cons_a @ X2 @ Xs2 ) ) ) ).

% no_back_arcs.cases
thf(fact_4_forward__split,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ Xs @ Ys ) )
     => ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs ) ) ).

% forward_split
thf(fact_5_forward__single,axiom,
    ! [X: a] : ( iKKBZ_4778857019735642799rd_a_b @ t @ ( cons_a @ X @ nil_a ) ) ).

% forward_single
thf(fact_6_forward__arcs__split,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( append_a @ Ys @ Xs ) )
     => ( iKKBZ_4180558001818622352cs_a_b @ t @ Xs ) ) ).

% forward_arcs_split
thf(fact_7_not__fwd__if__skip1,axiom,
    ! [Y: a,X: a,X3: a,Xs: list_a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ ( cons_a @ X @ ( cons_a @ X3 @ Xs ) ) ) )
     => ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ X @ ( cons_a @ X3 @ Xs ) ) )
       => ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ ( cons_a @ X3 @ Xs ) ) ) ) ) ).

% not_fwd_if_skip1
thf(fact_8_two__elems__if__not__fwd__conc,axiom,
    ! [Y: a,Xs: list_a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ Xs ) )
     => ? [A: a,B: a,Cs: list_a] :
          ( ( cons_a @ A @ ( cons_a @ B @ Cs ) )
          = ( cons_a @ Y @ Xs ) ) ) ).

% two_elems_if_not_fwd_conc
thf(fact_9_forward__arcs_Osimps_I1_J,axiom,
    iKKBZ_4180558001818622352cs_a_b @ t @ nil_a ).

% forward_arcs.simps(1)
thf(fact_10_forward__cons,axiom,
    ! [X: a,Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( rev_a @ ( cons_a @ X @ Xs ) ) )
     => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( rev_a @ Xs ) ) ) ).

% forward_cons
thf(fact_11_forward__arcs_Osimps_I2_J,axiom,
    ! [X: a] : ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ X @ nil_a ) ) ).

% forward_arcs.simps(2)
thf(fact_12_forward__arcs__single,axiom,
    ! [X: a] : ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ X @ nil_a ) ) ).

% forward_arcs_single
thf(fact_13_nempty__if__not__fwd__conc,axiom,
    ! [Y: a,Xs: list_a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ Xs ) )
     => ( Xs != nil_a ) ) ).

% nempty_if_not_fwd_conc
thf(fact_14_hd__not__fwd__arcs,axiom,
    ! [Ys: list_a,X: a,Xs: list_a] :
      ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( append_a @ Ys @ ( cons_a @ X @ ( append_a @ Xs @ ( cons_a @ X @ nil_a ) ) ) ) ) ).

% hd_not_fwd_arcs
thf(fact_15_forward__arcs__alt_H,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( rev_a @ Xs ) )
      = ( iKKBZ_4180558001818622352cs_a_b @ t @ Xs ) ) ).

% forward_arcs_alt'
thf(fact_16_forward__arcs__alt__aux2,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( rev_a @ Xs ) )
     => ( iKKBZ_4180558001818622352cs_a_b @ t @ Xs ) ) ).

% forward_arcs_alt_aux2
thf(fact_17_loopfree_Oloopfree__digraph__axioms,axiom,
    loopfree_digraph_a_b @ t ).

% loopfree.loopfree_digraph_axioms
thf(fact_18_nomulti_Onomulti__digraph__axioms,axiom,
    nomulti_digraph_a_b @ t ).

% nomulti.nomulti_digraph_axioms
thf(fact_19_source__nmem__k__nh,axiom,
    ! [V2: a,W: b > real,K: real] :
      ~ ( member_a @ V2 @ ( graph_3921080825633621230od_a_b @ t @ W @ V2 @ K ) ) ).

% source_nmem_k_nh
thf(fact_20_append1__eq__conv,axiom,
    ! [Xs: list_a,X: a,Ys: list_a,Y: a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X @ nil_a ) )
        = ( append_a @ Ys @ ( cons_a @ Y @ nil_a ) ) )
      = ( ( Xs = Ys )
        & ( X = Y ) ) ) ).

% append1_eq_conv
thf(fact_21_append1__eq__conv,axiom,
    ! [Xs: list_b,X: b,Ys: list_b,Y: b] :
      ( ( ( append_b @ Xs @ ( cons_b @ X @ nil_b ) )
        = ( append_b @ Ys @ ( cons_b @ Y @ nil_b ) ) )
      = ( ( Xs = Ys )
        & ( X = Y ) ) ) ).

% append1_eq_conv
thf(fact_22_append_Oright__neutral,axiom,
    ! [A2: list_a] :
      ( ( append_a @ A2 @ nil_a )
      = A2 ) ).

% append.right_neutral
thf(fact_23_append_Oright__neutral,axiom,
    ! [A2: list_b] :
      ( ( append_b @ A2 @ nil_b )
      = A2 ) ).

% append.right_neutral
thf(fact_24_append__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( append_a @ Xs @ nil_a )
      = Xs ) ).

% append_Nil2
thf(fact_25_append__Nil2,axiom,
    ! [Xs: list_b] :
      ( ( append_b @ Xs @ nil_b )
      = Xs ) ).

% append_Nil2
thf(fact_26_append__self__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_a ) ) ).

% append_self_conv
thf(fact_27_append__self__conv,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( ( append_b @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_b ) ) ).

% append_self_conv
thf(fact_28_self__append__conv,axiom,
    ! [Y: list_a,Ys: list_a] :
      ( ( Y
        = ( append_a @ Y @ Ys ) )
      = ( Ys = nil_a ) ) ).

% self_append_conv
thf(fact_29_self__append__conv,axiom,
    ! [Y: list_b,Ys: list_b] :
      ( ( Y
        = ( append_b @ Y @ Ys ) )
      = ( Ys = nil_b ) ) ).

% self_append_conv
thf(fact_30_append__self__conv2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_a ) ) ).

% append_self_conv2
thf(fact_31_append__self__conv2,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( ( append_b @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_b ) ) ).

% append_self_conv2
thf(fact_32_self__append__conv2,axiom,
    ! [Y: list_a,Xs: list_a] :
      ( ( Y
        = ( append_a @ Xs @ Y ) )
      = ( Xs = nil_a ) ) ).

% self_append_conv2
thf(fact_33_self__append__conv2,axiom,
    ! [Y: list_b,Xs: list_b] :
      ( ( Y
        = ( append_b @ Xs @ Y ) )
      = ( Xs = nil_b ) ) ).

% self_append_conv2
thf(fact_34_Nil__is__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( nil_a
        = ( append_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_is_append_conv
thf(fact_35_Nil__is__append__conv,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( nil_b
        = ( append_b @ Xs @ Ys ) )
      = ( ( Xs = nil_b )
        & ( Ys = nil_b ) ) ) ).

% Nil_is_append_conv
thf(fact_36_append__is__Nil__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% append_is_Nil_conv
thf(fact_37_append__is__Nil__conv,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( ( append_b @ Xs @ Ys )
        = nil_b )
      = ( ( Xs = nil_b )
        & ( Ys = nil_b ) ) ) ).

% append_is_Nil_conv
thf(fact_38_list_Oinject,axiom,
    ! [X21: a,X22: list_a,Y21: a,Y22: list_a] :
      ( ( ( cons_a @ X21 @ X22 )
        = ( cons_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_39_list_Oinject,axiom,
    ! [X21: b,X22: list_b,Y21: b,Y22: list_b] :
      ( ( ( cons_b @ X21 @ X22 )
        = ( cons_b @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_40_same__append__eq,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_41_same__append__eq,axiom,
    ! [Xs: list_b,Ys: list_b,Zs: list_b] :
      ( ( ( append_b @ Xs @ Ys )
        = ( append_b @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_42_append__same__eq,axiom,
    ! [Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( append_a @ Ys @ Xs )
        = ( append_a @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_43_append__same__eq,axiom,
    ! [Ys: list_b,Xs: list_b,Zs: list_b] :
      ( ( ( append_b @ Ys @ Xs )
        = ( append_b @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_44_append__assoc,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( append_a @ ( append_a @ Xs @ Ys ) @ Zs )
      = ( append_a @ Xs @ ( append_a @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_45_append__assoc,axiom,
    ! [Xs: list_b,Ys: list_b,Zs: list_b] :
      ( ( append_b @ ( append_b @ Xs @ Ys ) @ Zs )
      = ( append_b @ Xs @ ( append_b @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_46_append_Oassoc,axiom,
    ! [A2: list_a,B2: list_a,C: list_a] :
      ( ( append_a @ ( append_a @ A2 @ B2 ) @ C )
      = ( append_a @ A2 @ ( append_a @ B2 @ C ) ) ) ).

% append.assoc
thf(fact_47_append_Oassoc,axiom,
    ! [A2: list_b,B2: list_b,C: list_b] :
      ( ( append_b @ ( append_b @ A2 @ B2 ) @ C )
      = ( append_b @ A2 @ ( append_b @ B2 @ C ) ) ) ).

% append.assoc
thf(fact_48_rev__rev__ident,axiom,
    ! [Xs: list_a] :
      ( ( rev_a @ ( rev_a @ Xs ) )
      = Xs ) ).

% rev_rev_ident
thf(fact_49_rev__is__rev__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = ( rev_a @ Ys ) )
      = ( Xs = Ys ) ) ).

% rev_is_rev_conv
thf(fact_50_rev__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( rev_a @ ( append_a @ Xs @ Ys ) )
      = ( append_a @ ( rev_a @ Ys ) @ ( rev_a @ Xs ) ) ) ).

% rev_append
thf(fact_51_rev__append,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( rev_b @ ( append_b @ Xs @ Ys ) )
      = ( append_b @ ( rev_b @ Ys ) @ ( rev_b @ Xs ) ) ) ).

% rev_append
thf(fact_52_rev__is__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( rev_a @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rev_is_Nil_conv
thf(fact_53_rev__is__Nil__conv,axiom,
    ! [Xs: list_b] :
      ( ( ( rev_b @ Xs )
        = nil_b )
      = ( Xs = nil_b ) ) ).

% rev_is_Nil_conv
thf(fact_54_Nil__is__rev__conv,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( rev_a @ Xs ) )
      = ( Xs = nil_a ) ) ).

% Nil_is_rev_conv
thf(fact_55_Nil__is__rev__conv,axiom,
    ! [Xs: list_b] :
      ( ( nil_b
        = ( rev_b @ Xs ) )
      = ( Xs = nil_b ) ) ).

% Nil_is_rev_conv
thf(fact_56_singleton__rev__conv,axiom,
    ! [X: a,Xs: list_a] :
      ( ( ( cons_a @ X @ nil_a )
        = ( rev_a @ Xs ) )
      = ( ( cons_a @ X @ nil_a )
        = Xs ) ) ).

% singleton_rev_conv
thf(fact_57_singleton__rev__conv,axiom,
    ! [X: b,Xs: list_b] :
      ( ( ( cons_b @ X @ nil_b )
        = ( rev_b @ Xs ) )
      = ( ( cons_b @ X @ nil_b )
        = Xs ) ) ).

% singleton_rev_conv
thf(fact_58_rev__singleton__conv,axiom,
    ! [Xs: list_a,X: a] :
      ( ( ( rev_a @ Xs )
        = ( cons_a @ X @ nil_a ) )
      = ( Xs
        = ( cons_a @ X @ nil_a ) ) ) ).

% rev_singleton_conv
thf(fact_59_rev__singleton__conv,axiom,
    ! [Xs: list_b,X: b] :
      ( ( ( rev_b @ Xs )
        = ( cons_b @ X @ nil_b ) )
      = ( Xs
        = ( cons_b @ X @ nil_b ) ) ) ).

% rev_singleton_conv
thf(fact_60_rev__eq__Cons__iff,axiom,
    ! [Xs: list_a,Y: a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = ( cons_a @ Y @ Ys ) )
      = ( Xs
        = ( append_a @ ( rev_a @ Ys ) @ ( cons_a @ Y @ nil_a ) ) ) ) ).

% rev_eq_Cons_iff
thf(fact_61_rev__eq__Cons__iff,axiom,
    ! [Xs: list_b,Y: b,Ys: list_b] :
      ( ( ( rev_b @ Xs )
        = ( cons_b @ Y @ Ys ) )
      = ( Xs
        = ( append_b @ ( rev_b @ Ys ) @ ( cons_b @ Y @ nil_b ) ) ) ) ).

% rev_eq_Cons_iff
thf(fact_62_rev__swap,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = Ys )
      = ( Xs
        = ( rev_a @ Ys ) ) ) ).

% rev_swap
thf(fact_63_mem__Collect__eq,axiom,
    ! [A2: product_prod_a_a,P: product_prod_a_a > $o] :
      ( ( member1426531477525435216od_a_a @ A2 @ ( collec3336397797384452498od_a_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_64_mem__Collect__eq,axiom,
    ! [A2: list_a,P: list_a > $o] :
      ( ( member_list_a @ A2 @ ( collect_list_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_65_mem__Collect__eq,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( member_set_a @ A2 @ ( collect_set_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_66_mem__Collect__eq,axiom,
    ! [A2: b,P: b > $o] :
      ( ( member_b @ A2 @ ( collect_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_67_mem__Collect__eq,axiom,
    ! [A2: a,P: a > $o] :
      ( ( member_a @ A2 @ ( collect_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_68_Collect__mem__eq,axiom,
    ! [A3: set_Product_prod_a_a] :
      ( ( collec3336397797384452498od_a_a
        @ ^ [X4: product_prod_a_a] : ( member1426531477525435216od_a_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_69_Collect__mem__eq,axiom,
    ! [A3: set_list_a] :
      ( ( collect_list_a
        @ ^ [X4: list_a] : ( member_list_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_70_Collect__mem__eq,axiom,
    ! [A3: set_set_a] :
      ( ( collect_set_a
        @ ^ [X4: set_a] : ( member_set_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_71_Collect__mem__eq,axiom,
    ! [A3: set_b] :
      ( ( collect_b
        @ ^ [X4: b] : ( member_b @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_72_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X4: a] : ( member_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_73_rev_Osimps_I1_J,axiom,
    ( ( rev_a @ nil_a )
    = nil_a ) ).

% rev.simps(1)
thf(fact_74_rev_Osimps_I1_J,axiom,
    ( ( rev_b @ nil_b )
    = nil_b ) ).

% rev.simps(1)
thf(fact_75_not__Cons__self2,axiom,
    ! [X: a,Xs: list_a] :
      ( ( cons_a @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_76_not__Cons__self2,axiom,
    ! [X: b,Xs: list_b] :
      ( ( cons_b @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_77_append__eq__append__conv2,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ts: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Zs @ Ts ) )
      = ( ? [Us: list_a] :
            ( ( ( Xs
                = ( append_a @ Zs @ Us ) )
              & ( ( append_a @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_a @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_a @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_78_append__eq__append__conv2,axiom,
    ! [Xs: list_b,Ys: list_b,Zs: list_b,Ts: list_b] :
      ( ( ( append_b @ Xs @ Ys )
        = ( append_b @ Zs @ Ts ) )
      = ( ? [Us: list_b] :
            ( ( ( Xs
                = ( append_b @ Zs @ Us ) )
              & ( ( append_b @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_b @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_b @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_79_append__eq__appendI,axiom,
    ! [Xs: list_a,Xs1: list_a,Zs: list_a,Ys: list_a,Us2: list_a] :
      ( ( ( append_a @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_a @ Xs1 @ Us2 ) )
       => ( ( append_a @ Xs @ Ys )
          = ( append_a @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_80_append__eq__appendI,axiom,
    ! [Xs: list_b,Xs1: list_b,Zs: list_b,Ys: list_b,Us2: list_b] :
      ( ( ( append_b @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_b @ Xs1 @ Us2 ) )
       => ( ( append_b @ Xs @ Ys )
          = ( append_b @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_81_rev_Osimps_I2_J,axiom,
    ! [X: a,Xs: list_a] :
      ( ( rev_a @ ( cons_a @ X @ Xs ) )
      = ( append_a @ ( rev_a @ Xs ) @ ( cons_a @ X @ nil_a ) ) ) ).

% rev.simps(2)
thf(fact_82_rev_Osimps_I2_J,axiom,
    ! [X: b,Xs: list_b] :
      ( ( rev_b @ ( cons_b @ X @ Xs ) )
      = ( append_b @ ( rev_b @ Xs ) @ ( cons_b @ X @ nil_b ) ) ) ).

% rev.simps(2)
thf(fact_83_Cons__eq__appendI,axiom,
    ! [X: a,Xs1: list_a,Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( cons_a @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_a @ Xs1 @ Zs ) )
       => ( ( cons_a @ X @ Xs )
          = ( append_a @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_84_Cons__eq__appendI,axiom,
    ! [X: b,Xs1: list_b,Ys: list_b,Xs: list_b,Zs: list_b] :
      ( ( ( cons_b @ X @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_b @ Xs1 @ Zs ) )
       => ( ( cons_b @ X @ Xs )
          = ( append_b @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_85_append__Cons,axiom,
    ! [X: a,Xs: list_a,Ys: list_a] :
      ( ( append_a @ ( cons_a @ X @ Xs ) @ Ys )
      = ( cons_a @ X @ ( append_a @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_86_append__Cons,axiom,
    ! [X: b,Xs: list_b,Ys: list_b] :
      ( ( append_b @ ( cons_b @ X @ Xs ) @ Ys )
      = ( cons_b @ X @ ( append_b @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_87_list__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [X2: a,Xs2: list_a] :
              ( ( Xs2 != nil_a )
             => ( ( P @ Xs2 )
               => ( P @ ( cons_a @ X2 @ Xs2 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_88_list__nonempty__induct,axiom,
    ! [Xs: list_b,P: list_b > $o] :
      ( ( Xs != nil_b )
     => ( ! [X2: b] : ( P @ ( cons_b @ X2 @ nil_b ) )
       => ( ! [X2: b,Xs2: list_b] :
              ( ( Xs2 != nil_b )
             => ( ( P @ Xs2 )
               => ( P @ ( cons_b @ X2 @ Xs2 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_89_list__induct2_H,axiom,
    ! [P: list_a > list_a > $o,Xs: list_a,Ys: list_a] :
      ( ( P @ nil_a @ nil_a )
     => ( ! [X2: a,Xs2: list_a] : ( P @ ( cons_a @ X2 @ Xs2 ) @ nil_a )
       => ( ! [Y2: a,Ys2: list_a] : ( P @ nil_a @ ( cons_a @ Y2 @ Ys2 ) )
         => ( ! [X2: a,Xs2: list_a,Y2: a,Ys2: list_a] :
                ( ( P @ Xs2 @ Ys2 )
               => ( P @ ( cons_a @ X2 @ Xs2 ) @ ( cons_a @ Y2 @ Ys2 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_90_list__induct2_H,axiom,
    ! [P: list_a > list_b > $o,Xs: list_a,Ys: list_b] :
      ( ( P @ nil_a @ nil_b )
     => ( ! [X2: a,Xs2: list_a] : ( P @ ( cons_a @ X2 @ Xs2 ) @ nil_b )
       => ( ! [Y2: b,Ys2: list_b] : ( P @ nil_a @ ( cons_b @ Y2 @ Ys2 ) )
         => ( ! [X2: a,Xs2: list_a,Y2: b,Ys2: list_b] :
                ( ( P @ Xs2 @ Ys2 )
               => ( P @ ( cons_a @ X2 @ Xs2 ) @ ( cons_b @ Y2 @ Ys2 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_91_list__induct2_H,axiom,
    ! [P: list_b > list_a > $o,Xs: list_b,Ys: list_a] :
      ( ( P @ nil_b @ nil_a )
     => ( ! [X2: b,Xs2: list_b] : ( P @ ( cons_b @ X2 @ Xs2 ) @ nil_a )
       => ( ! [Y2: a,Ys2: list_a] : ( P @ nil_b @ ( cons_a @ Y2 @ Ys2 ) )
         => ( ! [X2: b,Xs2: list_b,Y2: a,Ys2: list_a] :
                ( ( P @ Xs2 @ Ys2 )
               => ( P @ ( cons_b @ X2 @ Xs2 ) @ ( cons_a @ Y2 @ Ys2 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_92_list__induct2_H,axiom,
    ! [P: list_b > list_b > $o,Xs: list_b,Ys: list_b] :
      ( ( P @ nil_b @ nil_b )
     => ( ! [X2: b,Xs2: list_b] : ( P @ ( cons_b @ X2 @ Xs2 ) @ nil_b )
       => ( ! [Y2: b,Ys2: list_b] : ( P @ nil_b @ ( cons_b @ Y2 @ Ys2 ) )
         => ( ! [X2: b,Xs2: list_b,Y2: b,Ys2: list_b] :
                ( ( P @ Xs2 @ Ys2 )
               => ( P @ ( cons_b @ X2 @ Xs2 ) @ ( cons_b @ Y2 @ Ys2 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_93_neq__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
      = ( ? [Y3: a,Ys3: list_a] :
            ( Xs
            = ( cons_a @ Y3 @ Ys3 ) ) ) ) ).

% neq_Nil_conv
thf(fact_94_neq__Nil__conv,axiom,
    ! [Xs: list_b] :
      ( ( Xs != nil_b )
      = ( ? [Y3: b,Ys3: list_b] :
            ( Xs
            = ( cons_b @ Y3 @ Ys3 ) ) ) ) ).

% neq_Nil_conv
thf(fact_95_transpose_Ocases,axiom,
    ! [X: list_list_a] :
      ( ( X != nil_list_a )
     => ( ! [Xss: list_list_a] :
            ( X
           != ( cons_list_a @ nil_a @ Xss ) )
       => ~ ! [X2: a,Xs2: list_a,Xss: list_list_a] :
              ( X
             != ( cons_list_a @ ( cons_a @ X2 @ Xs2 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_96_transpose_Ocases,axiom,
    ! [X: list_list_b] :
      ( ( X != nil_list_b )
     => ( ! [Xss: list_list_b] :
            ( X
           != ( cons_list_b @ nil_b @ Xss ) )
       => ~ ! [X2: b,Xs2: list_b,Xss: list_list_b] :
              ( X
             != ( cons_list_b @ ( cons_b @ X2 @ Xs2 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_97_list_Oexhaust,axiom,
    ! [Y: list_a] :
      ( ( Y != nil_a )
     => ~ ! [X212: a,X222: list_a] :
            ( Y
           != ( cons_a @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_98_list_Oexhaust,axiom,
    ! [Y: list_b] :
      ( ( Y != nil_b )
     => ~ ! [X212: b,X222: list_b] :
            ( Y
           != ( cons_b @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_99_list_OdiscI,axiom,
    ! [List: list_a,X21: a,X22: list_a] :
      ( ( List
        = ( cons_a @ X21 @ X22 ) )
     => ( List != nil_a ) ) ).

% list.discI
thf(fact_100_list_OdiscI,axiom,
    ! [List: list_b,X21: b,X22: list_b] :
      ( ( List
        = ( cons_b @ X21 @ X22 ) )
     => ( List != nil_b ) ) ).

% list.discI
thf(fact_101_list_Odistinct_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( nil_a
     != ( cons_a @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_102_list_Odistinct_I1_J,axiom,
    ! [X21: b,X22: list_b] :
      ( nil_b
     != ( cons_b @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_103_eq__Nil__appendI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_a @ nil_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_104_eq__Nil__appendI,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_b @ nil_b @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_105_append_Oleft__neutral,axiom,
    ! [A2: list_a] :
      ( ( append_a @ nil_a @ A2 )
      = A2 ) ).

% append.left_neutral
thf(fact_106_append_Oleft__neutral,axiom,
    ! [A2: list_b] :
      ( ( append_b @ nil_b @ A2 )
      = A2 ) ).

% append.left_neutral
thf(fact_107_append__Nil,axiom,
    ! [Ys: list_a] :
      ( ( append_a @ nil_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_108_append__Nil,axiom,
    ! [Ys: list_b] :
      ( ( append_b @ nil_b @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_109_rev__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X2: a] : ( P @ ( cons_a @ X2 @ nil_a ) )
       => ( ! [X2: a,Xs2: list_a] :
              ( ( Xs2 != nil_a )
             => ( ( P @ Xs2 )
               => ( P @ ( append_a @ Xs2 @ ( cons_a @ X2 @ nil_a ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_110_rev__nonempty__induct,axiom,
    ! [Xs: list_b,P: list_b > $o] :
      ( ( Xs != nil_b )
     => ( ! [X2: b] : ( P @ ( cons_b @ X2 @ nil_b ) )
       => ( ! [X2: b,Xs2: list_b] :
              ( ( Xs2 != nil_b )
             => ( ( P @ Xs2 )
               => ( P @ ( append_b @ Xs2 @ ( cons_b @ X2 @ nil_b ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_111_append__eq__Cons__conv,axiom,
    ! [Ys: list_a,Zs: list_a,X: a,Xs: list_a] :
      ( ( ( append_a @ Ys @ Zs )
        = ( cons_a @ X @ Xs ) )
      = ( ( ( Ys = nil_a )
          & ( Zs
            = ( cons_a @ X @ Xs ) ) )
        | ? [Ys4: list_a] :
            ( ( Ys
              = ( cons_a @ X @ Ys4 ) )
            & ( ( append_a @ Ys4 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_112_append__eq__Cons__conv,axiom,
    ! [Ys: list_b,Zs: list_b,X: b,Xs: list_b] :
      ( ( ( append_b @ Ys @ Zs )
        = ( cons_b @ X @ Xs ) )
      = ( ( ( Ys = nil_b )
          & ( Zs
            = ( cons_b @ X @ Xs ) ) )
        | ? [Ys4: list_b] :
            ( ( Ys
              = ( cons_b @ X @ Ys4 ) )
            & ( ( append_b @ Ys4 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_113_Cons__eq__append__conv,axiom,
    ! [X: a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( cons_a @ X @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ( ( Ys = nil_a )
          & ( ( cons_a @ X @ Xs )
            = Zs ) )
        | ? [Ys4: list_a] :
            ( ( ( cons_a @ X @ Ys4 )
              = Ys )
            & ( Xs
              = ( append_a @ Ys4 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_114_Cons__eq__append__conv,axiom,
    ! [X: b,Xs: list_b,Ys: list_b,Zs: list_b] :
      ( ( ( cons_b @ X @ Xs )
        = ( append_b @ Ys @ Zs ) )
      = ( ( ( Ys = nil_b )
          & ( ( cons_b @ X @ Xs )
            = Zs ) )
        | ? [Ys4: list_b] :
            ( ( ( cons_b @ X @ Ys4 )
              = Ys )
            & ( Xs
              = ( append_b @ Ys4 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_115_rev__exhaust,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ~ ! [Ys2: list_a,Y2: a] :
            ( Xs
           != ( append_a @ Ys2 @ ( cons_a @ Y2 @ nil_a ) ) ) ) ).

% rev_exhaust
thf(fact_116_rev__exhaust,axiom,
    ! [Xs: list_b] :
      ( ( Xs != nil_b )
     => ~ ! [Ys2: list_b,Y2: b] :
            ( Xs
           != ( append_b @ Ys2 @ ( cons_b @ Y2 @ nil_b ) ) ) ) ).

% rev_exhaust
thf(fact_117_rev__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ( P @ nil_a )
     => ( ! [X2: a,Xs2: list_a] :
            ( ( P @ Xs2 )
           => ( P @ ( append_a @ Xs2 @ ( cons_a @ X2 @ nil_a ) ) ) )
       => ( P @ Xs ) ) ) ).

% rev_induct
thf(fact_118_rev__induct,axiom,
    ! [P: list_b > $o,Xs: list_b] :
      ( ( P @ nil_b )
     => ( ! [X2: b,Xs2: list_b] :
            ( ( P @ Xs2 )
           => ( P @ ( append_b @ Xs2 @ ( cons_b @ X2 @ nil_b ) ) ) )
       => ( P @ Xs ) ) ) ).

% rev_induct
thf(fact_119_cycle__free,axiom,
    ~ ? [X_1: list_b] : ( arc_pre_cycle_a_b @ t @ X_1 ) ).

% cycle_free
thf(fact_120_hd__not__y__if__if__nfwd__app__fwd,axiom,
    ! [Y: a,Xs: list_a,Ys: list_a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ Xs ) )
     => ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) )
       => ( ( hd_a @ ( rev_a @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) ) )
         != Y ) ) ) ).

% hd_not_y_if_if_nfwd_app_fwd
thf(fact_121_no__back__arcs__single,axiom,
    ! [X: a] : ( iKKBZ_7773321254043928001cs_a_b @ t @ ( cons_a @ X @ nil_a ) ) ).

% no_back_arcs_single
thf(fact_122_seq__conform__single,axiom,
    ! [X: a] : ( iKKBZ_4622586873178280511rm_a_b @ t @ ( cons_a @ X @ nil_a ) ) ).

% seq_conform_single
thf(fact_123_move__mid__backward__if__noarc,axiom,
    ! [U: list_a,V3: list_a,As: list_a,Bs: list_a,Cs2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ U @ V3 )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ U @ ( append_a @ Bs @ ( append_a @ V3 @ Cs2 ) ) ) ) )
       => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ U @ ( append_a @ V3 @ ( append_a @ Bs @ Cs2 ) ) ) ) ) ) ) ).

% move_mid_backward_if_noarc
thf(fact_124_scc__of__eq,axiom,
    ! [U2: a,V2: a] :
      ( ( member_a @ U2 @ ( digrap2937667069914300949of_a_b @ t @ V2 ) )
     => ( ( digrap2937667069914300949of_a_b @ t @ U2 )
        = ( digrap2937667069914300949of_a_b @ t @ V2 ) ) ) ).

% scc_of_eq
thf(fact_125_no__back__single,axiom,
    ! [X: a] : ( iKKBZ_3684931046464919648ck_a_b @ t @ ( cons_a @ X @ nil_a ) ) ).

% no_back_single
thf(fact_126_no__back__arcs_Osimps_I1_J,axiom,
    iKKBZ_7773321254043928001cs_a_b @ t @ nil_a ).

% no_back_arcs.simps(1)
thf(fact_127_before__forward2I,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ( iKKBZ_4778857019735642799rd_a_b @ t @ S2 ) ) ).

% before_forward2I
thf(fact_128_before__forward1I,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ( iKKBZ_4778857019735642799rd_a_b @ t @ S1 ) ) ).

% before_forward1I
thf(fact_129_awalk__verts_Osimps_I1_J,axiom,
    ! [U2: a] :
      ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ nil_b )
      = ( cons_a @ U2 @ nil_a ) ) ).

% awalk_verts.simps(1)
thf(fact_130_awalk__verts__non__Nil,axiom,
    ! [U2: a,P2: list_b] :
      ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
     != nil_a ) ).

% awalk_verts_non_Nil
thf(fact_131_awalk__verts__ne__eq,axiom,
    ! [P2: list_b,U2: a,V2: a] :
      ( ( P2 != nil_b )
     => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
        = ( arc_pr7493981781705774526ts_a_b @ t @ V2 @ P2 ) ) ) ).

% awalk_verts_ne_eq
thf(fact_132_awhd__append,axiom,
    ! [U2: a,P2: list_b,Q: list_b] :
      ( ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) ) )
      = ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q ) ) @ P2 ) ) ) ).

% awhd_append
thf(fact_133_no__back__insert,axiom,
    ! [X: a,Xs: list_a] :
      ( ( iKKBZ_3684931046464919648ck_a_b @ t @ ( cons_a @ X @ Xs ) )
     => ( iKKBZ_3684931046464919648ck_a_b @ t @ Xs ) ) ).

% no_back_insert
thf(fact_134_no__back__arcs__alt,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_3684931046464919648ck_a_b @ t @ Xs )
      = ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs ) ) ).

% no_back_arcs_alt
thf(fact_135_no__back__arcs__alt__aux2,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_3684931046464919648ck_a_b @ t @ Xs )
     => ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs ) ) ).

% no_back_arcs_alt_aux2
thf(fact_136_before__no__back1I,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ( iKKBZ_3684931046464919648ck_a_b @ t @ S1 ) ) ).

% before_no_back1I
thf(fact_137_before__no__back2I,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ( iKKBZ_3684931046464919648ck_a_b @ t @ S2 ) ) ).

% before_no_back2I
thf(fact_138_before__conform1I,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ( iKKBZ_4622586873178280511rm_a_b @ t @ S1 ) ) ).

% before_conform1I
thf(fact_139_before__conform2I,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ( iKKBZ_4622586873178280511rm_a_b @ t @ S2 ) ) ).

% before_conform2I
thf(fact_140_no__back__before,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ Xs @ Ys )
     => ( iKKBZ_3684931046464919648ck_a_b @ t @ ( append_a @ Xs @ Ys ) ) ) ).

% no_back_before
thf(fact_141_seq__conform__if__before,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ Xs @ Ys )
     => ( iKKBZ_4622586873178280511rm_a_b @ t @ ( append_a @ Xs @ Ys ) ) ) ).

% seq_conform_if_before
thf(fact_142_seq__conform__alt,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4622586873178280511rm_a_b @ t @ Xs )
      = ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
        & ( iKKBZ_3684931046464919648ck_a_b @ t @ Xs ) ) ) ).

% seq_conform_alt
thf(fact_143_seq__conform__def,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4622586873178280511rm_a_b @ t @ Xs )
      = ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( rev_a @ Xs ) )
        & ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs ) ) ) ).

% seq_conform_def
thf(fact_144_hd__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
        = ( hd_a @ Xs ) ) ) ).

% hd_append2
thf(fact_145_hd__append2,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( Xs != nil_b )
     => ( ( hd_b @ ( append_b @ Xs @ Ys ) )
        = ( hd_b @ Xs ) ) ) ).

% hd_append2
thf(fact_146_list_Osel_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( hd_a @ ( cons_a @ X21 @ X22 ) )
      = X21 ) ).

% list.sel(1)
thf(fact_147_list_Osel_I1_J,axiom,
    ! [X21: b,X22: list_b] :
      ( ( hd_b @ ( cons_b @ X21 @ X22 ) )
      = X21 ) ).

% list.sel(1)
thf(fact_148_hd__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Xs ) ) ) ) ).

% hd_append
thf(fact_149_hd__append,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( ( Xs = nil_b )
       => ( ( hd_b @ ( append_b @ Xs @ Ys ) )
          = ( hd_b @ Ys ) ) )
      & ( ( Xs != nil_b )
       => ( ( hd_b @ ( append_b @ Xs @ Ys ) )
          = ( hd_b @ Xs ) ) ) ) ).

% hd_append
thf(fact_150_longest__common__prefix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ps: list_a,Xs3: list_a,Ys5: list_a] :
      ( ( Xs
        = ( append_a @ Ps @ Xs3 ) )
      & ( Ys
        = ( append_a @ Ps @ Ys5 ) )
      & ( ( Xs3 = nil_a )
        | ( Ys5 = nil_a )
        | ( ( hd_a @ Xs3 )
         != ( hd_a @ Ys5 ) ) ) ) ).

% longest_common_prefix
thf(fact_151_longest__common__prefix,axiom,
    ! [Xs: list_b,Ys: list_b] :
    ? [Ps: list_b,Xs3: list_b,Ys5: list_b] :
      ( ( Xs
        = ( append_b @ Ps @ Xs3 ) )
      & ( Ys
        = ( append_b @ Ps @ Ys5 ) )
      & ( ( Xs3 = nil_b )
        | ( Ys5 = nil_b )
        | ( ( hd_b @ Xs3 )
         != ( hd_b @ Ys5 ) ) ) ) ).

% longest_common_prefix
thf(fact_152_closed__w__imp__cycle,axiom,
    ! [P2: list_b] :
      ( ( arc_wf_closed_w_a_b @ t @ P2 )
     => ? [X_12: list_b] : ( arc_pre_cycle_a_b @ t @ X_12 ) ) ).

% closed_w_imp_cycle
thf(fact_153_fwd__app__nhead__elem,axiom,
    ! [Xs: list_a,Y: a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
     => ( ( member_a @ Y @ ( set_a2 @ Xs ) )
       => ( ( Y
           != ( hd_a @ Xs ) )
         => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ Xs @ ( cons_a @ Y @ nil_a ) ) ) ) ) ) ).

% fwd_app_nhead_elem
thf(fact_154_hd__in__verts__if__forward,axiom,
    ! [X: a,Y: a,Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( cons_a @ X @ ( cons_a @ Y @ Xs ) ) )
     => ( member_a @ ( hd_a @ ( cons_a @ X @ ( cons_a @ Y @ Xs ) ) ) @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% hd_in_verts_if_forward
thf(fact_155_awalk__decomp__verts,axiom,
    ! [U2: a,P2: list_b,V2: a,Xs: list_a,Y: a,Ys: list_a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
          = ( append_a @ Xs @ ( cons_a @ Y @ Ys ) ) )
       => ~ ! [Q2: list_b] :
              ( ( arc_pre_cas_a_b @ t @ U2 @ Q2 @ Y )
             => ! [R: list_b] :
                  ( ( arc_pre_cas_a_b @ t @ Y @ R @ V2 )
                 => ( ( P2
                      = ( append_b @ Q2 @ R ) )
                   => ( ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q2 )
                        = ( append_a @ Xs @ ( cons_a @ Y @ nil_a ) ) )
                     => ( ( arc_pr7493981781705774526ts_a_b @ t @ Y @ R )
                       != ( cons_a @ Y @ Ys ) ) ) ) ) ) ) ) ).

% awalk_decomp_verts
thf(fact_156_pre__digraph_Oawalk__verts_Osimps_I1_J,axiom,
    ! [G: pre_pr3327329314391289540t_unit,U2: a] :
      ( ( arc_pr7493981781705774525ts_a_a @ G @ U2 @ nil_a )
      = ( cons_a @ U2 @ nil_a ) ) ).

% pre_digraph.awalk_verts.simps(1)
thf(fact_157_pre__digraph_Oawalk__verts_Osimps_I1_J,axiom,
    ! [G: pre_pr3994228789931197893t_unit,U2: b] :
      ( ( arc_pr4706526199733098492ts_b_a @ G @ U2 @ nil_a )
      = ( cons_b @ U2 @ nil_b ) ) ).

% pre_digraph.awalk_verts.simps(1)
thf(fact_158_pre__digraph_Oawalk__verts_Osimps_I1_J,axiom,
    ! [G: pre_pr7945120425549786372t_unit,U2: b] :
      ( ( arc_pr4706526199733098493ts_b_b @ G @ U2 @ nil_b )
      = ( cons_b @ U2 @ nil_b ) ) ).

% pre_digraph.awalk_verts.simps(1)
thf(fact_159_pre__digraph_Oawalk__verts_Osimps_I1_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a] :
      ( ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ nil_b )
      = ( cons_a @ U2 @ nil_a ) ) ).

% pre_digraph.awalk_verts.simps(1)
thf(fact_160_seq__conform__if__dstnct__fwd,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
     => ( ( distinct_a @ Xs )
       => ( iKKBZ_4622586873178280511rm_a_b @ t @ Xs ) ) ) ).

% seq_conform_if_dstnct_fwd
thf(fact_161_no__back__if__distinct__forward,axiom,
    ! [Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
     => ( ( distinct_a @ Xs )
       => ( iKKBZ_3684931046464919648ck_a_b @ t @ Xs ) ) ) ).

% no_back_if_distinct_forward
thf(fact_162_awalk__verts__append3,axiom,
    ! [U2: a,P2: list_b,E: b,Q: list_b,R2: a,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ ( append_b @ P2 @ ( cons_b @ E @ Q ) ) @ R2 )
     => ( ( arc_pre_awalk_a_b @ t @ V2 @ Q @ R2 )
       => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ ( cons_b @ E @ Q ) ) )
          = ( append_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) @ ( arc_pr7493981781705774526ts_a_b @ t @ V2 @ Q ) ) ) ) ) ).

% awalk_verts_append3
thf(fact_163_awalk__verts__induce,axiom,
    ! [S: set_a] :
      ( ( arc_pr7493981781705774526ts_a_b @ ( digrap7873285959652527175ph_a_b @ t @ S ) )
      = ( arc_pr7493981781705774526ts_a_b @ t ) ) ).

% awalk_verts_induce
thf(fact_164_unique__awalk__All,axiom,
    ! [U2: a,V2: a] :
      ( ? [P3: list_b] : ( arc_pre_awalk_a_b @ t @ U2 @ P3 @ V2 )
     => ? [X2: list_b] :
          ( ( arc_pre_awalk_a_b @ t @ U2 @ X2 @ V2 )
          & ! [Y4: list_b] :
              ( ( arc_pre_awalk_a_b @ t @ U2 @ Y4 @ V2 )
             => ( Y4 = X2 ) ) ) ) ).

% unique_awalk_All
thf(fact_165_awalk__ends__eqD,axiom,
    ! [U2: a,P2: list_b,V2: a,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ U2 )
     => ( ( arc_pre_awalk_a_b @ t @ V2 @ P2 @ W )
       => ( V2 = W ) ) ) ).

% awalk_ends_eqD
thf(fact_166_distinct__mid__unique2,axiom,
    ! [Xs: list_a,U: list_a,Ys: list_a,As: list_a,Bs: list_a] :
      ( ( distinct_a @ ( append_a @ Xs @ ( append_a @ U @ Ys ) ) )
     => ( ( U != nil_a )
       => ( ( ( append_a @ Xs @ ( append_a @ U @ Ys ) )
            = ( append_a @ As @ ( append_a @ U @ Bs ) ) )
         => ( Ys = Bs ) ) ) ) ).

% distinct_mid_unique2
thf(fact_167_distinct__mid__unique2,axiom,
    ! [Xs: list_b,U: list_b,Ys: list_b,As: list_b,Bs: list_b] :
      ( ( distinct_b @ ( append_b @ Xs @ ( append_b @ U @ Ys ) ) )
     => ( ( U != nil_b )
       => ( ( ( append_b @ Xs @ ( append_b @ U @ Ys ) )
            = ( append_b @ As @ ( append_b @ U @ Bs ) ) )
         => ( Ys = Bs ) ) ) ) ).

% distinct_mid_unique2
thf(fact_168_distinct__mid__unique1,axiom,
    ! [Xs: list_a,U: list_a,Ys: list_a,As: list_a,Bs: list_a] :
      ( ( distinct_a @ ( append_a @ Xs @ ( append_a @ U @ Ys ) ) )
     => ( ( U != nil_a )
       => ( ( ( append_a @ Xs @ ( append_a @ U @ Ys ) )
            = ( append_a @ As @ ( append_a @ U @ Bs ) ) )
         => ( As = Xs ) ) ) ) ).

% distinct_mid_unique1
thf(fact_169_distinct__mid__unique1,axiom,
    ! [Xs: list_b,U: list_b,Ys: list_b,As: list_b,Bs: list_b] :
      ( ( distinct_b @ ( append_b @ Xs @ ( append_b @ U @ Ys ) ) )
     => ( ( U != nil_b )
       => ( ( ( append_b @ Xs @ ( append_b @ U @ Ys ) )
            = ( append_b @ As @ ( append_b @ U @ Bs ) ) )
         => ( As = Xs ) ) ) ) ).

% distinct_mid_unique1
thf(fact_170_awalk__last__in__verts,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% awalk_last_in_verts
thf(fact_171_awalk__hd__in__verts,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% awalk_hd_in_verts
thf(fact_172_awalk__appendI,axiom,
    ! [U2: a,P2: list_b,V2: a,Q: list_b,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_awalk_a_b @ t @ V2 @ Q @ W )
       => ( arc_pre_awalk_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ W ) ) ) ).

% awalk_appendI
thf(fact_173_awalk__ends,axiom,
    ! [U2: a,P2: list_b,V2: a,U3: a,V4: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_awalk_a_b @ t @ U3 @ P2 @ V4 )
       => ( ( ( P2 != nil_b )
            & ( U2 = U3 )
            & ( V2 = V4 ) )
          | ( ( P2 = nil_b )
            & ( U2 = V2 )
            & ( U3 = V4 ) ) ) ) ) ).

% awalk_ends
thf(fact_174_awalk__empty__ends,axiom,
    ! [U2: a,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ nil_b @ V2 )
     => ( U2 = V2 ) ) ).

% awalk_empty_ends
thf(fact_175_cas__ends,axiom,
    ! [U2: a,P2: list_b,V2: a,U3: a,V4: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_cas_a_b @ t @ U3 @ P2 @ V4 )
       => ( ( ( P2 != nil_b )
            & ( U2 = U3 )
            & ( V2 = V4 ) )
          | ( ( P2 = nil_b )
            & ( U2 = V2 )
            & ( U3 = V4 ) ) ) ) ) ).

% cas_ends
thf(fact_176_cas_Osimps_I1_J,axiom,
    ! [U2: a,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ nil_b @ V2 )
      = ( U2 = V2 ) ) ).

% cas.simps(1)
thf(fact_177_in__scc__of__self,axiom,
    ! [U2: a] :
      ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( member_a @ U2 @ ( digrap2937667069914300949of_a_b @ t @ U2 ) ) ) ).

% in_scc_of_self
thf(fact_178_hd__in__awalk__verts_I1_J,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( member_a @ U2 @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ).

% hd_in_awalk_verts(1)
thf(fact_179_awalk__Nil__iff,axiom,
    ! [U2: a,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ nil_b @ V2 )
      = ( ( U2 = V2 )
        & ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% awalk_Nil_iff
thf(fact_180_awhd__if__cas,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
        = U2 ) ) ).

% awhd_if_cas
thf(fact_181_awalk__decomp,axiom,
    ! [U2: a,P2: list_b,V2: a,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( member_a @ W @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ? [Q2: list_b,R: list_b] :
            ( ( P2
              = ( append_b @ Q2 @ R ) )
            & ( arc_pre_awalk_a_b @ t @ U2 @ Q2 @ W )
            & ( arc_pre_awalk_a_b @ t @ W @ R @ V2 ) ) ) ) ).

% awalk_decomp
thf(fact_182_rotate__awalkE,axiom,
    ! [U2: a,P2: list_b,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ U2 )
     => ( ( member_a @ W @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ~ ! [Q2: list_b,R: list_b] :
              ( ( P2
                = ( append_b @ Q2 @ R ) )
             => ( ( arc_pre_awalk_a_b @ t @ W @ ( append_b @ R @ Q2 ) @ W )
               => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ W @ ( append_b @ R @ Q2 ) ) )
                 != ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ) ).

% rotate_awalkE
thf(fact_183_awalk__verts__append__distinct,axiom,
    ! [R2: a,P1: list_b,P22: list_b] :
      ( ? [X_1: a] : ( arc_pre_awalk_a_b @ t @ R2 @ ( append_b @ P1 @ P22 ) @ X_1 )
     => ( ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ R2 @ ( append_b @ P1 @ P22 ) ) )
       => ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ R2 @ P1 ) ) ) ) ).

% awalk_verts_append_distinct
thf(fact_184_awalk__cyc__decompE_H,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ~ ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
       => ~ ! [Q2: list_b,R: list_b,S3: list_b] :
              ( ( P2
                = ( append_b @ Q2 @ ( append_b @ R @ S3 ) ) )
             => ( ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q2 ) )
               => ( ? [W2: a] :
                      ( ( arc_pre_awalk_a_b @ t @ U2 @ Q2 @ W2 )
                      & ( arc_pre_awalk_a_b @ t @ W2 @ R @ W2 )
                      & ( arc_pre_awalk_a_b @ t @ W2 @ S3 @ V2 ) )
                 => ~ ( arc_wf_closed_w_a_b @ t @ R ) ) ) ) ) ) ).

% awalk_cyc_decompE'
thf(fact_185_set__rev,axiom,
    ! [Xs: list_a] :
      ( ( set_a2 @ ( rev_a @ Xs ) )
      = ( set_a2 @ Xs ) ) ).

% set_rev
thf(fact_186_set__rev,axiom,
    ! [Xs: list_b] :
      ( ( set_b2 @ ( rev_b @ Xs ) )
      = ( set_b2 @ Xs ) ) ).

% set_rev
thf(fact_187_set__rev,axiom,
    ! [Xs: list_list_a] :
      ( ( set_list_a2 @ ( rev_list_a @ Xs ) )
      = ( set_list_a2 @ Xs ) ) ).

% set_rev
thf(fact_188_distinct__rev,axiom,
    ! [Xs: list_a] :
      ( ( distinct_a @ ( rev_a @ Xs ) )
      = ( distinct_a @ Xs ) ) ).

% distinct_rev
thf(fact_189_distinct__rev,axiom,
    ! [Xs: list_b] :
      ( ( distinct_b @ ( rev_b @ Xs ) )
      = ( distinct_b @ Xs ) ) ).

% distinct_rev
thf(fact_190_awhd__of__awalk,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
        = U2 ) ) ).

% awhd_of_awalk
thf(fact_191_distinct_Osimps_I2_J,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( distin132333870042060960od_a_a @ ( cons_P7316939126706565853od_a_a @ X @ Xs ) )
      = ( ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
        & ( distin132333870042060960od_a_a @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_192_distinct_Osimps_I2_J,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( distinct_set_a @ ( cons_set_a @ X @ Xs ) )
      = ( ~ ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
        & ( distinct_set_a @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_193_distinct_Osimps_I2_J,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( distinct_list_a @ ( cons_list_a @ X @ Xs ) )
      = ( ~ ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
        & ( distinct_list_a @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_194_distinct_Osimps_I2_J,axiom,
    ! [X: a,Xs: list_a] :
      ( ( distinct_a @ ( cons_a @ X @ Xs ) )
      = ( ~ ( member_a @ X @ ( set_a2 @ Xs ) )
        & ( distinct_a @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_195_distinct_Osimps_I2_J,axiom,
    ! [X: b,Xs: list_b] :
      ( ( distinct_b @ ( cons_b @ X @ Xs ) )
      = ( ~ ( member_b @ X @ ( set_b2 @ Xs ) )
        & ( distinct_b @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_196_pre__digraph_Ocas_Ocong,axiom,
    arc_pre_cas_a_b = arc_pre_cas_a_b ).

% pre_digraph.cas.cong
thf(fact_197_pre__digraph_Ocas_Ocong,axiom,
    arc_pre_cas_list_a_b = arc_pre_cas_list_a_b ).

% pre_digraph.cas.cong
thf(fact_198_pre__digraph_Oawalk_Ocong,axiom,
    arc_pre_awalk_a_b = arc_pre_awalk_a_b ).

% pre_digraph.awalk.cong
thf(fact_199_pre__digraph_Oawalk_Ocong,axiom,
    arc_pr6214585750886380800st_a_b = arc_pr6214585750886380800st_a_b ).

% pre_digraph.awalk.cong
thf(fact_200_wf__digraph_Oclosed__w_Ocong,axiom,
    arc_wf_closed_w_a_b = arc_wf_closed_w_a_b ).

% wf_digraph.closed_w.cong
thf(fact_201_pre__digraph_Ocas_Osimps_I1_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,V2: a] :
      ( ( arc_pre_cas_a_b @ G @ U2 @ nil_b @ V2 )
      = ( U2 = V2 ) ) ).

% pre_digraph.cas.simps(1)
thf(fact_202_pre__digraph_Ocas_Osimps_I1_J,axiom,
    ! [G: pre_pr2882871181989701257t_unit,U2: list_a,V2: list_a] :
      ( ( arc_pre_cas_list_a_b @ G @ U2 @ nil_b @ V2 )
      = ( U2 = V2 ) ) ).

% pre_digraph.cas.simps(1)
thf(fact_203_not__distinct__conv__prefix,axiom,
    ! [As: list_P1396940483166286381od_a_a] :
      ( ( ~ ( distin132333870042060960od_a_a @ As ) )
      = ( ? [Xs4: list_P1396940483166286381od_a_a,Y3: product_prod_a_a,Ys3: list_P1396940483166286381od_a_a] :
            ( ( member1426531477525435216od_a_a @ Y3 @ ( set_Product_prod_a_a2 @ Xs4 ) )
            & ( distin132333870042060960od_a_a @ Xs4 )
            & ( As
              = ( append5335208819046833346od_a_a @ Xs4 @ ( cons_P7316939126706565853od_a_a @ Y3 @ Ys3 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_204_not__distinct__conv__prefix,axiom,
    ! [As: list_set_a] :
      ( ( ~ ( distinct_set_a @ As ) )
      = ( ? [Xs4: list_set_a,Y3: set_a,Ys3: list_set_a] :
            ( ( member_set_a @ Y3 @ ( set_set_a2 @ Xs4 ) )
            & ( distinct_set_a @ Xs4 )
            & ( As
              = ( append_set_a @ Xs4 @ ( cons_set_a @ Y3 @ Ys3 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_205_not__distinct__conv__prefix,axiom,
    ! [As: list_list_a] :
      ( ( ~ ( distinct_list_a @ As ) )
      = ( ? [Xs4: list_list_a,Y3: list_a,Ys3: list_list_a] :
            ( ( member_list_a @ Y3 @ ( set_list_a2 @ Xs4 ) )
            & ( distinct_list_a @ Xs4 )
            & ( As
              = ( append_list_a @ Xs4 @ ( cons_list_a @ Y3 @ Ys3 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_206_not__distinct__conv__prefix,axiom,
    ! [As: list_a] :
      ( ( ~ ( distinct_a @ As ) )
      = ( ? [Xs4: list_a,Y3: a,Ys3: list_a] :
            ( ( member_a @ Y3 @ ( set_a2 @ Xs4 ) )
            & ( distinct_a @ Xs4 )
            & ( As
              = ( append_a @ Xs4 @ ( cons_a @ Y3 @ Ys3 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_207_not__distinct__conv__prefix,axiom,
    ! [As: list_b] :
      ( ( ~ ( distinct_b @ As ) )
      = ( ? [Xs4: list_b,Y3: b,Ys3: list_b] :
            ( ( member_b @ Y3 @ ( set_b2 @ Xs4 ) )
            & ( distinct_b @ Xs4 )
            & ( As
              = ( append_b @ Xs4 @ ( cons_b @ Y3 @ Ys3 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_208_distinct__length__2__or__more,axiom,
    ! [A2: a,B2: a,Xs: list_a] :
      ( ( distinct_a @ ( cons_a @ A2 @ ( cons_a @ B2 @ Xs ) ) )
      = ( ( A2 != B2 )
        & ( distinct_a @ ( cons_a @ A2 @ Xs ) )
        & ( distinct_a @ ( cons_a @ B2 @ Xs ) ) ) ) ).

% distinct_length_2_or_more
thf(fact_209_distinct__length__2__or__more,axiom,
    ! [A2: b,B2: b,Xs: list_b] :
      ( ( distinct_b @ ( cons_b @ A2 @ ( cons_b @ B2 @ Xs ) ) )
      = ( ( A2 != B2 )
        & ( distinct_b @ ( cons_b @ A2 @ Xs ) )
        & ( distinct_b @ ( cons_b @ B2 @ Xs ) ) ) ) ).

% distinct_length_2_or_more
thf(fact_210_distinct_Osimps_I1_J,axiom,
    distinct_a @ nil_a ).

% distinct.simps(1)
thf(fact_211_distinct_Osimps_I1_J,axiom,
    distinct_b @ nil_b ).

% distinct.simps(1)
thf(fact_212_set__ConsD,axiom,
    ! [Y: product_prod_a_a,X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ Y @ ( set_Product_prod_a_a2 @ ( cons_P7316939126706565853od_a_a @ X @ Xs ) ) )
     => ( ( Y = X )
        | ( member1426531477525435216od_a_a @ Y @ ( set_Product_prod_a_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_213_set__ConsD,axiom,
    ! [Y: set_a,X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ Y @ ( set_set_a2 @ ( cons_set_a @ X @ Xs ) ) )
     => ( ( Y = X )
        | ( member_set_a @ Y @ ( set_set_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_214_set__ConsD,axiom,
    ! [Y: list_a,X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ Y @ ( set_list_a2 @ ( cons_list_a @ X @ Xs ) ) )
     => ( ( Y = X )
        | ( member_list_a @ Y @ ( set_list_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_215_set__ConsD,axiom,
    ! [Y: a,X: a,Xs: list_a] :
      ( ( member_a @ Y @ ( set_a2 @ ( cons_a @ X @ Xs ) ) )
     => ( ( Y = X )
        | ( member_a @ Y @ ( set_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_216_set__ConsD,axiom,
    ! [Y: b,X: b,Xs: list_b] :
      ( ( member_b @ Y @ ( set_b2 @ ( cons_b @ X @ Xs ) ) )
     => ( ( Y = X )
        | ( member_b @ Y @ ( set_b2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_217_list_Oset__cases,axiom,
    ! [E: product_prod_a_a,A2: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ E @ ( set_Product_prod_a_a2 @ A2 ) )
     => ( ! [Z2: list_P1396940483166286381od_a_a] :
            ( A2
           != ( cons_P7316939126706565853od_a_a @ E @ Z2 ) )
       => ~ ! [Z1: product_prod_a_a,Z2: list_P1396940483166286381od_a_a] :
              ( ( A2
                = ( cons_P7316939126706565853od_a_a @ Z1 @ Z2 ) )
             => ~ ( member1426531477525435216od_a_a @ E @ ( set_Product_prod_a_a2 @ Z2 ) ) ) ) ) ).

% list.set_cases
thf(fact_218_list_Oset__cases,axiom,
    ! [E: set_a,A2: list_set_a] :
      ( ( member_set_a @ E @ ( set_set_a2 @ A2 ) )
     => ( ! [Z2: list_set_a] :
            ( A2
           != ( cons_set_a @ E @ Z2 ) )
       => ~ ! [Z1: set_a,Z2: list_set_a] :
              ( ( A2
                = ( cons_set_a @ Z1 @ Z2 ) )
             => ~ ( member_set_a @ E @ ( set_set_a2 @ Z2 ) ) ) ) ) ).

% list.set_cases
thf(fact_219_list_Oset__cases,axiom,
    ! [E: list_a,A2: list_list_a] :
      ( ( member_list_a @ E @ ( set_list_a2 @ A2 ) )
     => ( ! [Z2: list_list_a] :
            ( A2
           != ( cons_list_a @ E @ Z2 ) )
       => ~ ! [Z1: list_a,Z2: list_list_a] :
              ( ( A2
                = ( cons_list_a @ Z1 @ Z2 ) )
             => ~ ( member_list_a @ E @ ( set_list_a2 @ Z2 ) ) ) ) ) ).

% list.set_cases
thf(fact_220_list_Oset__cases,axiom,
    ! [E: a,A2: list_a] :
      ( ( member_a @ E @ ( set_a2 @ A2 ) )
     => ( ! [Z2: list_a] :
            ( A2
           != ( cons_a @ E @ Z2 ) )
       => ~ ! [Z1: a,Z2: list_a] :
              ( ( A2
                = ( cons_a @ Z1 @ Z2 ) )
             => ~ ( member_a @ E @ ( set_a2 @ Z2 ) ) ) ) ) ).

% list.set_cases
thf(fact_221_list_Oset__cases,axiom,
    ! [E: b,A2: list_b] :
      ( ( member_b @ E @ ( set_b2 @ A2 ) )
     => ( ! [Z2: list_b] :
            ( A2
           != ( cons_b @ E @ Z2 ) )
       => ~ ! [Z1: b,Z2: list_b] :
              ( ( A2
                = ( cons_b @ Z1 @ Z2 ) )
             => ~ ( member_b @ E @ ( set_b2 @ Z2 ) ) ) ) ) ).

% list.set_cases
thf(fact_222_list_Oset__intros_I1_J,axiom,
    ! [X21: product_prod_a_a,X22: list_P1396940483166286381od_a_a] : ( member1426531477525435216od_a_a @ X21 @ ( set_Product_prod_a_a2 @ ( cons_P7316939126706565853od_a_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_223_list_Oset__intros_I1_J,axiom,
    ! [X21: set_a,X22: list_set_a] : ( member_set_a @ X21 @ ( set_set_a2 @ ( cons_set_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_224_list_Oset__intros_I1_J,axiom,
    ! [X21: list_a,X22: list_list_a] : ( member_list_a @ X21 @ ( set_list_a2 @ ( cons_list_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_225_list_Oset__intros_I1_J,axiom,
    ! [X21: a,X22: list_a] : ( member_a @ X21 @ ( set_a2 @ ( cons_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_226_list_Oset__intros_I1_J,axiom,
    ! [X21: b,X22: list_b] : ( member_b @ X21 @ ( set_b2 @ ( cons_b @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_227_list_Oset__intros_I2_J,axiom,
    ! [Y: product_prod_a_a,X22: list_P1396940483166286381od_a_a,X21: product_prod_a_a] :
      ( ( member1426531477525435216od_a_a @ Y @ ( set_Product_prod_a_a2 @ X22 ) )
     => ( member1426531477525435216od_a_a @ Y @ ( set_Product_prod_a_a2 @ ( cons_P7316939126706565853od_a_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_228_list_Oset__intros_I2_J,axiom,
    ! [Y: set_a,X22: list_set_a,X21: set_a] :
      ( ( member_set_a @ Y @ ( set_set_a2 @ X22 ) )
     => ( member_set_a @ Y @ ( set_set_a2 @ ( cons_set_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_229_list_Oset__intros_I2_J,axiom,
    ! [Y: list_a,X22: list_list_a,X21: list_a] :
      ( ( member_list_a @ Y @ ( set_list_a2 @ X22 ) )
     => ( member_list_a @ Y @ ( set_list_a2 @ ( cons_list_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_230_list_Oset__intros_I2_J,axiom,
    ! [Y: a,X22: list_a,X21: a] :
      ( ( member_a @ Y @ ( set_a2 @ X22 ) )
     => ( member_a @ Y @ ( set_a2 @ ( cons_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_231_list_Oset__intros_I2_J,axiom,
    ! [Y: b,X22: list_b,X21: b] :
      ( ( member_b @ Y @ ( set_b2 @ X22 ) )
     => ( member_b @ Y @ ( set_b2 @ ( cons_b @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_232_distinct__singleton,axiom,
    ! [X: a] : ( distinct_a @ ( cons_a @ X @ nil_a ) ) ).

% distinct_singleton
thf(fact_233_distinct__singleton,axiom,
    ! [X: b] : ( distinct_b @ ( cons_b @ X @ nil_b ) ) ).

% distinct_singleton
thf(fact_234_split__list__first__prop__iff,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ( ? [X4: list_a] :
            ( ( member_list_a @ X4 @ ( set_list_a2 @ Xs ) )
            & ( P @ X4 ) ) )
      = ( ? [Ys3: list_list_a,X4: list_a] :
            ( ? [Zs2: list_list_a] :
                ( Xs
                = ( append_list_a @ Ys3 @ ( cons_list_a @ X4 @ Zs2 ) ) )
            & ( P @ X4 )
            & ! [Y3: list_a] :
                ( ( member_list_a @ Y3 @ ( set_list_a2 @ Ys3 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_235_split__list__first__prop__iff,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ( ? [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
            & ( P @ X4 ) ) )
      = ( ? [Ys3: list_a,X4: a] :
            ( ? [Zs2: list_a] :
                ( Xs
                = ( append_a @ Ys3 @ ( cons_a @ X4 @ Zs2 ) ) )
            & ( P @ X4 )
            & ! [Y3: a] :
                ( ( member_a @ Y3 @ ( set_a2 @ Ys3 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_236_split__list__first__prop__iff,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ( ? [X4: b] :
            ( ( member_b @ X4 @ ( set_b2 @ Xs ) )
            & ( P @ X4 ) ) )
      = ( ? [Ys3: list_b,X4: b] :
            ( ? [Zs2: list_b] :
                ( Xs
                = ( append_b @ Ys3 @ ( cons_b @ X4 @ Zs2 ) ) )
            & ( P @ X4 )
            & ! [Y3: b] :
                ( ( member_b @ Y3 @ ( set_b2 @ Ys3 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_237_split__list__last__prop__iff,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ( ? [X4: list_a] :
            ( ( member_list_a @ X4 @ ( set_list_a2 @ Xs ) )
            & ( P @ X4 ) ) )
      = ( ? [Ys3: list_list_a,X4: list_a,Zs2: list_list_a] :
            ( ( Xs
              = ( append_list_a @ Ys3 @ ( cons_list_a @ X4 @ Zs2 ) ) )
            & ( P @ X4 )
            & ! [Y3: list_a] :
                ( ( member_list_a @ Y3 @ ( set_list_a2 @ Zs2 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_238_split__list__last__prop__iff,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ( ? [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
            & ( P @ X4 ) ) )
      = ( ? [Ys3: list_a,X4: a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X4 @ Zs2 ) ) )
            & ( P @ X4 )
            & ! [Y3: a] :
                ( ( member_a @ Y3 @ ( set_a2 @ Zs2 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_239_split__list__last__prop__iff,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ( ? [X4: b] :
            ( ( member_b @ X4 @ ( set_b2 @ Xs ) )
            & ( P @ X4 ) ) )
      = ( ? [Ys3: list_b,X4: b,Zs2: list_b] :
            ( ( Xs
              = ( append_b @ Ys3 @ ( cons_b @ X4 @ Zs2 ) ) )
            & ( P @ X4 )
            & ! [Y3: b] :
                ( ( member_b @ Y3 @ ( set_b2 @ Zs2 ) )
               => ~ ( P @ Y3 ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_240_in__set__conv__decomp__first,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
      = ( ? [Ys3: list_P1396940483166286381od_a_a,Zs2: list_P1396940483166286381od_a_a] :
            ( ( Xs
              = ( append5335208819046833346od_a_a @ Ys3 @ ( cons_P7316939126706565853od_a_a @ X @ Zs2 ) ) )
            & ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_241_in__set__conv__decomp__first,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
      = ( ? [Ys3: list_set_a,Zs2: list_set_a] :
            ( ( Xs
              = ( append_set_a @ Ys3 @ ( cons_set_a @ X @ Zs2 ) ) )
            & ~ ( member_set_a @ X @ ( set_set_a2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_242_in__set__conv__decomp__first,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
      = ( ? [Ys3: list_list_a,Zs2: list_list_a] :
            ( ( Xs
              = ( append_list_a @ Ys3 @ ( cons_list_a @ X @ Zs2 ) ) )
            & ~ ( member_list_a @ X @ ( set_list_a2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_243_in__set__conv__decomp__first,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
      = ( ? [Ys3: list_a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X @ Zs2 ) ) )
            & ~ ( member_a @ X @ ( set_a2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_244_in__set__conv__decomp__first,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ Xs ) )
      = ( ? [Ys3: list_b,Zs2: list_b] :
            ( ( Xs
              = ( append_b @ Ys3 @ ( cons_b @ X @ Zs2 ) ) )
            & ~ ( member_b @ X @ ( set_b2 @ Ys3 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_245_in__set__conv__decomp__last,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
      = ( ? [Ys3: list_P1396940483166286381od_a_a,Zs2: list_P1396940483166286381od_a_a] :
            ( ( Xs
              = ( append5335208819046833346od_a_a @ Ys3 @ ( cons_P7316939126706565853od_a_a @ X @ Zs2 ) ) )
            & ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_246_in__set__conv__decomp__last,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
      = ( ? [Ys3: list_set_a,Zs2: list_set_a] :
            ( ( Xs
              = ( append_set_a @ Ys3 @ ( cons_set_a @ X @ Zs2 ) ) )
            & ~ ( member_set_a @ X @ ( set_set_a2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_247_in__set__conv__decomp__last,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
      = ( ? [Ys3: list_list_a,Zs2: list_list_a] :
            ( ( Xs
              = ( append_list_a @ Ys3 @ ( cons_list_a @ X @ Zs2 ) ) )
            & ~ ( member_list_a @ X @ ( set_list_a2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_248_in__set__conv__decomp__last,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
      = ( ? [Ys3: list_a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X @ Zs2 ) ) )
            & ~ ( member_a @ X @ ( set_a2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_249_in__set__conv__decomp__last,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ Xs ) )
      = ( ? [Ys3: list_b,Zs2: list_b] :
            ( ( Xs
              = ( append_b @ Ys3 @ ( cons_b @ X @ Zs2 ) ) )
            & ~ ( member_b @ X @ ( set_b2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_250_split__list__first__propE,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ? [X5: list_a] :
          ( ( member_list_a @ X5 @ ( set_list_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_list_a,X2: list_a] :
            ( ? [Zs3: list_list_a] :
                ( Xs
                = ( append_list_a @ Ys2 @ ( cons_list_a @ X2 @ Zs3 ) ) )
           => ( ( P @ X2 )
             => ~ ! [Xa: list_a] :
                    ( ( member_list_a @ Xa @ ( set_list_a2 @ Ys2 ) )
                   => ~ ( P @ Xa ) ) ) ) ) ).

% split_list_first_propE
thf(fact_251_split__list__first__propE,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_a,X2: a] :
            ( ? [Zs3: list_a] :
                ( Xs
                = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs3 ) ) )
           => ( ( P @ X2 )
             => ~ ! [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ Ys2 ) )
                   => ~ ( P @ Xa ) ) ) ) ) ).

% split_list_first_propE
thf(fact_252_split__list__first__propE,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ? [X5: b] :
          ( ( member_b @ X5 @ ( set_b2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_b,X2: b] :
            ( ? [Zs3: list_b] :
                ( Xs
                = ( append_b @ Ys2 @ ( cons_b @ X2 @ Zs3 ) ) )
           => ( ( P @ X2 )
             => ~ ! [Xa: b] :
                    ( ( member_b @ Xa @ ( set_b2 @ Ys2 ) )
                   => ~ ( P @ Xa ) ) ) ) ) ).

% split_list_first_propE
thf(fact_253_split__list__last__propE,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ? [X5: list_a] :
          ( ( member_list_a @ X5 @ ( set_list_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_list_a,X2: list_a,Zs3: list_list_a] :
            ( ( Xs
              = ( append_list_a @ Ys2 @ ( cons_list_a @ X2 @ Zs3 ) ) )
           => ( ( P @ X2 )
             => ~ ! [Xa: list_a] :
                    ( ( member_list_a @ Xa @ ( set_list_a2 @ Zs3 ) )
                   => ~ ( P @ Xa ) ) ) ) ) ).

% split_list_last_propE
thf(fact_254_split__list__last__propE,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_a,X2: a,Zs3: list_a] :
            ( ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs3 ) ) )
           => ( ( P @ X2 )
             => ~ ! [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ Zs3 ) )
                   => ~ ( P @ Xa ) ) ) ) ) ).

% split_list_last_propE
thf(fact_255_split__list__last__propE,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ? [X5: b] :
          ( ( member_b @ X5 @ ( set_b2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_b,X2: b,Zs3: list_b] :
            ( ( Xs
              = ( append_b @ Ys2 @ ( cons_b @ X2 @ Zs3 ) ) )
           => ( ( P @ X2 )
             => ~ ! [Xa: b] :
                    ( ( member_b @ Xa @ ( set_b2 @ Zs3 ) )
                   => ~ ( P @ Xa ) ) ) ) ) ).

% split_list_last_propE
thf(fact_256_split__list__first__prop,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ? [X5: list_a] :
          ( ( member_list_a @ X5 @ ( set_list_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_list_a,X2: list_a] :
          ( ? [Zs3: list_list_a] :
              ( Xs
              = ( append_list_a @ Ys2 @ ( cons_list_a @ X2 @ Zs3 ) ) )
          & ( P @ X2 )
          & ! [Xa: list_a] :
              ( ( member_list_a @ Xa @ ( set_list_a2 @ Ys2 ) )
             => ~ ( P @ Xa ) ) ) ) ).

% split_list_first_prop
thf(fact_257_split__list__first__prop,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_a,X2: a] :
          ( ? [Zs3: list_a] :
              ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs3 ) ) )
          & ( P @ X2 )
          & ! [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ Ys2 ) )
             => ~ ( P @ Xa ) ) ) ) ).

% split_list_first_prop
thf(fact_258_split__list__first__prop,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ? [X5: b] :
          ( ( member_b @ X5 @ ( set_b2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_b,X2: b] :
          ( ? [Zs3: list_b] :
              ( Xs
              = ( append_b @ Ys2 @ ( cons_b @ X2 @ Zs3 ) ) )
          & ( P @ X2 )
          & ! [Xa: b] :
              ( ( member_b @ Xa @ ( set_b2 @ Ys2 ) )
             => ~ ( P @ Xa ) ) ) ) ).

% split_list_first_prop
thf(fact_259_split__list__last__prop,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ? [X5: list_a] :
          ( ( member_list_a @ X5 @ ( set_list_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_list_a,X2: list_a,Zs3: list_list_a] :
          ( ( Xs
            = ( append_list_a @ Ys2 @ ( cons_list_a @ X2 @ Zs3 ) ) )
          & ( P @ X2 )
          & ! [Xa: list_a] :
              ( ( member_list_a @ Xa @ ( set_list_a2 @ Zs3 ) )
             => ~ ( P @ Xa ) ) ) ) ).

% split_list_last_prop
thf(fact_260_split__list__last__prop,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_a,X2: a,Zs3: list_a] :
          ( ( Xs
            = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs3 ) ) )
          & ( P @ X2 )
          & ! [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ Zs3 ) )
             => ~ ( P @ Xa ) ) ) ) ).

% split_list_last_prop
thf(fact_261_split__list__last__prop,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ? [X5: b] :
          ( ( member_b @ X5 @ ( set_b2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_b,X2: b,Zs3: list_b] :
          ( ( Xs
            = ( append_b @ Ys2 @ ( cons_b @ X2 @ Zs3 ) ) )
          & ( P @ X2 )
          & ! [Xa: b] :
              ( ( member_b @ Xa @ ( set_b2 @ Zs3 ) )
             => ~ ( P @ Xa ) ) ) ) ).

% split_list_last_prop
thf(fact_262_in__set__conv__decomp,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
      = ( ? [Ys3: list_P1396940483166286381od_a_a,Zs2: list_P1396940483166286381od_a_a] :
            ( Xs
            = ( append5335208819046833346od_a_a @ Ys3 @ ( cons_P7316939126706565853od_a_a @ X @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_263_in__set__conv__decomp,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
      = ( ? [Ys3: list_set_a,Zs2: list_set_a] :
            ( Xs
            = ( append_set_a @ Ys3 @ ( cons_set_a @ X @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_264_in__set__conv__decomp,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
      = ( ? [Ys3: list_list_a,Zs2: list_list_a] :
            ( Xs
            = ( append_list_a @ Ys3 @ ( cons_list_a @ X @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_265_in__set__conv__decomp,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
      = ( ? [Ys3: list_a,Zs2: list_a] :
            ( Xs
            = ( append_a @ Ys3 @ ( cons_a @ X @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_266_in__set__conv__decomp,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ Xs ) )
      = ( ? [Ys3: list_b,Zs2: list_b] :
            ( Xs
            = ( append_b @ Ys3 @ ( cons_b @ X @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_267_append__Cons__eq__iff,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a,Ys: list_P1396940483166286381od_a_a,Xs5: list_P1396940483166286381od_a_a,Ys6: list_P1396940483166286381od_a_a] :
      ( ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
     => ( ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Ys ) )
       => ( ( ( append5335208819046833346od_a_a @ Xs @ ( cons_P7316939126706565853od_a_a @ X @ Ys ) )
            = ( append5335208819046833346od_a_a @ Xs5 @ ( cons_P7316939126706565853od_a_a @ X @ Ys6 ) ) )
          = ( ( Xs = Xs5 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_268_append__Cons__eq__iff,axiom,
    ! [X: set_a,Xs: list_set_a,Ys: list_set_a,Xs5: list_set_a,Ys6: list_set_a] :
      ( ~ ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
     => ( ~ ( member_set_a @ X @ ( set_set_a2 @ Ys ) )
       => ( ( ( append_set_a @ Xs @ ( cons_set_a @ X @ Ys ) )
            = ( append_set_a @ Xs5 @ ( cons_set_a @ X @ Ys6 ) ) )
          = ( ( Xs = Xs5 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_269_append__Cons__eq__iff,axiom,
    ! [X: list_a,Xs: list_list_a,Ys: list_list_a,Xs5: list_list_a,Ys6: list_list_a] :
      ( ~ ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
     => ( ~ ( member_list_a @ X @ ( set_list_a2 @ Ys ) )
       => ( ( ( append_list_a @ Xs @ ( cons_list_a @ X @ Ys ) )
            = ( append_list_a @ Xs5 @ ( cons_list_a @ X @ Ys6 ) ) )
          = ( ( Xs = Xs5 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_270_append__Cons__eq__iff,axiom,
    ! [X: a,Xs: list_a,Ys: list_a,Xs5: list_a,Ys6: list_a] :
      ( ~ ( member_a @ X @ ( set_a2 @ Xs ) )
     => ( ~ ( member_a @ X @ ( set_a2 @ Ys ) )
       => ( ( ( append_a @ Xs @ ( cons_a @ X @ Ys ) )
            = ( append_a @ Xs5 @ ( cons_a @ X @ Ys6 ) ) )
          = ( ( Xs = Xs5 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_271_append__Cons__eq__iff,axiom,
    ! [X: b,Xs: list_b,Ys: list_b,Xs5: list_b,Ys6: list_b] :
      ( ~ ( member_b @ X @ ( set_b2 @ Xs ) )
     => ( ~ ( member_b @ X @ ( set_b2 @ Ys ) )
       => ( ( ( append_b @ Xs @ ( cons_b @ X @ Ys ) )
            = ( append_b @ Xs5 @ ( cons_b @ X @ Ys6 ) ) )
          = ( ( Xs = Xs5 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_272_split__list__propE,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ? [X5: list_a] :
          ( ( member_list_a @ X5 @ ( set_list_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_list_a,X2: list_a] :
            ( ? [Zs3: list_list_a] :
                ( Xs
                = ( append_list_a @ Ys2 @ ( cons_list_a @ X2 @ Zs3 ) ) )
           => ~ ( P @ X2 ) ) ) ).

% split_list_propE
thf(fact_273_split__list__propE,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_a,X2: a] :
            ( ? [Zs3: list_a] :
                ( Xs
                = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs3 ) ) )
           => ~ ( P @ X2 ) ) ) ).

% split_list_propE
thf(fact_274_split__list__propE,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ? [X5: b] :
          ( ( member_b @ X5 @ ( set_b2 @ Xs ) )
          & ( P @ X5 ) )
     => ~ ! [Ys2: list_b,X2: b] :
            ( ? [Zs3: list_b] :
                ( Xs
                = ( append_b @ Ys2 @ ( cons_b @ X2 @ Zs3 ) ) )
           => ~ ( P @ X2 ) ) ) ).

% split_list_propE
thf(fact_275_split__list__first,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
     => ? [Ys2: list_P1396940483166286381od_a_a,Zs3: list_P1396940483166286381od_a_a] :
          ( ( Xs
            = ( append5335208819046833346od_a_a @ Ys2 @ ( cons_P7316939126706565853od_a_a @ X @ Zs3 ) ) )
          & ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_276_split__list__first,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
     => ? [Ys2: list_set_a,Zs3: list_set_a] :
          ( ( Xs
            = ( append_set_a @ Ys2 @ ( cons_set_a @ X @ Zs3 ) ) )
          & ~ ( member_set_a @ X @ ( set_set_a2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_277_split__list__first,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
     => ? [Ys2: list_list_a,Zs3: list_list_a] :
          ( ( Xs
            = ( append_list_a @ Ys2 @ ( cons_list_a @ X @ Zs3 ) ) )
          & ~ ( member_list_a @ X @ ( set_list_a2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_278_split__list__first,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
     => ? [Ys2: list_a,Zs3: list_a] :
          ( ( Xs
            = ( append_a @ Ys2 @ ( cons_a @ X @ Zs3 ) ) )
          & ~ ( member_a @ X @ ( set_a2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_279_split__list__first,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ Xs ) )
     => ? [Ys2: list_b,Zs3: list_b] :
          ( ( Xs
            = ( append_b @ Ys2 @ ( cons_b @ X @ Zs3 ) ) )
          & ~ ( member_b @ X @ ( set_b2 @ Ys2 ) ) ) ) ).

% split_list_first
thf(fact_280_split__list__prop,axiom,
    ! [Xs: list_list_a,P: list_a > $o] :
      ( ? [X5: list_a] :
          ( ( member_list_a @ X5 @ ( set_list_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_list_a,X2: list_a] :
          ( ? [Zs3: list_list_a] :
              ( Xs
              = ( append_list_a @ Ys2 @ ( cons_list_a @ X2 @ Zs3 ) ) )
          & ( P @ X2 ) ) ) ).

% split_list_prop
thf(fact_281_split__list__prop,axiom,
    ! [Xs: list_a,P: a > $o] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_a,X2: a] :
          ( ? [Zs3: list_a] :
              ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ X2 @ Zs3 ) ) )
          & ( P @ X2 ) ) ) ).

% split_list_prop
thf(fact_282_split__list__prop,axiom,
    ! [Xs: list_b,P: b > $o] :
      ( ? [X5: b] :
          ( ( member_b @ X5 @ ( set_b2 @ Xs ) )
          & ( P @ X5 ) )
     => ? [Ys2: list_b,X2: b] :
          ( ? [Zs3: list_b] :
              ( Xs
              = ( append_b @ Ys2 @ ( cons_b @ X2 @ Zs3 ) ) )
          & ( P @ X2 ) ) ) ).

% split_list_prop
thf(fact_283_split__list__last,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
     => ? [Ys2: list_P1396940483166286381od_a_a,Zs3: list_P1396940483166286381od_a_a] :
          ( ( Xs
            = ( append5335208819046833346od_a_a @ Ys2 @ ( cons_P7316939126706565853od_a_a @ X @ Zs3 ) ) )
          & ~ ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_284_split__list__last,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
     => ? [Ys2: list_set_a,Zs3: list_set_a] :
          ( ( Xs
            = ( append_set_a @ Ys2 @ ( cons_set_a @ X @ Zs3 ) ) )
          & ~ ( member_set_a @ X @ ( set_set_a2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_285_split__list__last,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
     => ? [Ys2: list_list_a,Zs3: list_list_a] :
          ( ( Xs
            = ( append_list_a @ Ys2 @ ( cons_list_a @ X @ Zs3 ) ) )
          & ~ ( member_list_a @ X @ ( set_list_a2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_286_split__list__last,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
     => ? [Ys2: list_a,Zs3: list_a] :
          ( ( Xs
            = ( append_a @ Ys2 @ ( cons_a @ X @ Zs3 ) ) )
          & ~ ( member_a @ X @ ( set_a2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_287_split__list__last,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ Xs ) )
     => ? [Ys2: list_b,Zs3: list_b] :
          ( ( Xs
            = ( append_b @ Ys2 @ ( cons_b @ X @ Zs3 ) ) )
          & ~ ( member_b @ X @ ( set_b2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_288_split__list,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) )
     => ? [Ys2: list_P1396940483166286381od_a_a,Zs3: list_P1396940483166286381od_a_a] :
          ( Xs
          = ( append5335208819046833346od_a_a @ Ys2 @ ( cons_P7316939126706565853od_a_a @ X @ Zs3 ) ) ) ) ).

% split_list
thf(fact_289_split__list,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
     => ? [Ys2: list_set_a,Zs3: list_set_a] :
          ( Xs
          = ( append_set_a @ Ys2 @ ( cons_set_a @ X @ Zs3 ) ) ) ) ).

% split_list
thf(fact_290_split__list,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ Xs ) )
     => ? [Ys2: list_list_a,Zs3: list_list_a] :
          ( Xs
          = ( append_list_a @ Ys2 @ ( cons_list_a @ X @ Zs3 ) ) ) ) ).

% split_list
thf(fact_291_split__list,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ Xs ) )
     => ? [Ys2: list_a,Zs3: list_a] :
          ( Xs
          = ( append_a @ Ys2 @ ( cons_a @ X @ Zs3 ) ) ) ) ).

% split_list
thf(fact_292_split__list,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ Xs ) )
     => ? [Ys2: list_b,Zs3: list_b] :
          ( Xs
          = ( append_b @ Ys2 @ ( cons_b @ X @ Zs3 ) ) ) ) ).

% split_list
thf(fact_293_list_Oset__sel_I1_J,axiom,
    ! [A2: list_P1396940483166286381od_a_a] :
      ( ( A2 != nil_Product_prod_a_a )
     => ( member1426531477525435216od_a_a @ ( hd_Product_prod_a_a @ A2 ) @ ( set_Product_prod_a_a2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_294_list_Oset__sel_I1_J,axiom,
    ! [A2: list_set_a] :
      ( ( A2 != nil_set_a )
     => ( member_set_a @ ( hd_set_a @ A2 ) @ ( set_set_a2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_295_list_Oset__sel_I1_J,axiom,
    ! [A2: list_a] :
      ( ( A2 != nil_a )
     => ( member_a @ ( hd_a @ A2 ) @ ( set_a2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_296_list_Oset__sel_I1_J,axiom,
    ! [A2: list_b] :
      ( ( A2 != nil_b )
     => ( member_b @ ( hd_b @ A2 ) @ ( set_b2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_297_list_Oset__sel_I1_J,axiom,
    ! [A2: list_list_a] :
      ( ( A2 != nil_list_a )
     => ( member_list_a @ ( hd_list_a @ A2 ) @ ( set_list_a2 @ A2 ) ) ) ).

% list.set_sel(1)
thf(fact_298_hd__in__set,axiom,
    ! [Xs: list_P1396940483166286381od_a_a] :
      ( ( Xs != nil_Product_prod_a_a )
     => ( member1426531477525435216od_a_a @ ( hd_Product_prod_a_a @ Xs ) @ ( set_Product_prod_a_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_299_hd__in__set,axiom,
    ! [Xs: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( member_set_a @ ( hd_set_a @ Xs ) @ ( set_set_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_300_hd__in__set,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( member_a @ ( hd_a @ Xs ) @ ( set_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_301_hd__in__set,axiom,
    ! [Xs: list_b] :
      ( ( Xs != nil_b )
     => ( member_b @ ( hd_b @ Xs ) @ ( set_b2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_302_hd__in__set,axiom,
    ! [Xs: list_list_a] :
      ( ( Xs != nil_list_a )
     => ( member_list_a @ ( hd_list_a @ Xs ) @ ( set_list_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_303_not__distinct__decomp,axiom,
    ! [Ws: list_a] :
      ( ~ ( distinct_a @ Ws )
     => ? [Xs2: list_a,Ys2: list_a,Zs3: list_a,Y2: a] :
          ( Ws
          = ( append_a @ Xs2 @ ( append_a @ ( cons_a @ Y2 @ nil_a ) @ ( append_a @ Ys2 @ ( append_a @ ( cons_a @ Y2 @ nil_a ) @ Zs3 ) ) ) ) ) ) ).

% not_distinct_decomp
thf(fact_304_not__distinct__decomp,axiom,
    ! [Ws: list_b] :
      ( ~ ( distinct_b @ Ws )
     => ? [Xs2: list_b,Ys2: list_b,Zs3: list_b,Y2: b] :
          ( Ws
          = ( append_b @ Xs2 @ ( append_b @ ( cons_b @ Y2 @ nil_b ) @ ( append_b @ Ys2 @ ( append_b @ ( cons_b @ Y2 @ nil_b ) @ Zs3 ) ) ) ) ) ) ).

% not_distinct_decomp
thf(fact_305_pre__digraph_Oawalk__verts_Ocong,axiom,
    arc_pr7493981781705774526ts_a_b = arc_pr7493981781705774526ts_a_b ).

% pre_digraph.awalk_verts.cong
thf(fact_306_directed__tree_Oforward_Ocong,axiom,
    iKKBZ_4778857019735642799rd_a_b = iKKBZ_4778857019735642799rd_a_b ).

% directed_tree.forward.cong
thf(fact_307_directed__tree_Oforward__arcs_Ocong,axiom,
    iKKBZ_4180558001818622352cs_a_b = iKKBZ_4180558001818622352cs_a_b ).

% directed_tree.forward_arcs.cong
thf(fact_308_directed__tree_Ono__back_Ocong,axiom,
    iKKBZ_3684931046464919648ck_a_b = iKKBZ_3684931046464919648ck_a_b ).

% directed_tree.no_back.cong
thf(fact_309_directed__tree_Obefore_Ocong,axiom,
    iKKBZ_7682935289300565975re_a_b = iKKBZ_7682935289300565975re_a_b ).

% directed_tree.before.cong
thf(fact_310_directed__tree_Oseq__conform_Ocong,axiom,
    iKKBZ_4622586873178280511rm_a_b = iKKBZ_4622586873178280511rm_a_b ).

% directed_tree.seq_conform.cong
thf(fact_311_directed__tree_Ono__back__arcs_Ocong,axiom,
    iKKBZ_7773321254043928001cs_a_b = iKKBZ_7773321254043928001cs_a_b ).

% directed_tree.no_back_arcs.cong
thf(fact_312_pre__digraph_Ocycle_Ocong,axiom,
    arc_pre_cycle_a_b = arc_pre_cycle_a_b ).

% pre_digraph.cycle.cong
thf(fact_313_pre__digraph_Oawalk__verts__non__Nil,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,P2: list_b] :
      ( ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ P2 )
     != nil_a ) ).

% pre_digraph.awalk_verts_non_Nil
thf(fact_314_pre__digraph_Oawalk__verts__ne__eq,axiom,
    ! [P2: list_b,G: pre_pr7278220950009878019t_unit,U2: a,V2: a] :
      ( ( P2 != nil_b )
     => ( ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ P2 )
        = ( arc_pr7493981781705774526ts_a_b @ G @ V2 @ P2 ) ) ) ).

% pre_digraph.awalk_verts_ne_eq
thf(fact_315_leaf__not__mem__awalk,axiom,
    ! [X: a,U2: a,P2: list_b,V2: a] :
      ( ( shorte1213025427933718126af_a_b @ t @ X )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
       => ( ( V2 != X )
         => ~ ( member_a @ X @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ).

% leaf_not_mem_awalk
thf(fact_316_mk__cycles__path__awalk,axiom,
    ! [U2: a,C: list_b,N: nat] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ C @ U2 )
     => ( arc_pre_awalk_a_b @ t @ U2 @ ( shorte6374615165232202367path_b @ N @ C ) @ U2 ) ) ).

% mk_cycles_path_awalk
thf(fact_317_awalk__del__vert,axiom,
    ! [U2: a,P2: list_b,V2: a,X: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ~ ( member_a @ X @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ( arc_pre_awalk_a_b @ ( pre_del_vert_a_b @ t @ X ) @ U2 @ P2 @ V2 ) ) ) ).

% awalk_del_vert
thf(fact_318_rotate__trailE,axiom,
    ! [U2: a,P2: list_b,W: a] :
      ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ U2 )
     => ( ( member_a @ W @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ~ ! [Q2: list_b,R: list_b] :
              ( ( P2
                = ( append_b @ Q2 @ R ) )
             => ( ( arc_pre_trail_a_b @ t @ W @ ( append_b @ R @ Q2 ) @ W )
               => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ W @ ( append_b @ R @ Q2 ) ) )
                 != ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ) ).

% rotate_trailE
thf(fact_319_in__set__inner__verts__appendI__r,axiom,
    ! [U2: a,Q: list_b,P2: list_b] :
      ( ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ t @ Q ) ) )
     => ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ t @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% in_set_inner_verts_appendI_r
thf(fact_320_in__set__inner__verts__appendI__l,axiom,
    ! [U2: a,P2: list_b,Q: list_b] :
      ( ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ t @ P2 ) ) )
     => ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ t @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% in_set_inner_verts_appendI_l
thf(fact_321_induce__subgraph__verts,axiom,
    ! [G: pre_pr2882871181989701257t_unit,Vs: set_list_a] :
      ( ( pre_ve1830060048215441954t_unit @ ( digrap21804061584661953st_a_b @ G @ Vs ) )
      = Vs ) ).

% induce_subgraph_verts
thf(fact_322_induce__subgraph__verts,axiom,
    ! [G: pre_pr7278220950009878019t_unit,Vs: set_a] :
      ( ( pre_ve642382030648772252t_unit @ ( digrap7873285959652527175ph_a_b @ G @ Vs ) )
      = Vs ) ).

% induce_subgraph_verts
thf(fact_323_hd__reach__all__if__nfwd__app__fwd,axiom,
    ! [Y: a,Xs: list_a,Ys: list_a,X: a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ Xs ) )
     => ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) )
       => ( ( member_a @ X @ ( set_a2 @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) ) )
         => ( reachable_a_b @ t @ ( hd_a @ ( rev_a @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) ) ) @ X ) ) ) ) ).

% hd_reach_all_if_nfwd_app_fwd
thf(fact_324_scc__of__in__sccs__verts,axiom,
    ! [U2: a] :
      ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( member_set_a @ ( digrap2937667069914300949of_a_b @ t @ U2 ) @ ( digrap2871191568752656621ts_a_b @ t ) ) ) ).

% scc_of_in_sccs_verts
thf(fact_325_reachable__trans,axiom,
    ! [U2: a,V2: a,W: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( ( reachable_a_b @ t @ V2 @ W )
       => ( reachable_a_b @ t @ U2 @ W ) ) ) ).

% reachable_trans
thf(fact_326_reachable__in__verts_I2_J,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% reachable_in_verts(2)
thf(fact_327_reachable__in__verts_I1_J,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% reachable_in_verts(1)
thf(fact_328_reachable__awalk,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
      = ( ? [P4: list_b] : ( arc_pre_awalk_a_b @ t @ U2 @ P4 @ V2 ) ) ) ).

% reachable_awalk
thf(fact_329_reachable__awalkI,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( reachable_a_b @ t @ U2 @ V2 ) ) ).

% reachable_awalkI
thf(fact_330_trail__def,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ V2 )
      = ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
        & ( distinct_b @ P2 ) ) ) ).

% trail_def
thf(fact_331_k__nh__reachable,axiom,
    ! [U2: a,W: b > real,V2: a,K: real] :
      ( ( member_a @ U2 @ ( graph_3921080825633621230od_a_b @ t @ W @ V2 @ K ) )
     => ( reachable_a_b @ t @ V2 @ U2 ) ) ).

% k_nh_reachable
thf(fact_332_distinct__verts__imp__distinct,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
       => ( distinct_b @ P2 ) ) ) ).

% distinct_verts_imp_distinct
thf(fact_333_rotate__trailE_H,axiom,
    ! [U2: a,P2: list_b,W: a] :
      ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ U2 )
     => ( ( member_a @ W @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ~ ! [Q2: list_b] :
              ( ( arc_pre_trail_a_b @ t @ W @ Q2 @ W )
             => ( ( ( set_b2 @ Q2 )
                  = ( set_b2 @ P2 ) )
               => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ W @ Q2 ) )
                 != ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ) ).

% rotate_trailE'
thf(fact_334_trail__Nil__iff,axiom,
    ! [U2: a,V2: a] :
      ( ( arc_pre_trail_a_b @ t @ U2 @ nil_b @ V2 )
      = ( ( U2 = V2 )
        & ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% trail_Nil_iff
thf(fact_335_awalk__verts__reachable__to,axiom,
    ! [U2: a,P2: list_b,V2: a,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( member_a @ W @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ( reachable_a_b @ t @ W @ V2 ) ) ) ).

% awalk_verts_reachable_to
thf(fact_336_awalk__verts__reachable__from,axiom,
    ! [U2: a,P2: list_b,V2: a,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( member_a @ W @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ( reachable_a_b @ t @ U2 @ W ) ) ) ).

% awalk_verts_reachable_from
thf(fact_337_hd__reach__all__forward,axiom,
    ! [Xs: list_a,X: a] :
      ( ( member_a @ ( hd_a @ Xs ) @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
       => ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( reachable_a_b @ t @ ( hd_a @ Xs ) @ X ) ) ) ) ).

% hd_reach_all_forward
thf(fact_338_hd__reach__all__forward_H_H,axiom,
    ! [X: a,Y: a,Xs: list_a,Z: a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( cons_a @ X @ ( cons_a @ Y @ Xs ) ) )
     => ( ( member_a @ Z @ ( set_a2 @ ( cons_a @ X @ ( cons_a @ Y @ Xs ) ) ) )
       => ( reachable_a_b @ t @ ( hd_a @ ( cons_a @ X @ ( cons_a @ Y @ Xs ) ) ) @ Z ) ) ) ).

% hd_reach_all_forward''
thf(fact_339_hd__reach__all__forward__arcs,axiom,
    ! [Xs: list_a,X: a] :
      ( ( member_a @ ( hd_a @ ( rev_a @ Xs ) ) @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( iKKBZ_4180558001818622352cs_a_b @ t @ Xs )
       => ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( reachable_a_b @ t @ ( hd_a @ ( rev_a @ Xs ) ) @ X ) ) ) ) ).

% hd_reach_all_forward_arcs
thf(fact_340_reachable__refl,axiom,
    ! [V2: a] :
      ( ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( reachable_a_b @ t @ V2 @ V2 ) ) ).

% reachable_refl
thf(fact_341_inner__verts__Nil,axiom,
    ( ( pre_inner_verts_a_b @ t @ nil_b )
    = nil_a ) ).

% inner_verts_Nil
thf(fact_342_arc__balancedI__trail,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ V2 )
     => ( pre_ar5931435604406180204ed_a_b @ t @ U2 @ ( set_b2 @ P2 ) @ V2 ) ) ).

% arc_balancedI_trail
thf(fact_343_inner__verts__singleton,axiom,
    ! [X: b] :
      ( ( pre_inner_verts_a_b @ t @ ( cons_b @ X @ nil_b ) )
      = nil_a ) ).

% inner_verts_singleton
thf(fact_344_pre__digraph_Otrail_Ocong,axiom,
    arc_pre_trail_a_b = arc_pre_trail_a_b ).

% pre_digraph.trail.cong
thf(fact_345_pre__digraph_Osccs__verts_Ocong,axiom,
    digrap2871191568752656621ts_a_b = digrap2871191568752656621ts_a_b ).

% pre_digraph.sccs_verts.cong
thf(fact_346_pre__digraph_Otrail__def,axiom,
    ( arc_pr7309874995902050716st_a_b
    = ( ^ [G2: pre_pr2882871181989701257t_unit,U4: list_a,P4: list_b,V5: list_a] :
          ( ( arc_pr6214585750886380800st_a_b @ G2 @ U4 @ P4 @ V5 )
          & ( distinct_b @ P4 ) ) ) ) ).

% pre_digraph.trail_def
thf(fact_347_pre__digraph_Otrail__def,axiom,
    ( arc_pre_trail_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,U4: a,P4: list_b,V5: a] :
          ( ( arc_pre_awalk_a_b @ G2 @ U4 @ P4 @ V5 )
          & ( distinct_b @ P4 ) ) ) ) ).

% pre_digraph.trail_def
thf(fact_348_pre__digraph_Oscc__of_Ocong,axiom,
    digrap2937667069914300949of_a_b = digrap2937667069914300949of_a_b ).

% pre_digraph.scc_of.cong
thf(fact_349_del__vert__add__vert,axiom,
    ! [U2: a] :
      ( ~ ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( pre_del_vert_a_b @ ( pre_add_vert_a_b @ t @ U2 ) @ U2 )
        = t ) ) ).

% del_vert_add_vert
thf(fact_350_inner__verts__Cons,axiom,
    ! [U2: a,E: b,Es: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ ( cons_b @ E @ Es ) @ V2 )
     => ( ( ( Es != nil_b )
         => ( ( pre_inner_verts_a_b @ t @ ( cons_b @ E @ Es ) )
            = ( cons_a @ ( pre_he5236287464308401016t_unit @ t @ E ) @ ( pre_inner_verts_a_b @ t @ Es ) ) ) )
        & ( ( Es = nil_b )
         => ( ( pre_inner_verts_a_b @ t @ ( cons_b @ E @ Es ) )
            = nil_a ) ) ) ) ).

% inner_verts_Cons
thf(fact_351_cas__induce,axiom,
    ! [U2: a,P2: list_b,V2: a,S: set_a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ S )
       => ( arc_pre_cas_a_b @ ( digrap7873285959652527175ph_a_b @ t @ S ) @ U2 @ P2 @ V2 ) ) ) ).

% cas_induce
thf(fact_352_awalk__induce,axiom,
    ! [U2: a,P2: list_b,V2: a,S: set_a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ S )
       => ( arc_pre_awalk_a_b @ ( digrap7873285959652527175ph_a_b @ t @ S ) @ U2 @ P2 @ V2 ) ) ) ).

% awalk_induce
thf(fact_353_merge__in__verts,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( graph_2957805489637798020ts_a_b @ t ) )
     => ( member_a @ X @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% merge_in_verts
thf(fact_354_to__list__tree__cas,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
      = ( arc_pre_cas_list_a_b @ ( direct3773525127397338803ee_a_b @ t ) @ ( cons_a @ U2 @ nil_a ) @ P2 @ ( cons_a @ V2 @ nil_a ) ) ) ).

% to_list_tree_cas
thf(fact_355_to__list__tree__awalk,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
      = ( arc_pr6214585750886380800st_a_b @ ( direct3773525127397338803ee_a_b @ t ) @ ( cons_a @ U2 @ nil_a ) @ P2 @ ( cons_a @ V2 @ nil_a ) ) ) ).

% to_list_tree_awalk
thf(fact_356_to__list__tree__single,axiom,
    ! [V2: list_a] :
      ( ( member_list_a @ V2 @ ( pre_ve1830060048215441954t_unit @ ( direct3773525127397338803ee_a_b @ t ) ) )
     => ? [X2: a] :
          ( ( V2
            = ( cons_a @ X2 @ nil_a ) )
          & ( member_a @ X2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% to_list_tree_single
thf(fact_357_head__del__vert,axiom,
    ! [U2: a] :
      ( ( pre_he5236287464308401016t_unit @ ( pre_del_vert_a_b @ t @ U2 ) )
      = ( pre_he5236287464308401016t_unit @ t ) ) ).

% head_del_vert
thf(fact_358_head__add__vert,axiom,
    ! [U2: a] :
      ( ( pre_he5236287464308401016t_unit @ ( pre_add_vert_a_b @ t @ U2 ) )
      = ( pre_he5236287464308401016t_unit @ t ) ) ).

% head_add_vert
thf(fact_359_sccs__verts__subsets,axiom,
    ! [S: set_a] :
      ( ( member_set_a @ S @ ( digrap2871191568752656621ts_a_b @ t ) )
     => ( ord_less_eq_set_a @ S @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% sccs_verts_subsets
thf(fact_360_reachable__induce__ss,axiom,
    ! [S: set_a,U2: a,V2: a,T: set_a] :
      ( ( reachable_a_b @ ( digrap7873285959652527175ph_a_b @ t @ S ) @ U2 @ V2 )
     => ( ( ord_less_eq_set_a @ S @ T )
       => ( reachable_a_b @ ( digrap7873285959652527175ph_a_b @ t @ T ) @ U2 @ V2 ) ) ) ).

% reachable_induce_ss
thf(fact_361_to__list__tree__nempty,axiom,
    ! [V2: list_a] :
      ( ( member_list_a @ V2 @ ( pre_ve1830060048215441954t_unit @ ( direct3773525127397338803ee_a_b @ t ) ) )
     => ( V2 != nil_a ) ) ).

% to_list_tree_nempty
thf(fact_362_reachable__induce__subgraphD,axiom,
    ! [S: set_a,U2: a,V2: a] :
      ( ( reachable_a_b @ ( digrap7873285959652527175ph_a_b @ t @ S ) @ U2 @ V2 )
     => ( ( ord_less_eq_set_a @ S @ ( pre_ve642382030648772252t_unit @ t ) )
       => ( reachable_a_b @ t @ U2 @ V2 ) ) ) ).

% reachable_induce_subgraphD
thf(fact_363_awalk__verts__arc2,axiom,
    ! [U2: a,P2: list_b,V2: a,E: b] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( member_b @ E @ ( set_b2 @ P2 ) )
       => ( member_a @ ( pre_he5236287464308401016t_unit @ t @ E ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ).

% awalk_verts_arc2
thf(fact_364_induce__subgraph__head,axiom,
    ! [G: pre_pr7278220950009878019t_unit,Vs: set_a] :
      ( ( pre_he5236287464308401016t_unit @ ( digrap7873285959652527175ph_a_b @ G @ Vs ) )
      = ( pre_he5236287464308401016t_unit @ G ) ) ).

% induce_subgraph_head
thf(fact_365_last__merge__is__merge,axiom,
    ! [Y: a] :
      ( ( member_a @ Y @ ( graph_2659413520663303054ts_a_b @ t ) )
     => ( member_a @ Y @ ( graph_2957805489637798020ts_a_b @ t ) ) ) ).

% last_merge_is_merge
thf(fact_366_last__merge__alt,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( graph_2659413520663303054ts_a_b @ t ) )
     => ! [Z3: a] :
          ( ( ( reachable_a_b @ t @ X @ Z3 )
            & ( Z3 != X ) )
         => ~ ( member_a @ Z3 @ ( graph_2957805489637798020ts_a_b @ t ) ) ) ) ).

% last_merge_alt
thf(fact_367_subset__code_I1_J,axiom,
    ! [Xs: list_P1396940483166286381od_a_a,B3: set_Product_prod_a_a] :
      ( ( ord_le746702958409616551od_a_a @ ( set_Product_prod_a_a2 @ Xs ) @ B3 )
      = ( ! [X4: product_prod_a_a] :
            ( ( member1426531477525435216od_a_a @ X4 @ ( set_Product_prod_a_a2 @ Xs ) )
           => ( member1426531477525435216od_a_a @ X4 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_368_subset__code_I1_J,axiom,
    ! [Xs: list_set_a,B3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ B3 )
      = ( ! [X4: set_a] :
            ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
           => ( member_set_a @ X4 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_369_subset__code_I1_J,axiom,
    ! [Xs: list_list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ ( set_list_a2 @ Xs ) @ B3 )
      = ( ! [X4: list_a] :
            ( ( member_list_a @ X4 @ ( set_list_a2 @ Xs ) )
           => ( member_list_a @ X4 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_370_subset__code_I1_J,axiom,
    ! [Xs: list_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ B3 )
      = ( ! [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
           => ( member_a @ X4 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_371_subset__code_I1_J,axiom,
    ! [Xs: list_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ ( set_b2 @ Xs ) @ B3 )
      = ( ! [X4: b] :
            ( ( member_b @ X4 @ ( set_b2 @ Xs ) )
           => ( member_b @ X4 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_372_set__subset__Cons,axiom,
    ! [Xs: list_list_a,X: list_a] : ( ord_le8861187494160871172list_a @ ( set_list_a2 @ Xs ) @ ( set_list_a2 @ ( cons_list_a @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_373_set__subset__Cons,axiom,
    ! [Xs: list_a,X: a] : ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ ( cons_a @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_374_set__subset__Cons,axiom,
    ! [Xs: list_b,X: b] : ( ord_less_eq_set_b @ ( set_b2 @ Xs ) @ ( set_b2 @ ( cons_b @ X @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_375_awalk__to__apath__verts__subset,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( arc_wf446166946845163101th_a_b @ t @ P2 ) ) ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ).

% awalk_to_apath_verts_subset
thf(fact_376_not__distinct__if__head__eq__tail,axiom,
    ! [P2: b,U2: a,E: b,R2: a,Ps2: list_b,P22: list_b,V2: a] :
      ( ( ( pre_ta4931606617599662728t_unit @ t @ P2 )
        = U2 )
     => ( ( ( pre_he5236287464308401016t_unit @ t @ E )
          = U2 )
       => ( ( arc_pre_awalk_a_b @ t @ R2 @ ( append_b @ Ps2 @ ( append_b @ ( cons_b @ P2 @ nil_b ) @ ( cons_b @ E @ P22 ) ) ) @ V2 )
         => ~ ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ R2 @ ( append_b @ Ps2 @ ( append_b @ ( cons_b @ P2 @ nil_b ) @ ( cons_b @ E @ P22 ) ) ) ) ) ) ) ) ).

% not_distinct_if_head_eq_tail
thf(fact_377_awalk__verts__subset__if__p__sub,axiom,
    ! [U2: a,P1: list_b,V2: a,P22: list_b] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P1 @ V2 )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ P22 @ V2 )
       => ( ( ord_less_eq_set_b @ ( set_b2 @ P1 ) @ ( set_b2 @ P22 ) )
         => ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P1 ) ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P22 ) ) ) ) ) ) ).

% awalk_verts_subset_if_p_sub
thf(fact_378_awalk__vertex__props,axiom,
    ! [U2: a,P2: list_b,V2: a,P: a > $o,Q3: a > $o] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( P2 != nil_b )
       => ( ! [W2: a] :
              ( ( member_a @ W2 @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
             => ( ( P @ W2 )
                | ( Q3 @ W2 ) ) )
         => ( ( P @ U2 )
           => ( ( Q3 @ V2 )
             => ? [X2: b] :
                  ( ( member_b @ X2 @ ( set_b2 @ P2 ) )
                  & ( P @ ( pre_ta4931606617599662728t_unit @ t @ X2 ) )
                  & ( Q3 @ ( pre_he5236287464308401016t_unit @ t @ X2 ) ) ) ) ) ) ) ) ).

% awalk_vertex_props
thf(fact_379_merge__in__supergraph,axiom,
    ! [C2: pre_pr7278220950009878019t_unit,X: a] :
      ( ( shorte3657265928840388360ph_a_b @ C2 @ t )
     => ( ( member_a @ X @ ( graph_2957805489637798020ts_a_b @ C2 ) )
       => ( member_a @ X @ ( graph_2957805489637798020ts_a_b @ t ) ) ) ) ).

% merge_in_supergraph
thf(fact_380_cycle__conv,axiom,
    ! [P2: list_b] :
      ( ( arc_pre_cycle_a_b @ t @ P2 )
      = ( ? [U4: a] :
            ( ( arc_pre_awalk_a_b @ t @ U4 @ P2 @ U4 )
            & ( distinct_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U4 @ P2 ) ) )
            & ( distinct_b @ P2 )
            & ( P2 != nil_b ) ) ) ) ).

% cycle_conv
thf(fact_381_cas__append__if,axiom,
    ! [X: a,Ps2: list_b,U2: a,P2: b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ X @ Ps2 @ U2 )
     => ( ( ( pre_ta4931606617599662728t_unit @ t @ P2 )
          = U2 )
       => ( ( ( pre_he5236287464308401016t_unit @ t @ P2 )
            = V2 )
         => ( arc_pre_cas_a_b @ t @ X @ ( append_b @ Ps2 @ ( cons_b @ P2 @ nil_b ) ) @ V2 ) ) ) ) ).

% cas_append_if
thf(fact_382_tail__del__vert,axiom,
    ! [U2: a] :
      ( ( pre_ta4931606617599662728t_unit @ ( pre_del_vert_a_b @ t @ U2 ) )
      = ( pre_ta4931606617599662728t_unit @ t ) ) ).

% tail_del_vert
thf(fact_383_tail__add__vert,axiom,
    ! [U2: a] :
      ( ( pre_ta4931606617599662728t_unit @ ( pre_add_vert_a_b @ t @ U2 ) )
      = ( pre_ta4931606617599662728t_unit @ t ) ) ).

% tail_add_vert
thf(fact_384_awalk__verts__arc1,axiom,
    ! [E: b,P2: list_b,U2: a] :
      ( ( member_b @ E @ ( set_b2 @ P2 ) )
     => ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ).

% awalk_verts_arc1
thf(fact_385_tail__and__head__eq__impl__cas,axiom,
    ! [X: a,P2: list_b,Y: a,G3: pre_pr7278220950009878019t_unit] :
      ( ( arc_pre_cas_a_b @ t @ X @ P2 @ Y )
     => ( ! [X2: b] :
            ( ( member_b @ X2 @ ( set_b2 @ P2 ) )
           => ( ( pre_ta4931606617599662728t_unit @ t @ X2 )
              = ( pre_ta4931606617599662728t_unit @ G3 @ X2 ) ) )
       => ( ! [X2: b] :
              ( ( member_b @ X2 @ ( set_b2 @ P2 ) )
             => ( ( pre_he5236287464308401016t_unit @ t @ X2 )
                = ( pre_he5236287464308401016t_unit @ G3 @ X2 ) ) )
         => ( arc_pre_cas_a_b @ G3 @ X @ P2 @ Y ) ) ) ) ).

% tail_and_head_eq_impl_cas
thf(fact_386_cas_Osimps_I2_J,axiom,
    ! [U2: a,E: b,Es: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ ( cons_b @ E @ Es ) @ V2 )
      = ( ( ( pre_ta4931606617599662728t_unit @ t @ E )
          = U2 )
        & ( arc_pre_cas_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E ) @ Es @ V2 ) ) ) ).

% cas.simps(2)
thf(fact_387_awalk__to__apath__subset,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ord_less_eq_set_b @ ( set_b2 @ ( arc_wf446166946845163101th_a_b @ t @ P2 ) ) @ ( set_b2 @ P2 ) ) ) ).

% awalk_to_apath_subset
thf(fact_388_awalk__verts__arc1__app,axiom,
    ! [E: b,R2: a,P1: list_b,P22: list_b] : ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ R2 @ ( append_b @ P1 @ ( cons_b @ E @ P22 ) ) ) ) ) ).

% awalk_verts_arc1_app
thf(fact_389_awalk__verts_Osimps_I2_J,axiom,
    ! [U2: a,E: b,Es: list_b] :
      ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( cons_b @ E @ Es ) )
      = ( cons_a @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( arc_pr7493981781705774526ts_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E ) @ Es ) ) ) ).

% awalk_verts.simps(2)
thf(fact_390_cas_Oelims_I1_J,axiom,
    ! [X: a,Xa2: list_b,Xb: a,Y: $o] :
      ( ( ( arc_pre_cas_a_b @ t @ X @ Xa2 @ Xb )
        = Y )
     => ( ( ( Xa2 = nil_b )
         => ( Y
            = ( X != Xb ) ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ( Y
                = ( ~ ( ( ( pre_ta4931606617599662728t_unit @ t @ E2 )
                        = X )
                      & ( arc_pre_cas_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E2 ) @ Es2 @ Xb ) ) ) ) ) ) ) ).

% cas.elims(1)
thf(fact_391_cas_Oelims_I2_J,axiom,
    ! [X: a,Xa2: list_b,Xb: a] :
      ( ( arc_pre_cas_a_b @ t @ X @ Xa2 @ Xb )
     => ( ( ( Xa2 = nil_b )
         => ( X != Xb ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ~ ( ( ( pre_ta4931606617599662728t_unit @ t @ E2 )
                    = X )
                  & ( arc_pre_cas_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E2 ) @ Es2 @ Xb ) ) ) ) ) ).

% cas.elims(2)
thf(fact_392_cas_Oelims_I3_J,axiom,
    ! [X: a,Xa2: list_b,Xb: a] :
      ( ~ ( arc_pre_cas_a_b @ t @ X @ Xa2 @ Xb )
     => ( ( ( Xa2 = nil_b )
         => ( X = Xb ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ( ( ( pre_ta4931606617599662728t_unit @ t @ E2 )
                  = X )
                & ( arc_pre_cas_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E2 ) @ Es2 @ Xb ) ) ) ) ) ).

% cas.elims(3)
thf(fact_393_distinct__tl__verts__imp__distinct,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( distinct_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
       => ( distinct_b @ P2 ) ) ) ).

% distinct_tl_verts_imp_distinct
thf(fact_394_cycle__altdef,axiom,
    ! [P2: list_b] :
      ( ( arc_pre_cycle_a_b @ t @ P2 )
      = ( ( arc_wf_closed_w_a_b @ t @ P2 )
        & ? [U4: a] : ( distinct_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U4 @ P2 ) ) ) ) ) ).

% cycle_altdef
thf(fact_395_cycle__def,axiom,
    ! [P2: list_b] :
      ( ( arc_pre_cycle_a_b @ t @ P2 )
      = ( ? [U4: a] :
            ( ( arc_pre_awalk_a_b @ t @ U4 @ P2 @ U4 )
            & ( distinct_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U4 @ P2 ) ) )
            & ( P2 != nil_b ) ) ) ) ).

% cycle_def
thf(fact_396_induce__subgraph__tail,axiom,
    ! [G: pre_pr7278220950009878019t_unit,Vs: set_a] :
      ( ( pre_ta4931606617599662728t_unit @ ( digrap7873285959652527175ph_a_b @ G @ Vs ) )
      = ( pre_ta4931606617599662728t_unit @ G ) ) ).

% induce_subgraph_tail
thf(fact_397_tl__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
        = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ).

% tl_append2
thf(fact_398_tl__append2,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( Xs != nil_b )
     => ( ( tl_b @ ( append_b @ Xs @ Ys ) )
        = ( append_b @ ( tl_b @ Xs ) @ Ys ) ) ) ).

% tl_append2
thf(fact_399_list_Ocollapse,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) )
        = List ) ) ).

% list.collapse
thf(fact_400_list_Ocollapse,axiom,
    ! [List: list_b] :
      ( ( List != nil_b )
     => ( ( cons_b @ ( hd_b @ List ) @ ( tl_b @ List ) )
        = List ) ) ).

% list.collapse
thf(fact_401_hd__Cons__tl,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( cons_a @ ( hd_a @ Xs ) @ ( tl_a @ Xs ) )
        = Xs ) ) ).

% hd_Cons_tl
thf(fact_402_hd__Cons__tl,axiom,
    ! [Xs: list_b] :
      ( ( Xs != nil_b )
     => ( ( cons_b @ ( hd_b @ Xs ) @ ( tl_b @ Xs ) )
        = Xs ) ) ).

% hd_Cons_tl
thf(fact_403_subgraph__no__last__merge__chain,axiom,
    ! [C2: pre_pr7278220950009878019t_unit] :
      ( ( shorte3657265928840388360ph_a_b @ C2 @ t )
     => ( graph_8150681439568091980in_a_b @ C2 ) ) ).

% subgraph_no_last_merge_chain
thf(fact_404_wf__digraph_Oawalk__to__apath_Ocong,axiom,
    arc_wf446166946845163101th_a_b = arc_wf446166946845163101th_a_b ).

% wf_digraph.awalk_to_apath.cong
thf(fact_405_list_Osel_I3_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( tl_a @ ( cons_a @ X21 @ X22 ) )
      = X22 ) ).

% list.sel(3)
thf(fact_406_list_Osel_I3_J,axiom,
    ! [X21: b,X22: list_b] :
      ( ( tl_b @ ( cons_b @ X21 @ X22 ) )
      = X22 ) ).

% list.sel(3)
thf(fact_407_list_Osel_I2_J,axiom,
    ( ( tl_a @ nil_a )
    = nil_a ) ).

% list.sel(2)
thf(fact_408_list_Osel_I2_J,axiom,
    ( ( tl_b @ nil_b )
    = nil_b ) ).

% list.sel(2)
thf(fact_409_distinct__tl,axiom,
    ! [Xs: list_a] :
      ( ( distinct_a @ Xs )
     => ( distinct_a @ ( tl_a @ Xs ) ) ) ).

% distinct_tl
thf(fact_410_distinct__tl,axiom,
    ! [Xs: list_b] :
      ( ( distinct_b @ Xs )
     => ( distinct_b @ ( tl_b @ Xs ) ) ) ).

% distinct_tl
thf(fact_411_pre__digraph_Ocas__simp,axiom,
    ! [Es: list_b,G: pre_pr2882871181989701257t_unit,U2: list_a,V2: list_a] :
      ( ( Es != nil_b )
     => ( ( arc_pre_cas_list_a_b @ G @ U2 @ Es @ V2 )
        = ( ( ( pre_ta8437681634429857806t_unit @ G @ ( hd_b @ Es ) )
            = U2 )
          & ( arc_pre_cas_list_a_b @ G @ ( pre_he1293792728851071230t_unit @ G @ ( hd_b @ Es ) ) @ ( tl_b @ Es ) @ V2 ) ) ) ) ).

% pre_digraph.cas_simp
thf(fact_412_pre__digraph_Ocas__simp,axiom,
    ! [Es: list_b,G: pre_pr7278220950009878019t_unit,U2: a,V2: a] :
      ( ( Es != nil_b )
     => ( ( arc_pre_cas_a_b @ G @ U2 @ Es @ V2 )
        = ( ( ( pre_ta4931606617599662728t_unit @ G @ ( hd_b @ Es ) )
            = U2 )
          & ( arc_pre_cas_a_b @ G @ ( pre_he5236287464308401016t_unit @ G @ ( hd_b @ Es ) ) @ ( tl_b @ Es ) @ V2 ) ) ) ) ).

% pre_digraph.cas_simp
thf(fact_413_Nil__tl,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( tl_a @ Xs ) )
      = ( ( Xs = nil_a )
        | ? [X4: a] :
            ( Xs
            = ( cons_a @ X4 @ nil_a ) ) ) ) ).

% Nil_tl
thf(fact_414_Nil__tl,axiom,
    ! [Xs: list_b] :
      ( ( nil_b
        = ( tl_b @ Xs ) )
      = ( ( Xs = nil_b )
        | ? [X4: b] :
            ( Xs
            = ( cons_b @ X4 @ nil_b ) ) ) ) ).

% Nil_tl
thf(fact_415_tl__Nil,axiom,
    ! [Xs: list_a] :
      ( ( ( tl_a @ Xs )
        = nil_a )
      = ( ( Xs = nil_a )
        | ? [X4: a] :
            ( Xs
            = ( cons_a @ X4 @ nil_a ) ) ) ) ).

% tl_Nil
thf(fact_416_tl__Nil,axiom,
    ! [Xs: list_b] :
      ( ( ( tl_b @ Xs )
        = nil_b )
      = ( ( Xs = nil_b )
        | ? [X4: b] :
            ( Xs
            = ( cons_b @ X4 @ nil_b ) ) ) ) ).

% tl_Nil
thf(fact_417_list_Oset__sel_I2_J,axiom,
    ! [A2: list_P1396940483166286381od_a_a,X: product_prod_a_a] :
      ( ( A2 != nil_Product_prod_a_a )
     => ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ ( tl_Product_prod_a_a @ A2 ) ) )
       => ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ A2 ) ) ) ) ).

% list.set_sel(2)
thf(fact_418_list_Oset__sel_I2_J,axiom,
    ! [A2: list_set_a,X: set_a] :
      ( ( A2 != nil_set_a )
     => ( ( member_set_a @ X @ ( set_set_a2 @ ( tl_set_a @ A2 ) ) )
       => ( member_set_a @ X @ ( set_set_a2 @ A2 ) ) ) ) ).

% list.set_sel(2)
thf(fact_419_list_Oset__sel_I2_J,axiom,
    ! [A2: list_a,X: a] :
      ( ( A2 != nil_a )
     => ( ( member_a @ X @ ( set_a2 @ ( tl_a @ A2 ) ) )
       => ( member_a @ X @ ( set_a2 @ A2 ) ) ) ) ).

% list.set_sel(2)
thf(fact_420_list_Oset__sel_I2_J,axiom,
    ! [A2: list_b,X: b] :
      ( ( A2 != nil_b )
     => ( ( member_b @ X @ ( set_b2 @ ( tl_b @ A2 ) ) )
       => ( member_b @ X @ ( set_b2 @ A2 ) ) ) ) ).

% list.set_sel(2)
thf(fact_421_list_Oset__sel_I2_J,axiom,
    ! [A2: list_list_a,X: list_a] :
      ( ( A2 != nil_list_a )
     => ( ( member_list_a @ X @ ( set_list_a2 @ ( tl_list_a @ A2 ) ) )
       => ( member_list_a @ X @ ( set_list_a2 @ A2 ) ) ) ) ).

% list.set_sel(2)
thf(fact_422_tl__append__if,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( tl_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ) ).

% tl_append_if
thf(fact_423_tl__append__if,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( ( Xs = nil_b )
       => ( ( tl_b @ ( append_b @ Xs @ Ys ) )
          = ( tl_b @ Ys ) ) )
      & ( ( Xs != nil_b )
       => ( ( tl_b @ ( append_b @ Xs @ Ys ) )
          = ( append_b @ ( tl_b @ Xs ) @ Ys ) ) ) ) ).

% tl_append_if
thf(fact_424_list_Oexpand,axiom,
    ! [List: list_a,List2: list_a] :
      ( ( ( List = nil_a )
        = ( List2 = nil_a ) )
     => ( ( ( List != nil_a )
         => ( ( List2 != nil_a )
           => ( ( ( hd_a @ List )
                = ( hd_a @ List2 ) )
              & ( ( tl_a @ List )
                = ( tl_a @ List2 ) ) ) ) )
       => ( List = List2 ) ) ) ).

% list.expand
thf(fact_425_list_Oexpand,axiom,
    ! [List: list_b,List2: list_b] :
      ( ( ( List = nil_b )
        = ( List2 = nil_b ) )
     => ( ( ( List != nil_b )
         => ( ( List2 != nil_b )
           => ( ( ( hd_b @ List )
                = ( hd_b @ List2 ) )
              & ( ( tl_b @ List )
                = ( tl_b @ List2 ) ) ) ) )
       => ( List = List2 ) ) ) ).

% list.expand
thf(fact_426_list_Oexhaust__sel,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( List
        = ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) ) ) ) ).

% list.exhaust_sel
thf(fact_427_list_Oexhaust__sel,axiom,
    ! [List: list_b] :
      ( ( List != nil_b )
     => ( List
        = ( cons_b @ ( hd_b @ List ) @ ( tl_b @ List ) ) ) ) ).

% list.exhaust_sel
thf(fact_428_pre__digraph_Oawalk__verts_Osimps_I2_J,axiom,
    ! [G: pre_pr3327329314391289540t_unit,U2: a,E: a,Es: list_a] :
      ( ( arc_pr7493981781705774525ts_a_a @ G @ U2 @ ( cons_a @ E @ Es ) )
      = ( cons_a @ ( pre_ta980714981981074249t_unit @ G @ E ) @ ( arc_pr7493981781705774525ts_a_a @ G @ ( pre_he1285395828689812537t_unit @ G @ E ) @ Es ) ) ) ).

% pre_digraph.awalk_verts.simps(2)
thf(fact_429_pre__digraph_Oawalk__verts_Osimps_I2_J,axiom,
    ! [G: pre_pr3994228789931197893t_unit,U2: b,E: a,Es: list_a] :
      ( ( arc_pr4706526199733098492ts_b_a @ G @ U2 @ ( cons_a @ E @ Es ) )
      = ( cons_b @ ( pre_ta6449336744848955850t_unit @ G @ E ) @ ( arc_pr4706526199733098492ts_b_a @ G @ ( pre_he6754017591557694138t_unit @ G @ E ) @ Es ) ) ) ).

% pre_digraph.awalk_verts.simps(2)
thf(fact_430_pre__digraph_Oawalk__verts_Osimps_I2_J,axiom,
    ! [G: pre_pr7945120425549786372t_unit,U2: b,E: b,Es: list_b] :
      ( ( arc_pr4706526199733098493ts_b_b @ G @ U2 @ ( cons_b @ E @ Es ) )
      = ( cons_b @ ( pre_ta1176856343612768521t_unit @ G @ E ) @ ( arc_pr4706526199733098493ts_b_b @ G @ ( pre_he1481537190321506809t_unit @ G @ E ) @ Es ) ) ) ).

% pre_digraph.awalk_verts.simps(2)
thf(fact_431_pre__digraph_Oawalk__verts_Osimps_I2_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,E: b,Es: list_b] :
      ( ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ ( cons_b @ E @ Es ) )
      = ( cons_a @ ( pre_ta4931606617599662728t_unit @ G @ E ) @ ( arc_pr7493981781705774526ts_a_b @ G @ ( pre_he5236287464308401016t_unit @ G @ E ) @ Es ) ) ) ).

% pre_digraph.awalk_verts.simps(2)
thf(fact_432_pre__digraph_Ocas_Osimps_I2_J,axiom,
    ! [G: pre_pr2882871181989701257t_unit,U2: list_a,E: b,Es: list_b,V2: list_a] :
      ( ( arc_pre_cas_list_a_b @ G @ U2 @ ( cons_b @ E @ Es ) @ V2 )
      = ( ( ( pre_ta8437681634429857806t_unit @ G @ E )
          = U2 )
        & ( arc_pre_cas_list_a_b @ G @ ( pre_he1293792728851071230t_unit @ G @ E ) @ Es @ V2 ) ) ) ).

% pre_digraph.cas.simps(2)
thf(fact_433_pre__digraph_Ocas_Osimps_I2_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,E: b,Es: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ G @ U2 @ ( cons_b @ E @ Es ) @ V2 )
      = ( ( ( pre_ta4931606617599662728t_unit @ G @ E )
          = U2 )
        & ( arc_pre_cas_a_b @ G @ ( pre_he5236287464308401016t_unit @ G @ E ) @ Es @ V2 ) ) ) ).

% pre_digraph.cas.simps(2)
thf(fact_434_pre__digraph_Ocas_Oelims_I1_J,axiom,
    ! [G: pre_pr2882871181989701257t_unit,X: list_a,Xa2: list_b,Xb: list_a,Y: $o] :
      ( ( ( arc_pre_cas_list_a_b @ G @ X @ Xa2 @ Xb )
        = Y )
     => ( ( ( Xa2 = nil_b )
         => ( Y
            = ( X != Xb ) ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ( Y
                = ( ~ ( ( ( pre_ta8437681634429857806t_unit @ G @ E2 )
                        = X )
                      & ( arc_pre_cas_list_a_b @ G @ ( pre_he1293792728851071230t_unit @ G @ E2 ) @ Es2 @ Xb ) ) ) ) ) ) ) ).

% pre_digraph.cas.elims(1)
thf(fact_435_pre__digraph_Ocas_Oelims_I1_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,X: a,Xa2: list_b,Xb: a,Y: $o] :
      ( ( ( arc_pre_cas_a_b @ G @ X @ Xa2 @ Xb )
        = Y )
     => ( ( ( Xa2 = nil_b )
         => ( Y
            = ( X != Xb ) ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ( Y
                = ( ~ ( ( ( pre_ta4931606617599662728t_unit @ G @ E2 )
                        = X )
                      & ( arc_pre_cas_a_b @ G @ ( pre_he5236287464308401016t_unit @ G @ E2 ) @ Es2 @ Xb ) ) ) ) ) ) ) ).

% pre_digraph.cas.elims(1)
thf(fact_436_pre__digraph_Ocas_Oelims_I2_J,axiom,
    ! [G: pre_pr2882871181989701257t_unit,X: list_a,Xa2: list_b,Xb: list_a] :
      ( ( arc_pre_cas_list_a_b @ G @ X @ Xa2 @ Xb )
     => ( ( ( Xa2 = nil_b )
         => ( X != Xb ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ~ ( ( ( pre_ta8437681634429857806t_unit @ G @ E2 )
                    = X )
                  & ( arc_pre_cas_list_a_b @ G @ ( pre_he1293792728851071230t_unit @ G @ E2 ) @ Es2 @ Xb ) ) ) ) ) ).

% pre_digraph.cas.elims(2)
thf(fact_437_pre__digraph_Ocas_Oelims_I2_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,X: a,Xa2: list_b,Xb: a] :
      ( ( arc_pre_cas_a_b @ G @ X @ Xa2 @ Xb )
     => ( ( ( Xa2 = nil_b )
         => ( X != Xb ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ~ ( ( ( pre_ta4931606617599662728t_unit @ G @ E2 )
                    = X )
                  & ( arc_pre_cas_a_b @ G @ ( pre_he5236287464308401016t_unit @ G @ E2 ) @ Es2 @ Xb ) ) ) ) ) ).

% pre_digraph.cas.elims(2)
thf(fact_438_pre__digraph_Ocas_Oelims_I3_J,axiom,
    ! [G: pre_pr2882871181989701257t_unit,X: list_a,Xa2: list_b,Xb: list_a] :
      ( ~ ( arc_pre_cas_list_a_b @ G @ X @ Xa2 @ Xb )
     => ( ( ( Xa2 = nil_b )
         => ( X = Xb ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ( ( ( pre_ta8437681634429857806t_unit @ G @ E2 )
                  = X )
                & ( arc_pre_cas_list_a_b @ G @ ( pre_he1293792728851071230t_unit @ G @ E2 ) @ Es2 @ Xb ) ) ) ) ) ).

% pre_digraph.cas.elims(3)
thf(fact_439_pre__digraph_Ocas_Oelims_I3_J,axiom,
    ! [G: pre_pr7278220950009878019t_unit,X: a,Xa2: list_b,Xb: a] :
      ( ~ ( arc_pre_cas_a_b @ G @ X @ Xa2 @ Xb )
     => ( ( ( Xa2 = nil_b )
         => ( X = Xb ) )
       => ~ ! [E2: b,Es2: list_b] :
              ( ( Xa2
                = ( cons_b @ E2 @ Es2 ) )
             => ( ( ( pre_ta4931606617599662728t_unit @ G @ E2 )
                  = X )
                & ( arc_pre_cas_a_b @ G @ ( pre_he5236287464308401016t_unit @ G @ E2 ) @ Es2 @ Xb ) ) ) ) ) ).

% pre_digraph.cas.elims(3)
thf(fact_440_pre__digraph_Ocycle__def,axiom,
    ( arc_pre_cycle_a_a
    = ( ^ [G2: pre_pr3327329314391289540t_unit,P4: list_a] :
        ? [U4: a] :
          ( ( arc_pre_awalk_a_a @ G2 @ U4 @ P4 @ U4 )
          & ( distinct_a @ ( tl_a @ ( arc_pr7493981781705774525ts_a_a @ G2 @ U4 @ P4 ) ) )
          & ( P4 != nil_a ) ) ) ) ).

% pre_digraph.cycle_def
thf(fact_441_pre__digraph_Ocycle__def,axiom,
    ( arc_pre_cycle_b_a
    = ( ^ [G2: pre_pr3994228789931197893t_unit,P4: list_a] :
        ? [U4: b] :
          ( ( arc_pre_awalk_b_a @ G2 @ U4 @ P4 @ U4 )
          & ( distinct_b @ ( tl_b @ ( arc_pr4706526199733098492ts_b_a @ G2 @ U4 @ P4 ) ) )
          & ( P4 != nil_a ) ) ) ) ).

% pre_digraph.cycle_def
thf(fact_442_pre__digraph_Ocycle__def,axiom,
    ( arc_pre_cycle_b_b
    = ( ^ [G2: pre_pr7945120425549786372t_unit,P4: list_b] :
        ? [U4: b] :
          ( ( arc_pre_awalk_b_b @ G2 @ U4 @ P4 @ U4 )
          & ( distinct_b @ ( tl_b @ ( arc_pr4706526199733098493ts_b_b @ G2 @ U4 @ P4 ) ) )
          & ( P4 != nil_b ) ) ) ) ).

% pre_digraph.cycle_def
thf(fact_443_pre__digraph_Ocycle__def,axiom,
    ( arc_pr6335352977596618620st_a_b
    = ( ^ [G2: pre_pr2882871181989701257t_unit,P4: list_b] :
        ? [U4: list_a] :
          ( ( arc_pr6214585750886380800st_a_b @ G2 @ U4 @ P4 @ U4 )
          & ( distinct_list_a @ ( tl_list_a @ ( arc_pr6350002437206376376st_a_b @ G2 @ U4 @ P4 ) ) )
          & ( P4 != nil_b ) ) ) ) ).

% pre_digraph.cycle_def
thf(fact_444_pre__digraph_Ocycle__def,axiom,
    ( arc_pre_cycle_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,P4: list_b] :
        ? [U4: a] :
          ( ( arc_pre_awalk_a_b @ G2 @ U4 @ P4 @ U4 )
          & ( distinct_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ G2 @ U4 @ P4 ) ) )
          & ( P4 != nil_b ) ) ) ) ).

% pre_digraph.cycle_def
thf(fact_445_awalkI,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
         => ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 ) ) ) ) ).

% awalkI
thf(fact_446_pre__digraph_Ocas__append__if,axiom,
    ! [G: pre_pr2882871181989701257t_unit,X: list_a,Ps2: list_b,U2: list_a,P2: b,V2: list_a] :
      ( ( arc_pre_cas_list_a_b @ G @ X @ Ps2 @ U2 )
     => ( ( ( pre_ta8437681634429857806t_unit @ G @ P2 )
          = U2 )
       => ( ( ( pre_he1293792728851071230t_unit @ G @ P2 )
            = V2 )
         => ( arc_pre_cas_list_a_b @ G @ X @ ( append_b @ Ps2 @ ( cons_b @ P2 @ nil_b ) ) @ V2 ) ) ) ) ).

% pre_digraph.cas_append_if
thf(fact_447_pre__digraph_Ocas__append__if,axiom,
    ! [G: pre_pr7278220950009878019t_unit,X: a,Ps2: list_b,U2: a,P2: b,V2: a] :
      ( ( arc_pre_cas_a_b @ G @ X @ Ps2 @ U2 )
     => ( ( ( pre_ta4931606617599662728t_unit @ G @ P2 )
          = U2 )
       => ( ( ( pre_he5236287464308401016t_unit @ G @ P2 )
            = V2 )
         => ( arc_pre_cas_a_b @ G @ X @ ( append_b @ Ps2 @ ( cons_b @ P2 @ nil_b ) ) @ V2 ) ) ) ) ).

% pre_digraph.cas_append_if
thf(fact_448_awalk__verts__conv_H,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( ( P2 = nil_b )
         => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
            = ( cons_a @ U2 @ nil_a ) ) )
        & ( ( P2 != nil_b )
         => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
            = ( cons_a @ ( pre_ta4931606617599662728t_unit @ t @ ( hd_b @ P2 ) ) @ ( map_b_a @ ( pre_he5236287464308401016t_unit @ t ) @ P2 ) ) ) ) ) ) ).

% awalk_verts_conv'
thf(fact_449_trail__Cons__iff,axiom,
    ! [U2: a,E: b,Es: list_b,W: a] :
      ( ( arc_pre_trail_a_b @ t @ U2 @ ( cons_b @ E @ Es ) @ W )
      = ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
        & ( U2
          = ( pre_ta4931606617599662728t_unit @ t @ E ) )
        & ~ ( member_b @ E @ ( set_b2 @ Es ) )
        & ( arc_pre_trail_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E ) @ Es @ W ) ) ) ).

% trail_Cons_iff
thf(fact_450_awhd__in__verts,axiom,
    ! [U2: a,P2: list_b] :
      ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( member_a @ ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% awhd_in_verts
thf(fact_451_awalk__def,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
      = ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
        & ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
        & ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 ) ) ) ).

% awalk_def
thf(fact_452_arc__implies__awalk,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( arc_pre_awalk_a_b @ t @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( cons_b @ E @ nil_b ) @ ( pre_he5236287464308401016t_unit @ t @ E ) ) ) ).

% arc_implies_awalk
thf(fact_453_two__in__arcs__contr,axiom,
    ! [E1: b,E22: b] :
      ( ( member_b @ E1 @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( member_b @ E22 @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( ( E1 != E22 )
         => ( ( pre_he5236287464308401016t_unit @ t @ E1 )
           != ( pre_he5236287464308401016t_unit @ t @ E22 ) ) ) ) ) ).

% two_in_arcs_contr
thf(fact_454_arcs__add__vert,axiom,
    ! [U2: a] :
      ( ( pre_ar1395965042833527383t_unit @ ( pre_add_vert_a_b @ t @ U2 ) )
      = ( pre_ar1395965042833527383t_unit @ t ) ) ).

% arcs_add_vert
thf(fact_455_head__in__verts,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( member_a @ ( pre_he5236287464308401016t_unit @ t @ E ) @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% head_in_verts
thf(fact_456_tail__in__verts,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% tail_in_verts
thf(fact_457_loopfree_Ono__loops,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( pre_ta4931606617599662728t_unit @ t @ E )
       != ( pre_he5236287464308401016t_unit @ t @ E ) ) ) ).

% loopfree.no_loops
thf(fact_458_nomulti_Ono__multi__alt,axiom,
    ! [E1: b,E22: b] :
      ( ( member_b @ E1 @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( member_b @ E22 @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( ( E1 != E22 )
         => ( ( ( pre_he5236287464308401016t_unit @ t @ E1 )
             != ( pre_he5236287464308401016t_unit @ t @ E22 ) )
            | ( ( pre_ta4931606617599662728t_unit @ t @ E1 )
             != ( pre_ta4931606617599662728t_unit @ t @ E22 ) ) ) ) ) ) ).

% nomulti.no_multi_alt
thf(fact_459_All__arcs__in__path,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ? [P5: list_b,U5: a,V: a] :
          ( ( arc_pre_awalk_a_b @ t @ U5 @ P5 @ V )
          & ( member_b @ E @ ( set_b2 @ P5 ) ) ) ) ).

% All_arcs_in_path
thf(fact_460_inner__verts__def,axiom,
    ! [P2: list_b] :
      ( ( pre_inner_verts_a_b @ t @ P2 )
      = ( tl_a @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ P2 ) ) ) ).

% inner_verts_def
thf(fact_461_awalk__Cons__iff,axiom,
    ! [U2: a,E: b,Es: list_b,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ ( cons_b @ E @ Es ) @ W )
      = ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
        & ( U2
          = ( pre_ta4931606617599662728t_unit @ t @ E ) )
        & ( arc_pre_awalk_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E ) @ Es @ W ) ) ) ).

% awalk_Cons_iff
thf(fact_462_cas__simp,axiom,
    ! [Es: list_b,U2: a,V2: a] :
      ( ( Es != nil_b )
     => ( ( arc_pre_cas_a_b @ t @ U2 @ Es @ V2 )
        = ( ( ( pre_ta4931606617599662728t_unit @ t @ ( hd_b @ Es ) )
            = U2 )
          & ( arc_pre_cas_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ ( hd_b @ Es ) ) @ ( tl_b @ Es ) @ V2 ) ) ) ) ).

% cas_simp
thf(fact_463_awalk__verts__in__verts,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( ( member_a @ V2 @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
         => ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ) ).

% awalk_verts_in_verts
thf(fact_464_map__eq__conv,axiom,
    ! [F: b > a,Xs: list_b,G4: b > a] :
      ( ( ( map_b_a @ F @ Xs )
        = ( map_b_a @ G4 @ Xs ) )
      = ( ! [X4: b] :
            ( ( member_b @ X4 @ ( set_b2 @ Xs ) )
           => ( ( F @ X4 )
              = ( G4 @ X4 ) ) ) ) ) ).

% map_eq_conv
thf(fact_465_map__append,axiom,
    ! [F: a > a,Xs: list_a,Ys: list_a] :
      ( ( map_a_a @ F @ ( append_a @ Xs @ Ys ) )
      = ( append_a @ ( map_a_a @ F @ Xs ) @ ( map_a_a @ F @ Ys ) ) ) ).

% map_append
thf(fact_466_map__append,axiom,
    ! [F: a > b,Xs: list_a,Ys: list_a] :
      ( ( map_a_b @ F @ ( append_a @ Xs @ Ys ) )
      = ( append_b @ ( map_a_b @ F @ Xs ) @ ( map_a_b @ F @ Ys ) ) ) ).

% map_append
thf(fact_467_map__append,axiom,
    ! [F: b > b,Xs: list_b,Ys: list_b] :
      ( ( map_b_b @ F @ ( append_b @ Xs @ Ys ) )
      = ( append_b @ ( map_b_b @ F @ Xs ) @ ( map_b_b @ F @ Ys ) ) ) ).

% map_append
thf(fact_468_map__append,axiom,
    ! [F: b > a,Xs: list_b,Ys: list_b] :
      ( ( map_b_a @ F @ ( append_b @ Xs @ Ys ) )
      = ( append_a @ ( map_b_a @ F @ Xs ) @ ( map_b_a @ F @ Ys ) ) ) ).

% map_append
thf(fact_469_map__is__Nil__conv,axiom,
    ! [F: a > a,Xs: list_a] :
      ( ( ( map_a_a @ F @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% map_is_Nil_conv
thf(fact_470_map__is__Nil__conv,axiom,
    ! [F: a > b,Xs: list_a] :
      ( ( ( map_a_b @ F @ Xs )
        = nil_b )
      = ( Xs = nil_a ) ) ).

% map_is_Nil_conv
thf(fact_471_map__is__Nil__conv,axiom,
    ! [F: b > b,Xs: list_b] :
      ( ( ( map_b_b @ F @ Xs )
        = nil_b )
      = ( Xs = nil_b ) ) ).

% map_is_Nil_conv
thf(fact_472_map__is__Nil__conv,axiom,
    ! [F: b > a,Xs: list_b] :
      ( ( ( map_b_a @ F @ Xs )
        = nil_a )
      = ( Xs = nil_b ) ) ).

% map_is_Nil_conv
thf(fact_473_Nil__is__map__conv,axiom,
    ! [F: a > a,Xs: list_a] :
      ( ( nil_a
        = ( map_a_a @ F @ Xs ) )
      = ( Xs = nil_a ) ) ).

% Nil_is_map_conv
thf(fact_474_Nil__is__map__conv,axiom,
    ! [F: a > b,Xs: list_a] :
      ( ( nil_b
        = ( map_a_b @ F @ Xs ) )
      = ( Xs = nil_a ) ) ).

% Nil_is_map_conv
thf(fact_475_Nil__is__map__conv,axiom,
    ! [F: b > b,Xs: list_b] :
      ( ( nil_b
        = ( map_b_b @ F @ Xs ) )
      = ( Xs = nil_b ) ) ).

% Nil_is_map_conv
thf(fact_476_Nil__is__map__conv,axiom,
    ! [F: b > a,Xs: list_b] :
      ( ( nil_a
        = ( map_b_a @ F @ Xs ) )
      = ( Xs = nil_b ) ) ).

% Nil_is_map_conv
thf(fact_477_list_Omap__disc__iff,axiom,
    ! [F: a > a,A2: list_a] :
      ( ( ( map_a_a @ F @ A2 )
        = nil_a )
      = ( A2 = nil_a ) ) ).

% list.map_disc_iff
thf(fact_478_list_Omap__disc__iff,axiom,
    ! [F: a > b,A2: list_a] :
      ( ( ( map_a_b @ F @ A2 )
        = nil_b )
      = ( A2 = nil_a ) ) ).

% list.map_disc_iff
thf(fact_479_list_Omap__disc__iff,axiom,
    ! [F: b > b,A2: list_b] :
      ( ( ( map_b_b @ F @ A2 )
        = nil_b )
      = ( A2 = nil_b ) ) ).

% list.map_disc_iff
thf(fact_480_list_Omap__disc__iff,axiom,
    ! [F: b > a,A2: list_b] :
      ( ( ( map_b_a @ F @ A2 )
        = nil_a )
      = ( A2 = nil_b ) ) ).

% list.map_disc_iff
thf(fact_481_map__eq__Cons__conv,axiom,
    ! [F: a > a,Xs: list_a,Y: a,Ys: list_a] :
      ( ( ( map_a_a @ F @ Xs )
        = ( cons_a @ Y @ Ys ) )
      = ( ? [Z4: a,Zs2: list_a] :
            ( ( Xs
              = ( cons_a @ Z4 @ Zs2 ) )
            & ( ( F @ Z4 )
              = Y )
            & ( ( map_a_a @ F @ Zs2 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_482_map__eq__Cons__conv,axiom,
    ! [F: b > a,Xs: list_b,Y: a,Ys: list_a] :
      ( ( ( map_b_a @ F @ Xs )
        = ( cons_a @ Y @ Ys ) )
      = ( ? [Z4: b,Zs2: list_b] :
            ( ( Xs
              = ( cons_b @ Z4 @ Zs2 ) )
            & ( ( F @ Z4 )
              = Y )
            & ( ( map_b_a @ F @ Zs2 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_483_map__eq__Cons__conv,axiom,
    ! [F: a > b,Xs: list_a,Y: b,Ys: list_b] :
      ( ( ( map_a_b @ F @ Xs )
        = ( cons_b @ Y @ Ys ) )
      = ( ? [Z4: a,Zs2: list_a] :
            ( ( Xs
              = ( cons_a @ Z4 @ Zs2 ) )
            & ( ( F @ Z4 )
              = Y )
            & ( ( map_a_b @ F @ Zs2 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_484_map__eq__Cons__conv,axiom,
    ! [F: b > b,Xs: list_b,Y: b,Ys: list_b] :
      ( ( ( map_b_b @ F @ Xs )
        = ( cons_b @ Y @ Ys ) )
      = ( ? [Z4: b,Zs2: list_b] :
            ( ( Xs
              = ( cons_b @ Z4 @ Zs2 ) )
            & ( ( F @ Z4 )
              = Y )
            & ( ( map_b_b @ F @ Zs2 )
              = Ys ) ) ) ) ).

% map_eq_Cons_conv
thf(fact_485_Cons__eq__map__conv,axiom,
    ! [X: a,Xs: list_a,F: a > a,Ys: list_a] :
      ( ( ( cons_a @ X @ Xs )
        = ( map_a_a @ F @ Ys ) )
      = ( ? [Z4: a,Zs2: list_a] :
            ( ( Ys
              = ( cons_a @ Z4 @ Zs2 ) )
            & ( X
              = ( F @ Z4 ) )
            & ( Xs
              = ( map_a_a @ F @ Zs2 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_486_Cons__eq__map__conv,axiom,
    ! [X: a,Xs: list_a,F: b > a,Ys: list_b] :
      ( ( ( cons_a @ X @ Xs )
        = ( map_b_a @ F @ Ys ) )
      = ( ? [Z4: b,Zs2: list_b] :
            ( ( Ys
              = ( cons_b @ Z4 @ Zs2 ) )
            & ( X
              = ( F @ Z4 ) )
            & ( Xs
              = ( map_b_a @ F @ Zs2 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_487_Cons__eq__map__conv,axiom,
    ! [X: b,Xs: list_b,F: a > b,Ys: list_a] :
      ( ( ( cons_b @ X @ Xs )
        = ( map_a_b @ F @ Ys ) )
      = ( ? [Z4: a,Zs2: list_a] :
            ( ( Ys
              = ( cons_a @ Z4 @ Zs2 ) )
            & ( X
              = ( F @ Z4 ) )
            & ( Xs
              = ( map_a_b @ F @ Zs2 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_488_Cons__eq__map__conv,axiom,
    ! [X: b,Xs: list_b,F: b > b,Ys: list_b] :
      ( ( ( cons_b @ X @ Xs )
        = ( map_b_b @ F @ Ys ) )
      = ( ? [Z4: b,Zs2: list_b] :
            ( ( Ys
              = ( cons_b @ Z4 @ Zs2 ) )
            & ( X
              = ( F @ Z4 ) )
            & ( Xs
              = ( map_b_b @ F @ Zs2 ) ) ) ) ) ).

% Cons_eq_map_conv
thf(fact_489_map__eq__Cons__D,axiom,
    ! [F: a > a,Xs: list_a,Y: a,Ys: list_a] :
      ( ( ( map_a_a @ F @ Xs )
        = ( cons_a @ Y @ Ys ) )
     => ? [Z5: a,Zs3: list_a] :
          ( ( Xs
            = ( cons_a @ Z5 @ Zs3 ) )
          & ( ( F @ Z5 )
            = Y )
          & ( ( map_a_a @ F @ Zs3 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_490_map__eq__Cons__D,axiom,
    ! [F: b > a,Xs: list_b,Y: a,Ys: list_a] :
      ( ( ( map_b_a @ F @ Xs )
        = ( cons_a @ Y @ Ys ) )
     => ? [Z5: b,Zs3: list_b] :
          ( ( Xs
            = ( cons_b @ Z5 @ Zs3 ) )
          & ( ( F @ Z5 )
            = Y )
          & ( ( map_b_a @ F @ Zs3 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_491_map__eq__Cons__D,axiom,
    ! [F: a > b,Xs: list_a,Y: b,Ys: list_b] :
      ( ( ( map_a_b @ F @ Xs )
        = ( cons_b @ Y @ Ys ) )
     => ? [Z5: a,Zs3: list_a] :
          ( ( Xs
            = ( cons_a @ Z5 @ Zs3 ) )
          & ( ( F @ Z5 )
            = Y )
          & ( ( map_a_b @ F @ Zs3 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_492_map__eq__Cons__D,axiom,
    ! [F: b > b,Xs: list_b,Y: b,Ys: list_b] :
      ( ( ( map_b_b @ F @ Xs )
        = ( cons_b @ Y @ Ys ) )
     => ? [Z5: b,Zs3: list_b] :
          ( ( Xs
            = ( cons_b @ Z5 @ Zs3 ) )
          & ( ( F @ Z5 )
            = Y )
          & ( ( map_b_b @ F @ Zs3 )
            = Ys ) ) ) ).

% map_eq_Cons_D
thf(fact_493_Cons__eq__map__D,axiom,
    ! [X: a,Xs: list_a,F: a > a,Ys: list_a] :
      ( ( ( cons_a @ X @ Xs )
        = ( map_a_a @ F @ Ys ) )
     => ? [Z5: a,Zs3: list_a] :
          ( ( Ys
            = ( cons_a @ Z5 @ Zs3 ) )
          & ( X
            = ( F @ Z5 ) )
          & ( Xs
            = ( map_a_a @ F @ Zs3 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_494_Cons__eq__map__D,axiom,
    ! [X: a,Xs: list_a,F: b > a,Ys: list_b] :
      ( ( ( cons_a @ X @ Xs )
        = ( map_b_a @ F @ Ys ) )
     => ? [Z5: b,Zs3: list_b] :
          ( ( Ys
            = ( cons_b @ Z5 @ Zs3 ) )
          & ( X
            = ( F @ Z5 ) )
          & ( Xs
            = ( map_b_a @ F @ Zs3 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_495_Cons__eq__map__D,axiom,
    ! [X: b,Xs: list_b,F: a > b,Ys: list_a] :
      ( ( ( cons_b @ X @ Xs )
        = ( map_a_b @ F @ Ys ) )
     => ? [Z5: a,Zs3: list_a] :
          ( ( Ys
            = ( cons_a @ Z5 @ Zs3 ) )
          & ( X
            = ( F @ Z5 ) )
          & ( Xs
            = ( map_a_b @ F @ Zs3 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_496_Cons__eq__map__D,axiom,
    ! [X: b,Xs: list_b,F: b > b,Ys: list_b] :
      ( ( ( cons_b @ X @ Xs )
        = ( map_b_b @ F @ Ys ) )
     => ? [Z5: b,Zs3: list_b] :
          ( ( Ys
            = ( cons_b @ Z5 @ Zs3 ) )
          & ( X
            = ( F @ Z5 ) )
          & ( Xs
            = ( map_b_b @ F @ Zs3 ) ) ) ) ).

% Cons_eq_map_D
thf(fact_497_list_Osimps_I9_J,axiom,
    ! [F: a > a,X21: a,X22: list_a] :
      ( ( map_a_a @ F @ ( cons_a @ X21 @ X22 ) )
      = ( cons_a @ ( F @ X21 ) @ ( map_a_a @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_498_list_Osimps_I9_J,axiom,
    ! [F: a > b,X21: a,X22: list_a] :
      ( ( map_a_b @ F @ ( cons_a @ X21 @ X22 ) )
      = ( cons_b @ ( F @ X21 ) @ ( map_a_b @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_499_list_Osimps_I9_J,axiom,
    ! [F: b > a,X21: b,X22: list_b] :
      ( ( map_b_a @ F @ ( cons_b @ X21 @ X22 ) )
      = ( cons_a @ ( F @ X21 ) @ ( map_b_a @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_500_list_Osimps_I9_J,axiom,
    ! [F: b > b,X21: b,X22: list_b] :
      ( ( map_b_b @ F @ ( cons_b @ X21 @ X22 ) )
      = ( cons_b @ ( F @ X21 ) @ ( map_b_b @ F @ X22 ) ) ) ).

% list.simps(9)
thf(fact_501_ex__map__conv,axiom,
    ! [Ys: list_a,F: b > a] :
      ( ( ? [Xs4: list_b] :
            ( Ys
            = ( map_b_a @ F @ Xs4 ) ) )
      = ( ! [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ Ys ) )
           => ? [Y3: b] :
                ( X4
                = ( F @ Y3 ) ) ) ) ) ).

% ex_map_conv
thf(fact_502_map__cong,axiom,
    ! [Xs: list_b,Ys: list_b,F: b > a,G4: b > a] :
      ( ( Xs = Ys )
     => ( ! [X2: b] :
            ( ( member_b @ X2 @ ( set_b2 @ Ys ) )
           => ( ( F @ X2 )
              = ( G4 @ X2 ) ) )
       => ( ( map_b_a @ F @ Xs )
          = ( map_b_a @ G4 @ Ys ) ) ) ) ).

% map_cong
thf(fact_503_map__idI,axiom,
    ! [Xs: list_P1396940483166286381od_a_a,F: product_prod_a_a > product_prod_a_a] :
      ( ! [X2: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ X2 @ ( set_Product_prod_a_a2 @ Xs ) )
         => ( ( F @ X2 )
            = X2 ) )
     => ( ( map_Pr7904243085458786820od_a_a @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_504_map__idI,axiom,
    ! [Xs: list_set_a,F: set_a > set_a] :
      ( ! [X2: set_a] :
          ( ( member_set_a @ X2 @ ( set_set_a2 @ Xs ) )
         => ( ( F @ X2 )
            = X2 ) )
     => ( ( map_set_a_set_a @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_505_map__idI,axiom,
    ! [Xs: list_a,F: a > a] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
         => ( ( F @ X2 )
            = X2 ) )
     => ( ( map_a_a @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_506_map__idI,axiom,
    ! [Xs: list_b,F: b > b] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ ( set_b2 @ Xs ) )
         => ( ( F @ X2 )
            = X2 ) )
     => ( ( map_b_b @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_507_map__idI,axiom,
    ! [Xs: list_list_a,F: list_a > list_a] :
      ( ! [X2: list_a] :
          ( ( member_list_a @ X2 @ ( set_list_a2 @ Xs ) )
         => ( ( F @ X2 )
            = X2 ) )
     => ( ( map_list_a_list_a @ F @ Xs )
        = Xs ) ) ).

% map_idI
thf(fact_508_map__ext,axiom,
    ! [Xs: list_b,F: b > a,G4: b > a] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ ( set_b2 @ Xs ) )
         => ( ( F @ X2 )
            = ( G4 @ X2 ) ) )
     => ( ( map_b_a @ F @ Xs )
        = ( map_b_a @ G4 @ Xs ) ) ) ).

% map_ext
thf(fact_509_list_Omap__ident__strong,axiom,
    ! [T2: list_P1396940483166286381od_a_a,F: product_prod_a_a > product_prod_a_a] :
      ( ! [Z5: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ Z5 @ ( set_Product_prod_a_a2 @ T2 ) )
         => ( ( F @ Z5 )
            = Z5 ) )
     => ( ( map_Pr7904243085458786820od_a_a @ F @ T2 )
        = T2 ) ) ).

% list.map_ident_strong
thf(fact_510_list_Omap__ident__strong,axiom,
    ! [T2: list_set_a,F: set_a > set_a] :
      ( ! [Z5: set_a] :
          ( ( member_set_a @ Z5 @ ( set_set_a2 @ T2 ) )
         => ( ( F @ Z5 )
            = Z5 ) )
     => ( ( map_set_a_set_a @ F @ T2 )
        = T2 ) ) ).

% list.map_ident_strong
thf(fact_511_list_Omap__ident__strong,axiom,
    ! [T2: list_a,F: a > a] :
      ( ! [Z5: a] :
          ( ( member_a @ Z5 @ ( set_a2 @ T2 ) )
         => ( ( F @ Z5 )
            = Z5 ) )
     => ( ( map_a_a @ F @ T2 )
        = T2 ) ) ).

% list.map_ident_strong
thf(fact_512_list_Omap__ident__strong,axiom,
    ! [T2: list_b,F: b > b] :
      ( ! [Z5: b] :
          ( ( member_b @ Z5 @ ( set_b2 @ T2 ) )
         => ( ( F @ Z5 )
            = Z5 ) )
     => ( ( map_b_b @ F @ T2 )
        = T2 ) ) ).

% list.map_ident_strong
thf(fact_513_list_Omap__ident__strong,axiom,
    ! [T2: list_list_a,F: list_a > list_a] :
      ( ! [Z5: list_a] :
          ( ( member_list_a @ Z5 @ ( set_list_a2 @ T2 ) )
         => ( ( F @ Z5 )
            = Z5 ) )
     => ( ( map_list_a_list_a @ F @ T2 )
        = T2 ) ) ).

% list.map_ident_strong
thf(fact_514_list_Oinj__map__strong,axiom,
    ! [X: list_b,Xa2: list_b,F: b > a,Fa: b > a] :
      ( ! [Z5: b,Za: b] :
          ( ( member_b @ Z5 @ ( set_b2 @ X ) )
         => ( ( member_b @ Za @ ( set_b2 @ Xa2 ) )
           => ( ( ( F @ Z5 )
                = ( Fa @ Za ) )
             => ( Z5 = Za ) ) ) )
     => ( ( ( map_b_a @ F @ X )
          = ( map_b_a @ Fa @ Xa2 ) )
       => ( X = Xa2 ) ) ) ).

% list.inj_map_strong
thf(fact_515_list_Omap__cong0,axiom,
    ! [X: list_b,F: b > a,G4: b > a] :
      ( ! [Z5: b] :
          ( ( member_b @ Z5 @ ( set_b2 @ X ) )
         => ( ( F @ Z5 )
            = ( G4 @ Z5 ) ) )
     => ( ( map_b_a @ F @ X )
        = ( map_b_a @ G4 @ X ) ) ) ).

% list.map_cong0
thf(fact_516_list_Omap__cong,axiom,
    ! [X: list_b,Ya: list_b,F: b > a,G4: b > a] :
      ( ( X = Ya )
     => ( ! [Z5: b] :
            ( ( member_b @ Z5 @ ( set_b2 @ Ya ) )
           => ( ( F @ Z5 )
              = ( G4 @ Z5 ) ) )
       => ( ( map_b_a @ F @ X )
          = ( map_b_a @ G4 @ Ya ) ) ) ) ).

% list.map_cong
thf(fact_517_map__eq__append__conv,axiom,
    ! [F: a > a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( map_a_a @ F @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ? [Us: list_a,Vs2: list_a] :
            ( ( Xs
              = ( append_a @ Us @ Vs2 ) )
            & ( Ys
              = ( map_a_a @ F @ Us ) )
            & ( Zs
              = ( map_a_a @ F @ Vs2 ) ) ) ) ) ).

% map_eq_append_conv
thf(fact_518_map__eq__append__conv,axiom,
    ! [F: a > b,Xs: list_a,Ys: list_b,Zs: list_b] :
      ( ( ( map_a_b @ F @ Xs )
        = ( append_b @ Ys @ Zs ) )
      = ( ? [Us: list_a,Vs2: list_a] :
            ( ( Xs
              = ( append_a @ Us @ Vs2 ) )
            & ( Ys
              = ( map_a_b @ F @ Us ) )
            & ( Zs
              = ( map_a_b @ F @ Vs2 ) ) ) ) ) ).

% map_eq_append_conv
thf(fact_519_map__eq__append__conv,axiom,
    ! [F: b > b,Xs: list_b,Ys: list_b,Zs: list_b] :
      ( ( ( map_b_b @ F @ Xs )
        = ( append_b @ Ys @ Zs ) )
      = ( ? [Us: list_b,Vs2: list_b] :
            ( ( Xs
              = ( append_b @ Us @ Vs2 ) )
            & ( Ys
              = ( map_b_b @ F @ Us ) )
            & ( Zs
              = ( map_b_b @ F @ Vs2 ) ) ) ) ) ).

% map_eq_append_conv
thf(fact_520_map__eq__append__conv,axiom,
    ! [F: b > a,Xs: list_b,Ys: list_a,Zs: list_a] :
      ( ( ( map_b_a @ F @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ? [Us: list_b,Vs2: list_b] :
            ( ( Xs
              = ( append_b @ Us @ Vs2 ) )
            & ( Ys
              = ( map_b_a @ F @ Us ) )
            & ( Zs
              = ( map_b_a @ F @ Vs2 ) ) ) ) ) ).

% map_eq_append_conv
thf(fact_521_append__eq__map__conv,axiom,
    ! [Ys: list_a,Zs: list_a,F: a > a,Xs: list_a] :
      ( ( ( append_a @ Ys @ Zs )
        = ( map_a_a @ F @ Xs ) )
      = ( ? [Us: list_a,Vs2: list_a] :
            ( ( Xs
              = ( append_a @ Us @ Vs2 ) )
            & ( Ys
              = ( map_a_a @ F @ Us ) )
            & ( Zs
              = ( map_a_a @ F @ Vs2 ) ) ) ) ) ).

% append_eq_map_conv
thf(fact_522_append__eq__map__conv,axiom,
    ! [Ys: list_b,Zs: list_b,F: a > b,Xs: list_a] :
      ( ( ( append_b @ Ys @ Zs )
        = ( map_a_b @ F @ Xs ) )
      = ( ? [Us: list_a,Vs2: list_a] :
            ( ( Xs
              = ( append_a @ Us @ Vs2 ) )
            & ( Ys
              = ( map_a_b @ F @ Us ) )
            & ( Zs
              = ( map_a_b @ F @ Vs2 ) ) ) ) ) ).

% append_eq_map_conv
thf(fact_523_append__eq__map__conv,axiom,
    ! [Ys: list_b,Zs: list_b,F: b > b,Xs: list_b] :
      ( ( ( append_b @ Ys @ Zs )
        = ( map_b_b @ F @ Xs ) )
      = ( ? [Us: list_b,Vs2: list_b] :
            ( ( Xs
              = ( append_b @ Us @ Vs2 ) )
            & ( Ys
              = ( map_b_b @ F @ Us ) )
            & ( Zs
              = ( map_b_b @ F @ Vs2 ) ) ) ) ) ).

% append_eq_map_conv
thf(fact_524_append__eq__map__conv,axiom,
    ! [Ys: list_a,Zs: list_a,F: b > a,Xs: list_b] :
      ( ( ( append_a @ Ys @ Zs )
        = ( map_b_a @ F @ Xs ) )
      = ( ? [Us: list_b,Vs2: list_b] :
            ( ( Xs
              = ( append_b @ Us @ Vs2 ) )
            & ( Ys
              = ( map_b_a @ F @ Us ) )
            & ( Zs
              = ( map_b_a @ F @ Vs2 ) ) ) ) ) ).

% append_eq_map_conv
thf(fact_525_list_Osimps_I8_J,axiom,
    ! [F: a > a] :
      ( ( map_a_a @ F @ nil_a )
      = nil_a ) ).

% list.simps(8)
thf(fact_526_list_Osimps_I8_J,axiom,
    ! [F: a > b] :
      ( ( map_a_b @ F @ nil_a )
      = nil_b ) ).

% list.simps(8)
thf(fact_527_list_Osimps_I8_J,axiom,
    ! [F: b > b] :
      ( ( map_b_b @ F @ nil_b )
      = nil_b ) ).

% list.simps(8)
thf(fact_528_list_Osimps_I8_J,axiom,
    ! [F: b > a] :
      ( ( map_b_a @ F @ nil_b )
      = nil_a ) ).

% list.simps(8)
thf(fact_529_rev__map,axiom,
    ! [F: a > a,Xs: list_a] :
      ( ( rev_a @ ( map_a_a @ F @ Xs ) )
      = ( map_a_a @ F @ ( rev_a @ Xs ) ) ) ).

% rev_map
thf(fact_530_rev__map,axiom,
    ! [F: b > a,Xs: list_b] :
      ( ( rev_a @ ( map_b_a @ F @ Xs ) )
      = ( map_b_a @ F @ ( rev_b @ Xs ) ) ) ).

% rev_map
thf(fact_531_map__tl,axiom,
    ! [F: a > a,Xs: list_a] :
      ( ( map_a_a @ F @ ( tl_a @ Xs ) )
      = ( tl_a @ ( map_a_a @ F @ Xs ) ) ) ).

% map_tl
thf(fact_532_map__tl,axiom,
    ! [F: a > b,Xs: list_a] :
      ( ( map_a_b @ F @ ( tl_a @ Xs ) )
      = ( tl_b @ ( map_a_b @ F @ Xs ) ) ) ).

% map_tl
thf(fact_533_map__tl,axiom,
    ! [F: b > b,Xs: list_b] :
      ( ( map_b_b @ F @ ( tl_b @ Xs ) )
      = ( tl_b @ ( map_b_b @ F @ Xs ) ) ) ).

% map_tl
thf(fact_534_map__tl,axiom,
    ! [F: b > a,Xs: list_b] :
      ( ( map_b_a @ F @ ( tl_b @ Xs ) )
      = ( tl_a @ ( map_b_a @ F @ Xs ) ) ) ).

% map_tl
thf(fact_535_list_Omap__sel_I1_J,axiom,
    ! [A2: list_a,F: a > a] :
      ( ( A2 != nil_a )
     => ( ( hd_a @ ( map_a_a @ F @ A2 ) )
        = ( F @ ( hd_a @ A2 ) ) ) ) ).

% list.map_sel(1)
thf(fact_536_list_Omap__sel_I1_J,axiom,
    ! [A2: list_a,F: a > b] :
      ( ( A2 != nil_a )
     => ( ( hd_b @ ( map_a_b @ F @ A2 ) )
        = ( F @ ( hd_a @ A2 ) ) ) ) ).

% list.map_sel(1)
thf(fact_537_list_Omap__sel_I1_J,axiom,
    ! [A2: list_b,F: b > b] :
      ( ( A2 != nil_b )
     => ( ( hd_b @ ( map_b_b @ F @ A2 ) )
        = ( F @ ( hd_b @ A2 ) ) ) ) ).

% list.map_sel(1)
thf(fact_538_list_Omap__sel_I1_J,axiom,
    ! [A2: list_b,F: b > a] :
      ( ( A2 != nil_b )
     => ( ( hd_a @ ( map_b_a @ F @ A2 ) )
        = ( F @ ( hd_b @ A2 ) ) ) ) ).

% list.map_sel(1)
thf(fact_539_hd__map,axiom,
    ! [Xs: list_a,F: a > a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( map_a_a @ F @ Xs ) )
        = ( F @ ( hd_a @ Xs ) ) ) ) ).

% hd_map
thf(fact_540_hd__map,axiom,
    ! [Xs: list_a,F: a > b] :
      ( ( Xs != nil_a )
     => ( ( hd_b @ ( map_a_b @ F @ Xs ) )
        = ( F @ ( hd_a @ Xs ) ) ) ) ).

% hd_map
thf(fact_541_hd__map,axiom,
    ! [Xs: list_b,F: b > b] :
      ( ( Xs != nil_b )
     => ( ( hd_b @ ( map_b_b @ F @ Xs ) )
        = ( F @ ( hd_b @ Xs ) ) ) ) ).

% hd_map
thf(fact_542_hd__map,axiom,
    ! [Xs: list_b,F: b > a] :
      ( ( Xs != nil_b )
     => ( ( hd_a @ ( map_b_a @ F @ Xs ) )
        = ( F @ ( hd_b @ Xs ) ) ) ) ).

% hd_map
thf(fact_543_list_Omap__sel_I2_J,axiom,
    ! [A2: list_a,F: a > a] :
      ( ( A2 != nil_a )
     => ( ( tl_a @ ( map_a_a @ F @ A2 ) )
        = ( map_a_a @ F @ ( tl_a @ A2 ) ) ) ) ).

% list.map_sel(2)
thf(fact_544_list_Omap__sel_I2_J,axiom,
    ! [A2: list_a,F: a > b] :
      ( ( A2 != nil_a )
     => ( ( tl_b @ ( map_a_b @ F @ A2 ) )
        = ( map_a_b @ F @ ( tl_a @ A2 ) ) ) ) ).

% list.map_sel(2)
thf(fact_545_list_Omap__sel_I2_J,axiom,
    ! [A2: list_b,F: b > b] :
      ( ( A2 != nil_b )
     => ( ( tl_b @ ( map_b_b @ F @ A2 ) )
        = ( map_b_b @ F @ ( tl_b @ A2 ) ) ) ) ).

% list.map_sel(2)
thf(fact_546_list_Omap__sel_I2_J,axiom,
    ! [A2: list_b,F: b > a] :
      ( ( A2 != nil_b )
     => ( ( tl_a @ ( map_b_a @ F @ A2 ) )
        = ( map_b_a @ F @ ( tl_b @ A2 ) ) ) ) ).

% list.map_sel(2)
thf(fact_547_directed__tree_Oto__list__tree_Ocong,axiom,
    direct3773525127397338803ee_a_b = direct3773525127397338803ee_a_b ).

% directed_tree.to_list_tree.cong
thf(fact_548_pre__digraph_Oawalk__def,axiom,
    ( arc_pre_awalk_b_a
    = ( ^ [G2: pre_pr3994228789931197893t_unit,U4: b,P4: list_a,V5: b] :
          ( ( member_b @ U4 @ ( pre_ve2160112157898065374t_unit @ G2 ) )
          & ( ord_less_eq_set_a @ ( set_a2 @ P4 ) @ ( pre_ar2913695170082820505t_unit @ G2 ) )
          & ( arc_pre_cas_b_a @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_549_pre__digraph_Oawalk__def,axiom,
    ( arc_pre_awalk_a_a
    = ( ^ [G2: pre_pr3327329314391289540t_unit,U4: a,P4: list_a,V5: a] :
          ( ( member_a @ U4 @ ( pre_ve5914862431884959581t_unit @ G2 ) )
          & ( ord_less_eq_set_a @ ( set_a2 @ P4 ) @ ( pre_ar6668445444069714712t_unit @ G2 ) )
          & ( arc_pre_cas_a_a @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_550_pre__digraph_Oawalk__def,axiom,
    ( arc_pre_awalk_b_b
    = ( ^ [G2: pre_pr7945120425549786372t_unit,U4: b,P4: list_b,V5: b] :
          ( ( member_b @ U4 @ ( pre_ve6111003793516653853t_unit @ G2 ) )
          & ( ord_less_eq_set_b @ ( set_b2 @ P4 ) @ ( pre_ar6864586805701408984t_unit @ G2 ) )
          & ( arc_pre_cas_b_b @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_551_pre__digraph_Oawalk__def,axiom,
    ( arc_pre_awalk_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,U4: a,P4: list_b,V5: a] :
          ( ( member_a @ U4 @ ( pre_ve642382030648772252t_unit @ G2 ) )
          & ( ord_less_eq_set_b @ ( set_b2 @ P4 ) @ ( pre_ar1395965042833527383t_unit @ G2 ) )
          & ( arc_pre_cas_a_b @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_552_pre__digraph_Oawalk__def,axiom,
    ( arc_pr368411507155669706list_a
    = ( ^ [G2: pre_pr7651200976661991615t_unit,U4: b,P4: list_list_a,V5: b] :
          ( ( member_b @ U4 @ ( pre_ve7998398825243057368t_unit @ G2 ) )
          & ( ord_le8861187494160871172list_a @ ( set_list_a2 @ P4 ) @ ( pre_ar405773122724138771t_unit @ G2 ) )
          & ( arc_pre_cas_b_list_a @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_553_pre__digraph_Oawalk__def,axiom,
    ( arc_pr8103821506715646987list_a
    = ( ^ [G2: pre_pr3711252390037155390t_unit,U4: a,P4: list_list_a,V5: a] :
          ( ( member_a @ U4 @ ( pre_ve3018455677094554327t_unit @ G2 ) )
          & ( ord_le8861187494160871172list_a @ ( set_list_a2 @ P4 ) @ ( pre_ar4649202011430411538t_unit @ G2 ) )
          & ( arc_pre_cas_a_list_a @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_554_pre__digraph_Oawalk__def,axiom,
    ( arc_pr6214585750886380799st_a_a
    = ( ^ [G2: pre_pr8155351583225888586t_unit,U4: list_a,P4: list_a,V5: list_a] :
          ( ( member_list_a @ U4 @ ( pre_ve7102540449451629283t_unit @ G2 ) )
          & ( ord_less_eq_set_a @ ( set_a2 @ P4 ) @ ( pre_ar8733286783787486494t_unit @ G2 ) )
          & ( arc_pre_cas_list_a_a @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_555_pre__digraph_Oawalk__def,axiom,
    ( arc_pr441381926571271589et_a_a
    = ( ^ [G2: pre_pr3647964229410195492t_unit,U4: set_a,P4: list_a,V5: set_a] :
          ( ( member_set_a @ U4 @ ( pre_ve2608818176351713469t_unit @ G2 ) )
          & ( ord_less_eq_set_a @ ( set_a2 @ P4 ) @ ( pre_ar4979499625094109304t_unit @ G2 ) )
          & ( arc_pre_cas_set_a_a @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_556_pre__digraph_Oawalk__def,axiom,
    ( arc_pr441381926571271590et_a_b
    = ( ^ [G2: pre_pr7598855865028783971t_unit,U4: set_a,P4: list_b,V5: set_a] :
          ( ( member_set_a @ U4 @ ( pre_ve6559709811970301948t_unit @ G2 ) )
          & ( ord_less_eq_set_b @ ( set_b2 @ P4 ) @ ( pre_ar8930391260712697783t_unit @ G2 ) )
          & ( arc_pre_cas_set_a_b @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_557_pre__digraph_Oawalk__def,axiom,
    ( arc_pr6214585750886380800st_a_b
    = ( ^ [G2: pre_pr2882871181989701257t_unit,U4: list_a,P4: list_b,V5: list_a] :
          ( ( member_list_a @ U4 @ ( pre_ve1830060048215441954t_unit @ G2 ) )
          & ( ord_less_eq_set_b @ ( set_b2 @ P4 ) @ ( pre_ar3460806382551299165t_unit @ G2 ) )
          & ( arc_pre_cas_list_a_b @ G2 @ U4 @ P4 @ V5 ) ) ) ) ).

% pre_digraph.awalk_def
thf(fact_558_pre__digraph_Oawalk__verts__conv_H,axiom,
    ! [G: pre_pr3327329314391289540t_unit,U2: a,P2: list_a,V2: a] :
      ( ( arc_pre_cas_a_a @ G @ U2 @ P2 @ V2 )
     => ( ( ( P2 = nil_a )
         => ( ( arc_pr7493981781705774525ts_a_a @ G @ U2 @ P2 )
            = ( cons_a @ U2 @ nil_a ) ) )
        & ( ( P2 != nil_a )
         => ( ( arc_pr7493981781705774525ts_a_a @ G @ U2 @ P2 )
            = ( cons_a @ ( pre_ta980714981981074249t_unit @ G @ ( hd_a @ P2 ) ) @ ( map_a_a @ ( pre_he1285395828689812537t_unit @ G ) @ P2 ) ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv'
thf(fact_559_pre__digraph_Oawalk__verts__conv_H,axiom,
    ! [G: pre_pr3994228789931197893t_unit,U2: b,P2: list_a,V2: b] :
      ( ( arc_pre_cas_b_a @ G @ U2 @ P2 @ V2 )
     => ( ( ( P2 = nil_a )
         => ( ( arc_pr4706526199733098492ts_b_a @ G @ U2 @ P2 )
            = ( cons_b @ U2 @ nil_b ) ) )
        & ( ( P2 != nil_a )
         => ( ( arc_pr4706526199733098492ts_b_a @ G @ U2 @ P2 )
            = ( cons_b @ ( pre_ta6449336744848955850t_unit @ G @ ( hd_a @ P2 ) ) @ ( map_a_b @ ( pre_he6754017591557694138t_unit @ G ) @ P2 ) ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv'
thf(fact_560_pre__digraph_Oawalk__verts__conv_H,axiom,
    ! [G: pre_pr7945120425549786372t_unit,U2: b,P2: list_b,V2: b] :
      ( ( arc_pre_cas_b_b @ G @ U2 @ P2 @ V2 )
     => ( ( ( P2 = nil_b )
         => ( ( arc_pr4706526199733098493ts_b_b @ G @ U2 @ P2 )
            = ( cons_b @ U2 @ nil_b ) ) )
        & ( ( P2 != nil_b )
         => ( ( arc_pr4706526199733098493ts_b_b @ G @ U2 @ P2 )
            = ( cons_b @ ( pre_ta1176856343612768521t_unit @ G @ ( hd_b @ P2 ) ) @ ( map_b_b @ ( pre_he1481537190321506809t_unit @ G ) @ P2 ) ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv'
thf(fact_561_pre__digraph_Oawalk__verts__conv_H,axiom,
    ! [G: pre_pr2882871181989701257t_unit,U2: list_a,P2: list_b,V2: list_a] :
      ( ( arc_pre_cas_list_a_b @ G @ U2 @ P2 @ V2 )
     => ( ( ( P2 = nil_b )
         => ( ( arc_pr6350002437206376376st_a_b @ G @ U2 @ P2 )
            = ( cons_list_a @ U2 @ nil_list_a ) ) )
        & ( ( P2 != nil_b )
         => ( ( arc_pr6350002437206376376st_a_b @ G @ U2 @ P2 )
            = ( cons_list_a @ ( pre_ta8437681634429857806t_unit @ G @ ( hd_b @ P2 ) ) @ ( map_b_list_a @ ( pre_he1293792728851071230t_unit @ G ) @ P2 ) ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv'
thf(fact_562_pre__digraph_Oawalk__verts__conv_H,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ G @ U2 @ P2 @ V2 )
     => ( ( ( P2 = nil_b )
         => ( ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ P2 )
            = ( cons_a @ U2 @ nil_a ) ) )
        & ( ( P2 != nil_b )
         => ( ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ P2 )
            = ( cons_a @ ( pre_ta4931606617599662728t_unit @ G @ ( hd_b @ P2 ) ) @ ( map_b_a @ ( pre_he5236287464308401016t_unit @ G ) @ P2 ) ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv'
thf(fact_563_euler__trail__def,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( pre_euler_trail_a_b @ t @ U2 @ P2 @ V2 )
      = ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ V2 )
        & ( ( set_b2 @ P2 )
          = ( pre_ar1395965042833527383t_unit @ t ) )
        & ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
          = ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% euler_trail_def
thf(fact_564_awalk__conv,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
      = ( ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( pre_ve642382030648772252t_unit @ t ) )
        & ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
        & ( ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
          = U2 )
        & ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
          = V2 )
        & ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 ) ) ) ).

% awalk_conv
thf(fact_565_awalkE_H,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ~ ( ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( pre_ve642382030648772252t_unit @ t ) )
         => ( ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
           => ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
             => ( ( ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
                  = U2 )
               => ( ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
                    = V2 )
                 => ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
                   => ~ ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ) ) ) ) ) ).

% awalkE'
thf(fact_566_awalkE,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ~ ( ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( pre_ve642382030648772252t_unit @ t ) )
         => ( ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
           => ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
             => ( ( ( hd_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
                  = U2 )
               => ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
                 != V2 ) ) ) ) ) ) ).

% awalkE
thf(fact_567_set__awalk__verts__not__Nil__cas,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( P2 != nil_b )
       => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
          = ( sup_sup_set_a @ ( set_a2 @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ P2 ) ) @ ( set_a2 @ ( map_b_a @ ( pre_he5236287464308401016t_unit @ t ) @ P2 ) ) ) ) ) ) ).

% set_awalk_verts_not_Nil_cas
thf(fact_568_set__awalk__verts__not__Nil,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( P2 != nil_b )
       => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
          = ( sup_sup_set_a @ ( set_a2 @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ P2 ) ) @ ( set_a2 @ ( map_b_a @ ( pre_he5236287464308401016t_unit @ t ) @ P2 ) ) ) ) ) ) ).

% set_awalk_verts_not_Nil
thf(fact_569_awlast__append,axiom,
    ! [U2: a,P2: list_b,Q: list_b] :
      ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) ) )
      = ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q ) ) ) ).

% awlast_append
thf(fact_570_awlast__if__cas,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
        = V2 ) ) ).

% awlast_if_cas
thf(fact_571_fwd__arcs__conc__nlast__elem,axiom,
    ! [Xs: list_a,Y: a] :
      ( ( iKKBZ_4180558001818622352cs_a_b @ t @ Xs )
     => ( ( member_a @ Y @ ( set_a2 @ Xs ) )
       => ( ( Y
           != ( last_a @ Xs ) )
         => ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ Xs ) ) ) ) ) ).

% fwd_arcs_conc_nlast_elem
thf(fact_572_set__awalk__verts__append,axiom,
    ! [U2: a,P2: list_b,V2: a,Q: list_b,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_awalk_a_b @ t @ V2 @ Q @ W )
       => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) ) )
          = ( sup_sup_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ V2 @ Q ) ) ) ) ) ) ).

% set_awalk_verts_append
thf(fact_573_set__awalk__verts__append__cas,axiom,
    ! [U2: a,P2: list_b,V2: a,Q: list_b,W: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_cas_a_b @ t @ V2 @ Q @ W )
       => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) ) )
          = ( sup_sup_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ V2 @ Q ) ) ) ) ) ) ).

% set_awalk_verts_append_cas
thf(fact_574_awlast__in__verts,axiom,
    ! [U2: a,P2: list_b] :
      ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( ord_less_eq_set_b @ ( set_b2 @ P2 ) @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( member_a @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% awlast_in_verts
thf(fact_575_awalk__verts__append,axiom,
    ! [U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
     => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) )
        = ( append_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q ) ) ) ) ) ).

% awalk_verts_append
thf(fact_576_awalk__verts__append__cas,axiom,
    ! [U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
     => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) )
        = ( append_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q ) ) ) ) ) ).

% awalk_verts_append_cas
thf(fact_577_set__append,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( set_b2 @ ( append_b @ Xs @ Ys ) )
      = ( sup_sup_set_b @ ( set_b2 @ Xs ) @ ( set_b2 @ Ys ) ) ) ).

% set_append
thf(fact_578_set__append,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( set_list_a2 @ ( append_list_a @ Xs @ Ys ) )
      = ( sup_sup_set_list_a @ ( set_list_a2 @ Xs ) @ ( set_list_a2 @ Ys ) ) ) ).

% set_append
thf(fact_579_set__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( set_a2 @ ( append_a @ Xs @ Ys ) )
      = ( sup_sup_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) ) ) ).

% set_append
thf(fact_580_last__appendL,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys = nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Xs ) ) ) ).

% last_appendL
thf(fact_581_last__appendL,axiom,
    ! [Ys: list_b,Xs: list_b] :
      ( ( Ys = nil_b )
     => ( ( last_b @ ( append_b @ Xs @ Ys ) )
        = ( last_b @ Xs ) ) ) ).

% last_appendL
thf(fact_582_last__appendR,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys != nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Ys ) ) ) ).

% last_appendR
thf(fact_583_last__appendR,axiom,
    ! [Ys: list_b,Xs: list_b] :
      ( ( Ys != nil_b )
     => ( ( last_b @ ( append_b @ Xs @ Ys ) )
        = ( last_b @ Ys ) ) ) ).

% last_appendR
thf(fact_584_last__snoc,axiom,
    ! [Xs: list_a,X: a] :
      ( ( last_a @ ( append_a @ Xs @ ( cons_a @ X @ nil_a ) ) )
      = X ) ).

% last_snoc
thf(fact_585_last__snoc,axiom,
    ! [Xs: list_b,X: b] :
      ( ( last_b @ ( append_b @ Xs @ ( cons_b @ X @ nil_b ) ) )
      = X ) ).

% last_snoc
thf(fact_586_awalk__append__iff,axiom,
    ! [U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
        & ( arc_pre_awalk_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% awalk_append_iff
thf(fact_587_cas__append__iff,axiom,
    ! [U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
        & ( arc_pre_cas_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% cas_append_iff
thf(fact_588_last_Osimps,axiom,
    ! [Xs: list_a,X: a] :
      ( ( ( Xs = nil_a )
       => ( ( last_a @ ( cons_a @ X @ Xs ) )
          = X ) )
      & ( ( Xs != nil_a )
       => ( ( last_a @ ( cons_a @ X @ Xs ) )
          = ( last_a @ Xs ) ) ) ) ).

% last.simps
thf(fact_589_last_Osimps,axiom,
    ! [Xs: list_b,X: b] :
      ( ( ( Xs = nil_b )
       => ( ( last_b @ ( cons_b @ X @ Xs ) )
          = X ) )
      & ( ( Xs != nil_b )
       => ( ( last_b @ ( cons_b @ X @ Xs ) )
          = ( last_b @ Xs ) ) ) ) ).

% last.simps
thf(fact_590_last__ConsL,axiom,
    ! [Xs: list_a,X: a] :
      ( ( Xs = nil_a )
     => ( ( last_a @ ( cons_a @ X @ Xs ) )
        = X ) ) ).

% last_ConsL
thf(fact_591_last__ConsL,axiom,
    ! [Xs: list_b,X: b] :
      ( ( Xs = nil_b )
     => ( ( last_b @ ( cons_b @ X @ Xs ) )
        = X ) ) ).

% last_ConsL
thf(fact_592_last__ConsR,axiom,
    ! [Xs: list_a,X: a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ ( cons_a @ X @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_ConsR
thf(fact_593_last__ConsR,axiom,
    ! [Xs: list_b,X: b] :
      ( ( Xs != nil_b )
     => ( ( last_b @ ( cons_b @ X @ Xs ) )
        = ( last_b @ Xs ) ) ) ).

% last_ConsR
thf(fact_594_last__in__set,axiom,
    ! [As: list_P1396940483166286381od_a_a] :
      ( ( As != nil_Product_prod_a_a )
     => ( member1426531477525435216od_a_a @ ( last_P8790725268278465478od_a_a @ As ) @ ( set_Product_prod_a_a2 @ As ) ) ) ).

% last_in_set
thf(fact_595_last__in__set,axiom,
    ! [As: list_set_a] :
      ( ( As != nil_set_a )
     => ( member_set_a @ ( last_set_a @ As ) @ ( set_set_a2 @ As ) ) ) ).

% last_in_set
thf(fact_596_last__in__set,axiom,
    ! [As: list_a] :
      ( ( As != nil_a )
     => ( member_a @ ( last_a @ As ) @ ( set_a2 @ As ) ) ) ).

% last_in_set
thf(fact_597_last__in__set,axiom,
    ! [As: list_b] :
      ( ( As != nil_b )
     => ( member_b @ ( last_b @ As ) @ ( set_b2 @ As ) ) ) ).

% last_in_set
thf(fact_598_last__in__set,axiom,
    ! [As: list_list_a] :
      ( ( As != nil_list_a )
     => ( member_list_a @ ( last_list_a @ As ) @ ( set_list_a2 @ As ) ) ) ).

% last_in_set
thf(fact_599_last__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Ys ) ) ) ) ).

% last_append
thf(fact_600_last__append,axiom,
    ! [Ys: list_b,Xs: list_b] :
      ( ( ( Ys = nil_b )
       => ( ( last_b @ ( append_b @ Xs @ Ys ) )
          = ( last_b @ Xs ) ) )
      & ( ( Ys != nil_b )
       => ( ( last_b @ ( append_b @ Xs @ Ys ) )
          = ( last_b @ Ys ) ) ) ) ).

% last_append
thf(fact_601_longest__common__suffix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ss: list_a,Xs3: list_a,Ys5: list_a] :
      ( ( Xs
        = ( append_a @ Xs3 @ Ss ) )
      & ( Ys
        = ( append_a @ Ys5 @ Ss ) )
      & ( ( Xs3 = nil_a )
        | ( Ys5 = nil_a )
        | ( ( last_a @ Xs3 )
         != ( last_a @ Ys5 ) ) ) ) ).

% longest_common_suffix
thf(fact_602_longest__common__suffix,axiom,
    ! [Xs: list_b,Ys: list_b] :
    ? [Ss: list_b,Xs3: list_b,Ys5: list_b] :
      ( ( Xs
        = ( append_b @ Xs3 @ Ss ) )
      & ( Ys
        = ( append_b @ Ys5 @ Ss ) )
      & ( ( Xs3 = nil_b )
        | ( Ys5 = nil_b )
        | ( ( last_b @ Xs3 )
         != ( last_b @ Ys5 ) ) ) ) ).

% longest_common_suffix
thf(fact_603_last__map,axiom,
    ! [Xs: list_a,F: a > a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ ( map_a_a @ F @ Xs ) )
        = ( F @ ( last_a @ Xs ) ) ) ) ).

% last_map
thf(fact_604_last__map,axiom,
    ! [Xs: list_a,F: a > b] :
      ( ( Xs != nil_a )
     => ( ( last_b @ ( map_a_b @ F @ Xs ) )
        = ( F @ ( last_a @ Xs ) ) ) ) ).

% last_map
thf(fact_605_last__map,axiom,
    ! [Xs: list_b,F: b > b] :
      ( ( Xs != nil_b )
     => ( ( last_b @ ( map_b_b @ F @ Xs ) )
        = ( F @ ( last_b @ Xs ) ) ) ) ).

% last_map
thf(fact_606_last__map,axiom,
    ! [Xs: list_b,F: b > a] :
      ( ( Xs != nil_b )
     => ( ( last_a @ ( map_b_a @ F @ Xs ) )
        = ( F @ ( last_b @ Xs ) ) ) ) ).

% last_map
thf(fact_607_hd__Nil__eq__last,axiom,
    ( ( hd_a @ nil_a )
    = ( last_a @ nil_a ) ) ).

% hd_Nil_eq_last
thf(fact_608_hd__Nil__eq__last,axiom,
    ( ( hd_b @ nil_b )
    = ( last_b @ nil_b ) ) ).

% hd_Nil_eq_last
thf(fact_609_last__rev,axiom,
    ! [Xs: list_a] :
      ( ( last_a @ ( rev_a @ Xs ) )
      = ( hd_a @ Xs ) ) ).

% last_rev
thf(fact_610_last__rev,axiom,
    ! [Xs: list_b] :
      ( ( last_b @ ( rev_b @ Xs ) )
      = ( hd_b @ Xs ) ) ).

% last_rev
thf(fact_611_hd__rev,axiom,
    ! [Xs: list_a] :
      ( ( hd_a @ ( rev_a @ Xs ) )
      = ( last_a @ Xs ) ) ).

% hd_rev
thf(fact_612_hd__rev,axiom,
    ! [Xs: list_b] :
      ( ( hd_b @ ( rev_b @ Xs ) )
      = ( last_b @ Xs ) ) ).

% hd_rev
thf(fact_613_last__tl,axiom,
    ! [Xs: list_a] :
      ( ( ( Xs = nil_a )
        | ( ( tl_a @ Xs )
         != nil_a ) )
     => ( ( last_a @ ( tl_a @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_tl
thf(fact_614_last__tl,axiom,
    ! [Xs: list_b] :
      ( ( ( Xs = nil_b )
        | ( ( tl_b @ Xs )
         != nil_b ) )
     => ( ( last_b @ ( tl_b @ Xs ) )
        = ( last_b @ Xs ) ) ) ).

% last_tl
thf(fact_615_split__last__eq,axiom,
    ! [As: list_a,Y: a,Bs: list_a,Xs: list_a] :
      ( ( ( append_a @ As @ ( cons_a @ Y @ Bs ) )
        = Xs )
     => ( ( Bs != nil_a )
       => ( ( last_a @ Bs )
          = ( last_a @ Xs ) ) ) ) ).

% split_last_eq
thf(fact_616_split__last__eq,axiom,
    ! [As: list_b,Y: b,Bs: list_b,Xs: list_b] :
      ( ( ( append_b @ As @ ( cons_b @ Y @ Bs ) )
        = Xs )
     => ( ( Bs != nil_b )
       => ( ( last_b @ Bs )
          = ( last_b @ Xs ) ) ) ) ).

% split_last_eq
thf(fact_617_pre__digraph_Ocas__append__iff,axiom,
    ! [G: pre_pr3327329314391289540t_unit,U2: a,P2: list_a,Q: list_a,V2: a] :
      ( ( arc_pre_cas_a_a @ G @ U2 @ ( append_a @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_cas_a_a @ G @ U2 @ P2 @ ( last_a @ ( arc_pr7493981781705774525ts_a_a @ G @ U2 @ P2 ) ) )
        & ( arc_pre_cas_a_a @ G @ ( last_a @ ( arc_pr7493981781705774525ts_a_a @ G @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% pre_digraph.cas_append_iff
thf(fact_618_pre__digraph_Ocas__append__iff,axiom,
    ! [G: pre_pr3994228789931197893t_unit,U2: b,P2: list_a,Q: list_a,V2: b] :
      ( ( arc_pre_cas_b_a @ G @ U2 @ ( append_a @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_cas_b_a @ G @ U2 @ P2 @ ( last_b @ ( arc_pr4706526199733098492ts_b_a @ G @ U2 @ P2 ) ) )
        & ( arc_pre_cas_b_a @ G @ ( last_b @ ( arc_pr4706526199733098492ts_b_a @ G @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% pre_digraph.cas_append_iff
thf(fact_619_pre__digraph_Ocas__append__iff,axiom,
    ! [G: pre_pr7945120425549786372t_unit,U2: b,P2: list_b,Q: list_b,V2: b] :
      ( ( arc_pre_cas_b_b @ G @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_cas_b_b @ G @ U2 @ P2 @ ( last_b @ ( arc_pr4706526199733098493ts_b_b @ G @ U2 @ P2 ) ) )
        & ( arc_pre_cas_b_b @ G @ ( last_b @ ( arc_pr4706526199733098493ts_b_b @ G @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% pre_digraph.cas_append_iff
thf(fact_620_pre__digraph_Ocas__append__iff,axiom,
    ! [G: pre_pr2882871181989701257t_unit,U2: list_a,P2: list_b,Q: list_b,V2: list_a] :
      ( ( arc_pre_cas_list_a_b @ G @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_cas_list_a_b @ G @ U2 @ P2 @ ( last_list_a @ ( arc_pr6350002437206376376st_a_b @ G @ U2 @ P2 ) ) )
        & ( arc_pre_cas_list_a_b @ G @ ( last_list_a @ ( arc_pr6350002437206376376st_a_b @ G @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% pre_digraph.cas_append_iff
thf(fact_621_pre__digraph_Ocas__append__iff,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ G @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_cas_a_b @ G @ U2 @ P2 @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ P2 ) ) )
        & ( arc_pre_cas_a_b @ G @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ G @ U2 @ P2 ) ) @ Q @ V2 ) ) ) ).

% pre_digraph.cas_append_iff
thf(fact_622_split__list__last__sep,axiom,
    ! [Y: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ Y @ ( set_Product_prod_a_a2 @ Xs ) )
     => ( ( Y
         != ( last_P8790725268278465478od_a_a @ Xs ) )
       => ? [As2: list_P1396940483166286381od_a_a,Bs2: list_P1396940483166286381od_a_a] :
            ( ( append5335208819046833346od_a_a @ As2 @ ( cons_P7316939126706565853od_a_a @ Y @ ( append5335208819046833346od_a_a @ Bs2 @ ( cons_P7316939126706565853od_a_a @ ( last_P8790725268278465478od_a_a @ Xs ) @ nil_Product_prod_a_a ) ) ) )
            = Xs ) ) ) ).

% split_list_last_sep
thf(fact_623_split__list__last__sep,axiom,
    ! [Y: set_a,Xs: list_set_a] :
      ( ( member_set_a @ Y @ ( set_set_a2 @ Xs ) )
     => ( ( Y
         != ( last_set_a @ Xs ) )
       => ? [As2: list_set_a,Bs2: list_set_a] :
            ( ( append_set_a @ As2 @ ( cons_set_a @ Y @ ( append_set_a @ Bs2 @ ( cons_set_a @ ( last_set_a @ Xs ) @ nil_set_a ) ) ) )
            = Xs ) ) ) ).

% split_list_last_sep
thf(fact_624_split__list__last__sep,axiom,
    ! [Y: list_a,Xs: list_list_a] :
      ( ( member_list_a @ Y @ ( set_list_a2 @ Xs ) )
     => ( ( Y
         != ( last_list_a @ Xs ) )
       => ? [As2: list_list_a,Bs2: list_list_a] :
            ( ( append_list_a @ As2 @ ( cons_list_a @ Y @ ( append_list_a @ Bs2 @ ( cons_list_a @ ( last_list_a @ Xs ) @ nil_list_a ) ) ) )
            = Xs ) ) ) ).

% split_list_last_sep
thf(fact_625_split__list__last__sep,axiom,
    ! [Y: a,Xs: list_a] :
      ( ( member_a @ Y @ ( set_a2 @ Xs ) )
     => ( ( Y
         != ( last_a @ Xs ) )
       => ? [As2: list_a,Bs2: list_a] :
            ( ( append_a @ As2 @ ( cons_a @ Y @ ( append_a @ Bs2 @ ( cons_a @ ( last_a @ Xs ) @ nil_a ) ) ) )
            = Xs ) ) ) ).

% split_list_last_sep
thf(fact_626_split__list__last__sep,axiom,
    ! [Y: b,Xs: list_b] :
      ( ( member_b @ Y @ ( set_b2 @ Xs ) )
     => ( ( Y
         != ( last_b @ Xs ) )
       => ? [As2: list_b,Bs2: list_b] :
            ( ( append_b @ As2 @ ( cons_b @ Y @ ( append_b @ Bs2 @ ( cons_b @ ( last_b @ Xs ) @ nil_b ) ) ) )
            = Xs ) ) ) ).

% split_list_last_sep
thf(fact_627_split__list__not__last,axiom,
    ! [Y: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ Y @ ( set_Product_prod_a_a2 @ Xs ) )
     => ( ( Y
         != ( last_P8790725268278465478od_a_a @ Xs ) )
       => ? [As2: list_P1396940483166286381od_a_a,Bs2: list_P1396940483166286381od_a_a] :
            ( ( ( append5335208819046833346od_a_a @ As2 @ ( cons_P7316939126706565853od_a_a @ Y @ Bs2 ) )
              = Xs )
            & ( Bs2 != nil_Product_prod_a_a ) ) ) ) ).

% split_list_not_last
thf(fact_628_split__list__not__last,axiom,
    ! [Y: set_a,Xs: list_set_a] :
      ( ( member_set_a @ Y @ ( set_set_a2 @ Xs ) )
     => ( ( Y
         != ( last_set_a @ Xs ) )
       => ? [As2: list_set_a,Bs2: list_set_a] :
            ( ( ( append_set_a @ As2 @ ( cons_set_a @ Y @ Bs2 ) )
              = Xs )
            & ( Bs2 != nil_set_a ) ) ) ) ).

% split_list_not_last
thf(fact_629_split__list__not__last,axiom,
    ! [Y: list_a,Xs: list_list_a] :
      ( ( member_list_a @ Y @ ( set_list_a2 @ Xs ) )
     => ( ( Y
         != ( last_list_a @ Xs ) )
       => ? [As2: list_list_a,Bs2: list_list_a] :
            ( ( ( append_list_a @ As2 @ ( cons_list_a @ Y @ Bs2 ) )
              = Xs )
            & ( Bs2 != nil_list_a ) ) ) ) ).

% split_list_not_last
thf(fact_630_split__list__not__last,axiom,
    ! [Y: a,Xs: list_a] :
      ( ( member_a @ Y @ ( set_a2 @ Xs ) )
     => ( ( Y
         != ( last_a @ Xs ) )
       => ? [As2: list_a,Bs2: list_a] :
            ( ( ( append_a @ As2 @ ( cons_a @ Y @ Bs2 ) )
              = Xs )
            & ( Bs2 != nil_a ) ) ) ) ).

% split_list_not_last
thf(fact_631_split__list__not__last,axiom,
    ! [Y: b,Xs: list_b] :
      ( ( member_b @ Y @ ( set_b2 @ Xs ) )
     => ( ( Y
         != ( last_b @ Xs ) )
       => ? [As2: list_b,Bs2: list_b] :
            ( ( ( append_b @ As2 @ ( cons_b @ Y @ Bs2 ) )
              = Xs )
            & ( Bs2 != nil_b ) ) ) ) ).

% split_list_not_last
thf(fact_632_pre__digraph_Oawalk__verts__conv,axiom,
    ( arc_pr7493981781705774525ts_a_a
    = ( ^ [G2: pre_pr3327329314391289540t_unit,U4: a,P4: list_a] : ( if_list_a @ ( P4 = nil_a ) @ ( cons_a @ U4 @ nil_a ) @ ( append_a @ ( map_a_a @ ( pre_ta980714981981074249t_unit @ G2 ) @ P4 ) @ ( cons_a @ ( pre_he1285395828689812537t_unit @ G2 @ ( last_a @ P4 ) ) @ nil_a ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv
thf(fact_633_pre__digraph_Oawalk__verts__conv,axiom,
    ( arc_pr4706526199733098492ts_b_a
    = ( ^ [G2: pre_pr3994228789931197893t_unit,U4: b,P4: list_a] : ( if_list_b @ ( P4 = nil_a ) @ ( cons_b @ U4 @ nil_b ) @ ( append_b @ ( map_a_b @ ( pre_ta6449336744848955850t_unit @ G2 ) @ P4 ) @ ( cons_b @ ( pre_he6754017591557694138t_unit @ G2 @ ( last_a @ P4 ) ) @ nil_b ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv
thf(fact_634_pre__digraph_Oawalk__verts__conv,axiom,
    ( arc_pr4706526199733098493ts_b_b
    = ( ^ [G2: pre_pr7945120425549786372t_unit,U4: b,P4: list_b] : ( if_list_b @ ( P4 = nil_b ) @ ( cons_b @ U4 @ nil_b ) @ ( append_b @ ( map_b_b @ ( pre_ta1176856343612768521t_unit @ G2 ) @ P4 ) @ ( cons_b @ ( pre_he1481537190321506809t_unit @ G2 @ ( last_b @ P4 ) ) @ nil_b ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv
thf(fact_635_pre__digraph_Oawalk__verts__conv,axiom,
    ( arc_pr7493981781705774526ts_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,U4: a,P4: list_b] : ( if_list_a @ ( P4 = nil_b ) @ ( cons_a @ U4 @ nil_a ) @ ( append_a @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ G2 ) @ P4 ) @ ( cons_a @ ( pre_he5236287464308401016t_unit @ G2 @ ( last_b @ P4 ) ) @ nil_a ) ) ) ) ) ).

% pre_digraph.awalk_verts_conv
thf(fact_636_reachable__vpath__conv,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
      = ( ? [P4: list_a] :
            ( ( vertex_vpath_a_b @ P4 @ t )
            & ( ( hd_a @ P4 )
              = U2 )
            & ( ( last_a @ P4 )
              = V2 ) ) ) ) ).

% reachable_vpath_conv
thf(fact_637_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_euler_trail_a_a
    = ( ^ [G2: pre_pr3327329314391289540t_unit,U4: a,P4: list_a,V5: a] :
          ( ( arc_pre_trail_a_a @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_a2 @ P4 )
            = ( pre_ar6668445444069714712t_unit @ G2 ) )
          & ( ( set_a2 @ ( arc_pr7493981781705774525ts_a_a @ G2 @ U4 @ P4 ) )
            = ( pre_ve5914862431884959581t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_638_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_euler_trail_b_a
    = ( ^ [G2: pre_pr3994228789931197893t_unit,U4: b,P4: list_a,V5: b] :
          ( ( arc_pre_trail_b_a @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_a2 @ P4 )
            = ( pre_ar2913695170082820505t_unit @ G2 ) )
          & ( ( set_b2 @ ( arc_pr4706526199733098492ts_b_a @ G2 @ U4 @ P4 ) )
            = ( pre_ve2160112157898065374t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_639_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_eu4033079881512885386st_a_a
    = ( ^ [G2: pre_pr8155351583225888586t_unit,U4: list_a,P4: list_a,V5: list_a] :
          ( ( arc_pr7309874995902050715st_a_a @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_a2 @ P4 )
            = ( pre_ar8733286783787486494t_unit @ G2 ) )
          & ( ( set_list_a2 @ ( arc_pr6350002437206376375st_a_a @ G2 @ U4 @ P4 ) )
            = ( pre_ve7102540449451629283t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_640_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_euler_trail_b_b
    = ( ^ [G2: pre_pr7945120425549786372t_unit,U4: b,P4: list_b,V5: b] :
          ( ( arc_pre_trail_b_b @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_b2 @ P4 )
            = ( pre_ar6864586805701408984t_unit @ G2 ) )
          & ( ( set_b2 @ ( arc_pr4706526199733098493ts_b_b @ G2 @ U4 @ P4 ) )
            = ( pre_ve6111003793516653853t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_641_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_eu5922315637342151574list_a
    = ( ^ [G2: pre_pr3711252390037155390t_unit,U4: a,P4: list_list_a,V5: a] :
          ( ( arc_pr9199110751731316903list_a @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_list_a2 @ P4 )
            = ( pre_ar4649202011430411538t_unit @ G2 ) )
          & ( ( set_a2 @ ( arc_pr8239238193035642563list_a @ G2 @ U4 @ P4 ) )
            = ( pre_ve3018455677094554327t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_642_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_eu7410277674636950101list_a
    = ( ^ [G2: pre_pr7651200976661991615t_unit,U4: b,P4: list_list_a,V5: b] :
          ( ( arc_pr1463700752171339622list_a @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_list_a2 @ P4 )
            = ( pre_ar405773122724138771t_unit @ G2 ) )
          & ( ( set_b2 @ ( arc_pr503828193475665282list_a @ G2 @ U4 @ P4 ) )
            = ( pre_ve7998398825243057368t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_643_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_eu6772804086596076304list_a
    = ( ^ [G2: pre_pr1927278062479000516t_unit,U4: list_a,P4: list_list_a,V5: list_a] :
          ( ( arc_pr8660351327756884897list_a @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_list_a2 @ P4 )
            = ( pre_ar3225631637072446488t_unit @ G2 ) )
          & ( ( set_list_a2 @ ( arc_pr5757367447804505021list_a @ G2 @ U4 @ P4 ) )
            = ( pre_ve2103353244832951133t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_644_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_eu4033079881512885387st_a_b
    = ( ^ [G2: pre_pr2882871181989701257t_unit,U4: list_a,P4: list_b,V5: list_a] :
          ( ( arc_pr7309874995902050716st_a_b @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_b2 @ P4 )
            = ( pre_ar3460806382551299165t_unit @ G2 ) )
          & ( ( set_list_a2 @ ( arc_pr6350002437206376376st_a_b @ G2 @ U4 @ P4 ) )
            = ( pre_ve1830060048215441954t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_645_pre__digraph_Oeuler__trail__def,axiom,
    ( pre_euler_trail_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,U4: a,P4: list_b,V5: a] :
          ( ( arc_pre_trail_a_b @ G2 @ U4 @ P4 @ V5 )
          & ( ( set_b2 @ P4 )
            = ( pre_ar1395965042833527383t_unit @ G2 ) )
          & ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ G2 @ U4 @ P4 ) )
            = ( pre_ve642382030648772252t_unit @ G2 ) ) ) ) ) ).

% pre_digraph.euler_trail_def
thf(fact_646_awalk__verts__append2,axiom,
    ! [U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
     => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) )
        = ( append_a @ ( butlast_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( arc_pr7493981781705774526ts_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q ) ) ) ) ).

% awalk_verts_append2
thf(fact_647_awalk__verts__conv,axiom,
    ! [P2: list_b,U2: a] :
      ( ( ( P2 = nil_b )
       => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
          = ( cons_a @ U2 @ nil_a ) ) )
      & ( ( P2 != nil_b )
       => ( ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 )
          = ( append_a @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ P2 ) @ ( cons_a @ ( pre_he5236287464308401016t_unit @ t @ ( last_b @ P2 ) ) @ nil_a ) ) ) ) ) ).

% awalk_verts_conv
thf(fact_648_awlast__of__awalk,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( nOMATCH_a @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ V2 )
       => ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
          = V2 ) ) ) ).

% awlast_of_awalk
thf(fact_649_connected__minimal,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ~ ( reachable_a_b @ ( pre_del_arc_a_b @ t @ E ) @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( pre_he5236287464308401016t_unit @ t @ E ) ) ) ).

% connected_minimal
thf(fact_650_del__arc__commute,axiom,
    ! [B2: b,A2: b] :
      ( ( pre_del_arc_a_b @ ( pre_del_arc_a_b @ t @ B2 ) @ A2 )
      = ( pre_del_arc_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ B2 ) ) ).

% del_arc_commute
thf(fact_651_del__arc__in,axiom,
    ! [A2: b] :
      ( ~ ( member_b @ A2 @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( pre_del_arc_a_b @ t @ A2 )
        = t ) ) ).

% del_arc_in
thf(fact_652_inner__verts__conv,axiom,
    ! [P2: list_b,U2: a] :
      ( ( pre_inner_verts_a_b @ t @ P2 )
      = ( butlast_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ).

% inner_verts_conv
thf(fact_653_del__del__arc__collapse,axiom,
    ! [A2: b] :
      ( ( pre_del_arc_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ A2 )
      = ( pre_del_arc_a_b @ t @ A2 ) ) ).

% del_del_arc_collapse
thf(fact_654_List_Obutlast__rev,axiom,
    ! [Xs: list_a] :
      ( ( butlast_a @ ( rev_a @ Xs ) )
      = ( rev_a @ ( tl_a @ Xs ) ) ) ).

% List.butlast_rev
thf(fact_655_List_Obutlast__rev,axiom,
    ! [Xs: list_b] :
      ( ( butlast_b @ ( rev_b @ Xs ) )
      = ( rev_b @ ( tl_b @ Xs ) ) ) ).

% List.butlast_rev
thf(fact_656_verts__del__arc,axiom,
    ! [A2: b] :
      ( ( pre_ve642382030648772252t_unit @ ( pre_del_arc_a_b @ t @ A2 ) )
      = ( pre_ve642382030648772252t_unit @ t ) ) ).

% verts_del_arc
thf(fact_657_head__del__arc,axiom,
    ! [A2: b] :
      ( ( pre_he5236287464308401016t_unit @ ( pre_del_arc_a_b @ t @ A2 ) )
      = ( pre_he5236287464308401016t_unit @ t ) ) ).

% head_del_arc
thf(fact_658_tail__del__arc,axiom,
    ! [A2: b] :
      ( ( pre_ta4931606617599662728t_unit @ ( pre_del_arc_a_b @ t @ A2 ) )
      = ( pre_ta4931606617599662728t_unit @ t ) ) ).

% tail_del_arc
thf(fact_659_butlast__snoc,axiom,
    ! [Xs: list_a,X: a] :
      ( ( butlast_a @ ( append_a @ Xs @ ( cons_a @ X @ nil_a ) ) )
      = Xs ) ).

% butlast_snoc
thf(fact_660_butlast__snoc,axiom,
    ! [Xs: list_b,X: b] :
      ( ( butlast_b @ ( append_b @ Xs @ ( cons_b @ X @ nil_b ) ) )
      = Xs ) ).

% butlast_snoc
thf(fact_661_append__butlast__last__id,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( append_a @ ( butlast_a @ Xs ) @ ( cons_a @ ( last_a @ Xs ) @ nil_a ) )
        = Xs ) ) ).

% append_butlast_last_id
thf(fact_662_append__butlast__last__id,axiom,
    ! [Xs: list_b] :
      ( ( Xs != nil_b )
     => ( ( append_b @ ( butlast_b @ Xs ) @ ( cons_b @ ( last_b @ Xs ) @ nil_b ) )
        = Xs ) ) ).

% append_butlast_last_id
thf(fact_663_in__set__butlastD,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ ( butlas8142365730073264249od_a_a @ Xs ) ) )
     => ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) ) ) ).

% in_set_butlastD
thf(fact_664_in__set__butlastD,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ ( butlast_set_a @ Xs ) ) )
     => ( member_set_a @ X @ ( set_set_a2 @ Xs ) ) ) ).

% in_set_butlastD
thf(fact_665_in__set__butlastD,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ ( butlast_a @ Xs ) ) )
     => ( member_a @ X @ ( set_a2 @ Xs ) ) ) ).

% in_set_butlastD
thf(fact_666_in__set__butlastD,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ ( butlast_b @ Xs ) ) )
     => ( member_b @ X @ ( set_b2 @ Xs ) ) ) ).

% in_set_butlastD
thf(fact_667_in__set__butlastD,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ ( butlast_list_a @ Xs ) ) )
     => ( member_list_a @ X @ ( set_list_a2 @ Xs ) ) ) ).

% in_set_butlastD
thf(fact_668_butlast_Osimps_I1_J,axiom,
    ( ( butlast_a @ nil_a )
    = nil_a ) ).

% butlast.simps(1)
thf(fact_669_butlast_Osimps_I1_J,axiom,
    ( ( butlast_b @ nil_b )
    = nil_b ) ).

% butlast.simps(1)
thf(fact_670_distinct__butlast,axiom,
    ! [Xs: list_a] :
      ( ( distinct_a @ Xs )
     => ( distinct_a @ ( butlast_a @ Xs ) ) ) ).

% distinct_butlast
thf(fact_671_distinct__butlast,axiom,
    ! [Xs: list_b] :
      ( ( distinct_b @ Xs )
     => ( distinct_b @ ( butlast_b @ Xs ) ) ) ).

% distinct_butlast
thf(fact_672_map__butlast,axiom,
    ! [F: a > a,Xs: list_a] :
      ( ( map_a_a @ F @ ( butlast_a @ Xs ) )
      = ( butlast_a @ ( map_a_a @ F @ Xs ) ) ) ).

% map_butlast
thf(fact_673_map__butlast,axiom,
    ! [F: b > a,Xs: list_b] :
      ( ( map_b_a @ F @ ( butlast_b @ Xs ) )
      = ( butlast_a @ ( map_b_a @ F @ Xs ) ) ) ).

% map_butlast
thf(fact_674_butlast__tl,axiom,
    ! [Xs: list_a] :
      ( ( butlast_a @ ( tl_a @ Xs ) )
      = ( tl_a @ ( butlast_a @ Xs ) ) ) ).

% butlast_tl
thf(fact_675_butlast__tl,axiom,
    ! [Xs: list_b] :
      ( ( butlast_b @ ( tl_b @ Xs ) )
      = ( tl_b @ ( butlast_b @ Xs ) ) ) ).

% butlast_tl
thf(fact_676_in__set__butlast__appendI,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a,Ys: list_P1396940483166286381od_a_a] :
      ( ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ ( butlas8142365730073264249od_a_a @ Xs ) ) )
        | ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ ( butlas8142365730073264249od_a_a @ Ys ) ) ) )
     => ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ ( butlas8142365730073264249od_a_a @ ( append5335208819046833346od_a_a @ Xs @ Ys ) ) ) ) ) ).

% in_set_butlast_appendI
thf(fact_677_in__set__butlast__appendI,axiom,
    ! [X: set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( ( member_set_a @ X @ ( set_set_a2 @ ( butlast_set_a @ Xs ) ) )
        | ( member_set_a @ X @ ( set_set_a2 @ ( butlast_set_a @ Ys ) ) ) )
     => ( member_set_a @ X @ ( set_set_a2 @ ( butlast_set_a @ ( append_set_a @ Xs @ Ys ) ) ) ) ) ).

% in_set_butlast_appendI
thf(fact_678_in__set__butlast__appendI,axiom,
    ! [X: a,Xs: list_a,Ys: list_a] :
      ( ( ( member_a @ X @ ( set_a2 @ ( butlast_a @ Xs ) ) )
        | ( member_a @ X @ ( set_a2 @ ( butlast_a @ Ys ) ) ) )
     => ( member_a @ X @ ( set_a2 @ ( butlast_a @ ( append_a @ Xs @ Ys ) ) ) ) ) ).

% in_set_butlast_appendI
thf(fact_679_in__set__butlast__appendI,axiom,
    ! [X: b,Xs: list_b,Ys: list_b] :
      ( ( ( member_b @ X @ ( set_b2 @ ( butlast_b @ Xs ) ) )
        | ( member_b @ X @ ( set_b2 @ ( butlast_b @ Ys ) ) ) )
     => ( member_b @ X @ ( set_b2 @ ( butlast_b @ ( append_b @ Xs @ Ys ) ) ) ) ) ).

% in_set_butlast_appendI
thf(fact_680_in__set__butlast__appendI,axiom,
    ! [X: list_a,Xs: list_list_a,Ys: list_list_a] :
      ( ( ( member_list_a @ X @ ( set_list_a2 @ ( butlast_list_a @ Xs ) ) )
        | ( member_list_a @ X @ ( set_list_a2 @ ( butlast_list_a @ Ys ) ) ) )
     => ( member_list_a @ X @ ( set_list_a2 @ ( butlast_list_a @ ( append_list_a @ Xs @ Ys ) ) ) ) ) ).

% in_set_butlast_appendI
thf(fact_681_butlast_Osimps_I2_J,axiom,
    ! [Xs: list_a,X: a] :
      ( ( ( Xs = nil_a )
       => ( ( butlast_a @ ( cons_a @ X @ Xs ) )
          = nil_a ) )
      & ( ( Xs != nil_a )
       => ( ( butlast_a @ ( cons_a @ X @ Xs ) )
          = ( cons_a @ X @ ( butlast_a @ Xs ) ) ) ) ) ).

% butlast.simps(2)
thf(fact_682_butlast_Osimps_I2_J,axiom,
    ! [Xs: list_b,X: b] :
      ( ( ( Xs = nil_b )
       => ( ( butlast_b @ ( cons_b @ X @ Xs ) )
          = nil_b ) )
      & ( ( Xs != nil_b )
       => ( ( butlast_b @ ( cons_b @ X @ Xs ) )
          = ( cons_b @ X @ ( butlast_b @ Xs ) ) ) ) ) ).

% butlast.simps(2)
thf(fact_683_butlast__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( butlast_a @ ( append_a @ Xs @ Ys ) )
          = ( butlast_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( butlast_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ Xs @ ( butlast_a @ Ys ) ) ) ) ) ).

% butlast_append
thf(fact_684_butlast__append,axiom,
    ! [Ys: list_b,Xs: list_b] :
      ( ( ( Ys = nil_b )
       => ( ( butlast_b @ ( append_b @ Xs @ Ys ) )
          = ( butlast_b @ Xs ) ) )
      & ( ( Ys != nil_b )
       => ( ( butlast_b @ ( append_b @ Xs @ Ys ) )
          = ( append_b @ Xs @ ( butlast_b @ Ys ) ) ) ) ) ).

% butlast_append
thf(fact_685_snoc__eq__iff__butlast,axiom,
    ! [Xs: list_a,X: a,Ys: list_a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X @ nil_a ) )
        = Ys )
      = ( ( Ys != nil_a )
        & ( ( butlast_a @ Ys )
          = Xs )
        & ( ( last_a @ Ys )
          = X ) ) ) ).

% snoc_eq_iff_butlast
thf(fact_686_snoc__eq__iff__butlast,axiom,
    ! [Xs: list_b,X: b,Ys: list_b] :
      ( ( ( append_b @ Xs @ ( cons_b @ X @ nil_b ) )
        = Ys )
      = ( ( Ys != nil_b )
        & ( ( butlast_b @ Ys )
          = Xs )
        & ( ( last_b @ Ys )
          = X ) ) ) ).

% snoc_eq_iff_butlast
thf(fact_687_pre__digraph_Oarc__set__balanced_Ocong,axiom,
    pre_ar5931435604406180204ed_a_b = pre_ar5931435604406180204ed_a_b ).

% pre_digraph.arc_set_balanced.cong
thf(fact_688_Stuff_Obutlast__rev,axiom,
    ! [P2: list_a] :
      ( ( butlast_a @ ( rev_a @ P2 ) )
      = ( rev_a @ ( tl_a @ P2 ) ) ) ).

% Stuff.butlast_rev
thf(fact_689_Stuff_Obutlast__rev,axiom,
    ! [P2: list_b] :
      ( ( butlast_b @ ( rev_b @ P2 ) )
      = ( rev_b @ ( tl_b @ P2 ) ) ) ).

% Stuff.butlast_rev
thf(fact_690_euler__trail__conv__connected,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( digrap8783888973171253482ed_a_b @ t )
     => ( ( pre_euler_trail_a_b @ t @ U2 @ P2 @ V2 )
        = ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ V2 )
          & ( ( set_b2 @ P2 )
            = ( pre_ar1395965042833527383t_unit @ t ) ) ) ) ) ).

% euler_trail_conv_connected
thf(fact_691_Un__subset__iff,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ C2 )
      = ( ( ord_less_eq_set_a @ A3 @ C2 )
        & ( ord_less_eq_set_a @ B3 @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_692_Un__subset__iff,axiom,
    ! [A3: set_b,B3: set_b,C2: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ C2 )
      = ( ( ord_less_eq_set_b @ A3 @ C2 )
        & ( ord_less_eq_set_b @ B3 @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_693_bidirected__digraphI,axiom,
    ! [Arev: b > b] :
      ( ! [A: b] :
          ( ~ ( member_b @ A @ ( pre_ar1395965042833527383t_unit @ t ) )
         => ( ( Arev @ A )
            = A ) )
     => ( ! [A: b] :
            ( ( member_b @ A @ ( pre_ar1395965042833527383t_unit @ t ) )
           => ( ( Arev @ A )
             != A ) )
       => ( ! [A: b] :
              ( ( member_b @ A @ ( pre_ar1395965042833527383t_unit @ t ) )
             => ( ( Arev @ ( Arev @ A ) )
                = A ) )
         => ( ! [A: b] :
                ( ( member_b @ A @ ( pre_ar1395965042833527383t_unit @ t ) )
               => ( ( pre_ta4931606617599662728t_unit @ t @ ( Arev @ A ) )
                  = ( pre_he5236287464308401016t_unit @ t @ A ) ) )
           => ( bidire6463457107099887885ph_a_b @ t @ Arev ) ) ) ) ) ).

% bidirected_digraphI
thf(fact_694_apath__Cons__iff,axiom,
    ! [U2: a,E: b,Es: list_b,W: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ ( cons_b @ E @ Es ) @ W )
      = ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
        & ( ( pre_ta4931606617599662728t_unit @ t @ E )
          = U2 )
        & ( arc_pre_apath_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E ) @ Es @ W )
        & ~ ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ ( pre_he5236287464308401016t_unit @ t @ E ) @ Es ) ) ) ) ) ).

% apath_Cons_iff
thf(fact_695_connected,axiom,
    digrap8783888973171253482ed_a_b @ t ).

% connected
thf(fact_696_apath__if__awalk,axiom,
    ! [R2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ R2 @ P2 @ V2 )
     => ( arc_pre_apath_a_b @ t @ R2 @ P2 @ V2 ) ) ).

% apath_if_awalk
thf(fact_697_awalkI__apath,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 ) ) ).

% awalkI_apath
thf(fact_698_reachable__apath,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
      = ( ? [P4: list_b] : ( arc_pre_apath_a_b @ t @ U2 @ P4 @ V2 ) ) ) ).

% reachable_apath
thf(fact_699_apath__ends,axiom,
    ! [U2: a,P2: list_b,V2: a,U3: a,V4: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_apath_a_b @ t @ U3 @ P2 @ V4 )
       => ( ( ( P2 != nil_b )
            & ( U2 != V2 )
            & ( U2 = U3 )
            & ( V2 = V4 ) )
          | ( ( P2 = nil_b )
            & ( U2 = V2 )
            & ( U3 = V4 ) ) ) ) ) ).

% apath_ends
thf(fact_700_apath__nonempty__ends,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( P2 != nil_b )
       => ( U2 != V2 ) ) ) ).

% apath_nonempty_ends
thf(fact_701_euler__imp__connected,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( pre_euler_trail_a_b @ t @ U2 @ P2 @ V2 )
     => ( digrap8783888973171253482ed_a_b @ t ) ) ).

% euler_imp_connected
thf(fact_702_subset__antisym,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ A3 )
       => ( A3 = B3 ) ) ) ).

% subset_antisym
thf(fact_703_subset__antisym,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( ord_less_eq_set_b @ B3 @ A3 )
       => ( A3 = B3 ) ) ) ).

% subset_antisym
thf(fact_704_subsetI,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ! [X2: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ X2 @ A3 )
         => ( member1426531477525435216od_a_a @ X2 @ B3 ) )
     => ( ord_le746702958409616551od_a_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_705_subsetI,axiom,
    ! [A3: set_list_a,B3: set_list_a] :
      ( ! [X2: list_a] :
          ( ( member_list_a @ X2 @ A3 )
         => ( member_list_a @ X2 @ B3 ) )
     => ( ord_le8861187494160871172list_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_706_subsetI,axiom,
    ! [A3: set_set_a,B3: set_set_a] :
      ( ! [X2: set_a] :
          ( ( member_set_a @ X2 @ A3 )
         => ( member_set_a @ X2 @ B3 ) )
     => ( ord_le3724670747650509150_set_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_707_subsetI,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ A3 )
         => ( member_a @ X2 @ B3 ) )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% subsetI
thf(fact_708_subsetI,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ A3 )
         => ( member_b @ X2 @ B3 ) )
     => ( ord_less_eq_set_b @ A3 @ B3 ) ) ).

% subsetI
thf(fact_709_hd__in__awalk__verts_I2_J,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( member_a @ U2 @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ).

% hd_in_awalk_verts(2)
thf(fact_710_apath__Nil__iff,axiom,
    ! [U2: a,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ nil_b @ V2 )
      = ( ( U2 = V2 )
        & ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% apath_Nil_iff
thf(fact_711_apath__awalk__to__apath,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( arc_pre_apath_a_b @ t @ U2 @ ( arc_wf446166946845163101th_a_b @ t @ P2 ) @ V2 ) ) ).

% apath_awalk_to_apath
thf(fact_712_unique__apath__verts__in__awalk,axiom,
    ! [X: a,U2: a,P1: list_b,V2: a,P22: list_b] :
      ( ( member_a @ X @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P1 ) ) )
     => ( ( arc_pre_apath_a_b @ t @ U2 @ P1 @ V2 )
       => ( ( arc_pre_awalk_a_b @ t @ U2 @ P22 @ V2 )
         => ( ? [X5: list_b] :
                ( ( arc_pre_apath_a_b @ t @ U2 @ X5 @ V2 )
                & ! [Y2: list_b] :
                    ( ( arc_pre_apath_a_b @ t @ U2 @ Y2 @ V2 )
                   => ( Y2 = X5 ) ) )
           => ( member_a @ X @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P22 ) ) ) ) ) ) ) ).

% unique_apath_verts_in_awalk
thf(fact_713_apath__def,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
      = ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
        & ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ).

% apath_def
thf(fact_714_no__loops__in__apath,axiom,
    ! [U2: a,P2: list_b,V2: a,A2: b] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( member_b @ A2 @ ( set_b2 @ P2 ) )
       => ( ( pre_ta4931606617599662728t_unit @ t @ A2 )
         != ( pre_he5236287464308401016t_unit @ t @ A2 ) ) ) ) ).

% no_loops_in_apath
thf(fact_715_unique__apath__verts__sub__awalk,axiom,
    ! [U2: a,P2: list_b,V2: a,Q: list_b] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ Q @ V2 )
       => ( ? [X5: list_b] :
              ( ( arc_pre_apath_a_b @ t @ U2 @ X5 @ V2 )
              & ! [Y2: list_b] :
                  ( ( arc_pre_apath_a_b @ t @ U2 @ Y2 @ V2 )
                 => ( Y2 = X5 ) ) )
         => ( ord_less_eq_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q ) ) ) ) ) ) ).

% unique_apath_verts_sub_awalk
thf(fact_716_apath__decomp__disjoint,axiom,
    ! [U2: a,P2: list_b,V2: a,Q: list_b,R2: list_b,X: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( P2
          = ( append_b @ Q @ R2 ) )
       => ( ( member_a @ X @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q ) ) )
         => ~ ( member_a @ X @ ( set_a2 @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q ) ) @ R2 ) ) ) ) ) ) ) ).

% apath_decomp_disjoint
thf(fact_717_spanning__tree__imp__connected,axiom,
    ! [H: pre_pr7278220950009878019t_unit] :
      ( ( digrap5718416180170401981ee_a_b @ H @ t )
     => ( digrap8783888973171253482ed_a_b @ t ) ) ).

% spanning_tree_imp_connected
thf(fact_718_connected__spanning__imp__connected,axiom,
    ! [H: pre_pr7278220950009878019t_unit] :
      ( ( digraph_spanning_a_b @ H @ t )
     => ( ( digrap8783888973171253482ed_a_b @ H )
       => ( digrap8783888973171253482ed_a_b @ t ) ) ) ).

% connected_spanning_imp_connected
thf(fact_719_pre__digraph_Oapath_Ocong,axiom,
    arc_pre_apath_a_b = arc_pre_apath_a_b ).

% pre_digraph.apath.cong
thf(fact_720_pre__digraph_OawalkI__apath,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ G @ U2 @ P2 @ V2 )
     => ( arc_pre_awalk_a_b @ G @ U2 @ P2 @ V2 ) ) ).

% pre_digraph.awalkI_apath
thf(fact_721_pre__digraph_OawalkI__apath,axiom,
    ! [G: pre_pr2882871181989701257t_unit,U2: list_a,P2: list_b,V2: list_a] :
      ( ( arc_pr85741862633711036st_a_b @ G @ U2 @ P2 @ V2 )
     => ( arc_pr6214585750886380800st_a_b @ G @ U2 @ P2 @ V2 ) ) ).

% pre_digraph.awalkI_apath
thf(fact_722_pre__digraph_Oapath__def,axiom,
    ( arc_pr85741862633711036st_a_b
    = ( ^ [G2: pre_pr2882871181989701257t_unit,U4: list_a,P4: list_b,V5: list_a] :
          ( ( arc_pr6214585750886380800st_a_b @ G2 @ U4 @ P4 @ V5 )
          & ( distinct_list_a @ ( arc_pr6350002437206376376st_a_b @ G2 @ U4 @ P4 ) ) ) ) ) ).

% pre_digraph.apath_def
thf(fact_723_pre__digraph_Oapath__def,axiom,
    ( arc_pre_apath_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,U4: a,P4: list_b,V5: a] :
          ( ( arc_pre_awalk_a_b @ G2 @ U4 @ P4 @ V5 )
          & ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ G2 @ U4 @ P4 ) ) ) ) ) ).

% pre_digraph.apath_def
thf(fact_724_Collect__mono__iff,axiom,
    ! [P: a > $o,Q3: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q3 ) )
      = ( ! [X4: a] :
            ( ( P @ X4 )
           => ( Q3 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_725_Collect__mono__iff,axiom,
    ! [P: b > $o,Q3: b > $o] :
      ( ( ord_less_eq_set_b @ ( collect_b @ P ) @ ( collect_b @ Q3 ) )
      = ( ! [X4: b] :
            ( ( P @ X4 )
           => ( Q3 @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_726_set__eq__subset,axiom,
    ( ( ^ [Y5: set_a,Z6: set_a] : ( Y5 = Z6 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% set_eq_subset
thf(fact_727_set__eq__subset,axiom,
    ( ( ^ [Y5: set_b,Z6: set_b] : ( Y5 = Z6 ) )
    = ( ^ [A4: set_b,B4: set_b] :
          ( ( ord_less_eq_set_b @ A4 @ B4 )
          & ( ord_less_eq_set_b @ B4 @ A4 ) ) ) ) ).

% set_eq_subset
thf(fact_728_subset__trans,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ord_less_eq_set_a @ A3 @ C2 ) ) ) ).

% subset_trans
thf(fact_729_subset__trans,axiom,
    ! [A3: set_b,B3: set_b,C2: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( ord_less_eq_set_b @ B3 @ C2 )
       => ( ord_less_eq_set_b @ A3 @ C2 ) ) ) ).

% subset_trans
thf(fact_730_Collect__mono,axiom,
    ! [P: a > $o,Q3: a > $o] :
      ( ! [X2: a] :
          ( ( P @ X2 )
         => ( Q3 @ X2 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q3 ) ) ) ).

% Collect_mono
thf(fact_731_Collect__mono,axiom,
    ! [P: b > $o,Q3: b > $o] :
      ( ! [X2: b] :
          ( ( P @ X2 )
         => ( Q3 @ X2 ) )
     => ( ord_less_eq_set_b @ ( collect_b @ P ) @ ( collect_b @ Q3 ) ) ) ).

% Collect_mono
thf(fact_732_subset__refl,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_733_subset__refl,axiom,
    ! [A3: set_b] : ( ord_less_eq_set_b @ A3 @ A3 ) ).

% subset_refl
thf(fact_734_subset__iff,axiom,
    ( ord_le746702958409616551od_a_a
    = ( ^ [A4: set_Product_prod_a_a,B4: set_Product_prod_a_a] :
        ! [T3: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ T3 @ A4 )
         => ( member1426531477525435216od_a_a @ T3 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_735_subset__iff,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [A4: set_list_a,B4: set_list_a] :
        ! [T3: list_a] :
          ( ( member_list_a @ T3 @ A4 )
         => ( member_list_a @ T3 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_736_subset__iff,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A4: set_set_a,B4: set_set_a] :
        ! [T3: set_a] :
          ( ( member_set_a @ T3 @ A4 )
         => ( member_set_a @ T3 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_737_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
        ! [T3: a] :
          ( ( member_a @ T3 @ A4 )
         => ( member_a @ T3 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_738_subset__iff,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A4: set_b,B4: set_b] :
        ! [T3: b] :
          ( ( member_b @ T3 @ A4 )
         => ( member_b @ T3 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_739_equalityD2,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_a @ B3 @ A3 ) ) ).

% equalityD2
thf(fact_740_equalityD2,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_b @ B3 @ A3 ) ) ).

% equalityD2
thf(fact_741_equalityD1,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% equalityD1
thf(fact_742_equalityD1,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( A3 = B3 )
     => ( ord_less_eq_set_b @ A3 @ B3 ) ) ).

% equalityD1
thf(fact_743_subset__eq,axiom,
    ( ord_le746702958409616551od_a_a
    = ( ^ [A4: set_Product_prod_a_a,B4: set_Product_prod_a_a] :
        ! [X4: product_prod_a_a] :
          ( ( member1426531477525435216od_a_a @ X4 @ A4 )
         => ( member1426531477525435216od_a_a @ X4 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_744_subset__eq,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [A4: set_list_a,B4: set_list_a] :
        ! [X4: list_a] :
          ( ( member_list_a @ X4 @ A4 )
         => ( member_list_a @ X4 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_745_subset__eq,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A4: set_set_a,B4: set_set_a] :
        ! [X4: set_a] :
          ( ( member_set_a @ X4 @ A4 )
         => ( member_set_a @ X4 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_746_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
        ! [X4: a] :
          ( ( member_a @ X4 @ A4 )
         => ( member_a @ X4 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_747_subset__eq,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A4: set_b,B4: set_b] :
        ! [X4: b] :
          ( ( member_b @ X4 @ A4 )
         => ( member_b @ X4 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_748_equalityE,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( A3 = B3 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B3 )
         => ~ ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ).

% equalityE
thf(fact_749_equalityE,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( A3 = B3 )
     => ~ ( ( ord_less_eq_set_b @ A3 @ B3 )
         => ~ ( ord_less_eq_set_b @ B3 @ A3 ) ) ) ).

% equalityE
thf(fact_750_subsetD,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a,C: product_prod_a_a] :
      ( ( ord_le746702958409616551od_a_a @ A3 @ B3 )
     => ( ( member1426531477525435216od_a_a @ C @ A3 )
       => ( member1426531477525435216od_a_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_751_subsetD,axiom,
    ! [A3: set_list_a,B3: set_list_a,C: list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ( member_list_a @ C @ A3 )
       => ( member_list_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_752_subsetD,axiom,
    ! [A3: set_set_a,B3: set_set_a,C: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
     => ( ( member_set_a @ C @ A3 )
       => ( member_set_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_753_subsetD,axiom,
    ! [A3: set_a,B3: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( member_a @ C @ A3 )
       => ( member_a @ C @ B3 ) ) ) ).

% subsetD
thf(fact_754_subsetD,axiom,
    ! [A3: set_b,B3: set_b,C: b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( member_b @ C @ A3 )
       => ( member_b @ C @ B3 ) ) ) ).

% subsetD
thf(fact_755_in__mono,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a,X: product_prod_a_a] :
      ( ( ord_le746702958409616551od_a_a @ A3 @ B3 )
     => ( ( member1426531477525435216od_a_a @ X @ A3 )
       => ( member1426531477525435216od_a_a @ X @ B3 ) ) ) ).

% in_mono
thf(fact_756_in__mono,axiom,
    ! [A3: set_list_a,B3: set_list_a,X: list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ( member_list_a @ X @ A3 )
       => ( member_list_a @ X @ B3 ) ) ) ).

% in_mono
thf(fact_757_in__mono,axiom,
    ! [A3: set_set_a,B3: set_set_a,X: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
     => ( ( member_set_a @ X @ A3 )
       => ( member_set_a @ X @ B3 ) ) ) ).

% in_mono
thf(fact_758_in__mono,axiom,
    ! [A3: set_a,B3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( member_a @ X @ A3 )
       => ( member_a @ X @ B3 ) ) ) ).

% in_mono
thf(fact_759_in__mono,axiom,
    ! [A3: set_b,B3: set_b,X: b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( member_b @ X @ A3 )
       => ( member_b @ X @ B3 ) ) ) ).

% in_mono
thf(fact_760_list__exhaust2,axiom,
    ! [Y: list_a,Ya: list_a] :
      ( ( ( Y = nil_a )
       => ( Ya != nil_a ) )
     => ( ( ( Y = nil_a )
         => ! [X212: a,X222: list_a] :
              ( Ya
             != ( cons_a @ X212 @ X222 ) ) )
       => ( ( ? [X212: a,X222: list_a] :
                ( Y
                = ( cons_a @ X212 @ X222 ) )
           => ( Ya != nil_a ) )
         => ~ ( ? [X212: a,X222: list_a] :
                  ( Y
                  = ( cons_a @ X212 @ X222 ) )
             => ! [X21a: a,X22a: list_a] :
                  ( Ya
                 != ( cons_a @ X21a @ X22a ) ) ) ) ) ) ).

% list_exhaust2
thf(fact_761_list__exhaust2,axiom,
    ! [Y: list_b,Ya: list_a] :
      ( ( ( Y = nil_b )
       => ( Ya != nil_a ) )
     => ( ( ( Y = nil_b )
         => ! [X212: a,X222: list_a] :
              ( Ya
             != ( cons_a @ X212 @ X222 ) ) )
       => ( ( ? [X212: b,X222: list_b] :
                ( Y
                = ( cons_b @ X212 @ X222 ) )
           => ( Ya != nil_a ) )
         => ~ ( ? [X212: b,X222: list_b] :
                  ( Y
                  = ( cons_b @ X212 @ X222 ) )
             => ! [X21a: a,X22a: list_a] :
                  ( Ya
                 != ( cons_a @ X21a @ X22a ) ) ) ) ) ) ).

% list_exhaust2
thf(fact_762_list__exhaust2,axiom,
    ! [Y: list_a,Ya: list_b] :
      ( ( ( Y = nil_a )
       => ( Ya != nil_b ) )
     => ( ( ( Y = nil_a )
         => ! [X212: b,X222: list_b] :
              ( Ya
             != ( cons_b @ X212 @ X222 ) ) )
       => ( ( ? [X212: a,X222: list_a] :
                ( Y
                = ( cons_a @ X212 @ X222 ) )
           => ( Ya != nil_b ) )
         => ~ ( ? [X212: a,X222: list_a] :
                  ( Y
                  = ( cons_a @ X212 @ X222 ) )
             => ! [X21a: b,X22a: list_b] :
                  ( Ya
                 != ( cons_b @ X21a @ X22a ) ) ) ) ) ) ).

% list_exhaust2
thf(fact_763_list__exhaust2,axiom,
    ! [Y: list_b,Ya: list_b] :
      ( ( ( Y = nil_b )
       => ( Ya != nil_b ) )
     => ( ( ( Y = nil_b )
         => ! [X212: b,X222: list_b] :
              ( Ya
             != ( cons_b @ X212 @ X222 ) ) )
       => ( ( ? [X212: b,X222: list_b] :
                ( Y
                = ( cons_b @ X212 @ X222 ) )
           => ( Ya != nil_b ) )
         => ~ ( ? [X212: b,X222: list_b] :
                  ( Y
                  = ( cons_b @ X212 @ X222 ) )
             => ! [X21a: b,X22a: list_b] :
                  ( Ya
                 != ( cons_b @ X21a @ X22a ) ) ) ) ) ) ).

% list_exhaust2
thf(fact_764_list__exhaust__NSC,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ! [X2: a] :
            ( Xs
           != ( cons_a @ X2 @ nil_a ) )
       => ~ ! [X2: a,Y2: a,Ys2: list_a] :
              ( Xs
             != ( cons_a @ X2 @ ( cons_a @ Y2 @ Ys2 ) ) ) ) ) ).

% list_exhaust_NSC
thf(fact_765_list__exhaust__NSC,axiom,
    ! [Xs: list_b] :
      ( ( Xs != nil_b )
     => ( ! [X2: b] :
            ( Xs
           != ( cons_b @ X2 @ nil_b ) )
       => ~ ! [X2: b,Y2: b,Ys2: list_b] :
              ( Xs
             != ( cons_b @ X2 @ ( cons_b @ Y2 @ Ys2 ) ) ) ) ) ).

% list_exhaust_NSC
thf(fact_766_subset__Un__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B4 )
          = B4 ) ) ) ).

% subset_Un_eq
thf(fact_767_subset__Un__eq,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A4: set_b,B4: set_b] :
          ( ( sup_sup_set_b @ A4 @ B4 )
          = B4 ) ) ) ).

% subset_Un_eq
thf(fact_768_subset__UnE,axiom,
    ! [C2: set_a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A3 @ B3 ) )
     => ~ ! [A5: set_a] :
            ( ( ord_less_eq_set_a @ A5 @ A3 )
           => ! [B5: set_a] :
                ( ( ord_less_eq_set_a @ B5 @ B3 )
               => ( C2
                 != ( sup_sup_set_a @ A5 @ B5 ) ) ) ) ) ).

% subset_UnE
thf(fact_769_subset__UnE,axiom,
    ! [C2: set_b,A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ C2 @ ( sup_sup_set_b @ A3 @ B3 ) )
     => ~ ! [A5: set_b] :
            ( ( ord_less_eq_set_b @ A5 @ A3 )
           => ! [B5: set_b] :
                ( ( ord_less_eq_set_b @ B5 @ B3 )
               => ( C2
                 != ( sup_sup_set_b @ A5 @ B5 ) ) ) ) ) ).

% subset_UnE
thf(fact_770_Un__absorb2,axiom,
    ! [B3: set_a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B3 @ A3 )
     => ( ( sup_sup_set_a @ A3 @ B3 )
        = A3 ) ) ).

% Un_absorb2
thf(fact_771_Un__absorb2,axiom,
    ! [B3: set_b,A3: set_b] :
      ( ( ord_less_eq_set_b @ B3 @ A3 )
     => ( ( sup_sup_set_b @ A3 @ B3 )
        = A3 ) ) ).

% Un_absorb2
thf(fact_772_Un__absorb1,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( sup_sup_set_a @ A3 @ B3 )
        = B3 ) ) ).

% Un_absorb1
thf(fact_773_Un__absorb1,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( sup_sup_set_b @ A3 @ B3 )
        = B3 ) ) ).

% Un_absorb1
thf(fact_774_Un__upper2,axiom,
    ! [B3: set_a,A3: set_a] : ( ord_less_eq_set_a @ B3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ).

% Un_upper2
thf(fact_775_Un__upper2,axiom,
    ! [B3: set_b,A3: set_b] : ( ord_less_eq_set_b @ B3 @ ( sup_sup_set_b @ A3 @ B3 ) ) ).

% Un_upper2
thf(fact_776_Un__upper1,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ A3 @ ( sup_sup_set_a @ A3 @ B3 ) ) ).

% Un_upper1
thf(fact_777_Un__upper1,axiom,
    ! [A3: set_b,B3: set_b] : ( ord_less_eq_set_b @ A3 @ ( sup_sup_set_b @ A3 @ B3 ) ) ).

% Un_upper1
thf(fact_778_Un__least,axiom,
    ! [A3: set_a,C2: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ C2 ) ) ) ).

% Un_least
thf(fact_779_Un__least,axiom,
    ! [A3: set_b,C2: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ C2 )
     => ( ( ord_less_eq_set_b @ B3 @ C2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ C2 ) ) ) ).

% Un_least
thf(fact_780_Un__mono,axiom,
    ! [A3: set_a,C2: set_a,B3: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ B3 @ D )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A3 @ B3 ) @ ( sup_sup_set_a @ C2 @ D ) ) ) ) ).

% Un_mono
thf(fact_781_Un__mono,axiom,
    ! [A3: set_b,C2: set_b,B3: set_b,D: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ C2 )
     => ( ( ord_less_eq_set_b @ B3 @ D )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ ( sup_sup_set_b @ C2 @ D ) ) ) ) ).

% Un_mono
thf(fact_782_list__set__tl,axiom,
    ! [X: product_prod_a_a,Xs: list_P1396940483166286381od_a_a] :
      ( ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ ( tl_Product_prod_a_a @ Xs ) ) )
     => ( member1426531477525435216od_a_a @ X @ ( set_Product_prod_a_a2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_783_list__set__tl,axiom,
    ! [X: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X @ ( set_set_a2 @ ( tl_set_a @ Xs ) ) )
     => ( member_set_a @ X @ ( set_set_a2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_784_list__set__tl,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a @ X @ ( set_a2 @ ( tl_a @ Xs ) ) )
     => ( member_a @ X @ ( set_a2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_785_list__set__tl,axiom,
    ! [X: b,Xs: list_b] :
      ( ( member_b @ X @ ( set_b2 @ ( tl_b @ Xs ) ) )
     => ( member_b @ X @ ( set_b2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_786_list__set__tl,axiom,
    ! [X: list_a,Xs: list_list_a] :
      ( ( member_list_a @ X @ ( set_list_a2 @ ( tl_list_a @ Xs ) ) )
     => ( member_list_a @ X @ ( set_list_a2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_787_tl__rev,axiom,
    ! [P2: list_a] :
      ( ( tl_a @ ( rev_a @ P2 ) )
      = ( rev_a @ ( butlast_a @ P2 ) ) ) ).

% tl_rev
thf(fact_788_tl__rev,axiom,
    ! [P2: list_b] :
      ( ( tl_b @ ( rev_b @ P2 ) )
      = ( rev_b @ ( butlast_b @ P2 ) ) ) ).

% tl_rev
thf(fact_789_not__distinct__decomp__min__prefix,axiom,
    ! [Ws: list_P1396940483166286381od_a_a] :
      ( ~ ( distin132333870042060960od_a_a @ Ws )
     => ? [Xs2: list_P1396940483166286381od_a_a,Ys2: list_P1396940483166286381od_a_a,Zs3: list_P1396940483166286381od_a_a,Y2: product_prod_a_a] :
          ( ( Ws
            = ( append5335208819046833346od_a_a @ Xs2 @ ( cons_P7316939126706565853od_a_a @ Y2 @ ( append5335208819046833346od_a_a @ Ys2 @ ( cons_P7316939126706565853od_a_a @ Y2 @ Zs3 ) ) ) ) )
          & ( distin132333870042060960od_a_a @ Xs2 )
          & ~ ( member1426531477525435216od_a_a @ Y2 @ ( set_Product_prod_a_a2 @ Xs2 ) )
          & ~ ( member1426531477525435216od_a_a @ Y2 @ ( set_Product_prod_a_a2 @ Ys2 ) ) ) ) ).

% not_distinct_decomp_min_prefix
thf(fact_790_not__distinct__decomp__min__prefix,axiom,
    ! [Ws: list_set_a] :
      ( ~ ( distinct_set_a @ Ws )
     => ? [Xs2: list_set_a,Ys2: list_set_a,Zs3: list_set_a,Y2: set_a] :
          ( ( Ws
            = ( append_set_a @ Xs2 @ ( cons_set_a @ Y2 @ ( append_set_a @ Ys2 @ ( cons_set_a @ Y2 @ Zs3 ) ) ) ) )
          & ( distinct_set_a @ Xs2 )
          & ~ ( member_set_a @ Y2 @ ( set_set_a2 @ Xs2 ) )
          & ~ ( member_set_a @ Y2 @ ( set_set_a2 @ Ys2 ) ) ) ) ).

% not_distinct_decomp_min_prefix
thf(fact_791_not__distinct__decomp__min__prefix,axiom,
    ! [Ws: list_list_a] :
      ( ~ ( distinct_list_a @ Ws )
     => ? [Xs2: list_list_a,Ys2: list_list_a,Zs3: list_list_a,Y2: list_a] :
          ( ( Ws
            = ( append_list_a @ Xs2 @ ( cons_list_a @ Y2 @ ( append_list_a @ Ys2 @ ( cons_list_a @ Y2 @ Zs3 ) ) ) ) )
          & ( distinct_list_a @ Xs2 )
          & ~ ( member_list_a @ Y2 @ ( set_list_a2 @ Xs2 ) )
          & ~ ( member_list_a @ Y2 @ ( set_list_a2 @ Ys2 ) ) ) ) ).

% not_distinct_decomp_min_prefix
thf(fact_792_not__distinct__decomp__min__prefix,axiom,
    ! [Ws: list_a] :
      ( ~ ( distinct_a @ Ws )
     => ? [Xs2: list_a,Ys2: list_a,Zs3: list_a,Y2: a] :
          ( ( Ws
            = ( append_a @ Xs2 @ ( cons_a @ Y2 @ ( append_a @ Ys2 @ ( cons_a @ Y2 @ Zs3 ) ) ) ) )
          & ( distinct_a @ Xs2 )
          & ~ ( member_a @ Y2 @ ( set_a2 @ Xs2 ) )
          & ~ ( member_a @ Y2 @ ( set_a2 @ Ys2 ) ) ) ) ).

% not_distinct_decomp_min_prefix
thf(fact_793_not__distinct__decomp__min__prefix,axiom,
    ! [Ws: list_b] :
      ( ~ ( distinct_b @ Ws )
     => ? [Xs2: list_b,Ys2: list_b,Zs3: list_b,Y2: b] :
          ( ( Ws
            = ( append_b @ Xs2 @ ( cons_b @ Y2 @ ( append_b @ Ys2 @ ( cons_b @ Y2 @ Zs3 ) ) ) ) )
          & ( distinct_b @ Xs2 )
          & ~ ( member_b @ Y2 @ ( set_b2 @ Xs2 ) )
          & ~ ( member_b @ Y2 @ ( set_b2 @ Ys2 ) ) ) ) ).

% not_distinct_decomp_min_prefix
thf(fact_794_not__distinct__decomp__min__not__distinct,axiom,
    ! [Ws: list_a] :
      ( ~ ( distinct_a @ Ws )
     => ? [Xs2: list_a,Y2: a,Ys2: list_a,Zs3: list_a] :
          ( ( Ws
            = ( append_a @ Xs2 @ ( cons_a @ Y2 @ ( append_a @ Ys2 @ ( cons_a @ Y2 @ Zs3 ) ) ) ) )
          & ( distinct_a @ ( append_a @ Ys2 @ ( cons_a @ Y2 @ nil_a ) ) ) ) ) ).

% not_distinct_decomp_min_not_distinct
thf(fact_795_not__distinct__decomp__min__not__distinct,axiom,
    ! [Ws: list_b] :
      ( ~ ( distinct_b @ Ws )
     => ? [Xs2: list_b,Y2: b,Ys2: list_b,Zs3: list_b] :
          ( ( Ws
            = ( append_b @ Xs2 @ ( cons_b @ Y2 @ ( append_b @ Ys2 @ ( cons_b @ Y2 @ Zs3 ) ) ) ) )
          & ( distinct_b @ ( append_b @ Ys2 @ ( cons_b @ Y2 @ nil_b ) ) ) ) ) ).

% not_distinct_decomp_min_not_distinct
thf(fact_796_trail__connected,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( digrap8783888973171253482ed_a_b @ t )
     => ( ( arc_pre_trail_a_b @ t @ U2 @ P2 @ V2 )
       => ( ( ( set_b2 @ P2 )
           != ( pre_ar1395965042833527383t_unit @ t ) )
         => ? [E2: b] :
              ( ( member_b @ E2 @ ( minus_minus_set_b @ ( pre_ar1395965042833527383t_unit @ t ) @ ( set_b2 @ P2 ) ) )
              & ( ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ E2 ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
                | ( member_a @ ( pre_he5236287464308401016t_unit @ t @ E2 ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ) ) ).

% trail_connected
thf(fact_797_awalk__connected,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( digrap8783888973171253482ed_a_b @ t )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
       => ( ( ( set_b2 @ P2 )
           != ( pre_ar1395965042833527383t_unit @ t ) )
         => ? [E2: b] :
              ( ( member_b @ E2 @ ( minus_minus_set_b @ ( pre_ar1395965042833527383t_unit @ t ) @ ( set_b2 @ P2 ) ) )
              & ( ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ E2 ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
                | ( member_a @ ( pre_he5236287464308401016t_unit @ t @ E2 ) @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ) ) ).

% awalk_connected
thf(fact_798_sup_Obounded__iff,axiom,
    ! [B2: set_a,C: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 )
      = ( ( ord_less_eq_set_a @ B2 @ A2 )
        & ( ord_less_eq_set_a @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_799_sup_Obounded__iff,axiom,
    ! [B2: set_b,C: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ B2 @ C ) @ A2 )
      = ( ( ord_less_eq_set_b @ B2 @ A2 )
        & ( ord_less_eq_set_b @ C @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_800_le__sup__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( ( ord_less_eq_set_a @ X @ Z )
        & ( ord_less_eq_set_a @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_801_le__sup__iff,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ X @ Y ) @ Z )
      = ( ( ord_less_eq_set_b @ X @ Z )
        & ( ord_less_eq_set_b @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_802_verts__reachable__connected,axiom,
    ( ( ( pre_ve642382030648772252t_unit @ t )
     != bot_bot_set_a )
   => ( ! [X2: a] :
          ( ( member_a @ X2 @ ( pre_ve642382030648772252t_unit @ t ) )
         => ! [Xa3: a] :
              ( ( member_a @ Xa3 @ ( pre_ve642382030648772252t_unit @ t ) )
             => ( reachable_a_b @ t @ X2 @ Xa3 ) ) )
     => ( digrap8783888973171253482ed_a_b @ t ) ) ) ).

% verts_reachable_connected
thf(fact_803_non__empty,axiom,
    ( ( pre_ve642382030648772252t_unit @ t )
   != bot_bot_set_a ) ).

% non_empty
thf(fact_804_merging__empty,axiom,
    ( ( graph_2957805489637798020ts_a_b @ t )
    = bot_bot_set_a ) ).

% merging_empty
thf(fact_805_in__sccs__verts__conv__reachable,axiom,
    ! [S: set_a] :
      ( ( member_set_a @ S @ ( digrap2871191568752656621ts_a_b @ t ) )
      = ( ( S != bot_bot_set_a )
        & ! [X4: a] :
            ( ( member_a @ X4 @ S )
           => ! [Y3: a] :
                ( ( member_a @ Y3 @ S )
               => ( reachable_a_b @ t @ X4 @ Y3 ) ) )
        & ! [X4: a] :
            ( ( member_a @ X4 @ S )
           => ! [V5: a] :
                ( ~ ( member_a @ V5 @ S )
               => ( ~ ( reachable_a_b @ t @ X4 @ V5 )
                  | ~ ( reachable_a_b @ t @ V5 @ X4 ) ) ) ) ) ) ).

% in_sccs_verts_conv_reachable
thf(fact_806_scc__of__empty__conv,axiom,
    ! [U2: a] :
      ( ( ( digrap2937667069914300949of_a_b @ t @ U2 )
        = bot_bot_set_a )
      = ( ~ ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% scc_of_empty_conv
thf(fact_807_is__chain_H__def,axiom,
    ( ( graph_8150681439568091980in_a_b @ t )
    = ( ( graph_2957805489637798020ts_a_b @ t )
      = bot_bot_set_a ) ) ).

% is_chain'_def
thf(fact_808_subset__empty,axiom,
    ! [A3: set_pr5411798346947241657t_unit] :
      ( ( ord_le8200006823705900825t_unit @ A3 @ bot_bo1839476491465656141t_unit )
      = ( A3 = bot_bo1839476491465656141t_unit ) ) ).

% subset_empty
thf(fact_809_subset__empty,axiom,
    ! [A3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ bot_bot_set_a )
      = ( A3 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_810_subset__empty,axiom,
    ! [A3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ bot_bot_set_b )
      = ( A3 = bot_bot_set_b ) ) ).

% subset_empty
thf(fact_811_empty__subsetI,axiom,
    ! [A3: set_pr5411798346947241657t_unit] : ( ord_le8200006823705900825t_unit @ bot_bo1839476491465656141t_unit @ A3 ) ).

% empty_subsetI
thf(fact_812_empty__subsetI,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A3 ) ).

% empty_subsetI
thf(fact_813_empty__subsetI,axiom,
    ! [A3: set_b] : ( ord_less_eq_set_b @ bot_bot_set_b @ A3 ) ).

% empty_subsetI
thf(fact_814_set__empty,axiom,
    ! [Xs: list_list_a] :
      ( ( ( set_list_a2 @ Xs )
        = bot_bot_set_list_a )
      = ( Xs = nil_list_a ) ) ).

% set_empty
thf(fact_815_set__empty,axiom,
    ! [Xs: list_a] :
      ( ( ( set_a2 @ Xs )
        = bot_bot_set_a )
      = ( Xs = nil_a ) ) ).

% set_empty
thf(fact_816_set__empty,axiom,
    ! [Xs: list_b] :
      ( ( ( set_b2 @ Xs )
        = bot_bot_set_b )
      = ( Xs = nil_b ) ) ).

% set_empty
thf(fact_817_set__empty,axiom,
    ! [Xs: list_p1584440430088372499t_unit] :
      ( ( ( set_pr4006367424059803566t_unit @ Xs )
        = bot_bo1839476491465656141t_unit )
      = ( Xs = nil_pr1362588839662627709t_unit ) ) ).

% set_empty
thf(fact_818_set__empty2,axiom,
    ! [Xs: list_list_a] :
      ( ( bot_bot_set_list_a
        = ( set_list_a2 @ Xs ) )
      = ( Xs = nil_list_a ) ) ).

% set_empty2
thf(fact_819_set__empty2,axiom,
    ! [Xs: list_a] :
      ( ( bot_bot_set_a
        = ( set_a2 @ Xs ) )
      = ( Xs = nil_a ) ) ).

% set_empty2
thf(fact_820_set__empty2,axiom,
    ! [Xs: list_b] :
      ( ( bot_bot_set_b
        = ( set_b2 @ Xs ) )
      = ( Xs = nil_b ) ) ).

% set_empty2
thf(fact_821_set__empty2,axiom,
    ! [Xs: list_p1584440430088372499t_unit] :
      ( ( bot_bo1839476491465656141t_unit
        = ( set_pr4006367424059803566t_unit @ Xs ) )
      = ( Xs = nil_pr1362588839662627709t_unit ) ) ).

% set_empty2
thf(fact_822_Diff__eq__empty__iff,axiom,
    ! [A3: set_pr5411798346947241657t_unit,B3: set_pr5411798346947241657t_unit] :
      ( ( ( minus_3777555517894451474t_unit @ A3 @ B3 )
        = bot_bo1839476491465656141t_unit )
      = ( ord_le8200006823705900825t_unit @ A3 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_823_Diff__eq__empty__iff,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ( minus_minus_set_a @ A3 @ B3 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A3 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_824_Diff__eq__empty__iff,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ( minus_minus_set_b @ A3 @ B3 )
        = bot_bot_set_b )
      = ( ord_less_eq_set_b @ A3 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_825_Diff__mono,axiom,
    ! [A3: set_a,C2: set_a,D: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ D @ B3 )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ B3 ) @ ( minus_minus_set_a @ C2 @ D ) ) ) ) ).

% Diff_mono
thf(fact_826_Diff__mono,axiom,
    ! [A3: set_b,C2: set_b,D: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ C2 )
     => ( ( ord_less_eq_set_b @ D @ B3 )
       => ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ ( minus_minus_set_b @ C2 @ D ) ) ) ) ).

% Diff_mono
thf(fact_827_Diff__subset,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ B3 ) @ A3 ) ).

% Diff_subset
thf(fact_828_Diff__subset,axiom,
    ! [A3: set_b,B3: set_b] : ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ A3 ) ).

% Diff_subset
thf(fact_829_double__diff,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( ord_less_eq_set_a @ B3 @ C2 )
       => ( ( minus_minus_set_a @ B3 @ ( minus_minus_set_a @ C2 @ A3 ) )
          = A3 ) ) ) ).

% double_diff
thf(fact_830_double__diff,axiom,
    ! [A3: set_b,B3: set_b,C2: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( ord_less_eq_set_b @ B3 @ C2 )
       => ( ( minus_minus_set_b @ B3 @ ( minus_minus_set_b @ C2 @ A3 ) )
          = A3 ) ) ) ).

% double_diff
thf(fact_831_Diff__partition,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( sup_sup_set_a @ A3 @ ( minus_minus_set_a @ B3 @ A3 ) )
        = B3 ) ) ).

% Diff_partition
thf(fact_832_Diff__partition,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( sup_sup_set_b @ A3 @ ( minus_minus_set_b @ B3 @ A3 ) )
        = B3 ) ) ).

% Diff_partition
thf(fact_833_Diff__subset__conv,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ B3 ) @ C2 )
      = ( ord_less_eq_set_a @ A3 @ ( sup_sup_set_a @ B3 @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_834_Diff__subset__conv,axiom,
    ! [A3: set_b,B3: set_b,C2: set_b] :
      ( ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ C2 )
      = ( ord_less_eq_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_835_empty__set,axiom,
    ( bot_bot_set_list_a
    = ( set_list_a2 @ nil_list_a ) ) ).

% empty_set
thf(fact_836_empty__set,axiom,
    ( bot_bot_set_a
    = ( set_a2 @ nil_a ) ) ).

% empty_set
thf(fact_837_empty__set,axiom,
    ( bot_bot_set_b
    = ( set_b2 @ nil_b ) ) ).

% empty_set
thf(fact_838_empty__set,axiom,
    ( bot_bo1839476491465656141t_unit
    = ( set_pr4006367424059803566t_unit @ nil_pr1362588839662627709t_unit ) ) ).

% empty_set
thf(fact_839_distinct__set__diff,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( distinct_list_a @ ( append_list_a @ Xs @ Ys ) )
     => ( ( set_list_a2 @ Ys )
        = ( minus_646659088055828811list_a @ ( set_list_a2 @ ( append_list_a @ Xs @ Ys ) ) @ ( set_list_a2 @ Xs ) ) ) ) ).

% distinct_set_diff
thf(fact_840_distinct__set__diff,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( distinct_b @ ( append_b @ Xs @ Ys ) )
     => ( ( set_b2 @ Ys )
        = ( minus_minus_set_b @ ( set_b2 @ ( append_b @ Xs @ Ys ) ) @ ( set_b2 @ Xs ) ) ) ) ).

% distinct_set_diff
thf(fact_841_distinct__set__diff,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_a @ ( append_a @ Xs @ Ys ) )
     => ( ( set_a2 @ Ys )
        = ( minus_minus_set_a @ ( set_a2 @ ( append_a @ Xs @ Ys ) ) @ ( set_a2 @ Xs ) ) ) ) ).

% distinct_set_diff
thf(fact_842_inf__sup__ord_I4_J,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_843_inf__sup__ord_I4_J,axiom,
    ! [Y: set_b,X: set_b] : ( ord_less_eq_set_b @ Y @ ( sup_sup_set_b @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_844_inf__sup__ord_I3_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_845_inf__sup__ord_I3_J,axiom,
    ! [X: set_b,Y: set_b] : ( ord_less_eq_set_b @ X @ ( sup_sup_set_b @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_846_le__supE,axiom,
    ! [A2: set_a,B2: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_set_a @ A2 @ X )
         => ~ ( ord_less_eq_set_a @ B2 @ X ) ) ) ).

% le_supE
thf(fact_847_le__supE,axiom,
    ! [A2: set_b,B2: set_b,X: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ X )
     => ~ ( ( ord_less_eq_set_b @ A2 @ X )
         => ~ ( ord_less_eq_set_b @ B2 @ X ) ) ) ).

% le_supE
thf(fact_848_le__supI,axiom,
    ! [A2: set_a,X: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ X )
     => ( ( ord_less_eq_set_a @ B2 @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_849_le__supI,axiom,
    ! [A2: set_b,X: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ X )
     => ( ( ord_less_eq_set_b @ B2 @ X )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ X ) ) ) ).

% le_supI
thf(fact_850_sup__ge1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge1
thf(fact_851_sup__ge1,axiom,
    ! [X: set_b,Y: set_b] : ( ord_less_eq_set_b @ X @ ( sup_sup_set_b @ X @ Y ) ) ).

% sup_ge1
thf(fact_852_sup__ge2,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge2
thf(fact_853_sup__ge2,axiom,
    ! [Y: set_b,X: set_b] : ( ord_less_eq_set_b @ Y @ ( sup_sup_set_b @ X @ Y ) ) ).

% sup_ge2
thf(fact_854_le__supI1,axiom,
    ! [X: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ X @ A2 )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_855_le__supI1,axiom,
    ! [X: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ X @ A2 )
     => ( ord_less_eq_set_b @ X @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_856_le__supI2,axiom,
    ! [X: set_a,B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ X @ B2 )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_857_le__supI2,axiom,
    ! [X: set_b,B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ X @ B2 )
     => ( ord_less_eq_set_b @ X @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_858_sup_Omono,axiom,
    ! [C: set_a,A2: set_a,D2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C @ A2 )
     => ( ( ord_less_eq_set_a @ D2 @ B2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ C @ D2 ) @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_859_sup_Omono,axiom,
    ! [C: set_b,A2: set_b,D2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ C @ A2 )
     => ( ( ord_less_eq_set_b @ D2 @ B2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ C @ D2 ) @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_860_sup__mono,axiom,
    ! [A2: set_a,C: set_a,B2: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B2 @ D2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_861_sup__mono,axiom,
    ! [A2: set_b,C: set_b,B2: set_b,D2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ C )
     => ( ( ord_less_eq_set_b @ B2 @ D2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ ( sup_sup_set_b @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_862_sup__least,axiom,
    ! [Y: set_a,X: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ Z @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_863_sup__least,axiom,
    ! [Y: set_b,X: set_b,Z: set_b] :
      ( ( ord_less_eq_set_b @ Y @ X )
     => ( ( ord_less_eq_set_b @ Z @ X )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_864_le__iff__sup,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X4: set_a,Y3: set_a] :
          ( ( sup_sup_set_a @ X4 @ Y3 )
          = Y3 ) ) ) ).

% le_iff_sup
thf(fact_865_le__iff__sup,axiom,
    ( ord_less_eq_set_b
    = ( ^ [X4: set_b,Y3: set_b] :
          ( ( sup_sup_set_b @ X4 @ Y3 )
          = Y3 ) ) ) ).

% le_iff_sup
thf(fact_866_sup_OorderE,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( A2
        = ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_867_sup_OorderE,axiom,
    ! [B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( A2
        = ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_868_sup_OorderI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2
        = ( sup_sup_set_a @ A2 @ B2 ) )
     => ( ord_less_eq_set_a @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_869_sup_OorderI,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( A2
        = ( sup_sup_set_b @ A2 @ B2 ) )
     => ( ord_less_eq_set_b @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_870_sup__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ X2 @ ( F @ X2 @ Y2 ) )
     => ( ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ Y2 @ ( F @ X2 @ Y2 ) )
       => ( ! [X2: set_a,Y2: set_a,Z5: set_a] :
              ( ( ord_less_eq_set_a @ Y2 @ X2 )
             => ( ( ord_less_eq_set_a @ Z5 @ X2 )
               => ( ord_less_eq_set_a @ ( F @ Y2 @ Z5 ) @ X2 ) ) )
         => ( ( sup_sup_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_871_sup__unique,axiom,
    ! [F: set_b > set_b > set_b,X: set_b,Y: set_b] :
      ( ! [X2: set_b,Y2: set_b] : ( ord_less_eq_set_b @ X2 @ ( F @ X2 @ Y2 ) )
     => ( ! [X2: set_b,Y2: set_b] : ( ord_less_eq_set_b @ Y2 @ ( F @ X2 @ Y2 ) )
       => ( ! [X2: set_b,Y2: set_b,Z5: set_b] :
              ( ( ord_less_eq_set_b @ Y2 @ X2 )
             => ( ( ord_less_eq_set_b @ Z5 @ X2 )
               => ( ord_less_eq_set_b @ ( F @ Y2 @ Z5 ) @ X2 ) ) )
         => ( ( sup_sup_set_b @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_872_sup_Oabsorb1,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_873_sup_Oabsorb1,axiom,
    ! [B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_874_sup_Oabsorb2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_875_sup_Oabsorb2,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ B2 )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_876_sup__absorb1,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( sup_sup_set_a @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_877_sup__absorb1,axiom,
    ! [Y: set_b,X: set_b] :
      ( ( ord_less_eq_set_b @ Y @ X )
     => ( ( sup_sup_set_b @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_878_sup__absorb2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( sup_sup_set_a @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_879_sup__absorb2,axiom,
    ! [X: set_b,Y: set_b] :
      ( ( ord_less_eq_set_b @ X @ Y )
     => ( ( sup_sup_set_b @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_880_sup_OboundedE,axiom,
    ! [B2: set_a,C: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 )
     => ~ ( ( ord_less_eq_set_a @ B2 @ A2 )
         => ~ ( ord_less_eq_set_a @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_881_sup_OboundedE,axiom,
    ! [B2: set_b,C: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ B2 @ C ) @ A2 )
     => ~ ( ( ord_less_eq_set_b @ B2 @ A2 )
         => ~ ( ord_less_eq_set_b @ C @ A2 ) ) ) ).

% sup.boundedE
thf(fact_882_sup_OboundedI,axiom,
    ! [B2: set_a,A2: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( ord_less_eq_set_a @ C @ A2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_883_sup_OboundedI,axiom,
    ! [B2: set_b,A2: set_b,C: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( ( ord_less_eq_set_b @ C @ A2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ B2 @ C ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_884_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B6: set_a,A6: set_a] :
          ( A6
          = ( sup_sup_set_a @ A6 @ B6 ) ) ) ) ).

% sup.order_iff
thf(fact_885_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_b
    = ( ^ [B6: set_b,A6: set_b] :
          ( A6
          = ( sup_sup_set_b @ A6 @ B6 ) ) ) ) ).

% sup.order_iff
thf(fact_886_sup_Ocobounded1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_887_sup_Ocobounded1,axiom,
    ! [A2: set_b,B2: set_b] : ( ord_less_eq_set_b @ A2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_888_sup_Ocobounded2,axiom,
    ! [B2: set_a,A2: set_a] : ( ord_less_eq_set_a @ B2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_889_sup_Ocobounded2,axiom,
    ! [B2: set_b,A2: set_b] : ( ord_less_eq_set_b @ B2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_890_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B6: set_a,A6: set_a] :
          ( ( sup_sup_set_a @ A6 @ B6 )
          = A6 ) ) ) ).

% sup.absorb_iff1
thf(fact_891_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_b
    = ( ^ [B6: set_b,A6: set_b] :
          ( ( sup_sup_set_b @ A6 @ B6 )
          = A6 ) ) ) ).

% sup.absorb_iff1
thf(fact_892_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( sup_sup_set_a @ A6 @ B6 )
          = B6 ) ) ) ).

% sup.absorb_iff2
thf(fact_893_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( ( sup_sup_set_b @ A6 @ B6 )
          = B6 ) ) ) ).

% sup.absorb_iff2
thf(fact_894_sup_OcoboundedI1,axiom,
    ! [C: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C @ A2 )
     => ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_895_sup_OcoboundedI1,axiom,
    ! [C: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ C @ A2 )
     => ( ord_less_eq_set_b @ C @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_896_sup_OcoboundedI2,axiom,
    ! [C: set_a,B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ C @ B2 )
     => ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_897_sup_OcoboundedI2,axiom,
    ! [C: set_b,B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ C @ B2 )
     => ( ord_less_eq_set_b @ C @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_898_set__awalk__verts__cas,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
        = ( sup_sup_set_a @ ( sup_sup_set_a @ ( insert_a @ U2 @ bot_bot_set_a ) @ ( set_a2 @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ P2 ) ) ) @ ( set_a2 @ ( map_b_a @ ( pre_he5236287464308401016t_unit @ t ) @ P2 ) ) ) ) ) ).

% set_awalk_verts_cas
thf(fact_899_set__awalk__verts,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
        = ( sup_sup_set_a @ ( sup_sup_set_a @ ( insert_a @ U2 @ bot_bot_set_a ) @ ( set_a2 @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ P2 ) ) ) @ ( set_a2 @ ( map_b_a @ ( pre_he5236287464308401016t_unit @ t ) @ P2 ) ) ) ) ) ).

% set_awalk_verts
thf(fact_900_apath__append__iff,axiom,
    ! [U2: a,P2: list_b,Q: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ ( append_b @ P2 @ Q ) @ V2 )
      = ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) )
        & ( arc_pre_apath_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q @ V2 )
        & ( ( inf_inf_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( set_a2 @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ t @ ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ Q ) ) ) )
          = bot_bot_set_a ) ) ) ).

% apath_append_iff
thf(fact_901_to__list__tree__disjoint__verts,axiom,
    ! [U2: list_a,V2: list_a] :
      ( ( member_list_a @ U2 @ ( pre_ve1830060048215441954t_unit @ ( direct3773525127397338803ee_a_b @ t ) ) )
     => ( ( member_list_a @ V2 @ ( pre_ve1830060048215441954t_unit @ ( direct3773525127397338803ee_a_b @ t ) ) )
       => ( ( U2 != V2 )
         => ( ( inf_inf_set_a @ ( set_a2 @ U2 ) @ ( set_a2 @ V2 ) )
            = bot_bot_set_a ) ) ) ) ).

% to_list_tree_disjoint_verts
thf(fact_902_pre__digraph_Oinner__verts__conv,axiom,
    ! [U2: a] :
      ( pre_inner_verts_a_b
      = ( ^ [G2: pre_pr7278220950009878019t_unit,P4: list_b] : ( butlast_a @ ( tl_a @ ( arc_pr7493981781705774526ts_a_b @ G2 @ U2 @ P4 ) ) ) ) ) ).

% pre_digraph.inner_verts_conv
thf(fact_903_verts__add__vert,axiom,
    ! [U2: a] :
      ( ( pre_ve642382030648772252t_unit @ ( pre_add_vert_a_b @ t @ U2 ) )
      = ( insert_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% verts_add_vert
thf(fact_904_sccs__verts__disjoint,axiom,
    ! [S: set_a,T: set_a] :
      ( ( member_set_a @ S @ ( digrap2871191568752656621ts_a_b @ t ) )
     => ( ( member_set_a @ T @ ( digrap2871191568752656621ts_a_b @ t ) )
       => ( ( S != T )
         => ( ( inf_inf_set_a @ S @ T )
            = bot_bot_set_a ) ) ) ) ).

% sccs_verts_disjoint
thf(fact_905_verts__del__vert,axiom,
    ! [U2: a] :
      ( ( pre_ve642382030648772252t_unit @ ( pre_del_vert_a_b @ t @ U2 ) )
      = ( minus_minus_set_a @ ( pre_ve642382030648772252t_unit @ t ) @ ( insert_a @ U2 @ bot_bot_set_a ) ) ) ).

% verts_del_vert
thf(fact_906_connected__arcs__empty,axiom,
    ( ( digrap8783888973171253482ed_a_b @ t )
   => ( ( ( pre_ar1395965042833527383t_unit @ t )
        = bot_bot_set_b )
     => ( ( ( pre_ve642382030648772252t_unit @ t )
         != bot_bot_set_a )
       => ~ ! [V: a] :
              ( ( pre_ve642382030648772252t_unit @ t )
             != ( insert_a @ V @ bot_bot_set_a ) ) ) ) ) ).

% connected_arcs_empty
thf(fact_907_le__inf__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( ( ord_less_eq_set_a @ X @ Y )
        & ( ord_less_eq_set_a @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_908_le__inf__iff,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( ord_less_eq_set_b @ X @ ( inf_inf_set_b @ Y @ Z ) )
      = ( ( ord_less_eq_set_b @ X @ Y )
        & ( ord_less_eq_set_b @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_909_inf_Obounded__iff,axiom,
    ! [A2: set_a,B2: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) )
      = ( ( ord_less_eq_set_a @ A2 @ B2 )
        & ( ord_less_eq_set_a @ A2 @ C ) ) ) ).

% inf.bounded_iff
thf(fact_910_inf_Obounded__iff,axiom,
    ! [A2: set_b,B2: set_b,C: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ ( inf_inf_set_b @ B2 @ C ) )
      = ( ( ord_less_eq_set_b @ A2 @ B2 )
        & ( ord_less_eq_set_b @ A2 @ C ) ) ) ).

% inf.bounded_iff
thf(fact_911_insert__subset,axiom,
    ! [X: pre_pr7278220950009878019t_unit,A3: set_pr5411798346947241657t_unit,B3: set_pr5411798346947241657t_unit] :
      ( ( ord_le8200006823705900825t_unit @ ( insert6864688055023459379t_unit @ X @ A3 ) @ B3 )
      = ( ( member6939884229742472986t_unit @ X @ B3 )
        & ( ord_le8200006823705900825t_unit @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_912_insert__subset,axiom,
    ! [X: product_prod_a_a,A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ( ord_le746702958409616551od_a_a @ ( insert4534936382041156343od_a_a @ X @ A3 ) @ B3 )
      = ( ( member1426531477525435216od_a_a @ X @ B3 )
        & ( ord_le746702958409616551od_a_a @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_913_insert__subset,axiom,
    ! [X: list_a,A3: set_list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ ( insert_list_a @ X @ A3 ) @ B3 )
      = ( ( member_list_a @ X @ B3 )
        & ( ord_le8861187494160871172list_a @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_914_insert__subset,axiom,
    ! [X: set_a,A3: set_set_a,B3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( insert_set_a @ X @ A3 ) @ B3 )
      = ( ( member_set_a @ X @ B3 )
        & ( ord_le3724670747650509150_set_a @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_915_insert__subset,axiom,
    ! [X: a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A3 ) @ B3 )
      = ( ( member_a @ X @ B3 )
        & ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_916_insert__subset,axiom,
    ! [X: b,A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ ( insert_b @ X @ A3 ) @ B3 )
      = ( ( member_b @ X @ B3 )
        & ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_917_Int__subset__iff,axiom,
    ! [C2: set_a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A3 @ B3 ) )
      = ( ( ord_less_eq_set_a @ C2 @ A3 )
        & ( ord_less_eq_set_a @ C2 @ B3 ) ) ) ).

% Int_subset_iff
thf(fact_918_Int__subset__iff,axiom,
    ! [C2: set_b,A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) )
      = ( ( ord_less_eq_set_b @ C2 @ A3 )
        & ( ord_less_eq_set_b @ C2 @ B3 ) ) ) ).

% Int_subset_iff
thf(fact_919_set__inner__verts,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( set_a2 @ ( pre_inner_verts_a_b @ t @ P2 ) )
        = ( minus_minus_set_a @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) @ ( insert_a @ U2 @ ( insert_a @ V2 @ bot_bot_set_a ) ) ) ) ) ).

% set_inner_verts
thf(fact_920_list_Osimps_I15_J,axiom,
    ! [X21: pre_pr7278220950009878019t_unit,X22: list_p1584440430088372499t_unit] :
      ( ( set_pr4006367424059803566t_unit @ ( cons_p8564118325392489421t_unit @ X21 @ X22 ) )
      = ( insert6864688055023459379t_unit @ X21 @ ( set_pr4006367424059803566t_unit @ X22 ) ) ) ).

% list.simps(15)
thf(fact_921_list_Osimps_I15_J,axiom,
    ! [X21: list_a,X22: list_list_a] :
      ( ( set_list_a2 @ ( cons_list_a @ X21 @ X22 ) )
      = ( insert_list_a @ X21 @ ( set_list_a2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_922_list_Osimps_I15_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( set_a2 @ ( cons_a @ X21 @ X22 ) )
      = ( insert_a @ X21 @ ( set_a2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_923_list_Osimps_I15_J,axiom,
    ! [X21: b,X22: list_b] :
      ( ( set_b2 @ ( cons_b @ X21 @ X22 ) )
      = ( insert_b @ X21 @ ( set_b2 @ X22 ) ) ) ).

% list.simps(15)
thf(fact_924_singleton__insert__inj__eq,axiom,
    ! [B2: pre_pr7278220950009878019t_unit,A2: pre_pr7278220950009878019t_unit,A3: set_pr5411798346947241657t_unit] :
      ( ( ( insert6864688055023459379t_unit @ B2 @ bot_bo1839476491465656141t_unit )
        = ( insert6864688055023459379t_unit @ A2 @ A3 ) )
      = ( ( A2 = B2 )
        & ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ B2 @ bot_bo1839476491465656141t_unit ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_925_singleton__insert__inj__eq,axiom,
    ! [B2: a,A2: a,A3: set_a] :
      ( ( ( insert_a @ B2 @ bot_bot_set_a )
        = ( insert_a @ A2 @ A3 ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B2 @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_926_singleton__insert__inj__eq,axiom,
    ! [B2: b,A2: b,A3: set_b] :
      ( ( ( insert_b @ B2 @ bot_bot_set_b )
        = ( insert_b @ A2 @ A3 ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_b @ A3 @ ( insert_b @ B2 @ bot_bot_set_b ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_927_singleton__insert__inj__eq_H,axiom,
    ! [A2: pre_pr7278220950009878019t_unit,A3: set_pr5411798346947241657t_unit,B2: pre_pr7278220950009878019t_unit] :
      ( ( ( insert6864688055023459379t_unit @ A2 @ A3 )
        = ( insert6864688055023459379t_unit @ B2 @ bot_bo1839476491465656141t_unit ) )
      = ( ( A2 = B2 )
        & ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ B2 @ bot_bo1839476491465656141t_unit ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_928_singleton__insert__inj__eq_H,axiom,
    ! [A2: a,A3: set_a,B2: a] :
      ( ( ( insert_a @ A2 @ A3 )
        = ( insert_a @ B2 @ bot_bot_set_a ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_a @ A3 @ ( insert_a @ B2 @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_929_singleton__insert__inj__eq_H,axiom,
    ! [A2: b,A3: set_b,B2: b] :
      ( ( ( insert_b @ A2 @ A3 )
        = ( insert_b @ B2 @ bot_bot_set_b ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_b @ A3 @ ( insert_b @ B2 @ bot_bot_set_b ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_930_distinct__append,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( distinct_list_a @ ( append_list_a @ Xs @ Ys ) )
      = ( ( distinct_list_a @ Xs )
        & ( distinct_list_a @ Ys )
        & ( ( inf_inf_set_list_a @ ( set_list_a2 @ Xs ) @ ( set_list_a2 @ Ys ) )
          = bot_bot_set_list_a ) ) ) ).

% distinct_append
thf(fact_931_distinct__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_a @ ( append_a @ Xs @ Ys ) )
      = ( ( distinct_a @ Xs )
        & ( distinct_a @ Ys )
        & ( ( inf_inf_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) )
          = bot_bot_set_a ) ) ) ).

% distinct_append
thf(fact_932_distinct__append,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( distinct_b @ ( append_b @ Xs @ Ys ) )
      = ( ( distinct_b @ Xs )
        & ( distinct_b @ Ys )
        & ( ( inf_inf_set_b @ ( set_b2 @ Xs ) @ ( set_b2 @ Ys ) )
          = bot_bot_set_b ) ) ) ).

% distinct_append
thf(fact_933_distinct__append,axiom,
    ! [Xs: list_p1584440430088372499t_unit,Ys: list_p1584440430088372499t_unit] :
      ( ( distin5038060903466274250t_unit @ ( append1841976088027155496t_unit @ Xs @ Ys ) )
      = ( ( distin5038060903466274250t_unit @ Xs )
        & ( distin5038060903466274250t_unit @ Ys )
        & ( ( inf_in1092213268631476299t_unit @ ( set_pr4006367424059803566t_unit @ Xs ) @ ( set_pr4006367424059803566t_unit @ Ys ) )
          = bot_bo1839476491465656141t_unit ) ) ) ).

% distinct_append
thf(fact_934_gen__iapath__def,axiom,
    ! [V3: set_a,U2: a,P2: list_b,V2: a] :
      ( ( pre_gen_iapath_a_b @ t @ V3 @ U2 @ P2 @ V2 )
      = ( ( member_a @ U2 @ V3 )
        & ( member_a @ V2 @ V3 )
        & ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 )
        & ( ( inf_inf_set_a @ ( set_a2 @ ( pre_inner_verts_a_b @ t @ P2 ) ) @ V3 )
          = bot_bot_set_a )
        & ( P2 != nil_b ) ) ) ).

% gen_iapath_def
thf(fact_935_inf__sup__ord_I2_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_936_inf__sup__ord_I2_J,axiom,
    ! [X: set_b,Y: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_937_inf__sup__ord_I1_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_938_inf__sup__ord_I1_J,axiom,
    ! [X: set_b,Y: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_939_inf__le1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_940_inf__le1,axiom,
    ! [X: set_b,Y: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_941_inf__le2,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_942_inf__le2,axiom,
    ! [X: set_b,Y: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_943_le__infE,axiom,
    ! [X: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ~ ( ( ord_less_eq_set_a @ X @ A2 )
         => ~ ( ord_less_eq_set_a @ X @ B2 ) ) ) ).

% le_infE
thf(fact_944_le__infE,axiom,
    ! [X: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ X @ ( inf_inf_set_b @ A2 @ B2 ) )
     => ~ ( ( ord_less_eq_set_b @ X @ A2 )
         => ~ ( ord_less_eq_set_b @ X @ B2 ) ) ) ).

% le_infE
thf(fact_945_le__infI,axiom,
    ! [X: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ X @ B2 )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% le_infI
thf(fact_946_le__infI,axiom,
    ! [X: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ X @ A2 )
     => ( ( ord_less_eq_set_b @ X @ B2 )
       => ( ord_less_eq_set_b @ X @ ( inf_inf_set_b @ A2 @ B2 ) ) ) ) ).

% le_infI
thf(fact_947_inf__mono,axiom,
    ! [A2: set_a,C: set_a,B2: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B2 @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).

% inf_mono
thf(fact_948_inf__mono,axiom,
    ! [A2: set_b,C: set_b,B2: set_b,D2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ C )
     => ( ( ord_less_eq_set_b @ B2 @ D2 )
       => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ ( inf_inf_set_b @ C @ D2 ) ) ) ) ).

% inf_mono
thf(fact_949_le__infI1,axiom,
    ! [A2: set_a,X: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ X ) ) ).

% le_infI1
thf(fact_950_le__infI1,axiom,
    ! [A2: set_b,X: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ X )
     => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ X ) ) ).

% le_infI1
thf(fact_951_le__infI2,axiom,
    ! [B2: set_a,X: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ X ) ) ).

% le_infI2
thf(fact_952_le__infI2,axiom,
    ! [B2: set_b,X: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ X )
     => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ X ) ) ).

% le_infI2
thf(fact_953_inf_OorderE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( A2
        = ( inf_inf_set_a @ A2 @ B2 ) ) ) ).

% inf.orderE
thf(fact_954_inf_OorderE,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ B2 )
     => ( A2
        = ( inf_inf_set_b @ A2 @ B2 ) ) ) ).

% inf.orderE
thf(fact_955_inf_OorderI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2
        = ( inf_inf_set_a @ A2 @ B2 ) )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% inf.orderI
thf(fact_956_inf_OorderI,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( A2
        = ( inf_inf_set_b @ A2 @ B2 ) )
     => ( ord_less_eq_set_b @ A2 @ B2 ) ) ).

% inf.orderI
thf(fact_957_inf__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( F @ X2 @ Y2 ) @ X2 )
     => ( ! [X2: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( F @ X2 @ Y2 ) @ Y2 )
       => ( ! [X2: set_a,Y2: set_a,Z5: set_a] :
              ( ( ord_less_eq_set_a @ X2 @ Y2 )
             => ( ( ord_less_eq_set_a @ X2 @ Z5 )
               => ( ord_less_eq_set_a @ X2 @ ( F @ Y2 @ Z5 ) ) ) )
         => ( ( inf_inf_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_958_inf__unique,axiom,
    ! [F: set_b > set_b > set_b,X: set_b,Y: set_b] :
      ( ! [X2: set_b,Y2: set_b] : ( ord_less_eq_set_b @ ( F @ X2 @ Y2 ) @ X2 )
     => ( ! [X2: set_b,Y2: set_b] : ( ord_less_eq_set_b @ ( F @ X2 @ Y2 ) @ Y2 )
       => ( ! [X2: set_b,Y2: set_b,Z5: set_b] :
              ( ( ord_less_eq_set_b @ X2 @ Y2 )
             => ( ( ord_less_eq_set_b @ X2 @ Z5 )
               => ( ord_less_eq_set_b @ X2 @ ( F @ Y2 @ Z5 ) ) ) )
         => ( ( inf_inf_set_b @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_959_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X4: set_a,Y3: set_a] :
          ( ( inf_inf_set_a @ X4 @ Y3 )
          = X4 ) ) ) ).

% le_iff_inf
thf(fact_960_le__iff__inf,axiom,
    ( ord_less_eq_set_b
    = ( ^ [X4: set_b,Y3: set_b] :
          ( ( inf_inf_set_b @ X4 @ Y3 )
          = X4 ) ) ) ).

% le_iff_inf
thf(fact_961_inf_Oabsorb1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = A2 ) ) ).

% inf.absorb1
thf(fact_962_inf_Oabsorb1,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ B2 )
     => ( ( inf_inf_set_b @ A2 @ B2 )
        = A2 ) ) ).

% inf.absorb1
thf(fact_963_inf_Oabsorb2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_964_inf_Oabsorb2,axiom,
    ! [B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( ( inf_inf_set_b @ A2 @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_965_inf__absorb1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( inf_inf_set_a @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_966_inf__absorb1,axiom,
    ! [X: set_b,Y: set_b] :
      ( ( ord_less_eq_set_b @ X @ Y )
     => ( ( inf_inf_set_b @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_967_inf__absorb2,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( inf_inf_set_a @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_968_inf__absorb2,axiom,
    ! [Y: set_b,X: set_b] :
      ( ( ord_less_eq_set_b @ Y @ X )
     => ( ( inf_inf_set_b @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_969_inf_OboundedE,axiom,
    ! [A2: set_a,B2: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ~ ( ord_less_eq_set_a @ A2 @ C ) ) ) ).

% inf.boundedE
thf(fact_970_inf_OboundedE,axiom,
    ! [A2: set_b,B2: set_b,C: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ ( inf_inf_set_b @ B2 @ C ) )
     => ~ ( ( ord_less_eq_set_b @ A2 @ B2 )
         => ~ ( ord_less_eq_set_b @ A2 @ C ) ) ) ).

% inf.boundedE
thf(fact_971_inf_OboundedI,axiom,
    ! [A2: set_a,B2: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ C )
       => ( ord_less_eq_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) ) ) ) ).

% inf.boundedI
thf(fact_972_inf_OboundedI,axiom,
    ! [A2: set_b,B2: set_b,C: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ B2 )
     => ( ( ord_less_eq_set_b @ A2 @ C )
       => ( ord_less_eq_set_b @ A2 @ ( inf_inf_set_b @ B2 @ C ) ) ) ) ).

% inf.boundedI
thf(fact_973_inf__greatest,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Z )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_974_inf__greatest,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] :
      ( ( ord_less_eq_set_b @ X @ Y )
     => ( ( ord_less_eq_set_b @ X @ Z )
       => ( ord_less_eq_set_b @ X @ ( inf_inf_set_b @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_975_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( A6
          = ( inf_inf_set_a @ A6 @ B6 ) ) ) ) ).

% inf.order_iff
thf(fact_976_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( A6
          = ( inf_inf_set_b @ A6 @ B6 ) ) ) ) ).

% inf.order_iff
thf(fact_977_inf_Ocobounded1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ A2 ) ).

% inf.cobounded1
thf(fact_978_inf_Ocobounded1,axiom,
    ! [A2: set_b,B2: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ A2 ) ).

% inf.cobounded1
thf(fact_979_inf_Ocobounded2,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ B2 ) ).

% inf.cobounded2
thf(fact_980_inf_Ocobounded2,axiom,
    ! [A2: set_b,B2: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ B2 ) ).

% inf.cobounded2
thf(fact_981_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( inf_inf_set_a @ A6 @ B6 )
          = A6 ) ) ) ).

% inf.absorb_iff1
thf(fact_982_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( ( inf_inf_set_b @ A6 @ B6 )
          = A6 ) ) ) ).

% inf.absorb_iff1
thf(fact_983_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B6: set_a,A6: set_a] :
          ( ( inf_inf_set_a @ A6 @ B6 )
          = B6 ) ) ) ).

% inf.absorb_iff2
thf(fact_984_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_b
    = ( ^ [B6: set_b,A6: set_b] :
          ( ( inf_inf_set_b @ A6 @ B6 )
          = B6 ) ) ) ).

% inf.absorb_iff2
thf(fact_985_inf_OcoboundedI1,axiom,
    ! [A2: set_a,C: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C ) ) ).

% inf.coboundedI1
thf(fact_986_inf_OcoboundedI1,axiom,
    ! [A2: set_b,C: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ C )
     => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ C ) ) ).

% inf.coboundedI1
thf(fact_987_inf_OcoboundedI2,axiom,
    ! [B2: set_a,C: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C ) ) ).

% inf.coboundedI2
thf(fact_988_inf_OcoboundedI2,axiom,
    ! [B2: set_b,C: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ C )
     => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A2 @ B2 ) @ C ) ) ).

% inf.coboundedI2
thf(fact_989_Int__mono,axiom,
    ! [A3: set_a,C2: set_a,B3: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ C2 )
     => ( ( ord_less_eq_set_a @ B3 @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).

% Int_mono
thf(fact_990_Int__mono,axiom,
    ! [A3: set_b,C2: set_b,B3: set_b,D: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ C2 )
     => ( ( ord_less_eq_set_b @ B3 @ D )
       => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ ( inf_inf_set_b @ C2 @ D ) ) ) ) ).

% Int_mono
thf(fact_991_Int__lower1,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ A3 ) ).

% Int_lower1
thf(fact_992_Int__lower1,axiom,
    ! [A3: set_b,B3: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ A3 ) ).

% Int_lower1
thf(fact_993_Int__lower2,axiom,
    ! [A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ B3 ) ).

% Int_lower2
thf(fact_994_Int__lower2,axiom,
    ! [A3: set_b,B3: set_b] : ( ord_less_eq_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ B3 ) ).

% Int_lower2
thf(fact_995_Int__absorb1,axiom,
    ! [B3: set_a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B3 @ A3 )
     => ( ( inf_inf_set_a @ A3 @ B3 )
        = B3 ) ) ).

% Int_absorb1
thf(fact_996_Int__absorb1,axiom,
    ! [B3: set_b,A3: set_b] :
      ( ( ord_less_eq_set_b @ B3 @ A3 )
     => ( ( inf_inf_set_b @ A3 @ B3 )
        = B3 ) ) ).

% Int_absorb1
thf(fact_997_Int__absorb2,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ( inf_inf_set_a @ A3 @ B3 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_998_Int__absorb2,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( inf_inf_set_b @ A3 @ B3 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_999_Int__greatest,axiom,
    ! [C2: set_a,A3: set_a,B3: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ A3 )
     => ( ( ord_less_eq_set_a @ C2 @ B3 )
       => ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A3 @ B3 ) ) ) ) ).

% Int_greatest
thf(fact_1000_Int__greatest,axiom,
    ! [C2: set_b,A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ C2 @ A3 )
     => ( ( ord_less_eq_set_b @ C2 @ B3 )
       => ( ord_less_eq_set_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) ) ) ) ).

% Int_greatest
thf(fact_1001_Int__Collect__mono,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a,P: product_prod_a_a > $o,Q3: product_prod_a_a > $o] :
      ( ( ord_le746702958409616551od_a_a @ A3 @ B3 )
     => ( ! [X2: product_prod_a_a] :
            ( ( member1426531477525435216od_a_a @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q3 @ X2 ) ) )
       => ( ord_le746702958409616551od_a_a @ ( inf_in8905007599844390133od_a_a @ A3 @ ( collec3336397797384452498od_a_a @ P ) ) @ ( inf_in8905007599844390133od_a_a @ B3 @ ( collec3336397797384452498od_a_a @ Q3 ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_1002_Int__Collect__mono,axiom,
    ! [A3: set_list_a,B3: set_list_a,P: list_a > $o,Q3: list_a > $o] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ! [X2: list_a] :
            ( ( member_list_a @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q3 @ X2 ) ) )
       => ( ord_le8861187494160871172list_a @ ( inf_inf_set_list_a @ A3 @ ( collect_list_a @ P ) ) @ ( inf_inf_set_list_a @ B3 @ ( collect_list_a @ Q3 ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_1003_Int__Collect__mono,axiom,
    ! [A3: set_set_a,B3: set_set_a,P: set_a > $o,Q3: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
     => ( ! [X2: set_a] :
            ( ( member_set_a @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q3 @ X2 ) ) )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A3 @ ( collect_set_a @ P ) ) @ ( inf_inf_set_set_a @ B3 @ ( collect_set_a @ Q3 ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_1004_Int__Collect__mono,axiom,
    ! [A3: set_a,B3: set_a,P: a > $o,Q3: a > $o] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ! [X2: a] :
            ( ( member_a @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q3 @ X2 ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A3 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B3 @ ( collect_a @ Q3 ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_1005_Int__Collect__mono,axiom,
    ! [A3: set_b,B3: set_b,P: b > $o,Q3: b > $o] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ! [X2: b] :
            ( ( member_b @ X2 @ A3 )
           => ( ( P @ X2 )
             => ( Q3 @ X2 ) ) )
       => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A3 @ ( collect_b @ P ) ) @ ( inf_inf_set_b @ B3 @ ( collect_b @ Q3 ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_1006_insert__mono,axiom,
    ! [C2: set_pr5411798346947241657t_unit,D: set_pr5411798346947241657t_unit,A2: pre_pr7278220950009878019t_unit] :
      ( ( ord_le8200006823705900825t_unit @ C2 @ D )
     => ( ord_le8200006823705900825t_unit @ ( insert6864688055023459379t_unit @ A2 @ C2 ) @ ( insert6864688055023459379t_unit @ A2 @ D ) ) ) ).

% insert_mono
thf(fact_1007_insert__mono,axiom,
    ! [C2: set_a,D: set_a,A2: a] :
      ( ( ord_less_eq_set_a @ C2 @ D )
     => ( ord_less_eq_set_a @ ( insert_a @ A2 @ C2 ) @ ( insert_a @ A2 @ D ) ) ) ).

% insert_mono
thf(fact_1008_insert__mono,axiom,
    ! [C2: set_b,D: set_b,A2: b] :
      ( ( ord_less_eq_set_b @ C2 @ D )
     => ( ord_less_eq_set_b @ ( insert_b @ A2 @ C2 ) @ ( insert_b @ A2 @ D ) ) ) ).

% insert_mono
thf(fact_1009_subset__insert,axiom,
    ! [X: pre_pr7278220950009878019t_unit,A3: set_pr5411798346947241657t_unit,B3: set_pr5411798346947241657t_unit] :
      ( ~ ( member6939884229742472986t_unit @ X @ A3 )
     => ( ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ X @ B3 ) )
        = ( ord_le8200006823705900825t_unit @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_1010_subset__insert,axiom,
    ! [X: product_prod_a_a,A3: set_Product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ~ ( member1426531477525435216od_a_a @ X @ A3 )
     => ( ( ord_le746702958409616551od_a_a @ A3 @ ( insert4534936382041156343od_a_a @ X @ B3 ) )
        = ( ord_le746702958409616551od_a_a @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_1011_subset__insert,axiom,
    ! [X: list_a,A3: set_list_a,B3: set_list_a] :
      ( ~ ( member_list_a @ X @ A3 )
     => ( ( ord_le8861187494160871172list_a @ A3 @ ( insert_list_a @ X @ B3 ) )
        = ( ord_le8861187494160871172list_a @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_1012_subset__insert,axiom,
    ! [X: set_a,A3: set_set_a,B3: set_set_a] :
      ( ~ ( member_set_a @ X @ A3 )
     => ( ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ X @ B3 ) )
        = ( ord_le3724670747650509150_set_a @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_1013_subset__insert,axiom,
    ! [X: a,A3: set_a,B3: set_a] :
      ( ~ ( member_a @ X @ A3 )
     => ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B3 ) )
        = ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_1014_subset__insert,axiom,
    ! [X: b,A3: set_b,B3: set_b] :
      ( ~ ( member_b @ X @ A3 )
     => ( ( ord_less_eq_set_b @ A3 @ ( insert_b @ X @ B3 ) )
        = ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_1015_subset__insertI,axiom,
    ! [B3: set_pr5411798346947241657t_unit,A2: pre_pr7278220950009878019t_unit] : ( ord_le8200006823705900825t_unit @ B3 @ ( insert6864688055023459379t_unit @ A2 @ B3 ) ) ).

% subset_insertI
thf(fact_1016_subset__insertI,axiom,
    ! [B3: set_a,A2: a] : ( ord_less_eq_set_a @ B3 @ ( insert_a @ A2 @ B3 ) ) ).

% subset_insertI
thf(fact_1017_subset__insertI,axiom,
    ! [B3: set_b,A2: b] : ( ord_less_eq_set_b @ B3 @ ( insert_b @ A2 @ B3 ) ) ).

% subset_insertI
thf(fact_1018_subset__insertI2,axiom,
    ! [A3: set_pr5411798346947241657t_unit,B3: set_pr5411798346947241657t_unit,B2: pre_pr7278220950009878019t_unit] :
      ( ( ord_le8200006823705900825t_unit @ A3 @ B3 )
     => ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ B2 @ B3 ) ) ) ).

% subset_insertI2
thf(fact_1019_subset__insertI2,axiom,
    ! [A3: set_a,B3: set_a,B2: a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_less_eq_set_a @ A3 @ ( insert_a @ B2 @ B3 ) ) ) ).

% subset_insertI2
thf(fact_1020_subset__insertI2,axiom,
    ! [A3: set_b,B3: set_b,B2: b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ord_less_eq_set_b @ A3 @ ( insert_b @ B2 @ B3 ) ) ) ).

% subset_insertI2
thf(fact_1021_distrib__sup__le,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) @ ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% distrib_sup_le
thf(fact_1022_distrib__sup__le,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] : ( ord_less_eq_set_b @ ( sup_sup_set_b @ X @ ( inf_inf_set_b @ Y @ Z ) ) @ ( inf_inf_set_b @ ( sup_sup_set_b @ X @ Y ) @ ( sup_sup_set_b @ X @ Z ) ) ) ).

% distrib_sup_le
thf(fact_1023_distrib__inf__le,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) @ ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% distrib_inf_le
thf(fact_1024_distrib__inf__le,axiom,
    ! [X: set_b,Y: set_b,Z: set_b] : ( ord_less_eq_set_b @ ( sup_sup_set_b @ ( inf_inf_set_b @ X @ Y ) @ ( inf_inf_set_b @ X @ Z ) ) @ ( inf_inf_set_b @ X @ ( sup_sup_set_b @ Y @ Z ) ) ) ).

% distrib_inf_le
thf(fact_1025_subset__singletonD,axiom,
    ! [A3: set_pr5411798346947241657t_unit,X: pre_pr7278220950009878019t_unit] :
      ( ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ X @ bot_bo1839476491465656141t_unit ) )
     => ( ( A3 = bot_bo1839476491465656141t_unit )
        | ( A3
          = ( insert6864688055023459379t_unit @ X @ bot_bo1839476491465656141t_unit ) ) ) ) ).

% subset_singletonD
thf(fact_1026_subset__singletonD,axiom,
    ! [A3: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) )
     => ( ( A3 = bot_bot_set_a )
        | ( A3
          = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_1027_subset__singletonD,axiom,
    ! [A3: set_b,X: b] :
      ( ( ord_less_eq_set_b @ A3 @ ( insert_b @ X @ bot_bot_set_b ) )
     => ( ( A3 = bot_bot_set_b )
        | ( A3
          = ( insert_b @ X @ bot_bot_set_b ) ) ) ) ).

% subset_singletonD
thf(fact_1028_subset__singleton__iff,axiom,
    ! [X6: set_pr5411798346947241657t_unit,A2: pre_pr7278220950009878019t_unit] :
      ( ( ord_le8200006823705900825t_unit @ X6 @ ( insert6864688055023459379t_unit @ A2 @ bot_bo1839476491465656141t_unit ) )
      = ( ( X6 = bot_bo1839476491465656141t_unit )
        | ( X6
          = ( insert6864688055023459379t_unit @ A2 @ bot_bo1839476491465656141t_unit ) ) ) ) ).

% subset_singleton_iff
thf(fact_1029_subset__singleton__iff,axiom,
    ! [X6: set_a,A2: a] :
      ( ( ord_less_eq_set_a @ X6 @ ( insert_a @ A2 @ bot_bot_set_a ) )
      = ( ( X6 = bot_bot_set_a )
        | ( X6
          = ( insert_a @ A2 @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_1030_subset__singleton__iff,axiom,
    ! [X6: set_b,A2: b] :
      ( ( ord_less_eq_set_b @ X6 @ ( insert_b @ A2 @ bot_bot_set_b ) )
      = ( ( X6 = bot_bot_set_b )
        | ( X6
          = ( insert_b @ A2 @ bot_bot_set_b ) ) ) ) ).

% subset_singleton_iff
thf(fact_1031_Un__Int__assoc__eq,axiom,
    ! [A3: set_a,B3: set_a,C2: set_a] :
      ( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A3 @ B3 ) @ C2 )
        = ( inf_inf_set_a @ A3 @ ( sup_sup_set_a @ B3 @ C2 ) ) )
      = ( ord_less_eq_set_a @ C2 @ A3 ) ) ).

% Un_Int_assoc_eq
thf(fact_1032_Un__Int__assoc__eq,axiom,
    ! [A3: set_b,B3: set_b,C2: set_b] :
      ( ( ( sup_sup_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ C2 )
        = ( inf_inf_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C2 ) ) )
      = ( ord_less_eq_set_b @ C2 @ A3 ) ) ).

% Un_Int_assoc_eq
thf(fact_1033_subset__Diff__insert,axiom,
    ! [A3: set_pr5411798346947241657t_unit,B3: set_pr5411798346947241657t_unit,X: pre_pr7278220950009878019t_unit,C2: set_pr5411798346947241657t_unit] :
      ( ( ord_le8200006823705900825t_unit @ A3 @ ( minus_3777555517894451474t_unit @ B3 @ ( insert6864688055023459379t_unit @ X @ C2 ) ) )
      = ( ( ord_le8200006823705900825t_unit @ A3 @ ( minus_3777555517894451474t_unit @ B3 @ C2 ) )
        & ~ ( member6939884229742472986t_unit @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1034_subset__Diff__insert,axiom,
    ! [A3: set_Product_prod_a_a,B3: set_Product_prod_a_a,X: product_prod_a_a,C2: set_Product_prod_a_a] :
      ( ( ord_le746702958409616551od_a_a @ A3 @ ( minus_6817036919807184750od_a_a @ B3 @ ( insert4534936382041156343od_a_a @ X @ C2 ) ) )
      = ( ( ord_le746702958409616551od_a_a @ A3 @ ( minus_6817036919807184750od_a_a @ B3 @ C2 ) )
        & ~ ( member1426531477525435216od_a_a @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1035_subset__Diff__insert,axiom,
    ! [A3: set_list_a,B3: set_list_a,X: list_a,C2: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ ( minus_646659088055828811list_a @ B3 @ ( insert_list_a @ X @ C2 ) ) )
      = ( ( ord_le8861187494160871172list_a @ A3 @ ( minus_646659088055828811list_a @ B3 @ C2 ) )
        & ~ ( member_list_a @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1036_subset__Diff__insert,axiom,
    ! [A3: set_set_a,B3: set_set_a,X: set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( minus_5736297505244876581_set_a @ B3 @ ( insert_set_a @ X @ C2 ) ) )
      = ( ( ord_le3724670747650509150_set_a @ A3 @ ( minus_5736297505244876581_set_a @ B3 @ C2 ) )
        & ~ ( member_set_a @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1037_subset__Diff__insert,axiom,
    ! [A3: set_a,B3: set_a,X: a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( minus_minus_set_a @ B3 @ ( insert_a @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_a @ A3 @ ( minus_minus_set_a @ B3 @ C2 ) )
        & ~ ( member_a @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1038_subset__Diff__insert,axiom,
    ! [A3: set_b,B3: set_b,X: b,C2: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ ( minus_minus_set_b @ B3 @ ( insert_b @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_b @ A3 @ ( minus_minus_set_b @ B3 @ C2 ) )
        & ~ ( member_b @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1039_subset__insert__iff,axiom,
    ! [A3: set_Product_prod_a_a,X: product_prod_a_a,B3: set_Product_prod_a_a] :
      ( ( ord_le746702958409616551od_a_a @ A3 @ ( insert4534936382041156343od_a_a @ X @ B3 ) )
      = ( ( ( member1426531477525435216od_a_a @ X @ A3 )
         => ( ord_le746702958409616551od_a_a @ ( minus_6817036919807184750od_a_a @ A3 @ ( insert4534936382041156343od_a_a @ X @ bot_bo3357376287454694259od_a_a ) ) @ B3 ) )
        & ( ~ ( member1426531477525435216od_a_a @ X @ A3 )
         => ( ord_le746702958409616551od_a_a @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1040_subset__insert__iff,axiom,
    ! [A3: set_list_a,X: list_a,B3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ ( insert_list_a @ X @ B3 ) )
      = ( ( ( member_list_a @ X @ A3 )
         => ( ord_le8861187494160871172list_a @ ( minus_646659088055828811list_a @ A3 @ ( insert_list_a @ X @ bot_bot_set_list_a ) ) @ B3 ) )
        & ( ~ ( member_list_a @ X @ A3 )
         => ( ord_le8861187494160871172list_a @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1041_subset__insert__iff,axiom,
    ! [A3: set_set_a,X: set_a,B3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ ( insert_set_a @ X @ B3 ) )
      = ( ( ( member_set_a @ X @ A3 )
         => ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A3 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) @ B3 ) )
        & ( ~ ( member_set_a @ X @ A3 )
         => ( ord_le3724670747650509150_set_a @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1042_subset__insert__iff,axiom,
    ! [A3: set_pr5411798346947241657t_unit,X: pre_pr7278220950009878019t_unit,B3: set_pr5411798346947241657t_unit] :
      ( ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ X @ B3 ) )
      = ( ( ( member6939884229742472986t_unit @ X @ A3 )
         => ( ord_le8200006823705900825t_unit @ ( minus_3777555517894451474t_unit @ A3 @ ( insert6864688055023459379t_unit @ X @ bot_bo1839476491465656141t_unit ) ) @ B3 ) )
        & ( ~ ( member6939884229742472986t_unit @ X @ A3 )
         => ( ord_le8200006823705900825t_unit @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1043_subset__insert__iff,axiom,
    ! [A3: set_a,X: a,B3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B3 ) )
      = ( ( ( member_a @ X @ A3 )
         => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B3 ) )
        & ( ~ ( member_a @ X @ A3 )
         => ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1044_subset__insert__iff,axiom,
    ! [A3: set_b,X: b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ ( insert_b @ X @ B3 ) )
      = ( ( ( member_b @ X @ A3 )
         => ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ X @ bot_bot_set_b ) ) @ B3 ) )
        & ( ~ ( member_b @ X @ A3 )
         => ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1045_Diff__single__insert,axiom,
    ! [A3: set_pr5411798346947241657t_unit,X: pre_pr7278220950009878019t_unit,B3: set_pr5411798346947241657t_unit] :
      ( ( ord_le8200006823705900825t_unit @ ( minus_3777555517894451474t_unit @ A3 @ ( insert6864688055023459379t_unit @ X @ bot_bo1839476491465656141t_unit ) ) @ B3 )
     => ( ord_le8200006823705900825t_unit @ A3 @ ( insert6864688055023459379t_unit @ X @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_1046_Diff__single__insert,axiom,
    ! [A3: set_a,X: a,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A3 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B3 )
     => ( ord_less_eq_set_a @ A3 @ ( insert_a @ X @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_1047_Diff__single__insert,axiom,
    ! [A3: set_b,X: b,B3: set_b] :
      ( ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ X @ bot_bot_set_b ) ) @ B3 )
     => ( ord_less_eq_set_b @ A3 @ ( insert_b @ X @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_1048_list__empty__if__subset__dsjnt,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( ord_le8861187494160871172list_a @ ( set_list_a2 @ Xs ) @ ( set_list_a2 @ Ys ) )
     => ( ( ( inf_inf_set_list_a @ ( set_list_a2 @ Xs ) @ ( set_list_a2 @ Ys ) )
          = bot_bot_set_list_a )
       => ( Xs = nil_list_a ) ) ) ).

% list_empty_if_subset_dsjnt
thf(fact_1049_list__empty__if__subset__dsjnt,axiom,
    ! [Xs: list_p1584440430088372499t_unit,Ys: list_p1584440430088372499t_unit] :
      ( ( ord_le8200006823705900825t_unit @ ( set_pr4006367424059803566t_unit @ Xs ) @ ( set_pr4006367424059803566t_unit @ Ys ) )
     => ( ( ( inf_in1092213268631476299t_unit @ ( set_pr4006367424059803566t_unit @ Xs ) @ ( set_pr4006367424059803566t_unit @ Ys ) )
          = bot_bo1839476491465656141t_unit )
       => ( Xs = nil_pr1362588839662627709t_unit ) ) ) ).

% list_empty_if_subset_dsjnt
thf(fact_1050_list__empty__if__subset__dsjnt,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) )
     => ( ( ( inf_inf_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) )
          = bot_bot_set_a )
       => ( Xs = nil_a ) ) ) ).

% list_empty_if_subset_dsjnt
thf(fact_1051_list__empty__if__subset__dsjnt,axiom,
    ! [Xs: list_b,Ys: list_b] :
      ( ( ord_less_eq_set_b @ ( set_b2 @ Xs ) @ ( set_b2 @ Ys ) )
     => ( ( ( inf_inf_set_b @ ( set_b2 @ Xs ) @ ( set_b2 @ Ys ) )
          = bot_bot_set_b )
       => ( Xs = nil_b ) ) ) ).

% list_empty_if_subset_dsjnt
thf(fact_1052_pre__digraph_Oinner__verts_Ocong,axiom,
    pre_inner_verts_a_b = pre_inner_verts_a_b ).

% pre_digraph.inner_verts.cong
thf(fact_1053_pre__digraph_Oinner__verts__Nil,axiom,
    ! [G: pre_pr3327329314391289540t_unit] :
      ( ( pre_inner_verts_a_a @ G @ nil_a )
      = nil_a ) ).

% pre_digraph.inner_verts_Nil
thf(fact_1054_pre__digraph_Oinner__verts__Nil,axiom,
    ! [G: pre_pr3994228789931197893t_unit] :
      ( ( pre_inner_verts_b_a @ G @ nil_a )
      = nil_b ) ).

% pre_digraph.inner_verts_Nil
thf(fact_1055_pre__digraph_Oinner__verts__Nil,axiom,
    ! [G: pre_pr7945120425549786372t_unit] :
      ( ( pre_inner_verts_b_b @ G @ nil_b )
      = nil_b ) ).

% pre_digraph.inner_verts_Nil
thf(fact_1056_pre__digraph_Oinner__verts__Nil,axiom,
    ! [G: pre_pr7278220950009878019t_unit] :
      ( ( pre_inner_verts_a_b @ G @ nil_b )
      = nil_a ) ).

% pre_digraph.inner_verts_Nil
thf(fact_1057_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: product_prod_a_a,G: pre_pr7908921069988166637t_unit,P2: list_a,Q: list_a] :
      ( ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487987_a_a_a @ G @ P2 ) ) )
     => ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487987_a_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1058_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: set_a,G: pre_pr3647964229410195492t_unit,P2: list_a,Q: list_a] :
      ( ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948156et_a_a @ G @ P2 ) ) )
     => ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948156et_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1059_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: product_prod_a_a,G: pre_pr2636440668751979308t_unit,P2: list_b,Q: list_b] :
      ( ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487988_a_a_b @ G @ P2 ) ) )
     => ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487988_a_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1060_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: set_a,G: pre_pr7598855865028783971t_unit,P2: list_b,Q: list_b] :
      ( ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948157et_a_b @ G @ P2 ) ) )
     => ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948157et_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1061_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: a,G: pre_pr3327329314391289540t_unit,P2: list_a,Q: list_a] :
      ( ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_a @ G @ P2 ) ) )
     => ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1062_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: b,G: pre_pr3994228789931197893t_unit,P2: list_a,Q: list_a] :
      ( ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_a @ G @ P2 ) ) )
     => ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1063_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: b,G: pre_pr7945120425549786372t_unit,P2: list_b,Q: list_b] :
      ( ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_b @ G @ P2 ) ) )
     => ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1064_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: list_a,G: pre_pr8155351583225888586t_unit,P2: list_a,Q: list_a] :
      ( ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915414st_a_a @ G @ P2 ) ) )
     => ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915414st_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1065_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: list_a,G: pre_pr2882871181989701257t_unit,P2: list_b,Q: list_b] :
      ( ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915415st_a_b @ G @ P2 ) ) )
     => ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915415st_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1066_pre__digraph_Oin__set__inner__verts__appendI__l,axiom,
    ! [U2: a,G: pre_pr7278220950009878019t_unit,P2: list_b,Q: list_b] :
      ( ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ G @ P2 ) ) )
     => ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_l
thf(fact_1067_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: product_prod_a_a,G: pre_pr7908921069988166637t_unit,Q: list_a,P2: list_a] :
      ( ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487987_a_a_a @ G @ Q ) ) )
     => ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487987_a_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1068_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: set_a,G: pre_pr3647964229410195492t_unit,Q: list_a,P2: list_a] :
      ( ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948156et_a_a @ G @ Q ) ) )
     => ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948156et_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1069_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: product_prod_a_a,G: pre_pr2636440668751979308t_unit,Q: list_b,P2: list_b] :
      ( ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487988_a_a_b @ G @ Q ) ) )
     => ( member1426531477525435216od_a_a @ U2 @ ( set_Product_prod_a_a2 @ ( pre_in7981346435028487988_a_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1070_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: set_a,G: pre_pr7598855865028783971t_unit,Q: list_b,P2: list_b] :
      ( ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948157et_a_b @ G @ Q ) ) )
     => ( member_set_a @ U2 @ ( set_set_a2 @ ( pre_in289353705076948157et_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1071_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: a,G: pre_pr3327329314391289540t_unit,Q: list_a,P2: list_a] :
      ( ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_a @ G @ Q ) ) )
     => ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1072_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: b,G: pre_pr3994228789931197893t_unit,Q: list_a,P2: list_a] :
      ( ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_a @ G @ Q ) ) )
     => ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1073_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: b,G: pre_pr7945120425549786372t_unit,Q: list_b,P2: list_b] :
      ( ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_b @ G @ Q ) ) )
     => ( member_b @ U2 @ ( set_b2 @ ( pre_inner_verts_b_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1074_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: list_a,G: pre_pr8155351583225888586t_unit,Q: list_a,P2: list_a] :
      ( ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915414st_a_a @ G @ Q ) ) )
     => ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915414st_a_a @ G @ ( append_a @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1075_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: list_a,G: pre_pr2882871181989701257t_unit,Q: list_b,P2: list_b] :
      ( ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915415st_a_b @ G @ Q ) ) )
     => ( member_list_a @ U2 @ ( set_list_a2 @ ( pre_in4739640915595915415st_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1076_pre__digraph_Oin__set__inner__verts__appendI__r,axiom,
    ! [U2: a,G: pre_pr7278220950009878019t_unit,Q: list_b,P2: list_b] :
      ( ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ G @ Q ) ) )
     => ( member_a @ U2 @ ( set_a2 @ ( pre_inner_verts_a_b @ G @ ( append_b @ P2 @ Q ) ) ) ) ) ).

% pre_digraph.in_set_inner_verts_appendI_r
thf(fact_1077_pre__digraph_Oinner__verts__singleton,axiom,
    ! [G: pre_pr3327329314391289540t_unit,X: a] :
      ( ( pre_inner_verts_a_a @ G @ ( cons_a @ X @ nil_a ) )
      = nil_a ) ).

% pre_digraph.inner_verts_singleton
thf(fact_1078_pre__digraph_Oinner__verts__singleton,axiom,
    ! [G: pre_pr3994228789931197893t_unit,X: a] :
      ( ( pre_inner_verts_b_a @ G @ ( cons_a @ X @ nil_a ) )
      = nil_b ) ).

% pre_digraph.inner_verts_singleton
thf(fact_1079_pre__digraph_Oinner__verts__singleton,axiom,
    ! [G: pre_pr7945120425549786372t_unit,X: b] :
      ( ( pre_inner_verts_b_b @ G @ ( cons_b @ X @ nil_b ) )
      = nil_b ) ).

% pre_digraph.inner_verts_singleton
thf(fact_1080_pre__digraph_Oinner__verts__singleton,axiom,
    ! [G: pre_pr7278220950009878019t_unit,X: b] :
      ( ( pre_inner_verts_a_b @ G @ ( cons_b @ X @ nil_b ) )
      = nil_a ) ).

% pre_digraph.inner_verts_singleton
thf(fact_1081_pre__digraph_Oinner__verts__def,axiom,
    ( pre_inner_verts_a_b
    = ( ^ [G2: pre_pr7278220950009878019t_unit,P4: list_b] : ( tl_a @ ( map_b_a @ ( pre_ta4931606617599662728t_unit @ G2 ) @ P4 ) ) ) ) ).

% pre_digraph.inner_verts_def
thf(fact_1082_verts__add__arc__conv,axiom,
    ! [A2: b] :
      ( ( pre_ve642382030648772252t_unit @ ( pre_add_arc_a_b @ t @ A2 ) )
      = ( sup_sup_set_a @ ( pre_ve642382030648772252t_unit @ t ) @ ( insert_a @ ( pre_ta4931606617599662728t_unit @ t @ A2 ) @ ( insert_a @ ( pre_he5236287464308401016t_unit @ t @ A2 ) @ bot_bot_set_a ) ) ) ) ).

% verts_add_arc_conv
thf(fact_1083_arcs__del__leaf,axiom,
    ! [E: b,V2: a] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( ( pre_he5236287464308401016t_unit @ t @ E )
          = V2 )
       => ( ( shorte1213025427933718126af_a_b @ t @ V2 )
         => ( ( pre_ar1395965042833527383t_unit @ ( pre_del_vert_a_b @ t @ V2 ) )
            = ( minus_minus_set_b @ ( pre_ar1395965042833527383t_unit @ t ) @ ( insert_b @ E @ bot_bot_set_b ) ) ) ) ) ) ).

% arcs_del_leaf
thf(fact_1084_connected__verts,axiom,
    ( ( digrap8783888973171253482ed_a_b @ t )
   => ( ( ( pre_ar1395965042833527383t_unit @ t )
       != bot_bot_set_b )
     => ( ( pre_ve642382030648772252t_unit @ t )
        = ( sup_sup_set_a @ ( image_b_a @ ( pre_ta4931606617599662728t_unit @ t ) @ ( pre_ar1395965042833527383t_unit @ t ) ) @ ( image_b_a @ ( pre_he5236287464308401016t_unit @ t ) @ ( pre_ar1395965042833527383t_unit @ t ) ) ) ) ) ) ).

% connected_verts
thf(fact_1085_pre__digraph_Overts__del__vert,axiom,
    ! [G: pre_pr2882871181989701257t_unit,U2: list_a] :
      ( ( pre_ve1830060048215441954t_unit @ ( pre_de3896127371068354340st_a_b @ G @ U2 ) )
      = ( minus_646659088055828811list_a @ ( pre_ve1830060048215441954t_unit @ G ) @ ( insert_list_a @ U2 @ bot_bot_set_list_a ) ) ) ).

% pre_digraph.verts_del_vert
thf(fact_1086_pre__digraph_Overts__del__vert,axiom,
    ! [G: pre_pr7278220950009878019t_unit,U2: a] :
      ( ( pre_ve642382030648772252t_unit @ ( pre_del_vert_a_b @ G @ U2 ) )
      = ( minus_minus_set_a @ ( pre_ve642382030648772252t_unit @ G ) @ ( insert_a @ U2 @ bot_bot_set_a ) ) ) ).

% pre_digraph.verts_del_vert
thf(fact_1087_add__arc__commute,axiom,
    ! [B2: b,A2: b] :
      ( ( pre_add_arc_a_b @ ( pre_add_arc_a_b @ t @ B2 ) @ A2 )
      = ( pre_add_arc_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ B2 ) ) ).

% add_arc_commute
thf(fact_1088_add__arc__in,axiom,
    ! [A2: b] :
      ( ( member_b @ A2 @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( pre_add_arc_a_b @ t @ A2 )
        = t ) ) ).

% add_arc_in
thf(fact_1089_iapath__dist__ends,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( pre_gen_iapath_a_b @ t @ ( verts3_a_b @ t ) @ U2 @ P2 @ V2 )
     => ( U2 != V2 ) ) ).

% iapath_dist_ends
thf(fact_1090_add__add__arc__collapse,axiom,
    ! [A2: b] :
      ( ( pre_add_arc_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ A2 )
      = ( pre_add_arc_a_b @ t @ A2 ) ) ).

% add_add_arc_collapse
thf(fact_1091_list_Oset__map,axiom,
    ! [F: a > a,V2: list_a] :
      ( ( set_a2 @ ( map_a_a @ F @ V2 ) )
      = ( image_a_a @ F @ ( set_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1092_list_Oset__map,axiom,
    ! [F: b > a,V2: list_b] :
      ( ( set_a2 @ ( map_b_a @ F @ V2 ) )
      = ( image_b_a @ F @ ( set_b2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1093_list_Oset__map,axiom,
    ! [F: a > b,V2: list_a] :
      ( ( set_b2 @ ( map_a_b @ F @ V2 ) )
      = ( image_a_b @ F @ ( set_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1094_list_Oset__map,axiom,
    ! [F: b > b,V2: list_b] :
      ( ( set_b2 @ ( map_b_b @ F @ V2 ) )
      = ( image_b_b @ F @ ( set_b2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1095_list_Oset__map,axiom,
    ! [F: a > set_a,V2: list_a] :
      ( ( set_set_a2 @ ( map_a_set_a @ F @ V2 ) )
      = ( image_a_set_a @ F @ ( set_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1096_list_Oset__map,axiom,
    ! [F: list_a > a,V2: list_list_a] :
      ( ( set_a2 @ ( map_list_a_a @ F @ V2 ) )
      = ( image_list_a_a @ F @ ( set_list_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1097_list_Oset__map,axiom,
    ! [F: list_a > b,V2: list_list_a] :
      ( ( set_b2 @ ( map_list_a_b @ F @ V2 ) )
      = ( image_list_a_b @ F @ ( set_list_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1098_list_Oset__map,axiom,
    ! [F: a > list_a,V2: list_a] :
      ( ( set_list_a2 @ ( map_a_list_a @ F @ V2 ) )
      = ( image_a_list_a @ F @ ( set_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1099_list_Oset__map,axiom,
    ! [F: b > list_a,V2: list_b] :
      ( ( set_list_a2 @ ( map_b_list_a @ F @ V2 ) )
      = ( image_b_list_a @ F @ ( set_b2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1100_list_Oset__map,axiom,
    ! [F: list_a > set_a,V2: list_list_a] :
      ( ( set_set_a2 @ ( map_list_a_set_a @ F @ V2 ) )
      = ( image_list_a_set_a @ F @ ( set_list_a2 @ V2 ) ) ) ).

% list.set_map
thf(fact_1101_head__add__arc,axiom,
    ! [A2: b] :
      ( ( pre_he5236287464308401016t_unit @ ( pre_add_arc_a_b @ t @ A2 ) )
      = ( pre_he5236287464308401016t_unit @ t ) ) ).

% head_add_arc
thf(fact_1102_tail__add__arc,axiom,
    ! [A2: b] :
      ( ( pre_ta4931606617599662728t_unit @ ( pre_add_arc_a_b @ t @ A2 ) )
      = ( pre_ta4931606617599662728t_unit @ t ) ) ).

% tail_add_arc
thf(fact_1103_add__del__arc__collapse,axiom,
    ! [A2: b] :
      ( ( pre_add_arc_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ A2 )
      = ( pre_add_arc_a_b @ t @ A2 ) ) ).

% add_del_arc_collapse
thf(fact_1104_arcs__add__arc,axiom,
    ! [A2: b] :
      ( ( pre_ar1395965042833527383t_unit @ ( pre_add_arc_a_b @ t @ A2 ) )
      = ( insert_b @ A2 @ ( pre_ar1395965042833527383t_unit @ t ) ) ) ).

% arcs_add_arc
thf(fact_1105_verts__add__arc,axiom,
    ! [A2: b] :
      ( ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ A2 ) @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( member_a @ ( pre_he5236287464308401016t_unit @ t @ A2 ) @ ( pre_ve642382030648772252t_unit @ t ) )
       => ( ( pre_ve642382030648772252t_unit @ ( pre_add_arc_a_b @ t @ A2 ) )
          = ( pre_ve642382030648772252t_unit @ t ) ) ) ) ).

% verts_add_arc
thf(fact_1106_del__add__arc__collapse,axiom,
    ! [A2: b] :
      ( ( member_a @ ( pre_ta4931606617599662728t_unit @ t @ A2 ) @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( member_a @ ( pre_he5236287464308401016t_unit @ t @ A2 ) @ ( pre_ve642382030648772252t_unit @ t ) )
       => ( ( pre_del_arc_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ A2 )
          = ( pre_del_arc_a_b @ t @ A2 ) ) ) ) ).

% del_add_arc_collapse
thf(fact_1107_arcs__del__arc,axiom,
    ! [A2: b] :
      ( ( pre_ar1395965042833527383t_unit @ ( pre_del_arc_a_b @ t @ A2 ) )
      = ( minus_minus_set_b @ ( pre_ar1395965042833527383t_unit @ t ) @ ( insert_b @ A2 @ bot_bot_set_b ) ) ) ).

% arcs_del_arc
thf(fact_1108_pre__digraph_Ohead__add__arc,axiom,
    ! [G: pre_pr7278220950009878019t_unit,A2: b] :
      ( ( pre_he5236287464308401016t_unit @ ( pre_add_arc_a_b @ G @ A2 ) )
      = ( pre_he5236287464308401016t_unit @ G ) ) ).

% pre_digraph.head_add_arc
thf(fact_1109_image__mono,axiom,
    ! [A3: set_pr5411798346947241657t_unit,B3: set_pr5411798346947241657t_unit,F: pre_pr7278220950009878019t_unit > set_a] :
      ( ( ord_le8200006823705900825t_unit @ A3 @ B3 )
     => ( ord_le3724670747650509150_set_a @ ( image_7466199892558553556_set_a @ F @ A3 ) @ ( image_7466199892558553556_set_a @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1110_image__mono,axiom,
    ! [A3: set_set_a,B3: set_set_a,F: set_a > pre_pr7278220950009878019t_unit] :
      ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
     => ( ord_le8200006823705900825t_unit @ ( image_6801035452528096924t_unit @ F @ A3 ) @ ( image_6801035452528096924t_unit @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1111_image__mono,axiom,
    ! [A3: set_list_a,B3: set_list_a,F: list_a > set_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B3 )
     => ( ord_le3724670747650509150_set_a @ ( image_list_a_set_a @ F @ A3 ) @ ( image_list_a_set_a @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1112_image__mono,axiom,
    ! [A3: set_a,B3: set_a,F: a > set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ A3 ) @ ( image_a_set_a @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1113_image__mono,axiom,
    ! [A3: set_a,B3: set_a,F: a > a] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A3 ) @ ( image_a_a @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1114_image__mono,axiom,
    ! [A3: set_a,B3: set_a,F: a > b] :
      ( ( ord_less_eq_set_a @ A3 @ B3 )
     => ( ord_less_eq_set_b @ ( image_a_b @ F @ A3 ) @ ( image_a_b @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1115_image__mono,axiom,
    ! [A3: set_b,B3: set_b,F: b > a] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ord_less_eq_set_a @ ( image_b_a @ F @ A3 ) @ ( image_b_a @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1116_image__mono,axiom,
    ! [A3: set_b,B3: set_b,F: b > b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ord_less_eq_set_b @ ( image_b_b @ F @ A3 ) @ ( image_b_b @ F @ B3 ) ) ) ).

% image_mono
thf(fact_1117_image__subsetI,axiom,
    ! [A3: set_b,F: b > a,B3: set_a] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ A3 )
         => ( member_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_less_eq_set_a @ ( image_b_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1118_image__subsetI,axiom,
    ! [A3: set_a,F: a > a,B3: set_a] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ A3 )
         => ( member_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1119_image__subsetI,axiom,
    ! [A3: set_b,F: b > b,B3: set_b] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ A3 )
         => ( member_b @ ( F @ X2 ) @ B3 ) )
     => ( ord_less_eq_set_b @ ( image_b_b @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1120_image__subsetI,axiom,
    ! [A3: set_a,F: a > b,B3: set_b] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ A3 )
         => ( member_b @ ( F @ X2 ) @ B3 ) )
     => ( ord_less_eq_set_b @ ( image_a_b @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1121_image__subsetI,axiom,
    ! [A3: set_b,F: b > list_a,B3: set_list_a] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ A3 )
         => ( member_list_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_le8861187494160871172list_a @ ( image_b_list_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1122_image__subsetI,axiom,
    ! [A3: set_b,F: b > set_a,B3: set_set_a] :
      ( ! [X2: b] :
          ( ( member_b @ X2 @ A3 )
         => ( member_set_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_le3724670747650509150_set_a @ ( image_b_set_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1123_image__subsetI,axiom,
    ! [A3: set_a,F: a > list_a,B3: set_list_a] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ A3 )
         => ( member_list_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_le8861187494160871172list_a @ ( image_a_list_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1124_image__subsetI,axiom,
    ! [A3: set_a,F: a > set_a,B3: set_set_a] :
      ( ! [X2: a] :
          ( ( member_a @ X2 @ A3 )
         => ( member_set_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1125_image__subsetI,axiom,
    ! [A3: set_list_a,F: list_a > a,B3: set_a] :
      ( ! [X2: list_a] :
          ( ( member_list_a @ X2 @ A3 )
         => ( member_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_less_eq_set_a @ ( image_list_a_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1126_image__subsetI,axiom,
    ! [A3: set_set_a,F: set_a > a,B3: set_a] :
      ( ! [X2: set_a] :
          ( ( member_set_a @ X2 @ A3 )
         => ( member_a @ ( F @ X2 ) @ B3 ) )
     => ( ord_less_eq_set_a @ ( image_set_a_a @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_1127_subset__imageE,axiom,
    ! [B3: set_set_a,F: pre_pr7278220950009878019t_unit > set_a,A3: set_pr5411798346947241657t_unit] :
      ( ( ord_le3724670747650509150_set_a @ B3 @ ( image_7466199892558553556_set_a @ F @ A3 ) )
     => ~ ! [C3: set_pr5411798346947241657t_unit] :
            ( ( ord_le8200006823705900825t_unit @ C3 @ A3 )
           => ( B3
             != ( image_7466199892558553556_set_a @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1128_subset__imageE,axiom,
    ! [B3: set_pr5411798346947241657t_unit,F: set_a > pre_pr7278220950009878019t_unit,A3: set_set_a] :
      ( ( ord_le8200006823705900825t_unit @ B3 @ ( image_6801035452528096924t_unit @ F @ A3 ) )
     => ~ ! [C3: set_set_a] :
            ( ( ord_le3724670747650509150_set_a @ C3 @ A3 )
           => ( B3
             != ( image_6801035452528096924t_unit @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1129_subset__imageE,axiom,
    ! [B3: set_set_a,F: list_a > set_a,A3: set_list_a] :
      ( ( ord_le3724670747650509150_set_a @ B3 @ ( image_list_a_set_a @ F @ A3 ) )
     => ~ ! [C3: set_list_a] :
            ( ( ord_le8861187494160871172list_a @ C3 @ A3 )
           => ( B3
             != ( image_list_a_set_a @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1130_subset__imageE,axiom,
    ! [B3: set_set_a,F: a > set_a,A3: set_a] :
      ( ( ord_le3724670747650509150_set_a @ B3 @ ( image_a_set_a @ F @ A3 ) )
     => ~ ! [C3: set_a] :
            ( ( ord_less_eq_set_a @ C3 @ A3 )
           => ( B3
             != ( image_a_set_a @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1131_subset__imageE,axiom,
    ! [B3: set_a,F: a > a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B3 @ ( image_a_a @ F @ A3 ) )
     => ~ ! [C3: set_a] :
            ( ( ord_less_eq_set_a @ C3 @ A3 )
           => ( B3
             != ( image_a_a @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1132_subset__imageE,axiom,
    ! [B3: set_a,F: b > a,A3: set_b] :
      ( ( ord_less_eq_set_a @ B3 @ ( image_b_a @ F @ A3 ) )
     => ~ ! [C3: set_b] :
            ( ( ord_less_eq_set_b @ C3 @ A3 )
           => ( B3
             != ( image_b_a @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1133_subset__imageE,axiom,
    ! [B3: set_b,F: a > b,A3: set_a] :
      ( ( ord_less_eq_set_b @ B3 @ ( image_a_b @ F @ A3 ) )
     => ~ ! [C3: set_a] :
            ( ( ord_less_eq_set_a @ C3 @ A3 )
           => ( B3
             != ( image_a_b @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1134_subset__imageE,axiom,
    ! [B3: set_b,F: b > b,A3: set_b] :
      ( ( ord_less_eq_set_b @ B3 @ ( image_b_b @ F @ A3 ) )
     => ~ ! [C3: set_b] :
            ( ( ord_less_eq_set_b @ C3 @ A3 )
           => ( B3
             != ( image_b_b @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_1135_image__subset__iff,axiom,
    ! [F: set_a > pre_pr7278220950009878019t_unit,A3: set_set_a,B3: set_pr5411798346947241657t_unit] :
      ( ( ord_le8200006823705900825t_unit @ ( image_6801035452528096924t_unit @ F @ A3 ) @ B3 )
      = ( ! [X4: set_a] :
            ( ( member_set_a @ X4 @ A3 )
           => ( member6939884229742472986t_unit @ ( F @ X4 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_1136_image__subset__iff,axiom,
    ! [F: pre_pr7278220950009878019t_unit > set_a,A3: set_pr5411798346947241657t_unit,B3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( image_7466199892558553556_set_a @ F @ A3 ) @ B3 )
      = ( ! [X4: pre_pr7278220950009878019t_unit] :
            ( ( member6939884229742472986t_unit @ X4 @ A3 )
           => ( member_set_a @ ( F @ X4 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_1137_image__subset__iff,axiom,
    ! [F: a > set_a,A3: set_a,B3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ A3 ) @ B3 )
      = ( ! [X4: a] :
            ( ( member_a @ X4 @ A3 )
           => ( member_set_a @ ( F @ X4 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_1138_image__subset__iff,axiom,
    ! [F: list_a > set_a,A3: set_list_a,B3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( image_list_a_set_a @ F @ A3 ) @ B3 )
      = ( ! [X4: list_a] :
            ( ( member_list_a @ X4 @ A3 )
           => ( member_set_a @ ( F @ X4 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_1139_image__subset__iff,axiom,
    ! [F: b > a,A3: set_b,B3: set_a] :
      ( ( ord_less_eq_set_a @ ( image_b_a @ F @ A3 ) @ B3 )
      = ( ! [X4: b] :
            ( ( member_b @ X4 @ A3 )
           => ( member_a @ ( F @ X4 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_1140_subset__image__iff,axiom,
    ! [B3: set_set_a,F: pre_pr7278220950009878019t_unit > set_a,A3: set_pr5411798346947241657t_unit] :
      ( ( ord_le3724670747650509150_set_a @ B3 @ ( image_7466199892558553556_set_a @ F @ A3 ) )
      = ( ? [AA: set_pr5411798346947241657t_unit] :
            ( ( ord_le8200006823705900825t_unit @ AA @ A3 )
            & ( B3
              = ( image_7466199892558553556_set_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1141_subset__image__iff,axiom,
    ! [B3: set_pr5411798346947241657t_unit,F: set_a > pre_pr7278220950009878019t_unit,A3: set_set_a] :
      ( ( ord_le8200006823705900825t_unit @ B3 @ ( image_6801035452528096924t_unit @ F @ A3 ) )
      = ( ? [AA: set_set_a] :
            ( ( ord_le3724670747650509150_set_a @ AA @ A3 )
            & ( B3
              = ( image_6801035452528096924t_unit @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1142_subset__image__iff,axiom,
    ! [B3: set_set_a,F: list_a > set_a,A3: set_list_a] :
      ( ( ord_le3724670747650509150_set_a @ B3 @ ( image_list_a_set_a @ F @ A3 ) )
      = ( ? [AA: set_list_a] :
            ( ( ord_le8861187494160871172list_a @ AA @ A3 )
            & ( B3
              = ( image_list_a_set_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1143_subset__image__iff,axiom,
    ! [B3: set_set_a,F: a > set_a,A3: set_a] :
      ( ( ord_le3724670747650509150_set_a @ B3 @ ( image_a_set_a @ F @ A3 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A3 )
            & ( B3
              = ( image_a_set_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1144_subset__image__iff,axiom,
    ! [B3: set_a,F: a > a,A3: set_a] :
      ( ( ord_less_eq_set_a @ B3 @ ( image_a_a @ F @ A3 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A3 )
            & ( B3
              = ( image_a_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1145_subset__image__iff,axiom,
    ! [B3: set_a,F: b > a,A3: set_b] :
      ( ( ord_less_eq_set_a @ B3 @ ( image_b_a @ F @ A3 ) )
      = ( ? [AA: set_b] :
            ( ( ord_less_eq_set_b @ AA @ A3 )
            & ( B3
              = ( image_b_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1146_subset__image__iff,axiom,
    ! [B3: set_b,F: a > b,A3: set_a] :
      ( ( ord_less_eq_set_b @ B3 @ ( image_a_b @ F @ A3 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A3 )
            & ( B3
              = ( image_a_b @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1147_subset__image__iff,axiom,
    ! [B3: set_b,F: b > b,A3: set_b] :
      ( ( ord_less_eq_set_b @ B3 @ ( image_b_b @ F @ A3 ) )
      = ( ? [AA: set_b] :
            ( ( ord_less_eq_set_b @ AA @ A3 )
            & ( B3
              = ( image_b_b @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1148_image__Int__subset,axiom,
    ! [F: a > set_a,A3: set_a,B3: set_a] : ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ ( inf_inf_set_a @ A3 @ B3 ) ) @ ( inf_inf_set_set_a @ ( image_a_set_a @ F @ A3 ) @ ( image_a_set_a @ F @ B3 ) ) ) ).

% image_Int_subset
thf(fact_1149_image__Int__subset,axiom,
    ! [F: b > a,A3: set_b,B3: set_b] : ( ord_less_eq_set_a @ ( image_b_a @ F @ ( inf_inf_set_b @ A3 @ B3 ) ) @ ( inf_inf_set_a @ ( image_b_a @ F @ A3 ) @ ( image_b_a @ F @ B3 ) ) ) ).

% image_Int_subset
thf(fact_1150_image__Int__subset,axiom,
    ! [F: a > a,A3: set_a,B3: set_a] : ( ord_less_eq_set_a @ ( image_a_a @ F @ ( inf_inf_set_a @ A3 @ B3 ) ) @ ( inf_inf_set_a @ ( image_a_a @ F @ A3 ) @ ( image_a_a @ F @ B3 ) ) ) ).

% image_Int_subset
thf(fact_1151_image__Int__subset,axiom,
    ! [F: a > b,A3: set_a,B3: set_a] : ( ord_less_eq_set_b @ ( image_a_b @ F @ ( inf_inf_set_a @ A3 @ B3 ) ) @ ( inf_inf_set_b @ ( image_a_b @ F @ A3 ) @ ( image_a_b @ F @ B3 ) ) ) ).

% image_Int_subset
thf(fact_1152_in__arcs__del__arc__iff,axiom,
    ! [A2: b,U2: a] :
      ( ( ( ( pre_he5236287464308401016t_unit @ t @ A2 )
          = U2 )
       => ( ( in_arcs_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ U2 )
          = ( minus_minus_set_b @ ( in_arcs_a_b @ t @ U2 ) @ ( insert_b @ A2 @ bot_bot_set_b ) ) ) )
      & ( ( ( pre_he5236287464308401016t_unit @ t @ A2 )
         != U2 )
       => ( ( in_arcs_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ U2 )
          = ( in_arcs_a_b @ t @ U2 ) ) ) ) ).

% in_arcs_del_arc_iff
thf(fact_1153_out__arcs__del__arc__iff,axiom,
    ! [A2: b,U2: a] :
      ( ( ( ( pre_ta4931606617599662728t_unit @ t @ A2 )
          = U2 )
       => ( ( out_arcs_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ U2 )
          = ( minus_minus_set_b @ ( out_arcs_a_b @ t @ U2 ) @ ( insert_b @ A2 @ bot_bot_set_b ) ) ) )
      & ( ( ( pre_ta4931606617599662728t_unit @ t @ A2 )
         != U2 )
       => ( ( out_arcs_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ U2 )
          = ( out_arcs_a_b @ t @ U2 ) ) ) ) ).

% out_arcs_del_arc_iff
thf(fact_1154_in__arcs__add__arc__iff,axiom,
    ! [A2: b,U2: a] :
      ( ( ( ( pre_he5236287464308401016t_unit @ t @ A2 )
          = U2 )
       => ( ( in_arcs_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ U2 )
          = ( insert_b @ A2 @ ( in_arcs_a_b @ t @ U2 ) ) ) )
      & ( ( ( pre_he5236287464308401016t_unit @ t @ A2 )
         != U2 )
       => ( ( in_arcs_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ U2 )
          = ( in_arcs_a_b @ t @ U2 ) ) ) ) ).

% in_arcs_add_arc_iff
thf(fact_1155_scc__disj,axiom,
    ! [C: pre_pr7278220950009878019t_unit,D2: pre_pr7278220950009878019t_unit] :
      ( ( member6939884229742472986t_unit @ C @ ( digraph_pre_sccs_a_b @ t ) )
     => ( ( member6939884229742472986t_unit @ D2 @ ( digraph_pre_sccs_a_b @ t ) )
       => ( ( C != D2 )
         => ( ( inf_inf_set_a @ ( pre_ve642382030648772252t_unit @ C ) @ ( pre_ve642382030648772252t_unit @ D2 ) )
            = bot_bot_set_a ) ) ) ) ).

% scc_disj
thf(fact_1156_not__elem__no__in__arcs,axiom,
    ! [V2: a] :
      ( ~ ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( in_arcs_a_b @ t @ V2 )
        = bot_bot_set_b ) ) ).

% not_elem_no_in_arcs
thf(fact_1157_not__elem__no__out__arcs,axiom,
    ! [V2: a] :
      ( ~ ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ( out_arcs_a_b @ t @ V2 )
        = bot_bot_set_b ) ) ).

% not_elem_no_out_arcs
thf(fact_1158_in__sccs__subset__imp__eq,axiom,
    ! [C: pre_pr7278220950009878019t_unit,D2: pre_pr7278220950009878019t_unit] :
      ( ( member6939884229742472986t_unit @ C @ ( digraph_pre_sccs_a_b @ t ) )
     => ( ( member6939884229742472986t_unit @ D2 @ ( digraph_pre_sccs_a_b @ t ) )
       => ( ( ord_less_eq_set_a @ ( pre_ve642382030648772252t_unit @ C ) @ ( pre_ve642382030648772252t_unit @ D2 ) )
         => ( C = D2 ) ) ) ) ).

% in_sccs_subset_imp_eq
thf(fact_1159_sccs__verts__conv,axiom,
    ( ( digrap2871191568752656621ts_a_b @ t )
    = ( image_7466199892558553556_set_a @ pre_ve642382030648772252t_unit @ ( digraph_pre_sccs_a_b @ t ) ) ) ).

% sccs_verts_conv
thf(fact_1160_in__sccs__vertsI__sccs,axiom,
    ! [S: set_a] :
      ( ( member_set_a @ S @ ( image_7466199892558553556_set_a @ pre_ve642382030648772252t_unit @ ( digraph_pre_sccs_a_b @ t ) ) )
     => ( member_set_a @ S @ ( digrap2871191568752656621ts_a_b @ t ) ) ) ).

% in_sccs_vertsI_sccs
thf(fact_1161_sccs__verts__conv__scc__of,axiom,
    ( ( digrap2871191568752656621ts_a_b @ t )
    = ( image_a_set_a @ ( digrap2937667069914300949of_a_b @ t ) @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% sccs_verts_conv_scc_of
thf(fact_1162_sccs__conv__sccs__verts,axiom,
    ( ( digraph_pre_sccs_a_b @ t )
    = ( image_6801035452528096924t_unit @ ( digrap7873285959652527175ph_a_b @ t ) @ ( digrap2871191568752656621ts_a_b @ t ) ) ) ).

% sccs_conv_sccs_verts
thf(fact_1163_in__sccs__verts__conv,axiom,
    ! [S: set_a] :
      ( ( member_set_a @ S @ ( digrap2871191568752656621ts_a_b @ t ) )
      = ( member6939884229742472986t_unit @ ( digrap7873285959652527175ph_a_b @ t @ S ) @ ( digraph_pre_sccs_a_b @ t ) ) ) ).

% in_sccs_verts_conv
thf(fact_1164_in__verts__sccsD__sccs,axiom,
    ! [S: set_a] :
      ( ( member_set_a @ S @ ( digrap2871191568752656621ts_a_b @ t ) )
     => ( member6939884229742472986t_unit @ ( digrap7873285959652527175ph_a_b @ t @ S ) @ ( digraph_pre_sccs_a_b @ t ) ) ) ).

% in_verts_sccsD_sccs
thf(fact_1165_out__arcs__add__arc__iff,axiom,
    ! [A2: b,U2: a] :
      ( ( ( ( pre_ta4931606617599662728t_unit @ t @ A2 )
          = U2 )
       => ( ( out_arcs_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ U2 )
          = ( insert_b @ A2 @ ( out_arcs_a_b @ t @ U2 ) ) ) )
      & ( ( ( pre_ta4931606617599662728t_unit @ t @ A2 )
         != U2 )
       => ( ( out_arcs_a_b @ ( pre_add_arc_a_b @ t @ A2 ) @ U2 )
          = ( out_arcs_a_b @ t @ U2 ) ) ) ) ).

% out_arcs_add_arc_iff
thf(fact_1166_leaf__def,axiom,
    ! [V2: a] :
      ( ( shorte1213025427933718126af_a_b @ t @ V2 )
      = ( ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) )
        & ( ( out_arcs_a_b @ t @ V2 )
          = bot_bot_set_b ) ) ) ).

% leaf_def
thf(fact_1167_arcs__del__vert2,axiom,
    ! [V2: a] :
      ( ( pre_ar1395965042833527383t_unit @ ( pre_del_vert_a_b @ t @ V2 ) )
      = ( minus_minus_set_b @ ( minus_minus_set_b @ ( pre_ar1395965042833527383t_unit @ t ) @ ( in_arcs_a_b @ t @ V2 ) ) @ ( out_arcs_a_b @ t @ V2 ) ) ) ).

% arcs_del_vert2
thf(fact_1168_to__list__tree__union__verts__eq,axiom,
    ( ( comple2307003609928055243_set_a @ ( image_list_a_set_a @ set_a2 @ ( pre_ve1830060048215441954t_unit @ ( direct3773525127397338803ee_a_b @ t ) ) ) )
    = ( pre_ve642382030648772252t_unit @ t ) ) ).

% to_list_tree_union_verts_eq
thf(fact_1169_reachable__vwalk__conv,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
      = ( ? [P4: list_a] :
            ( ( vertex_vwalk_a_b @ P4 @ t )
            & ( ( hd_a @ P4 )
              = U2 )
            & ( ( last_a @ P4 )
              = V2 ) ) ) ) ).

% reachable_vwalk_conv
thf(fact_1170_awalk__imp__vwalk,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( vertex_vwalk_a_b @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) @ t ) ) ).

% awalk_imp_vwalk
thf(fact_1171_unvis__insert,axiom,
    ! [U2: a,X: a,U: set_a] :
      ( ( graph_2016941059203891550ts_a_b @ t @ U2 @ ( insert_a @ X @ U ) )
      = ( minus_minus_set_a @ ( graph_2016941059203891550ts_a_b @ t @ U2 @ U ) @ ( insert_a @ X @ bot_bot_set_a ) ) ) ).

% unvis_insert
thf(fact_1172_induce__eq__iff__induced,axiom,
    ! [H: pre_pr7278220950009878019t_unit] :
      ( ( digrap5251062021860773499ph_a_b @ H @ t )
     => ( ( digrap7873285959652527175ph_a_b @ t @ ( pre_ve642382030648772252t_unit @ H ) )
        = H ) ) ).

% induce_eq_iff_induced
thf(fact_1173_induced__subgraph__refl,axiom,
    digrap5251062021860773499ph_a_b @ t @ t ).

% induced_subgraph_refl
thf(fact_1174_in__sccs__imp__induced,axiom,
    ! [C: pre_pr7278220950009878019t_unit] :
      ( ( member6939884229742472986t_unit @ C @ ( digraph_pre_sccs_a_b @ t ) )
     => ( digrap5251062021860773499ph_a_b @ C @ t ) ) ).

% in_sccs_imp_induced
thf(fact_1175_disj__unvis__vis,axiom,
    ! [U2: a,U: set_a] :
      ( ( inf_inf_set_a @ ( graph_2016941059203891550ts_a_b @ t @ U2 @ U ) @ U )
      = bot_bot_set_a ) ).

% disj_unvis_vis
thf(fact_1176_induced__induce,axiom,
    ! [Vs: set_a] :
      ( ( ord_less_eq_set_a @ Vs @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( digrap5251062021860773499ph_a_b @ ( digrap7873285959652527175ph_a_b @ t @ Vs ) @ t ) ) ).

% induced_induce
thf(fact_1177_induced__subgraph__altdef,axiom,
    ! [H: pre_pr7278220950009878019t_unit] :
      ( ( digrap5251062021860773499ph_a_b @ H @ t )
      = ( ( digraph_subgraph_a_b @ H @ t )
        & ! [H2: pre_pr7278220950009878019t_unit] :
            ( ( digraph_subgraph_a_b @ H2 @ t )
           => ( ( ( pre_ve642382030648772252t_unit @ H2 )
               != ( pre_ve642382030648772252t_unit @ H ) )
              | ( ord_less_eq_set_b @ ( pre_ar1395965042833527383t_unit @ H2 ) @ ( pre_ar1395965042833527383t_unit @ H ) ) ) ) ) ) ).

% induced_subgraph_altdef
thf(fact_1178_strongly__connected__spanning__imp__strongly__connected,axiom,
    ! [H: pre_pr7278220950009878019t_unit] :
      ( ( digraph_spanning_a_b @ H @ t )
     => ( ( digrap8691851296217657702ed_a_b @ H )
       => ( digrap8691851296217657702ed_a_b @ t ) ) ) ).

% strongly_connected_spanning_imp_strongly_connected
thf(fact_1179_subgraph__refl,axiom,
    digraph_subgraph_a_b @ t @ t ).

% subgraph_refl
thf(fact_1180_subgraph__awalk__imp__awalk,axiom,
    ! [H: pre_pr7278220950009878019t_unit,U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ H @ U2 @ P2 @ V2 )
     => ( ( digraph_subgraph_a_b @ H @ t )
       => ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 ) ) ) ).

% subgraph_awalk_imp_awalk
thf(fact_1181_reachable__mono,axiom,
    ! [H: pre_pr7278220950009878019t_unit,U2: a,V2: a] :
      ( ( reachable_a_b @ H @ U2 @ V2 )
     => ( ( digraph_subgraph_a_b @ H @ t )
       => ( reachable_a_b @ t @ U2 @ V2 ) ) ) ).

% reachable_mono
thf(fact_1182_subgraph__apath__imp__apath,axiom,
    ! [H: pre_pr7278220950009878019t_unit,U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_apath_a_b @ H @ U2 @ P2 @ V2 )
     => ( ( digraph_subgraph_a_b @ H @ t )
       => ( arc_pre_apath_a_b @ t @ U2 @ P2 @ V2 ) ) ) ).

% subgraph_apath_imp_apath
thf(fact_1183_subgraph__del__arc,axiom,
    ! [A2: b] : ( digraph_subgraph_a_b @ ( pre_del_arc_a_b @ t @ A2 ) @ t ) ).

% subgraph_del_arc
thf(fact_1184_subgraph__del__vert,axiom,
    ! [U2: a] : ( digraph_subgraph_a_b @ ( pre_del_vert_a_b @ t @ U2 ) @ t ) ).

% subgraph_del_vert
thf(fact_1185_strongly__connected__eq__iff,axiom,
    ( ( digrap8691851296217657702ed_a_b @ t )
    = ( ( digraph_pre_sccs_a_b @ t )
      = ( insert6864688055023459379t_unit @ t @ bot_bo1839476491465656141t_unit ) ) ) ).

% strongly_connected_eq_iff
thf(fact_1186_subgraph__cycle,axiom,
    ! [H: pre_pr7278220950009878019t_unit,P2: list_b] :
      ( ( digraph_subgraph_a_b @ H @ t )
     => ( ( arc_pre_cycle_a_b @ H @ P2 )
       => ( arc_pre_cycle_a_b @ t @ P2 ) ) ) ).

% subgraph_cycle
thf(fact_1187_subgraph__induce__subgraphI,axiom,
    ! [V3: set_a] :
      ( ( ord_less_eq_set_a @ V3 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( digraph_subgraph_a_b @ ( digrap7873285959652527175ph_a_b @ t @ V3 ) @ t ) ) ).

% subgraph_induce_subgraphI
thf(fact_1188_strongly__connected__imp__induce__subgraph__strongly__connected,axiom,
    ! [H: pre_pr7278220950009878019t_unit] :
      ( ( digraph_subgraph_a_b @ H @ t )
     => ( ( digrap8691851296217657702ed_a_b @ H )
       => ( digrap8691851296217657702ed_a_b @ ( digrap7873285959652527175ph_a_b @ t @ ( pre_ve642382030648772252t_unit @ H ) ) ) ) ) ).

% strongly_connected_imp_induce_subgraph_strongly_connected
thf(fact_1189_symmetric__connected__imp__strongly__connected,axiom,
    ( ( symmetric_a_b @ t )
   => ( ( digrap8783888973171253482ed_a_b @ t )
     => ( digrap8691851296217657702ed_a_b @ t ) ) ) ).

% symmetric_connected_imp_strongly_connected
thf(fact_1190_in__sccsE,axiom,
    ! [C: pre_pr7278220950009878019t_unit] :
      ( ( member6939884229742472986t_unit @ C @ ( digraph_pre_sccs_a_b @ t ) )
     => ~ ( ( digrap5251062021860773499ph_a_b @ C @ t )
         => ( ( digrap8691851296217657702ed_a_b @ C )
           => ? [D3: pre_pr7278220950009878019t_unit] :
                ( ( digrap5251062021860773499ph_a_b @ D3 @ t )
                & ( digrap8691851296217657702ed_a_b @ D3 )
                & ( ord_less_set_a @ ( pre_ve642382030648772252t_unit @ C ) @ ( pre_ve642382030648772252t_unit @ D3 ) ) ) ) ) ) ).

% in_sccsE
thf(fact_1191_in__sccsI,axiom,
    ! [C: pre_pr7278220950009878019t_unit] :
      ( ( digrap5251062021860773499ph_a_b @ C @ t )
     => ( ( digrap8691851296217657702ed_a_b @ C )
       => ( ~ ? [C4: pre_pr7278220950009878019t_unit] :
                ( ( digrap5251062021860773499ph_a_b @ C4 @ t )
                & ( digrap8691851296217657702ed_a_b @ C4 )
                & ( ord_less_set_a @ ( pre_ve642382030648772252t_unit @ C ) @ ( pre_ve642382030648772252t_unit @ C4 ) ) )
         => ( member6939884229742472986t_unit @ C @ ( digraph_pre_sccs_a_b @ t ) ) ) ) ) ).

% in_sccsI
thf(fact_1192_branch__in__supergraph,axiom,
    ! [C2: pre_pr7278220950009878019t_unit,X: a] :
      ( ( shorte3657265928840388360ph_a_b @ C2 @ t )
     => ( ( member_a @ X @ ( graph_4596510882073158607ts_a_b @ C2 ) )
       => ( member_a @ X @ ( graph_4596510882073158607ts_a_b @ t ) ) ) ) ).

% branch_in_supergraph
thf(fact_1193_cas__takeI,axiom,
    ! [U2: a,P2: list_b,V2: a,N: nat,V4: a] :
      ( ( arc_pre_cas_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( ( last_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ ( take_b @ N @ P2 ) ) )
          = V4 )
       => ( arc_pre_cas_a_b @ t @ U2 @ ( take_b @ N @ P2 ) @ V4 ) ) ) ).

% cas_takeI
thf(fact_1194_ends__del__vert,axiom,
    ! [U2: a] :
      ( ( arc_to_ends_a_b @ ( pre_del_vert_a_b @ t @ U2 ) )
      = ( arc_to_ends_a_b @ t ) ) ).

% ends_del_vert
thf(fact_1195_branch__in__verts,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( graph_4596510882073158607ts_a_b @ t ) )
     => ( member_a @ X @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% branch_in_verts
thf(fact_1196_nomulti_Ono__multi__arcs,axiom,
    ! [E1: b,E22: b] :
      ( ( member_b @ E1 @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( ( member_b @ E22 @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( ( ( arc_to_ends_a_b @ t @ E1 )
            = ( arc_to_ends_a_b @ t @ E22 ) )
         => ( E1 = E22 ) ) ) ) ).

% nomulti.no_multi_arcs
thf(fact_1197_is__chain__def,axiom,
    ( ( graph_3890552050688490787in_a_b @ t )
    = ( ( graph_4596510882073158607ts_a_b @ t )
      = bot_bot_set_a ) ) ).

% is_chain_def
thf(fact_1198_awalk__induct__raw,axiom,
    ! [U2: a,P2: list_b,V2: a,P: a > list_b > a > $o] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ! [W1: a] :
            ( ( member_a @ W1 @ ( pre_ve642382030648772252t_unit @ t ) )
           => ( P @ W1 @ nil_b @ W1 ) )
       => ( ! [W1: a,W22: a,E2: b,Es2: list_b] :
              ( ( member_b @ E2 @ ( pre_ar1395965042833527383t_unit @ t ) )
             => ( ( ( arc_to_ends_a_b @ t @ E2 )
                  = ( product_Pair_a_a @ W1 @ W22 ) )
               => ( ( P @ W22 @ Es2 @ V2 )
                 => ( P @ W1 @ ( cons_b @ E2 @ Es2 ) @ V2 ) ) ) )
         => ( P @ U2 @ P2 @ V2 ) ) ) ) ).

% awalk_induct_raw
thf(fact_1199_last__branch__alt,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( graph_1747835947655717337ts_a_b @ t ) )
     => ! [Z3: a] :
          ( ( ( reachable_a_b @ t @ X @ Z3 )
            & ( Z3 != X ) )
         => ~ ( member_a @ Z3 @ ( graph_4596510882073158607ts_a_b @ t ) ) ) ) ).

% last_branch_alt
thf(fact_1200_awalk__ConsI,axiom,
    ! [V2: a,Es: list_b,W: a,E: b,U2: a] :
      ( ( arc_pre_awalk_a_b @ t @ V2 @ Es @ W )
     => ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( ( ( arc_to_ends_a_b @ t @ E )
            = ( product_Pair_a_a @ U2 @ V2 ) )
         => ( arc_pre_awalk_a_b @ t @ U2 @ ( cons_b @ E @ Es ) @ W ) ) ) ) ).

% awalk_ConsI
thf(fact_1201_last__branch__is__branch,axiom,
    ! [Y: a] :
      ( ( member_a @ Y @ ( graph_1747835947655717337ts_a_b @ t ) )
     => ( member_a @ Y @ ( graph_4596510882073158607ts_a_b @ t ) ) ) ).

% last_branch_is_branch
thf(fact_1202_reachable__arc__trans,axiom,
    ! [U2: a,V2: a,E: b,W: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( ( wf_arc_a_b @ t @ E @ ( product_Pair_a_a @ V2 @ W ) )
       => ( reachable_a_b @ t @ U2 @ W ) ) ) ).

% reachable_arc_trans
thf(fact_1203_arcE,axiom,
    ! [E: b,U2: a,V2: a] :
      ( ( wf_arc_a_b @ t @ E @ ( product_Pair_a_a @ U2 @ V2 ) )
     => ~ ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
         => ( ( ( pre_ta4931606617599662728t_unit @ t @ E )
              = U2 )
           => ( ( pre_he5236287464308401016t_unit @ t @ E )
             != V2 ) ) ) ) ).

% arcE
thf(fact_1204_no__back__before__aux,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( iKKBZ_4622586873178280511rm_a_b @ t @ Xs )
     => ( ( iKKBZ_4622586873178280511rm_a_b @ t @ Ys )
       => ( ( ( inf_inf_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) )
            = bot_bot_set_a )
         => ( ? [X5: a] :
                ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
                & ? [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ Ys ) )
                    & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) )
           => ( iKKBZ_3684931046464919648ck_a_b @ t @ ( append_a @ Xs @ Ys ) ) ) ) ) ) ).

% no_back_before_aux
thf(fact_1205_before__def,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
      = ( ( iKKBZ_4622586873178280511rm_a_b @ t @ S1 )
        & ( iKKBZ_4622586873178280511rm_a_b @ t @ S2 )
        & ( ( inf_inf_set_a @ ( set_a2 @ S1 ) @ ( set_a2 @ S2 ) )
          = bot_bot_set_a )
        & ? [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ S1 ) )
            & ? [Y3: a] :
                ( ( member_a @ Y3 @ ( set_a2 @ S2 ) )
                & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X4 @ Y3 ) @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ).

% before_def
thf(fact_1206_cas_Ocases,axiom,
    ! [X: produc7945266988514096265st_b_a] :
      ( ! [U5: a,V: a] :
          ( X
         != ( produc7119031474978700025st_b_a @ U5 @ ( produc4145578316043568848st_b_a @ nil_b @ V ) ) )
     => ~ ! [U5: a,E2: b,Es2: list_b,V: a] :
            ( X
           != ( produc7119031474978700025st_b_a @ U5 @ ( produc4145578316043568848st_b_a @ ( cons_b @ E2 @ Es2 ) @ V ) ) ) ) ).

% cas.cases
thf(fact_1207_loopfree_Oadj__not__same,axiom,
    ! [A2: a] :
      ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A2 @ A2 ) @ ( arcs_ends_a_b @ t ) ) ).

% loopfree.adj_not_same
thf(fact_1208_adj__in__verts_I2_J,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
     => ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% adj_in_verts(2)
thf(fact_1209_adj__in__verts_I1_J,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
     => ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% adj_in_verts(1)
thf(fact_1210_awalk__dom__if__uneq,axiom,
    ! [U2: a,V2: a,P2: list_b] :
      ( ( U2 != V2 )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
       => ? [X2: a] : ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ V2 ) @ ( arcs_ends_a_b @ t ) ) ) ) ).

% awalk_dom_if_uneq
thf(fact_1211_adj__reachable__trans,axiom,
    ! [A2: a,B2: a,C: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A2 @ B2 ) @ ( arcs_ends_a_b @ t ) )
     => ( ( reachable_a_b @ t @ B2 @ C )
       => ( reachable_a_b @ t @ A2 @ C ) ) ) ).

% adj_reachable_trans
thf(fact_1212_reachable__adj__trans,axiom,
    ! [A2: a,B2: a,C: a] :
      ( ( reachable_a_b @ t @ A2 @ B2 )
     => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ B2 @ C ) @ ( arcs_ends_a_b @ t ) )
       => ( reachable_a_b @ t @ A2 @ C ) ) ) ).

% reachable_adj_trans
thf(fact_1213_reachable__via__child__impl__same,axiom,
    ! [X: a,V2: a,Y: a,U2: a] :
      ( ( reachable_a_b @ t @ X @ V2 )
     => ( ( reachable_a_b @ t @ Y @ V2 )
       => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ X ) @ ( arcs_ends_a_b @ t ) )
         => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ Y ) @ ( arcs_ends_a_b @ t ) )
           => ( X = Y ) ) ) ) ) ).

% reachable_via_child_impl_same
thf(fact_1214_adj__mono,axiom,
    ! [U2: a,V2: a,H: pre_pr7278220950009878019t_unit] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ H ) )
     => ( ( digraph_subgraph_a_b @ H @ t )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) ) ) ) ).

% adj_mono
thf(fact_1215_reachable__induct,axiom,
    ! [U2: a,V2: a,P: a > $o] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( ( ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) )
         => ( P @ U2 ) )
       => ( ! [X2: a,Y2: a] :
              ( ( reachable_a_b @ t @ U2 @ X2 )
             => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ ( arcs_ends_a_b @ t ) )
               => ( ( P @ X2 )
                 => ( P @ Y2 ) ) ) )
         => ( P @ V2 ) ) ) ) ).

% reachable_induct
thf(fact_1216_converse__reachable__induct,axiom,
    ! [U2: a,V2: a,P: a > $o] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( ( ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) )
         => ( P @ V2 ) )
       => ( ! [X2: a,Y2: a] :
              ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Y2 ) @ ( arcs_ends_a_b @ t ) )
             => ( ( reachable_a_b @ t @ Y2 @ V2 )
               => ( ( P @ Y2 )
                 => ( P @ X2 ) ) ) )
         => ( P @ U2 ) ) ) ) ).

% converse_reachable_induct
thf(fact_1217_converse__reachable__cases,axiom,
    ! [U2: a,V2: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( ( ( U2 = V2 )
         => ~ ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) )
       => ~ ! [W2: a] :
              ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ W2 ) @ ( arcs_ends_a_b @ t ) )
             => ~ ( reachable_a_b @ t @ W2 @ V2 ) ) ) ) ).

% converse_reachable_cases
thf(fact_1218_before__ArcI,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ S1 @ S2 )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( set_a2 @ S1 ) )
          & ? [Xa3: a] :
              ( ( member_a @ Xa3 @ ( set_a2 @ S2 ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Xa3 ) @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% before_ArcI
thf(fact_1219_dominatesI,axiom,
    ! [A2: b,U2: a,V2: a] :
      ( ( ( arc_to_ends_a_b @ t @ A2 )
        = ( product_Pair_a_a @ U2 @ V2 ) )
     => ( ( member_b @ A2 @ ( pre_ar1395965042833527383t_unit @ t ) )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) ) ) ) ).

% dominatesI
thf(fact_1220_dominates__induce__ss,axiom,
    ! [U2: a,V2: a,S: set_a,T: set_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ ( digrap7873285959652527175ph_a_b @ t @ S ) ) )
     => ( ( ord_less_eq_set_a @ S @ T )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ ( digrap7873285959652527175ph_a_b @ t @ T ) ) ) ) ) ).

% dominates_induce_ss
thf(fact_1221_dominated__notin__awalk,axiom,
    ! [U2: a,V2: a,R2: a,P2: list_b] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
     => ( ( arc_pre_awalk_a_b @ t @ R2 @ P2 @ U2 )
       => ~ ( member_a @ V2 @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ R2 @ P2 ) ) ) ) ) ).

% dominated_notin_awalk
thf(fact_1222_awalk__verts__dom__if__uneq,axiom,
    ! [U2: a,V2: a,P2: list_b] :
      ( ( U2 != V2 )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
       => ? [X2: a] :
            ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
            & ( member_a @ X2 @ ( set_a2 @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) ) ) ) ) ) ).

% awalk_verts_dom_if_uneq
thf(fact_1223_unique__arc_I2_J,axiom,
    ! [U2: a,V2: a] :
      ( ~ ? [E2: b] :
            ( ( member_b @ E2 @ ( pre_ar1395965042833527383t_unit @ t ) )
            & ( ( pre_ta4931606617599662728t_unit @ t @ E2 )
              = U2 )
            & ( ( pre_he5236287464308401016t_unit @ t @ E2 )
              = V2 ) )
     => ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) ) ) ).

% unique_arc(2)
thf(fact_1224_unique__arc_I1_J,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
     => ? [X2: b] :
          ( ( member_b @ X2 @ ( pre_ar1395965042833527383t_unit @ t ) )
          & ( ( pre_ta4931606617599662728t_unit @ t @ X2 )
            = U2 )
          & ( ( pre_he5236287464308401016t_unit @ t @ X2 )
            = V2 )
          & ! [Y4: b] :
              ( ( ( member_b @ Y4 @ ( pre_ar1395965042833527383t_unit @ t ) )
                & ( ( pre_ta4931606617599662728t_unit @ t @ Y4 )
                  = U2 )
                & ( ( pre_he5236287464308401016t_unit @ t @ Y4 )
                  = V2 ) )
             => ( Y4 = X2 ) ) ) ) ).

% unique_arc(1)
thf(fact_1225_in__arcs__imp__in__arcs__ends,axiom,
    ! [E: b] :
      ( ( member_b @ E @ ( pre_ar1395965042833527383t_unit @ t ) )
     => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ ( pre_ta4931606617599662728t_unit @ t @ E ) @ ( pre_he5236287464308401016t_unit @ t @ E ) ) @ ( arcs_ends_a_b @ t ) ) ) ).

% in_arcs_imp_in_arcs_ends
thf(fact_1226_forward__arcs_Oelims_I3_J,axiom,
    ! [X: list_a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ X )
     => ~ ! [X2: a,V: a,Va: list_a] :
            ( ( X
              = ( cons_a @ X2 @ ( cons_a @ V @ Va ) ) )
           => ( ? [Xa: a] :
                  ( ( member_a @ Xa @ ( set_a2 @ ( cons_a @ V @ Va ) ) )
                  & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Xa @ X2 ) @ ( arcs_ends_a_b @ t ) ) )
              & ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ V @ Va ) ) ) ) ) ).

% forward_arcs.elims(3)
thf(fact_1227_forward__arcs_Osimps_I3_J,axiom,
    ! [X: a,V2: a,Va2: list_a] :
      ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ X @ ( cons_a @ V2 @ Va2 ) ) )
      = ( ? [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ ( cons_a @ V2 @ Va2 ) ) )
            & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X4 @ X ) @ ( arcs_ends_a_b @ t ) ) )
        & ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ V2 @ Va2 ) ) ) ) ).

% forward_arcs.simps(3)
thf(fact_1228_forward__arc__to__head_H,axiom,
    ! [Ys: list_a,X: a,Y: a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Ys )
     => ( ~ ( member_a @ X @ ( set_a2 @ Ys ) )
       => ( ( member_a @ Y @ ( set_a2 @ Ys ) )
         => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( arcs_ends_a_b @ t ) )
           => ( Y
              = ( hd_a @ Ys ) ) ) ) ) ) ).

% forward_arc_to_head'
thf(fact_1229_no__arc__fst__if__no__back,axiom,
    ! [X: a,Xs: list_a,Y: a] :
      ( ( iKKBZ_3684931046464919648ck_a_b @ t @ ( cons_a @ X @ Xs ) )
     => ( ( member_a @ Y @ ( set_a2 @ Xs ) )
       => ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y @ X ) @ ( arcs_ends_a_b @ t ) ) ) ) ).

% no_arc_fst_if_no_back
thf(fact_1230_no__back__arcs_Oelims_I3_J,axiom,
    ! [X: list_a] :
      ( ~ ( iKKBZ_7773321254043928001cs_a_b @ t @ X )
     => ~ ! [X2: a,Xs2: list_a] :
            ( ( X
              = ( cons_a @ X2 @ Xs2 ) )
           => ( ~ ? [Y2: a] :
                    ( ( member_a @ Y2 @ ( set_a2 @ Xs2 ) )
                    & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y2 @ X2 ) @ ( arcs_ends_a_b @ t ) ) )
              & ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs2 ) ) ) ) ).

% no_back_arcs.elims(3)
thf(fact_1231_no__back__arcs_Osimps_I2_J,axiom,
    ! [X: a,Xs: list_a] :
      ( ( iKKBZ_7773321254043928001cs_a_b @ t @ ( cons_a @ X @ Xs ) )
      = ( ~ ? [Y3: a] :
              ( ( member_a @ Y3 @ ( set_a2 @ Xs ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y3 @ X ) @ ( arcs_ends_a_b @ t ) ) )
        & ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs ) ) ) ).

% no_back_arcs.simps(2)
thf(fact_1232_before__arc__to__hd,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( iKKBZ_7682935289300565975re_a_b @ t @ Xs @ Ys )
     => ? [X2: a] :
          ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
          & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ ( hd_a @ Ys ) ) @ ( arcs_ends_a_b @ t ) ) ) ) ).

% before_arc_to_hd
thf(fact_1233_vwalk__wf__digraph__consI,axiom,
    ! [P2: list_a,A2: a] :
      ( ( vertex_vwalk_a_b @ P2 @ t )
     => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A2 @ ( hd_a @ P2 ) ) @ ( arcs_ends_a_b @ t ) )
       => ( vertex_vwalk_a_b @ ( cons_a @ A2 @ P2 ) @ t ) ) ) ).

% vwalk_wf_digraph_consI
thf(fact_1234_move__mid__forward__if__noarc,axiom,
    ! [As: list_a,U: list_a,Bs: list_a,Cs2: list_a] :
      ( ( As != nil_a )
     => ( ~ ? [X2: a] :
              ( ( member_a @ X2 @ ( set_a2 @ U ) )
              & ? [Xa3: a] :
                  ( ( member_a @ Xa3 @ ( set_a2 @ Bs ) )
                  & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Xa3 ) @ ( arcs_ends_a_b @ t ) ) ) )
       => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ U @ ( append_a @ Bs @ Cs2 ) ) ) )
         => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ Bs @ ( append_a @ U @ Cs2 ) ) ) ) ) ) ) ).

% move_mid_forward_if_noarc
thf(fact_1235_arc__to__lst__if__forward,axiom,
    ! [X: a,Xs: list_a,Y: a,Ys: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( rev_a @ ( cons_a @ X @ Xs ) ) )
     => ( ( Xs
          = ( cons_a @ Y @ Ys ) )
       => ? [X2: a] :
            ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
            & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ X ) @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% arc_to_lst_if_forward
thf(fact_1236_loopfree_OvpathI__arc,axiom,
    ! [A2: a,B2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ A2 @ B2 ) @ ( arcs_ends_a_b @ t ) )
     => ( vertex_vpath_a_b @ ( cons_a @ A2 @ ( cons_a @ B2 @ nil_a ) ) @ t ) ) ).

% loopfree.vpathI_arc
thf(fact_1237_no__back__arc__if__fwd__dstct,axiom,
    ! [As: list_a,Bs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ Bs ) )
     => ( ( distinct_a @ ( append_a @ As @ Bs ) )
       => ~ ? [X5: a] :
              ( ( member_a @ X5 @ ( set_a2 @ Bs ) )
              & ? [Xa: a] :
                  ( ( member_a @ Xa @ ( set_a2 @ As ) )
                  & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ).

% no_back_arc_if_fwd_dstct
thf(fact_1238_forward__arcs_Oelims_I2_J,axiom,
    ! [X: list_a] :
      ( ( iKKBZ_4180558001818622352cs_a_b @ t @ X )
     => ( ( X != nil_a )
       => ( ! [X2: a] :
              ( X
             != ( cons_a @ X2 @ nil_a ) )
         => ~ ! [X2: a,V: a,Va: list_a] :
                ( ( X
                  = ( cons_a @ X2 @ ( cons_a @ V @ Va ) ) )
               => ~ ( ? [Xa3: a] :
                        ( ( member_a @ Xa3 @ ( set_a2 @ ( cons_a @ V @ Va ) ) )
                        & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Xa3 @ X2 ) @ ( arcs_ends_a_b @ t ) ) )
                    & ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ V @ Va ) ) ) ) ) ) ) ).

% forward_arcs.elims(2)
thf(fact_1239_forward__arcs_Oelims_I1_J,axiom,
    ! [X: list_a,Y: $o] :
      ( ( ( iKKBZ_4180558001818622352cs_a_b @ t @ X )
        = Y )
     => ( ( ( X = nil_a )
         => ~ Y )
       => ( ( ? [X2: a] :
                ( X
                = ( cons_a @ X2 @ nil_a ) )
           => ~ Y )
         => ~ ! [X2: a,V: a,Va: list_a] :
                ( ( X
                  = ( cons_a @ X2 @ ( cons_a @ V @ Va ) ) )
               => ( Y
                  = ( ~ ( ? [Y3: a] :
                            ( ( member_a @ Y3 @ ( set_a2 @ ( cons_a @ V @ Va ) ) )
                            & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y3 @ X2 ) @ ( arcs_ends_a_b @ t ) ) )
                        & ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ V @ Va ) ) ) ) ) ) ) ) ) ).

% forward_arcs.elims(1)
thf(fact_1240_forward__app,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ S1 )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ S2 )
       => ( ? [X5: a] :
              ( ( member_a @ X5 @ ( set_a2 @ S1 ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ ( hd_a @ S2 ) ) @ ( arcs_ends_a_b @ t ) ) )
         => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ S1 @ S2 ) ) ) ) ) ).

% forward_app
thf(fact_1241_no__back__arcs_Oelims_I2_J,axiom,
    ! [X: list_a] :
      ( ( iKKBZ_7773321254043928001cs_a_b @ t @ X )
     => ( ( X != nil_a )
       => ~ ! [X2: a,Xs2: list_a] :
              ( ( X
                = ( cons_a @ X2 @ Xs2 ) )
             => ~ ( ~ ? [Y4: a] :
                        ( ( member_a @ Y4 @ ( set_a2 @ Xs2 ) )
                        & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y4 @ X2 ) @ ( arcs_ends_a_b @ t ) ) )
                  & ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs2 ) ) ) ) ) ).

% no_back_arcs.elims(2)
thf(fact_1242_no__back__arcs_Oelims_I1_J,axiom,
    ! [X: list_a,Y: $o] :
      ( ( ( iKKBZ_7773321254043928001cs_a_b @ t @ X )
        = Y )
     => ( ( ( X = nil_a )
         => ~ Y )
       => ~ ! [X2: a,Xs2: list_a] :
              ( ( X
                = ( cons_a @ X2 @ Xs2 ) )
             => ( Y
                = ( ~ ( ~ ? [Y3: a] :
                            ( ( member_a @ Y3 @ ( set_a2 @ Xs2 ) )
                            & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y3 @ X2 ) @ ( arcs_ends_a_b @ t ) ) )
                      & ( iKKBZ_7773321254043928001cs_a_b @ t @ Xs2 ) ) ) ) ) ) ) ).

% no_back_arcs.elims(1)
thf(fact_1243_forward__app_H,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ S1 )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ S2 )
       => ( ( ( inf_inf_set_a @ ( set_a2 @ S1 ) @ ( set_a2 @ S2 ) )
            = bot_bot_set_a )
         => ( ? [X5: a] :
                ( ( member_a @ X5 @ ( set_a2 @ S1 ) )
                & ? [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ S2 ) )
                    & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) )
           => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ S1 @ S2 ) ) ) ) ) ) ).

% forward_app'
thf(fact_1244_move__mid__backward__if__noarc_H,axiom,
    ! [U: list_a,V3: list_a,As: list_a,Bs: list_a,Cs2: list_a] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ U ) )
          & ? [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ V3 ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ V3 )
       => ( ( ( inf_inf_set_a @ ( set_a2 @ U ) @ ( set_a2 @ V3 ) )
            = bot_bot_set_a )
         => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ U @ ( append_a @ Bs @ ( append_a @ V3 @ Cs2 ) ) ) ) )
           => ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ U @ ( append_a @ V3 @ ( append_a @ Bs @ Cs2 ) ) ) ) ) ) ) ) ) ).

% move_mid_backward_if_noarc'
thf(fact_1245_forward__arc__to__head,axiom,
    ! [Ys: list_a,Xs: list_a,X: a,Y: a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Ys )
     => ( ( ( inf_inf_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) )
          = bot_bot_set_a )
       => ( ( member_a @ X @ ( set_a2 @ Xs ) )
         => ( ( member_a @ Y @ ( set_a2 @ Ys ) )
           => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( arcs_ends_a_b @ t ) )
             => ( Y
                = ( hd_a @ Ys ) ) ) ) ) ) ) ).

% forward_arc_to_head
thf(fact_1246_reachable__adjI,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
     => ( reachable_a_b @ t @ U2 @ V2 ) ) ).

% reachable_adjI
thf(fact_1247_vwalk__Cons__Cons,axiom,
    ! [U2: a,V2: a,Ws: list_a] :
      ( ( vertex_vwalk_a_b @ ( cons_a @ U2 @ ( cons_a @ V2 @ Ws ) ) @ t )
      = ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( arcs_ends_a_b @ t ) )
        & ( vertex_vwalk_a_b @ ( cons_a @ V2 @ Ws ) @ t ) ) ) ).

% vwalk_Cons_Cons
thf(fact_1248_before2__def,axiom,
    ! [S1: list_a,S2: list_a] :
      ( ( iKKBZ_1040310085189658461e2_a_b @ t @ S1 @ S2 )
      = ( ( iKKBZ_4622586873178280511rm_a_b @ t @ S1 )
        & ( iKKBZ_4622586873178280511rm_a_b @ t @ S2 )
        & ( ( inf_inf_set_a @ ( set_a2 @ S1 ) @ ( set_a2 @ S2 ) )
          = bot_bot_set_a )
        & ? [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ S1 ) )
            & ? [Y3: a] :
                ( ( member_a @ Y3 @ ( set_a2 @ S2 ) )
                & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X4 @ Y3 ) @ ( arcs_ends_a_b @ t ) ) ) )
        & ! [X4: a] :
            ( ( member_a @ X4 @ ( set_a2 @ S1 ) )
           => ! [Y3: a] :
                ( ( member_a @ Y3 @ ( minus_minus_set_a @ ( minus_minus_set_a @ ( pre_ve642382030648772252t_unit @ t ) @ ( set_a2 @ S1 ) ) @ ( set_a2 @ S2 ) ) )
               => ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X4 @ Y3 ) @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ).

% before2_def
thf(fact_1249_awalk__cyc__decompE,axiom,
    ! [P2: list_b,Q: list_b,R2: list_b,S4: list_b,U2: a,V2: a] :
      ( ( ( arc_wf4740610840468824943mp_a_b @ t @ P2 )
        = ( produc305491333965050169list_b @ Q @ ( produc1564554178308465111list_b @ R2 @ S4 ) ) )
     => ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
       => ( ~ ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
         => ~ ( ( P2
                = ( append_b @ Q @ ( append_b @ R2 @ S4 ) ) )
             => ( ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ Q ) )
               => ( ? [W2: a] :
                      ( ( arc_pre_awalk_a_b @ t @ U2 @ Q @ W2 )
                      & ( arc_pre_awalk_a_b @ t @ W2 @ R2 @ W2 )
                      & ( arc_pre_awalk_a_b @ t @ W2 @ S4 @ V2 ) )
                 => ~ ( arc_wf_closed_w_a_b @ t @ R2 ) ) ) ) ) ) ) ).

% awalk_cyc_decompE
thf(fact_1250_step__awalk__to__apath,axiom,
    ! [U2: a,P2: list_b,V2: a,Q: list_b,R2: list_b,S4: list_b] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ( ( arc_wf4740610840468824943mp_a_b @ t @ P2 )
          = ( produc305491333965050169list_b @ Q @ ( produc1564554178308465111list_b @ R2 @ S4 ) ) )
       => ( ~ ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
         => ( ( arc_wf446166946845163101th_a_b @ t @ P2 )
            = ( arc_wf446166946845163101th_a_b @ t @ ( append_b @ Q @ S4 ) ) ) ) ) ) ).

% step_awalk_to_apath
thf(fact_1251_is__awalk__cyc__decomp_Ocases,axiom,
    ! [X: produc272433356463431595list_b] :
      ~ ! [P5: list_b,Q2: list_b,R: list_b,S3: list_b] :
          ( X
         != ( produc7106373121284446491list_b @ P5 @ ( produc305491333965050169list_b @ Q2 @ ( produc1564554178308465111list_b @ R @ S3 ) ) ) ) ).

% is_awalk_cyc_decomp.cases
thf(fact_1252_to__list__tree__dom__iff,axiom,
    ! [X: a,Y: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( arcs_ends_a_b @ t ) )
      = ( member8191768239178080336list_a @ ( produc6837034575241423639list_a @ ( cons_a @ X @ nil_a ) @ ( cons_a @ Y @ nil_a ) ) @ ( arcs_ends_list_a_b @ ( direct3773525127397338803ee_a_b @ t ) ) ) ) ).

% to_list_tree_dom_iff
thf(fact_1253_awalk__to__apath__induct,axiom,
    ! [U2: a,P2: list_b,V2: a,P: list_b > $o] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ! [P5: list_b] :
            ( ( arc_pre_awalk_a_b @ t @ U2 @ P5 @ V2 )
           => ( ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P5 ) )
             => ( P @ P5 ) ) )
       => ( ! [P5: list_b,Q2: list_b,R: list_b,S3: list_b] :
              ( ( arc_pre_awalk_a_b @ t @ U2 @ P5 @ V2 )
             => ( ( ( arc_wf4740610840468824943mp_a_b @ t @ P5 )
                  = ( produc305491333965050169list_b @ Q2 @ ( produc1564554178308465111list_b @ R @ S3 ) ) )
               => ( ~ ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P5 ) )
                 => ( ( P @ ( append_b @ Q2 @ S3 ) )
                   => ( P @ P5 ) ) ) ) )
         => ( P @ P2 ) ) ) ) ).

% awalk_to_apath_induct
thf(fact_1254_awalk__cyc__decomp__has__prop,axiom,
    ! [U2: a,P2: list_b,V2: a] :
      ( ( arc_pre_awalk_a_b @ t @ U2 @ P2 @ V2 )
     => ( ~ ( distinct_a @ ( arc_pr7493981781705774526ts_a_b @ t @ U2 @ P2 ) )
       => ( arc_wf7293661141070756729mp_a_b @ t @ P2 @ ( arc_wf4740610840468824943mp_a_b @ t @ P2 ) ) ) ) ).

% awalk_cyc_decomp_has_prop
thf(fact_1255_hd__reachable1__from__outside,axiom,
    ! [X: a,Y: a,Ys: list_a,Xs: list_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Ys )
       => ( ( ( inf_inf_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ Ys ) )
            = bot_bot_set_a )
         => ( ( member_a @ X @ ( set_a2 @ Xs ) )
           => ( ( member_a @ Y @ ( set_a2 @ Ys ) )
             => ( ? [X2: a] : ( member_a @ X2 @ ( set_a2 @ Ys ) )
                & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ ( hd_a @ Ys ) ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ) ) ).

% hd_reachable1_from_outside
thf(fact_1256_reachable1__not__reverse,axiom,
    ! [X: a,Y: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ~ ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Y @ X ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ).

% reachable1_not_reverse
thf(fact_1257_reachable1__from__outside__dom,axiom,
    ! [X: a,Y: a,Ys: list_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( ~ ( member_a @ X @ ( set_a2 @ Ys ) )
       => ( ( member_a @ Y @ ( set_a2 @ Ys ) )
         => ? [X7: a,X2: a] :
              ( ( member_a @ X2 @ ( set_a2 @ Ys ) )
              & ~ ( member_a @ X7 @ ( set_a2 @ Ys ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X7 @ X2 ) @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ).

% reachable1_from_outside_dom
thf(fact_1258_reachable1__in__verts_I2_J,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% reachable1_in_verts(2)
thf(fact_1259_reachable1__in__verts_I1_J,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( member_a @ U2 @ ( pre_ve642382030648772252t_unit @ t ) ) ) ).

% reachable1_in_verts(1)
thf(fact_1260_reachable1__reachable__trans,axiom,
    ! [U2: a,V2: a,W: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( ( reachable_a_b @ t @ V2 @ W )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ W ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% reachable1_reachable_trans
thf(fact_1261_reachable__reachable1__trans,axiom,
    ! [U2: a,V2: a,W: a] :
      ( ( reachable_a_b @ t @ U2 @ V2 )
     => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ V2 @ W ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ W ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% reachable_reachable1_trans
thf(fact_1262_reachable1__awalk,axiom,
    ! [U2: a,V2: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ U2 @ V2 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
      = ( ? [P4: list_b] :
            ( ( arc_pre_awalk_a_b @ t @ U2 @ P4 @ V2 )
            & ( P4 != nil_b ) ) ) ) ).

% reachable1_awalk
thf(fact_1263_reachable1__awalkI,axiom,
    ! [V2: a,P2: list_b,W: a] :
      ( ( arc_pre_awalk_a_b @ t @ V2 @ P2 @ W )
     => ( ( P2 != nil_b )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ V2 @ W ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% reachable1_awalkI
thf(fact_1264_reachable1__append__old__if__arc,axiom,
    ! [Xs: list_a,Ys: list_a,Z: a,Y: a] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ? [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ Ys ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) )
     => ( ~ ( member_a @ Z @ ( set_a2 @ Xs ) )
       => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
         => ( ( member_a @ Y @ ( set_a2 @ ( append_a @ Xs @ Ys ) ) )
           => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Z @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
             => ? [X2: a] :
                  ( ( member_a @ X2 @ ( set_a2 @ Ys ) )
                  & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Z @ X2 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ) ) ).

% reachable1_append_old_if_arc
thf(fact_1265_hd__reachable1__from__outside_H,axiom,
    ! [X: a,Y: a,Ys: list_a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Ys )
       => ( ~ ( member_a @ X @ ( set_a2 @ Ys ) )
         => ( ( member_a @ Y @ ( set_a2 @ Ys ) )
           => ( ? [X2: a] : ( member_a @ X2 @ ( set_a2 @ Ys ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X @ ( hd_a @ Ys ) ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ) ).

% hd_reachable1_from_outside'
thf(fact_1266_no__back__reach1__if__fwd__dstct,axiom,
    ! [As: list_a,Bs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ Bs ) )
     => ( ( distinct_a @ ( append_a @ As @ Bs ) )
       => ~ ? [X5: a] :
              ( ( member_a @ X5 @ ( set_a2 @ Bs ) )
              & ? [Xa: a] :
                  ( ( member_a @ Xa @ ( set_a2 @ As ) )
                  & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ).

% no_back_reach1_if_fwd_dstct
thf(fact_1267_not__reachable1__append__if__not__old,axiom,
    ! [U: list_a,B2: list_a,X: list_a] :
      ( ~ ? [X2: a] :
            ( ( member_a @ X2 @ ( set_a2 @ U ) )
            & ? [Xa3: a] :
                ( ( member_a @ Xa3 @ ( set_a2 @ B2 ) )
                & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X2 @ Xa3 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) )
     => ( ( ( inf_inf_set_a @ ( set_a2 @ U ) @ ( set_a2 @ X ) )
          = bot_bot_set_a )
       => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ X )
         => ( ? [X5: a] :
                ( ( member_a @ X5 @ ( set_a2 @ X ) )
                & ? [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ B2 ) )
                    & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) )
           => ~ ? [X5: a] :
                  ( ( member_a @ X5 @ ( set_a2 @ U ) )
                  & ? [Xa: a] :
                      ( ( member_a @ Xa @ ( set_a2 @ ( append_a @ X @ B2 ) ) )
                      & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ) ) ).

% not_reachable1_append_if_not_old
thf(fact_1268_reachable1__append__old__if__arcU,axiom,
    ! [Xs: list_a,Ys: list_a,U: list_a,Z: a,Y: a] :
      ( ? [X5: a] :
          ( ( member_a @ X5 @ ( set_a2 @ Xs ) )
          & ? [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ Ys ) )
              & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( arcs_ends_a_b @ t ) ) ) )
     => ( ( ( inf_inf_set_a @ ( set_a2 @ U ) @ ( set_a2 @ Xs ) )
          = bot_bot_set_a )
       => ( ( member_a @ Z @ ( set_a2 @ U ) )
         => ( ( iKKBZ_4778857019735642799rd_a_b @ t @ Xs )
           => ( ( member_a @ Y @ ( set_a2 @ ( append_a @ Xs @ Ys ) ) )
             => ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Z @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
               => ? [X2: a] :
                    ( ( member_a @ X2 @ ( set_a2 @ Ys ) )
                    & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ Z @ X2 ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ) ) ) ).

% reachable1_append_old_if_arcU
thf(fact_1269_hd__reach1__y__if__nfwd__app__fwd,axiom,
    ! [Y: a,Xs: list_a,Ys: list_a] :
      ( ~ ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ Xs ) )
     => ( ( iKKBZ_4180558001818622352cs_a_b @ t @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ ( hd_a @ ( rev_a @ ( cons_a @ Y @ ( append_a @ Ys @ Xs ) ) ) ) @ Y ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% hd_reach1_y_if_nfwd_app_fwd
thf(fact_1270_reachable__neq__reachable1,axiom,
    ! [V2: a,W: a] :
      ( ( reachable_a_b @ t @ V2 @ W )
     => ( ( V2 != W )
       => ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ V2 @ W ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ).

% reachable_neq_reachable1
thf(fact_1271_reachable1__reachable,axiom,
    ! [V2: a,W: a] :
      ( ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ V2 @ W ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) )
     => ( reachable_a_b @ t @ V2 @ W ) ) ).

% reachable1_reachable
thf(fact_1272_no__back__reach1__if__fwd__dstct__bs,axiom,
    ! [As: list_a,Bs: list_list_a,V3: list_a,Cs2: list_a,Xs: list_a] :
      ( ( iKKBZ_4778857019735642799rd_a_b @ t @ ( append_a @ As @ ( append_a @ ( concat_a @ Bs ) @ ( append_a @ V3 @ Cs2 ) ) ) )
     => ( ( distinct_a @ ( append_a @ As @ ( append_a @ ( concat_a @ Bs ) @ ( append_a @ V3 @ Cs2 ) ) ) )
       => ( ( member_list_a @ Xs @ ( set_list_a2 @ Bs ) )
         => ~ ? [X5: a] :
                ( ( member_a @ X5 @ ( set_a2 @ V3 ) )
                & ? [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ Xs ) )
                    & ( member1426531477525435216od_a_a @ ( product_Pair_a_a @ X5 @ Xa ) @ ( transitive_trancl_a @ ( arcs_ends_a_b @ t ) ) ) ) ) ) ) ) ).

% no_back_reach1_if_fwd_dstct_bs
thf(fact_1273_verts__finite__imp__arcs__finite,axiom,
    ( ( finite_finite_a @ ( pre_ve642382030648772252t_unit @ t ) )
   => ( finite_finite_b @ ( pre_ar1395965042833527383t_unit @ t ) ) ) ).

% verts_finite_imp_arcs_finite
thf(fact_1274_in__arcs__finite,axiom,
    ! [V2: a] :
      ( ( member_a @ V2 @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( finite_finite_b @ ( in_arcs_a_b @ t @ V2 ) ) ) ).

% in_arcs_finite
thf(fact_1275_ex__leaf,axiom,
    ( ( finite_finite_a @ ( pre_ve642382030648772252t_unit @ t ) )
   => ? [X2: a] :
        ( ( member_a @ X2 @ ( pre_ve642382030648772252t_unit @ t ) )
        & ( shorte1213025427933718126af_a_b @ t @ X2 ) ) ) ).

% ex_leaf
thf(fact_1276_finite__branch__impl__last__branch,axiom,
    ! [X: a,R2: a] :
      ( ( finite_finite_a @ ( pre_ve642382030648772252t_unit @ t ) )
     => ( ? [X5: a] :
            ( ( member_a @ X5 @ ( graph_4596510882073158607ts_a_b @ t ) )
            & ( reachable_a_b @ t @ X @ X5 ) )
       => ( ( shorte3810566709427824352ee_a_b @ t @ R2 )
         => ? [X2: a] :
              ( ( member_a @ X2 @ ( graph_1747835947655717337ts_a_b @ t ) )
              & ( reachable_a_b @ t @ X @ X2 ) ) ) ) ) ).

% finite_branch_impl_last_branch

% Helper facts (5)
thf(help_If_2_1_If_001t__List__Olist_Itf__a_J_T,axiom,
    ! [X: list_a,Y: list_a] :
      ( ( if_list_a @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_Itf__a_J_T,axiom,
    ! [X: list_a,Y: list_a] :
      ( ( if_list_a @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__List__Olist_Itf__b_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__List__Olist_Itf__b_J_T,axiom,
    ! [X: list_b,Y: list_b] :
      ( ( if_list_b @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_Itf__b_J_T,axiom,
    ! [X: list_b,Y: list_b] :
      ( ( if_list_b @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ~ ( iKKBZ_4778857019735642799rd_a_b @ t @ ( cons_a @ x @ ( append_a @ xs @ ( cons_a @ x @ nil_a ) ) ) ) ).

%------------------------------------------------------------------------------